
Version 4.1.2 for Mainframes Statements

This document applies to Natural Version 4.1.2 for Mainframes and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release
notes or new editions.

© Copyright Software AG 1979 - 2003.
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

Table of Contents
.................. 1Statements - Overview
.................. 1Statements - Overview
.................. 2Example Programs
............ 3Syntax Symbols and Operand Definition Tables
............. 3Syntax Symbols and Operand Definition Tables
................... 3Syntax Symbols
................. 5Operand Definition Table
.................. 5Possible Structure
.................. 5Possible Formats
.................. 6Reference Permitted
.................. 6Dynamic Definition
................ 7Statement Usage Related Topics
................ 7Statement Usage Related Topics
.................. 8User-Defined Variables
.................. 8User-Defined Variables
.................. 8Naming Conventions
................ 8Length of Variable Names
............... 8Limitations of Variable Names
............. 8Characters Allowed in Variable Names
.............. 9First Character of Variable Names
..... 9Special Considerations Regarding the Case of Characters in Variable Names
................. 10Definition of Variables
............... 11Statement Reference Notation - r
............. 11Default Referencing of Database Fields
.............. 11Referencing with Statement Labels
............ 11Referencing with Source-Code Line Numbers
............... 12Definition of Format and Length
................... 13Special Formats
................ 13Format C - Attribute Control
............... 13Formats D - Date, and T - Time
.................. 14Format L - Logical
.................. 14Format "Handle"
................... 14Index Notation
............. 16Using a Slash before an Array Occurrence
................ 16Referencing a Database Array
........ 16Referencing Multiple-Value Fields and Periodic-Group Fields
............ 17Referencing Arrays defined with Constants
............ 18Referencing Arrays defined with Variables
.............. 18Referencing Multiple-Defined Arrays
........... 19Referencing the Internal Count for a Database Array
.......... 20C* for Multiple-Value Fields Within Periodic Groups
................. 21Qualifying Data Structures
..................... 23X-Arrays
..................... 23X-Arrays
.................... 23Definition
............... 24Storage Management of X-Arrays
............. 25Storage Management of X-Group Arrays
................. 28Referencing an X-Array
............... 29Parameter Transfer with X-Arrays
............... 29Example with CALL By Value
............ 29CALL By Reference/CALL By Value Result
.................. 31Dynamic X-Arrays
............ 32System Variables *LBOUND and *UBOUND

iCopyright © Software AG 2003

Table of ContentsStatements - Overview

....................... 33Constants

...................... 33Constants

.................... 33Numeric Constants

................ 33Validation of Numeric Constants

.................. 33Alphanumeric Constants

............. 34Apostrophes Within Alphanumeric Constants

.............. 34Concatenation of Alphanumeric Constants

.................. 34Date and Time Constants

.................. 35Extended Time Constants

................... 36Hexadecimal Constants

.................... 36Logical Constants

.................. 37Floating Point Constants

.................... 37Attribute Constants

.................... 38Handle Constants

.................. 38Defining Named Constants

................... 39Report Specification - rep

................... 39Report Specification - rep

...................... 40Text Notation

..................... 40Text Notation

..................... 41User Comments

..................... 41User Comments

..................... 42End of a Statement

.................... 42End of a Statement

................... 43Logical Condition Criteria

................... 43Logical Condition Criteria

................... 43Relational Expression

............. 45Arithmetic Expressions in Logical Conditions

................. 45Handles in Logical Conditions

............. 45SUBSTRING Option in Relational Expression

................. 46Extended Relational Expression

..................... 47MASK Option

.................... 47Constant Mask

.................... 47Variable Mask

................... 48Characters in a Mask

.................... 49Mask Length

.................... 49Checking Dates

........... 50Checking Against the Content of Constants or Variables

.................... 51Range Checks

............. 52Checking Packed or Unpacked Numeric Data

..................... 52SCAN Option

.............. 53BREAK Within Logical Condition Criteria

....................... 54/n/

............. 55IS Option - Checking Format and Length of Value

................. 57Evaluation of a Logical Variable

.................... 58MODIFIED Option

.................... 59SPECIFIED Option

.............. 60Fields Used Within Logical Condition Criteria

............. 61Logical Operators in Complex Logical Expressions

................. 63Rules for Arithmetic Assignment

................. 63Rules for Arithmetic Assignment

.................... 63Field Initialization

..................... 63Data Transfer

.................... 64Data Conversion

................ 65Field Truncation and Field Rounding

............ 65Result Format and Length in Arithmetic Operations

............ 66Arithmetic Operations with Floating-Point Numbers

Copyright © Software AG 2003ii

Statements - OverviewTable of Contents

................. 66Some General Considerations

.............. 66The Precision of Floating-Point Numbers

............. 66Conversion to Floating-Point Representation

................ 67Platform-Dependent Differences

.............. 67Arithmetic Operations with Date and Time

........... 70Performance Considerations for Mixed Format Expressions

.............. 71Precision of Results for Arithmetic Operations

............. 71Digits after Decimal Point for Division Results

............... 72Error Conditions in Arithmetic Operations

................... 72Processing of Arrays

................ 72Definitions of Array Dimensions

............... 72Assignment Operations with Arrays

............... 73Comparison Operations with Arrays

................ 75Arithmetic Operations with Arrays

............ 77Renumbering of Source-Code Line Number References

............ 77Renumbering of Source-Code Line Number References

................ 78Large and Dynamic Variables/Fields

................ 78Large and Dynamic Variables/Fields

...................... 79Introduction

...................... 79Introduction

................. 80Definition of Dynamic Variables

................. 80Definition of Dynamic Variables

................. 81System Variable *LENGTH(field)

................. 81System Variable *LENGTH(field)

.............. 82Statements EXPAND, REDUCE and RESIZE

.............. 82Statements EXPAND, REDUCE and RESIZE

...................... 82EXPAND

..................... 82Function

................. 82Changing the Specified Size

...................... 82REDUCE

..................... 82Function

................. 82Changing the Specified Size

...................... 83RESIZE

..................... 83Function

................. 83Changing the Specified Size

.................. 84Usage of Dynamic Variables

.................. 84Usage of Dynamic Variables

................ 84Assignments with Dynamic Variables

.................. 85Assignment Compatibility

................ 87Initialization of Dynamic Variables

............ 87String Manipulation with Dynamic Alpha Variables

........... 88Logical Condition Criterion (LCC) with Dynamic Variables

.............. 90Parameter Transfer with Dynamic Variables

................... 90Call By Reference

.................. 90Call by Value (Result)

................... 93CALL 3GL Program

......... 94Work File Access with Large and Dynamic Variables - Mainframes

.............. 94Performance Aspects with Dynamic Variables

................. 95Output of Dynamic Variables

................. 96Statements Grouped by Functions

................. 96Statements Grouped by Functions

.................. 97Database Access and Update

.............. 98Arithmetic and Data Movement Operations

.................... 98Loop Execution

.................. 99Creation of Output Reports

.............. 99Screen Generation for Interactive Processing

iiiCopyright © Software AG 2003

Table of ContentsStatements - Overview

................. 100Processing of Logical Conditions

................. 100Invoking Programs and Routines

................... 100Control of Work Files

................. 101Component Based Programming

.................. 101Event-Driven Programming

..................... 102Miscellaneous

.................... 103ACCEPT/REJECT

.................... 103ACCEPT/REJECT

...................... 103Function

................. 104Fields used as Logical Criteria

............ 104Processing of Multiple ACCEPT/REJECT Statements

..................... 104Limit Notation

..................... 104Hold Status

...................... 105Example 1

..................... 106Example 2

........................ 107ADD

....................... 107ADD

...................... 107Function

...................... 107Operands

................... 107Result Field - operand2

....................... 108TO

..................... 108GIVING

..................... 108ROUNDED

...................... 109Example

....................... 110ASSIGN

....................... 110ASSIGN

........................ 111AT...

....................... 111AT...

...................... 112AT BREAK

...................... 112AT BREAK

................... 112Structured Mode Syntax

................... 112Reporting Mode Syntax

...................... 112Function

................... 113Reference Notation - r

.................. 113Control Field - operand1

....................... 113/n/

...................... 113Example 1

...................... 114Example 2

.................... 115System Functions

................... 116Multiple Break Levels

...................... 117Example 3

.................... 119AT END OF DATA

.................... 119AT END OF DATA

................... 119Structured Mode Syntax

................... 119Reporting Mode Syntax

...................... 119Function

..................... 119Restrictions

.............. 119Reference to a Specific Processing Loop - r

.................. 120Values of Database Fields

.................... 120System Functions

...................... 121Example

.................... 122AT END OF PAGE

.................... 122AT END OF PAGE

................... 122Structured Mode Syntax

................... 122Reporting Mode Syntax

...................... 122Function

Copyright © Software AG 2003iv

Statements - OverviewTable of Contents

.................. 122Report Specification - rep

.................... 123Logical Page Size

.................... 123Last-Page Handling

.................... 123System Functions

.............. 123INPUT Statement with AT END OF PAGE

...................... 123Example 1

...................... 125Example 2

.................... 126AT START OF DATA

................... 126AT START OF DATA

................... 126Structured Mode Syntax

................... 126Reporting Mode Syntax

...................... 126Function

.................. 126Value of Database Fields

..................... 126Positioning

.............. 127Reference to a Specific Processing Loop - r

...................... 127Example

.................... 129AT TOP OF PAGE

.................... 129AT TOP OF PAGE

................... 129Structured Mode Syntax

................... 129Reporting Mode Syntax

...................... 129Function

...................... 129Restriction

.................. 130Report Specification - rep

...................... 130Example

.................. 132BACKOUT TRANSACTION

.................. 132BACKOUT TRANSACTION

...................... 132Function

................ 132Considerations for DL/I Databases

................ 132Considerations for SQL Databases

................ 132Considerations for XML Databases

............... 132Backout Transaction Issued by Natural

................... 133Additional Information

...................... 134Example

................. 136BEFORE BREAK PROCESSING

................. 136BEFORE BREAK PROCESSING

................... 136Structured Mode Syntax

................... 136Reporting Mode Syntax

...................... 136Function

..................... 136Restrictions

...................... 137Example

........................ 138CALL

....................... 138CALL

................. 138CALL on Mainframe Computers

..................... 138Function

................. 138Program Name - operand1

.................. 139Parameters - operand2

..................... 139Return Code

.................... 140Register Usage

................... 140Boundary Alignment

.................... 141Adabas Calls

.................. 141Direct/Dynamic Loading

..................... 141Example

................... 142Linkage Conventions

.................. 145Calling a PL/I Program

............... 148Part I: CALL under UNIX and Windows

..................... 148Function

vCopyright © Software AG 2003

Table of ContentsStatements - Overview

............... 148Name of Called Function - operand1

.................. 148Parameters - operand2

..................... 149INTERFACE4

............ 149INTERFACE4 - External 3GL Program Interface

................ 150Operand Structure for Interface4

................ 151INTERFACE4 - Parameter Access

................... 151Exported Functions

............... 160Part II: CALL under UNIX and Windows

..................... 160Return Code

................. 160User Exits under Windows

.................. 161User Exits under UNIX

...................... 165CALL FILE

...................... 165CALL FILE

................... 165Structured Mode Syntax

................... 165Reporting Mode Syntax

...................... 165Function

...................... 165Restriction

.................. 166Control Field - operand1

................... 166Record Area - operand2

...................... 166Example

.................... 166Calling Program:

.................. 167Called COBOL Program:

...................... 168CALL LOOP

...................... 168CALL LOOP

................... 168Structured Mode Syntax

................... 168Reporting Mode Syntax

...................... 168Function

.................. 168Program Name - operand1

................... 169Parameters - operand2

.................... 169Loop Termination

...................... 169Restriction

...................... 169Example

...................... 170CALLNAT

...................... 170CALLNAT

...................... 170Function

................. 170Subprogram Name - operand1

................... 170Parameters - operand2

....................... 171AD=

....................... 172nX

................... 172Other Considerations

.............. 172Parameter Transfer with Dynamic Variables

...................... 173Example 1

................... 173Invoking Program:

................... 173Invoked Subprogram:

...................... 174Example 2

................... 174Invoking Program:

................... 174Invoked Subprogram:

................... 175CLOSE CONVERSATION

.................. 175CLOSE CONVERSATION

...................... 175Function

.................. 175Conversation to be Closed

..................... 175operand1

..................... 175*CONVID

...................... 175ALL

................ 175Further Information and Examples

Copyright © Software AG 2003vi

Statements - OverviewTable of Contents

..................... 176CLOSE DIALOG

..................... 176CLOSE DIALOG

...................... 176Function

.................... 176Dialog to be Closed

..................... 176operand1

.................... 176*DIALOG-ID

................ 176Further Information and Examples

..................... 177CLOSE PC FILE

..................... 177CLOSE PC FILE

...................... 177Function

.................... 177work-file-number

...................... 178Example

..................... 179CLOSE PRINTER

.................... 179CLOSE PRINTER

...................... 179Function

...................... 179Printer

...................... 180Example

.................... 181CLOSE WORK FILE

.................... 181CLOSE WORK FILE

...................... 181Function

...................... 181Work File

.................... 181Automatic Closing

...................... 182Example

...................... 183COMPOSE

...................... 183COMPOSE

...................... 183Function

...................... 183Clauses

.................... 184Formatting Process

..................... 184Dialog Mode

.................. 184Dialog Mode for Input

.................. 185Dialog Mode for Output

................ 185Dialog Mode for Input and Output

............ 185Execution of COMPOSE Statements in Dialog Mode

............... 186Non-Natural Programs - only Mainframe

................... 187RESETTING-clause

.................... 187MOVING-clause

..................... 187Syntax 1

..................... 187Syntax 2

..................... 188Syntax 3

..................... 188Syntax 1

..................... 188Syntax 2

..................... 188Syntax 3

................... 189ASSIGNING-clause

................... 190FORMATTING-clause

................... 191OUTPUT Subclause

.................... 193INPUT-subclause

.................... 194STATUS-subclause

................... 195PROFILE-subclause

................... 196MESSAGES-subclause

................... 196ERRORS-subclause

.................... 197ENDING-subclause

................... 198STARTING-subclause

................... 198EXTRACTING-clause

...................... 199Example 1

...................... 199Example 2

...................... 199Example 3

viiCopyright © Software AG 2003

Table of ContentsStatements - Overview

...................... 200Example 4

................ 200Text Block "XYZ" in "XYLIB":

.................... 200Natural Program:

................ 200Input Map produced by Program:

................... 200Resulting Output:

...................... 200Example 5

...................... 204COMPRESS

...................... 204COMPRESS

...................... 204Function

.................. 205Source Fields - operand1

................... 205Target Field - operand2

....................... 205FULL

..................... 206NUMERIC

...................... 206parameter

...................... 206PM=I

....................... 207DF

..................... 207SUBSTRING

................. 207WITH DELIMITER - operand7

....................... 207ALL

...................... 208Processing

...................... 208Example 1

..................... 208Example 2

...................... 209Example 3

...................... 210COMPUTE

...................... 210COMPUTE

................... 210Structured Mode Syntax

................... 210Reporting Mode Syntax

...................... 210Function

................... 210Result Field - operand1

..................... 211ROUNDED

................... 211arithmetic-expression

................. 212Result Precision of a Division

..................... 212SUBSTRING

...................... 212Example 1

...................... 213Example 2

.................... 214CREATE OBJECT

.................... 214CREATE OBJECT

...................... 214Function

.................. 214Object Handle - operand1

................... 214Class-Name - operand2

.................... 215Node - operand3

................... 215GIVING - operand4

...................... 216DECIDE FOR

..................... 216DECIDE FOR

...................... 216Function

.................... 216FIRST/EVERY

.................. 216WHEN logical-condition

..................... 216WHEN ANY

..................... 216WHEN ALL

..................... 217WHEN NONE

...................... 218Example 1

...................... 219Example 2

...................... 220DECIDE ON

...................... 220DECIDE ON

...................... 220Function

.................... 220FIRST/EVERY

Copyright © Software AG 2003viii

Statements - OverviewTable of Contents

.................. 221Selection Field - operand1

.................... 221VALUES Clause

....................... 221ANY

....................... 221ALL

...................... 221NONE

...................... 221Example 1

...................... 223Example 2

....................... 224DEFINE...

...................... 224DEFINE...

..................... 225DEFINE CLASS

..................... 225DEFINE CLASS

...................... 225Function

...................... 225class-name

............... 226WITH ACTIVATION POLICY Clause

.................... 226OBJECT Clause

.................... 226LOCAL Clause

...................... 226ID Clause

................. 226INTERFACE USING Clause

..................... 227copycode

..................... 228DEFINE DATA

..................... 228DEFINE DATA

..................... 228General Syntax

...................... 228Function

............... 228DEFINE DATA in Structured Mode

............... 229DEFINE DATA in Reporting Mode

.................. 229DEFINE DATA OBJECT

...................... 229data areas

.................... 229global data area

................... 229parameter data area

.................... 229local data area

....................... 229block

...................... 229.block

..................... 230data-definition

.................. 231parameter-data-definition

.................. 233Example of BY VALUE:

............... 233Example of BY VALUE for Dialog:

................. 233parameter-handle-definition

.................... 233handle-definition

.................... 234view-definition

..................... 237redefinition

................... 239variable-definition

.................... 240init-definition

.................... 241array-definition

................... 243array-init-definition

...................... 245emhdpm

.................... 247AIV-data-definition

.................... 247Additional Rules

................... 248context-data-definition

.................. 250Qualifying Data Structures

...................... 251Example 1

...................... 251Example 2

...................... 252Example 3

...................... 253Example 4

...................... 253Example 5

...................... 254Example 6

...................... 254Example 7

ixCopyright © Software AG 2003

Table of ContentsStatements - Overview

.................... 255DEFINE FUNCTION

.................... 255DEFINE FUNCTION

...................... 255Function

..................... 255function-name

................... 255return-data-definition

................... 256function-data-definition

...................... 256Example

.................... 257DEFINE PRINTER

.................... 257DEFINE PRINTER

...................... 257Function

...................... 257Printer

........ 258Printers under OS/390 with Access Method AM=STD - Standard Batch

....... 262Printers under VM/CMS with Access Method AM=STD - Standard Batch

...... 263Printers under BS2000/OSD with Access Method AM=STD - Standard Batch

.................. 267Printers under Com-plete

............... 267Printers under Com-plete (SMARTS)

.............. 267Printers under Natural Advanced Facilities

................... 268Additional Reports

.................... 269OUTPUT operand1

............... 269Assignment Algorithm on Mainframes

........... 269PROFILE/FORMS/NAME/DISP/CLASS/COPIES/PRTY

..................... 270PROFILE

...................... 271Example 1

...................... 271Example 2

...................... 271Example 3

...................... 271Example 4

................... 273DEFINE PROTOTYPE

................... 273DEFINE PROTOTYPE

...................... 273Function

.................... 273prototype-name

................... 273prototype-variable-name

.................... 273signature-clause

................. 274prototype-return-data-definition

..................... 274same-clause

...................... 274Example

................... 276DEFINE SUBROUTINE

................... 276DEFINE SUBROUTINE

...................... 276Function

.................. 276Inline/External Subroutines

.................... 276subroutine-name

................... 276Subroutine Termination

..................... 276Restrictions

................. 277Data Available in a Subroutine

................... 277Inline Subroutines

................... 278External Subroutines

...................... 279Example 1

...................... 280Example 2

.................... 281DEFINE WINDOW

.................... 281DEFINE WINDOW

...................... 281Function

................... 282Control of Full Screen

..................... 282window-name

....................... 283SIZE

....................... 283BASE

..................... 284REVERSED

............... 284REVERSED - CD=background-color

Copyright © Software AG 2003x

Statements - OverviewTable of Contents

.................... 284TITLE operand5

..................... 284CONTROL

.................. 284CONTROL WINDOW

................... 284CONTROL SCREEN

...................... 285FRAMED

................. 285FRAMED - CD=frame-color

..................... 285position-clause

.................. 286POSITION SYMBOL

................... 286POSITION TEXT

.................... 286POSITION OFF

............... 286Protection of Input Fields in a Window

.................. 287Invoking Different Windows

...................... 287Example

.................... 288DEFINE WORK FILE

................... 288DEFINE WORK FILE

...................... 288Function

................... 288Work File Number - n

.................. 288Work File Name - operand1

.............. 288Work File Name on UNIX and Windows

.............. 288Work File Name on Mainframe Computers

.................. 289Work File Type - operand2

..................... 289DEFAULT

..................... 289TRANSFER

...................... 289SAG

...................... 289ASCII

.................. 289ASCII-COMPRESSED

.................. 289ENTIRECONNECTION

................... 290UNFORMATTED

..................... 290PORTABLE

.................... 290FORMATTED

................. 290Work File Name under OS/390

................. 293Work File Name under VM/CMS

................ 295Work File Name under BS2000/OSD

..................... 296Link Name

..................... 296File Name

................... 297Generic File Name

.................. 297File Name and Link Name

................ 297Generic File Name and Link Name

....................... 298DELETE

...................... 298DELETE

...................... 298Function

................ 298Considerations for DL/I Databases

................ 298Considerations for SQL Databases

................ 298Considerations for VSAM Databases

................ 298Considerations for XML Databases

................... 298Statement Reference - r

...................... 299Restriction

..................... 299Hold Status

...................... 299Example 1

..................... 299Example 2

....................... 301DISPLAY

...................... 301DISPLAY

...................... 301Function

.................. 301Report Specification - rep

...................... 301options

................... 301Page Title/NOTITLE

xiCopyright © Software AG 2003

Table of ContentsStatements - Overview

.................. 303Column Headers/NOHDR

................ 304GIVE SYSTEM FUNCTIONS

................... 304statement-parameters

................... 306Line Advance - Slash

..................... 306output-format

................. 307Field Positioning Notations

............... 307Override Column Heading Assignment

..................... 308attributes

................. 309Vertical/Horizontal Display

..................... 309output-element

...................... 311Defaults

...................... 312Example 1

...................... 313Example 2

...................... 314Example 3

...................... 315Example 4

...................... 316Example 5

...................... 317Example 6

...................... 318Example 7

....................... 319DIVIDE

....................... 319DIVIDE

...................... 319Function

..................... 319Result Field

.................... 320Division by Zero

................... 320REMAINDER Option

...................... 321Example

...................... 322DO/DOEND

...................... 322DO/DOEND

...................... 322Function

..................... 322Restrictions

...................... 322Example

................... 323DOWNLOAD PC FILE

................... 323DOWNLOAD PC FILE

...................... 323Function

.................... 323work-file-number

..................... 323VARIABLE

................. 323Field Specification - operand1

..................... 323COMMAND

............... 324COMMAND Specification - operand2

...................... 324SYNC

...................... 324ASYNC

...................... 324Example 1

...................... 325Example 2

....................... 326EJECT

....................... 326EJECT

...................... 326Syntax 1

..................... 326Function

.................. 326Report Specification - rep

...................... 326Syntax 2

..................... 327Function

.................. 327Report Specification - rep

.............. 327IF LESS THAN operand1 LINES LEFT

..................... 327Processing

..................... 328Example

........................ 330END

....................... 330END

...................... 330Function

Copyright © Software AG 2003xii

Statements - OverviewTable of Contents

..................... 330period - .

............... 330Considerations for Program Execution

...................... 330Examples

.................... 331END TRANSACTION

................... 331END TRANSACTION

...................... 331Function

.................... 331Databases Affected

............... 332Storage of Transaction Data - operand1

................ 332Considerations for DL/I Databases

................ 332Considerations for SQL Databases

................ 332Considerations for VSAM Databases

................ 332Considerations for XML Databases

...................... 332Restriction

...................... 333Example 1

...................... 334Example 2

....................... 335ESCAPE

...................... 335ESCAPE

................... 335Structured Mode Syntax

................... 335Reporting Mode Syntax

...................... 335Function

..................... 335ESCAPE TOP

.................... 335REPOSITION

................... 336ESCAPE BOTTOM

................... 336ESCAPE ROUTINE

................... 336ESCAPE MODULE

.................. 336Additional Considerations

...................... 338Example

...................... 340EXAMINE

...................... 340EXAMINE

...................... 340Function

................... 340DIRECTION clause

...................... 341operand1

.................... 341POSITION clause

...................... 342operand4

....................... 342FULL

..................... 342SUBSTRING

...................... 342PATTERN

................... 342DELIMITERS-option

.................. 343DELETE-REPLACE-clause

..................... 344operand6

.................... 344GIVING-clause

................... 345GIVING INDEX

...................... 346Example 1

...................... 348Example 2

................... 349EXAMINE TRANSLATE

................... 349EXAMINE TRANSLATE

...................... 349Function

...................... 349operand1

..................... 349SUBSTRING

................. 350INTO UPPER/LOWER CASE

.................... 350Translation Table

..................... 350INVERTED

...................... 350Example

....................... 352EXPAND

...................... 352EXPAND

...................... 352Function

xiiiCopyright © Software AG 2003

Table of ContentsStatements - Overview

..................... 352dynamic-clause

..................... 352operand1

..................... 353operand2

..................... 353array-clause

..................... 353operand3

....................... 353dim

.................... 354GIVING operand5

....................... 355FETCH

....................... 355FETCH

...................... 355Function

...................... 355REPEAT

...................... 355RETURN

.................. 355Program Name - operand1

................... 356Parameters - operand2

...................... 356parameter

.................. 356Additional Considerations

...................... 357Example

................... 357Invoking Program:

................... 358Invoked Program:

........................ 359FIND

....................... 359FIND

...................... 359Function

................ 360Considerations for DL/I Databases

................ 360Considerations for SQL Databases

................ 360Considerations for VSAM Databases

................ 360Considerations for XML Databases

................ 360Entire System Server Restrictions

................ 360Processing Limit - ALL/operand1

............. 361FIND FIRST, FIND NUMBER, FIND UNIQUE

................... 361MULTI-FETCH Clause

...................... 361view-name

................... 361PASSWORD Clause

................ 362Example of PASSWORD Clause:

.................... 362CIPHER Clause

................. 363Example of CIPHER Clause:

..................... 363WITH Clause

........... 364Search Criterion for Adabas Files - basic-search-criterion

........... 369Search Criterion for VSAM Files - basic-search-criterion

........... 370Search Criterion for DL/I Files - basic-search-criterion

.................... 371COUPLED-clause

............... 372Physical Coupling without VIA clause

................. 372Logical Coupling - VIA clause

................ 373STARTING WITH ISN=operand5

................... 373SORTED BY-clause

................ 374Example of SORTED BY Clause:

.................... 375RETAIN-clause

................... 375Set Name - operand6

.................... 375Releasing Sets

.................. 376Updates by Other Users

..................... 376Restriction

................. 376Example of a RETAIN Clause:

.................... 376WHERE Clause

................. 377Example of WHERE Clause:

................ 377IF NO RECORDS FOUND-clause

.................. 377Structured Mode Syntax

.................. 378Reporting Mode Syntax

Copyright © Software AG 2003xiv

Statements - OverviewTable of Contents

.................... 378Database Values

................ 378Evaluation of System Functions

..................... 378Restriction

............. 378Example of IF NO RECORDS FOUND Clause:

.............. 379System Variables with the FIND Statement

...................... 380*ISN

..................... 381*NUMBER

..................... 381*COUNTER

................ 381Example Using System Variables:

.................. 381Multiple FIND Statements

............... 382Example of Multiple FIND Statements:

..................... 383FIND FIRST

..................... 383Restrictions

............... 383System Variables with FIND FIRST

.................. 383Example of FIND FIRST

.................... 383FIND NUMBER

..................... 384Restrictions

.............. 384System Variables with FIND NUMBER

................. 385Example of FIND NUMBER:

.................... 385FIND UNIQUE

............... 385System Variables with FIND UNIQUE

..................... 386Restrictions

................. 386Example of FIND UNIQUE

........................ 387FOR

....................... 387FOR

...................... 387Function

.......... 387Loop Control Variable - operand1 and Initial Setting - operand2

................... 388TO Value - operand3

................... 388STEP Value - operand4

.................... 388Consistency Check

...................... 389Example

....................... 390FORMAT

...................... 390FORMAT

...................... 390Function

.................. 390Report Specification - rep

...................... 390Parameters

...................... 392Example

........................ 393GET

....................... 393GET

...................... 393Function

..................... 393Restrictions

...................... 393view-name

.................. 393PASSWORD and CIPHER

.................... 394*ISN / operand3

............... 394Reference to Database Fields - operand4

...................... 395Example

...................... 396GET SAME

...................... 396GET SAME

................... 396Structured Mode Syntax

................... 396Reporting Mode Syntax

...................... 396Function

................... 396Statement Reference - r

...................... 396operand1

..................... 397Restrictions

...................... 397Example

xvCopyright © Software AG 2003

Table of ContentsStatements - Overview

.................. 399GET TRANSACTION DATA

.................. 399GET TRANSACTION DATA

...................... 399Function

................... 399System Variable *ETID

.................. 399Field Specification operand1

.................. 399No Transaction Data Stored

...................... 400Example

...................... 401HISTOGRAM

..................... 401HISTOGRAM

...................... 401Function

..................... 401Restrictions

............... 402Processing Loop Limit - operand1/ALL

................... 402MULTI-FETCH Clause

...................... 402view-name

................... 403PASSWORD Clause

................... 404SEQUENCE Clause

................... 404Descriptor - operand4

................. 405STARTING-ENDING-clause

.................... 405WHERE Clause

.................... 406System Variables

..................... 406*NUMBER

...................... 406*ISN

..................... 406*COUNTER

...................... 407Example

......................... 408IF

........................ 408IF

................... 408Structured Mode Syntax

................... 408Reporting Mode Syntax

...................... 408Function

.................... 408logical-condition

....................... 409THEN

....................... 409ELSE

...................... 410Example

..................... 412IF SELECTION

..................... 412IF SELECTION

................... 412Structured Mode Syntax

................... 412Reporting Mode Syntax

...................... 412Function

.................. 413Selection Field - operand1

...................... 413Example

....................... 414IGNORE

...................... 414IGNORE

...................... 414Function

...................... 414Example

....................... 415INCLUDE

...................... 415INCLUDE

...................... 415Function

..................... 415copycode-name

...................... 415operand1

...................... 416Example 1

...................... 416Example 2

...................... 417Example 3

...................... 418Example 4

....................... 419INPUT

....................... 419INPUT

...................... 419Function

Copyright © Software AG 2003xvi

Statements - OverviewTable of Contents

..................... 419Input Modes

.................... 419Screen Mode

................... 419Non-Screen Modes

............. 420Entering Data in Response to an INPUT Statement

................. 420Numeric Edit Mask Free Mode

.................... 422SB - Selection Box

.................... 422Error Correction

................... 422Split-Screen Feature

............. 422Syntax 1 - Dynamic Screen Layout Specification

............... 423INPUT WINDOW=’window-name’

..................... 423NO ERASE

................... 423statement-parameters

................... 425WITH TEXT-option

.................... 427MARK-option

.................... 428ALARM-option

.................. 428Default Prompting Text

.......... 428Field Positioning, Text Specification, Attribute Assignment

.................. 430*IN, *OUT and *OUTIN

................. 430Field Specification - operand1

..................... 430parameters

................... 431Example 1 - Syntax 1

................... 431Example 2 - Syntax 1

................... 432Example 3 - Syntax 1

............... 433Syntax 2 - Using Predefined Map Layout

............. 433INPUT USING MAP Without Parameter List

............... 434INPUT Fields Defined in the Program

............... 434INPUT WINDOW=’window-name’

............... 434WITH TEXT/MARK/ALARM-options

.................... 434USING MAP

..................... 434NO ERASE

................. 434Field Specification - operand1

............ 435Using the INPUT Statement in Non-Screen Modes

............... 435Processing Data from the Natural Stack

........ 436Using the INPUT Statement in Batch Mode on Mainframe Computers

...................... 438INTERFACE

...................... 438INTERFACE

...................... 438Function

..................... 438interface-name

..................... 439EXTERNAL

...................... 439ID Clause

.................... 439property-definition

.................... 440property-name

................. 440format-length/array-definition

..................... 440ID Clause

.................... 440READONLY

..................... 440IS Clause

..................... 441Examples

.................... 442method-definition

.................... 443method-name

..................... 443ID Clause

..................... 443IS Clause

.................. 443PARAMETER Clause

....................... 444LIMIT

....................... 444LIMIT

...................... 444Function

................... 444Limit Specification - n

xviiCopyright © Software AG 2003

Table of ContentsStatements - Overview

.................... 444Record Counting

...................... 445Example 1

...................... 446Example 2

........................ 447LOOP

....................... 447LOOP

...................... 447Function

................. 447Statement Reference Notation - r

................. 447Database Variable References

..................... 447Restrictions

..................... 447Example 1

...................... 448Example 2

....................... 449METHOD

...................... 449METHOD

...................... 449Function

...................... 449Example

....................... 453MOVE

....................... 453MOVE

...................... 454Function

..................... 455ROUNDED

...................... 455parameter

....................... 455PM=I

....................... 455DF

..................... 455SUBSTRING

.................... 456MOVE BY NAME

................ 456MOVE BY NAME with Arrays

................... 458MOVE BY POSITION

.................... 458MOVE EDITED

................ 458MOVE LEFT/RIGHT JUSTIFIED

............. 459MOVE LEFT/RIGHT JUSTIFIED with PM=I

................... 459Other Considerations

...................... 460Example 1

...................... 461Example 2

...................... 462MOVE ALL

...................... 462MOVE ALL

...................... 462Function

.................. 462Source Operand - operand1

.................. 462Target Operand - operand2

.................. 462UNTIL Option - operand3

...................... 463Example

...................... 464MULTIPLY

...................... 464MULTIPLY

...................... 464Syntax 1

...................... 464Syntax 2

...................... 464Function

..................... 464Result Field

...................... 465Example

...................... 466NEWPAGE

...................... 466NEWPAGE

...................... 466Function

.................. 466Report Specification - rep

.................. 466EVEN IF TOP OF PAGE

.............. 467WHEN LESS THAN operand1 LINES LEFT

..................... 467WITH TITLE

...................... 467Example

...................... 470NOTITLE...

...................... 470NOTITLE...

Copyright © Software AG 2003xviii

Statements - OverviewTable of Contents

....................... 471OBTAIN

...................... 471OBTAIN

...................... 471Function

...................... 471operand1

...................... 471Examples

...................... 472ON ERROR

...................... 472ON ERROR

................... 472Structured Mode Syntax

................... 472Reporting Mode Syntax

...................... 472Function

.............. 472ON ERROR Processing within Subroutines

...................... 472Restriction

............ 473System Variables *ERROR-NR and *ERROR-LINE

................ 473Exiting from an ON ERROR Block

...................... 473Example

................... 474OPEN CONVERSATION

................... 474OPEN CONVERSATION

...................... 474Function

................. 474Subprogram Names - operand1

................ 474Further Information and Examples

..................... 475OPEN DIALOG

..................... 475OPEN DIALOG

...................... 475Function

.................. 475Dialog Name - operand1

.................. 475Handle Name - operand2

................... 476Dialog ID - operand3

....................... 476AD=

................. 476Passing Parameters to the Dialog

....................... 476nX

.................. 476PARAMETERS-clause

................ 477Further Information and Examples

....................... 478OPTIONS

...................... 478OPTIONS

.................. 478OPTIONS on Mainframes

....................... 479PARSE

....................... 479PARSE

...................... 479Function

...................... 480operand1

...................... 480operand2

.................. 480Example using operand2

...................... 481operand3

.................. 481Example using operand3

...................... 482operand4

.................. 482Example using operand4

................... 483operand5 and operand6

................. 483NORMALIZE NAMESPACE

................ 484Example 1 Using Operands 5 and 6

................ 484Example 2 using operands 5 and 6

.................. 485Addtional Information

................... 485Global Namespace

.................. 485Related System Variables

....................... 487PASSW

....................... 487PASSW

...................... 487Function

................... 487Password - operand1

................. 488Natural Security Considerations

xixCopyright © Software AG 2003

Table of ContentsStatements - Overview

...................... 488Restriction

.............. 488Password Display Protection - Mainframe only

...................... 488Example

...................... 490PERFORM

...................... 490PERFORM

...................... 490Function

.................... 490subroutine-name

................. 490Data Available in a Subroutine

................... 490Inline Subroutines

................... 490External Subroutines

................... 491Parameters - operand2

....................... 491AD=

....................... 492nX

................. 492Nested PERFORM Statements

.............. 492Parameter Transfer with Dynamic Variables

...................... 492Example 1

...................... 493Example 2

................ 495PERFORM BREAK PROCESSING

................ 495PERFORM BREAK PROCESSING

...................... 495Function

................. 495Statement Reference Notation - r

................... 495AT BREAK statement...

...................... 496Example

....................... 497PRINT

....................... 497PRINT

...................... 497Function

.................. 497Report Specification - rep

...................... 498NOTITLE

...................... 498NOHDR

................... 498statement-parameters

.............. 499Field Positioning, Text, Attribute Assignment

................. 500Field Positioning Notations

................. 500Text/Attribute Assignment

...................... 501operand1

...................... 501parameters

...................... 502Example

....................... 503PROCESS

...................... 503PROCESS

...................... 503Function

...................... 503USING

...................... 503GIVING

................... 504PROCESS COMMAND

................... 504PROCESS COMMAND

................... 504Structured Mode Syntax

................... 505Reporting Mode Syntax

...................... 505Function

...................... 506CLOSE

...................... 506CHECK

....................... 506EXEC

....................... 506HELP

................... 507HELP for Keywords

................... 507HELP for Synonyms

................. 508HELP for Global Functions

.................. 509HELP for Local Functions

.................... 509HELP for IKN

.................... 510HELP for IFN

Copyright © Software AG 2003xx

Statements - OverviewTable of Contents

....................... 511TEXT

................. 511TEXT for General Information

................ 511TEXT for Keyword Information

................ 512TEXT for Function Information

....................... 512GET

....................... 512SET

..................... 514USING Clause

.................... 515GIVING Clause

................... 515DDM "COMMAND"

................... 516Security Considerations

...................... 516Example 1

...................... 517Example 2

..................... 518PROCESS GUI

..................... 518PROCESS GUI

...................... 518Function

..................... 518action-name

................. 518Passing Parameters to the Action

.................. 518PARAMETERS-clause

....................... 519nX

.................... 519GIVING operand2

................... 520PROCESS REPORTER

................... 520PROCESS REPORTER

...................... 520Function

...................... 521Actions

..................... 521WITH Clause

.................. 521PARAMETERS-clause

................. 521Parameters for OPEN Action

.............. 522Parameters for REPLACE-TABLE Action

............... 522Parameter for SET-PRINTER Action

............. 522Parameters for SET-PRINT-OPTIONS Action

.......... 524Parameter for CLOSE, PRINT, PREVIEW, EDIT Actions

.................... 524GIVING operand2

...................... 525PROPERTY

...................... 525PROPERTY

...................... 525Function

........................ 526READ

....................... 526READ

...................... 526Function

................ 526Number of Records - operand1/ALL

................... 527MULTI-FETCH Clause

...................... 527view-name

................ 527PASSWORD and CIPHER Clauses

................... 528WITH REPOSITION

.................. 528Functional Considerations

.................. 529sequence/range-specification

............... 530READ IN PHYSICAL SEQUENCE

.................... 531READ BY ISN

................ 531READ IN LOGICAL SEQUENCE

........ 531ASCENDING/DESCENDING/VARIABLE/DYNAMIC SEQUENCE

.............. 533STARTING FROM ... ENDING AT/TO

................ 534STARTING WITH ISN=operand4

................... 534Access to Adabas

.................... 535Access to VSAM

..................... 535Examples

.................... 535WHERE Clause

.................... 536System Variables

xxiCopyright © Software AG 2003

Table of ContentsStatements - Overview

...................... 536*ISN

..................... 536*COUNTER

...................... 537Example 1

.............. 539Example 2 - Combining READ with FIND

.................... 540READ WORK FILE

.................... 540READ WORK FILE

................... 540Structured Mode Syntax

................... 540Reporting Mode Syntax

...................... 541Function

.................... 541work-file-number

..................... 541ONCE Option

................... 541Variable Index Range

.................... 542RECORD Option

.................. 542SELECT Option - default

..................... 542Field Lengths

................. 543GIVING LENGTH operand3

.................... 543AT END OF FILE

............... 543Handling of Large and Dynamic Variables

............ 543ASCII, ASCII-COMPRESSED and SAG (binary)

.............. 543TRANSFER and ENTIRE CONNECTION

............... 543PORTABLE and UNFORMATTED

...................... 545Example

...................... 546REDEFINE

...................... 546REDEFINE

...................... 546Function

................... 546Method of Redefinition

................... 546Further Redefinition

..................... 546Filler Notation

...................... 547Example 1

...................... 547Example 2

...................... 547Example 3

...................... 548Example 4

....................... 549REDUCE

...................... 549REDUCE

...................... 549Function

..................... 549dynamic-clause

..................... 550operand1

..................... 550operand2

..................... 550array-clause

..................... 550operand3

....................... 550dim

.................... 551GIVING operand5

....................... 552REINPUT

...................... 552REINPUT

...................... 552Function

.................... 552REINPUT FULL

................... 553statement-parameters

..................... 553USING HELP

................... 553WITH TEXT-option

........... 554Message Text from Natural Message File - *operand1

............ 554Message Text - operand2 and Attributes - attributes

............ 554Dynamic Replacement of Message Text - operand3

..................... 555MARK-option

................. 555Field to be Marked - operand5

................... 556MARK POSITION

..................... 556attributes

Copyright © Software AG 2003xxii

Statements - OverviewTable of Contents

.................... 556ALARM-option

...................... 557Example 1

...................... 558Example 2

...................... 558Example 3

....................... 560REJECT

....................... 560REJECT

....................... 561RELEASE

...................... 561RELEASE

...................... 561Function

.................... 561RELEASE STACK

.................... 561RELEASE SET

.................. 561RELEASE VARIABLES

...................... 562Example

....................... 563REPEAT

...................... 563REPEAT

...................... 563Syntax 1

...................... 563Syntax 2

...................... 563Function

...................... 564UNTIL

...................... 564WHILE

...................... 564Example 1

..................... 564Example 2:

................... 566REQUEST DOCUMENT

................... 566REQUEST DOCUMENT

...................... 567Function

...................... 568operand1

...................... 568operand2

...................... 568operand3

...................... 568operand4/5

................. 568Header Name for Operand4

................. 568Header Value for Operand5

................... 568General Information

............. 568Automatically Generated Headers (operand 4/5)

...................... 569operand6

...................... 569operand7/8

...................... 571operand9

..................... 571operand10/11

...................... 571operand12

...................... 572operand13

.......... 572Overview of Response Numbers - for HTTP/HTTPs Requests

...................... 574operand14

...................... 574Examples

.................... 574General Request

................. 574Simple Get Request (no data)

............... 575Simple Head Request (no return page)

................. 575Simple Post Request (default)

................ 575Simple Put Request (with data all)

....................... 576RESET

....................... 576RESET

...................... 576Function

...................... 576INITIAL

................... 576Default Initial Values

...................... 577Example

....................... 578RESIZE

....................... 578RESIZE

...................... 578Function

xxiiiCopyright © Software AG 2003

Table of ContentsStatements - Overview

..................... 578dynamic-clause

..................... 578operand1

..................... 579operand2

..................... 579array-clause

..................... 579operand3

....................... 579dim

.................... 580GIVING operand5

....................... 581RETRY

....................... 581RETRY

...................... 581Function

...................... 582Example

........................ 583RUN

....................... 583RUN

...................... 583Function

...................... 583REPEAT

.................. 583Program Name - operand1

................... 583Parameters - operand2

...................... 584parameter

............... 584Dynamic Source Text Creation/Execution

...................... 585Example

............... 585Program containing RUN statement:

............ 585Program FIND-EMP executed by RUN statement:

...................... 586SEND EVENT

..................... 586SEND EVENT

...................... 586Function

...................... 586Operands

....................... 586AD=

................. 587Passing Parameters to the Dialog

....................... 587nX

................... 587PARAMETERS-clause

................ 587Further Information and Examples

..................... 588SEND METHOD

..................... 588SEND METHOD

...................... 588Function

.................. 589Method-Name - operand1

.................. 589Object Handle - operand2

................... 589Parameter - operand3

....................... 589AD=

..................... 590Parameter - nX

................... 590RETURN - operand4

................... 590GIVING - operand5

...................... 591SEPARATE

...................... 591SEPARATE

...................... 591Function

.................. 591Source Operand - operand1

..................... 592SUBSTRING

.................... 592LEFT JUSTIFIED

.................. 592Target Operand - operand4

.................. 592IGNORE / REMAINDER

................... 592DELIMITER Option

................ 593WITH RETAINED DELIMITERS

.................... 593GIVING NUMBER

...................... 594Example 1

...................... 595Example 2

...................... 596Example 3

Copyright © Software AG 2003xxiv

Statements - OverviewTable of Contents

..................... 597SET CONTROL

..................... 597SET CONTROL

...................... 597Function

...................... 597Example 1

...................... 597Example 2

..................... 598SET GLOBALS

..................... 598SET GLOBALS

...................... 598Function

...................... 598Parameters

...................... 599Example

....................... 600SET KEY

...................... 600SET KEY

................. 600Syntax 1 - Affecting All Keys

................ 600Syntax 2 - Affecting Individual Keys

................ 601Syntax 3 - Affecting Individual Keys

...................... 601Function

................. 601Making Keys Program-Sensitive

................. 602Assigning Commands/Programs

................... 603Assigning Input DATA

................... 603COMMAND OFF/ON

.................... 604Assigning HELP

..................... 604DYNAMIC

..................... 604DISABLED

............. 605SET KEY Statements on Different Program Levels

......... 605Example of SET KEY Statements on Different Program Levels:

.................... 606Assigning Names

...................... 608Example

...................... 609SET TIME

...................... 609SET TIME

...................... 609Function

...................... 609Example

..................... 610SET WINDOW

..................... 610SET WINDOW

...................... 610Function

...................... 610Example

........................ 611SKIP

....................... 611SKIP

...................... 611Function

.................. 611Report Specification - rep

.............. 611Number of Lines to be Skipped - operand1

.................. 611Additional Considerations

...................... 612Example

........................ 613SORT

....................... 613SORT

................... 613Structured Mode Syntax

................... 613Reporting Mode Syntax

...................... 613Function

..................... 614Restrictions

.................... 614Processing Loops

................... 614Sort Criteria - operand1

..................... 614USING-clause

..................... 615GIVE-clause

..................... 615(NL=nn)

.................. 616SORT Statement Processing

............. 6161st Phase - Selecting the Records to be Sorted

................ 6162nd Phase - Sorting the Records

xxvCopyright © Software AG 2003

Table of ContentsStatements - Overview

.............. 6163rd Phase -Processing the Sorted Records

...................... 616Example

..................... 617First Phase:

.................... 618Second Phase:

.................... 618Third Phase:

....................... 619STACK

....................... 619STACK

...................... 619Function

....................... 619TOP

...................... 620DATA

..................... 620FORMATTED

................... 622COMMAND operand1

................ 622COMMAND operand1 operand2...

...................... 622parameter

...................... 623Example

........................ 625STOP

....................... 625STOP

...................... 625Function

...................... 625Example

....................... 626STORE

....................... 626STORE

................... 626Structured Mode Syntax

................... 626Reporting Mode Syntax

...................... 627Function

...................... 627view-name

................... 627PASSWORD/CIPHER

.................. 627USING/GIVING NUMBER

..................... 628SET/WITH

................... 628DL/I Considerations

..................... 628USING SAME

................... 628System Variable *ISN

...................... 629Example

...................... 631SUBTRACT

...................... 631SUBTRACT

...................... 631Syntax 1

...................... 631Syntax 2

...................... 631Function

...................... 631Operands

..................... 632Result Field

..................... 632ROUNDED

...................... 632Example

................ 633SUSPEND IDENTICAL SUPPRESS

................ 633SUSPEND IDENTICAL SUPPRESS

...................... 633Function

.................. 633Report Specification - rep

...................... 633Example

............ 633Program with SUSPEND IDENTICAL SUPPRESS:

...... 634Same as Previous Program, but without SUSPEND IDENTICAL SUPPRESS:

...................... 636TERMINATE

..................... 636TERMINATE

...................... 636Function

...................... 636operand1

...................... 636UNIX

..................... 636Windows

..................... 636Mainframes

...................... 636operand2

Copyright © Software AG 2003xxvi

Statements - OverviewTable of Contents

.............. 637Program Receiving Control after Termination

...................... 637Example

....................... 638UPDATE

...................... 638UPDATE

................... 638Structured Mode Syntax

................... 638Reporting Mode Syntax

...................... 638Function

................ 638Considerations for DL/I Databases

................ 639Considerations for SQL Databases

................ 639Considerations for VSAM Databases

................ 639Considerations for XML Databases

..................... 639Restrictions

................... 639Statement Reference - r

..................... 639USING SAME

................. 640SET/WITH operand1 = operand2

..................... 640Hold Status

...................... 641Example

.................... 642UPLOAD PC FILE

.................... 642UPLOAD PC FILE

................... 642Structured Mode Syntax

................... 642Reporting Mode Syntax

...................... 643Function

.................... 643work-file-number

................. 643Field Specification - operand1-2

...................... 643Options

...................... 643Example

....................... 645WRITE

....................... 645WRITE

................. 645Syntax 1 - Dynamic Formatting

...................... 645Function

.................. 646Report Specification - rep

...................... 646NOTITLE

...................... 646NOHDR

................... 646statement-parameters

..................... 648Output Format

................. 648Field Positioning Notations

................. 649Text/Attribute Assignment

................ 650Syntax 2 - Using Predefined Map

..................... 650FORM/MAP

...................... 650operand1

...................... 651operand2

.................... 651NOTITLE/NOHDR

...................... 651Example 1

...................... 651Example 2

...................... 652Example 3

...................... 652Example 4

...................... 653Example 5

..................... 654WRITE TITLE

..................... 654WRITE TITLE

...................... 654Function

..................... 654Restrictions

.................. 654Report Specification - rep

.................. 655Justification and Underlining

................... 655statement-parameters

...................... 655operand1

.................... 655SKIP - operand2

xxviiCopyright © Software AG 2003

Table of ContentsStatements - Overview

...................... 656Example

..................... 657WRITE TRAILER

.................... 657WRITE TRAILER

...................... 657Function

..................... 657Restrictions

...................... 657Processing

.................... 658Logical Page Size

.................. 658Report Specification - rep

.................. 658Justification and Underlining

................... 658statement-parameters

...................... 658operand1

.................... 658SKIP - operand2

...................... 659Example

.................... 660WRITE WORK FILE

.................... 660WRITE WORK FILE

...................... 660Function

.................... 660work-file-number

..................... 660VARIABLE

.................... 660Fields - operand1

................... 661Variable Index Range

................. 661External Representation of Fields

............... 661Handling of large and dynamic variables

............ 661ASCII, ASCII-COMPRESSED and SAG (binary)

.............. 662TRANSFER and ENTIRE CONNECTION

............... 662PORTABLE and UNFORMATTED

...................... 662Example

..................... 663Old Statements

..................... 663Old Statements

................... 664SQL Statements Overview

................... 664SQL Statements Overview

.................. 665Common Set and Extended Set

.................. 665Common Set and Extended Set

.................... 666Basic Syntactical Items

................... 666Basic Syntactical Items

...................... 666Constants

...................... 666constant

...................... 666integer

...................... 667Names

.................. 667authorization-identifier

..................... 667ddm-name

..................... 667view-name

.................... 667column-name

..................... 667table-name

.................... 668correlation-name

...................... 670Parameters

..................... 670parameter

.................... 675Natural View Concept

.................... 675Natural View Concept

..................... 676Scalar Expressions

.................... 676Scalar Expressions

..................... 676scalar-operator

....................... 676factor

...................... 677atom

.................... 677column-reference

................... 677aggregate-function

.................... 679special-register

Copyright © Software AG 2003xxviii

Statements - OverviewTable of Contents

.................... 679scalar-function

...................... 681units

.................... 682case-expression

.................... 683cast-expression

................ 683user-defined-function-reference

..................... 684Search Conditions

.................... 684Search Conditions

.................... 684search-condition

...................... 685predicate

................... 686Comparison Predicate

................... 687BETWEEN Predicate

.................... 687LIKE Predicate

.................... 688NULL Predicate

..................... 688IN Predicate

................... 688Quantified Predicate

................... 689EXISTS Predicate

..................... 690Select Expressions

.................... 690Select Expressions

.................... 690select-expression

..................... 690selection

.................... 691table-expression

...................... 695Flexible SQL

...................... 695Flexible SQL

..................... 696Text Variables

.................. 696LINDICATOR Option

..................... 698CALLDBPROC

..................... 698CALLDBPROC

...................... 698Function

...................... 698dbproc

...................... 699ddm-name

...................... 699parameter

....................... 699AD=

...................... 699result-set

.................... 700GIVING sqlcode

..................... 700CALLMODE

...................... 700Example

....................... 702COMMIT

...................... 702COMMIT

...................... 702Function

............... 702Consideration for Non-Natural-Programs

....................... 703DELETE

...................... 703DELETE

................. 703Syntax 1 - Searched DELETE

................. 703Syntax 2 - Positioned DELETE

...................... 703Function

..................... 703FROM Clause

.................... 703WHERE Clause

................... 704Statement Reference - r

.................. 704WITH Isolation Level clause

.................... 704QUERYNO clause

....................... 705INSERT

....................... 705INSERT

...................... 705Function

..................... 705INTO Clause

................. 705OVERRIDING USER VALUE

..................... 705column-list

xxixCopyright © Software AG 2003

Table of ContentsStatements - Overview

.................... 706VALUES Clause

............ 706VALUES Clause with Preceding Asterisk Notation

............. 706VALUES Clause with Preceding Column List

.................... 707select-expression

.................. 707WITH isolation level clause

................... 707QUERY NO Clause

..................... 708PROCESS SQL

..................... 708PROCESS SQL

...................... 708Function

...................... 708ddm-name

.................... 708statement-string

...................... 708Parameters

.................... 709:U:host-variable

.................... 709:G:host-variable

...................... 709Examples

............... 709Examples for DB2 (under OS/390):

.................. 709Example for Adabas D:

............ 709Example of Calling a Procedure Stored in Adabas D:

.................. 709ENTIRE ACCESS Options

.................... 710READ RESULT SET

.................... 710READ RESULT SET

...................... 710Function

....................... 710limit

...................... 710ddm-name

.............. 710WITH INSENSITIVE SCROLL [:] scroll_hv

.................... 711GIVING sqlcode

...................... 711Example

...................... 712ROLLBACK

..................... 712ROLLBACK

...................... 712Function

............... 712Consideration for Non-Natural Programs

....................... 713SELECT

....................... 713SELECT

.................. 713Cursor-Oriented Selection

................... 714Non-Cursor Selection

.................... 714table-expression

..................... 716INTO Clause

..................... 717parameter

.................... 717VIEW Clause

.................... 718correlation-name

.................. 718Query involving UNION

.................... 720ORDER BY Clause

................... 721OPTIMIZE FOR Clause

.................. 721WITH CS/RS/UR/...Clause

.................... 721QUERYNO Clause

................... 721FETCH FIRST Clause

................... 721WITH HOLD Clause

................... 721WITH RETURN Clause

.................. 722WITH ... SCROLL Clause

................ 723IF NO RECORDS FOUND-Clause

.................. 723Structured Mode Syntax

.................. 723Reporting Mode Syntax

.................... 724Database Values

................ 724Evaluation of System Functions

..................... 725Join Queries

Copyright © Software AG 2003xxx

Statements - OverviewTable of Contents

....................... 726UPDATE

...................... 726UPDATE

................. 726Syntax 1 - Searched UPDATE

................. 726Syntax 2 - Positioned UPDATE

...................... 726Function

..................... 727SET Clause

..................... 728assignment-list

.................. 728WHERE search-condition

................... 728Statement Reference - r

.................. 728WITH isolation level Clause

.................... 728QUERYNO Clause

...................... 729Examples

................ 729Example of Searched UPDATE:

............ 729Example of Searched UPDATE with assignment-list:

................ 730Example of Positioned UPDATE:

........... 730Example of Positioned UPDATE with assignment-list:

xxxiCopyright © Software AG 2003

Table of ContentsStatements - Overview

Statements - Overview
This section describes the Natural programming language statements.

Syntax Symbols and Operand Definition Tables

Statement Usage Related Topics

Statements in Alphabetical Order

ACCEPT/REJECT ADD ASSIGN AT BREAK

AT END OF DATA AT END OF PAGE AT START OF DATA AT TOP OF PAGE

BACKOUT TRANSACTION BEFORE BREAK PROCESSING CALL CALL FILE

CALL LOOP CALLDBPROC - SQL CALLNAT CLOSE CONVERSATION

CLOSE DIALOG CLOSE PC FILE CLOSE PRINTER CLOSE WORK FILE

COMMIT - SQL COMPOSE COMPRESS COMPUTE

CREATE OBJECT DECIDE FOR DECIDE ON DEFINE CLASS

DEFINE DATA DEFINE FUNCTION DEFINE PRINTER DEFINE PROTOTYPE

DEFINE SUBROUTINE DEFINE WINDOW DEFINE WORK FILE DELETE

DELETE - SQL DISPLAY DIVIDE DO/DOEND

DOWNLOAD PC FILE EJECT END END TRANSACTION

ESCAPE EXAMINE EXAMINE TRANSLATE EXPAND

FETCH FIND FOR FORMAT

GET GET SAME GET TRANSACTION DATA HISTOGRAM

IF IF SELECTION IGNORE INCLUDE

INPUT INSERT INTERFACE LIMIT

LOOP METHOD MOVE MOVE ALL

MULTIPLY NEWPAGE OBTAIN ON ERROR

OPEN CONVERSATION OPEN DIALOG OPTIONS PARSE

PASSW PERFORM PERFORM BREAK PROCESSING PRINT

PROCESS PROCESS COMMAND PROCESS GUI PROCESS REPORTER

PROCESS SQL PROPERTY READ READ RESULT SET -
SQL

READ WORK FILE REDEFINE REDUCE REINPUT

REJECT RELEASE REPEAT REQUEST DOCUMENT

RESET RESIZE RETRY ROLLBACK - SQL

RUN SELECT - SQL SEND EVENT SEND METHOD

SEPARATE SET CONTROL SET GLOBALS SET KEY

SET TIME SET WINDOW SKIP SORT

STACK STOP STORE SUBTRACT

SUSPEND IDENTICAL SUPPRESS TERMINATE UPDATE UPDATE - SQL

UPLOAD PC FILE WRITE WRITE TITLE WRITE TRAILER

WRITE WORK FILE

1Copyright © Software AG 2003

Statements - OverviewStatements - Overview

Statements Grouped by Functions

Example Programs
Generally, the example programs shown in these subsections are written in structured mode. For statements
where the reporting-mode syntax differs considerably from the structured-mode syntax, references to equivalent
reporting-mode examples are also provided.

The example programs shown in this section are also available online in the Natural library "SYSEXRM".

Copyright © Software AG 20032

Statements - OverviewExample Programs

Syntax Symbols and Operand Definition
Tables
This section covers the following topics:

Syntax Symbols
Operand Definition Table

Syntax Symbols
The following symbols are used within the diagrams that describe the syntax of Natural statements:

3Copyright © Software AG 2003

Syntax Symbols and Operand Definition TablesSyntax Symbols and Operand Definition Tables

ABCDEF Upper-case letters indicate that the term is either a Natural keyword or a Natural
reserved word that must be entered exactly as specified.

ABCDEF If an optional term in upper-case letters is completely underlined (not a hyperlink!),
this indicates that the term is the default value. If you omit the term, the underlined
value applies.

ABCDEF If a term in upper-case letters is partially underlined (not a hyperlink!), this indicates
that the underlined portion is an acceptable abbreviation of the term.

abcdef Letters in italics are used to represent variable information. You must supply a valid
value when specifying this term.

[] Elements contained within square brackets are optional.

If the square brackets contain several lines stacked one above the other, each line is
an optional alternative. You may choose at most one of the alternatives.

{ } If the braces contain several lines stacked one above the other, each line is an
alternative. You must choose exactly one of the alternatives.

| The vertical bar separates alternatives.

... A term preceding an ellipsis may optionally be repeated. A number after the ellipsis
indicates how many times the term may be repeated.

If the term preceding the ellipsis is an expression enclosed in square brackets or
braces, the ellipsis applies to the entire bracketed expression.

,... A term preceding a comma-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by commas. A number after the comma-ellipsis
indicates how many times the term may be repeated.

If the term preceding the comma-ellipsis is an expression enclosed in square brackets
or braces, the comma-ellipsis applies to the entire bracketed expression.

:... A term preceding a colon-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by colons. A number after the colon-ellipsis indicates
how many times the term may be repeated.

If the term preceding the colon-ellipsis is an expression enclosed in square brackets
or braces, the colon-ellipsis applies to the entire bracketed expression.

Other symbols
(except [] { } | ... ,... :...)

All other symbols except those defined in this table must be entered exactly as
specified.
Exception: The SQL scalar concatenation operator is represented by two vertical bars
that must be entered literally as they appear in the syntax definition.

Example:

WRITE, USING, MAP and FORM are Natural keywords which you must enter as specified.
operand1 and operand2 are user-supplied variables for which you specify the names of the objects you wish
to deal with.
The braces indicate that you must choose whether to specify either FORM or MAP; however, you must
specify one of the two.

Copyright © Software AG 20034

Syntax Symbols and Operand Definition TablesSyntax Symbols

The square brackets indicate that USING and operand2 are optional elements which you can, but need not,
specify.
The ellipsis indicates that you may specify operand2 several times.

Operand Definition Table
Whenever one or more operands appear in the syntax of a Natural statement, the following table is provided:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A G N/M A N P I F B D T L C G O yes/no yes/no

This table provides the following information on each operand:

Possible Structure

Indicates the structure which the operand may take:

C Constant.

S Single occurrence
(scalar; that is, a field/variable which is neither an array range nor a group).

A Array.

G Group.

N/M Natural system variable:

N = All system variables can be used.

M = Only modifiable system variables can be used. For information on which system variables are
modifiable, see the section System Variables in the Natural System Variables documentation.

Possible Formats

Indicates the format which the operand may take:

5Copyright © Software AG 2003

Operand Definition TableSyntax Symbols and Operand Definition Tables

A Alphanumeric

N Numeric unpacked

P Packed numeric

I Integer

F Floating point

B Binary

D Date

T Time

L Logical

C Attribute control

G GUI handle

O Object handle

Reference Permitted

Indicates whether the operand may be referenced via a statement label or the source code line number.

Dynamic Definition

Indicates whether the field may be dynamically defined within the body of the program. This is possible in
reporting mode only.

Copyright © Software AG 20036

Syntax Symbols and Operand Definition TablesReference Permitted

Statement Usage Related Topics
This section covers the following topics related to the usage of Natural statements:

User-Defined Variables
X-Arrays
Large and Dynamic Variables/Fields
Constants
Report Specification
Text Notation
User Comments
End of a Statement
Logical Condition Criteria
Rules for Arithmetic Assignment
Renumbering of Source-Code Line Number References

7Copyright © Software AG 2003

Statement Usage Related TopicsStatement Usage Related Topics

User-Defined Variables
User-defined variables can be used to store intermediate results in a program or routine.

Naming Conventions
Definition of Variables
Statement Reference Notation - r
Definition of Format and Length
Special Formats
Index Notation
Referencing a Database Array
Referencing the Internal Count for a Database Array
Qualifying Data Structures

Naming Conventions
When working with user-defined variables, the following naming conventions must be met.

Length of Variable Names

The name of a user-defined variable may be 1 to 32 characters long.

You can use variable names of over 32 characters (for example, in complex applications where longer
meaningful variable names enhance the readability of programs); however, only the first 32 characters are
significant and must therefore be unique, the remaining characters will be ignored by Natural.

Limitations of Variable Names

The name of a user-defined variable must not be a Natural reserved word.

Within one Natural program, you must not use the same name for a user-defined variable and a database field,
because this might lead to referencing errors (see Qualifying Data Structures).

Characters Allowed in Variable Names

The name of a user-defined variable can consist of the following characters:

Copyright © Software AG 20038

User-Defined VariablesUser-Defined Variables

Character Explanation

A - Z alphabetical characters (upper and lower case)

0 - 9 numeric characters

- hyphen

@ at sign

_ underline

/ slash

$ dollar sign

§ paragraph sign

& ampersand

hash/number sign

+ plus sign (only allowed as first character)

First Character of Variable Names

The first character of the name must be one of the following:

an upper-case alphabetical character

+
&

If the first character is a "#", "+" or "&", the name must consist of at least one additional character.

Variables in a GDA with a "+" as first character must be defined on Level 01. Other levels are only used in a
redefinition.

"+" as the first character of a name is only allowed for application-independent variables (AIVs) and variables in
a global data area. Names of AIVs must begin with a "+".

"&" as the first character of a name is used in conjunction with dynamic source program modification (see the
RUN statement in the Natural Statements documentation), and as a dynamically replaceable character when
defining processing rules (see the map editor description in your Natural Editors documentation).

Special Considerations Regarding the Case of Characters in Variable
Names

On Windows and UNIX, lower-case characters entered as part of a variable name are internally converted to
upper case. The same happens on mainframe computers if the LOWSRCE option of the COMPOPT system
command is set to ON.

Lower-case characters can only be entered as the second and subsequent characters of a variable name.

On mainframe computers, lower-case characters are not translated to upper case and are therefore interpreted as
being different from the respective upper-case characters, if

the LOWSRCE option of the COMPOPT system command is set to OFF (the default value) and
input in the editor is not translated to upper case (translation to upper case in the editor is controlled by
editor profile options and by options depending on the operating system).

9Copyright © Software AG 2003

First Character of Variable NamesUser-Defined Variables

For example, this will cause the names #FIELD and #field to be interpreted as two different field names.

Note:
For compatibility reasons, you should not use this feature if you plan to port applications developed on
mainframe computers to Windows or UNIX.
If you use lower-case characters as part of the variable name, it is highly recommended that variable names are
unique regardless of their case.

Definition of Variables
You define the characteristics of a variable with the following notation:

(r,format-length/index)

This notation follows the variable name, optionally separated by one or more blanks. No blanks are allowed
between the individual elements of the notation. The individual elements may be specified selectively as
required, but when used together, they must be separated by the characters as indicated above.

Attention:
If operating in structured mode or if a program contains a DEFINE DATA LOCAL clause, variables cannot be
defined dynamically in a statement. This does not apply to application-independent variables (AIVs).

Copyright © Software AG 200310

User-Defined VariablesDefinition of Variables

Statement Reference Notation - r
A statement label or the source-code line number can be used to refer to a previous Natural statement. This can
be used to override Natural’s default referencing (as described for each statement, where applicable), or for
documentation purposes.

Default Referencing of Database Fields

Generally, the following applies if you specify no statement reference notation: By default, the innermost active
database loop (FIND, READ or HISTOGRAM) in which the database field in question has been read is
referenced. If the field is not read in any active database loop, the last previous GET statement (in reporting
mode also FIND FIRST or FIND UNIQUE statement) which has read the field is referenced.

Referencing with Statement Labels

Any Natural statement which causes a processing loop to be initiated and/or causes data elements to be accessed
in the database may be marked with a symbolic label for subsequent referencing.

A label may be specified either in the form label. before the referencing object or in parentheses (label.) after the
referencing object (but not both simultaneously).

The naming conventions for labels are identical to those for variables. The period after the label name serves to
identify the entry as a label.

Example:

...
 RD. READ PERSON-VIEW BY NAME STARTING FROM ’JONES’
 FD. FIND AUTO-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FD.)
 DISPLAY NAME (RD.) FIRST-NAME (RD.) MAKE (FD.)
 END-FIND
 END-READ
 ...

Referencing with Source-Code Line Numbers

A statement may also be referenced by using the number of the source-code line in which the statement is
located.

All four digits of the line number must be specified (leading zeros must not be omitted).

Example:

 ...
 0110 FIND EMPLOYEES-VIEW WITH NAME = ’SMITH’
 0120 FIND VEHICLES-VIEW WITH MODEL = ’FORD’
 0130 DISPLAY NAME (0110) MODEL (0120) 0140 END-FIND
 0150 END-FIND
 ...

For further information on the referencing of statements, see the Natural Programming Guide.

11Copyright © Software AG 2003

Statement Reference Notation - rUser-Defined Variables

Definition of Format and Length
Format and length of a user-defined variable are specified in parentheses after the variable name.

Fixed-length variables can be defined with the following formats and corresponding lengths:

Note:
For the definition of Format and Length in dynamic variables, see Definition of Dynamic Variables.

Format Definable Length Internal Length
(in Bytes)

A Alphanumeric 1 - 1073741824 (1GB)1 - 1073741824

B Binary 1 - 1073741824 (1GB)1 - 1073741824

C Attribute Control - 2

D Date - 4

F Floating Point 4 or 8 4 or 8

I Integer 1, 2 or 4 1, 2 or 4

L Logical - 1

N Numeric (unpacked) 1 - 29 1 - 29

P Packed numeric 1 - 29 1 - 15

T Time - 7

Length can only be specified if format is specified. With some formats, the length need not be explicitly
specified (as shown in the table above).

For fields defined with format N or P, you can use decimal position notation in the form "nn.m". "nn" represents
the number of positions before the decimal point, and "m" represents the number of positions after the decimal
point. The sum of the values of "nn" and "m" must not exceed 29 and the value of "m" must not exceed 7.

Note:
In reporting mode, if format and length are not specified for a user-defined variable, the default format/length N7
will be used, unless this default assignment has been disabled by the session parameter FS.

For a database field, the format/length as defined for the field in the DDM apply. (In reporting mode, it is also
possible to define in a program a different format/length for a database field.)

In structured mode, format and length may only be specified in a data area definition or with a DEFINE DATA
statement.

Example of Format/Length Definition - Structured Mode:

 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 1 #NEW-SALARY (N6.2) END-DEFINE
 ...
 FIND EMPLOY-VIEW ...
 ...
 COMPUTE #NEW-SALARY = ...
 ...

Copyright © Software AG 200312

User-Defined VariablesDefinition of Format and Length

In reporting mode, format/length may be defined within the body of the program, if no DEFINE DATA
statement is used.

Example of Format/Length Definition - Reporting Mode:

...
 FIND EMPLOYEES
... ... COMPUTE #NEW-SALARY (N6.2) = ...
...

Special Formats
In addition to the standard alphanumeric (A) and numeric (B, F, I, N, P) formats, Natural supports the special
formats C, D, T and L, which are described below.

Format C - Attribute Control

A variable defined with format C may be used to assign attributes dynamically to a field used in a DISPLAY,
INPUT or WRITE statement.

For a variable of format C, no length can be specified. The variable is always assigned a length of 2 bytes by
Natural.

Example:

 DEFINE DATA LOCAL
 1 #ATTR(C)
 1 #A(N5)
 END-DEFINE
 ...
 MOVE (AD=I CD=RE) TO #ATTR
 INPUT #A (CV=#ATTR)
 ...

For further information, see the session parameter CV.

Formats D - Date, and T - Time

Variables defined with formats D and T can be used for date and time arithmetic and display. Format D can
contain date information only. Format T can contain date and time information; in other words, date information
is a subset of time information. Time is counted in tenths of seconds.

For variables of formats D and T, no length can be specified. A variable with format D is always assigned a
length of 4 bytes (P6) and a variable with format T is always assigned a length of 7 bytes (P12) by Natural.

Example:

13Copyright © Software AG 2003

Special FormatsUser-Defined Variables

 DEFINE DATA LOCAL
 1 #DAT1 (D)
 END-DEFINE
 *
 MOVE *DATX TO #DAT1
 ADD 7 TO #DAT1
 WRITE ’=’ #DAT1
 END

For further information, see the session parameter EM and the system variables *DATX and *TIMX .

The value in a date field must be in the range from 1st January 1582 to 31st December 2699.

Format L - Logical

A variable defined with format L may be used as a logical condition criterion. It can take the value "TRUE" or
"FALSE".

For a variable of format L, no length can be specified. A variable of format L is always assigned a length of 1
byte by Natural.

Example:

 DEFINE DATA LOCAL
 1 #SWITCH(L)
 END-DEFINE
 MOVE TRUE TO #SWITCH
 ...
 IF #SWITCH
 ...
 MOVE FALSE TO #SWITCH
 ELSE
 ...
 MOVE TRUE TO #SWITCH
 END-IF

For further information on logical value presentation, see the session parameter EM.

Format "Handle"

A variable defined as "HANDLE OF dialog-element-type" can be used as a GUI handle.

A variable defined as "HANDLE OF OBJECT" can be used as an object handle.

For further information on GUI handles, see the Natural Programming Guide. For further information on object
handles, see the NaturalX documentation.

Index Notation
An index notation is used for fields that represent an array.

An integer numeric constant or user-defined variable may be used in index notations. A system variable, system
function or qualified variable cannot be used in index notations.

Copyright © Software AG 200314

User-Defined VariablesIndex Notation

Array Definition - Examples:

1. #ARRAY (3)
Defines a one-dimensional array with three occurrences.

2. FIELD (label.,A20/5) or label.FIELD(A20/5)
Defines an array from a database field referencing the statement marked by "label." with format
alphanumeric, length 20 and 5 occurrences.

3. #ARRAY (N7.2/1:5,10:12,1:4)
Defines an array with format/length N7.2 and three array dimensions with 5 occurrences in the first, 3
occurrences in the second and 4 occurrences in the third dimension.

4. FIELD (label./i:i + 5) or label.FIELD(i:i + 5)
Defines an array from a database field referencing the statement marked by "label.". FIELD represents a
multiple-value field or a field from a periodic group where "i" specifies the offset index within the
database occurrence. The size of the array within the program is defined as 6 occurrences (i:i + 5). The
database offset index is specified as a variable to allow for the positioning of the program array within the
occurrences of the multiple-value field or periodic group. For any repositioning of "i" a new access must
be made to the database via a GET or GET SAME statement.

Natural allows for the definition of arrays where the index does not have to begin with "1". At runtime, Natural
checks that index values specified in the reference do not exceed the maximum size of dimensions as specified in
the definition.

Note:
For compatibility with Natural Version 1, an array range may be specified using a hyphen (-) instead of a colon
(:). A mix of both notations, however, is not permitted. The hyphen notation is only allowed in reporting mode
(but not in a DEFINE DATA statement).

The maximum index value is 1,073,741,824. The maximum size of a data area per programming object is
1,073,741,824 bytes (1 GB). Use the DSLM profile parameter (available on UNIX and Windows only) to reduce
these limits for compatibility reasons to the limits applicable for Natural Version 3.1 on mainframe computers.

Simple arithmetic expressions using the "+" and "-" operators may be used in index references. When arithmetic
expressions are used as indices, the operators "+" or "-" must be preceded and followed by a blank.

Arrays in group structures are resolved by Natural field by field, not group occurrence by group occurrence.

Example of Group Array Resolution:

DEFINE DATA LOCAL
 1 #GROUP (1:2)
 2 #FIELDA (A5/1:2)
 2 #FIELDB (A5)
 END-DEFINE
 ...

If the group defined above were output in a WRITE statement:

WRITE #GROUP (*)

the occurrences would be output in the following order:

#FIELDA(1,1) #FIELDA(1,2) #FIELDA(2,1) #FIELDA(2,2) #FIELDB(1) #FIELDB(2)

and not :

#FIELDA(1,1) #FIELDA(1,2) #FIELDB(1) #FIELDA(2,1) #FIELDA(2,2) #FIELDB(2)

15Copyright © Software AG 2003

Index NotationUser-Defined Variables

Array Referencing - Examples:

1. #ARRAY (1)
References the first occurrence of a one-dimensional array.

2. #ARRAY (7:12)
References the seventh to twelfth occurrence of a one-dimensional array.

3. #ARRAY (i + 5)
References the i+fifth occurrence of a one-dimensional array.

4. #ARRAY (5,3:7,1:4)
Reference is made within a three dimensional array to occurrence 5 in the first dimension, occurrences 3
to 7 (5 occurrences) in the second dimension and 1 to 4 (4 occurrences) in the third dimension.

5. An asterisk may be used to reference all occurrences within a dimension:
DEFINE DATA LOCAL
1 #ARRAY1 (N5/1:4,1:4)
1 #ARRAY2 (N5/1:4,1:4)
END-DEFINE
...
ADD #ARRAY1 (2,*) TO #ARRAY2 (4,*)
...

Using a Slash before an Array Occurrence

If a variable name is followed by a 4-digit number enclosed in parentheses, Natural interprets this number as a
line-number reference to a statement. Therefore a 4-digit array occurrence must be preceded by a slash "/" to
indicate that it is an array occurrence; for example:

 #ARRAY(/1000)
 not: #ARRAY(1000)

because the latter would be interpreted as a reference to source code line 1000.

If an index variable name could be misinterpreted as a format/length specification, a slash "/" must be used to
indicate that an index is being specified. If, for example, the occurrence of an array is defined by the value of the
variable "N7", the occurrence must be specified as:

 #ARRAY (/N7)
 not: #ARRAY (N7)

because the latter would be misinterpreted as the definition of a 7-byte numeric field.

Referencing a Database Array

Referencing Multiple-Value Fields and Periodic-Group Fields

A multiple-value field or periodic-group field within a view/DDM may be defined and referenced using various
index notations.

For example, the first to tenth values and the Ith to Ith+10 values of the same multiple-value field/periodic-group
field of a database record:

Copyright © Software AG 200316

User-Defined VariablesReferencing a Database Array

 DEFINE DATA LOCAL
 1 I(I2)
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 LANG (1:10)
 2 LANG (I:I + 10)
 END-DEFINE

or:

 RESET I(I2)
 ...
 READ EMPLOYEES
 OBTAIN LANG(1:10) LANG(I:I + 10)

Note:
The same lower bound index may only be used once per array, (this applies to constant indexes as well as
variable indexes). For an array definition using a variable index, the lower bound must be specified using the
variable by itself, and the upper bound must be specified using the same variable plus a constant.

Referencing Arrays defined with Constants

An array defined with constants may be referenced using either constants or variables. The upper bound of the
array cannot be exceeded. The upper bound will be checked by Natural at compilation time if a constant is used.

 RESET I(I2)
 I = 1
 READ EMPLOYEES
 OBTAIN LANG(1:10)
 WRITE LANG(1) / LANG(5:9) / LANG(1:10)

 DEFINE DATA LOCAL
 1 I(I2)
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 LANG (1:10)
 END-DEFINE
 *
 READ EMPLOY-VIEW
 FOR I 1 TO 5
 WRITE LANG(1.I)
 END-FOR
 END-READ
 END

If a multiple-value field or periodic-group field is defined several times using constants and is to be referenced
using variables, the following syntax is used:

 DEFINE DATA LOCAL
 1 I(I2)
 1 J(I2)
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 LANG (1:5)
 2 LANG (11:20)
 END-DEFINE
 *
 READ EMPLOY-VIEW
 FOR I 1 TO 2
 FOR J I TO 4
 DISPLAY ’LANGUAGE’ LANG(1.I:J)

17Copyright © Software AG 2003

Referencing Arrays defined with ConstantsUser-Defined Variables

 END-FOR
 END-FOR
 END-READ
 END

Referencing Arrays defined with Variables

Multiple-value fields or periodic-group fields in arrays defined with variables must be referenced using the same
variable.

 RESET I(I2)
 I = 1
 READ EMPLOYEES
 OBTAIN LANG(I:I+10)
 WRITE LANG(I) / LANG (I+5:I+6)
 END

If a different index is to be used, an unambiguous reference to the first encountered definition of the array with
variable index must be made. This is done by qualifying the index expression as shown below:

 RESET I(I2) J(I2)
 I = 1
 J = 1
 READ EMPLOYEES
 OBTAIN LANG(I:I+10)
 WRITE LANG(I.J) / LANG(I.1:5)
 END

The expression "I." is used to create an unambiguous reference to the array definition and "positions" to the first
value within the read array range (LANG(I: I + 10)).

The current content of "I" at the time of the database access determines the starting occurrence of the database
array.

Referencing Multiple-Defined Arrays

For multiple-defined arrays, a reference with qualification of the index expression is usually necessary to ensure
an unambiguous reference to the desired array range.

Example:

DEFINE DATA LOCAL
 1 I(I2) INIT <1>
 1 J(I2) INIT <2>
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 LANG (1:10)
 2 LANG (5:20)
END-DEFINE
READ (2) EMPLOY-VIEW
 WRITE LANG(1.1:10) / LANG(5.5:15)
 DISPLAY LANG(1.I:I+2) / LANG(5.J)
END-READ
END

A similar syntax is also used if multiple-value fields or periodic-group fields are defined using index variables.

Example:

Copyright © Software AG 200318

User-Defined VariablesReferencing Arrays defined with Variables

 DEFINE DATA LOCAL
 1 I(I2) INIT <1>
 1 J(I2) INIT <1>
 1 N(I2) INIT <1>
 1 M(I2) INIT <1>
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 LANG (I:I+10)
 2 LANG (J:J+5)
 2 LANG (1:2)
 END-DEFINE
 READ (2) EMPLOY-VIEW
 WRITE LANG(I.I) / LANG(I.I:I+10)
 DISPLAY LANG(J.N) / LANG(J.N:M)
 DISPLAY LANG(1.N) / LANG(1.N:M)
 END-READ
 END

Referencing the Internal Count for a Database Array
It is sometimes necessary to reference a multiple-value field and/or a periodic group without knowing how many
values/occurrences exist in a given record. Adabas maintains an internal count of the number of values of each
multiple-value field and the number of occurrences of each periodic group. This count may be referenced by
specifying "C*" immediately before the field name. See also the data-area-editor line command ".*" (as
described in your Natural Editor documentation).

The count is returned in format N3.

Examples:

C*LANG Returns the count of the number of values for the multiple-value field LANG.

C*INCOME Returns the count of the number of occurrences for the periodic group INCOME.

C*BONUS(1) Returns the count of the number of values for the multiple-value field BONUS in periodic
group occurrence 1 (assuming that BONUS is a multiple-value field within a periodic group.)

Note for SQL databases:
The C* notation cannot be used for SQL databases.

Note for VSAM databases:
The C* notation does not return the number of values/occurrences but the maximum occurrence/value as defined
in the DDM (MAXOCC).

19Copyright © Software AG 2003

Referencing the Internal Count for a Database ArrayUser-Defined Variables

Example of C* Variable:

 /* EXAMPLE ’ICOUNT’:
 /* USING C*NOTATION TO OBTAIN INTERNAL COUNT FOR DATABASE ARRAY
 /***
 LIMIT 2
 READ EMPLOYEES BY CITY
 OBTAIN SALARY(1:5)
 WRITE NOTITLE ’NAME:’ NAME / ’NUMBER OF LANGUAGES SPOKEN:’ C*LANG 5X ’LANGUAGE 1:’ LANG (1)
 5X ’LANGUAGE 2:’ LANG (2)
 /***
 WRITE ’SALARY DATA:’
 FOR #A (N1) FROM 1 TO C*INCOME
 WRITE ’SALARY’ #A SALARY (1.#A)
 LOOP
 /***
 WRITE ’THIS YEAR BONUS:’ C*BONUS(1) BONUS (1,1) BONUS (1,2)
 / ’LAST YEAR BONUS:’ C*BONUS(2) BONUS (2,1) BONUS (2,2)
 SKIP 1
 END

NAME: SENKO
NUMBER OF LANGUAGES SPOKEN: 1 LANGUAGE 1: ENG LANGUAGE 2:
SALARY DATA:
SALARY 1 31500
SALARY 2 29900
SALARY 3 28100
SALARY 4 26600
SALARY 5 25200
THIS YEAR BONUS: 0 0 0
LAST YEAR BONUS: 0 0 0

NAME: GODEFROY
NUMBER OF LANGUAGES SPOKEN: 1 LANGUAGE 1: FRE LANGUAGE 2:
SALARY DATA:
SALARY 1 170300
THIS YEAR BONUS: 1 50000 0
LAST YEAR BONUS: 0 0 0

C* for Multiple-Value Fields Within Periodic Groups

For a multiple-value field within a periodic group, you can also define a C* variable with an index range
specification.

The following examples use the multiple-value field BONUS, which is part of the periodic group INCOME. All
three examples yield the same result.

Example 1 - Reporting Mode:

 READ EMPLOYEES BY PERSONNEL-ID FROM 11100117
 OBTAIN C*BONUS (1:3)
 BONUS (1:3,1:3)
 *
 DISPLAY C*BONUS (1:3)
 BONUS (1:3,1:3)
 END

Copyright © Software AG 200320

User-Defined VariablesC* for Multiple-Value Fields Within Periodic Groups

Example 2 - Structured Mode:

 DEFINE DATA LOCAL
 1 EMP VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 INCOME (1:3)
 3 C*BONUS
 3 BONUS (1:3)
 END-DEFINE
 READ EMP BY PERSONNEL-ID FROM 11100117
 DISPLAY C*BONUS (1:3)
 BONUS (1:3,1:3)
 END-READ
 END

Example 3 - Structured Mode:

 DEFINE DATA LOCAL
 1 EMP VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 C*BONUS (1:3)
 2 INCOME (1:3)
 3 BONUS (1:3)
 END-DEFINE
 READ EMP BY PERSONNEL-ID FROM 11100117
 DISPLAY PERSONNEL-ID C*BONUS (*) BONUS (*,*)
 END-READ
 END

Note:
As the Adabas format buffer does not permit ranges for count fields, they are generated as individual fields;
therefore a C* index range for a large array may cause an Adabas format buffer overflow.

Qualifying Data Structures
To identify a field when referencing it, you may qualify the field; that is, before the field name, you specify the
name of the level-1 data element in which the field is located and a period.

If a field cannot be identified uniquely by its name (for example, if the same field name is used in multiple
groups/views), you must qualify the field when you reference it.

The combination of level-1 data element and field name must be unique.

Example:

21Copyright © Software AG 2003

Qualifying Data StructuresUser-Defined Variables

 DEFINE DATA LOCAL
 1 FULL-NAME
 2 LAST-NAME (A20)
 2 FIRST-NAME (A15)
 1 OUTPUT-NAME
 2 LAST-NAME (A20)
 2 FIRST-NAME (A15)
 END-DEFINE
 ...
 MOVE FULL-NAME.LAST-NAME TO OUTPUT-NAME.LAST-NAME
 ...

The qualifier must be a level-1 data element.

Example:

 DEFINE DATA LOCAL
 1 GROUP1
 2 SUB-GROUP
 3 FIELD1 (A15)
 3 FIELD2 (A15)
 END-DEFINE
 ...
 MOVE ’ABC’ TO GROUP1.FIELD1
 ...

Note:
If you use the same name for a user-defined variable and a database field (which you should not do anyway), you
must qualify the database field when you want to reference it; because if you do not, the user-defined variable
will be referenced instead.

Copyright © Software AG 200322

User-Defined VariablesQualifying Data Structures

X-Arrays
Note:
X-arrays are only available under Windows and UNIX.

This section covers the following topics:

Definition
Storage Management of X-Arrays
Storage Management of X-Group Arrays
Referencing an X-Array
Parameter Transfer with X-Arrays
Dynamic X-Arrays
System Variables *LBOUND and *UBOUND

At application development time you probably will not know the exact number of occurrences of an array.
However, you may want be able to change the size of an array at runtime.

For this purpose you can define what is called an X-array (eXtensible array). An X-array can be resized at
runtime and can help you manage memory more efficiently. For example, you can use a large number of array
occurrences for a short time and then reduce memory when the application is no longer using the array.

Definition
An X-array is an array of which the number of occurrences is not known at compile time. An X-array can only
be defined in a DEFINE DATA statement by specifying an asterisk (*) for at least one bound of at least one
dimension of the array. The asterisk (*) in the bound definition indicates that the corresponding bound is
extensible. Only one bound-- either upper or lower--may be extensible, but not both.

An X-array can be defined whenever a (fixed) array can be defined, i.e. at any level or even as an indexed group.
A multidimensional array may have a mixture of constant and extensible bounds.

Example

DEFINE DATA LOCAL
1 #X-ARR1 (A5/1:*) /* lower bound is always 1, upper bound is extensible
1 #X-ARR2 (A5/*) /* same as #X-ARR1 (A5/1:*)
1 #X-ARR3 (A5/*:100) /* lower bound is extensible, upper bound is always 100
1 #X-ARR4 (A5/1:10,1:*) /* upper and lower bounds of 1st dimension are constant
END-DEFINE /* (10 occurrences)
 /* lower bound of 2nd dimension is 1, upper bound is extensible

23Copyright © Software AG 2003

X-ArraysX-Arrays

Storage Management of X-Arrays
The EXPAND, RESIZE and REDUCE statements may change the number of occurrences by specifying lower
and upper bounds for each dimension. However, the number of dimensions of the X-array (1, 2 or 3 dimensions)
cannot be changed.

Example:

DEFINE DATA LOCAL
1 #X-ARR(I4/10:*)
END-DEFINE

EXPAND ARRAY #X-ARR TO (10:10000)

/* #X-ARR(10) to #X-ARR(10000) are accessible

WRITE *LBOUND(#X-ARR) /* is 10
 UBOUND(#X-ARR) / is 10000
 OCCURRENCE(#X-ARR) / is 9991
#X-ARR1(*) := 4711 /* same as #X-ARR(10:10000) := 4711

/* resize array from current lower bound=10 to upper bound =1000

RESIZE ARRAY #X-ARR TO (*:1000)

/* #X-ARR(10) to #X-ARR(1000) are accessible
/* #X-ARR(1001) to #X-ARR(10000) are released

WRITE *LBOUND(#X-ARR) /* is 10
 UBOUND(#X-ARR) / is 1000
 OCCURRENCE(#X-ARR) / is 991

/* release all occurrences

REDUCE ARRAY #X-ARR TO 0
WRITE *OCCURRENCE(#X-ARR) /* is 0

Copyright © Software AG 200324

X-ArraysStorage Management of X-Arrays

Storage Management of X-Group Arrays
If you want to increase or decrease occurrences of X-group arrays, you must distinguish between independent
and dependent dimensions.

A dimension which is specified directly (not inherited) for an X-(group) array is independent.

A dimension which is not specified directly (inherited) for an X-(group) array is dependent.

Only the upper or lower bounds of independent dimensions can be changed in the EXPAND, RESIZE and
REDUCE statements. The upper and lower bounds of dependent dimensions cannot be changed directly. The
upper and lower bounds of dependent dimensions must be changed by using the corresponding X-group array
name.

25Copyright © Software AG 2003

Storage Management of X-Group ArraysX-Arrays

Example - Independent/Dependent Dimensions:

DEFINE DATA LOCAL
1 #X-GROUP-ARR1(10:*) /* (10:*)
 2 #X-ARR1(I4) /* (10:*)
 2 #X-ARR2 (I4/20:*) /* (10:*, 20:*)
 2 #X-GROUP-ARR2 /* (10:*)
 3 #X-ARR3(I4) /* (10:*)
 3 #X-ARR4(I4/30:*) /* (10:*,30:*)
 3 #X-ARR5(I4/40:*,50:*) /* (10:*, 40:*, 50:*)
END-DEFINE

The following table shows whether the dimensions in the above program are independent or dependent.

Name Dependent Dimension Independent Dimension

#X-GROUP-ARR1 (10:*)

#X-ARR1 (10:*)

#X-ARR2 (10:*) (20:*)

#X-GROUP-ARR2 (10:*)

#X-ARR3 (10:*)

#X-ARR4 (10:*) (30:*)

#X-ARR5 (10:*) (40:*,50:*)

Only the dimension notation asterisk (*) for the upper and lower bound is allowed for dependent dimensions.
The asterisk is used to indicate that the bounds of the dependent dimension must be kept as they are and cannot
be changed.

The occurrences of the dependent dimensions can only be changed by manipulating the corresponding array
groups.

EXPAND ARRAY #X-GROUP-ARR1 TO (10:1000)
 /* #X-ARR1(10) to #X-ARR1(1000) are allocated
 /* #X-ARR3(10) to #X-ARR3(1000) are allocated

EXPAND ARRAY #X-ARR2 TO (*:*, 20:2000)
 /* #X-ARR2(10:1000, 20:2000) are allocated

EXPAND ARRAY #X-ARR4 TO (*:*, 30:3000)
 /* #X-ARR4(10:1000, 30:3000) are allocated

EXPAND ARRAY #X-ARR5 TO (*:*, 40:4000, 50:5000)
 /* #X-ARR5(10:1000, 40:4000,50:5000) are allocated

END

The EXPAND statements may be coded in an arbitrary order.

Copyright © Software AG 200326

X-ArraysStorage Management of X-Group Arrays

The following use of the EXPAND statement is not allowed, since the arrays only have dependent dimensions.

EXPAND ARRAY #X-ARR1 TO ...

EXPAND ARRAY #X-GROUP-ARR2 TO ...

EXPAND ARRAY #X-ARR3 TO ...

27Copyright © Software AG 2003

Storage Management of X-Group ArraysX-Arrays

Referencing an X-Array
The occurrences of an X-array must be allocated by an EXPAND or RESIZE statement before they can be
accessed. Following statements allocate occurrences implicitly:

PARSE assigns XML data to an X-Array
READ WORK FILE reads work file data into an X-Array
READ, FIND and GET fill an X-Array with values from Tamino

The asterisk (*) notation in an array reference stands for the complete range of a dimension. If the array is an
X-array, * is the index range of the current allocated lower and upper bound values which are determined by
*LBOUND and *UBOUND.

Copyright © Software AG 200328

X-ArraysReferencing an X-Array

Parameter Transfer with X-Arrays
X-arrays that are used as parameters are treated like constant arrays with regard to the verification of the
following:

format,
length,
dimension
or
number of occurrences.

In addition, X-array parameters can also change the number of occurrences by using the statements RESIZE, as
well as REDUCE and EXPAND. The RESIZE of an X-array parameter is dependent on three factors:

the type of parameter transfer used, i.e. By Reference or By Value,
the definition of the caller or parameter X-array
and
the type of X-array range being passed on (complete range or subrange).

The following tables demonstrate when a RESIZE, REDUCE or EXPAND of an X-array parameter is allowed.

Example with CALL By Value

 PARAMETER

CALLER Static Variable (1:V) X-Array

Static NO NO YES

X-Array subrange
e.g. CALLNAT...#XA(1:5)

NO NO YES

X-Array complete range
e.g. CALLNAT...#XA(*)

NO NO YES

CALL By Reference/CALL By Value Result

29Copyright © Software AG 2003

Parameter Transfer with X-ArraysX-Arrays

 PARAMETER

CALLER Static Variable
(1:V)

X-Array with a fixed
lower bound
e.g.
DEFINE DATA
PARAMETER
1 #PX (A10/1:*)

X-Array with a fixed
upper bound
e.g.
DEFINE DATA
PARAMETER
1 #PX (A10/*:1)

Static NO NO NO NO

X-Array subrange
e.g. CALLNAT...#XA(1:5)

NO NO NO NO

X-Array with a fixed lower bound,
complete range
e.g.
DEFINE DATA LOCAL
1 #XA(A10/1:*)
...
CALLNAT...#XA(*)

NO NO YES NO

X-Array with a fixed upper bound,
complete range
e.g.
DEFINE DATA LOCAL
1 #XA(A10/*:1)
...
CALLNAT...#XA(*)

NO NO NO YES

Copyright © Software AG 200330

X-ArraysCALL By Reference/CALL By Value Result

Dynamic X-Arrays
A dynamic X-array may be allocated by first specifying the number of occurrences using the EXPAND
statement and then assigning expanding the length of the previously allocated array occurrences.

Example:

DEFINE DATA LOCAL
 1 #X-ARRAY(A/1:*) DYNAMIC
END-DEFINE
EXPAND ARRAY #X-ARRAY TO (1:10)
 /* allocate #X-ARRAY(1) to #X-ARRAY(10) with zero length.
 /* *LENGTH(#X-ARRAY(1:10)) is zero

#X-ARRAY(*) := ’abc’
 /* #X-ARRAY(1:10) contains ’abc’,
 /* *LENGTH(#X-ARRAY(1:10)) is 3

EXPAND ARRAY #X-ARRAY TO (1:20)
 /* allocate #X-ARRAY(11) to #X-ARRAY(20) with zero length
 /* *LENGTH(#X-ARRAY(11:20)) is zero

#X-ARRAY(11:20) := ’def’
 /* #X-ARRAY(11:20) contains ’def’
 /* *LENGTH(#X-ARRAY(11:20)) is 3

31Copyright © Software AG 2003

Dynamic X-ArraysX-Arrays

System Variables *LBOUND and *UBOUND
The system variables *LBOUND and *UBOUND contain the current lower and upper bound of an array for the
specified dimension(s) (1,2 or 3)

If no occurrences of an X-array have been allocated, the access to *LBOUND or *UBOUND is undefined and
leads to a runtime error. In order to avoid a runtime error, *OCCURRENCE may be used to check against zero
occurrences before *LBOUND or *UBOUND is evaluated:

Example:

IF *OCCURRENCE (#A) NE 0 AND *UBOUND(#A) < 100 THEN ...

Copyright © Software AG 200332

X-ArraysSystem Variables *LBOUND and *UBOUND

Constants
Numeric Constants
Alphanumeric Constants
Date and Time Constants
Hexadecimal Constants
Logical Constants
Floating Point Constants
Attribute Constants
Handle Constants
Defining Named Constants

Constants are used throughout Natural programs. This section discusses the types of constants that are supported
and how they are used.

Numeric Constants
A numeric constant may contain 1 to 29 numeric digits. A numeric constant used in a COMPUTE, MOVE, or
arithmetic statement may contain a decimal point and sign notation.

Examples:

 MOVE 3 TO #XYZ
 COMPUTE #PRICE = 23.34
 COMPUTE #XYZ = -103
 COMPUTE #A = #B * 6074

Note:
Internally, numeric constants without decimal digits are represented in integer form (format I), while numeric
constants with decimal digits, as well as numeric constants without decimal digits that are too large to fit into
format I, are represented in packed form (format P).
On mainframe computers, numeric constants are represented internally in packed form (format P); exception: if a
numeric constant is used in an arithmetic operation in which the other operand is an integer variable (format I),
the numeric constant is represented in integer form (format I).

Validation of Numeric Constants

When numeric constants are used within one of the statements MOVE, COMPUTE, or DEFINE DATA with
INIT option, Natural checks at compilation time whether a constant value fits into the corresponding field. This
avoids runtime errors in situations where such an error condition can already be detected during compilation.

Alphanumeric Constants
An alphanumeric constant may contain 1 to 253 alphanumeric characters.

An alphanumeric constant must be enclosed in either apostrophes (’) or quotation marks (").

Examples:

33Copyright © Software AG 2003

ConstantsConstants

 MOVE ’ABC’ TO #FIELDX
 MOVE ’% INCREASE’ TO #TITLE
 DISPLAY "LAST-NAME" NAME

An alphanumeric constant that is used to assign a value to a user-defined variable must not be split between
statement lines.

Apostrophes Within Alphanumeric Constants

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in apostrophes, you must write
this as two apostrophes or as a single quotation mark.
If you want an apostrophe to be part of an alphanumeric constant that is enclosed in quotation marks, you write
this as a single apostrophe.

Example:

If you want the following to be output:

 HE SAID, ’HELLO’

you can use any of the following notations:

WRITE ’HE SAID, ’’HELLO’’’
WRITE ’HE SAID, "HELLO"’
WRITE "HE SAID, ""HELLO"""
WRITE "HE SAID, ’HELLO’"

An alphanumeric constant that is used to assign a value to a user-defined variable must not be split between
statement lines.

Note:
If quotation marks are not converted to apostrophes as shown above, this is due to the setting of the profile
parameter TQ; ask your Natural administrator for details.

Concatenation of Alphanumeric Constants

Alphanumeric constants may be concatenated to form a single value by use of a hyphen.

Examples:

 MOVE ’XXXXXX’ -
 ’YYYYYY’ TO #FIELD

 MOVE "ABC" - ’DEF’ TO #FIELD

In this way, alphanumeric constants can also be concatenated with hexadecimal constants.

Date and Time Constants
A date constant may be used in conjunction with a format D variable. Date constants may have the following
formats:

Copyright © Software AG 200334

ConstantsDate and Time Constants

D’yyyy-mm-dd’ International date format

D’dd.mm.yyyy’ German date format

D’dd/mm/yyyy’ European date format

D’mm/dd/yyyy’ USA date format

Where dd represents the number of the day, mm the number of the month and yyyythe year.

Example:

 DEFINE DATA LOCAL
 1 #DATE (D)
 END-DEFINE
 ...
 MOVE D’1997-04-27’ TO #DATE
 ...

The default date format is controlled by the profile parameter DTFORM as set by the Natural administrator.

A time constant may be used in conjunction with a format T variable. A time constant has the following format:

T’hh:ii:ss’

where

Character Explanation

hh hours

ii minutes

ss seconds

Example:

DEFINE DATA LOCAL
1 #TIME (T)
END-DEFINE
...
MOVE T’11:33:00’ TO #TIME
...

Extended Time Constants

A time variable (format T) can contain date and time information, date information being a subset of time
information; however, with a "normal" time constant (prefix "T") only the time information of a time variable
can be handled:

T’hh:ii:ss’

With an extended time constant (prefix "E"), it is possible to handle the full content of a time variable, including
the date information:

E’yyyy-mm-dd hh:ii:ss’

35Copyright © Software AG 2003

Extended Time ConstantsConstants

Apart from that, the use of an extended time constant in conjunction with a time variable is the same as for a
normal time constant.

Note:
The format in which the date information has to be specified in an extended time constant depends on the setting
of the profile parameter DTFORM. The extended time constant shown above assumes DTFORM=I
(international date format).

Hexadecimal Constants
A hexadecimal constant may be used to enter a value which cannot be entered as a standard keyboard character.

A hexadecimal constant is prefixed with an "H". The constant itself must be enclosed in apostrophes and may
consist of the hexadecimal characters 0 - 9, A - F. Two hexadecimal characters are required to represent one byte
of data.

The hexadecimal representation of a character varies depending on whether your computer uses an ASCII or
EBCDIC character set. When you transfer hexadecimal constants to another computer, you may therefore have
to convert the characters.

ASCII Examples:

H’313233’ (equivalent to the alphanumeric constant ’123’)
H’414243’ (equivalent to the alphanumeric constant ’ABC’)

EBCDIC Examples:

H’F1F2F3’ (equivalent to the alphanumeric constant ’123’)
H’C1C2C3’ (equivalent to the alphanumeric constant ’ABC’)

Hexadecimal constants may be concatenated by using a hyphen between the constants.

ASCII Examples:

H’414243’ - H’444546’ (equivalent to ’ABCDEF’)

EBCDIC Examples:

H’C1C2C3’ - H’C4C5C6’ (equivalent to ’ABCDEF’)

In this way, hexadecimal constants can also be concatenated with alphanumeric constants.

Note:
When a hexadecimal constant is transferred to another field, it will be treated as an alphanumeric value.
Under UNIX, if a hexadecimal constant is output that contains any characters from the ranges H’00’ to H’1F’ or
H’80’ to H’A0’, these characters will not be output, as they would be interpreted as terminal control characters.
As of version 2.2 these hex constants are not suppressed.

Logical Constants
The logical constants "TRUE" and "FALSE" may be used to assign a logical value to a variable defined with
format L.

Copyright © Software AG 200336

ConstantsHexadecimal Constants

Example:

 DEFINE DATA LOCAL
 1 #FLAG (L)
 END-DEFINE
 ...
 MOVE TRUE TO #FLAG
 ...
 IF #FLAG ...
 statement ...
 MOVE FALSE TO #FLAG
 END-IF
 ...

Floating Point Constants
Floating point constants can be used with variables defined with format F.

Example:

 DEFINE DATA LOCAL
 1 #FLT1 (F4)
 END-DEFINE
 ...
 COMPUTE #FLT1 = -5.34E+2
 ...

See information on arithmetic involving floating-point numbers.

Attribute Constants
Attribute constants can be used with variables defined with C format. This type of constant must be enclosed
within parentheses.

The following attributes may be used:

AD=D default CD=BL blue

AD=B blinking CD=GR green

AD=I intensified CD=NE neutral

AD=N non-display CD=PI pink

AD=V reverse video CD=RE red

AD=U underlined CD=TU turquoise

AD=C cursive/italic CD=YE yellow

AD=P protected

Example:

37Copyright © Software AG 2003

Floating Point ConstantsConstants

 DEFINE DATA LOCAL
 1 #ATTR (C)
 1 #FIELD (A10)
 END-DEFINE
 ...
 MOVE (AD=I CD=BL) TO #ATTR
 ...
 INPUT #FIELD (CV=#ATTR)
 ...

Handle Constants
The handle constant NULL-HANDLE can be used with GUI handles and object handles.

For further information on GUI handles, see the Natural Programming Guide. For further information on object
handles, see the NaturalX documentation.

Defining Named Constants
If you need to use the same constant value several times in a program, you can reduce the maintenance effort by
defining a named constant: you define a field in the DEFINE DATA statement, assign a constant value to it, and
use the field name in the program instead of the constant value. Thus, when the value has to be changed, you
only have to change it once in the DEFINE DATA statement and not everywhere in the program where it occurs.

You specify the constant value in angle brackets with the keyword "CONSTANT" after the field definition in the
DEFINE DATA statement. If the value is alphanumeric, it must be enclosed in apostrophes.

Example:

 DEFINE DATA LOCAL
 1 #FIELDA (N3) CONSTANT <100>
 1 #FIELDB (A5) CONSTANT <’ABCDE’>
 END-DEFINE
 ...

During the execution of the program, the value of such a named constant cannot be modified.

Copyright © Software AG 200338

ConstantsHandle Constants

Report Specification - rep
"(rep)" is the output report identifier for which a statement is applicable. If a Natural program is to produce
multiple reports, the notation "(rep)" must be specified with each output statement which is to be used to create
output for any report other than the first report (report 0). A value of 1 - 31 may be specified.

On mainframe computers, this notation only applies to reports created in batch mode, to reports under
Com-plete, CMS, IMS/TM or TIAM; or when using Natural Advanced Facilities under CICS, TSO or UTM.

Examples:

DISPLAY (1) NAME ...
WRITE (4) NAME ...

The value for (rep) may also be a logical name which has been assigned using the DEFINE PRINTER statement.

Example:

DEFINE PRINTER (LIST=5) OUTPUT ’LPT1’
WRITE (LIST) NAME ...

39Copyright © Software AG 2003

Report Specification - repReport Specification - rep

Text Notation
’text’ specifies text to be used in conjunction with an INPUT, DISPLAY, WRITE, WRITE TITLE or WRITE
TRAILER statement. The text must be enclosed in either apostrophes (’) or quotation marks ("). The text itself
may be 1 to 72 characters and must not be continued from one line to the next. Text elements may be
concatenated by using a hyphen.

Examples:

 REINPUT ’PLEASE ENTER A VALID VALUE’
 WRITE "NEW SALARY" #NEW-SALARY
 WRITE ’TEXT1’-’TEXT2’-’TEXT3’

If you want an apostrophe to be part of a text string that is enclosed in apostrophes, you must write this as two
apostrophes or as a single quotation mark. Either notation will be output as a single apostrophe.
If you want an apostrophe to be part of a text string that is enclosed in quotation marks, you write this as a single
apostrophe.

Examples:

 #FIELDA = ’O’’CONNOR’
 #FIELDA = ’O"CONNOR’
 #FIELDA = "O’CONNOR"

In all three cases, the result will be:

 O’CONNOR

Note:
If quotation marks are not converted to apostrophes as shown above, this is due to the setting of the profile
parameter TQ; ask your Natural administrator for details.

If a single character is to be output several times as text, you use the following notation:

’c’(n)

As c you specify the character, and as n the number of times the character is to be generated. The maximum
value for n is 249.

Example:

 WRITE ’*’(3)

Instead of apostrophes before and after the character c you can also use quotation marks.

Copyright © Software AG 200340

Text NotationText Notation

User Comments
You have the following possibilities for entering your comments in source code:

If you wish to use an entire source-code line for a user comment, you enter one of the following at the
beginning of the line:

an asterisk and a blank (*),
two asterisks (**), or
a slash and an asterisk (/*):
* USER COMMENT
** USER COMMENT
/* USER COMMENT

If you wish to use only the latter part of a source-code line for a user comment, you enter a blank, a slash
and an asterisk (/*); the remainder of the line after this notation is thus marked as a comment:
ADD 5 TO #A /* USER COMMENT

41Copyright © Software AG 2003

User CommentsUser Comments

End of a Statement
To explicitly mark the end of a statement, you can place a semicolon (;) between the statement and the next
statement. This can be used to make the program structure clearer, but is not required.

Copyright © Software AG 200342

End of a StatementEnd of a Statement

Logical Condition Criteria
Relational Expression
Extended Relational Expression
MASK Option
SCAN Option
BREAK Option
IS Option
Evaluation of a Logical Variable
MODIFIED Option
SPECIFIED Option
Fields Used Within Logical Condition Criteria
Logical Operators in Complex Logical Expressions

The basic criterion is a relational expression. Multiple relational expressions may be combined with logical
operators (AND, OR) to form complex criteria.

Arithmetic expressions may also be used to form a relational expression.

Logical condition criteria can be used in the following statements:

Statement Usage

FIND A WHERE clause containing logical condition criteria may be used to indicate criteria in
addition to the basic selection criteria as specified in the WITH clause. The logical
condition criteria specified with the WHERE clause are evaluated after the record has
been selected and read.

In a WITH clause, "basic search criteria" (as described with the FIND statement) are
used, but not logical condition criteria.

READ A WHERE clause containing logical condition criteria may be used to specify whether a
record that has just been read is to be processed. The logical condition criteria are
evaluated after the record has been read.

HISTOGRAM A WHERE clause containing logical condition criteria may be used to specify whether
the value that has just been read is to be processed. The logical condition criteria are
evaluated after the value has been read.

ACCEPT/REJECT An IF clause may be used with an ACCEPT or REJECT statement to specify logical
condition criteria in addition to that specified when the record was selected/read with a
FIND, READ, or HISTOGRAM statement. The logical condition criteria are evaluated
after the record has been read and after record processing has started.

IF Logical condition criteria are used to control statement execution.

DECIDE FOR Logical condition criteria are used to control statement execution.

REPEAT The UNTIL or WHILE clause of a REPEAT statement contain logical condition criteria
which determine when a processing loop is to be terminated.

Relational Expression

43Copyright © Software AG 2003

Logical Condition CriteriaLogical Condition Criteria

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A N E A N P I F B D T L G O yes yes

Operand2 C S A N E A N P I F B D T L G O yes no

For an explanation of the Operand Definition Table shown above, see Syntax Symbols and Operand Definition
Tables in the Natural Statements documentation. In the "Possible Structure" section of the table above, "E"
stands for arithmetic expressions; that is, any arithmetic expression may be specified as an operand within the
relational expression.

Examples:

 IF NAME = ’SMITH’
 IF LEAVE-DUE GT 40
 IF NAME = #NAME

For information on comparing arrays in a relational expression, see Processing of Arrays.

Note:
If a floating-point operand is used, comparison is performed in floating point. Floating-point numbers as such
have only a limited precision; therefore, rounding/truncation errors cannot be precluded when numbers are
converted to/from floating-point representation.

Copyright © Software AG 200344

Logical Condition CriteriaRelational Expression

Arithmetic Expressions in Logical Conditions

The following example shows how arithmetic expressions can be used in logical conditions:

IF #A + 3 GT #B - 5 AND #C * 3 LE #A + #B

Handles in Logical Conditions

If the operands in a relation expression are handles, only EQUAL and NOT EQUAL operators may be used.

SUBSTRING Option in Relational Expression

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A B yes yes

Operand2 C S A N A B yes no

Op3/Op5 C S N P I yes no

Op4/Op6 C S N P I yes no

With the SUBSTRING option, you can compare a part of an alphanumeric or a binary field. After the field name
(operand1) you specify first the starting position (op3) and then the length (op4) of the field portion to be
compared.

Also, you can compare a field value with part of another field value. After the field name (operand2) you specify
first the starting position (op5) and then the length (op6) of the field portion operand1 is to be compared with.

You can also combine both forms, that is, you can specify a SUBSTRING for both operand1 and operand2.

Examples:

45Copyright © Software AG 2003

Arithmetic Expressions in Logical ConditionsLogical Condition Criteria

This expression compares the 5th to 12th position inclusive of the value in field #A with the value of field #B:

SUBSTRING(#A,5,8) = #B

This expression compares the value of field #A with the 3rd to 6th position inclusive of the value in field #B:

#A = SUBSTRING(#B,3,4)

Note:
If you omit op3/op5, the starting position is assumed to be "1". If you omit op4/op6, the length is assumed to be
from the starting position to the end of the field.

Extended Relational Expression

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A N* E A N P I F B D T G O yes no

Operand2 C S A N* E A N P I F B D T G O yes no

Operand3 C S A N* E A N P I F B D T G O yes no

Operand4 C S A N* E A N P I F B D T G O yes no

Operand5 C S A N* E A N P I F B D T G O yes no

Operand6 C S A N* E A N P I F B D T G O yes no

* Mathematical functions and system variables are permitted.
Break functions are not permitted.

Operand3 can also be specified using a MASK or SCAN option; that is, it can be specified as:

MASK (mask-definition) [operand]
MASK operand
SCAN operand

For details on these options, see the sections MASK Option and SCAN Option.

Copyright © Software AG 200346

Logical Condition CriteriaExtended Relational Expression

Examples:

 IF #A = 2 OR = 4 OR = 7
 IF #A = 5 THRU 11 BUT NOT 7 THRU 8

MASK Option
With the MASK option, you can check selected positions of a field for specific content.

Constant Mask

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A N P yes no

Operand2 C S A N P B yes no

Operand2 can only be used if the mask-definition contains at least one "X". Operand1 and operand2 must be
format-compatible: if operand1 is of format A, operand2 must be of format A, B or N; if operand1 is of format
N or P, operand2 must be of format N or P. An "X" in the mask-definition selects the corresponding positions of
the content of operand1 and operand2 for comparison.

Variable Mask

Apart from a constant mask-definition (see above), you may also specify a variable mask definition:

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A N P yes no

Operand2 S A yes no

47Copyright © Software AG 2003

MASK OptionLogical Condition Criteria

The content of operand2 will be taken as the mask definition. Trailing blanks in operand2 will be ignored.

Characters in a Mask

The following characters may be used within a mask definition (the mask definition is contained in
mask-definition for a constant mask and operand2 for a variable mask):

Character Meaning

. or ? or _ Indicates a single position that is not to be checked.

* or % Indicates any number of positions not to be checked.

/ (Slash) Used to check if a value ends with a specific character (or string of characters).

For example, the following condition will be true if there is either an "E" in the last position of the
field, or the last "E" in the field is followed by nothing but blanks:

IF #FIELD = MASK (*’E’/)

A The position is to be checked for an alphabetical character (upper or lower case).

’c’ One or more positions are to be checked for the characters bounded by apostrophes (a double
apostrophe indicates that a single apostrophe is the character to be checked for).

C The position is to be checked for an alphabetical character (upper or lower case), a numeric
character, or a blank.

DD The two positions are to be checked for a valid day notation (01 - 31; dependent on the values of
MM and YY/YYYY, if specified; see also Checking Dates).

H The position is to be checked for hexadecimal content (A - F, 0 - 9).

JJJ The positions are to be checked for a valid Julian Day; that is, the day number in the year
(001-366, dependent on the value of YY/YYYY, if specified. See also Checking Dates.) These
mask characters are available on mainframe computers only.

L The position is to be checked for a lower-case alphabetical character (a - z).

MM The positions are to be checked for a valid month (01 - 12).

N The position is to be checked for a numeric digit.

n... One (or more) positions are to be checked for a numeric value in the range 0 - n.

n1-n2
or
n1:n2

The positions are checked for a numeric value in the range n1-n2.

n1 and n2 must be of the same length.

P The position is to be checked for a displayable character (U, L, N or S).

S The position is to be checked for special characters.

U The position is to be checked for an upper-case alphabetical character (A - Z).

X The position is to be checked against the equivalent position in the value (operand2) following the
mask-definition.

"X" is not allowed in a variable mask definition, as it makes no sense.

YY The two positions are to be checked for a valid year (00 - 99). See also Checking Dates.

YYYY The four positions are checked for a valid year (0000 - 2699). Use the COMPOPT option
MASKCME=ON to restrict the range of valid years to 1582 - 2699.

Copyright © Software AG 200348

Logical Condition CriteriaCharacters in a Mask

Z The position is to be checked for a character whose left half-byte is hexadecimally 3 or 7 (ASCII)
or A - F (EBCDIC), and whose right half-byte is hexadecimally 0 - 9.

This may be used to correctly check for numeric digits in negative numbers. With "N" (which
indicates a position to be checked for a numeric digit), a check for numeric digits in negative
numbers leads to incorrect results, because the sign of the number is stored in the last digit of the
number, causing that digit to be hexadecimally represented as non-numeric.

Within a mask, use only one "Z" for each sequence of numeric digits that is checked.

Mask Length

The length of the mask determines how many positions are to be checked.

Example:

 DEFINE DATA LOCAL
 1 #CODE (A15)
 END-DEFINE
 ...
 IF #CODE = MASK (NN’ABC’....NN)
 ...

The first two positions of #CODE are to be checked for numeric content. The three following positions are
checked for the contents "ABC". The next four positions are not to be checked. Positions ten and eleven are to
be checked for numeric content. Positions twelve to fifteen are not to be checked.

Checking Dates

Only one date may be checked within a given mask.

When dates are checked for a day (DD) and no month (MM) is specified in the mask, the current month will be
assumed.

When dates are checked for a day (DD) or a Julian day (JJJ) and no year (YY or YYYY) is specified in the
mask, the current year will be assumed.

When dates are checked for a 2-digit year (YY), the current century will be assumed if no Sliding or Fixed
Window is set. For more details about Sliding or Fixed Windows, refer to profile parameter YSLW in the
Natural Parameter Reference documentation.

Examples:

49Copyright © Software AG 2003

Mask LengthLogical Condition Criteria

Example 1:

 MOVE 1131 TO #DATE (N4)
 IF #DATE = MASK (MMDD)

In this example, month and day are checked for validity. The value for month (11) will be considered valid,
whereas the value for day (31) will be invalid since the 11th month has only 30 days.

Example 2:

 IF #DATE(A8) = MASK (MM’/’DD’/’YY)

In this example, the content of the field #DATE is be checked for a valid date with the format MM/DD/YY
(month/day/year).

Example 3:

 IF #DATE (A4) = MASK (19-20YY)

In this example, the content of field #DATE is checked for a two-digit number in the range 19 to 20 followed
by a valid two-digit year (00 through 99). The century is supplied by Natural as described above.
Note: Although apparent, the above mask does not allow to check for a valid year in the range 1900 through
2099, because the numeric value range 19-20 is checked independent of the year validation.
To check for year ranges, code one check for the date validation and another for the range validation:

 IF #DATE (A10) = MASK (YYYYŸ-‡MMŸ-‡DD) AND #DATE = MASK (19-20)

Checking Against the Content of Constants or Variables

If the value for the mask check is to be taken from either a constant or a variable, this value (operand2) must be
specified immediately following the mask-definition.

Operand2 must be at least as long as the mask.

In the mask, you indicate each position to be checked with "X", and each position not to be checked with "." (or
"?" or "_").

Example:

 DEFINE DATA LOCAL
 1 #NAME (A15)
 END-DEFINE
 ...
 IF #NAME = MASK (..XX) ’ABCD’
 ...

It is checked whether the field #NAME contains "CD" in the third and fourth positions. Positions
one and two are not checked.

The length of the mask determines how many positions are to be checked. The mask is left-justified against any
field or constant used in the mask operation. The format of the field (or constant) on the right side of the
expression must be the same as the format of the field on the left side of the expression.

If the field to be checked (operand1) is of format A, any constant used (operand2) must be enclosed in
apostrophes. If the field is numeric, the value used must be a numeric constant or the content of a numeric
database field or user-defined variable.

Copyright © Software AG 200350

Logical Condition CriteriaChecking Against the Content of Constants or Variables

In either case, any characters/digits within the value specified which do not match positionally the "X" indicator
within the mask are ignored.

The result of the MASK operation is true when the indicated positions in both values are identical.

Example:

 /* EXAMPLE ’LCCMASK’
 /* EXAMPLE OF USING MASK OPTION WITHIN LOGICAL CONDITION
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 END-DEFINE
 /***
 HISTOGRAM EMPLOY-VIEW CITY
 IF CITY = MASK (....XX) ’....NN’
 DISPLAY NOTITLE CITY *NUMBER
 END-IF
 END-HISTOGRAM
 /***
 END

In the above example, the record will be accepted if the fifth and sixth positions of the field CITY each
contain the character "N".

Range Checks

When performing range checks, the number of positions verified in the supplied variable is defined by the
precision of the value supplied in the mask specification. For example, a mask of (...193...) will verify positions 4
to 6 for a three-digit number in the range 000 to 193.

Additional Examples of Mask Definitions:

In this example, each character of #NAME is checked for an alphabetical character:
IF #NAME (A10) = MASK (AAAAAAAAAA)

In this example, positions 4 to 6 of #NUMBER are checked for a numeric value:
IF #NUMBER (A6) = MASK (...NNN)

In this example, positions 4 to 6 of #VALUE are to be checked for the value "123":
IF #VALUE(A10) = MASK (...’123’)

This example will check if #LICENSE contains a license number which begins with "NY-" and whose last
five characters are identical to the last five positions of #VALUE:
DEFINE DATA LOCAL
 1 #VALUE(A8)
 1 #LICENSE(A8)
END-DEFINE
INPUT ’ENTER KNOWN POSITIONS OF LICENSE PLATE:’ #VALUE
IF #LICENSE = MASK (’NY-’XXXXX) #VALUE

The following condition would be met by any value which contains "NAT" and "AL" no matter which and
how many other characters are between "NAT" and "AL" (this would include the values Natural and
NATIONALITY as well as NATAL):
MASK(’NAT’*’AL’)

51Copyright © Software AG 2003

Range ChecksLogical Condition Criteria

Checking Packed or Unpacked Numeric Data

Legacy applications often have packed or unpacked numeric variables redefined with alphanumeric or binary
fields. Such redefinitions are not recommended, because using the packed or unpacked variable in an assignment
or computation may lead to errors or unpredictable results. To validate the contents of such a redefined variable
before the variable is used, use the N option as many as number of digits - 1 times followed by a single Z option.

Examples:

IF #P1 (P1) = MASK (Z)
IF #N4 (N4) = MASK (NNNZ)
IF #P5 (P5) = MASK (NNNNZ)

SCAN Option

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A N P yes no

Operand2 C S A B* yes no

* Operand2 may only be binary if operand1 is alphanumeric.

The SCAN option is used to scan for a specific value within a field.

The characters used in the SCAN option (operand2) may be specified as an alphanumeric constant (a character
string bounded by apostrophes) or the contents of an alphanumeric database field or user-defined variable.

Trailing blanks are automatically eliminated from the value. Therefore, the SCAN option cannot be used to scan
for blanks.

If operand1 is alphanumeric, operand2 may also be binary.

The field to be scanned (operand1) may be of format A, N or P. The SCAN operation may be specified with the
equal (EQ) or not equal (NE) operators.

The length of the character string for the SCAN operation should be less than the length of the field to be
scanned. If the length of the character string specified is identical to the length of the field to be scanned, then an
EQUAL operator should be used instead of SCAN.

Copyright © Software AG 200352

Logical Condition CriteriaSCAN Option

Example of SCAN Option:

 /* EXAMPLE ’LCCSCAN’
 /* EXAMPLE OF USING SCAN OPTION IN LOGICAL CONDITION
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 1 #VALUE (A4)
 1 #COMMENT (A10) INIT <’ ’>
 END-DEFINE
 /***
 INPUT ’ENTER SCAN VALUE:’ #VALUE LIMIT 14
 HISTOGRAM EMPLOY-VIEW NAME
 RESET #COMMENT
 IF NAME = SCAN #VALUE
 MOVE ’MATCH’ TO #COMMENT
 END-IF
 DISPLAY NOTITLE NAME *NUMBER #COMMENT
 END-HISTOGRAM
 /***
 END

ENTER SCAN VALUE: LL

 NAME NMBR #COMMENT
-------------------- --------- ----------

ABELLAN 1 MATCH
ACHIESON 1
ADAM 1
ADKINSON 8
AECKERLE 1
AFANASSIEV 2
AHL 1
AKROYD 1
ALEMAN 1
ALESTIA 1
ALEXANDER 5
ALLEGRE 1 MATCH
ALLSOP 1 MATCH
ALTINOK 1

BREAK Within Logical Condition Criteria

53Copyright © Software AG 2003

BREAK Within Logical Condition CriteriaLogical Condition Criteria

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A N P I F B D T L yes no

Note:
Dynamic or large variables are only allowed to be used as Operand1 on mainframe computers.

The BREAK option allows the current value or a portion of a value of a field to be compared to the value
contained in the same field in the previous pass through the processing loop.

Operand1 specifies the control field which is to be checked. A specific occurrence of an array can also be used
as a control field.

/n/

The notation "/n/" may be used to indicate that only the first n positions (counting from left to right) of the
control field are to be checked for a change in value. This notation can only be used with operands of format A,
B, N or P.

The result of the BREAK operation is true when a change in the specified positions of the field occurs. The
result of the BREAK operation is not true if an AT END OF DATA condition occurs.

Example:

 BREAK FIRST-NAME /1/

In this example, a check is made for a different value in the first position of the field FIRST-NAME.

Natural system functions (which are available with the AT BREAK statement) are not available with this option.

Copyright © Software AG 200354

Logical Condition Criteria/n/

Example of BREAK Option:

 /* EXAMPLE ’LCCBRK’
 /* EXAMPLE OF USING BREAK OPTION IN LOGICAL CONDITION
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 BIRTH
 1 #BIRTH (A8)
 END-DEFINE
 *
 LIMIT 10
 READ EMPLOY-VIEW BY BIRTH
 MOVE EDITED BIRTH (EM=YYYYMMDD) to #BIRTH
 IF BREAK OF #BIRTH /6/
 NEWPAGE IF LESS THAN 5 LINES LEFT
 WRITE / ’-’ (50) /
 END-IF
 DISPLAY NOTITLE BIRTH (EM=YYYY-MM-DD) NAME FIRST-NAME
 END-READ
 END

 DATE NAME FIRST-NAME
 OF
 BIRTH
 ---------- -------------------- --------------------

 1940-01-01 GARRET WILLIAM
 1940-01-09 TAILOR ROBERT
 1940-01-09 PIETSCH VENUS
 1940-01-31 LYTTLETON BETTY

 --

 1940-02-02 WINTRICH MARIA
 1940-02-13 KUNEY MARY
 1940-02-14 KOLENCE MARSHA
 1940-02-24 DILWORTH TOM

 --

 1940-03-03 DEKKER SYLVIA
 1940-03-06 STEFFERUD BILL

IS Option - Checking Format and Length of Value

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A A yes no

55Copyright © Software AG 2003

IS Option - Checking Format and Length of ValueLogical Condition Criteria

This option is used to check whether the content of an alphanumeric field (operand1) can be converted to a
specific other format.

This format for which the check is performed can be:

Nll.ll Numeric with length ll.ll.

Fll Floating point with length ll.

D Date. The following date formats are possible: dd-mm-yy, dd-mm-yyyy, ddmmyyyy (dd = day, mm =
month, yy or yyyy = year). The sequence of the day, month and year components as well as the characters
between the components are determined by the profile parameter DTFORM (which is described in your
Natural Operations documentation).

T Time (according to the default time display format).

Pll.ll Packed numeric with length ll.ll .

I ll Integer with length ll .

When the check is performed, leading and trailing blanks in operand1 will be ignored.

The IS option may, for example, be used to check the content of a field before the mathematical function VAL
(extract numeric value from an alphanumeric field) is used to ensure that it will not result in a runtime error.

Note:
The IS option cannot be used to check if the value of an alphanumeric field is in the specified "format", but if it
can be converted to that "format". To check if a value is in a specific format, you can use the MASK option.

Copyright © Software AG 200356

Logical Condition CriteriaIS Option - Checking Format and Length of Value

Example of IS Option:

 /* EXAMPLE ’LCCFMT’
 /* EXAMPLE OF FORMAT/LENGTH CHECK IN LOGICAL CONDITION
 /***
 DEFINE DATA LOCAL
 1 #FIELDA (A10) /* INPUT FIELD TO BE CHECKED
 1 #FIELDB (N5) /* RECEIVING FIELD OF VAL FUNCTION
 1 #DATE (A10) /* INPUT FIELD FOR DATE
 END-DEFINE
 /***
 INPUT #DATE #FIELDA
 IF #DATE IS (D)
 IF #FIELDA IS (N5)
 COMPUTE #FIELDB = VAL(#FIELDA)
 WRITE NOTITLE ’VAL FUNCTION OK’ // ’=’ #FIELDA ’=’ #FIELDB
 ELSE
 REINPUT ’FIELD DOES NOT FIT INTO N5 FORMAT’
 MARK *#FIELDA
 END-IF
 ELSE
 REINPUT ’INPUT IS NOT IN DATE FORMAT (YY-MM-DD) ’
 MARK *#DATE
 END-IF
 /**
 END

 #DATE 150487 #FIELDA

 INPUT IS NOT IN DATE FORMAT (YY-MM-DD)

Evaluation of a Logical Variable

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A L no no

This option is used in conjunction with a logical variable (format L). A logical variable may take the value
"TRUE" or "FALSE". As operand1 you specify the name of the logical variable to be used.

57Copyright © Software AG 2003

Evaluation of a Logical VariableLogical Condition Criteria

Example of Logical Variable:

 /* EXAMPLE ’LCCLOG’
 /* EXAMPLE OF LOGICAL VARIABLE IN LOGICAL CONDITION
 /**
 DEFINE DATA LOCAL
 1 #SWITCH (L) INIT <TRUE>
 1 #INDEX (I1)
 END-DEFINE
 /**
 FOR #INDEX 1 5
 WRITE NOTITLE #SWITCH (EM=FALSE/TRUE) 5X ’INDEX =’ #INDEX
 WRITE NOTITLE #SWITCH (EM=OFF/ON) 7X ’INDEX =’ #INDEX
 IF #SWITCH MOVE FALSE TO #SWITCH
 ELSE
 MOVE TRUE TO #SWITCH
 END-IF
 /**
 SKIP 1
 END-FOR
 END

 TRUE INDEX = 1
 ON INDEX = 1

 FALSE INDEX = 2
 OFF INDEX = 2

 TRUE INDEX = 3
 ON INDEX = 3

 FALSE INDEX = 4
 OFF INDEX = 4

 TRUE INDEX = 5
 ON INDEX = 5

MODIFIED Option

FIND Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A C no no

This option is used to determine if the content of a field which has been assigned attributes dynamically has been
modified during the execution of an INPUT statement.

Attribute control variables referenced in an INPUT statement are always assigned the status "NOT MODIFIED"
when the map is transmitted to the terminal.

Whenever the content of a field referencing an attribute control variable is modified, the attribute control
variable has been assigned the status "MODIFIED". When multiple fields reference the same attribute control
variable, the variable is marked "MODIFIED" if any of these fields is modified.

Copyright © Software AG 200358

Logical Condition CriteriaMODIFIED Option

If operand1 is an array, the result will be true if at least one of the array elements has been assigned the status
"MODIFIED" (OR operation).

Note:
On mainframe computers, the profile parameter CVMIN (see the Natural Parameter Reference documentation)
may be used to determine if an attribute control variable is also to be assigned the status "MODIFIED" if the
value of the corresponding field is overwritten by an identical value.

Example of MODIFIED Option:

 /* EXAMPLE ’LCCMOD’
 /* EXAMPLE OF MODIFIED FIELD CHECK IN LOGICAL CONDITION
 /**
 DEFINE DATA LOCAL
 1 #ATTR (C)
 1 #A (A1) 1 #B (A1)
 END-DEFINE
 /**
 MOVE (AD=I) TO #ATTR
 /**
 INPUT (CV=#ATTR) #A #B
 IF #ATTR NOT MODIFIED
 WRITE NOTITLE ’FIELD #A OR #B HAS NOT BEEN MODIFIED’
 END-IF
 /**
 IF #ATTR MODIFIED
 WRITE NOTITLE ’FIELD #A OR #B HAS BEEN MODIFIED’
 END-IF
 /**
 END

 #A x #B

 FIELD #A OR #B HAS BEEN MODIFIED

SPECIFIED Option

This option is used to check whether an optional parameter in an invoked object (subprogram, external
subroutine, dialog or ActiveX control) has received a value from the invoking object or not.

An optional parameter is a field defined with the keyword OPTIONAL in the DEFINE DATA PARAMETER
statement of the invoked object. If a field is defined as OPTIONAL, a value can - but need not - be passed from
an invoking object to this field.

In the invoking statement, the notation nX is used to indicate parameters for which no values are passed.

59Copyright © Software AG 2003

SPECIFIED OptionLogical Condition Criteria

If you process an optional parameter which has not received a value, this will cause a runtime error. To avoid
such an error, you use the SPECIFIED option in the invoked object to check whether an optional parameter has
received a value or not, and then only process it if it has.

Parameter-name is the name of the parameter as specified in the DEFINE DATA PARAMETER statement of
the invoked object.

For a field not defined as OPTIONAL, the SPECIFIED condition is always "TRUE".

Fields Used Within Logical Condition Criteria
Database fields and user-defined variables may be used to construct logical condition criteria. A database field
which is a multiple-value field or is contained in a periodic group can also be used. If a range of values for a
multiple-value field or a range of occurrences for a periodic group is specified, the condition is true if the search
value is found in any value/occurrence within the specified range.

Each value used must be compatible with the field used on the opposite side of the expression. Decimal notation
may be specified only for values used with numeric fields, and the number of decimal positions of the value must
agree with the number of decimal positions defined for the field.

If the operands are not of the same format, the second operand is converted to the format of the first operand.

The following table shows which operand formats can be used together in a logical condition:

Operand2

 Operand1

A Bn
(n<4)

Bn
(n>5)

D T I F L N P GH OH

A Y Y Y

Bn (n<4) Y Y Y Y Y Y Y

Bn (n>5) Y Y Y

D Y

T Y

I Y Y Y Y Y

F Y Y Y Y Y

L

N Y Y Y Y Y

P Y Y Y Y Y

GH Y

OH Y

GH = GUI handle, OH = object handle.

If an array is compared with a scalar value, each element of the array will be compared with the scalar value. The
condition will be true if at least one of the array elements meets the condition (OR operation).

If an array is compared with an array, each element in the array is compared with the corresponding element of
the other array. The result is true only if all element comparisons meet the condition (AND operation).

Copyright © Software AG 200360

Logical Condition CriteriaFields Used Within Logical Condition Criteria

See also Processing of Arrays.

An Adabas phonetic descriptor cannot be used within a logical condition.

Examples of Logical Condition Criteria:

 FIND EMPLOYEES-VIEW WITH CITY = ’BOSTON’ WHERE SEX = ’M’
 READ EMPLOYEES-VIEW BY NAME WHERE SEX = ’M’
 ACCEPT IF LEAVE-DUE GT 45
 IF #A GT #B THEN COMPUTE #C = #A + #B
 REPEAT UNTIL #X = 500

Logical Operators in Complex Logical Expressions
Logical condition criteria may be combined using the Boolean operators "AND", "OR", and "NOT". Parentheses
may also be used to indicate logical grouping.

The operators are evaluated in the following order:

Priority Operator Meaning

1 () Parentheses

2 NOT Negation

3 AND AND operation

4 OR OR operation

The following logical-condition-criteria may be combined by logical operators to form a complex
logical-expression:

relational expressions,
extended relational expressions,
MASK, SCAN, BREAK options.

The syntax for a logical-expression is as follows:

Examples of Logical Expressions:

FIND STAFF-VIEW WITH CITY = ’TOKYO’
 WHERE BIRTH GT 19610101 AND SEX = ’F’

IF NOT (#CITY = ’A’ THRU ’E’)

61Copyright © Software AG 2003

Logical Operators in Complex Logical ExpressionsLogical Condition Criteria

For information on comparing arrays in a logical expression, see Processing of Arrays.

Note:
If multiple logical-condition-criteria are connected with "AND", the evaluation terminates as soon as the first of
these criteria is not true.

Copyright © Software AG 200362

Logical Condition CriteriaLogical Operators in Complex Logical Expressions

Rules for Arithmetic Assignment
Field Initialization
Data Transfer
Field Truncation and Field Rounding
Result Format and Length in Arithmetic Operations
Arithmetic Operations with Floating-Point Numbers
Arithmetic Operations with Date and Time
Performance Considerations for Mixed Format Expressions
Precision of Results for Arithmetic Operations
Error Conditions in Arithmetic Operations
Processing of Arrays

Field Initialization
A field - user-defined variable or database field - which is to be used as an operand in an arithmetic operation
must be defined with one of the following formats: N, P, I, F, D, T.

Note for reporting mode:
A field which is to be used as an operand in an arithmetic operation must have been previously defined.
A user-defined variable or database field used as a result field in an arithmetic operation need not have been
previously defined.

All user-defined variables and all database fields defined in a DEFINE DATA statement are initialized to the
appropriate zero or blank value when the program is invoked for execution.

Data Transfer
Data transfer is performed with a MOVE or COMPUTE statement. The following table summarizes data transfer
compatibility and the rules for data transfer:

63Copyright © Software AG 2003

Rules for Arithmetic AssignmentRules for Arithmetic Assignment

Sending Field Receiving Field

N / P A Bn
(n < 5)

Bn
(n > 4)

I L C D T F GH OH

N or P Y [2] [3] - Y - - - Y Y - -

A - Y [1] [1] - - - - - - - -

Bn
(n < 5)

[4] [2] [5] [5] Y - - - Y Y - -

Bn
(n > 4)

- [6] [5] [5] - - - - - - - -

I Y [2] [3] - Y - - - Y Y - -

L - [9] - - - Y - - - - - -

C - - - - - - Y - - - - -

D Y [9] Y - Y - - Y [7] Y - -

T Y [9] Y - Y - - [8] Y Y - -

F Y [9][10] [3] - Y - - - Y Y - -

GH - - - - - - - - - - Y -

OH - - - - - - - - - - - Y

Y indicates data transfer compatibility.

- indicates data transfer incompatibility.

[1]... refers to the data conversion rules.

GH = GUI handle, OH = object handle.

See also Usage of Dynamic Variables.

Data Conversion

The following rules apply to converting data values:

1. Alphanumeric to binary: The value will be moved byte by byte from left to right. The result may be
truncated or padded with trailing blank characters depending on the length defined and the number of bytes
specified.

2. (N,P,I) and binary (length 1-4) to alphanumeric: The value will be converted to unpacked form and
moved into the alphanumeric field left justified, i.e., leading zeros will be suppressed and the field will be
filled with trailing blank characters. For negative numeric values, the sign will be converted to the
hexadecimal notation "Dx". Any decimal point in the numeric value will be ignored. All digits before and
after the decimal point will be treated as one integer value.

3. (N,P,I,F) to binary (1-4 bytes): The numeric value will be converted to binary (4 bytes). Any decimal
point in the numeric value will be ignored (the digits of the value before and after the decimal point will be
treated as an integer value). The resulting binary number will be positive or a two’s complement of the
number depending on the sign of the value.

4. Binary (1-4 bytes) to numeric: The value will be converted and assigned to the numeric value right
justified, i.e., with leading zeros. (Binary values of the length 1-3 bytes are always assumed to have a
positive sign. For binary values of 4 bytes, the leftmost bit determines the sign of the number: 1=negative,

Copyright © Software AG 200364

Rules for Arithmetic AssignmentData Conversion

0=positive.) Any decimal point in the receiving numeric value will be ignored. All digits before and after
the decimal point will be treated as one integer value.

5. Binary to binary: The value will be moved from right to left byte by byte. Leading binary zeros will be
inserted into the receiving field.

6. Binary (>4 bytes) to alphanumeric: The value will be moved byte by byte from left to right. The result
may be truncated or padded with trailing blanks depending on the length defined and the number of bytes
specified.

7. Date (D) to time (T): If date is moved to time, it is converted to time assuming time 00:00:00:0.
8. Time (T) to date (D): If time is moved to date, the time information is truncated, leaving only the date

information.
9. L,D,T,F to A: The values are converted to display form and are assigned left justified.

10. If F is assigned to an alphanumeric field which is too short, the mantissa is reduced accordingly.

See also Usage of Large and Dynamic Variables/Fields.

Field Truncation and Field Rounding
The following rules apply to field truncation and rounding:

High-order numeric field truncation is allowed only when the digits to be truncated are leading zeros. Digits
following an expressed or implied decimal point may be truncated.
Trailing positions of an alphanumeric field may be truncated.
If the option ROUNDED is specified, the last position of the result will be rounded up if the first truncated
decimal position of the value being assigned contains a value greater than or equal to 5.
For the result precision of a division, see also Precision of Results for Arithmetic Operations.

Result Format and Length in Arithmetic Operations
The following table shows the format and length of the result of an arithmetic operation:

 I1 I2 I4 N or P F4 F8

I1 I1 I2 I4 P* F4 F8

I2 I2 I2 I4 P* F4 F8

I4 I4 I4 I4 P* F4 F8

N or P P* P* P* P* F4 F8

F4 F4 F4 F4 F4 F4 F8

F8 F8 F8 F8 F8 F8 F8

On a mainframe computer, format/length F8 is used instead of F4 for improved precision of the results of an
arithmetic operation.

P* is determined from the integer length and precision of the operands individually for each operation, as shown
under Precision of Results for Arithmetic Operations.

The following decimal integer lengths and possible values are applicable for format I:

65Copyright © Software AG 2003

Field Truncation and Field RoundingRules for Arithmetic Assignment

Format/Length Decimal Integer Length Possible Values

I1 3 -128 to 127

I2 5 -32 768 to 32 767

I4 10 -2 147 483 648 to 2 147 483 647

Arithmetic Operations with Floating-Point Numbers

Some General Considerations

Floating-point numbers (format F) are represented as a sum of powers of two (as are integer numbers (format I)),
whereas unpacked and packed numbers (formats N and P) are represented as a sum of powers of ten.

In unpacked or packed numbers, the position of the decimal point is fixed. In floating-point numbers, however,
the position of the decimal point (as the name indicates) is "floating", that is, its position is not fixed, but depends
on the actual value.

Floating-point numbers are essential for the computing of trigonometric functions or mathematical functions
such as sinus or logarithm.

The Precision of Floating-Point Numbers

Due to the nature of floating-point numbers, their precision is limited:

For a variable of format/length F4, the precision is limited to approximately 7 digits.
For a variable of format/length F8, the precision is limited to approximately 15 digits (16 digits on
mainframe computers).

Values which have more significant digits cannot be represented exactly as a floating-point number. No matter
how many additional digits there are before or after the decimal point, a floating-point number can cover only
the leading 7 or 15 (16) digits respectively.

An integer value can only be represented exactly in a variable of format/length F4 if its absolute value does not
exceed 223 -1 (224 -1 on mainframe computers).

Conversion to Floating-Point Representation

When an alphanumeric, unpacked numeric or packed numeric value is converted to floating-point format (for
example, in an assignment operation), the representation has to be changed, that is, a sum of powers of ten has to
be converted to a sum of powers of two.

Consequently, only numbers that are representable as a finite sum of powers of two can be represented exactly;
all other numbers can only be represented approximately.

Examples:

This number has an exact floating-point representation:

 1.25 = 2 0 + 2 -2

This number is a periodic floating-point number without an exact representation:

 1.2 = 2 0 + 2 -3 + 2 -4 + 2 -7 + 2 -8 + 2 -11 + 2 -12 + ...

Copyright © Software AG 200366

Rules for Arithmetic AssignmentArithmetic Operations with Floating-Point Numbers

Thus, the conversion of alphanumeric, unpacked numeric or packed numeric values to floating-point values, and
vice versa, can introduce small errors.

Platform-Dependent Differences

As already indicated by some of the differing limits mentioned above, the representation of floating-point
numbers on mainframe computers is different from their representation on other platforms.

This explains why the same application, when run on different platforms, may return slightly different results
when floating-point arithmetics are involved.

If you port a Natural application to another platform, also remember that the range of possible values for
floating-point variables on a mainframe computer is different from that on other platforms:

The possible value range for F4 and F8 variables on a mainframe computer is (approximately):
±5.4 * 10-79 to ±7.2 * 1075
The possible value range on most other platforms is (approximately):
for F4 variables: ±1.17 * 10-38 to ±3.40 * 1038

for F8 variables: ±2.22 * 10-308 to ±1.79 * 10308

Note:
The representation used by your pocket calculator may also be different from the one used by your computer -
which explains why results for the same computation may differ.

Arithmetic Operations with Date and Time
With formats D (date) and T (time), only addition, subtraction, multiplication and division are allowed.
Multiplication and division are allowed on intermediate results of additions and subtractions only.

Date/time values can be added to/subtracted from one another; or integer values (no decimal digits) can be added
to/subtracted from date/time values. Such integer values can be contained in fields of formats N, P, I, D, or T.

The intermediate results of such an addition or subtraction may be used as a multiplicand or dividend in a
subsequent operation.

An integer value added to/subtracted from a date value is assumed to be in days. An integer value added
to/subtracted from a time value is assumed to be in tenths of seconds.

For arithmetic operations with date and time, certain restrictions apply, which are due to the Natural’s internal
handling of arithmetic operations with date and time, as explained below.

Internally, Natural handles an arithmetic operation with date/time variables as follows:

COMPUTE result-field = operand1 +/- operand2

The above statement is resolved as:

1. intermediate-result = operand1 +/- operand2
2. result-field = intermediate-result

That is, in a first step Natural computes the result of the addition/subtraction, and in a second step assigns this
result to the result field.

More complex arithmetic operations are resolved following the same pattern:

67Copyright © Software AG 2003

Arithmetic Operations with Date and TimeRules for Arithmetic Assignment

COMPUTE result-field = operand1 +/- operand2 +/- operand3 +/- operand4

The above statement is resolved as:

1. intermediate-result1 = operand1 +/- operand2
2. intermediate-result2 = intermediate-result1 +/- operand3
3. intermediate-result3 = intermediate-result2 +/- operand4
4. result-field = intermediate-result3

The resolution of multiplication and division operations is similar to the resolution for addition and subtraction.

The internal format of such an intermediate-result depends on the formats of the operands, as shown in the tables
below.

The following table shows the format of the intermediate-result of an addition (intermediate-result = operand1
+ operand2):

Format of operand1 Format of operand2 Format of intermediate-result

D D Di

D T T

D Di, Ti, N, P, I D

T D, T, Di, Ti, N, P, I T

Di, Ti, N, P, I D D

Di, Ti, N, P, I T T

Di, N, P, I Di Di

Ti, N, P, I Ti Ti

Di Ti, N, P, I Di

Ti Di, N, P, I Ti

The following table shows the format of the intermediate-result of a subtraction (intermediate-result =
operand1 - operand2):

Format of operand1 Format of operand2 Format of intermediate-result

D D Di

D T Ti

D Di, Ti, N, P, I D

T D, T Ti

T Di, Ti, N, P, I T

Di, N, P, I D Di

Di, N, P, I T Ti

Di Di, Ti, N, P, I Di

Ti D, T, Di, Ti, N, P, I Ti

N, P, I Di, Ti P12

Copyright © Software AG 200368

Rules for Arithmetic AssignmentArithmetic Operations with Date and Time

The following table shows the format of the intermediate result of a multiplication (intermediate result =
operand1 * operand2) or division (intermediate result = operand1 / operand2):

Format of operand1 Format of operand2 Format of intermediate-result

D D, Di, Ti, N, P, I Di

D T Ti

T D, T, Di, Ti, N, P, I Ti

Di T Ti

Di D, Di, Ti, N, P, I Di

Ti D Di

Ti Di, T, Ti, N, P, I Ti

N, P, I D, Di Di

N, P, I T, Ti Ti

Di is a value in internal date format; Ti is a value in internal time format; such values can be used in further
arithmetic date/time operations, but they cannot be assigned to a result field of format D (see the assignment
table below).

In complex arithmetic operations in which an intermediate result of internal format Di or Ti is used as operand in
a further addition/subtraction/multiplication/division, its format is assumed to be D or T respectively.

The following table shows which intermediate results can internally be assigned to which result fields
(result-field = intermediate-result).

Format of result-field Format of intermediate-result Assignment possible

D D, T yes

D Di, Ti, N, P, I no

T D, T, Di, Ti, N, P, I yes

N, P, I D, T, Di, Ti, N, P, I yes

A result field of format D or T must not contain a negative value.

69Copyright © Software AG 2003

Arithmetic Operations with Date and TimeRules for Arithmetic Assignment

Examples 1 and 2 (invalid):

COMPUTE DATE1 (D) = DATE2 (D) + DATE3 (D)
COMPUTE DATE1 (D) = DATE2 (D) - DATE3 (D)

These operations are not possible, because the intermediate result of the addition/subtraction would be format
Di, and a value of format Di cannot be assigned to a result field of format D.

Examples 3 and 4 (invalid):

COMPUTE DATE1 (D) = TIME2 (T) - TIME3 (T)
COMPUTE DATE1 (D) = DATE2 (D) - TIME3 (T)

These operations are not possible, because the intermediate result of the addition/subtraction would be format
Ti, and a value of format Ti cannot be assigned to a result field of format D.

Example 5 (valid):

COMPUTE DATE1 (D) = DATE2 (D) - DATE3 (D) + TIME3 (T)

This operation is possible. First, DATE3 is subtracted from DATE2, giving an intermediate result of format Di;
then, this intermediate result is added to TIME3, giving an intermediate result of format T; finally, this second
intermediate result is assigned to the result field DATE1.

Examples 6 and 7 (invalid):

COMPUTE DATE1 (D) = DATE2 (D) + DATE3 (D) * 2
COMPUTE TIME1 (T) = TIME2 (T) - TIME3 (T) / 3

These operations are not possible, because the attempted multiplication/division is performed with date/time
fields and not with intermediate results.

Example 8 (valid):

COMPUTE DATE1 (D) = DATE2 (D) + (DATE3(D) - DATE4 (D)) * 2

This operation is possible. First, DATE4 is subtracted from DATE3 giving an intermediate result of format Di;
then, this intermediate result is multiplied by two giving an intermediate result of format Di; this intermediate
result is added to DATE2 giving an intermediate result of format D; finally, this third intermediate result is
assigned to the result field DATE1.

If a format T value is assigned to a format D field, you must ensure that the time value contains a valid date
component.

Performance Considerations for Mixed Format
Expressions
When doing arithmetic operations, the choice of field formats has considerable impact on performance:

For business arithmetic under UNIX and Windows, only fields of format I (integer) should be used.
If your computer is equipped with a math co-processor, format F (floating point) is faster than formats N or P
and almost as fast as format I.
Without a math co-processor, format F is approximately as slow as formats N or P.

Copyright © Software AG 200370

Rules for Arithmetic AssignmentPerformance Considerations for Mixed Format Expressions

For business arithmetic on mainframe computers, only fields of format P (packed numeric) should be used. The
number of decimal digits in all operands should agree where possible.

For scientific arithmetic, only fields of format F (floating point) should be used.

In expressions where formats are mixed between numeric (N, P) and floating point (F), a conversion to floating
point format is performed. This conversion results in considerable CPU load. Therefore it is recommended to
avoid mixed format expressions in arithmetic operations.

Precision of Results for Arithmetic Operations

Operation Digits Before Decimal Point Digits After
Decimal
Point

Addition/Subtraction Fi + 1 or Si + 1
(whichever is greater)

Fd or Sd
(whichever is
greater)

Multiplication Fi + Si + 2 Fd + Sd
(maximum 7)

Division Fi + Sd (see below)

Exponentiation 15 - Fd
(Exception: On mainframe computers, if the exponent has one or more
digits after the decimal point, and on all other platforms in general, the
exponentiation is internally carried out in floating point format. See
Arithmetic Operations with Floating-Point Numbers for further
information.)

Fd

Square Root Fi Fd

F = First operand
S = Second operand
R = Result
i = Digits before decimal point
d = Digits after decimal point

Digits after Decimal Point for Division Results

The precision of the result of a division depends whether a result field is available or not:

If a result field is available, the precision is: Rd or Fd (whichever is greater) * .
If no result field is available, the precision is: Fd or Sd (whichever is greater) * .

A result field is available (or assumed to be available) in a COMPUTE and DIVIDE statement, and in a logical
condition in which the division is placed after the comparison operator (for example: IF #A = #B / #C THEN ...).
A result field is not (or not assumed to be) available in a logical condition in which the division is placed before
the comparison operator (for example: IF #B / #C = #A THEN ...).

Exception: If both dividend and divisor are of integer format and at least one of them is a variable, the division
result is always of integer format (regardless of the precision of the result field and of whether the ROUNDED
option is used or not).

* If the ROUNDED option is used, the precision of the result is internally increased by one digit before the result
is actually rounded.

71Copyright © Software AG 2003

Precision of Results for Arithmetic OperationsRules for Arithmetic Assignment

Error Conditions in Arithmetic Operations
In an addition, subtraction, multiplication or division, an error occurs if the total number of digits (before and
after the decimal point) of the result is greater than 31.

In an exponentiation, an error occurs in any of the following situations:

if the base is of packed format and either the result has over 16 digits or any intermediate result has over 15
digits;
if the base is of floating-point format and the result is greater than approximately 7 * 1075.

Processing of Arrays
Generally, the following rules apply:

All scalar operations may be applied to array elements which consist of a single occurrence.
If a variable is defined with a constant value (for example, #FIELD (I2) CONSTANT <8>), the value will
be assigned to the variable at compilation, and the variable will be treated as a constant. This means that if
such a variable is used in an array index, the dimension concerned has a definite number of occurrences.
If an assignment/comparison operation involves two arrays with a different number of dimensions, the
"missing" dimension in the array with fewer dimensions is assumed to be (1:1).
Example:
If #ARRAY1 (1:2) is assigned to #ARRAY2 (1:2,1:2),
#ARRAY1 is assumed to be #ARRAY1 (1:1,1:2).

Definitions of Array Dimensions

The first, second and third dimensions of an array are defined as follows:

of Dimensions Properties

3 #a3(3rd dim., 2nd dim., 1st dim.)

2 #a2(2nd dim., 1st dim.)

1 #a1(1st dim.)

Assignment Operations with Arrays

If an array range is assigned to another array range, the assignment is performed element by element.

If a single occurrence is assigned to an array range, each element of the range is filled with the value of the
single occurrence. (For a mathematical function, each element of the range is filled with the result of the
function.)

Before an assignment operation is executed, the individual dimensions of the arrays involved are compared with
one another to check if they meet one of the conditions listed below. The dimensions are compared
independently of one another; that is, the 1st dimension of the one array is compared with the 1st dimension of
the other array, the 2nd dimension of the one array is compared with the 2nd dimension of the other array, and
the 3rd dimension of the one array is compared with the 3rd dimension of the other array.

The assignment of values from one array to another is only allowed under one of the following conditions:

The number of occurrences is the same for both dimensions compared.
The number of occurrences is indefinite for both dimensions compared.
The dimension that is assigned to another dimension consists of a single occurrence.

Copyright © Software AG 200372

Rules for Arithmetic AssignmentError Conditions in Arithmetic Operations

The following program shows which array assignment operations are possible.

Example - Array Assignments:

 DEFINE DATA LOCAL
 1 A1 (N1/1:8)
 1 B1 (N1/1:8)
 1 A2 (N1/1:8,1:8)
 1 B2 (N1/1:8,1:8)
 1 A3 (N1/1:8,1:8,1:8)
 1 I (I2) INIT <4>
 1 J (I2) INIT <8>
 1 K (I2) CONST <8>
 END-DEFINE
 *
 COMPUTE A1(1:3) = B1(6:8) /* allowed
 COMPUTE A1(1:I) = B1(1:I) /* allowed
 COMPUTE A1(*) = B1(1:8) /* allowed
 COMPUTE A1(2:3) = B1(I:I+1) /* allowed
 COMPUTE A1(1) = B1(I) /* allowed
 COMPUTE A1(1:I) = B1(3) /* allowed
 COMPUTE A1(I:J) = B1(I+2) /* allowed
 COMPUTE A1(1:I) = B1(5:J) /* allowed
 COMPUTE A1(1:I) = B1(2) /* allowed
 COMPUTE A1(1:2) = B1(1:J) /* NOT ALLOWED (NAT0631)
 COMPUTE A1(*) = B1(1:J) /* NOT ALLOWED (NAT0631)
 COMPUTE A1(*) = B1(1:K) /* allowed
 COMPUTE A1(1:J) = B1(1:K) /* NOT ALLOWED (NAT0631)
 *
 COMPUTE A1(*) = B2(1,*) /* allowed
 COMPUTE A1(1:3) = B2(1,I:I+2) /* allowed
 COMPUTE A1(1:3) = B2(1:3,1) /* NOT ALLOWED (NAT0631)
 *
 COMPUTE A2(1,1:3) = B1(6:8) /* allowed
 COMPUTE A2(*,1:I) = B1(5:J) /* allowed
 COMPUTE A2(*,1) = B1(*) /* NOT ALLOWED (NAT0631)
 COMPUTE A2(1:I,1) = B1(1:J) /* NOT ALLOWED (NAT0631)
 COMPUTE A2(1:I,1:J) = B1(1:J) /* allowed
 *
 COMPUTE A2(1,I) = B2(1,1) /* allowed
 COMPUTE A2(1:I,1) = B2(1:I,2) /* allowed
 COMPUTE A2(1:2,1:8) = B2(I:I+1,*) /* allowed
 *
 COMPUTE A3(1,1,1:I) = B1(1) /* allowed
 COMPUTE A3(1,1,1:J) = B1(*) /* NOT ALLOWED (NAT0631)
 COMPUTE A3(1,1,1:I) = B1(1:I) /* allowed
 COMPUTE A3(1,1:2,1:I) = B2(1,1:I) /* allowed
 COMPUTE A3(1,1,1:I) = B2(1:2,1:I) /* NOT ALLOWED (NAT0631)
 END

Comparison Operations with Arrays

Generally, the following applies: if arrays with multiple dimensions are compared, the individual dimensions are
handled independently of one another; that is, the 1st dimension of the one array is compared with the 1st
dimension of the other array, the 2nd dimension of the one array is compared with the 2nd dimension of the
other array, and the 3rd dimension of the one array is compared with the 3rd dimension of the other array.

The comparison of two array dimensions is only allowed under one of the following conditions:

The array dimensions compared with one another have the same number of occurrences.
The array dimensions compared with one another have an indefinite number of occurrences.
All array dimensions of one of the arrays involved are single occurrences.

73Copyright © Software AG 2003

Comparison Operations with ArraysRules for Arithmetic Assignment

The following program shows which array comparison operations are possible:

Example - Array Comparisons:

 DEFINE DATA LOCAL
 1 A3 (N1/1:8,1:8,1:8)
 1 A2 (N1/1:8,1:8

 1 A1 (N1/1:8)
 1 I (I2) INIT <4>
 1 J (I2) INIT <8>
 1 K (I2) CONST <8>
 END-DEFINE
 *
 IF A2(1,1) = A1(1) THEN IGNORE END-IF /* allowed
 IF A2(1,1) = A1(I) THEN IGNORE END-IF /* allowed
 IF A2(1,*) = A1(1) THEN IGNORE END-IF /* allowed
 IF A2(1,*) = A1(I) THEN IGNORE END-IF /* allowed
 IF A2(1,*) = A1(*) THEN IGNORE END-IF /* allowed
 IF A2(1,*) = A1(I -3:I+4) THEN IGNORE END-IF /* allowed
 IF A2(1,5:J) = A1(1:I) THEN IGNORE END-IF /* allowed
 IF A2(1,*) = A1(1:I) THEN IGNORE END-IF /* NOT ALLOWED(NAT0629)
 IF A2(1,*) = A1(1:K) THEN IGNORE END-IF /* allowed
 *
 IF A2(1,1) = A2(1,1) THEN IGNORE END-IF /* allowed
 IF A2(1,1) = A2(1,I) THEN IGNORE END-IF /* allowed
 IF A2(1,*) = A2(1,1:8) THEN IGNORE END-IF /* allowed
 IF A2(1,*) = A2(I,I -3:I+4) THEN IGNORE END-IF /* allowed
 IF A2(1,1:I) = A2(1,I+1:J) THEN IGNORE END-IF /* allowed
 IF A2(1,1:I) = A2(1,I:I+1) THEN IGNORE END-IF /* NOT ALLOWED(NAT0629)
 IF A2(*,1) = A2(1,*) THEN IGNORE END-IF /* NOT ALLOWED(NAT0629)
 IF A2(1,1:I) = A1(2,1:K) THEN IGNORE END-IF /* NOT ALLOWED(NAT0629)
 *
 IF A3(1,1,*) = A2(1,*) THEN IGNORE END-IF /* allowed
 IF A3(1,1,*) = A2(1,I -3:I+4) THEN IGNORE END-IF /* allowed
 IF A3(1,*,I:J) = A2(*,1:I+1) THEN IGNORE END-IF /* allowed
 IF A3(1,*,I:J) = A2(*,I:J) THEN IGNORE END-IF /* allowed
 END

When you compare two array ranges, note that the following two expressions lead to different results:

 #ARRAY1(*) NOT EQUAL #ARRAY2(*)
 NOT #ARRAY1(*) = #ARRAY2(*)

Copyright © Software AG 200374

Rules for Arithmetic AssignmentComparison Operations with Arrays

Example:

Condition A:

 IF #ARRAY1(1:2) NOT EQUAL #ARRAY2(1:2)

This is equivalent to:

 IF (#ARRAY1(1) NOT EQUAL #ARRAY2(1)) AND (#ARRAY1(2) NOT EQUAL #ARRAY2(2))

Condition A is therefore true if the first occurrence of #ARRAY1 does not equal the first occurrence of
#ARRAY2 and the second occurrence of #ARRAY1 does not equal the second occurrence of #ARRAY2.

Condition B:

 IF NOT #ARRAY1(1:2) = #ARRAY2(1:2)

This is equivalent to:

 IF NOT (#ARRAY1(1)= #ARRAY2(1) AND #ARRAY1(2) = #ARRAY2(2))

This in turn is equivalent to:

 IF (#ARRAY1(1) NOT EQUAL #ARRAY2(1)) OR (#ARRAY1(2) NOT EQUAL #ARRAY2(2))

Condition B is therefore true if either the first occurrence of #ARRAY1 does not equal the first occurrence of
#ARRAY2 or the second occurrence of #ARRAY1 does not equal the second occurrence of #ARRAY2.

Arithmetic Operations with Arrays

A general rule about array, is that the number of occurrences of the corresponding dimensions must be equal.

The following illustrates this rule:

#c(2:3,2:4) := #a(3:4,1:3) + #b(3:5)

In other words:

Array Dimension # # of Occurrences Range

#c 2nd 2 2:3

#c 1st 3 2:4

#a 2nd 2 3:4

#a 1st 3 1:3

#b 1st 3 3:5

The operation is performed element by element.

Note:
An arithmetic operation of a different number of dimensions is allowed.

For the example above, the following operations are executed:

75Copyright © Software AG 2003

Arithmetic Operations with ArraysRules for Arithmetic Assignment

#c(2,2) := #a(3,1) + #b(3)

#c(2,3) := #a(3,2) + #b(4)

#c(2,4) := #a(3,3) + #b(5)

#c(3,2) := #a(4,1) + #b(3)

#c(3,3) := #a(4,2) + #b(4)

#c(3,4) := #a(4,3) + #b(5)

Below is a list of examples of how array ranges may be used in the following ways in arithmetic operations (in
COMPUTE, ADD or MULTIPLY statements). In examples 1-4, the number of occurrences of the corresponding
dimensions must be equal.

1. range + range = range.
The addition is performed element by element.

2. range * range = range.
The multiplication is performed element by element.

3. scalar + range = range.
The scalar is added to each element of the range.

4. range * scalar = range.
Each element of the range is multiplied by the scalar.

5. range + scalar = scalar.
Each element of the range is added to the scalar and the result is assigned to the scalar.

6. scalar * range = scalar2.
The scalar is multiplied by each element of the array and the result is assigned to scalar2.

Copyright © Software AG 200376

Rules for Arithmetic AssignmentArithmetic Operations with Arrays

Renumbering of Source-Code Line Number
References
Numeric four-digit source-code line numbers that reference a statement (see Statement Reference Notation - r)
are also renumbered if the Natural source program is renumbered. For the user’s convenience and to aid in
readability and debugging, all source code line number references that occur in a statement, an alphanumeric
constant or a comment are renumbered. The position of the source code line number reference in the statement or
alphanumeric constant (start, middle, end) does not matter.

The following patterns are recognized as being a valid source code line number reference and are renumbered
(nnnn is a four-digit number):

Pattern Sample Statement

(nnnn) ESCAPE BOTTOM (0150)

(nnnn / DISPLAY ADDRESS-LINE(0010/1:5)

(nnnn, DISPLAY NAME(0010,A10/1:5)

If the left parenthesis or the four-digit number nnnn is followed by a blank, or the four-digit number nnnn is
followed by a period, the pattern is not considered to be a valid source code line number reference.

To avoid that a four-digit number that is contained in an alphanumeric constant is unintentionally renumbered,
the constant should be split up and the different parts should be concatenated to form a single value by use of a
hyphen.

Example:
Z := ’XXXX (1234,00) YYYY’ should be replaced by
Z := ’XXXX (1234’ - ’,00) YYYY’

77Copyright © Software AG 2003

Renumbering of Source-Code Line Number ReferencesRenumbering of Source-Code Line Number References

Large and Dynamic Variables/Fields
The following topics are covered in this section:

Introduction
Definition of Dynamic Variables
System Variable *LENGTH(field)
Statements EXPAND, REDUCE and RESIZE
Usage of Dynamic Variables

Copyright © Software AG 200378

Large and Dynamic Variables/FieldsLarge and Dynamic Variables/Fields

Introduction
Large variables for alphanumeric and binary data are based on the well known Natural formats A and B. The
limitations of 253 for Format A and 126 for Format B are no longer in effect. The new size limit is 1 GB. These
large static variables and fields are handled in the same manner as traditional alphanumeric and binary variables
and fields with regard to definition, redefinition, value space allocation, conversions, referencing in statements,
etc. All rules concerning alphanumeric and binary formats apply to these large formats.

In that the maximum size of large data structures (for example, pictures, sounds, videos) may not exactly be
known at application development time, Natural additionally provides for the definition of alphanumeric and
binary variables with the attribute DYNAMIC. The value space of variables which are defined with this attribute
will be extended dynamically at execution time when it becomes necessary (for example, during an assignment
operation: #picture1 := #picture2). This means that large binary and alphanumeric data structures may be
processed in Natural without the need to define a limit at development time. The execution-time allocation of
dynamic variables is of course subject to available memory restrictions. If the allocation of dynamic variables
results in an insufficent memory condition being returned by the underlying operating system, the ON ERROR
statement can be used to intercept this error condition; otherwise, an error message will be returned by Natural.
The Natural system variable *LENGTH can be used to obtain the number of bytes of the value space which are
currently used for a given dynamic variable. Natural automatically sets *LENGTH to the length of the source
operand during assignments in which the dynamic variable is involved. *LENGTH(field) therefore returns the
size currently used for a dynamic Natural field or variable in bytes.

If the dynamic variable space is no longer needed, the REDUCE or RESIZE statements can be used to reduce the
space used for the dynamic variable to zero (or any other desired size). If the upper limit of memory usage is
known for a specific dynamic variable, the EXPAND statement can be used to set the space used for the dynamic
variable to this specific size.

If a dynamic variable is to be initialized, the MOVE ALL UNTIL statement should be used for this purpose.

Note:
Due to performance considerations, the storage area that is allocated to hold the value of the dynamic variable
may be larger than the value of *LENGTH. You should not rely on the storage that is allocated beyond the used
length as indicated by *LENGTH, it may be released at any time, even if the respective dynamic variable is not
accessed.

Back to Statement Usage Related Topics.

79Copyright © Software AG 2003

IntroductionIntroduction

Definition of Dynamic Variables
Because the actual size of large alphanumeric and binary data structures may not be exactly known at application
development time, the definition of dynamic variables of Format A or B can be used to manage these structures.
The dynamic allocation and extension (reallocation) of large variables is transparent to the application
programming logic. Dynamic variables are defined without any length. Memory will be either implicitly
allocated at execution time when the dynamic variable is used as a target operand, or explicitly with an
EXPAND or RESIZE statement.

Dynamic variables can only be defined in a DEFINE DATA statement using the following syntax:

 level variable-name (A) DYNAMIC
 level variable-name (B) DYNAMIC

Note:
The following restrictions apply to a dynamic variable:

A redefinition of a dynamic variable is not allowed.
A dynamic variable may not be contained in a REDEFINE clause.

Back to Statement Usage Related Topics.

Copyright © Software AG 200380

Definition of Dynamic VariablesDefinition of Dynamic Variables

System Variable *LENGTH(field)
The size of the currently used value space of a dynamic variable can be obtained from the system variable
*LENGTH. *LENGTH is set to the (used) length of the source operand during assignments automatically.

Note:
Due to performance considerations, the storage area that is allocated to hold the value of the dynamic
variable may be larger than the value of *LENGTH (used size available to the programmer). You should
not rely on the storage that is allocated beyond the used length as indicated by *LENGTH: it may be
released at any time, even if the respective dynamic variable is not accessed. It is not possible for the
Natural programmer to obtain information about the currently allocated size. This is an internal value.

*LENGTH(field) returns the used size of a dynamic Natural field or variable in bytes. *LENGTH may be used
only to get the currently used size for dynamic variables.

Back to Statement Usage Related Topics.

81Copyright © Software AG 2003

System Variable *LENGTH(field)System Variable *LENGTH(field)

Statements EXPAND, REDUCE and
RESIZE
The statements EXPAND, REDUCE and RESIZE are used to explicitly allocate and free memory space for a
dynamic variable.

Syntax:

 EXPAND [SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2
 REDUCE [SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2
 RESIZE [SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2

where operand1 is a dynamic variable and operand2 is a non-negative numeric size value.

EXPAND

Function

The EXPAND statement is used to increase the size of the currently allocated storage of the dynamic variable
(operand1) to the specified size (operand2).

Changing the Specified Size

The size currently used (*LENGTH) for the dynamic variable is not modified.

If the specified size (operand2) is less than the size of the currently allocated storage of the dynamic variable, the
statement will be ignored.

REDUCE

Function

The REDUCE statement is used to reduce the size of the currently allocated storage of the dynamic variable
(operand1) to the specified size (operand2).

The storage allocated for the dynamic variable (operand1) beyond the specified size (operand2) may be released
at any time, when the statement is executed or at a later time.

Changing the Specified Size

If the size currently used (*LENGTH) for the dynamic variable is greater than the specified size (operand2),
*LENGTH of this dynamic variable is set to the specified size. The content of the variable is truncated, but not
modified.

If the given size is larger than the currently allocated storage of the dynamic variable, the statement will be
ignored.

Copyright © Software AG 200382

Statements EXPAND, REDUCE and RESIZEStatements EXPAND, REDUCE and RESIZE

RESIZE

Function

The RESIZE statement adjusts the size of the currently allocated storage of the dynamic variable (operand1) to
the specified size (operand2).

Changing the Specified Size

If the specified size is smaller then the used size (as indicated by *LENGTH) of the dynamic variable, the used
size is reduced accordingly.

If the specified size is larger than the size of the currently allocated storage of the dynamic variable, the size of
the allocated storage of the dynamic variable is increased. The currently used size (as indicated by *LENGTH)
of the dynamic variable is not affected and remains unchanged.

If the specified size is the same as the size of the currently allocated storage of the dynamic variable, the
execution of the RESIZE statement has no effect.

Back to Statement Usage Related Topics.

83Copyright © Software AG 2003

RESIZEStatements EXPAND, REDUCE and RESIZE

Usage of Dynamic Variables
Assignments with Dynamic Variables
Initialization of Dynamic Variables
String Manipulation with Dynamic Alpha Variables
Logical Condition Criterion (LCC) with Dynamic Variables
Parameter Transfer with Dynamic Variables
Work File Access with Large and Dynamic Variables - Mainframes
Performance Aspects with Dynamic Variables
Outputting Dynamic Variables

Generally, a dynamic alphanumeric variable may be used wherever an operand of Format A or Format B is
allowed.

Exception:
Dynamic variables are not allowed within the SORT statement. To use dynamic variables in a DISPLAY,
WRITE, PRINT, REINPUT or INPUT statement, you must use either the session parameter AL or EM to define
the length of the variable.

The used length (*LENGTH) and the size of the allocated storage of dynamic variables are equal to zero until
the variable is accessed as a target operand for the first time. Due to assignments or other manipulation
operations, dynamic variables may be firstly allocated or extended (reallocated) to the exact size of the source
operand.

The size of a dynamic variable may be extended if it is used as a modifiable operand (target operand) in the
following statements:

destination operand in an assignment (ASSIGN, MOVE)
operand2 in COMPRESS
operand1 in EXAMINE REPLACE
operand4 in SEPARATE
READ WORK FILE
parameter or view field in the INTO clause of SELECT
CALLNAT , PERFORM (except AD=O, or BY VALUE in PDA)
SEND METHOD

Currently, there is the following limit concerning the usage of large variables:

CALL statement parameter size less than 64 KB per parameter (no limit for the CALL with INTERFACE4
option).

In the following sections, the use of dynamic variables is discussed in more detail with examples.

Assignments with Dynamic Variables
Generally, an assignment is done in the current used length (*LENGTH) of the source operand.
If the destination operand is a dynamic variable, its current allocated size is possibly extended in order to move
the source operand without truncation.

Example:

Copyright © Software AG 200384

Usage of Dynamic VariablesUsage of Dynamic Variables

#MYDYNTEXT1 := OPERAND OR
MOVE OPERAND TO #MYDYNTEXT1
/* #MYDYNTEXT1 IS AUTOMATICALLY EXTENDED UNTIL THE SOURCE OPERAND CAN BE COPIED

MOVE ALL, MOVE ALL UNTIL with dynamic target operands are defined as follows:

MOVE ALL moves the source operand repeatedly to the target operand until the used length (*LENGTH) of
the target operand is reached. *LENGTH is not modified. If *LENGTH is zero, the statement will be
ignored.
MOVE ALL operand1 TO operand2 UNTIL operand3 moves operand1 repeatedly to operand2
until the length specified in operand3 is reached. If operand3 is greater than *LENGTH(operand2),
operand2 is extended and *LENGTH(operand2) is set to operand3. If operand3 is less than
*LENGTH(operand2), the used length is reduced to operand3. If operand 3 equals *LENGTH(operand2),
the behavior is equivalent to MOVE ALL.

Example:

#MYDYNTEXT1 := ’ABCDEFGHIJKLMNO’ /* *LENGTH(#MYDYNTEXT1) = 15
MOVE ALL ’AB’ TO #MYDYNTEXT1 /* CONTENT OF #MYDYNTEXT1 = ’ABABABABABABABA’;
 /* *LENGTH IS STILL 15
MOVE ALL ’CD’ TO #MYDYNTEXT1 UNTIL 6 /* CONTENT OF #MYDYNTEXT1 = ’CDCDCD’;
 /* *LENGTH = 6
MOVE ALL ’EF’ TO #MYDYNTEXT1 UNTIL 10 /* CONTENT OF #MYDYNTEXT1 = ’EFEFEFEFEF’;
 /* *LENGTH = 10

MOVE JUSTIFIED is rejected at compile time if the target operand is a dynamic variable.

MOVE SUBSTR and MOVE TO SUBSTR are allowed. MOVE SUBSTR will lead to a runtime error if a
sub-string behind the used length of a dynamic variable (*LENGTH) is referenced. MOVE TO SUBSTR will
lead to a runtime error if a sub-string position behind *LENGTH + 1 is referenced, because this would lead to an
undefined gap in the content of the dynamic variable. If the target operand should be extended by MOVE TO
SUBSTR (for example if the second operand is set to *LENGTH+1), the third operand is mandatory.

Valid Syntax:

#OP2 := *LENGTH(#MYDYNTEXT1)
MOVE SUBSTR (#MYDYNTEXT1, #OP2) TO OPERAND /* MOVE LAST CHARACTER TO OPERAND
#OP2 := *LENGTH(#MYDYNTEXT1) + 1
MOVE OPERAND TO SUBSTR(#MYDYNTEXT1, #OP2, #lEN_OPERAND) /* CONCANTENATE OPERAND TO #MYDYNTEXT1

Invalid Syntax:

#OP2 := *LENGTH(#MYDYNTEXT1) +1
MOVE SUBSTR (#MYDYNTEXT1, #OP2, 10) TO OPERAND /* LEADS TO RUNTIME ERROR; UNDEFINED SUB-STRING
#OP2 := *LENGTH(#MYDYNTEXT1 +10)
MOVE OPERAND TO SUBSTR(#MYDYNTEXT1, #OP2, #lEN_OPERAND) /* LEADS TO RUNTIME ERROR; UNDEFINED GAP
#OP2 := *LENGTH(#MYDYNTEXT1) +1
MOVE OPERAND TO SUBSTR(#MYDYNTEXT1, #OP2) /* LEADS TO RUNTIME ERROR; UNDEFINED LENGTH

Assignment Compatibility

Example:

#MYDYNTEXT1 := #MYSTATICVAR1
#MYSTATICVAR1 := #MYDYNTEXT2

85Copyright © Software AG 2003

Assignment CompatibilityUsage of Dynamic Variables

If the source operand is a static variable, the used length of the dynamic destination operand
(*LENGTH(#MyDynText1)) is set to the format length of the static variable and the source operand is copied in
this length including trailing blanks (Format A) or zeros (Format B).

If the destination operand is static and the source operand is dynamic, the dynamic variable is copied in its
currently used size. If this size is less than the format length of the static variable, the remainder is filled with
blanks or zeros. Otherwise, the value will be truncated. If the currently used size of the dynamic variable is 0, the
static target operand is filled with blanks or zeros.

Copyright © Software AG 200386

Usage of Dynamic VariablesAssignment Compatibility

Initialization of Dynamic Variables
Dynamic Variables can be initialized with blanks (alphanumeric) or zeros (binary) up to the currently used
length (= *LENGTH) using the RESET statement. *LENGTH is not modified.

Example:

DEFINE DATA LOCAL
1 #MYDYNTEXT1 (A) DYNAMIC
END-DEFINE
1 #MYDYNTEXT1 := ’SHORT TEXT’
WRITE *LENGTH(#MYDYNTEXT1) /* USED LENGTH = 10
RESET #MYDYNTEXT1 /* USED LENGTH = 10, VALUE = 10 BLANKS

To initialize a dynamic variable with a specified value in a specified size, the MOVE ALL UNTIL statement
may be used.

Example:

MOVE ALL ’Y’ TO #MYDYNTEXT1 UNTIL 15 /* #MYDYNTEXT1 CONTAINS 15 ’Y’S, USED LENGTH = 15

String Manipulation with Dynamic Alpha Variables
If a modifiable operand is a dynamic variable, its current allocated size is possibly extended in order to perform
the operation without truncation or an error message. This is valid for the concatenation (COMPRESS) and
separation of dynamic alphanumeric variables (SEPARATE).

Example:

DEFINE DATA LOCAL
 1 #MYDYNTEXT1 (A) DYNAMIC
 1 #MYDYNTEXT2 (A) DYNAMIC
 ...
 COMPRESS ... INTO #MYDYNTEXT2

/* #MYDYNTEXT2 WILL BE EXTENDED IN ORDER TO COMPRESS THE SOURCE OPERANDS.
/* NOTE: IN CASE OF NON-DYNAMIC VARIABLES THE VALUE MAY BE TRUNCATED.

/* SEPARATE INTO #MYDYNTEXT1 #MYDYNTEXT2 WITH DELIMITER
/* #MYDYNTEXT1 AND #MYDYNTEXT2 ARE POSSIBLY EXTENDED OR REDUCED TO SEPARATE THE SOURCE OPERAND.

/* EXAMINE #MYDYNTEXT1 FOR REPLACE
/* #MYDYNTEXT1 WILL POSSIBLY BE EXTENDED OR REDUCED TO PERFORM THE REPLACE OPERATION SUCCESSFULLY.

Note: In case of non-dynamic variables, an error message may be returned.

87Copyright © Software AG 2003

Initialization of Dynamic VariablesUsage of Dynamic Variables

Logical Condition Criterion (LCC) with Dynamic
Variables
Generally, a read-only operation (such as LCC) with a dynamic variable is done with its currently used size.
Dynamic variables are processed like static variables if they are used in a read-only (non-modifiable) context.

Example:

IF #MYDYNTEXT1 = #MYDYNTEXT2 OR #MYDYNTEXT1 = "**" THEN ...
IF #MYDYNTEXT1 < #MYDYNTEXT2 OR #MYDYNTEXT1 < "**" THEN ...
IF #MYDYNTEXT1 > #MYDYNTEXT2 OR #MYDYNTEXT1 > "**" THEN ...

Also in the case of trailing blanks or zeros, dynamic variables will show an equivalent behavior.
For dynamic variables, the alphanumeric value ’AA ’ will be equal to ’AA’ and the binary value ’00003031’ is
equal to ’3031’. If a comparison result should only be TRUE in case of an exact copy, the used lengths of the
dynamic variables have to be compared in addition. If one variable is an exact copy of the other, their used
lengths are also equal.

Example:

#MYDYNTEXT1 := ’HELLO’ /* USED LENGTH IS 5
#MYDYNTEXT2 := ’HELLO ’ /* USED LENGTH IS 10
IF #MYDYNTEXT1 = #MYDYNTEXT2 THEN ... /* TRUE
IF #MYDYNTEXT1 = #MYDYNTEXT2 AND
 *LENGTH(#MYDYNTEXT1) = *LENGTH(#MYDYNTEXT2) THEN ... /* FALSE

Two dynamic variables are compared position by position (from left to right for Format A and right to left for
Format B) up to the minimum of their used lengths. The first position where the variables are not equal
determines if the first or the second variable is greater than, less than or equal to the other. The variables are
equal if they are equal up to the minimum of their used lengths and the remainder of the longer variable contains
only blanks (Format A) or zeros (Format B).

Example:

#MYDYNTEXT1 := ’HELLO1’ /* USED LENGTH IS 6
#MYDYNTEXT2 := ’HELLO2’ /* USED LENGTH IS 10
IF #MYDYNTEXT1 < #MYDYNTEXT2 THEN ... /* TRUE
#MYDYNTEXT2 := ’HALLO’
IF #MYDYNTEXT1 > #MYDYNTEXT2 THEN ... /* TRUE

Comparison Compatibility

Comparisons between dynamic and static variables are equivalent to comparisons between dynamic variables.
The format length of the static variable is interpreted as its used length.

Copyright © Software AG 200388

Usage of Dynamic VariablesLogical Condition Criterion (LCC) with Dynamic Variables

Example:

#MYSTATTEXT1 := ’HELLO’ /* FORMAT LENGTH OF MYSTATTEXT1 IS A20
#MYDYNTEXT1 := ’HELLO’ /* USED LENGTH IS 5
IF #MYSTATTEXT1 = #MYDYNTEXT1 THEN ... /* TRUE
IF #MYSTATTEXT1 > #MYDYNTEXT1 THEN ... /* FALSE

89Copyright © Software AG 2003

Logical Condition Criterion (LCC) with Dynamic VariablesUsage of Dynamic Variables

Parameter Transfer with Dynamic Variables
Dynamic variables may be passed as parameters to a called program object (CALLNAT, PERFORM).
Call-by-reference is possible because the value space of a dynamic variable is contiguous. Call-by-value causes
an assignment with the variable definition of the caller as the source operand and the parameter definition as the
destination operand. Call-by-value result causes in addition the movement in the opposite direction.
For call-by-reference, both definitions must be DYNAMIC. If only one of them is DYNAMIC, a runtime error is
raised. In the case of call-by-value (result), all combinations are possible. The following table illustrates the valid
combinations:

Call By Reference

 Parameter

Caller Static Dynamic

Static Yes No

Dynamic No Yes

The formats of dynamic variables A or B must match.

Call by Value (Result)

 Parameter

Caller Static Dynamic

Static Yes Yes

Dynamic Yes Yes

Note:
In the case of static/dynamic or dynamic/static definitions, a value truncation may occur according to the
data transfer rules of the appropriate assignments.

Copyright © Software AG 200390

Usage of Dynamic VariablesParameter Transfer with Dynamic Variables

Example 1:

DEFINE DATA LOCAL
1 #MYTEXT (A) DYNAMIC
END-DEFINE

#MYTEXT := ’123456’ /* EXTENDED TO 6 BYTES, *LENGTH(#MYTEXT) = 6
CALLNAT ’SUB1’ USING #MYTEXT
WRITE *LENGTH(#MYTEXT) /* *LENGTH(#MYTEXT) = 8

SUBPROGRAM SUB1:

DEFINE DATA PARAMETER
1 #MYPARM (A) DYNAMIC BY VALUE RESULT
END-DEFINE
WRITE *LENGTH(#MYPARM) /* *LENGTH(#MYTEXT) = 6
#MYPARM := ’1234567’ /* *LENGTH(#MYTEXT) = 7
#MYPARM := ’12345678’ /* *LENGTH(#MYTEXT) = 8
EXPAND DYNAMIC VARIABLE #MYPARM TO 10 /* AT LEAST 10 BYTES ARE ALLOCATED
WRITE *LENGTH(#MYPARM) /* *LENGTH(#MYTEXT) = 8
END /* CONTENTS OF #MYPARM ARE MOVED BACK TO #MYTEXT
 /* USED LENGTH OF #MYTEXT = 8

91Copyright © Software AG 2003

Call by Value (Result)Usage of Dynamic Variables

Example 2:

DEFINE DATA LOCAL
1 #MYTEXT (A) DYNAMIC
END-DEFINE

#MYTEXT := ’123456’ /* *LENGTH(#MYTEXT) = 6
CALLNAT ’SUB2’ USING #MYTEXT
WRITE *LENGTH(#MYTEXT) /* *LENGTH(#MYTEXT) = 8
 /* AT LEAST 10 BYTES ARE
 /* ALLOCATED (EXTENDED IN SUB2)
SUBPROGRAM SUB2:

DEFINE DATA PARAMETER
1 #MYPARM (A) DYNAMIC
END-DEFINE
WRITE *LENGTH(#MYPARM) /* *LENGTH(#MYPARM) = 6
#MYPARM := ’1234567’ /* *LENGTH(#MYPARM) = 7
#MYPARM := ’12345678’ /* *LENGTH(#MYPARM) = 8
EXPAND DYNAMIC VARIABLE #MYPARM TO 10 /* AT LEAST 10 BYTES ARE ALLOCATED
WRITE *LENGTH(#MYPARM) /* *LENGTH(#MYPARM) = 8
END

Copyright © Software AG 200392

Usage of Dynamic VariablesCall by Value (Result)

CALL 3GL Program

Dynamic and large variables can sensibly be used with the CALL statement when the option INTERFACE4 is
used. Using this option leads to an interface to the 3GL program with a different parameter structure.

Before calling a 3GL program with dynamic parameters, it is important to ensure that the necessary buffer size is
allocated. This can be done explicitly with the EXPAND statement.
If an initialized buffer is required, the dynamic variable can be set to the initial value and to the necessary size by
using the MOVE ALL UNTIL statement. Natural provides a set of functions that allow the 3GL program to
obtain information about the dynamic parameter and to modify the length when parameter data is passed back.

Example:

MOVE ALL ’ ’ TO #MYDYNTEXT1 UNTIL 10000
 /* a buffer of length 10000 is allocated
 /* #MYDYNTEXT1 is initialized with blanks
 /* *LENGTH(#MYDYNTEXT1) = 10000

CALL INTERFACE4 ’MYPROG’ USING #MYDYNTEXT1
WRITE *LENGTH(#MYDYNTEXT1)
 /* *LENGTH(#MYDYNTEXT1) may have changed in the 3GL program

For a more detailed description, refer to the CALL statement in the Statements documentation.

93Copyright © Software AG 2003

CALL 3GL ProgramUsage of Dynamic Variables

Work File Access with Large and Dynamic Variables -
Mainframes
There is no difference in the treatment of fixed length variables with a length of less than or equal to 253 and
large variables with a length of greater than 253.

Dynamic variables are written in the length that is in effect (i.e. the value of system variable *LENGTH for this
variable) when the WRITE WORK FILE statement is executed. Since the length can be different for each
execution of the same WRITE WORK FILE statement, the keyword VARIABLE must be specified.

When reading work files of type FORMATTED, a dynamic variable is filled in the length that is in effect (i.e.
the value of system variable *LENGTH for this variable) when the READ WORK FILE statement is executed. If
the dynamic variable is longer than the remaining data in the current record, it is padded with blanks or x00,
respectively, depending on whether it is defined as alphanumeric or binary.

When reading a work file of type UNFORMATTED, a dynamic variable is filled with the remainder of the work
file. Its size is adjusted accordingly, and is reflected in the value of system variable *LENGTH for this variable.

Performance Aspects with Dynamic Variables
If a dynamic variable is to be expanded in small quantities multiple times (e.g. byte-wise), use EXPAND before
the iterations if the upper limit of required storage is (approximately) known. This avoids additional overhead to
adjust the storage needed.

Use REDUCE or RESIZE if the dynamic variable will no longer be needed, especially for variables with a high
value of *LENGTH. This enables Natural to release or reuse the storage. Thus, the overall performance may be
improved.

The amount of the allocated memory of a dynamic variable may be reduced to a specified size using the
REDUCE DYNAMIC VARIABLE statement. In order to (re)allocate a variable to a specified size, the
EXPAND statement can be used. (If the variable should be initialized, use the MOVE ALL UNTIL statement.)

Example:

 DEFINE DATA LOCAL
 :
 #MyDynText1 (A) DYNAMIC
 # len (I4)
 :
 END-DEFINE

 #MyDynText1 := ’a’ /* used length is 1, value is ’a’; allocated size is still 1

 EXPAND DYNAMIC VARIABLE #MyDynText1 TO 100
 /* used length is still 1, value is ’a’; allocated size is 100

 CALLNAT #subprog USING #MyDynText1
 write *LENGTH(#MyDynText1) /* used length and allocated size may have changed in the subprogram

 #len := *LENGTH(#MyDynText1)
 REDUCE DYNAMIC VARIABLE #MyDynText1 TO #len
 /* if allocated size is greater than used length, the unused memory is released
 :
 REDUCE DYNAMIC VARIABLE #MyDynText1 TO 0
 /* free allocated memory for dynamic variable
 END

Rules:

Use dynamic operands where it makes sense.
Use EXPAND if upper limit of memory usage is known.
Use REDUCE if the dynamic operand will no longer be needed.

Copyright © Software AG 200394

Usage of Dynamic VariablesWork File Access with Large and Dynamic Variables - Mainframes

Output of Dynamic Variables
Dynamic variables may be used inside output statements like DISPLAY, WRITE, PRINT, INPUT and
REINPUT.

You must set the format of the output and input of dynamic variables with the AL or EM session parameters for
the following statements: DISPLAY, WRITE, INPUT.

Because the output of the PRINT is unformatted, the output of dynamic variables in the PRINT statement need
not be set using AL and EM parameters. In other words, these parameters may be omitted.

Back to Statement Usage Related Topics.

95Copyright © Software AG 2003

Output of Dynamic VariablesUsage of Dynamic Variables

Statements Grouped by Functions
This section provides an overview of the statements grouped by their functions.

This section covers the following topics:

Natural SQL Statements - Overview
Database Access and Update
Arithmetic and Data Movement Operations
Loop Execution
Creation of Output Reports
Screen Generation for Interactive Processing
Processing of Logical Conditions
Invoking Programs and Routines
Control of Work Files
Component Based Programming
Event-Driven Programming
Miscellaneous

Copyright © Software AG 200396

Statements Grouped by FunctionsStatements Grouped by Functions

Database Access and Update
The following statements are used to access and manipulate information contained in a database.

READ Reads a database file in physical or logical sequence of records.

FIND Selects records from a database file based on user-specified criteria.

HISTOGRAM Reads the values of a database field.

GET Reads a record with a given ISN (internal sequence number) or RNO (record
number).

GET SAME Re-reads the record currently being processed.

ACCEPT/REJECT Accepts/reject records based on user-specified criteria.

PASSW Provides password for access to a password-protected file.

LIMIT Limits the number of executions of a READ, FIND or HISTOGRAM
processing loop.

STORE Adds a new record to the database.

UPDATE Updates a record in the database.

DELETE Deletes a record from the database.

END TRANSACTION Indicates the end of a logical transaction.

BACKOUT TRANSACTION Backs out a partially completed logical transaction.

GET TRANSACTION DATA Reads transaction data stored with a previous END
TRANSACTION statement.

RETRY Attempts to re-read a record which is in hold status for another user.

AT START OF DATA Specifies statements to be performed when the first of a set of records is
processed in a processing loop.

AT END OF DATA Specifies statements to be performed after the last of a set of records has been
processed in a processing loop.

AT BREAK Specifies statements to be performed when the value of a control field changes
(break processing).

BEFORE BREAK
PROCESSING

Specifies statements to be performed before performing break processing.

PERFORM BREAK
PROCESSING

Immediately invokes break processing.

97Copyright © Software AG 2003

Database Access and UpdateStatements Grouped by Functions

Arithmetic and Data Movement Operations
The following statements are used for arithmetic and data movement operations:

COMPUTE Performs arithmetic operations or assigns values to fields.

ADD Adds two or more operands.

SUBTRACT Subtracts one or more operands from another operand.

MULTIPLY Multiplies two or more operands.

DIVIDE Divides one operand into another.

MOVE Moves the value of an operand to one or more fields.

MOVE ALL Moves multiple occurrences of a value to another field.

COMPRESS Concatenates the value of two or more fields into a single field.

SEPARATE Separates the content of a field into two or more fields.

EXAMINE Scans a field for a specific value and replaces it, and/or counts how often it occurs.

RESET Sets the value of a field to zero (if numeric) or blank (if alphanumeric), or to its initial value.

Loop Execution
The following statements are related to the execution of processing loops:

REPEAT Initiates a processing loop (and terminates it based on a specified condition).

FOR Initiates a processing loop and controls the number of times the loop is to be processed.

ESCAPE Stops the execution of a processing loop.

Copyright © Software AG 200398

Statements Grouped by FunctionsArithmetic and Data Movement Operations

Creation of Output Reports
The following statements are used for the creation of output reports:

FORMAT Specifies output parameter settings.

DISPLAY Specifies fields to be output in column form.

WRITE/PRINT Specifies fields to be output in non-column form.

WRITE TITLE Specifies text to be output at the top of each page of a report.

WRITE TRAILER Specifies text to be output at the bottom of each page of a report.

AT TOP OF PAGE Specifies processing to be performed when a new output page is started.

AT END OF PAGE Specifies processing to be performed when the end of an output page is
reached.

SKIP Generates one or more blank lines in a report.

EJECT Causes a page advance without titles or headings.

NEWPAGE Causes a page advance with titles and headings.

SUSPEND IDENTICAL
SUPPRESS

Suspends identical suppression for a single record.

DEFINE PRINTER Allocates a report to a logical output destination.

CLOSE PRINTER Closes a printer.

Screen Generation for Interactive Processing
The following statements are used to create data screens (maps) for the purpose of interactive processing of data:

INPUT Creates a formatted screen (map) for data display/ entry.

REINPUT Re-executes an INPUT statement (if invalid data were entered in response to the previous
INPUT statement).

DEFINE
WINDOW

Specifies the size, position and attributes of a window.

SET WINDOW Activates and de-activates a window.

99Copyright © Software AG 2003

Creation of Output ReportsStatements Grouped by Functions

Processing of Logical Conditions
The following statements are used to control the execution of statements based on conditions detected during the
execution of a Natural program:

IF Performs statements depending on a logical condition.

IF
SELECTION

Verifies that in a sequence of alphanumeric fields one and only one contains a value.

DECIDE FOR Performs statements depending on logical conditions.

DECIDE ON Performs statements depending on the contents of a variable.

ON ERROR Intercepts runtime errors which would otherwise result in a Natural error message, followed
by the termination of the Natural program.

Invoking Programs and Routines
The following statements are used in conjunction with the execution of programs and routines:

FETCH Invokes a Natural program.

CALLNAT Invokes a Natural subprogram.

PERFORM Invokes a Natural subroutine.

DEFINE SUBROUTINE Defines a Natural subroutine.

ESCAPE Stops the execution of a routine.

CALL Invokes a non-Natural program from a Natural program.

CALL FILE Invokes a non-Natural program to read a record from a non-Adabas file.

CALL LOOP Generates a processing loop containing a call to a non-Natural program.

Control of Work Files
The following Natural statements are used to read/write data to a physical sequential (non-Adabas) work file:

WRITE WORK FILE Writes data to a work file.

READ WORK FILE Reads data from a work file.

CLOSE WORK FILE Closes a work file.

DEFINE WORK FILE Assigns a file name to a work file.

Copyright © Software AG 2003100

Statements Grouped by FunctionsProcessing of Logical Conditions

Component Based Programming
The following Natural statements are used in conjunction with component based programming:

DEFINE CLASS Specifies a class from within a Natural class module.

CREATE
OBJECT

Creates an object (also known as an instance) of a given class.

SEND METHOD Invokes a method of an object.

INTERFACE Defines an interface (a collection of methods and properties) for a certain feature of a
class.

METHOD Assigns a subprogram as the implementation of a method, outside an interface definition.

PROPERTY Assigns an object data variable as the implementation to a property, outside an interface
definition.

Event-Driven Programming
The following Natural statements are used for event-driven programming:

OPEN DIALOG Opens a dialog.

CLOSE DIALOG Closes a dialog.

SEND EVENT Triggers a user-defined event.

PROCESS GUI Performs a standard procedure in an event-driven application.

101Copyright © Software AG 2003

Component Based ProgrammingStatements Grouped by Functions

Miscellaneous

DEFINE DATA Defines the data elements which are to be used in a Natural program or routine.

END Indicates the end of the source code of a Natural program or routine.

EXPAND Expands the allocated memory of dynamic variables to a given size.

EXAMINE
TRANSLATE

Translates the characters contained in a field into upper-case or lower-case, or into other
characters.

INCLUDE Incorporates Natural copycode at compilation.

PROCESS
COMMAND

Invokes a command processor.

REDUCE Reduces the allocated memory of dynamic variables.

RELEASE Deletes the contents of the Natural stack; releases sets of ISNs/RNOs retained via a
FIND statement; releases Natural global variables.

REQUEST
DOCUMENT

Allows you to access an external system.

RUN Compiles and executes a source program.

SET CONTROL Performs a Natural terminal command from within a Natural program.

SET KEY Assigns functions to terminal keys.

SETTIME Establishes a point-in-time reference for a *TIMD system variable.

SORT Sorts records, using the sort program provided by the operating system.

STACK Places data and/or commands into the Natural stack.

STOP Terminates the execution of an application.

TERMINATE Terminates the Natural session.

Copyright © Software AG 2003102

Statements Grouped by FunctionsMiscellaneous

ACCEPT/REJECT

Function
The statements ACCEPT and REJECT are used for accepting/rejecting a record based on user-specified logical
criterion. The ACCEPT/REJECT statement may be used in conjunction with statements which read data records
in a processing loop (FIND, READ, HISTOGRAM, CALL FILE, SORT or READ WORK FILE). The criterion
is evaluated after the record has been selected/read.

Whenever an ACCEPT/REJECT statement is encountered for processing, it will internally refer to the innermost
currently active processing loop initiated with one of the above mentioned statements.

When ACCEPT/REJECT statements are placed in a subroutine, in case of a record reject, the subroutine(s)
entered in the processing loop will automatically be terminated and processing will continue with the next record
of the innermost currently active processing loop.

103Copyright © Software AG 2003

ACCEPT/REJECTACCEPT/REJECT

Fields used as Logical Criteria
The fields used to specify the logical criterion may be database fields or user-defined variables. For additional
information on logical conditions, see Statement Usage Related Topics.

When ACCEPT/REJECT is used with a HISTOGRAM statement, only the database field specified in the
HISTOGRAM statement may be used as a logical criterion.

Processing of Multiple ACCEPT/REJECT Statements
Normally, only one ACCEPT or REJECT statement is required in a single processing loop. If more than one
ACCEPT/REJECT is specified consecutively, the following conditions apply:

If consecutive ACCEPT and REJECT statements are contained in the same processing loop, they are
processed in the specified order.
If an ACCEPT condition is satisfied, the record will be accepted and consecutive ACCEPT/REJECT
statements will be ignored.
If a REJECT condition is satisfied, the record will be rejected and consecutive ACCEPT/REJECT
statements will be ignored.
If the processing continues to the last ACCEPT/REJECT statement, the last statement will determine
whether the record is accepted or rejected.

If other statements are interleaved between multiple ACCEPT/REJECT statements, each ACCEPT/REJECT will
be handled independently.

Limit Notation
If a LIMIT statement or other limit notation has been specified for a processing loop containing an ACCEPT or
REJECT statement, each record processed is counted against the limit regardless of whether or not the record is
accepted or rejected.

Hold Status
ACCEPT/REJECT processing does not cause a held record to be released from hold status unless the profile
parameter RI has been set to RI = ON (this parameter is only available on mainframe computers; see also the
Natural Operations for Mainframes documentation).

Copyright © Software AG 2003104

ACCEPT/REJECTFields used as Logical Criteria

Example 1

 /* EXAMPLE ’ACREX1S’: ACCEPT (STRUCTURED MODE)
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 SEX
 2 MAR-STAT
 END-DEFINE
 LIMIT 50
 READ EMPLOY-VIEW
 ACCEPT IF SEX=’M’ AND MAR-STAT = ’S’
 WRITE NOTITLE ’=’ NAME ’=’ SEX 5X ’=’ MAR-STAT
 END-READ
 END

 NAME: MORENO S E X: M MARITAL STATUS: S
 NAME: VAUZELLE S E X: M MARITAL STATUS: S
 NAME: BAILLET S E X: M MARITAL STATUS: S
 NAME: HEURTEBISE S E X: M MARITAL STATUS: S
 NAME: LION S E X: M MARITAL STATUS: S
 NAME: DEZELUS S E X: M MARITAL STATUS: S
 NAME: BOYER S E X: M MARITAL STATUS: S
 NAME: BROUSSE S E X: M MARITAL STATUS: S
 NAME: DROMARD S E X: M MARITAL STATUS: S
 NAME: DUC S E X: M MARITAL STATUS: S
 NAME: BEGUERIE S E X: M MARITAL STATUS: S
 NAME: FOREST S E X: M MARITAL STATUS: S
 NAME: GEORGES S E X: M MARITAL STATUS: S
 NAME: BOUCLY S E X: M MARITAL STATUS: S

Equivalent reporting-mode example: See program ACREX1R in library SYSEXRM.

105Copyright © Software AG 2003

Example 1ACCEPT/REJECT

Example 2

 /* EXAMPLE ’ACREX2S’: ACCEPT/REJECT (STRUCTURED MODE)
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 SALARY (1)
 1 #PROC-COUNT (N8) INIT <0>
 END-DEFINE
 EMP. FIND EMPLOY-VIEW WITH NAME = ’JACKSON’
 WRITE NOTITLE *COUNTER NAME FIRST-NAME ’SALARY:’ SALARY(1)
 /* **
 ACCEPT IF SALARY (1) LT 50000
 WRITE *COUNTER ’ACCEPTED FOR FURTHER PROCESSING’
 /* **
 REJECT IF SALARY (1) GT 30000
 WRITE *COUNTER ’NOT REJECTED’
 /* **
 ADD 1 TO #PROC-COUNT
 END-FIND
 SKIP 2
 WRITE NOTITLE ’TOTAL PERSONS FOUND ’ *NUMBER (EMP.)
 / ’TOTAL PERSONS SELECTED’ #PROC-COUNT
 END

 1 JACKSON CLAUDE SALARY: 33000
 1 ACCEPTED FOR FURTHER PROCESSING
 2 JACKSON FORTUNA SALARY: 36000
 2 ACCEPTED FOR FURTHER PROCESSING
 3 JACKSON CHARLIE SALARY: 23000
 3 ACCEPTED FOR FURTHER PROCESSING
 3 NOT REJECTED

 TOTAL PERSONS FOUND 3
 TOTAL PERSONS SELECTED 1

Equivalent reporting-mode example: See program ACREX2R in library SYSEXRM.

Copyright © Software AG 2003106

ACCEPT/REJECTExample 2

ADD

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N N P I F D T yes no

Operand2 S A M N P I F D T yes yes

Operand Possible Structure Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A N N P I F D T yes no

Operand2 S A M A N P I F B D T yes yes

Related Statement: COMPUTE

Function
The ADD statement is used to add two or more operands.

Operands
At the time the ADD statement is executed, each operand used in the arithmetic operation must contain a valid
value.

For additions involving arrays, see also the section Arithmetic Operations with Arrays.

As for the formats of the operands, see also the section Performance Considerations for Mixed Formats.

Result Field - operand2

107Copyright © Software AG 2003

ADDADD

TO

If the keyword TO is used, operand2 will be included in the addition and will contain the result of the addition.

GIVING

If the keyword GIVING is used, operand2 will be used to store the result only. If GIVING is used and operand2
is defined with alphanumeric format, the result will be converted to alphanumeric.

If a database field is used as the result field, the addition only results in an update to the internal value that is
used within the program. The value of the field in the database is not affected.

ROUNDED
If the keyword ROUNDED is used, the result will be rounded. For rules on rounding, see the section Rules for
Arithmetic Assignment.

Copyright © Software AG 2003108

ADDROUNDED

Example

 * EXAMPLE ’ADDEX1’: ADD

 DEFINE DATA LOCAL
 1 #A (P2)
 1 #B (P1.1)
 1 #C (P1)
 1 #DATE (D)
 1 #ARRAY1 (P5/1:4,1:4) INIT (2,*) <5>
 1 #ARRAY2 (P5/1:4,1:4) INIT (4,*) <10>
 END-DEFINE
 *
 ADD +5 -2 -1 GIVING #A
 WRITE NOTITLE ’ADD +5 -2 -1 GIVING #A’ 15X ’=’ #A
 *
 ADD .231 3.6 GIVING #B
 WRITE / ’ADD .231 3.6 GIVING #B’ 15X ’=’ #B
 *
 ADD ROUNDED 2.9 3.8 GIVING #C
 WRITE / ’ADD ROUNDED 2.9 3.8 GIVING #C’ 8X ’=’ #C
 *
 MOVE *DATX TO #DATE
 ADD 7 TO #DATE
 WRITE / ’CURRENT DATE:’ *DATX (DF=L)13X
 ’CURRENT DATE + 7:’ #DATE (DF=L)
 *
 WRITE / ’#ARRAY1 AND #ARRAY2 BEFORE ADDITION’
 / ’=’ #ARRAY1 (2,*)
 ’=’ #ARRAY2 (4,*)
 ADD #ARRAY1 (2,*) TO #ARRAY2 (4,*)
 WRITE / ’#ARRAY1 AND #ARRAY2 AFTER ADDITION’
 / ’=’ #ARRAY1 (2,*)
 ’=’ #ARRAY2 (4,*)
 *
 END

 ADD +5 -2 -1 GIVING #A #A: 2

 ADD .231 3.6 GIVING #B #B: 3.8

 ADD ROUNDED 2.9 3.8 GIVING #C #C: 7

 CURRENT DATE: 1999-01-19 CURRENT DATE + 7: 1999-01-26

 #ARRAY1 AND #ARRAY2 BEFORE ADDITION
 #ARRAY1: 5 5 5 5 #ARRAY2: 10 10 10 10

 #ARRAY1 AND #ARRAY2 AFTER ADDITION
 #ARRAY1: 5 5 5 5 #ARRAY2: 15 15 15 15

109Copyright © Software AG 2003

ExampleADD

ASSIGN
See the statement COMPUTE.

Copyright © Software AG 2003110

ASSIGNASSIGN

AT...
The following is a list of the AT... statements:

AT BREAK
AT END OF DATA
AT END OF PAGE
AT START OF DATA
AT TOP OF PAGE

111Copyright © Software AG 2003

AT...AT...

AT BREAK

Structured Mode Syntax

Reporting Mode Syntax

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A N P I F B D T L yes no

Note:
Dynamic or large variables are only allowed to be used as Operand1 on mainframe computers.

Related Statements: BEFORE BREAK PROCESSING | FIND | READ | HISTOGRAM | SORT | READ WORK
FILE

Function
The AT BREAK statement is used to cause the execution of one or more statements whenever a change in value
of a control field occurs. It is used in conjunction with automatic break processing and is available with the
following statements: FIND, READ, HISTOGRAM, SORT, READ WORK FILE.

An AT BREAK statement block is only executed if the object which contains the statement is active at the time
when the break condition occurs.

It is possible to initiate a new processing loop within an AT BREAK condition. This loop must also be closed
within the same AT BREAK condition.

Copyright © Software AG 2003112

AT BREAKAT BREAK

This statement is non-procedural (that is, its execution depends on an event, not on where in a program it is
located).

Reference Notation - r
By default, the final AT BREAK condition (for loop termination) is always related to the outermost active
processing loop initiated with a FIND, READ, READ WORK FILE, HISTOGRAM or SORT statement.

With the notation "(r)" you can relate the final break condition of an AT BREAK statement to another specific
currently open processing loop (that is, the loop in which the AT BREAK statement is located or any outer loop).

Example:

 0110 ...
 0120 READ ...
 0130 FIND ...
 0140 FIND ...
 0150 AT BREAK ...
 0160 FIND ...
 0170 END-FIND
 0180 END-BREAK
 0190 END-FIND
 0200 END-FIND
 0210 END-READ
 0220 ...

In this example, the final AT BREAK condition is related to the READ loop initiated in line 0120. It would be
possible to have it related to one of the FIND loops initiated in line 0130 and 0140, but not to the one initiated in
line 0160.

If "(r)" is specified for a break hierarchy, it must be specified with the first AT BREAK statement and applies
also to all AT BREAK statements which follow.

Control Field - operand1
The field used as the break control field is usually a database field. If a user-defined variable is used, it must be
initialized prior to the evaluation of automatic break processing (see BEFORE BREAK PROCESSING
statement). A specific occurrence of an array can also be used as a control field.

/n/

The notation "/n/" may be used to indicate that only the first n positions (counting from left to right) of the
control field are to be checked for a change in value. This notation can only be used with operands of format A,
B, N or P.

A control break occurs when the value of the control field changes, or when all records in the processing loop for
which the AT BREAK statement applies have been processed.

Example 1

113Copyright © Software AG 2003

Reference Notation - rAT BREAK

 /* EXAMPLE ’ATBEX1S’: AT BREAK (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 COUNTRY
 2 NAME
 END-DEFINE
 /**
 LIMIT 10
 READ EMPLOY-VIEW BY CITY
 AT BREAK OF CITY
 SKIP 1
 END-BREAK
 DISPLAY NOTITLE CITY (IS=ON) COUNTRY (IS=ON) NAME
 END-READ
 /**
 END

 CITY COUNTRY NAME
 -------------------- ------- --------------------

 AIKEN USA SENKO

 AIX EN OTHE. F GODEFROY

 AJACCIO CANALE

 ALBERTSLUND DK PLOUG

 ALBUQUERQUE USA HAMMOND
 ROLLING
 FREEMAN
 LINCOLN

 ALFRETON UK GOLDBERG

 ALICANTE E GOMEZ

Equivalent reporting-mode example: See program ATBEX1R in library SYSEXRM.

Example 2

Copyright © Software AG 2003114

AT BREAKExample 2

 /* EXAMPLE ’ATBEX2’: AT BREAK USING /N/ NOTATION
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 DEPT
 2 NAME
 END-DEFINE
 /***
 LIMIT 10
 READ EMPLOY-VIEW BY DEPT STARTING FROM ’A’
 AT BREAK OF DEPT /4/
 SKIP 1
 END-BREAK
 DISPLAY NOTITLE DEPT NAME
 END-READ
 /***
 END

DEPARTMENT NAME
 CODE
 ---------- --------------------

 ADMA01 JENSEN
 ADMA01 PETERSEN
 ADMA01 MORTENSEN
 ADMA01 MADSEN
 ADMA01 BUHL
 ADMA02 HERMANSEN
 ADMA02 PLOUG
 ADMA02 HANSEN

 COMP01 HEURTEBISE
 COMP01 TANCHOU

System Functions
Natural system functions may be used in conjunction with an AT BREAK statement, see Natural System
Functions for Use in Processing Loops (in the Natural System Functions documentation)..

115Copyright © Software AG 2003

System FunctionsAT BREAK

Multiple Break Levels
Multiple AT BREAK statements may be specified within a processing loop within the same program module. If
multiple BREAK statements are specified for the same processing loop, they form a hierarchy of break levels
independent of whether they are specified consecutively or interspersed within other statements. The first AT
BREAK statement represents the lowest control break level, and each additional AT BREAK statement
represents the next higher control break level.

Every processing loop in a loop hierarchy may have its own break hierarchy attached.

Example - Structured Mode:

 FIND ...
 AT BREAK
 ...
 END-BREAK
 AT BREAK
 ...
 END-BREAK
 AT BREAK
 ...
 END-BREAK
 END-FIND
 ...

Example - Reporting Mode:

 FIND ...
 AT BREAK
 DO
 ...
 DOEND
 AT BREAK
 DO
 ...
 DOEND
 ...

A change in the value of a control field in a break level causes break processing to be activated for that break
level and all lower break levels, regardless of the values of the control fields for the lower break levels.

For easier program maintenance, it is recommended to specify multiple breaks consecutively.

Copyright © Software AG 2003116

AT BREAKMultiple Break Levels

Example 3

 /* EXAMPLE ’ATBEX5S’: AT BREAK WITH MULTIPLE BREAK LEVELS
 /* (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 DEPT
 2 NAME
 2 LEAVE-DUE
 1 LEAVE-DUE-L (N4)
 END-DEFINE
 /***
 LIMIT 5
 FIND EMPLOY-VIEW WITH CITY = ’PHILADELPHIA’ OR = ’PITTSBURGH’
 SORTED BY CITY DEPT
 MOVE LEAVE-DUE TO LEAVE-DUE-L
 DISPLAY CITY (IS=ON) DEPT (IS=ON) NAME LEAVE-DUE-L
 AT BREAK OF DEPT
 WRITE NOTITLE /
 T*DEPT OLD(DEPT) T*LEAVE-DUE-L SUM(LEAVE-DUE-L) /
 END-BREAK
 AT BREAK OF CITY
 WRITE NOTITLE
 T*CITY OLD(CITY) T*LEAVE-DUE-L SUM(LEAVE-DUE-L) //
 END-BREAK
 END-FIND
 /***
 END

117Copyright © Software AG 2003

Example 3AT BREAK

 CITY DEPARTMENT NAME LEAVE-DUE-L
 CODE
 -------------------- ---------- -------------------- -----------

 PHILADELPHIA MGMT30 WOLF-TERROINE 8
 MACKARNESS 12

 MGMT30 20

 TECH10 BUSH 8
 NETTLEFOLDS 7

 TECH10 15

 PHILADELPHIA 35

 PITTSBURGH MGMT10 FLETCHER 3

 MGMT10 3

 PITTSBURGH 3

Equivalent reporting-mode example: See program ATBEX5R in library SYSEXRM.

Copyright © Software AG 2003118

AT BREAKExample 3

AT END OF DATA

Structured Mode Syntax

Reporting Mode Syntax

Related Statements: AT START OF DATA | FIND | READ | HISTOGRAM | SORT | READ WORK FILE

Function
The AT END OF DATA statement is used to specify processing to be performed when all records selected for a
database processing loop have been processed. It must be specified within the same program module which
contains the loop creating statement.

This statement is non-procedural (that is, its execution depends on an event, not on where in a program it is
located).

Restrictions
This statement can only be used in a processing loop that has been initiated with one of the following statements:
FIND, READ, READ WORK FILE, HISTOGRAM or SORT. It may be used only once per processing loop.

This statement is not evaluated if the processing loop referenced for END OF DATA processing is not entered.

Reference to a Specific Processing Loop - r
An AT END OF DATA statement may be related to a specific active processing loop by using the "(r)" notation.
If the "(r)" notation is not used, it will be related to the outermost active database processing loop.

119Copyright © Software AG 2003

AT END OF DATAAT END OF DATA

Values of Database Fields
When the AT END OF DATA condition for the processing loop occurs, all database fields contain the data from
the last record processed.

System Functions
Natural system functions may be used in conjunction with an AT END OF DATA statement as described in
section System Functions.

Copyright © Software AG 2003120

AT END OF DATAValues of Database Fields

Example

 /* EXAMPLE ’AEDEX1S’: AT END OF DATA (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 2 SALARY (1)
 2 CURR-CODE (1)
 END-DEFINE
 /***
 LIMIT 5
 EMP. FIND EMPLOY-VIEW WITH CITY = ’STUTTGART’
 IF NO RECORDS FOUND
 ENTER
 END-NOREC
 DISPLAY PERSONNEL-ID NAME FIRST-NAME
 SALARY (1) CURR-CODE (1)
 /* **
 AT END OF DATA
 IF *COUNTER (EMP.) = 0
 WRITE ’NO RECORDS FOUND’
 ESCAPE BOTTOM
 END-IF
 WRITE NOTITLE / ’SALARY STATISTICS;’
 / 7X ’MAXIMUM:’ MAX(SALARY(1)) CURR-CODE (1)
 / 7X ’MINIMUM:’ MIN(SALARY(1)) CURR-CODE (1)
 / 7X ’AVERAGE:’ AVER(SALARY(1)) CURR-CODE (1)
 END-ENDDATA
 /* **
 END-FIND
 /***
 END

PERSONNEL NAME FIRST-NAME ANNUAL CURRENCY
 ID SALARY CODE
 --------- -------------------- -------------------- ---------- --------

 11100328 BERGHAUS ROSE 70800 DM
 11100329 BARTHEL PETER 42000 DM
 11300313 AECKERLE SUSANNE 55200 DM
 11300316 KANTE GABRIELE 61200 DM
 11500304 KLUGE ELKE 49200 DM

 SALARY STATISTICS:
 MAXIMUM: 70800 DM
 MINIMUM: 42000 DM
 AVERAGE: 55680 DM

Equivalent reporting-mode example: See program AEDEX1R in library SYSEXRM.

121Copyright © Software AG 2003

ExampleAT END OF DATA

AT END OF PAGE

Structured Mode Syntax

Reporting Mode Syntax

Related Statements: AT TOP OF PAGE | DISPLAY | WRITE | INPUT | NEWPAGE

Function
The AT END OF PAGE statement is used to specify processing that is to be performed when an end-of-page
condition is detected (see the session parameter PS in the Natural Parameter Reference documentation).

An end-of-page condition may also occur as a result of a SKIP or NEWPAGE statement, but not as a result of an
EJECT or INPUT statement.

An AT END OF PAGE statement block is only executed if the object which contains the statement block is
active at the time when the end-of-page condition occurs.

An AT END OF PAGE statement must not be placed within an inline subroutine.

This statement is non-procedural (that is, its execution depends on an event, not on where in a program it is
located).

Report Specification - rep
The notation (rep) may be used to specify the identification of the report for which the AT END OF PAGE
statement is applicable. A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE
PRINTER statement may be specified.
If (rep) is not specified, the AT END OF PAGE statement will apply to the first report (Report 0).

Copyright © Software AG 2003122

AT END OF PAGEAT END OF PAGE

Logical Page Size
The end-of-page check is performed after the processing of a DISPLAY or WRITE statement is completed.
Therefore, if a DISPLAY or WRITE statement produces multiple lines of output, overflow of the physical page
may occur before an end-of-page condition is detected.

A logical page size (session parameter PS) which is less than the physical page size must be specified to ensure
that information printed by an AT END OF PAGE statement appears on the same physical page as the title.

Last-Page Handling
Within a main program, an end-of-page condition is activated when the execution of the main program
terminates via ESCAPE, STOP or END.

Within a subroutine, an end-of-page condition is not activated when the execution of the subroutine terminates
via ESCAPE, RETURN or END.

System Functions
Natural system functions may be used in conjunction with an AT END OF PAGE statement as described in the
section Using System Functions in Processing Loops of the Natural System Functions documentation.

If a system function is to be used within an AT END OF PAGE statement block, the GIVE SYSTEM
FUNCTIONS clause must be specified in the corresponding DISPLAY statement.

INPUT Statement with AT END OF PAGE
If an INPUT statement is specified within an AT END OF PAGE statement block, no new page operation is
performed. The page size (session parameter PS) must be reduced to a value that allows the lines created by the
INPUT statement to appear on the same physical page. See also INPUT statement "Split Screen Feature". See
also Example 2.

Example 1

123Copyright © Software AG 2003

Logical Page SizeAT END OF PAGE

 /* EXAMPLE ’AEPEX1S’: AT END OF PAGE (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 JOB-TITLE
 2 SALARY (1)
 2 CURR-CODE (1)
 END-DEFINE
 /***
 FORMAT PS=10
 LIMIT 10
 READ EMPLOY-VIEW BY PERSONNEL-ID FROM ’20017000’
 DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
 NAME JOB-TITLE ’SALARY’ SALARY(1) CURR-CODE (1)
 /* ***
 AT END OF PAGE
 WRITE / 28T ’AVERAGE SALARY: ...’ AVER(SALARY(1)) CURR-CODE (1)
 END-ENDPAGE
 /* ***
 END-READ
 /***
 END

 NAME CURRENT SALARY CURRENCY
 POSITION CODE
 -------------------- ------------------------- ---------- --------

 CREMER ANALYST 34000 USD
 MARKUSH TRAINEE 22000 USD
 GEE MANAGER 39500 USD
 KUNEY DBA 40200 USD
 NEEDHAM PROGRAMMER 32500 USD
 JACKSON PROGRAMMER 33000 USD

 AVERAGE SALARY: ... 33533 USD

Equivalent reporting-mode example: See program AEPEX1R in library SYSEXRM.

Copyright © Software AG 2003124

AT END OF PAGEExample 1

Example 2

 /* EXAMPLE ’AEPEX2’: AT END OF PAGE WITH INPUT STATEMENT
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 POST-CODE
 2 CITY
 1 #START-NAME(A20)
 END-DEFINE
 /**
 FORMAT PS=21
 REPEAT
 READ (15) EMPLOY-VIEW BY NAME = #START-NAME
 DISPLAY NOTITLE NAME FIRST-NAME POST-CODE CITY
 END-READ
 NEWPAGE
 /**
 AT END OF PAGE
 MOVE NAME TO #START-NAME
 INPUT / ’-’ (79) / 10T ’Reposition to name ==>’
 #START-NAME (AD=MI) ’(’’.’’ to exit)’
 IF #START-NAME = ’.’
 STOP
 END-IF
 END-ENDPAGE
 /**
 END-REPEAT
 END

 NAME FIRST-NAME POSTAL CITY
 ADDRESS
 -------------------- -------------------- ---------- --------------------

 ALEXANDER STEPHEN 19711 NEWARK
 ALEXANDER GIL 21209 BALTIMORE
 ALEXANDER CHARLY 95616 DAVIS
 ALEXANDER HOLLY 53706 MADISON
 ALLEGRE KARL-OTTO 8100 CHARLEVILLE MEZIERES
 ALLSOP ALAN DE3 3NL DERBY
 ALVAREZ RAQUEL 28015 MADRID
 AMOROS FUENSANTA 28014 MADRID
 ANDERSEN ANITA 1850 V KÖBENHAVN
 ANDERSEN KARIN 2720 VANLÖSE
 ANDERSEN LISSI 2650 HVIDOVRE
 ANDERSON JENNY 84112 SALT LAKE CITY
 ANTLIFF JANET DE3 3EE DERBY
 ARCHER ROBIN DE4 8GR DERBY
 ARCONADA ARANZAZU 28014 MADRID

 Reposition to name ==> ARCONADA (’.’ to exit)

125Copyright © Software AG 2003

Example 2AT END OF PAGE

AT START OF DATA

Structured Mode Syntax

Reporting Mode Syntax

Related Statements: AT END OF DATA | FIND | READ | HISTOGRAM | SORT | READ WORK FILE

Function
The statement AT START OF DATA is used to perform processing immediately after the first of a set of records
is read for a processing loop that has been initiated by one of the following statements: READ, FIND,
HISTOGRAM, SORT or READ WORK FILE. If the loop-initiating statement contains a WHERE clause, the
at-start-of-data condition will be true when the first record is read which meets both the basic search and the
WHERE criteria.

This statement is non-procedural (that is, its execution depends on an event, not on where in a program it is
located).

Value of Database Fields
All database fields contain the values of the record which caused the at-start-of-data condition to be true (that is,
the first record of the set of records to be processed).

Positioning
This statement must be positioned within a processing loop, and it may be used only once per processing loop.

Copyright © Software AG 2003126

AT START OF DATAAT START OF DATA

Reference to a Specific Processing Loop - r
An AT START OF DATA statement may be related to a specific outer active processing loop by using the "(r)"
notation. If this notation is not used, the statement is related to the outermost active processing loop.

Example

 /* EXAMPLE ’ASDEX1S’: AT START OF DATA (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
 1 #CNTL (A1) INIT <’ ’>
 1 #CITY (A20) INIT <’ ’>
 END-DEFINE
 /**
 REPEAT
 INPUT ’ENTER VALUE FOR CITY’ #CITY
 IF #CITY = ’ ’ OR = ’END’
 STOP
 END-IF
 FIND EMPLOY-VIEW WITH CITY = #CITY
 IF NO RECORDS FOUND
 WRITE NOTITLE NOHDR ’NO RECORDS FOUND’
 ESCAPE BOTTOM
 END-NOREC
 /**
 AT START OF DATA
 INPUT (AD=O) ’RECORDS FOUND’ *NUMBER //
 ’ENTER ’’D’’ TO DISPLAY RECORDS’ #CNTL (AD=A)
 IF #CNTL NE ’D’
 ESCAPE BOTTOM
 END-IF
 END-START
 /**
 DISPLAY NAME FIRST-NAME
 END-FIND
 END-REPEAT
 END

 ENTER VALUE FOR CITY PARIS

 RECORDS FOUND 24

 ENTER ’D’ TO DISPLAY RECORDS D

127Copyright © Software AG 2003

Reference to a Specific Processing Loop - rAT START OF DATA

 NAME FIRST-NAME
 -------------------- --------------------

 MAIZIERE ELISABETH
 MARX JEAN-MARIE
 REIGNARD JACQUELINE
 RENAUD MICHEL
 REMOUE GERMAINE
 LAVENDA SALOMON
 BROUSSE GUY
 GIORDA LOUIS
 SIECA FRANCOIS
 CENSIER BERNARD
 DUC JEAN-PAUL
 CAHN RAYMOND
 MAZUY ROBERT
 VALLY ALAIN
 BRETON JEAN-MARIE
 GIGLEUX JACQUES
 XOLIN CHRISTIAN
 LEGRIS ROGER
 RIVIERE JEAN-LUC
 REICH MARC
 VVVV

Equivalent reporting-mode example: See program ASDEX1R in library SYSEXRM.

Copyright © Software AG 2003128

AT START OF DATAExample

AT TOP OF PAGE

Structured Mode Syntax

Reporting Mode Syntax

Related Statements: AT END OF PAGE | NEWPAGE.

Function
The statement AT TOP OF PAGE is used to specify processing which is to be performed when a new page is
started.

A new page is started when the internal line counter exceeds the page size set with the session parameter PS, or
when a NEWPAGE statement is executed. Either of these events cause a top-of-page condition to be true. An
EJECT statement causes a new page to be started but does not cause a top-of-page condition.

An AT TOP OF PAGE statement block is only executed when the object which contains the statement is active
at the time when the top-of-page condition occurs.

Any output created as a result of AT TOP OF PAGE processing will appear following the title line with an
intervening blank line.

This statement is non-procedural (that is, its execution depends on an event, not on where in a program it is
located).

Restriction
An AT TOP OF PAGE statement must not be placed within an inline subroutine.

129Copyright © Software AG 2003

AT TOP OF PAGEAT TOP OF PAGE

Report Specification - rep
The notation (rep) may be used to specify the identification of the report for which the AT TOP OF PAGE
statement is applicable. A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE
PRINTER statement may be specified.

If (rep) is not specified, the AT TOP OF PAGE statement applies to the first report (report 0).

Example

 /* EXAMPLE ’ATPEX1S’: AT TOP OF PAGE (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
 2 DEPT
 END-DEFINE
 /***
 FORMAT PS=15
 LIMIT 15
 READ EMPLOY-VIEW BY NAME STARTING FROM ’L’
 DISPLAY 2X NAME 4X FIRST-NAME CITY DEPT
 WRITE TITLE UNDERLINED ’EMPLOYEE REPORT’
 WRITE TRAILER ’-’ (78)
 /***
 AT TOP OF PAGE
 WRITE ’BEGINNING NAME:’ NAME
 END-TOPPAGE
 /***
 AT END OF PAGE
 SKIP 1
 WRITE ’ENDING NAME: ’ NAME
 END-ENDPAGE
 END-READ
 END

Copyright © Software AG 2003130

AT TOP OF PAGEReport Specification - rep

 EMPLOYEE REPORT

 BEGINNING NAME: LAFON
 NAME FIRST-NAME CITY DEPARTMENT
 CODE
 -------------------- -------------------- -------------------- ----------

 LAFON CHRISTIANE PARIS VENT18
 LANDMANN HARRY ESCHBORN MARK29
 LANE JACQUELINE DERBY MGMT02
 LANKATILLEKE LALITH FRANKFURT PROD22
 LANNON BOB LINCOLN SALE20
 LANNON LESLIE SEATTLE SALE30
 LARSEN CARL FARUM SYSA01
 LARSEN MOGENS VEMMELEV SYSA02
 --

 ENDING NAME: LARSEN

Equivalent reporting-mode example: See program ATPEX1R in library SYSEXRM.

131Copyright © Software AG 2003

ExampleAT TOP OF PAGE

BACKOUT TRANSACTION

Function
This statement is used to back out all database updates performed during the current logical transaction. This
statement also releases all records held during the transaction.

The BACKOUT TRANSACTION statement is executed only if a database transaction under control of Natural
has taken place. For which databases the statement is executed depends on the setting of the profile parameter
ET:

If ET=OFF, the statement is executed only for the database affected by the transaction.
If ET=ON, the statement is executed for all databases that have been referenced since the last execution of a
BACKOUT TRANSACTION or END TRANSACTION statement.

Note:
This statement is not available with Entire System Server.

Considerations for DL/I Databases
Because PSB scheduling is terminated by a Syncpoint request, Natural saves the PSB position before executing
the BACKOUT TRANSACTION statement. Before the next command execution, Natural re-schedules the PSB
and tries to set the PCB position as it was before the backout. The PCB position might be shifted forward if any
pointed segment had been deleted in the time period between the backout and the following command.

Considerations for SQL Databases
As most SQL databases close all cursors when a logical unit of work ends, a BACKOUT TRANSACTION
statement must not be placed within a database modification loop; instead, it has to be placed after such a loop.

Considerations for XML Databases
A BACKOUT TRANSACTION statement must not be placed within a database modification loop; instead, it
has to be placed after such a loop.

Backout Transaction Issued by Natural
If the user interrupts the current Natural operation with a terminal command (command "%%" or CLEAR key),
Natural issues a BACKOUT TRANSACTION statement (see also the terminal command "%%" in the Terminal
Commands documentation).

Copyright © Software AG 2003132

BACKOUT TRANSACTIONBACKOUT TRANSACTION

Additional Information
For additional information on the use of the transaction backout feature, see the section Database Access of the
Natural Programming Guide.

133Copyright © Software AG 2003

Additional InformationBACKOUT TRANSACTION

Example

 /* EXAMPLE ’BOTEX1S’: BACKOUT TRANSACTION (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 DEPT
 2 LEAVE-DUE
 2 LEAVE-TAKEN
 1 #DEPT (A6)
 1 #RESP (A3)
 END-DEFINE
 /***
 LIMIT 3
 INPUT ’DEPARTMENT TO BE UPDATED:’ #DEPT
 IF #DEPT = ’ ’
 STOP
 END-IF
 /***
 FIND EMPLOY-VIEW WITH DEPT = #DEPT
 IF NO RECORDS FOUND
 REINPUT ’NO RECORDS FOUND’
 END-NOREC
 INPUT ’NAME: ’ NAME (AD=O) /
 ’LEAVE DUE: ’ LEAVE-DUE (AD=M) /
 ’LEAVE TAKEN:’ LEAVE-TAKEN (AD=M)
 UPDATE
 END-FIND
 /***
 INPUT ’UPDATE TO BE PERFORMED YES/NO:’ #RESP
 DECIDE ON FIRST #RESP
 VALUE ’YES’
 END TRANSACTION
 VALUE ’NO’
 BACKOUT TRANSACTION
 NONE
 REINPUT ’PLEASE ENTER YES OR NO’
 END-DECIDE
 /***
 END

 DEPARTMENT TO BE UPDATED: MGMT30

 NAME: POREE
 LEAVE DUE: 45
 LEAVE TAKEN: 31

UPDATE TO BE PERFORMED YES/NO: NO

Copyright © Software AG 2003134

BACKOUT TRANSACTIONExample

Equivalent reporting-mode example: See program BOTEX1R in library SYSEXRM.

135Copyright © Software AG 2003

ExampleBACKOUT TRANSACTION

BEFORE BREAK PROCESSING

Structured Mode Syntax

Reporting Mode Syntax

Related Statement: AT BREAK

Function
The BEFORE BREAK PROCESSING statement may be used in conjunction with automatic break processing to
perform processing:

before the value of the break control field is checked;
before the statements specified with an AT BREAK statement are executed;
before Natural system functions are evaluated.

This statement is most often used to initialize or compute values of user-defined variables which are to be used
in break processing (see AT BREAK statement).

If no break processing is to be performed (that is, no AT BREAK statement is specified for the processing loop),
any statements specified with a BEFORE BREAK PROCESSING statement will not be executed.

This statement is non-procedural (that is, its execution depends on an event, not on where in a program it is
located).

Restrictions
The BEFORE BREAK PROCESSING statement may only be used with a processing loop that has been initiated
with one of the following statements: FIND, READ, HISTOGRAM, SORT or READ WORK FILE. It may be
placed anywhere within the processing loop and is always related to the processing loop in which it is contained.
Only one BEFORE BREAK PROCESSING statement may be specified per processing loop.

Copyright © Software AG 2003136

BEFORE BREAK PROCESSINGBEFORE BREAK PROCESSING

The statement BEFORE BREAK PROCESSING must not be used in conjunction with the statement PERFORM
BREAK PROCESSING.

Example

 /* EXAMPLE ’BBPEX1’: BEFORE BREAK PROCESSING
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 SALARY (1)
 2 BONUS (1,1)
 1 #INCOME (P11)
 END-DEFINE
 /***
 LIMIT 7
 READ EMPLOY-VIEW BY CITY = ’L’
 /***
 BEFORE BREAK PROCESSING
 COMPUTE #INCOME = SALARY (1) + BONUS (1,1)
 END-BEFORE
 /***
 AT BREAK OF CITY
 WRITE NOTITLE ’AVERAGE INCOME FOR’ OLD (CITY) 20X AVER(#INCOME) /
 END-BREAK
 /***
 DISPLAY CITY ’NAME’ NAME ’SALARY’ SALARY (1) ’BONUS’ BONUS (1,1)
 END-READ
 END

 CITY NAME SALARY BONUS
 -------------------- -------------------- ---------- ----------

 LA BASSEE HULOT 165000 70000
 AVERAGE INCOME FOR LA BASSEE 235000

 LA CHAPELLE ST LUC GUILLARD 124100 23000
 LA CHAPELLE ST LUC BERGE 198500 50000
 LA CHAPELLE ST LUC POLETTE 124090 23000
 LA CHAPELLE ST LUC DELAUNEY 115000 23000
 LA CHAPELLE ST LUC SCHECK 125600 23000
 LA CHAPELLE ST LUC KREEBS 184550 50000
 AVERAGE INCOME FOR LA CHAPELLE ST LUC 177306

137Copyright © Software AG 2003

ExampleBEFORE BREAK PROCESSING

CALL

CALL [INTERFACE4] operand1 [USING] [operand2]...128

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A yes no

Operand2 C S A G A N P I F B D T L C G yes yes

CALL on Mainframe Computers
Part I: CALL under UNIX and Windows
INTERFACE4
Part II: CALL under UNIX and Windows

CALL on Mainframe Computers
Function
Program Name - operand1
Parameters - operand2
Return Code
Register Usage
Boundary Alignment
Adabas Calls
Direct/Dynamic Loading
Example
Linkage Conventions
Calling a PL/I Program

Function

The CALL statement is used to call an external program written in another standard programming language from
a Natural program and then return to the next statement after the CALL statement.

The called program may be written in any programming language which supports a standard CALL interface.
Multiple CALL statements to one or more external programs may be specified.

A CALL statement may be issued within a program to be executed under control of a TP monitor, provided that
the TP monitor supports a CALL interface.

Program Name - operand1

The name of the program to be called (operand1) can be specified as a constant or - if different programs are to
be called dependent on program logic - as an alphanumeric variable of length 1 to 8. A program name must be
placed left-justified in the variable.

Copyright © Software AG 2003138

CALLCALL

Parameters - operand2

The CALL statement may contain up to 128 parameters (operand2), unless the INTERFACE4 option is used. In
that case, up to 32767 parameters may be used. Standard linkage register conventions are used. One address is
passed in the parameter list for each parameter field specified.

If a group name is used, the group is converted to individual fields; that is, if a user wishes to specify the
beginning address of a group, the first field of the group must be specified.

Note:
The internal representation of positive signs of packed numbers is changed to the value specified by the
PSIGNF parameter of the NTCMPO macro before control is passed to the external program.

Return Code

The condition code of any called program (content of register 15 upon return to Natural) may be obtained by
using the Natural system function RET.

139Copyright © Software AG 2003

Parameters - operand2CALL

Example:

 ...
 RESET #RETURN(B4)
 CALL ’PROG1’
 IF RET (’PROG1’) > #RETURN
 WRITE ’ERROR OCCURRED IN PROGRAM1’
 END-IF
 ...

Register Usage

Register Contents

R1 Address pointer to the parameter address list.

R2 Address pointer to the field (parameter) description list.
The field description list contains information on the first 128 fields passed in the parameter list.
Each description is a 4-byte entry containing the following information:
- the 1st byte contains the type of variable (A,B,...)
If field type is "N" or "P":
- the 2nd byte contains the total number of digits;
- the 3rd byte contains the number of digits before the decimal point;
- the 4th byte contains the number of digits after the decimal point.
all other field types:
- the 2nd byte is unused;
- the 3rd-4th byte contain the length of field.

R3 Address pointer to list of field lengths. This list contains the length of each field passed in the
parameter list.
In the case of an array, the length is the sum of the individual occurrences’ lengths.

R13 Address of 18-word save area.

R14 Return address.

R15 Entry address/return code.

Boundary Alignment

The Natural data area, in which all user-defined variables are stored, always begins on a double-word boundary.

If DEFINE DATA is used, all data blocks (for example, LOCAL, GLOBAL blocks) are double-word aligned,
and all structures (level 1) are full-word aligned.

Alignment within the data area is the responsibility of the user and is governed by the order in which variables
are defined to Natural.

Copyright © Software AG 2003140

CALLRegister Usage

Adabas Calls

A called program may contain a call to Adabas. The called program must not issue an Adabas open or close
command. Adabas will open all database files referenced. If Adabas exclusive (EXU) update mode is to be used,
the Natural profile parameter OPRB must be used in order to open all referenced files. Before you attempt to use
EXU update mode, you should consult your Natural administrator.

Direct/Dynamic Loading

The called program may either be directly linked to the Natural nucleus (that is, the program is specified with the
CSTATIC parameter in the Natural parameter module; see also the Natural Operations documentation for
Mainframes, or it may be loaded dynamically the first time it is called. If it is to be loaded dynamically, the load
module library containing the called program must be concatenated to the Natural load library in the Natural
execution JCL or in the appropriate TP-monitor program library. Ask your Natural administrator for additional
information.

Example

The example on the next page shows a Natural program which calls the COBOL program "TABSUB" for the
purpose of converting a country code into the corresponding country name. Two parameter fields are passed by
the Natural program to TABSUB: the first parameter is the country code, as read from the database; the second
parameter is used to return the corresponding country name.

Calling Natural Program:

 * EXAMPLE ’CALEX1’: CALL PROGRAM ’TABSUB’
 * ***************************************
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 BIRTH
 2 COUNTRY
 1 #COUNTRY (A3)
 1 #COUNTRY-NAME (A15)
 END-DEFINE
 *
 MOVE EDITED ’19550701’ to #FIND-FROM (EM=YYYYMMDD)
 MOVE EDITED #19550731’ to #FIND-TO (EM=YYYYMMDD)
 *
 FIND EMPLOY-VIEW WITH BIRTH = #FIND-FROM THRU #FIND-TO
 MOVE COUNTRY TO #COUNTRY
 CALL ’TABSUB’ #COUNTRY #COUNTRY-NAME
 DISPLAY NAME BIRTH (EM=YYYY-MM-DD) #COUNTRY-NAME
 END-FIND
 END

141Copyright © Software AG 2003

Adabas CallsCALL

Called COBOL program "TABSUB":

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TABSUB.
 REMARKS. THIS PROGRAM PROVIDES THE COUNTRY NAME
 FOR A GIVEN COUNTRY CODE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 LINKAGE SECTION.
 01 COUNTRY-CODE PIC X(3).
 01 COUNTRY-NAME PIC X(15).
 PROCEDURE DIVISION USING COUNTRY-CODE COUNTRY-NAME.
 P-CONVERT.
 MOVE SPACES TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’BLG’ MOVE ’BELGIUM’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’DEN’ MOVE ’DENMARK’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’FRA’ MOVE ’FRANCE’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’GER’ MOVE ’GERMANY’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’HOL’ MOVE ’HOLLAND’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’ITA’ MOVE ’ITALY’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’SPA’ MOVE ’SPAIN’ TO COUNTRY-NAME.
 IF COUNTRY-CODE = ’UK’ MOVE ’UNITED KINGDOM’ TO COUNTRY-NAME.
 P-RETURN.
 GOBACK.

Linkage Conventions

CALL using Com-plete
CALL using CICS
Return Codes under CICS
Example using CICS

Standard linkage register notation is used in batch mode. Each TP monitor has its own conventions. These
conventions must be followed; otherwise, unpredictable results could occur. The following sections describe
conventions that apply for the supported TP monitors.

CALL using Com-plete

The called program must reside in the Com-plete online load library. This allows Com-plete to load the program
dynamically. The Com-plete utility ULIB may be used to catalog the program.

Copyright © Software AG 2003142

CALLLinkage Conventions

CALL using CICS

The called program must reside in either a load module library concatenated to the CICS library or the DFHRPL
library. The program must also have a PPT entry in the operating PPT so that CICS can locate the program and
load it.

The linkage convention passes the parameter list address followed by the field description list address in the first
fullwords of the TWA and the COMMAREA.The parameter FLDLEN in the NCIPARM parameter module
controls if the field length list is also passed (by default, it is not passed). The COMMAREA length (8 or 12)
reflects the number of list addresses passes (2 or 3). The last list address is indicated by the high-order bit being
set. The user must ensure addressability to the TWA or to the COMMAREA respectively. This is only required
if the user program has not been defined to Natural as a static or directly linked program, in which case the
pointer to the parameter list is passed via register 1, the pointer to the description list via register 2, and the
pointer to the field length list via register 3.

If you wish the parameter values themselves, rather than the address of their address list, to be passed in the
COMMAREA, issue the Natural terminal command %P=C before the call.

Normally, when a Natural programs calls a non-Natural program and the called program issues a conversational
terminal I/O, the Natural thread is blocked until the user has entered data. To prevent the Natural thread from
being blocked, the terminal command %P=V can be used

Normally, when a Natural program calls a non-Natural program under CICS, the call is accomplished by an
"EXEC CICS LINK" request. If standard linkage is to be used for the call instead, issue the terminal command
%P=S (In this case, the called program must adhere to standard linkage conventions with standard register
usage).

In 31-bit-mode environments the following applies: if a program linked with AMODE=24 is called and the
threads are above 16 MB, a "call by value" will be done automatically, that is, the specified parameters which are
to be passed to the called program will be copied below 16 MB.

Return Codes under CICS

CICS itself does not support condition codes for a call with CICS conventions (EXEC CICS LINK). However,
the Natural CICS Interface supports return codes for the CALL statement: When control is returned from the
called program, Natural checks whether the first fullword of the COMMAREA has changed. If it has, its new
content will be taken as the return code. If it has not changed, the first fullword of the TWA will be checked and
its new content taken as the return code. If neither of the two fullwords has changed, the return code will be "0".

Note:
When parameter values are passed in the COMMAREA (%P=C), the return code is always "0".

143Copyright © Software AG 2003

Linkage ConventionsCALL

Example using CICS:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TABSUB.
 REMARKS. THIS PROGRAM PERFORMS A TABLE LOOK-UP AND
 RETURNS A TEXT MESSAGE.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 MSG-TABLE.
 03 FILLER PIC X(15) VALUE ’MESSAGE1 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE2 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE3 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE4 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE5 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE6 ’.
 03 FILLER PIC X(15) VALUE ’MESSAGE7 ’.
 01 TAB REDEFINES MSG-TABLE.
 03 MESSAGE OCCURS 7 TIMES PIC X(15).
 LINKAGE SECTION.
 01 TWA-DATA.
 03 PARM-POINTER USAGE IS POINTER.
 01 PARM-LIST.
 03 DATA-LOC-IN USAGE IS POINTER.
 03 DATA-LOC-OUT USAGE IS POINTER.
 01 INPUT-DATA.
 03 INPUT-NUMBER PIC 99.
 01 OUTPUT-DATA.
 03 OUTPUT-MESSAGE PIC X(15).
 PROCEDURE DIVISION.
 100-INIT.
 EXEC CICS ADDRESS TWA(ADDRESS OF TWA-DATA) END-EXEC.
 SET ADDRESS OF PARM-LIST TO PARM-POINTER.
 SET ADDRESS OF INPUT-DATA TO DATA-LOCIN.
 SET ADDRESS OF OUTPUT-DATA TO DATA-LOC-OUT.
 200-PROCESS.
 MOVE MESSAGE (INPUT-NUMBER) TO OUTPUT-MESSAGE.
 300-RETURN.
 EXEC CICS RETURN END-EXEC.
 400-DUMMY.
 GO-BACK.

Copyright © Software AG 2003144

CALLLinkage Conventions

Calling a PL/I Program

Example of Calling a PL/I Program:
Example of Calling a PL/I Program which is Operating under CICS

A called program written in PL/I requires the following additional procedures:

The ENTRY PLICALLA statement must be provided when the program is link-edited. This statement
causes the PL/I load module to receive control as a sub-program (that is, a called program).
If the PL/I program is to be called recursively, you may also use the program NATPLICA, which is
contained in the Natural source library. NATPLICA is an example of how a PL/I program can be called
recursively from a Natural program without causing any storage bottlenecks (for further details, please refer
to the comments in the program NATPLICA itself). A complete description of the ENTRY PLICALLA
statement and further information on how to call a PL/I program can be found in the relevant IBM PL/I
documentation.
Since the parameter list is a standard list and is not an argument list being passed from another PL/I
program, the addresses passed do not point at a LOCATOR DESCRIPTOR. This problem may be resolved
by defining the parameter fields as arithmetic variables. This causes PL/I to treat the parameter list as
addresses of data instead of addresses of LOCATOR DESCRIPTOR control blocks.

The technique suggested for defining the parameter fields is illustrated in the following example:

 PLIPROG: PROC(INPUT_PARM_1, INPUT_PARM_2) OPTIONS(MAIN);
 DECLARE (INPUT_PARM_1, INPUT_PARM_2) FIXED;
 PTR_PARM_1 = ADDR(INPUT_PARM_1);
 PTR_PARM_2 = ADDR(INPUT_PARM_2);
 DECLARE FIRST_PARM PIC ’99’ BASED (PTR_PARM_1);
 DECLARE SECOND_PARM CHAR(12) BASED (PTR_PARM_2);

Each parameter in the input list should be treated as a unique element. The number of input parameters should
exactly match the number being passed from the Natural program. The input parameters and their attributes must
match the Natural definitions or unpredictable results may occur. For additional information on passing
parameters in PL/I, see the relevant IBM PL/I documentation.

145Copyright © Software AG 2003

Calling a PL/I ProgramCALL

Example of calling a PL/I Program:

 /* EXAMPLE ’CALEX2’: CALL PROGRAM ’NATPLI’
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 AREA-CODE
 2 REDEFINE AREA-CODE
 3 #AC(N1)
 1 #INPUT-NUMBER (N2)
 1 #OUTPUT-COMMENT (A15)
 END-DEFINE
 /***
 READ EMPLOY-VIEW IN LOGICAL SEQUENCE BY NAME
 STARTING FROM ’WAGNER’
 MOVE ’ ’ TO #OUTPUT-COMMENT
 MOVE #AC TO #INPUT-NUMBER
 CALL ’NATPLI’ #INPUT-NUMBER #OUTPUT-COMMENT
 END-READ
 END

 NATPLI: PROC(PARM_COUNT, PARM_COMMENT) OPTIONS(MAIN);
 /* */
 /* THIS PROGRAM ACCEPTS AN INPUT NUMBER */
 /* AND TRANSLATES IT TO AN OUTPUT CHARACTER */
 /* STRING FOR PLACEMENT ON THE FINAL */
 /* NATURAL REPORT */
 /* */
 /* */
 DECLARE PARM_COUNT, PARM_COMMENT FIXED;
 DECLARE ADDR BUILTIN;
 COUNT_PTR = ADDR(PARM_COUNT);
 COMMENT_PTR = ADDR(PARM_COMMENT);
 DECLARE INPUT_NUMBER PIC ’99’ BASED (COUNT_PTR);
 DECLARE OUTPUT_COMMENT CHAR(15) BASED (COMMENT_PTR);
 DECLARE COMMENT_TABLE(9) CHAR(15) STATIC INITIAL
 (’COMMENT1 ’,
 ’COMMENT2 ’,
 ’COMMENT3 ’,
 ’COMMENT4 ’,
 ’COMMENT5 ’,
 ’COMMENT6 ’,
 ’COMMENT7 ’,
 ’COMMENT8 ’,
 ’COMMENT9 ’);
 OUTPUT_COMMENT = COMMENT_TABLE(INPUT_NUMBER);
 RETURN;
 END NATPLI;

Copyright © Software AG 2003146

CALLCalling a PL/I Program

Example of Calling a PL/I Program which is Operating under CICS:

 /* EXAMPLE ’CALEX3’: CALL PROGRAM ’CICSP’
 /***
 DEFINE DATA LOCAL
 1 #MESSAGE (A10) INIT <’ ’>
 END-DEFINE
 /***
 CALL ’CICSP’ #MESSAGE
 DISPLAY #MESSAGE
 /***
 END

 CICSP: PROCEDURE OPTIONS (MAIN REENTRANT);
 DCL 1 TWA_ADDRESS BASED(TWA_POINTER);
 2 LIST_ADDRESS POINTER;
 DCL 1 PTR_TO_LIST BASED(LIST_ADDRESS);
 2 PARM_01 POINTER;
 DCL MESSAGE CHAR(10) BASED(PARM_01);
 EXEC CICS ADDRESS TWA(TWA_POINTER);
 MESSAGE=’SUCCESS’; EXEC CICS RETURN; END CICSP;

147Copyright © Software AG 2003

Calling a PL/I ProgramCALL

Part I: CALL under UNIX and Windows
Function
Name of Called Function (operand1)
Parameters (operand2)

Function

The CALL statement is used to call an external function written in another standard programming language from
a Natural program and then return to the next statement after the CALL statement.

The called function may be written in any programming language which supports a standard CALL interface.
Multiple CALL statements to one or more external functions may be specified.

Name of Called Function - operand1

The name of the function to be called (operand1) may be specified as a constant or - if different functions are to
be called dependent on program logic - as an alphanumeric variable of length 1 to 8. A function name must be
placed left-justified in the variable.

Parameters - operand2

The CALL statement may contain up to 128 parameters (operand2). One address is passed to the external
function in the parameter list for each parameter field specified.

If a group name is used, the group is converted to individual fields; that is, if a user wishes to specify the
beginning address of a group, the first field of the group must be specified.

Note:
If an application-independent variable (AIV) or context variable is passed as a parameter to a user exit, the
following restriction applies: if the user exit invokes a Natural subprogram which creates a new AIV or context
variable, the parameter is invalid after the return from the subprogram. This is true regardless of whether the new
AIV/context variable is created by the subprogram itself or by another object invoked directly or indirectly by
the subprogram.

Copyright © Software AG 2003148

CALLPart I: CALL under UNIX and Windows

INTERFACE4
INTERFACE 4 - External 3GL Program Interface
Operand Structure for Interface4
INTERFACE4 Parameter Access
Exported Functions

The keyword INTERFACE4 specifies the type of the interface that is used for the call of the external program.
This keyword is optional. If this keyword is specified, the interface, which is defined as ’Interface4’, is used for
the call of the external program. The following table lists the differences between the CALL statement used with
INTERFACE4 and the one used without INTERFACE4:

 CALL statement without keyword
INTERFACE4

Call statement with keyword
INTERFACE4

number of parameters
possible

128 32767

maximum data size of one
parameter

64 K 1 GB

retrieve array information no yes

support of large and dynamic
operands

no yes

parameter access via API no yes

INTERFACE4 - External 3GL Program Interface

The interface of the external 3GL program is defined as follows, when the INTERFACE4 is specified with the
Natural CALL statement:

NATFCT functionname (numparm, parmhandle, traditional)

USR_WORD numparm; 16 bit unsigned short value, containing the total number of transferred operands
(operand2)

void *parmhandle; Pointer to the parameter passing structure.

void *traditional; Check for interface type (if it’s not a NULL pointer it’s the traditional CALL
interface)

149Copyright © Software AG 2003

INTERFACE4CALL

Operand Structure for Interface4

The operand structure of Interface4 is named ’parameter_description’ and is defined as follows. The structure is
delivered with the header file natuser.h.

struct parameter_description

void
*

address address of the parameter data, not aligned, realloc() and free() are not
allowed

int format field data type: NCXR_TYPE_ALPHA, etc. (natuser.h)

int length length (before decimal point, if applicable)

int precision length after decimal point (if applicable)

int byte_length length of field in bytes int dimension number of dimensions (0 to
IF4_MAX_DIM)

int dimensions number of dimensions (0 to IF4_MAX_DIM)

int length_all total data length of array in bytes

int flags several flag bits combined by bitwise OR, meaning:
IF4_FLG_PROTECTED: the parameter is write protected,
IF4_FLG_DYNAMIC: the parameter is a dynamic variable,
IF4_FLG_NOT_CONTIGUOUS: the array elements are not contiguous
(have spaces between them),
IF4_FLG_AIV: is an application-independent variable
IF4_FLG_DYNVAR: the parameter is a dynamic variable
IF4_FLG_XARRAY: the parameter is an x-array
IF4_FLG_LBVAR_0: the lower bound of dimension 0 is variable
IF4_FLG_UBVAR_0: the upper bound of dimension 0 is variable
IF4_FLG_LBVAR_1: the lower bound of dimension 1 is variable
IF4_FLG_UBVAR_1: the upper bound of dimension 1 is variable
IF4_FLG_LBVAR_2: the lower bound of dimension 2 is variable
IF4_FLG_UBVAR_2: the upper bound of dimension 2 is variable

int occurrences[IF4_MAX_DIM] array occurrences in each dimension

int indexfactors[IF4_MAX_DIM] array indexfactors for each dimension

void
*

dynp reserved for internal use

void
*

pops reserved for internal use

The address element is null for arrays of dynamic variables and for x-arrays. In these cases, the array data cannot
be accessed as a whole, but must be accessed through the parameter access functions described below.

For arrays with fixed bounds of variables with fixed length, the array contents can be accessed directly using the
address element. In these cases the address of an array element (i,j,k) is computed as follows (especially if the
array elements are not contiguous):

elementaddress = address + i * indexfactors[0] + j * indexfactors[1] + k * indexfactors[2].
If the array has less than 3 dimensions, leave out the last terms.

Copyright © Software AG 2003150

CALLOperand Structure for Interface4

INTERFACE4 - Parameter Access

A set of functions is available to be used for the access of the parameters. The process flow is as follows. The
3GL program is called via the CALL statement with the INTERFACE4 option, and the parameters are passed to
the 3GL program as described above. The 3GL program can now use the exported functions of Natural, to
retrieve either the parameter data itself, or information about the parameter, like format, length, array
information, etc. The exported functions can also be used to pass back parameter data. There are also functions
to create and initialize a new parameter set in order to call arbitrary subprograms from a 3GL program. With this
technique a parameter access is guaranteed to avoid memory overwrites done by the 3GL program. (Natural’s
data is safe: memory overwrites within the 3GL program’s data are still possible).

Exported Functions

Get Parameter Information
Get Parameter Data
Write Back Operand Data
Create, Initialize and Delete a Parameter Set

Get Parameter Information

This function is used by the 3GL program to receive all necessary information from any parameter. This
information is returned in the struct parameter_description, which is documented above.

Prototype:

int ncxr_get_parm_info (int parmnum, void *parmhandle, struct parameter_description *descr);

Parameter description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter list.
Range: 0 ... numparm-1.

parmhandlethe pointer to the internal parameter structure

descr address of a struct parameter_description

return 0: OK
-1 illegal parameter number
-2 internal error
-7 interface version conflict

Get Parameter Data

This function is used by the 3GL program to get the data from any parameter. Natural identifies the parameter by
the given parameter number and writes the parameter data to the given buffer address with the given buffer size.
If the parameter data is longer than the given buffer size, Natural will truncate the data to the given length. The
external 3GL program can make use of the function ncxr_get_parm_info, to request the length of the parameter
data. There are two functions to get parameter data: ncxr_get_parm gets the whole parameter (even if the
parameter is an array), whereas ncxr_get_parm_array gets the specified array element.

If no memory of the indicated size is allocated for "buffer" by the 3GL program (dynamically or statically)
results of the operation are unpredictable. Natural will only check for a null pointer.

If data gets truncated for variables of the type I2/I4/F4/F8 (buffer length not equal to the total parameter length),
the results depend on the machine type (little endian/big endian). In some applications, the user exit must be
programmed to use no static data to make recursion possible.

151Copyright © Software AG 2003

INTERFACE4 - Parameter AccessCALL

Prototypes:

int ncxr_get_parm(int parmnum, void *parmhandle, int buffer_length, void *buffer)

int ncxr_get_parm_array(int parmnum, void *parmhandle, int buffer_length, void *buffer, int *indexes)

This function is identical to ncxr_get_parm, except that the indexes for each dimension can be specified. The
indexes for unused dimensions should be specified as 0.

Parameter description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter list.
Range: 0 ... numparm-1.

parmhandle pointer to the internal parameter structure

buffer_length length of the buffer, where the requested data has to be written to

buffer address of buffer, where the requested data has to be written to. This buffer should be aligned to
allow easy access to I2/I4/F4/F8 variables.

indexes array with index information

return Any value < 0 indicates an error during retrieval of the information.
A value of -1 indicates an illegal parameter number.
A value of -2 indicates an internal error.
A value of -3 indicates that data has been truncated.
A value of -4 indicates that data is not an array.
A value of -7 indicates an interface version conflict.
A value of -100 indicates that the index for dimension 0 is out of range.
A value of -101 indicates that the index for dimension 1 is out of range.
A value of -102 indicates that the index for dimension 2 is out of range.
A value of 0 indicates successful operation.
A value > 0 indicates successful operation, but the data was only this number of bytes long
(buffer was longer than the data).

Write Back Operand Data

These functions are used by the 3GL program to write back the data to any parameter. Natural identifies the
parameter by the given parameter number and writes the parameter data from the given buffer address with the
given buffer size to the parameter data. If the parameter data is shorter than the given buffer size, the data will be
truncated to the parameters data length, i.e., the rest of the buffer will be ignored. If the parameter data is longer
than the given buffer size, the data will copied only to the given buffer length, the rest of the parameter stays
untouched. This applies to arrays in the same way. For dynamic variables as parameters, the parameter is resized
to the given buffer length.

If data gets truncated for variables of the type I2/I4/F4/F8 (buffer length not equal to the total parameter length),
the results depend on the machine type (little endian/big endian). In some applications, the user exit must be
programmed to use no static data to make recursion possible.

Prototypes:

int ncxr_put_parm (int parmnum, void *parmhandle,
 int buffer_length, void *buffer);
int ncxr_put_parm_array (int parmnum, void *parmhandle,
 int buffer_length, void *buffer,
 int *indexes);

Copyright © Software AG 2003152

CALLExported Functions

Parameter description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter list.
Range: 0 ... numparm-1.

parmhandle pointer to the internal parameter structure.

buffer_length length of the data to be copied back to the address of buffer, where the data comes from.

indexes index information

return Any value < 0 indicates an error during copying of the information:

A value of -1 indicates an illegal parameter number.
A value of -2 indicates an internal error.
A value of -3 indicates that too much data has been given. The copy back was done with
parameter length.
A value of -4 indicates that the parameter is not an array.
A value of -5 indicates that the parameter is protected (constant or AD=O).
A value of -6 indicates that the dynamic variable could not be resized due to an ’out of memory’
condition.
A value of -7 indicates an interface version conflict.

A value of -100 indicates that the index for dimension 0 is out of range
A value of -101 indicates that the index for dimension 1 is out of range
A value of -102 indicates that the index for dimension 2 is out of range

A value of 0 indicates successful operation.

A value > 0 indicates successful operation., but the parameter was this number of bytes long
(length of parameter > given length)

Create, Initialize and Delete a Parameter Set

This function is available with Natural Version 611 for Windows and UNIX. It is not available on mainframes.

If a 3GL program wants to call a Natural subprogram, it needs to build a parameter set that corresponds to the
parameters the subprogram expects. The function ncxr_create_parm is used to create a set of parameters to be
passed with a call to ncxr_if_callnat. The set of parameters created is represented by an opaque parameter
handle, like the parameter set that is passed to the 3GL program with the CALL INTERFACE4 statement. Thus,
the newly created parameter set can be manipulated with functions ncxr_put_parm* and ncxr_get_parm* as
described above.

The newly created parameter set is not yet initialized after having called the function ncxr_create_parm. An
individual parameter is initialized to a specific data type by a set of ncxr_parm_init* functions described below.
The functions ncxr_put_parm* and ncxr_get_parm* are then used to access the contents of each individual
parameter. After the caller has finished with the parameter set, they must delete the parameter handle. Thus, a
typical sequence in creating and using a set of parameters for a subprogram to be called through ncxr_if4_callnat
will be:

ncxr_create_parm
ncxr_init_ parm*
ncxr_init_ parm*

ncxr_put_ parm*
ncxr_put_ parm*

ncxr_get_parm_info*

153Copyright © Software AG 2003

Exported FunctionsCALL

ncxr_get_parm_info*

ncxr_if4_callnat

ncxr_get_parm_info*
ncxr_get_parm_info*

ncxr_get_ parm*
ncxr_get_ parm*

ncxr_delete_parm

Create Parameter Set

The function ncxr_create_parm is used to create a set of parameters to be passed with a call to ncxr_if_callnat.

Prototype

 int ncxr_create_parm(int parmnum, void** pparmhandle)

Parameter Description

parmnum Number of parameters to be created.

pparmhandle Pointer to the created parameter handle.

return Any value < 0 indicates an error.
A value of -1 indicates an illegal parameter count.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of 0 indicates successful operation.

Delete Parameter Set

The function ncxr_delete_parm is used to delete a set of parameters that was created with ncxr_create_parm.

Prototype

 int ncxr_delete_parm(void* parmhandle)

Parameter Description

parmhandle Pointer to the parameter handle to be deleted.

return Any value < 0 indicates an error.
A value of -2 indicates an internal error.
A value of 0 indicates successful operation.

Initialize a Scalar of a Static Data Type

Prototype

 int ncxr_init_parm_s(int parmnum, void *parmhandle,
 char format, int length, int precision, int flags);

Parameter Description

Copyright © Software AG 2003154

CALLExported Functions

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list .
Range: 0 ... numparm-1.

parmhandle Pointer to the parameter handle.

format Format of the parameter.

length Length of the parameter.

precision Precision of the parameter.

flags A combination of the flags
IF4_FLG_PROTECTED

return Any value < 0 indicates an error.
A value of -1 indicates an invalid parameter number.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of -8 indicates an invalid format.
A value of -9 indicates an invalid length or precision.
A value of 0 indicates successful operation.

155Copyright © Software AG 2003

Exported FunctionsCALL

Initialize an Array of a Static Data Type

Prototype

int ncxr_init_parm_sa(int parmnum, void *parmhandle,
 char format, int length, int precision,
 int dim, int *occ, int flags);

Parameter Description

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhandle Pointer to the parameter handle.

format Format of the parameter.

length Length of the parameter.

precision Precision of the parameter.

dim Dimension of the array.

occ Number of occurrences per dimension.

flags A combination of the flags
IF4_FLG_PROTECTED
IF4_FLG_LBVAR_0
IF4_FLG_UBVAR_0
IF4_FLG_LBVAR_1
IF4_FLG_UBVAR_1
IF4_FLG_LBVAR_2
IF4_FLG_UBVAR_2

return Any value < 0 indicates an error.
A value of -1 indicates an invalid parameter number.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of -8 indicates an invalid format.
A value of -9 indicates an invalid length or precision.
A value of -10 indicates an invalid dimension count.
A value of -11 indicates an invalid combination of variable bounds.
A value of 0 indicates successful operation.

Copyright © Software AG 2003156

CALLExported Functions

Initialize a Scalar of a Dynamic Data Type

Prototype

int ncxr_init_parm_d(int parmnum, void *parmhandle,
 char format, int flags);

Parameter Description

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhandle Pointer to the parameter handle.

format Format of the parameter.

flags A combination of the flags
IF4_FLG_PROTECTED

return Any value < 0 indicates an error.
A value of -1 indicates an invalid parameter number.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of -8 indicates an invalid format.
A value of 0 indicates successful operation.

157Copyright © Software AG 2003

Exported FunctionsCALL

Initialize an Array of a Dynamic Data Type

Prototype

int ncxr_init_parm_da(int parmnum, void *parmhandle,
 char format, int dim, int *occ, int flags);

Parameter Description

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhandle Pointer to the parameter handle.

format Format of the parameter.

dim Dimension of the array.

occ Number of occurrences per dimension.

flags A combination of the flags
IF4_FLG_PROTECTED
IF4_FLG_LBVAR_0
IF4_FLG_UBVAR_0
IF4_FLG_LBVAR_1
IF4_FLG_UBVAR_1
IF4_FLG_LBVAR_2
IF4_FLG_UBVAR_2

return Any value < 0 indicates an error.
A value of -1 indicates an invalid parameter number.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of -8 indicates an invalid format.
A value of -10 indicates an invalid dimension count.
A value of -11 indicates an invalid combination of variable bounds.
A value of 0 indicates successful operation.

Copyright © Software AG 2003158

CALLExported Functions

Resize an X-array Parameter

Prototype

int ncxr_resize_parm_array(int parmnum, void *parmhandle, int *occ);

Parameter Description

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhandle Pointer to the parameter handle.

occ New number of occurrences per dimension.

return Any value < 0 indicates an error.
A value of -1 indicates an invalid parameter number.
A value of -2 indicates an internal error.
A value of -6 indicates an out of memory condition.
A value of -12 indicates that the operand is not resizable (in one of the specified dimensions).
A value of 0 indicates successful operation.

All function prototypes are declared in the file natuser.h.

If the 3GL program is executed on mainframe computers, the delivered interface module NATXCAL4 has to be
linked to the 3GL program.

159Copyright © Software AG 2003

Exported FunctionsCALL

Part II: CALL under UNIX and Windows
Return Code
User Exits under Windows
User Exits under UNIX

Return Code

The condition code of any called function may be obtained by using the Natural system function RET.

Example:

 ...
 RESET #RETURN(B4)
 CALL ’PROG1’
 IF RET (’PROG1’) > #RETURN
 WRITE ’ERROR OCCURRED IN PROGRAM1’
 END-IF
 ...

User Exits under Windows

Under Windows, user exits are needed to be able to access external functions that are invoked with a CALL
statement. The user exits have to be placed in a DLL (dynamic link library). For further information on the user
exits, please refer to the following file:

%NATDIR%\%NATVERS%\samples\sysexuex\readme.txt

Copyright © Software AG 2003160

CALLPart II: CALL under UNIX and Windows

User Exits under UNIX

Step 1 - Defining the Jump Table
Step 2 - Writing the External Functions
Step 3 - Compiling and Linking
How to Build a Shared Library
Using the Shared Library
How to Generate a Static Nucleus
Example Programs

Under UNIX, user exits are needed to make external functions available and to access operating-system
interfaces that are not available to Natural.

The user exits can be placed either in a shared library and thus linked dynamically, or in a library that is linked
statically to the Natural nucleus.

If they are placed in shared libraries, it is not necessary to relink Natural whenever a user exit is modified. This
makes the development and testing of user exits a lot easier. This feature is available under all operating systems
that support shared libraries.
Under all operating systems, it is possible to place user exits in a library that is linked to the Natural nucleus; that
is, to statically link the user exits with the Natural prelinked object "natraw.o".

A user exit is added to Natural in three steps:

1. A jump table has to be created that allows Natural to associate the name of a function invoked by a CALL
statement with the address of the function.

2. The functions that were put into the jump table must be written.
3. In the case of a dynamic link, the shared library that contains the user exits has to be rebuilt.

In the case of a static link, the jump table and the external functions must be linked together with the
prelinked Natural nucleus, to produce an executable Natural nucleus that supports the external functions.

Step 1 - Defining the Jump Table

A sample of a jump table - "jumptab.c" - can be found in the directory:

$NATDIR/$NATVERS/samples/sysexuex

Step 2 - Writing the External Functions

Each function has three parameters and returns a long integer. A function prototype should be as follows:

 NATFCT myadd (nparm, parmptr, parmdec)

 WORD nparm;
 BYTE **parmptr;
 FINFO *parmdec;

nparm 16 bit unsigned short value, containing the total number of transferred operands (operand2).

parmptr Array of pointers, pointing to the transferred operands.

parmdec Array of field information for each transferred operand.

161Copyright © Software AG 2003

User Exits under UNIXCALL

The data type FINFO is defined as follows:

 typedef struct {
 unsigned char TypeVar; /* type of variable */
 unsigned char pb2; /* if type == (’D’, ’N’, ’P’ or ’T’) ==> */
 /* total num of digits */
 /* else */
 union { /* unused */
 unsigned char pb[2]; /* if type == (’D’, ’N’, ’P’ or ’T’) ==> */
 unsigned short lfield; /* pb[0] = #dig before.dec.point */
 } flen; /* pb[1] = #dig after.dec.point */
 /* else */
 /* lfield = length of field */
 } FINFO;

Next, the module containing the external functions must be written. A sample function - "mycadd.c" - can be
found in the directory:

$NATDIR/$NATVERS/samples/sysexuex

Step 3 - Compiling and Linking

The file "natuser.h", which is included by the sample program, is delivered with Natural. It contains declarations
for the data types BYTE, WORD and the FINFO structure, that is, the description of the internal representation
of each passed parameter.

In the case of dynamically linked user exits, the shared library containing the user exits has to be rebuilt.
In the case of statically linked user exits, the Natural nucleus has to be relinked.

For these purposes, it is strongly recommended to use the sample makefiles supplied by Software AG, as they
already contain the necessary compiler and linker parameters. The sample makefiles can be found in the
directory:

$NATDIR/$NATVERS/samples/sysexuex

For further information, see the following sections and the explanations in the makefiles themselves.

How to Build a Shared Library

1. From the example directory, which is contained in
$NATDIR/$NATVERS/samples/sysexuex
copy the following files into your work directory:
Makedyn
jumptab.c
ncuxinit.c

2. Copy the C source files which contain your user exits into the same work directory.
3. Edit the file "jumptab.c" to include the names and function pointers for your user exits. To do so, you add in

Section 2 the external declarations of your user exits, and in Section 3 you add the name/function-pointer
pairs for your user exits. You might consider cutting and pasting the appropriate sections from your pre-2.2
version of "jumptab.c".

4. Edit the makefile as follows:
Specify the names of the object files containing the user exits in the following line:
USEROBJS =
Specify the name of the resulting shared library in the following line:
USERLIB =
If you need to include private header files, specify the directories containing them in the following line:
INCDIR =

Copyright © Software AG 2003162

CALLUser Exits under UNIX

5. To remove all unneeded files, issue the command:
make -f Makedyn clean

6. To compile and link your shared library, issue the command:
make -f Makedyn lib

Using the Shared Library

Set the environment variable NATUSER to the libraries you want to use. For example:

setenv NATUSER $NATDIR/$NATVERS/bin/<library-name>

You must specify a full qualified path name for the shared library.

You can specify more than one path if you delimit them with a colon (:) like the UNIX PATH variable.

Example:

See the sample user exit function in $NATDIR/$NATVERS/samples/sysexuex.

Note:
The libraries are searched in the order in which they are specified in NATUSER. This means that if two libraries
contain a function of the same name, Natural always calls the function in the library which is specified first in
NATUSER.

How to Generate a Static Nucleus

1. From the example directory, which is contained in $NATDIR/$NATVERS/samples/sysexuex
copy the following files into your work directory:
Makefile
jumptab.c

2. Copy the C source files which contain your user exits into the same work directory.
3. Edit the file "jumptab.c" to include the names and function pointers for your user exits. To do so, you add in

Section 2 the external declarations of your user exits, and in Section 3 you add the name/function-pointer
pairs for your user exits. You might consider cutting and pasting the appropriate sections from your pre-2.2
version of "jumptab.c".

4. Edit the makefile as follows:
Specify the names of the object files containing the user exits in the following line:
USEROBJS =
If you need to include private header files, specify the directories containing them in the following line:
INCDIR =

5. Issue the command "make" to get information about further processing options.

163Copyright © Software AG 2003

User Exits under UNIXCALL

Example:

See the sample user exit function in $NATDIR/$NATVERS/samples/sysexuex.

Example Programs:

After successful compilation and linking, the external programs can be invoked from a Natural program.
Corresponding Natural example programs are provided in the library SYSEXUEX.

Copyright © Software AG 2003164

CALLUser Exits under UNIX

CALL FILE

Structured Mode Syntax

Reporting Mode Syntax

Operand
Possible

Structure
Possible Formats

Referencing
Permitted

Dynamic
Definition

Operand1 S A A N P I F B D T L C yes yes

Operand2 S A G A N P I F B D T L C yes yes

Function
The CALL FILE statement is used to call a non-Natural program which reads a record from a non-Adabas file
and returns the record to the Natural program for processing.

The CALL FILE statement initiates a processing loop which must be terminated with an ESCAPE or STOP
statement. More than one ESCAPE statement may be specified to escape from a CALL FILE loop based on
different conditions.

Restriction
The statements AT BREAK, AT START OF DATA and AT END OF DATA must not be used within a CALL
FILE processing loop.

165Copyright © Software AG 2003

CALL FILECALL FILE

Control Field - operand1
Operand1 is used to provide control information.

Record Area - operand2
Operand2 defines the record area.

The format of the record to be read can be described using field definitions (or FILLER nX) entries following
the name of the first field in the record. The fields used to define the record format must not have been
previously defined in the Natural program. This ensures that fields are allocated in the contiguous storage by
Natural.

Example

Calling Program:

 /* EXAMPLE ’CFIEX1’: CALL FILE
 /*****************************
 DEFINE DATA LOCAL
 1 #CONTROL (A3)
 1 #RECORD
 2 #A (A10)
 2 #B (N3.2)
 2 #FILL1 (A3)
 2 #C (P3.1)
 END-DEFINE
 /*****************************
 CALL FILE ’USER1’ #CONTROL #RECORD
 IF #CONTROL = ’END’
 ESCAPE BOTTOM
 END-IF
 END-FILE
 /*****************************
 /* ... PROCESS RECORD ...
 /*****************************
 END

The byte layout of the record passed by the called program to the Natural program in the above example is as
follows:

 CONTROL #A #B FILLER #C
 (A3) (A10) (N3.2) 3X (P3.1)

 xxx xxxxxxxxxx xxxxx xxx xxx

Copyright © Software AG 2003166

CALL FILEControl Field - operand1

Called COBOL Program:

 ID DIVISION.
 PROGRAM-ID. USER1.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT USRFILE ASSIGN UT-S-FILEUSR.
 DATA DIVISION.
 FILE SECTION.
 FD USRFILE RECORDING F LABEL RECORD OMITTED
 DATA RECORD DATA-IN.
 01 DATA-IN PIC X(80).
 LINKAGE SECTION.
 01 CONTROL-FIELD PIC XXX.
 01 RECORD-IN PIC X(21).
 PROCEDURE DIVISION USING CONTROL-FIELD RECORD-IN.
 BEGIN.
 GO TO FILE-OPEN.
 FILE-OPEN.
 OPEN INPUT USRFILE
 MOVE SPACES TO CONTROL-FIELD.
 ALTER BEGIN TO PROCEED TO FILE-READ.
 FILE-READ.
 READ USRFILE INTO RECORD-IN
 AT END
 MOVE ’END’ TO CONTROL-FIELD
 CLOSE USRFILE
 ALTER BEGIN TO PROCEED TO FILE-OPEN.
 GOBACK.

167Copyright © Software AG 2003

Called COBOL Program:CALL FILE

CALL LOOP

Structured Mode Syntax

Reporting Mode Syntax

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A yes no

Operand2 C S A G A N P I F B D T L C yes yes

Function
The CALL LOOP statement is used to generate a processing loop that contains a call to a non-Natural program.

Unlike the CALL statement, the CALL LOOP statement results in a processing loop which is used to repeatedly
call the non-Natural program. See the CALL statement for detailed description of CALL processing.

Program Name - operand1
The name of the program to be called (operand1) can be specified as a constant or - if different programs are to
be called dependent on program logic - as an alphanumeric variable of length 1 to 8. A program name must be
placed left-justified in the variable.

Copyright © Software AG 2003168

CALL LOOPCALL LOOP

Parameters - operand2
The CALL LOOP statement can have a maximum of 40 parameters. The parameter list is constructed as
described for the CALL statement. Fields used in the parameter list may be initially defined in the CALL LOOP
statement itself or may have been previously defined.

Loop Termination
The processing loop initiated with a CALL LOOP statement must be terminated with an ESCAPE statement.

Restriction
The statements AT BREAK, AT START OF DATA and AT END OF DATA must not be used within a CALL
LOOP processing loop.

Example

 DEFINE DATA LOCAL
 1 PARAMETER1 (A10)
 END-DEFINE
 CALL LOOP ’ABC’ PARAMETER1
 IF PARAMETER1 = ’END’
 ESCAPE BOTTOM
 END-IF
 END-LOOP
 END

169Copyright © Software AG 2003

Parameters - operand2CALL LOOP

CALLNAT

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A yes no

Operand2 C S A G A N P I F B D T L C G O yes yes

Related Statements: DEFINE DATA PARAMETER | FETCH | PERFORM

Function
The CALLNAT statement is used to invoke a Natural subprogram for execution.

When the CALLNAT statement is executed, the execution of the invoking object (that is, the object containing
the CALLNAT statement) will be suspended and the invoked subprogram will be executed. The execution of the
subprogram continues until either its END statement is reached or processing of the subprogram is stopped by an
ESCAPE ROUTINE statement being executed. In either case, processing of the invoking object will then
continue with the statement following the CALLNAT statement.

Note:
A Natural subprogram can only be invoked via a CALLNAT statement; it cannot be executed by itself.

Subprogram Name - operand1
As operand1, you specify the name of the subprogram to be invoked. The name may be specified either as a
constant of 1 to 8 characters, or - if different subprograms are to be called dependent on program logic - as an
alphanumeric variable of length 1 to 8.

The subprogram name may contain an ampersand (&); at execution time, this character will be replaced by the
current value of the system variable *LANGUAGE. This makes it possible, for example, to invoke different
subprograms for the processing of input, depending on the language in which input is provided.

Parameters - operand2
If parameters are passed to the subprogram, the structure of the parameter list must be defined in a DEFINE
DATA PARAMETER statement. The parameters specified with the CALLNAT statement are the only data
available to the subprogram from the invoking object.

Copyright © Software AG 2003170

CALLNATCALLNAT

By default, the parameters are passed "by reference", that is, the data are transferred via address parameters, the
parameter values themselves are not moved.
However, it is also possible to pass parameters "by value", that is, pass the actual parameter values. To do so,
you define these fields in the DEFINE DATA PARAMETER statement of the subprogram with the option BY
VALUE or BY VALUE RESULT as described under Parameter-Data-Definition in the section DEFINE DATA.

If parameters are passed "by reference" the following applies: The sequence, format and length of the
parameters in the invoking object must match exactly the sequence, format and length of the DEFINE
DATA PARAMETER structure in the invoked subprogram. The names of the variables in the invoking
object and the invoked subprogram may be different.
If parameters are passed "by value" the following applies: The sequence of the parameters in the invoking
object must match exactly the sequence in the DEFINE DATA PARAMETER structure of the invoked
subprogram. Formats and lengths of the variables in the invoking object and the subprogram may be
different; however, they have to be data transfer compatible (see the corresponding table in the section
Statement Usage Related Topics). The names of the variables in the invoking object and the subprogram
may be different.
If parameter values that have been modified in the subprogram are to be passed back to the invoking object,
you have to define these fields with BY VALUE RESULT.
With BY VALUE (without RESULT) it is not possible to pass modified parameter values back to the
invoking object (regardless of the AD specification; see also below).

Note:
With BY VALUE, an internal copy of the parameter values is created. The subprogram accesses this copy and
can modify it, but this will not affect the original parameter values in the invoking object.
With BY VALUE RESULT, an internal copy is likewise created; however, after termination of the subprogram,
the original parameter values are overwritten by the (modified) values of the copy.

For both ways of passing parameters, the following applies:

If a group is specified as operand2, the individual fields contained in that group are passed to the subprogram;
that is, for each of these fields a corresponding field must be defined in the subprogram’s parameter data area.

In the parameter data area of the invoked subprogram, a redefinition of groups is only permitted within a
REDEFINE block.

If an array is passed, its number of dimensions and occurrences in the subprogram’s parameter data area must be
the same as in the CALLNAT parameter list.

Note:
If multiple occurrences of an array that is defined as part of an indexed group are passed with the CALLNAT
statement, the corresponding fields in the subprogram’s parameter data area must not be redefined, as this would
lead to the wrong addresses being passed.

On Mainframes:
With the option PCHECK of the COMPOPT command set to ON, the compiler checks the number, format,
length and array index bounds of the parameters that are specified in a CATALL statement. Also, the
OPTIONAL feature of the DEFINE DATA PARAMETER statement is considered in the parameter check.

AD=
If operand2 is a variable, you can mark it in one of the following ways:

171Copyright © Software AG 2003

AD=CALLNAT

AD=O Non-modifiable, see Session Parameter AD=O.

Note:
Internally, AD=O is processed in the same way as BY VALUE (see the section
parameter-data-definition in the description of the DEFINE DATA statement).

AD=M Modifiable, see Session Parameter AD=M.

This is the default setting.

AD=A Input only, see Session Parameter AD=A.

If operand2 is a constant, AD cannot be explicitly specified. For constants AD=O always applies.

nX
With the notation nX you can specify that the next n parameters are to be skipped (for example, 1X to skip the
next parameter, or 3X to skip the next three parameters); this means that for the next n parameters no values are
passed to the subprogram.
A parameter that is to be skipped must be defined with the keyword OPTIONAL in the subprogram’s DEFINE
DATA PARAMETER statement. OPTIONAL means that a value can - but need not - be passed from the
invoking object to such a parameter.

Other Considerations
A subprogram can in turn invoke other subprograms.

A subprogram has no access to the global data area used by the invoking object.

If a subprogram in turn invokes a subroutine or helproutine, it can establish its own global data area to be shared
with the subroutine/helproutine.

Parameter Transfer with Dynamic Variables
Dynamic variables may be passed as parameters to a called program object (CALLNAT, PERFORM).
Call-by-reference is possible because the value space of a dynamic variable is contiguous. Call-by-value causes
an assignment with the variable definition of the caller as the source operand and the parameter definition as the
destination operand. In addition, call-by-value result causes the movement to change to the opposite direction.
When using call-by-reference, both definitions must be DYNAMIC. If only one of them is DYNAMIC, a
runtime error is raised. In case of call-by-value (result) all combinations are possible. The following table
illustrates the valid combinations of statically and dynamically defined variables of the caller and statically and
dynamically defined parameters concerning the parameter transfer.

Call By Reference

Operand2 of Caller Parameter Definition

 Static Dynamic

Static YES NO

Dynamic NO YES

Copyright © Software AG 2003172

CALLNATnX

The formats of the dynamic variables A or B must match.

Call by Value (Result)

Operand2 of Caller Parameter Definition

 Static Dynamic

Static YES YES

Dynamic YES YES

Note:
When using static/dynamic or dynamic/static definitions, a value truncation may occur according to the data
transfer rules of the appropriate assignments.

Example 1

Invoking Program:

 /* EXAMPLE ’CNTEX1’: CALLNAT
 /**
 /* MAIN PROGRAM ’MAINP1’
 /**
 DEFINE DATA LOCAL
 1 #FIELD1 (N6)
 1 #FIELD2 (A20)
 1 #FIELD3 (A10)
 END-DEFINE
 /**
 CALLNAT ’SUBP1’ #FIELD1 (AD=M) #FIELD2 (AD=O) #FIELD3 ’P4 TEXT’
 /* ...
 END

Invoked Subprogram:

 /* SUBPROGRAM ’SUBP1’
 /**
 DEFINE DATA PARAMETER
 1 #FIELDA (N6)
 1 #FIELDB (A20)
 1 #FIELDC (A10)
 1 #FIELDD (A7)
 END-DEFINE
 /**
 /* ...
 END

173Copyright © Software AG 2003

Example 1CALLNAT

Example 2

Invoking Program:

 /* EXAMPLE ’CNTEX2’: CALLNAT
 /*******************************
 /* MAIN PROGRAM ’MAINP2’
 /*******************************
 DEFINE DATA LOCAL
 1 #ARRAY1 (A3/1:10,1:10)
 END-DEFINE
 CALLNAT ’SUBP2’ #ARRAY1 (2:5,*)
 /* ...

Invoked Subprogram:

 /* SUBPROGRAM ’SUBP2’
 /*******************************
 DEFINE DATA PARAMETER
 1 #ARRAY (A3/1:4,1:10)
 END-DEFINE
 /*******************************
 /* ...
 END

Copyright © Software AG 2003174

CALLNATExample 2

CLOSE CONVERSATION

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A I yes no

Related Statements: DEFINE DATA CONTEXT | OPEN CONVERSATION

Function
The statement CLOSE CONVERSATION is used in conjunction with Natural RPC. It allows the client to close
conversations. You can close the current conversation, another open conversation, or all open conversations.

Note:
A logon to another library does not automatically close conversations.

Conversation to be Closed

operand1

To close a specific open conversation, you specify its ID as operand1. Operand1 must be a variable of
format/length I4.

*CONVID

To close the current conversation, you specify *CONVID. The ID of the current conversation is determined by
the value of the system variable *CONVID.

ALL

To close all open conversations, you specify ALL.

Further Information and Examples
See the Natural RPC documentation.

175Copyright © Software AG 2003

CLOSE CONVERSATIONCLOSE CONVERSATION

CLOSE DIALOG
Note:
This statement is only available under Windows.

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S I yes no

Related Statement: OPEN DIALOG.

Function
This statement is used to close a dialog dynamically.

Note:
If a modal dialog is a child in a hierarchy of dialogs, the modal dialog should not close its parent(s) because this
will result in a deadlock.

Dialog to be Closed

operand1

Operand1 is the identifier of the dialog to be closed.

*DIALOG-ID

To close the current dialog, you specify *DIALOG-ID.

Further Information and Examples
See the section Event-Driven Programming Techniques in the Natural Programming Guide.

Copyright © Software AG 2003176

CLOSE DIALOGCLOSE DIALOG

CLOSE PC FILE

Related Statements: DOWNLOAD PC FILE | UPLOAD PC FILE

Function
This statement is used to close a specific PC work file. It allows you to explicitly specify in a program that a PC
work file is to be closed.

A work file is also closed automatically when command mode is reached.

The settings in the NTWORK macro apply.

work-file-number
The work-file-number is the number of the PC work file to be closed. This number must correspond to one of the
work file numbers for the PC as defined to Natural.

177Copyright © Software AG 2003

CLOSE PC FILECLOSE PC FILE

Example
The following program demonstrates the use of the CLOSE PC FILE statement.

/* CLOSEEX: Example for CLOSE PC FILE
/*
DEFINE DATA LOCAL
 01 W-DAT (A40)
 01 REC-NUM (N3)
 01 I (P3)
END-DEFINE
*
REPEAT
 UPLOAD PC FILE 7 ONCE W-DAT /* Data upload
 AT END OF FILE
 ESCAPE BOTTOM
 END-ENDFILE
 INPUT ’Processing file’ W-DAT (AD=O)
 / ’Enter record number to display’ REC-NUM
 IF REC-NUM = 0
 STOP
 END-IF
 FOR I = 1 TO REC-NUM
 UPLOAD PC FILE 7 ONCE W-DAT
 AT END OF FILE
 WRITE ’Max. record number reached, last record is’
 ESCAPE BOTTOM
 END-ENDFILE
 END-FOR
 I := I - 1
 WRITE ’Record’ I ’:’ W-DAT
 CLOSE PC FILE 7 /* Close PC file 7
END-REPEAT
END

When you run the program, a window appears in which you specify the name of the PC file from which the data
is to be uploaded. The data is then uploaded from the PC. At the end of each loop, the PC file is closed.

Copyright © Software AG 2003178

CLOSE PC FILEExample

CLOSE PRINTER

Function
The CLOSE PRINTER statement is used to close a specific printer. With the CLOSE PRINTER statement, you
explicitly specify in a program that a printer is to be closed.

A printer is also closed automatically in one of the following cases:

when a DEFINE PRINTER statement in which the same printer is defined again is executed;
when command mode is reached.

Printer
With the logical-printer-name or printer-number you specify which printer is to be closed. The name and number
are the same as in the corresponding DEFINE PRINTER statement in which you defined the printer. Naming
conventions for the logical-printer-name are the same as for user-defined variables (see the section Statement
Usage Related Topics). The printer-number may be a number in the range from 0 to 31.

The printer number 0 indicates the hardcopy printer.

Related Statement: DEFINE PRINTER.

179Copyright © Software AG 2003

CLOSE PRINTERCLOSE PRINTER

Example

 * EXAMPLE ’CLPEX1’: CLOSE PRINTER

 DEFINE DATA LOCAL
 1 EMP-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 2 BIRTH
 1 I-NAME
 END-DEFINE
 *
 DEFINE PRINTER (PRT01=1)
 *
 REPEAT
 INPUT ’SELECT PERSON’ I-NAME
 IF I-NAME = ’ ’
 STOP
 END-IF
 FIND EMP-VIEW WITH NAME = I-NAME
 WRITE (PRT01) ’NAME :’ NAME ’,’ FIRST-NAME
 / ’PERSONNEL-ID :’ PERSONNEL-ID
 / ’BIRTH :’ BIRTH (EM=YYYY-MM-DD)
 END-FIND
 *
 CLOSE PRINTER (PRT01)
 *
 END-REPEAT
 END

Copyright © Software AG 2003180

CLOSE PRINTERExample

CLOSE WORK FILE

Related Statements: READ WORK FILE | WRITE WORK FILE

Function
The CLOSE WORK FILE statement is used to close a specific work file. It allows you to explicitly specify in a
program that a work file is to be closed.

A work file is also closed automatically when command mode is reached, or when an end-of-file condition
occurs during the execution of a READ WORK FILE statement.

On mainframes, CLOSE WORK FILE is ignored for work files for which CLOSE=FIN is specified in profile
parameter WORK.

Work File
The work-file-number is the number of the work file (as defined to Natural) to be closed.

Automatic Closing
A work file is closed automatically:

when command mode is reached,
when an end-of-file condition occurs during the execution of a READ WORK FILE statement;
before a DEFINE WORK FILE statement is executed which assigns another dataset to the work file number
concerned.
On mainframes, according to the CLOSE sub-parameter of Profile Parameter WORK.

181Copyright © Software AG 2003

CLOSE WORK FILECLOSE WORK FILE

Example

 /* EXAMPLE ’CWFEX1’: CLOSE WORK FILE
 DEFINE DATA LOCAL
 01 W-DAT (A20)
 01 REC-NUM (N3)
 01 I (P3)
 END-DEFINE
 REPEAT
 READ WORK FILE 1 ONCE W-DAT /* READ MASTER RECORD
 AT END OF FILE
 ESCAPE BOTTOM
 END-ENDFILE
 INPUT ’PROCESSING FILE’ W-DAT (AD=O)
 / ’ENTER RECORDNUMBER TO DISPLAY’ REC-NUM
 IF REC-NUM = 0
 STOP
 END-IF
 FOR I = 1 TO REC-NUM
 READ WORK FILE 1 ONCE W-DAT
 AT END OF FILE
 WRITE ’RECORD-NUMBER TOO HIGH, LAST RECORD IS’
 ESCAPE BOTTOM
 END-ENDFILE
 END-FOR
 I := I - 1
 WRITE ’RECORD’ I ’:’ W-DAT
 CLOSE WORK FILE 1
 END-REPEAT
 END

Copyright © Software AG 2003182

CLOSE WORK FILEExample

COMPOSE
Note:
This statement can only be used if the Con-nect Office System (Version 2 or above) has been installed.

If you specify more than one clause, they will be processed in the order shown above.

Function
The COMPOSE statement may be used to initiate text formatting by Con-form (the text formatter within
Con-nect) directly from a Natural program.

The text to be formatted can either be supplied using variables or it may be retrieved from a Con-nect text block
(a document containing Con-form formatting commands).

The contents of Natural variables can be passed to Con-form as variables for dynamic inclusion in the formatted
text.

The values contained in a Con-form variable can also be returned to the Natural program from the text formatter.

When the Con-form instructions are completed (resulting in a formatted document), the output is passed to one
of the following places:

a Natural report,
a document in the Con-nect system file,
variables in the Natural program that executes the COMPOSE statement,
a non-Natural program (on mainframe computers only).

Clauses
The RESETTING clause is used to delete information from the text format buffer area and to release memory
from the COMPOSE buffer (on mainframe computers allocated by the CSIZE parameter in the Natural
parameter module).

The MOVING clause is used to move text lines to the text formatter buffer area, or directly to the formatter, and
to retrieve formatted text output from the work space of the formatter.

The ASSIGNING clause is used to assign the values of Natural variables to text variables.

The FORMATTING clause is used to create text in final formatted form, that is, with correct line and page
breaks, using input which can be a combination of text and Con-form statements.

183Copyright © Software AG 2003

COMPOSECOMPOSE

The EXTRACTING clause is used to assign the values of text variables to Natural variables.

Formatting Process
The formatting process begins when the FORMATTING clause of the COMPOSE statement is executed (even if
text input via a MOVING clause is intended, but no such input has been provided yet).
While the formatting process is active, the text input resulting from the execution of the COMPOSE MOVING
statement is fed directly into the formatter’s work space (and cannot be re-used in a later formatting process).
If the formatting process is inactive, the text input is stored intermediately in the COMPOSE buffer (in the
"DATAAREA"). Thus the input can be re-used for multiple formatting processes.

Since the formatter’s buffer is not cleared at the end of the Natural program, the respective COMPOSE
statements need not be executed within one Natural program; they can be issued in several successively invoked
programs.

The execution of a RESETTING or FORMATTING clause, or a serious formatting error, causes the termination
of an ongoing formatting pass.

End-of-input is specified by the LAST subclause of the MOVING clause.

When a Con-nect document is specified as the source of input, end-of-input is assumed when the end of that
document is reached.

Note:
It is recommended to use the STATUS subclause of the FORMATTING or MOVING clause respectively, to
make sure that the formatting process is always in the appropriate status for a given processing step.

Dialog Mode
Dialog Mode Processing is the set of interactions which are performed between a user program and the formatter
while formatting input and producing output.

Dialog mode allows a user program to supply raw text as input to the formatter at any level of the input
hierarchy. It also accepts formatted output directly in the current program environment.

The dialog is achieved by subdividing the formatting process into a series of steps, each of which is separately
invoked by a COMPOSE statement.

Dialog Mode for Input
Dialog Mode for Output
Dialog Mode for Input and Output
Execution of COMPOSE Statements in Dialog Mode

Dialog Mode for Input

Dialog mode for input is entered if the source of the input text is DATAAREA, or if the formatting control
statement ".TE ON" is encountered, and Con-form’s data area does not contain any more text to be processed.
Dialog mode for input is signalled by the word "TERM" in the first STATUS variable.

The user program should respond by supplying the required input by invoking the MOVING function in a
subsequently-processed COMPOSE statement. The user program can terminate terminal input by specifying the
LAST option of the MOVING clause, or ".TE OFF" if terminal input was invoked by ".TE ON", as text through
the MOVING function. The formatter will signal the end of the formatting process with "END", or "ENDX" in
the case of an error in the first status variable.

Copyright © Software AG 2003184

COMPOSEFormatting Process

Dialog Mode for Output

Dialog mode for output is entered if the destination of the output is TO VARIABLES. The formatter passes
control back to the Natural program environment as soon as the supplied Natural variables are filled or a page
break is reached (whichever occurs first). Dialog mode for output is signalled with "STRG" in the first STATUS
variable. The user program should respond by taking the formatted output just placed into the Natural variables
and designate another set of Natural variables as the output destination in a subsequently processed COMPOSE
MOVING statement. The end of the formatting process is indicated with "END", or "ENDX" in the case of an
error.

Note:
When dialog mode is used (see the INPUT and OUTPUT subclauses), the formatting operation is usually spread
across several executions of a COMPOSE statement.

Dialog Mode for Input and Output

Dialog mode can be entered for combined input and output processing. Therefore, when the formatter requests
for further input (indicated by "TERM") or when the formatter provides output (indicated by "STRG"), the
Natural program must take the appropriate action.

When dialog mode is entered for combined input and output processing, only one line of input is accepted by the
formatter at a time. In the case of input mode only, multiple lines are accepted at one time.

Execution of COMPOSE Statements in Dialog Mode

While it has been pointed out that dialog mode is entered via a COMPOSE FORMATTING statement which
encompasses a series of COMPOSE MOVING executions, please note the following:

COMPOSE ASSIGNING and COMPOSE EXTRACTING statements are valid while dialog mode is active.
COMPOSE RESETTING and FORMATTING will force the immediate termination of all formatting.

185Copyright © Software AG 2003

Dialog Mode for OutputCOMPOSE

Non-Natural Programs - only Mainframe
Depending on the parameters specified with the FORMATTING clause, input and output may be processed by
non-Natural programs. Such programs are invoked by the same mechanism that is used within the CALL
statement.

COMPOSE exchanges parameters with these programs using the standard linkage conventions (dynamic loading
is not possible in a CICS environment).

Note:
Input/output processing by non-Natural programs is only possible on mainframe computers; on other platforms,
the appropriate parts of the COMPOSE statement are ignored.

Depending on the status of the formatting process, two or three parameters are passed between the formatter and
the non-Natural programs:

Parameter 1
(format/length
A1)

Function code is passed from the formatter to non-Natural programs. Possible values:
I - Initiate (input, output),
O - Open document (input),
R - Read one line of document (input),
W - Write one line of output (output),
C - Close document (input),
T - Terminate (input, output).

Parameter 2
(format/length B1)

Response code is passed from non-Natural programs to the formatter. Possible values:
X’00’ - Function successfully completed.
X’01’ - In response to function "O": document could not be found.
In response to function "R": end of document was reached.
X’FF’ - Function not completed.

Parameter 3
(format A1/256)

In the case of the functions "O" and "W", these parameters are passed from the formatter to
non-Natural programs. However, the parameters from the function "R" are passed from
non-Natural programs to the formatter.
Bytes 1 - 2: Signify the length n of this parameter.
Bytes 3 - 4: Empty.
Bytes 5 - n: Function "O": Document name.
Function "R": Line read by the non-Natural program.
Function "W": Line of output from the formatter.

Output is preceded by "N" if a form feed is required, otherwise by "1".

Specific options for highlighting text such as boldface and italics are ignored if the output
is passed to a non-Natural program.

Copyright © Software AG 2003186

COMPOSENon-Natural Programs - only Mainframe

RESETTING-clause

 This clause may be used to delete the following from the text format buffer area:

DATAAREA deletes all active text variables.
TEXTAREA deletes all text input data.
MACROAREA deletes all text macros.
ALL deletes all of the above.

Note:
For compatibility reasons, the keyword TEXTAREA refers to the formatter’s "Data Area" as used in the
MOVING clause.

MOVING-clause
Depending on the status of the dialog mode, one of the following forms of the MOVING clause may be used:

Syntax 1

Syntax 2

187Copyright © Software AG 2003

RESETTING-clauseCOMPOSE

Syntax 3

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A A N P yes no

Operand2 S A yes yes

Operand3 S B yes yes

Operand4 S B yes yes

Operand5 S B yes yes

Operand6 S A A yes no

Operand2 must be defined with format/length A4. Operand3, operand4, and operand5 must be defined with
format/length B4.

This clause may be used to move one or more text values to the text format buffer area (Syntax 1). This area may
be used as a source of input for formatting operations. If the text formatter is currently waiting for input (see
Dialog Mode), the text will be passed directly to it without being stored in Con-form’s text area (Syntax 1 and 2).
The source input is terminated with the LAST option. If the formatted text is currently waiting for output (see
Dialog Mode), Syntax 3 of the MOVING clause is used to pass control back from the Natural program to the
formatter. For description of the status variables, see the FORMATTING clause.

Syntax 1

Syntax 1 of the MOVING clause is applicable when formatting has not begun or the formatter is in dialog mode
for input and is waiting for input ("TERM" in the first status variable).

Syntax 2

Syntax 2 of the MOVING clause is applicable when the formatter is in dialog mode for both input and output,
and is waiting for further input ("TERM" in the first status variable). The formatter will not accept more than one
line of input in this mode.

The execution context may change between succession of executed COMPOSE statements. Therefore it is
necessary to re-specify the output variables even when the formatter is waiting for input.

Syntax 3

Syntax 3 of the MOVING clause is applicable when the formatter is in dialog mode for output (and possibly for
input at the same time), and is passing output to the Natural program ("STRG" in the first status variable).

Copyright © Software AG 2003188

COMPOSESyntax 3

ASSIGNING-clause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A yes no

Operand2 C S A N P yes yes

This clause is used to assign values to Con-form text variables. These text variables may subsequently be
referred to in formatting operations.

The text variable name(s) should be specified in upper case.

189Copyright © Software AG 2003

ASSIGNING-clauseCOMPOSE

FORMATTING-clause

This clause causes Con-form to produce formatted output.

The formatting options are specified in one or more subclauses. If subclauses are omitted, Con-form will apply
default formatting options. The status variable is used in dialog mode.

OUTPUT Subclause

The output medium. This can be a Natural report, a Con-nect cabinet, one or more Natural variables (or an array
of Natural variables), or a non-Natural program.

INPUT Subclause

The input medium. This can be a Con-nect document, the COMPOSE data area (see the MOVING clause), the
environment of the Natural program(s) executing the COMPOSE statement(s) (see the MOVING clause), a
non-Natural program, or a mixture of these four possibilities.

STATUS Subclause

The status of the formatting operation. The formatting operation may involve multiple executions of a
COMPOSE statement (in Dialog Mode). For example, the input is fed into the formatter’s work space by a
Natural program, and the output is passed from the formatter’s work space into the environment of a Natural
program (that is, one or more Natural variables). Therefore it is necessary to inform the Natural program of the
formatting status. The following variables are passed to the Natural program during the formatting process:

State - "TERM" when the dialog mode is ready for input. "STRG" when the dialog mode is ready for
output. "END" if the formatting process was completed successfully. "ENDX" if the formatting process was
completed unsuccessfully.
Position - Page and line number of the document that is being formatted. The page and line numbers are
kept separately in two variables (page position and line position).
Amount of Output Data - The number of lines of formatted output which are being passed to the Natural
program. The formatter uses this number as the pointer to the next output variable to be filled. The value is
incremented by "1" before the output line is issued. If the current value is out of range, the value is set to
"1".

PROFILE Subclause

Text block to be processed before input is processed.

Copyright © Software AG 2003190

COMPOSEFORMATTING-clause

MESSAGES/ERRORS Subclauses

Controls the output of warning messages and statistical information and error processing.

OUTPUT Subclause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A yes no

Operand2 C S A yes no

Operand3 C S A yes no

Operand4 S A A yes no

This subclause enables you to direct Con-form’s formatted text output to a specific destination.

If this subclause is omitted, Natural’s main printer will be used as the default output device.

OUTPUT - rep

If the output is directed to a printer (that is, the report number is not "0") and a Con-nect printer profile has been
loaded (by the Con-nect API function Z-DRIVER), the settings of that profile will be used to control the text
highlighting options of the formatted output text.

If a printer profile is active and the logical form feed controls were not specified, page ejects will be inserted by
use of the appropriate internal Natural nucleus functions.

Any other highlighting text option which is not reflected in the currently active Con-nect printer profile will be
ignored.

Note:
Executions of the COMPOSE RESETTING ALL or COMPOSE FORMATTING statement with non-report
output destination will unload a printer profile from the formatter’s workspace.

If output is directed to report 0 or if a printer profile is not active, Con-nect will pass the responsibility of the
output handling to the Natural nucleus routines. In this case, only the highlighting text options boldface,
underline and italics will be recognized (applies only to mainframe computers; on other platforms, these text
highlighting options will be ignored).

Note:
A report which is referred to in a DEFINE PRINTER (n) OUTPUT ’CONNECT’ statement must not be
specified as output destination in a COMPOSE FORMATTING statement.

191Copyright © Software AG 2003

OUTPUT SubclauseCOMPOSE

OUTPUT SUPPRESSED

This option causes the output to be SUPPRESSED.

OUTPUT CALLING

See the section Non-Natural Programs.

OUTPUT TO VARIABLES

Generally, the formatted text will be passed in final format to an array of Natural variables. Each line fills one
variable (if necessary, the line may be truncated to fit into the variables). Text highlighting options will be
ignored, with the exception of the CONTROL variables specified, which will be used to emphasize sections of
the text (that is, boldface or underscore).

If the CONTROL variables, "I" and "N" are specified, the formatted text will be produced in an intermediate
format (that is, with interspersed logical control sequences).

Operand2 and operand3 must be of format/length A1.

For further information, see the section Dialog Mode.

DOCUMENT-option

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A yes no

Operand2 S A yes no

Operand3 S B yes yes

Operand4 S B yes yes

OUTPUT DOCUMENT

Operand3 (format/length B10) is used by the formatter to pass a unique key from the document back to the
Natural program. It is supported for compatibility reasons only.

Operand4 (format/length B4) is used by the formatter to pass an ISN which points to the formatted output
document back to the Natural program. This ISN can be useful when referencing the document in successive
calls to Con-nect APIs.

Copyright © Software AG 2003192

COMPOSEOUTPUT Subclause

If operand1 (which may be up to 8 characters long) is not specified, the document will be added to the current
user’s cabinet (that is, to the cabinet whose ID is identical to the currently active Natural user ID).

A password (up to 8 characters) must be specified if storing the document in a cabinet to which the currently
assumed user ID has no access.

Con-form enforces adherence to Con-nect access restrictions and only accepts cabinet IDs which have been
defined to Con-nect.

Note:
Cabinet IDs must be specified in upper case.

The document will be added to the folder "COMPOSE" without a document name. The subject line will be filled
with the name of the program executing the COMPOSE FORMATTING statement along with the date and time
of execution.

If the keyword INTERMEDIATE has been omitted, the document will be created in final form text. In this case,
specific text highlighting options such as boldface or italics will be ignored.

INPUT-subclause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A yes no

Operand2 C S A yes no

Operand3 S A yes no

193Copyright © Software AG 2003

INPUT-subclauseCOMPOSE

This subclause may be used to specify the sources which will supply input for the text formatter. The input may
be taken from Con-form’s data area (a mixture of text from the data area and from the dialog mode is also
possible) which must be filled by one or more MOVING operations, or from a text block (specified by
operand1). The text block may be contained in a Con-nect cabinet, or it may be supplied by a non-Natural
program. It will be invoked using the same conventions which apply to the CALL statement. A hierarchy of
Con-nect cabinets or non-Natural programs may be specified, each of which will be scanned in turn for the text
block specified in operand1.

A password must be specified if the document is stored in a cabinet to which the currently assumed user ID has
no access.

Con-form enforces adherence to Con-nect access restrictions and only accepts cabinet IDs which have been
defined to Con-nect.

If this subclause is omitted, the Con-form data area will be processed.

Note:
Cabinet and text block IDs must be specified in upper case.

STATUS-subclause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A yes no

Operand2 S B yes no

Operand3 S B yes no

Operand4 S B yes no

Operand 1 contains the Status variable "State".
Operand 2 contains the Status variable "Position (page number)".
Operand 3 contains the Status variable "Position (line number)".
Operand 4 contains the Status variable "Amount of Output Data".

Copyright © Software AG 2003194

COMPOSESTATUS-subclause

PROFILE-subclause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A yes no

This subclause causes the content of the specified text block to be processed prior to any input which has been
specified with the INPUT-subclause (by default, a text block will not be processed as a profile).

195Copyright © Software AG 2003

PROFILE-subclauseCOMPOSE

MESSAGES-subclause

Warning messages and statistical information are to be displayed upon completion of formatting. SUPPRESSED
indicates that no messages are to be displayed and errors are to be ignored.

ERRORS-subclause

This subclause may be used to specify the actions to be performed when a formatting error occurs. The error may
be simply ignored, it may be processed by Natural’s standard error-processing routine, or it may be listed on a
specified Natural report (rep).

Note:
Errors and messages are mutually exclusive. Some errors may cause the standard Natural error-process routine to
be invoked, even if a different option was specified.
Errors or messages must not be directed to a report which is directed to the Con-nect system by a DEFINE
PRINTER (n) OUTPUT ’CONNECT’ statement.

Copyright © Software AG 2003196

COMPOSEMESSAGES-subclause

ENDING-subclause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S N P yes no

This subclause causes output of formatted text to be suppressed following a page with a specified number, or
alternatively, it limits the amount of formatted output to a specified number of pages.

197Copyright © Software AG 2003

ENDING-subclauseCOMPOSE

STARTING-subclause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S N P yes no

This subclause causes output of formatted text to be suppressed until the page with the specified number
(operand1) is reached.

EXTRACTING-clause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A N P yes yes

Operand2 C S A yes no

This clause may be used to assign the values of text variables to Natural variables. The current text variable
settings may be the result of previous formatting operations.

The text variable name(s) must be specified in upper case.

Copyright © Software AG 2003198

COMPOSESTARTING-subclause

Example 1

 COMPOSE RESETTING ALL
 FORMATTING INPUT ’TEXT’ FROM CABINET ’TLIB’
 OUTPUT (1)
 MESSAGES LISTED ON (0)

The above COMPOSE statement results in a formatted output of the text block TEXT within the Con-nect
cabinet TLIB which is produced on report 1. Errors and statistical messages are displayed on report 0 (the default
printer).

Example 2

 COMPOSE RESETTING ALL
 COMPOSE MOVING ’.FI ON’ ’This is an example’
 COMPOSE MOVING ’for use of Con-form from’
 ’within Natural applications’ LAST
 COMPOSE FORMATTING

The above COMPOSE statements result in a formatted output of text on report 0 (default printer).

Example 3

 COMPOSE ASSIGNING ’VAR1’ = ’Text1’, ’VAR2’ = 540

The above COMPOSE statement results in the assignment of values to Con-form text variables &VAR1 and
&VAR2 in a Con-nect procedure.

199Copyright © Software AG 2003

Example 1COMPOSE

Example 4

Text Block "XYZ" in "XYLIB":

 .FI ON
 Dear Mr &name.,
 .IL
 I am pleased to invite you to a presentation of our new product &prod..

Natural Program:

 ...
 INPUT #NAME (A32) #PROD (A32)
 COMPOSE ASSIGNING ’NAME’ = #NAME, ’PROD’ = #PROD
 FORMATTING INPUT ’XYZ’ FROM CABINET ’XYLIB’
 OUTPUT (1) MESSAGES SUPPRESSED
 ...

Input Map produced by Program:

#NAME Davenport
 #PROD NATURAL 2.2

Resulting Output:

Dear Mr Davenport,

 I am pleased to invite you to a presentation of our new product NATURAL 2.2.

Example 5
This is an example of formatting in dialog mode with combined input/output handling. The example program
initiates the line-oriented formatting mode of Con-form, passes some commands/variables to Con-form, and
performs a subroutine which displays status information and formatted output lines on the screen.

 DEFINE DATA LOCAL
 01 #LINES_PER_PERFORM(P5) /* counts repeat-loops per PERFORM CNF_OUT
 01 #TRACE(A1) INIT<’N’> /* if ’Y’ displays additional trace-infos
 01 #OUT_FORM(A1) INIT<’F’> /* output-format
 01 #START_PAGE (P3) INIT<1> /* beginning of display
 01 #CNTR (P5) /* Loop-Counter
 01 #STATI /* Status-Information
 02 #STATUS (A4) /* can be STRG TERM END or ENDX
 02 #PAGE (B4) /* actual page-number
 02 #LINE (B4) /* actual line-number on page (not .tt/.bt)
 02 #NO_LINES (B4) /* number of lines returned
 02 REDEFINE #NO_LINES
 03 #NO_LINES_I (I4)
 01 #OUTPUT(A30/4) /* output of formatted line
 01 #INDEX (P3) /* index as pointer to out line
 END-DEFINE
 *
 SET KEY ALL

Copyright © Software AG 2003200

COMPOSEExample 4

 SET CONTROL ’M9’
 INPUT
 008/008 ’Demonstration of formatted output to Variable’(I)
 / 08X ’Enter page to start display :’ #START_PAGE(AD=MIL)
 / 08X ’Display additional trace-data ?:’ #TRACE(AD=MIT)
 / 08X ’Please select the output-format:’ #OUT_FORM(AD=MIT)
 ’(F=Final without BP/US-marks’
 / 44X ’M=Final with BP/US-marks "<>"’
 / 09X ’(only, if CMF-Zap 2056 applied =>) I=Intermediate)’
 / 50X ’PF3=Exit’(I)
 *
 IF *PF-KEY EQ ’PF3’
 SET CONTROL ’MB’
 STOP
 END-IF
 *
 IF NOT (#OUT_FORM EQ ’F’ OR EQ ’M’ OR EQ ’I’)
 REINPUT ’ Please enter valid code!’ MARK *#OUT_FORM ALARM
 END-IF
 *
 WRITE TITLE LEFT
 ’Stat * Page * Line * No.Lines >> Formatted Output’(I)
 / ’-’(79)(I)
 *
 SET CONTROL ’MB’
 COMPOSE RESETTING ALL /* clear all con-form buffers
 RESET #NO_LINES
 *
 * start line-oriented formatting-mode here
 * starting from 0
 DECIDE ON FIRST VALUE OF #OUT_FORM
 VALUE ’F’
 COMPOSE FORMATTING
 OUTPUT TO VARIABLES #OUTPUT (1:4) /* to Output
 STATUS #STATUS #PAGE #LINE #NO_LINES /* get Status
 VALUE ’M’
 COMPOSE FORMATTING
 OUTPUT TO VARIABLES CONTROL ’<’ ’>’
 #OUTPUT (1:4) /* to output
 STATUS #STATUS #PAGE #LINE #NO_LINES /* get Status
 VALUE ’I’
 COMPOSE FORMATTING
 OUTPUT TO VARIABLES CONTROL ’I’ ’N’
 #OUTPUT (1:4) /* to output
 STATUS #STATUS #PAGE #LINE #NO_LINES /* get Status
 NONE
 STOP
 END-DECIDE
 *
 RESET #NO_LINES
 *
 * put some commands to con-form to see something
 *
 COMPOSE MOVING
 ’.pl 16;.hs 2;.tt 1Formatierung in Variable//;.tt 2//’ /* Cmd
 OUTPUT TO VARIABLES #OUTPUT (1:4) /* to Output
 STATUS #STATUS #PAGE #LINE #NO_LINES /* get Status
 *
 COMPOSE MOVING
 ’.fs 1;.bt Ende Seite #//;.fi on;.tb *=15’ /* Commands
 OUTPUT TO VARIABLES #OUTPUT (1:4) /* to Output
 STATUS #STATUS #PAGE #LINE #NO_LINES /* get Status

201Copyright © Software AG 2003

Example 5COMPOSE

 *
 *
 * loop 40-times, send commands to con-form and display output
 *
 COMPOSE ASSIGNING ’Wert’ = ’1-20’ /* Assign value to variable &Wert
 *
 FOR #CNTR 1 40 /* Loop some time
 IF #STATUS NE ’TERM’ /* no wait-for-input => error!!!!
 IF #STATUS EQ ’STRG’
 IGNORE
 ELSE
 WRITE ’Unexpected Status-code’ #STATUS(AD=OI) ’found!’
 / ’Execution has stopped....’
 STOP
 END-IF
 END-IF
 *
 IF #CNTR EQ 21
 COMPOSE ASSIGNING ’Wert’ = ’21-40’ /* Assign a variable-value
 END-IF
 COMPOSE ASSIGNING ’CNTR’ = #CNTR /* Again assignment
 COMPOSE MOVING
 ’.BP;&Wert *Durchlauf &CNTR;.BR’ /* Commands
 OUTPUT TO VARIABLES #OUTPUT (1:4) /* to Output
 STATUS #STATUS #PAGE #LINE #NO_LINES /* get Status
 PERFORM CNF-OUT /* show result
 END-FOR
 COMPOSE MOVING
 LAST /* End-Of-Processing
 OUTPUT TO VARIABLES #OUTPUT (1:4) /* to Output
 STATUS #STATUS #PAGE #LINE #NO_LINES /* get Status
 *
 IF #TRACE EQ ’Y’
 WRITE ’End of processing...’(I)
 END-IF
 *
 * Subroutines
 *
 PERFORM CNF-OUT
 *
 * Subroutine to display any waiting output from con-form
 *

 DEFINE SUBROUTINE CNF-OUT
 RESET #LINES_PER_PERFORM
 REPEAT UNTIL #STATUS EQ ’TERM’ /* TERM = input waiting
 PERFORM BREAK /* do some break-processing
 AT BREAK OF #PAGE
 IF #PAGE GT #START_PAGE
 WRITE ’-’(79)(I)
 END-IF
 IF #TRACE EQ ’Y’
 WRITE ’End of this page...’(I)
 END-IF
 NEWPAGE
 END-BREAK
 IF #PAGE GE #START_PAGE /* show line of output
 IF #NO_LINES_I GT 0
 FOR #INDEX 1 #NO_LINES_I
 ADD 1 TO #LINES_PER_PERFORM /* count loops

Copyright © Software AG 2003202

COMPOSEExample 5

 WRITE NOTIT NOHDR #STATUS ’*’ #PAGE ’*’ #LINE
 ’*’ #NO_LINES
 ’>>’ #OUTPUT (#INDEX)
 END-FOR
 END-IF
 END-IF
 IF #STATUS NE ’STRG’ /* if no wait on out
 ESCAPE BOTTOM
 END-IF
 RESET #NO_LINES
 COMPOSE MOVING
 OUTPUT TO VARIABLES #OUTPUT (1:4) /* get Output
 STATUS #STATUS #PAGE #LINE #NO_LINES /* Status
 END-REPEAT
 *
 IF #TRACE EQ ’Y’
 WRITE ’Count of Lines per PERFORM was’(I) #LINES_PER_PERFORM(AD=OI)
 END-IF
 *
 END-SUBROUTINE
 SET CONTROL ’MB’
 END

203Copyright © Software AG 2003

Example 5COMPOSE

COMPRESS

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A G N A N P I F B D T G O yes no

Operand2 S A B yes yes

Operand3 C S N P I yes no

Operand4 C S N P I yes no

Operand5 C S N P I yes no

Operand6 C S N P I yes no

Operand7 C S A B yes no

Related Statements: EXAMINE | SEPARATE

Function
The COMPRESS statement is used to transfer (combine) the contents of two or more operands into a single
alphanumeric field.

Copyright © Software AG 2003204

COMPRESSCOMPRESS

Source Fields - operand1
As operand1, you specify the fields whose contents are to be transferred.

Note:
If operand1 is a time variable (format T), only the time component of the variable content is transferred, but not
the date component.

Target Field - operand2
As operand2, you specify the field which is to receive the values of the source fields.

If you use the COMPRESS statement without any further options, or if you specify LEAVING SPACE (which
also applies by default), the values in the target field will be separated from one another by a blank.

If you specify LEAVING NO SPACE, the values in the target field will not be separated from one another by a
blank or any other character.

FULL
Without FULL, the following are removed from the source fields before the values are transferred:

leading zeros before the decimal point (in numeric fields);
trailing zeros after the decimal point (in numeric fields);
and trailing blanks (in alphanumeric fields).

For a numeric source field containing all zeros, one "0" will be transferred.

With FULL, the values of the source fields in their actual lengths will be transferred to the target field. In other
words:

leading zeros before the decimal point (in numeric fields);
trailing zeros after the decimal point (in numeric fields);
and trailing blanks (in alphanumeric fields)

are displayed as entered.

205Copyright © Software AG 2003

Source Fields - operand1COMPRESS

Example 1:

COMPRESS ’ABC ’ 001 INTO #TARGET WITH DELIMITER ’*’
Content of #TARGET is: ABC*1

Example 2:

COMPRESS FULL ’ABC ’ 001 INTO #TARGET WITH DELIMITER ’*’
Content of #TARGET is: ABC *001

NUMERIC
This option determines how sign characters and decimal characters are to be handled:

Without NUMERIC, decimal points and signs in numeric source values are suppressed before the values are
transferred.
With NUMERIC, decimal points and signs in numeric source values are also transferred to the target field.

Example 1:

COMPRESS -123 1.23 INTO #TARGET WITH DELIMITER ’*’
Content of #TARGET is: 123*123

Example 2:

COMPRESS NUMERIC -123 1.23 INTO #TARGET WITH DELIMITER ’*’
Content of #TARGET is: -123*1.23

Example 3:

COMPRESS NUMERIC ’ABC’ -0056.00 -0056.10 -0056.01 INTO #TARGET WITH DELIMITER ’*’
Content of #TARGET is: ABC*-56*-56.1*-56.01

Example 4:

COMPRESS NUMERIC FULL ’ABC’ -0056.00 -0056.10 -0056.01 INTO #TARGET WITH DELIMITER ’*’
Content of #TARGET is: ABC*-0056.00*-0056.10*-0056.01

parameter
As parameter, you can specify the option "PM=I" or the session parameter DF:

PM=I

In order to support languages whose writing direction is from right to left, you can specify "PM=I" so as to
transfer the value of operand1 in inverse (right-to-left) direction to operand2.

For example, as a result of the following statements, the content of #B would be "ZYXABC":

Copyright © Software AG 2003206

COMPRESSNUMERIC

 MOVE ’XYZ’ TO #A
 COMPRESS #A (PM=I) ’ABC’ INTO #B LEAVING NO SPACE

Any trailing blanks in operand1 will be removed (except if FULL is specified), then the value is reversed
character by character and transferred to operand2.

DF

If operand1 is a date variable, you can specify the session parameter DF as parameter for this variable.

SUBSTRING
If operand1 is of alphanumeric or binary format, you can use the SUBSTRING option to transfer only a certain
part of a source field.

Also, you can use the SUBSTRING option in the INTO clause to transfer source values into a certain part of the
target field.

In both cases, the use of the SUBSTRING option in a COMPRESS statement corresponds to that in a MOVE
statement. See the MOVE statement for details on the SUBSTRING option.

WITH DELIMITER - operand7
If you wish the values in the target field to be separated from one another by a specific character, you use the
DELIMITER option:

If you specify WITH DELIMITER operand7, the values will be separated by the character specified with
operand7. Operand7 must be a single character. If operand7 is a variable, it must be of format/length A1,
B1 or I4.
If you specify WITH DELIMITERS without operand7, the values will be separated by the input delimiter
character (as defined with the session parameter ID).

ALL
Without ALL, a delimiter is placed in the target field only between values actually transferred.

With ALL, a delimiter is also placed in the target field for each blank value that is not actually transferred. This
means that the number of delimiters in the target field corresponds to the number of source fields minus 1. This
may be useful, for example, if the content of the target field is to be separated again with a subsequent
SEPARATE statement.

Examples:

 1. COMPRESS ’A’ ’ ’ ’C’ ’ ’ INTO #TARGET WITH DELIMITER ’*’
 Content of #TARGET is: A*C

 2. COMPRESS ’A’ ’ ’ ’C’ ’ ’ INTO #TARGET WITH ALL DELIMITERS ’*’
 Content of #TARGET is: A**C*

207Copyright © Software AG 2003

SUBSTRINGCOMPRESS

Processing
The COMPRESS operation terminates when either all operands have been processed or the target field
(operand2) is filled.

If the target field contains more positions than all operands combined, all remaining positions of operand2 will
be filled with blanks. If the target field is shorter, the value will be truncated.

If operand2 is a DYNAMIC variable, the COMPRESS operation terminates when all source operands have been
processed. No truncation will be performed. The length of operand2 after the COMPRESS operation will
correspond to the combined length of the source operands. The current length of a DYNAMIC variable can be
ascertained by using the system variable *LENGTH. For general information on DYNAMIC variables, see your
Natural User’s Guide.

Example 1

 /* EXAMPLE ’CMPEX1S:’ COMPRESS (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 MIDDLE-I
 1 #COMPRESSED-NAME (A20)
 END-DEFINE
 /***
 LIMIT 4
 READ EMPLOY-VIEW BY NAME
 COMPRESS FIRST-NAME MIDDLE-I NAME INTO #COMPRESSED-NAME
 DISPLAY NOTITLE FIRST-NAME MIDDLE-I NAME 5X #COMPRESSED-NAME
 END-READ
 /***
 END

 FIRST-NAME MIDDLE-I NAME #COMPRESSED-NAME
 -------------------- -------- -------------------- --------------------

 KEPA ABELLAN KEPA ABELLAN
 ROBERT W ACHIESON ROBERT W ACHIESON
 SIMONE ADAM SIMONE ADAM
 TIMMIE D ADKINSON TIMMIE D ADKINSON

Equivalent reporting-mode example: See program CMPEX1R in library SYSEXRM.

Example 2

Copyright © Software AG 2003208

COMPRESSProcessing

 /* EXAMPLE ’CMPEX2’: COMPRESS LEAVING NO SPACE
 /***
 LIMIT 4
 READ EMPLOYEES BY NAME
 COMPRESS CURR-CODE (1) SALARY (1) INTO #CCSALARY (A20)
 LEAVING NO SPACE
 DISPLAY NOTITLE NAME CURR-CODE (1) SALARY (1) 5X #CCSALARY
 /***
 END

 NAME CURRENCY ANNUAL #CCSALARY
 CODE SALARY
 -------------------- -------- ---------- --------------------

 ABELLAN PTA 1450000 PTA1450000
 ACHIESON UKL 10500 UKL10500
 ADAM FRA 159980 FRA159980
 ADKINSON USD 36000 USD36000

Example 3

 /* EXAMPLE ’CMPEX3’: COMPRESS WITH DELIMITER
 /**
 LIMIT 4
 READ EMPLOYEES BY NAME
 COMPRESS CURR-CODE (1) SALARY (1) INTO #CCSALARY (A20)
 WITH DELIMITER ’*’
 DISPLAY NOTITLE NAME CURR-CODE (1) SALARY (1) 5X #CCSALARY
 /**
 END

 NAME CURRENCY ANNUAL #CCSALARY
 CODE SALARY
 -------------------- -------- ---------- --------------------

 ABELLAN PTA 1450000 PTA*1450000
 ACHIESON UKL 10500 UKL*10500
 ADAM FRA 159980 FRA*159980
 ADKINSON USD 36000 USD*36000

209Copyright © Software AG 2003

Example 3COMPRESS

COMPUTE

Structured Mode Syntax

Reporting Mode Syntax

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A M A N P I F B D T L C G O yes yes

Operand2 C S A N A N P I F B D T L C G O yes no

Related Statements: ADD | SUBTRACT | MULTIPLY | DIVIDE | MOVE

Function
The COMPUTE statement is used to perform an arithmetic or assignment operation.

This statement may be issued in short form by omitting the statement keyword COMPUTE (or ASSIGN). In
structured mode, when the statement keyword is omitted, the equal sign (=) must be preceded by a colon (:).
However, when the ROUNDED option is used, the statement keyword COMPUTE or ASSIGN must be
specified.

For arithmetic operations involving arrays, see also Arithmetic Operations with Arrays in Statement Usage
Related Topics.

For more information on data transfer compatibility and the rules for data transfer, see the section Data Transfer.

Result Field - operand1
Operand1 will contain the result of the arithmetic/assignment operation.

Copyright © Software AG 2003210

COMPUTECOMPUTE

For the precision of the result, see Rules for Arithmetic Assignment in Statement Usage Related Topics.

If operand1 is a database field, the field in the database is not updated.

If operand1 is a DYNAMIC variable, it is filled with exactly the data and length of operand2 or the length of the
result of the arithmetic-operation, including trailing blanks. The current length of a DYNAMIC variable can be
obtained by using the system variable *LENGTH. For general information on DYNAMIC variables, see the
section Large and Dynamic Variables/Fields.

If operand1 is of format C, operand2 may also be specified as an Attribute Constant.

ROUNDED
If you specify the keyword ROUNDED, the value will be rounded before it is assigned to operand1. For
information on rounding, see Rules for Arithmetic Assignment in Statement Usage Related Topics.

arithmetic-expression
An arithmetic expression consists of one or more constants, database fields, and user-defined variables.

Natural mathematical functions (which are described in the section System Functions) may also be used as
arithmetic operands.

Operands used in an arithmetic expression must be defined with format N, P, I, F, D, or T.

As for the formats of the operands, see also Performance Considerations for Mixed Formats in Statement Usage
Related Topics.

The following connecting operators may be used:

Operator Symbol

Parentheses ()

Exponentiation **

Multiplication *

Division /

Addition +

Subtraction -

Each operator should be preceded and followed by at least one blank so as to avoid any conflict with a variable
name that contains any of the above characters.

The processing order of arithmetic operations is:

1. Parentheses
2. Exponentiation
3. Multiplication/division (left to right as detected)
4. Addition/subtraction (left to right as detected).

211Copyright © Software AG 2003

ROUNDEDCOMPUTE

Result Precision of a Division
The precision (number of decimal positions) of the result of a division in a COMPUTE statement is determined
by the precision of either the first operand (dividend) or the first result field, whichever is greater.

For a division of integer operands, however, the following applies: For a division of two integer constants, the
precision of the result is determined by the precision of the first result field; however, if at least one of the two
integer operands is a variable, the result is also of integer format (that is, without decimal positions, regardless of
the precision of the result field).

SUBSTRING
If the operands are of alphanumeric or binary format, you may use the SUBSTRING option in the same manner
as described for the MOVE statement to assign a part of operand2 to operand1.

Example 1

 /* EXAMPLE ’ASGEX1S’: ASSIGN (STRUCTURED MODE)
 DEFINE DATA LOCAL
 1 #A (N3)
 1 #B (A6)
 1 #C (N0.3)
 1 #D (N0.5)
 1 #E (N1.3)
 1 #F (N5)
 1 #G (A25)
 1 #H (A3/1:3)
 END-DEFINE
 /***
 ASSIGN #A = 5 WRITE NOTITLE ’=’ #A
 ASSIGN #B = ’ABC’ WRITE ’=’ #B
 ASSIGN #C = .45 WRITE ’=’ #C
 ASSIGN #D = #E = -0.12345 WRITE ’=’ #D / ’=’ #E
 ASSIGN ROUNDED #F = 199.999 WRITE ’=’ #F
 #G := ’HELLO’ WRITE ’=’ #G
 #H (1) := ’UVW’
 #H (3) := ’XYZ’ WRITE ’=’ #H (1:3)
 END

#A: 5
 #B: ABC
 #C: .450
 #D: -.12345
 #E: -0.123
 #F: 200
 #G: HELLO
 #H: UVW XYZ

Equivalent reporting-mode example: See program ASGEX1R in library SYSEXRM.

Copyright © Software AG 2003212

COMPUTEResult Precision of a Division

Example 2

 /* EXAMPLE ’CPTEX1S’: COMPUTE (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 #I (P2)
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 SALARY (1:2)
 1 #A (P4)
 1 #B (N3.4)
 1 #C (N3.4)
 1 #CUM-SALARY (P10)
 END-DEFINE
 /**
 COMPUTE #A = 3 * 2 + 4 / 2 - 1
 WRITE NOTITLE ’COMPUTE #A = 3 * 2 + 4 / 2 - 1’ 10X ’=’ #A
 /**
 COMPUTE ROUNDED #B = 3 - 4 / 2 * .89
 WRITE ’COMPUTE ROUNDED #B = 3 -4 / 2 * .89’ 5X ’=’ #B
 /**
 COMPUTE #C = SQRT (#B)
 WRITE ’COMPUTE #C = SQRT (#B)’ 18X ’=’ #C
 /**
 LIMIT 1
 READ EMPLOY-VIEW BY PERSONNEL-ID STARTING FROM ’20017000’
 WRITE / ’CURRENT SALARY: ’ 4X SALARY (1)
 / ’PREVIOUS SALARY:’ 4X SALARY (2)
 FOR #I = 1 TO 2
 COMPUTE #CUM-SALARY = #CUM-SALARY + SALARY (#I)
 END-FOR
 WRITE ’CUMULATIVE SALARY:’ #CUM-SALARY
 END-READ
 /**
 END

COMPUTE #A = 3 * 2 + 4 / 2 - 1 #A: 7
 COMPUTE ROUNDED #B = 3 -4 / 2 * .89 #B: 1.2200
 COMPUTE #C = SQRT (#B) #C: 1.1045

 CURRENT SALARY: 34000
 PREVIOUS SALARY: 32300
 CUMULATIVE SALARY: 66300

Equivalent reporting-mode example: See program CPTEX1R in library SYSEXRM.

213Copyright © Software AG 2003

Example 2COMPUTE

CREATE OBJECT

Operand Possible Structure Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S O no no

Operand2 C S A yes no

Operand3 C S A yes no

Operand4 S N I yes no

Function
The CREATE OBJECT statement is used to create an instance of a class. When a CREATE OBJECT statement
is executed on Windows platforms, Natural checks if the name of the class specified in the statement is
registered as a DCOM class. If this is the case, it creates the object using DCOM. If this is not the case, it
searches for a class with that name in the current Natural library or in the steplibs and creates the object locally.

Object Handle - operand1
Operand1 must be defined as an object handle (HANDLE OF OBJECT).

The object handle is filled when the object is successfully created. When not successfully returned, operand1
contains the value NULL-HANDLE.

Class-Name - operand2
Operand2 is the name of the class of which the object is to be created. For classes that are not registered as
DCOM classes, it must contain the class name defined in the DEFINE CLASS statement. For classes that are
registered as DCOM classes, it must contain either the ProgID of the class or the class GUID. For Natural classes
that are registered as DCOM classes, the ProgID corresponds to the class name specified in the DEFINE CLASS
statement. For further information, see the section Registration with Natural.

CREATE OBJECT #O1 OF CLASS "Employee" or
 CREATE OBJECT #O1 OF CLASS "653BCFE0-84DA-11D0-BEB3-10005A66D231"

Copyright © Software AG 2003214

CREATE OBJECTCREATE OBJECT

Node - operand3
This clause applies only on Windows platforms.

As operand3 you specify the node where the object is created. This is only possible if the class is registered as a
DCOM class. If the node clause is specified, an attempt is made to create the object on that node. If the node
clause is not specified or contains a blank value, the object is created on the node that is specified in the system
registry under the key "RemoteServerName" for that class. If this registry key is not specified, the object is
created in the local Natural session. For example

CREATE OBJECT #O1 OF CLASS "Employee" ON NODE "volcano.iceland.com"

GIVING - operand4
If the GIVING clause is specified, operand4 contains either the Natural message number if an error occurred, or
zero on success.

If the GIVING clause is not specified, Natural run time error processing is triggered if an error occurs.

215Copyright © Software AG 2003

Node - operand3CREATE OBJECT

DECIDE FOR

Related Statements: DECIDE ON | IF

Function
The DECIDE FOR statement is used to decide for one or more actions depending on multiple conditions (cases).

Note:
If no action is to be performed under a certain condition, you must specify the statement IGNORE in the
corresponding clause of the DECIDE FOR statement.

FIRST/EVERY
With the keyword FIRST or EVERY, you indicate whether only the first or every true condition is to be
processed.

WHEN logical-condition
With this clause, you specify the logical condition(s) to be processed. See the section Logical Condition Criteria.

WHEN ANY
With WHEN ANY, you can specify the statement(s) to be executed when any of the logical conditions are true.

WHEN ALL
With WHEN ALL, you can specify the statement(s) to be executed when all logical conditions are true. This
clause is applicable only if EVERY has been specified.

Copyright © Software AG 2003216

DECIDE FORDECIDE FOR

WHEN NONE
With WHEN NONE, you specify the statement(s) to be executed when none of the logical conditions are true.

217Copyright © Software AG 2003

WHEN NONEDECIDE FOR

Example 1

 /* EXAMPLE ’DECEX1:’ DECIDE FOR (USING FIRST OPTION)
 /**
 /* IF FUNCTION = A AND PARM = X
 /* ROUTINE-A IS TO BE EXECUTED.
 /* IF FUNCTION = B AND PARM = X
 /* ROUTINE-B IS TO BE EXECUTED.
 /* IF FUNCTION = C THRU D
 /* ROUTINE-CD IS TO BE EXECUTED.
 /* FOR ALL OTHER CASES,
 /* REINPUT STATEMENT IS TO BE EXECUTED.
 /**
 DEFINE DATA LOCAL
 1 #FUNCTION (A1)
 1 #PARM (A1)
 END-DEFINE
 /**
 INPUT #FUNCTION #PARM
 /**
 DECIDE FOR FIRST CONDITION
 WHEN #FUNCTION = ’A’ AND #PARM = ’X’
 PERFORM ROUTINE-A
 WHEN #FUNCTION = ’B’ AND #PARM = ’X’
 PERFORM ROUTINE-B
 WHEN #FUNCTION = ’C’ THRU ’D’
 PERFORM ROUTINE-CD
 WHEN NONE
 REINPUT ’PLEASE ENTER A VALID FUNCTION’
 MARK *#FUNCTION
 END-DECIDE
 /**
 END

 #FUNCTION A #PARM Y

 PLEASE ENTER A VALID FUNCTION
 #FUNCTION A #PARM Y

Copyright © Software AG 2003218

DECIDE FORExample 1

Example 2

 /* EXAMPLE ’DECEX1E:’ DECIDE FOR (EVERY OPTION)
 /***
 DEFINE DATA LOCAL
 1 #FIELD1 (N5.4)
 END-DEFINE
 /***
 INPUT #FIELD1
 /***
 DECIDE FOR EVERY CONDITION
 WHEN #FIELD1 >= 0
 WRITE ’#FIELD1 is positive or zero.’
 WHEN #FIELD1 <= 0
 WRITE ’#FIELD1 is negative or zero.’
 WHEN FRAC(#FIELD1) = 0
 WRITE ’#FIELD1 has no decimal digits.’
 WHEN ANY
 WRITE ’Any of the above conditions is true.’
 WHEN ALL
 WRITE ’#FIELD1 is zero.’
 WHEN NONE
 IGNORE
 END-DECIDE
 /***
 END

#FIELD1 42

Page 1 90-10-29 12:24:33

 #FIELD1 is positive or zero.
 #FIELD1 has no decimal digits.
 Any of the above conditions is true.

219Copyright © Software AG 2003

Example 2DECIDE FOR

DECIDE ON

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A N A N P I F B D T L G O yes no

Operand2 C S A A N P I F B D T L G O yes no

Related Statements: DECIDE FOR | IF

Function
The DECIDE ON statement is used to specify multiple actions to be performed depending on the value (or
values) contained in a variable.

Note:
If no action is to be performed under a certain condition, you must specify the statement IGNORE in the
corresponding clause of the DECIDE ON statement.

FIRST/EVERY
With one of these keywords, you indicate whether only the first or every value that is found is to be processed.

Copyright © Software AG 2003220

DECIDE ONDECIDE ON

Selection Field - operand1
As operand1 you specify the field whose contents is to be checked.

VALUES Clause

With this clause, you specify the value (operand2) of the selection field, as well as the statement(s) which are to
be executed if the field contains that value.

You can specify one value, multiple values, or a range of values optionally preceded by one or more values.

Multiple values must be separated from one another either by the input delimiter character (as specified with the
session parameter ID) or by a comma. A comma must not be used for this purpose, however, if the comma is
defined as decimal character (with the session parameter DC).

For a range of values, you specify the starting value and ending value of the range, separated from each other by
a colon.

ANY
With ANY, you specify the statement(s) which are to be executed if any of the values in the VALUE clause are
found. These statements are to be executed in addition to the statement specified in the VALUE clause.

ALL
With ALL, you specify the statement(s) which are to be executed if all of the values in the VALUE clause are
found. These statements are to be executed in addition to the statement specified in the VALUE clause.

The ALL clause applies only if the keyword EVERY is specified.

NONE
With NONE, you specify the statement(s) which are to be executed if none of the specified values are found.

Example 1

221Copyright © Software AG 2003

Selection Field - operand1DECIDE ON

 /* EXAMPLE ’DECEX2’: DECIDE ON (FIRST OPTION)
 /**
 SET KEY ALL
 INPUT ’TO UPDATE A RECORD, USE PF1 KEY’ /
 ’TO ADD A RECORD, USE PF2 KEY’ /
 /**
 /* ROUTINE-UPD IS TO BE EXECUTED IF PF1 IS USED,
 /* ROUTINE-ADD IS TO BE EXECUTED IF PF2 IS USED,
 /* IF EITHER PF1 OR PF2 USED, END TRANSACTION IS TO BE EXECUTED,
 /* IF NEITHER PF1 NOR PF2 ARE USED, NO STATEMENTS ARE TO BE EXECUTED.
 /**
 DECIDE ON FIRST VALUE OF *PF-KEY
 VALUE ’PF1’
 PERFORM ROUTINE-UPD
 VALUE ’PF2’
 PERFORM ROUTINE-ADD
 ANY VALUE
 END TRANSACTION
 WRITE ’RECORD HAS BEEN MODIFIED’
 NONE VALUE
 IGNORE
 END-DECIDE
 /**
 END

Copyright © Software AG 2003222

DECIDE ONExample 1

Example 2

 /* EXAMPLE ’DECEX2E’: DECIDE ON (EVERY OPTION)
 /* THIS EXAMPLE SHOWS THE EFFECT OF USING THE EVERY CLAUSE
 /**
 INPUT ’ENTER ANY VALUE BETWEEN 1 AND 9:’ FIELD1(N1) (SG=OFF)
 DECIDE ON EVERY VALUE OF FIELD1
 VALUE 1 : 4
 WRITE ’CONTENT OF FIELD1 IS 1-4’
 VALUE 2 : 5
 WRITE ’CONTENT OF FIELD1 IS 2-5’
 ANY VALUE
 WRITE ’CONTENT OF FIELD1 IS 1-5’
 ALL VALUE
 WRITE ’CONTENT OF FIELD1 IS 2-4’
 NONE VALUE
 WRITE ’CONTENT OF FIELD1 IS NOT 1-5’
 END-DECIDE
 /**
 END

ENTER ANY VALUE BETWEEN 1 AND 9: 4

Page 1 94-06-16 12:47:24

 CONTENT OF FIELD1 IS 1-4
 CONTENT OF FIELD1 IS 2-5
 CONTENT OF FIELD1 IS 1-5
 CONTENT OF FIELD1 IS 2-4

223Copyright © Software AG 2003

Example 2DECIDE ON

DEFINE...
The following is a list of the DEFINE... statements:

DEFINE CLASS
DEFINE DATA
DEFINE FUNCTION
DEFINE PRINTER
DEFINE PROTOTYPE
DEFINE SUBROUTINE
DEFINE WINDOW
DEFINE WORK FILE

Copyright © Software AG 2003224

DEFINE...DEFINE...

DEFINE CLASS

Function
The DEFINE CLASS statement is used to specify a class from within a Natural class module.

A Natural class module consists of one DEFINE CLASS statement followed by an END statement.

class-name
This is the name that is used by clients to create objects of this class. The name can be up to a maximum of 32
characters long. The name may contain periods: this can be used to construct class names such as
<company-name>.<application-name>.<class-name>. Each part between the periods (...) must conform to the
Natural naming conventions for user variables (please refer to Statement Usage Related Topics for further
information).

If the class is planned to be used by clients written in different programming languages, the class name should be
chosen in a way that it does not conflict with the naming conventions that apply in these languages. Bolero for
example uses the Java naming convention. So, a class that is planned to be used in a Bolero client should also
follow the Java naming conventions.

225Copyright © Software AG 2003

DEFINE CLASSDEFINE CLASS

WITH ACTIVATION POLICY Clause
This clause applies only on Windows platforms.

The WITH ACTIVATION POLICY clause is used to define explicitly the activation policy which is registered
for the current class.

You can set the following parameters:

Parameter Description

EM Sets activation policy ExternalMultiple

ES Sets activation policy ExternalSingle

IM Sets activation policy InternalMultiple

When the class is stowed and registered, the setting in the WITH ACTIVATION POLICY clause overrides the
ACTPOLICY=activation-policy profile parameter, but is in turn overridden by manual registration using the
REGISTER command with an explicit activation policy definition. For further information, see the section
Activation Policies.

OBJECT Clause
The OBJECT clause is used to define the object data. The syntax of the OBJECT clause is the same as for the
LOCAL clause of the DEFINE DATA statement. For further information, see the description of the LOCAL
clause of the DEFINE DATA statement.

LOCAL Clause
The LOCAL clause is only used to include globally unique IDs (GUIDs) in the class definition. GUIDs need
only be defined if a class is to be registered with DCOM. GUIDs are mostly defined in a local data area. For
further information, see the section Globally Unique Identifiers (GUIDs).

The syntax of the LOCAL clause is the same as for the LOCAL clause of the DEFINE DATA statement. For
further information, see the description of the LOCAL clause of the DEFINE DATA statement.

ID Clause
This clause applies only on Windows platforms.

The ID clause is used to assign a globally unique ID to the class. The class GUID is the name of a GUID defined
in the data area that is included by the LOCAL clause. The class GUID is a (named) alphanumeric constant. A
GUID must be assigned to a class if it is to be registered with DCOM.

INTERFACE USING Clause
The INTERFACE USING clause is used to include copycode that contains INTERFACE statements.

Copyright © Software AG 2003226

DEFINE CLASSWITH ACTIVATION POLICY Clause

copycode

The copycode used by the INTERFACE USING clause may contain one or more INTERFACE statements.

See the following statements for further information:

INTERFACE
PROPERTY
METHOD

227Copyright © Software AG 2003

copycodeDEFINE CLASS

DEFINE DATA

General Syntax

Note:
If more than one clause is used, the GLOBAL, PARAMETER, OBJECT, LOCAL, INDEPENDENT and
CONTEXT clauses must be specified in the order shown above.
An "empty" DEFINE DATA statement is not allowed; in other words, at least one clause (GLOBAL,
PARAMETER, OBJECT, LOCAL, INDEPENDENT or CONTEXT) must be specified and at least one
field must be defined.

Function
The DEFINE DATA statement is used to define the data areas which are to be used within a Natural program.
When a DEFINE DATA statement is used, it must be the first statement of the program/routine.

DEFINE DATA in Structured Mode

In structured mode, all variables to be used must be defined in the DEFINE DATA statement; they must not be
defined elsewhere in the program.

Copyright © Software AG 2003228

DEFINE DATADEFINE DATA

DEFINE DATA in Reporting Mode

In reporting mode, the DEFINE DATA statement is not mandatory since variables may be defined in the body of
the program. However, if a DEFINE DATA LOCAL statement is used in reporting mode, variables (except
AIVs) must not be defined elsewhere in the program; and if a DEFINE DATA INDEPENDENT statement is
used in reporting mode, application-independent variables (AIVs) must not be defined elsewhere in the program.

DEFINE DATA OBJECT

DEFINE DATA OBJECT is used in conjunction with NaturalX. It is described in the NaturalX documentation.

data areas
Natural supports three types of data areas:

global data area
parameter data area
local data area

global data area

A global data area contains data elements which can be referenced by more than one programming object (as
described in section Object Types of the Natural Programming Guide). The global data area and the objects
which reference it must be contained in the same library (or in a steplib). No more than one global data area is
allowed per DEFINE DATA statement.

parameter data area

A parameter data area contains data elements which are used as parameters in a subprogram, external subroutine
or dialog. Parameter data elements must not be assigned initial or constant values, and they must not have EM,
HD or PM definitions. Parameter data elements can also be defined within the subprogram/subroutine itself.
Parameters can also be defined within a helproutine.

local data area

A local data area contains data elements which are to be used in a single Natural module. (Local data can also be
defined directly within a program or routine.) A data area defined using DEFINE DATA LOCAL may be a
parameter data area.

All three types of data areas can be created and maintained by using the data area editor.

block
Data blocks can overlay one another during program execution, thereby saving storage space.

The maximum number of block levels is 8 (including the master block).

.block

.block notations(s) specify the block(s) which are used in the program.

For further information on data blocks, see the section Data Blocks in the Natural Programming Guide.

229Copyright © Software AG 2003

data areasDEFINE DATA

data-definition

level Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading "0" is optional)
used in conjunction with field grouping. Fields assigned a level number of 02 or greater are
considered to be a part of the immediately preceding group which has been assigned a lower level
number.
The definition of a group enables reference to a series of fields (may also be only 1 field) by using
the group name. This provides a convenient and efficient method of referencing a series of
consecutive fields.
A group may consist of other groups. When assigning the level numbers for a group, no level
numbers may be skipped.
A view-definition must always be defined at level 1.

group-nameThe name of a group. The name must adhere to the rules for defining a Natural variable name.

Copyright © Software AG 2003230

DEFINE DATAdata-definition

parameter-data-definition

group-name [(array-definition)]

redefinition

(format-length [/ array-definition])level variable-name [BY VALUE [RESULT]] [OPTIONAL]

A

[/ array-definition] DYNAMIC
B

parameter-handle-definition [BY VALUE [RESULT]] [OPTIONAL]

level This is the same as under data-definition.

group-name This is the same as under data-definition.

variable-name This is the same as under variable-definition.

format-length This is the same as under variable-definition.

DYNAMIC

A parameter may be defined as DYNAMIC. For more information on processing dynamic
variables, see Large and Dynamic Variables/Fields.
Depending on whether call-by-reference or call-by-value is used, the appropriate transfer
mechanism is applicable. For further information, see the CALLNAT statement.

BY VALUE

Without BY VALUE (default), a parameter is passed to a subprogram/subroutine by reference
(that is, via its address); therefore a field specified as parameter in a CALLNAT/PERFORM
statement must have the same format/length as the corresponding field in the invoked
subprogram/subroutine.
With BY VALUE, a parameter is passed to a subprogram/subroutine by value; that is, the
actual parameter value (instead of its address) is passed. Consequently, the field in the
subprogram/subroutine need not have the same format/length as the CALLNAT/PERFORM
parameter. The formats/lengths must only be data transfer compatible. For data transfer
compatibility, the Rules for Arithmetic Assignment/Data Transfer apply (see Statement Usage
Related Topics).
BY VALUE allows you, for example, to increase the length of a field in a
subprogram/subroutine (if this should become necessary due to an enhancement of the
subprogram/subroutine) without having to adjust any of the objects that invoke the
subprogram/subroutine.

For parameter definitions for dialogs (under Windows), the following applies:
- Without BY VALUE, a parameter, as specified in the inline definition of a dialog’s
parameter data area, is transferred via its address (by reference); the format and length of the
parameter in an OPEN DIALOG or SEND EVENT statement, for example, must match the
format and length of the parameter in the inline parameter data definition of the dialog. You
can use a parameter by reference in the before open and after open event handlers and in all
other events if the used parameters are transferred in the SEND EVENT statement triggering
this event.
- With BY VALUE, a parameter is transferred via its value; format and length do not have to
match; the parameter in the OPEN DIALOG or SEND EVENT statement must be data
transfer compatible with the parameter of the dialog.

231Copyright © Software AG 2003

parameter-data-definitionDEFINE DATA

BY VALUE
RESULT

While BY VALUE applies to a parameter passed to a subprogram/subroutine, BY VALUE
RESULT causes the parameter to be passed by value in both directions; that is, the actual
parameter value is passed from the invoking object to the subprogram/subroutine and, on
return to the invoking object, the actual parameter value is passed from the
subprogram/subroutine back to the invoking object.

With BY VALUE RESULT, the formats/lengths of the fields concerned must be data transfer
compatible in both directions.

Note: BY VALUE RESULT cannot be used in dialogs.

OPTIONAL

For a parameter defined without OPTIONAL (default), a value must be passed from the
invoking object. For a parameter defined with OPTIONAL, a value can--but need not
be--passed from the invoking object to this parameter.
In the invoking object, the notation nX is used to indicate parameters which are skipped, that
is, for which no values are passed.

With the SPECIFIED Option you can find out at run time whether an optional parameter has
been defined or not.

Copyright © Software AG 2003232

DEFINE DATAparameter-data-definition

Example of BY VALUE:

 * Program
 DEFINE DATA LOCAL
 1 #FIELDA (P5)
 ...
 END-DEFINE
 ...
 CALLNAT ’SUBR01’ #FIELDA
 ...

 * Subroutine SUBR01
 DEFINE DATA PARAMETER
 1 #FIELDB (P9) BY VALUE
 END-DEFINE
 ...

Example of BY VALUE for Dialog:

 /*Example of three parameters not passed BY VALUE:
 1 #A (A10) /* Parameter Data Definition
 1 #B (A20) /* of the called Dialog
 1 #C (A30) /*
 OPEN DIALOG ’MYDIALOG’ #DLG$WINDOW WITH #X #Y #Z /* #X has to be A10,#Y has to
 /* be A20,and #Z has to be A30
 /*Example of three parameters passed BY VALUE:
 1 #A (A10) BY VALUE /* Parameter Data Definition
 1 #B (A20) BY VALUE /* of the called Dialog
 1 #C (A30) BY VALUE /*
 OPEN DIALOG ’MYDIALOG’ #DLG$WINDOW WITH #X #Y #Z /* #X may be A1, #Y may be
 /* A100,and #Z may be A253

parameter-handle-definition

handle-definition

233Copyright © Software AG 2003

Example of BY VALUE:DEFINE DATA

The use of "handle-definition" with "dialog-element-type" is only possible under Windows.

handle-name The name to be assigned to the handle; the naming conventions for user-defined variables
apply (see the section Naming Conventions under User-Defined Variables).

dialog-element-typeThe type of dialog element (only possible under Windows). Its possible values are the
values of the TYPE attribute. For details, see the sections Dialog Elements and
Attributes of the Natural Dialog Component Reference documentation for Windows.

OBJECT Is used in conjunction with NaturalX as described in the NaturalX documentation.

The HANDLE definition in the DEFINE DATA statement is generated automatically on the creation of a dialog
element or dialog.

After having defined a handle, you can use the handle-name in any statement to query, set or modify attribute
values for the defined dialog-element-type (see the section Event-Driven Programming Techniques in the
Natural Programming Guide).

Examples of handle-definitions:

 1 #SAVEAS-MENUITEM HANDLE OF MENUITEM
 1 #OK-BUTTON (1:10) HANDLE OF PUSHBUTTON

Note:
If you use "block" structures, a HANDLE OF OBJECT may only be defined in the master block, but not in any
subordinate blocks.

view-definition

Copyright © Software AG 2003234

DEFINE DATAview-definition

A view-definition is used to define a view as derived from a DDM.

In a parameter data area, view-definition is not permitted.

view-name The name to be assigned to the view. Rules for Natural variable names apply.

ddm-name The name of the DDM from which the view is to be taken.

level Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading "0" is optional)
used in conjunction with field grouping. Fields assigned a level number of 02 or greater are
considered to be a part of the immediately preceding group which has been assigned a lower
level number.

The definition of a group enables reference to a series of fields (may also be only one field)
by using the group name. This provides a convenient and efficient method of referencing a
series of consecutive fields.

A group may consist of other groups. When assigning the level numbers for a group, no level
numbers may be skipped.

ddm-field The name of a field to be taken from the DDM.

When you define a view for a HISTOGRAM statement, the view must contain only the
descriptor for which the HISTOGRAM is to be executed.

format-length Format and length of the field. If omitted these are taken from the DDM.
In structured mode, the definition of format and length must be the same as those in the
DDM.
In reporting mode, the definition of format and length must be compatible with those in the
DDM.

array-definition Depending on the mode used, arrays (periodic-group fields, multiple-value fields) may have
to contain information about their occurrences. For more information, see the explanation
below the table.

DYNAMIC Defines a view field as DYNAMIC. For more information on processing dynamic variables,
see the section Large and Dynamic Variables/Fields.

array-definition

In structured mode, if a field is used in the view which represents an array, you must include a corresponding
index range in the view definition.

Structured Mode:

Adabas: If array fields defined in a DDM are to be used inside a view, these fields must contain an explicit array
definition. The array dimensions must match the corresponding DDM definition exactly (considering the
inheritance of array dimensions of previous groups). Only the array bounds may differ. The number of
occurrencies must not pass the maximum of 191 and the index range must be within the defined index range of
the DDM (periodic groups and multiple fields: (1:191)).

SQL: No array definitions allowed.

XML: If array fields defined in a DDM are to be defined inside a view, these fields must contain an explicit array
definition. The array dimensions must match the corresponding DDM definition exactly. Only the index range
may differ. The number of occurrences must not exceed the defined one and the index range must be within the
defined index range. If X-arrays are defined in DDM, they also may be used inside the view.

235Copyright © Software AG 2003

view-definitionDEFINE DATA

Note:
A DDM of type XML is only valid under Windows and UNIX.

The following table shows which view definition is allowed according to the DDM definition:

Note:
In the table, Z: is an integer variable, and X1, X2, Y1, Y2, Y: are constants or constant expressions.

 view-definition

DDM definition allowed not allowed

A(*:X2) A(*:Y2) Y2≤X2
A(Y1:Y2) Y2>Y1
Y2≤X2 A(Z:Z+Y) Y≥0

A(*:*)
A(Y1:*)

A(X1:*) A(Y1:*) Y1≥X1
A(Y1:Y2) Y2≥X1, Y1≥X1
A(Z:Z+Y) Y≥0

A(*:*)
A(*:Y2)

A(X1:X2) A(Y1:Y2) Y2<Y1
A(Z:Z+Y) 0≤Y≥X2-X1+1

A(*:*)
A(Y1:*)
A(*:Y2)

Examples:

DEFINE DATA LOCAL
1 EMP1 VIEW OF EMPLOYEES
2 NAME(A20)
2 ADDRESS-LINE(A20 / 1:2)
/* or
1 EMP2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(1:2)
/* or
1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(2)
/* or
1 #K (I4)
1 EMP4 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(#K:#K+1)
END-DEFINE
END

Reporting Mode

In this mode, the same rules are valid as for structured mode. However, there is one exception: the specification
of array bounds is not a must. The index range may be omitted completely. In this case the index range for the
missed dimensions is set to (1:1).

Examples:

Copyright © Software AG 2003236

DEFINE DATAview-definition

DEFINE DATA LOCAL
1 EMP1 VIEW OF EMPLOYEES
2 NAME(A30)
2 ADDRESS-LINE(A35 / 5:10)
/* or
1 EMP2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(A40)
/* or
1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE
/* or
1 #K (I4)
1 EMP4 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(#K:#K+1)
END-DEFINE
END

redefinition

REDEFINE field-name level
rgroup

rfield(format-length / array-definition)
FILLER nX

237Copyright © Software AG 2003

redefinitionDEFINE DATA

A redefinition may be used to redefine a group, a view, a DDM field or a single field/variable (that is a scalar or
an array).

field-name The name of the group, view, DDM field or single field that is being redefined.

level This is the same as under data-definition.

rgroup The name of the group resulting from the redefinition.
Note:
In a "redefinition" within a "view-definition", the name of "rgroup" must be different from any
field name in the underlying DDM.

rfield The name of the field resulting from the redefinition.
Note:
In a "redefinition" within a "view-definition", the name of "rfield" must be different from any
field name in the underlying DDM.

format-length The format and length of the rfield.

FILLER nX With this notation, you define n filler bytes - that is, segments which are not to be used - in the
field that is being redefined. The definition of trailing filler bytes is optional.

Restrictions Regarding Handles, X-Arrays and Dynamic Variables

Handles, X-arrays and dynamic variables cannot be redefined and cannot be contained in a redefinition clause.
A group that contains a Handle, X-array or a dynamic variable can only be redefined up to - but not including or
beyond - the element in question.

Note:
In a "parameter-data-definition", a "redefinition" of groups is only permitted within a REDEFINE block;
otherwise internal errors might occur when passing parameters between the calling program and the called
subprogam.

REDEFINE - Example 1:

 DEFINE DATA LOCAL
 01 #VAR1 (A15)
 01 #VAR2
 02 #VAR2A (N4.1) INIT <0>
 02 #VAR2B (P6.2) INIT <0>
 01 REDEFINE #VAR2
 02 #VAR2RD (A10)
 END-DEFINE
 ...

REDEFINE - Example 2:

 DEFINE DATA LOCAL
 01 MYVIEW VIEW OF STAFF
 02 NAME
 02 BIRTH
 02 REDEFINE BIRTH
 03 BIRTH-YEAR (N4)
 03 BIRTH-MONTH (N2)
 03 BIRTH-DAY (N2)
 END-DEFINE
 ...

Copyright © Software AG 2003238

DEFINE DATAredefinition

REDEFINE - Example 3:

 DEFINE DATA LOCAL
 1 #FIELD (A12)
 1 REDEFINE #FIELD
 2 #RFIELD1 (A2)
 2 FILLER 2X
 2 #RFIELD2 (A2)
 2 FILLER 4X
 2 #RFIELD3 (A2)
 END-DEFINE
 ...

variable-definition

With a variable definition a single field/variable (that is a scalar or an array) is defined.

239Copyright © Software AG 2003

variable-definitionDEFINE DATA

variable-nameThe name to be assigned to the variable. Rules for Natural variable names apply. For
information on naming conventions for user-defined variables, see the section Statement Usage
Related Topics.

format-length The format and length of the field. For information on format/length definition of user-defined
variables, see the section Statement Usage Related Topics.

DYNAMIC A field may be defined as DYNAMIC. For more information on processing dynamic variables,
see the section Large and Dynamic Variables/Fields.

CONSTANT The variable/array is to be treated as a named constant. The constant value(s) assigned will be
used each time the variable/array is referenced. The value(s) assigned cannot be modified
during program execution.

Note: For reasons of internal handling, it is not allowed to mix variable definitions and
constant definitions within one group definition; that is, a group may contain either variables
only or constants only.

INIT The variable/array is to be assigned an initial value. This value will also be used when this
variable/array is referenced in a RESET INITIAL statement.

If no INIT or CONSTANT specification is supplied, a field will be initialized with a default initial value
depending on its format (see Default Initial Values below).

Default Initial Values

Format Default Initial Value

B, F, I, N, P 0

A blank

L F(ALSE)

D D’ ’

T T’00:00:00’

C (AD=D)

GUI Handle NULL-HANDLE

Object Handle NULL-HANDLE

init-definition

Note:
The INIT and CONST clauses cannot be used with X-arrays.

Copyright © Software AG 2003240

DEFINE DATAinit-definition

constant The constant value with which the variable is to be initialized; or the constant value to be
assigned to the field. See the section Statement Usage Related Topics for further information
on constants.

system-variable The initial value for a variable may also be the value of a Natural system variable.

Note:
When the variable is referenced in a RESET INITIAL statement, the system variable is
evaluated again; that is, it will be reset not to the value it contained when program execution
started but to the value it contains when the RESET INITIAL statement is executed.

FULL
LENGTH

LENGTH n

As initial value, a variable can be filled, entirely or partially, with a specific single character
or string of characters (only possible for alphanumeric variables).

With the "FULL LENGTH" option, the entire field will be filled with the specified character
or characters.

With the "LENGTH n" option, the first n positions of the field will be filled with the
specified character or characters. n must be a numeric constant.

Example of System Variable as Initial Value:

 DEFINE DATA LOCAL
 1 #MYDATE (D) INIT <*DATX>
 END-DEFINE

Example of FULL LENGTH:

In this example, the entire field will be filled with asterisks.

 DEFINE DATA LOCAL
 1 #FIELD (A25) INIT FULL LENGTH <’*’>
 END-DEFINE

Example of LENGTH n:

In this example, the first 4 positions of the field will be filled with exclamation marks.

 DEFINE DATA LOCAL
 1 #FIELD (A25) INIT LENGTH 4 <’!’>
 END-DEFINE

array-definition

{ bound [:bound] }, 3

241Copyright © Software AG 2003

array-definitionDEFINE DATA

You define the lower and upper bound of a dimension in an array-definition. You can define up to 3 dimensions
for an array.

If only one bound is specified, the specified bound is assumed to be the upper bound and the lower bound is
assumed to be 1.

bound

A bound can be one of the following:

a numeric integer constant;
a previously defined named constant;
(for database arrays) a previously defined user-defined variable; or
* defines an extensible bound, otherwise known as an X-array.
Note:
X-arrays are only available under Windows and UNIX.

If at least one bound in at least one dimension of an array is specified as extensible, that array is then called an
X-array (eXtensible array). Only one bound (either upper or lower) may be extensible in any one dimension, but
not both. Multi-dimensional arrays may have a mixture of constant and extensible bounds, e.g. #a(1:100, 1:*).

Example:

DEFINE DATA LOCAL
1 #ARRAY1(I4/1:10)
1 #ARRAY2(I4/10)
1 #X-ARRAY3(I4/1:*)
1 #X-ARRAY4(I4/*,1:5)
1 #X-ARRAY5(I4/*:10)
1 #X-ARRAY6(I4/1:10,100:*,*:1000)
END-DEFINE

If the following table you can see the bounds of the arrays in the above program more clearly.

 Dimension1
Lower bound

Dimension1
Upper bound

Dimension2
Lower bound

Dimension2
Upper bound

Dimension3
Lower bound

Dimension3
Upper bound

#ARRAY1 1 10 - - - -

#ARRAY2 1 10 - - - -

#X-ARRAY3 1 eXtensible - - - -

#X-ARRAY4 1 eXtensible 1 5 - -

#X-ARRAY5 eXtensible 10 - - - -

#X-ARRAY6 1 10 100 eXtensible eXtensible 1000

Examples of Array Definitions:

 #ARRAY2(I4/10) /* a one-dimensional array
 #X-ARRAY4(I4/*,1:5) /* a two-dimensional array
 #X-ARRAY6(I4/1:10,100:*,*:1000) /* a three-dimensional array

Copyright © Software AG 2003242

DEFINE DATAarray-definition

Variable Arrays in a Parameter Data Area

In a parameter data area, you may specify an array with a variable number of occurrences. This is done with the
index notation "1:V ". For example:

 #ARRAYX (A5/1:V)

 #ARRAYY (I2/1:V,1:V)

An array that is defined with index "1:V" must not be redefined or be the result of a redefinition. As the number
of occurrences is not known at compilation time, it must not be referenced with the index notation (*) in any
statement, except ADD, COMPRESS, COMPUTE, DISPLAY, DIVIDE, EXAMINE, IF, MULTIPLY, RESET,
SUBTRACT.

A variable array can only be referenced either in its entirety (that is, all its occurrences) or as a scalar value (that
is, a single occurrence). For example:

 #ARRAYX (*)
 #ARRAYY (*,*)
 #ARRAYX (1)
 #ARRAYY (5,#FIELDX)

A partial range of a variable array must not be referenced:

 #ARRAYY (1,*) /* not allowed

To avoid runtime errors, the maximum number of occurrences of such an array should be passed to the
subprogram/subroutine via another parameter.

Notes:
If a parameter data area that contains an index "1:V" is used as a local data area (that is, specified in a DEFINE
DATA LOCAL statement), a variable named "V" must have been defined as CONSTANT.
In a dialog, an index "1:V" cannot be used in conjunction with BY VALUE.

See also the system variable *OCCURRENCE in the Natural System Variables documentation.

array-init-definition

243Copyright © Software AG 2003

array-init-definitionDEFINE DATA

With this clause, you define the initial/constant values for an array.

For a redefined field, an array-init-definition is not permitted.

ALL All occurrences in all dimensions of the array are initialized with the same value.

index Only the array occurrences specified by the index are initialized. If you specify index, you can
only specify one value with constant; that is, all specified occurrences are initialized with the
same value.

V This notation is only relevant for multidimensional arrays if the occurrences of one dimension
are to be initialized with different values. "V" indicates an index range that comprises all
occurrences of the dimension specified with "V"; that is, all occurrences in that dimension are
initialized. Only one dimension per array may be specified with "V". The occurrences are
initialized occurrence by occurrence with the values specified for that dimension. The number
of values must not exceed the number of occurrences of the dimension specified with "V".

constant The constant (value) with which the array is to be initialized (INIT), or the constant to be
assigned to the array (CONSTANT). See the section Statement Usage Related Topics for
further information on defining constants.

Note:
Occurrences for which no values are specified, are initialized with a default value.

system-variable The initial value for an array may also be the value of a Natural system variable.

Note:
Multiple constant values/system variables must be separated either by the input delimiter
character (as specified with the session parameter ID) or by a comma. A comma must not be
used for this purpose, however, if the comma is defined as decimal character (with the session
parameter DC).

FULL
LENGTH
LENGTH n

As initial value, it is also possible to have an array filled, entirely or partially, with a specific
single character or string of characters (only possible for alphanumeric arrays).

With "FULL LENGTH", the entire array occurrence(s) are filled with the specified character
or characters.

With "LENGTH n", the first n positions of the array occurrence(s) are filled with the
specified character or characters.

A system-variable must not be specified with "FULL LENGTH" or "LENGTH n".

Within one array-init-definition, only either "FULL LENGTH" or "LENGTH n" may be
specified; both notations must not be mixed.

Copyright © Software AG 2003244

DEFINE DATAarray-init-definition

Example of LENGTH n for Array:

In this example, the first 5 positions of each occurrence of the array will be filled with "NONON".

 DEFINE DATA LOCAL
 1 #FIELD (A25/1:3) INIT ALL LENGTH 5 <’NO’>
 ...
 END-DEFINE

Numerous examples of assigning initial values to arrays are provided in the Natural Programming Guide.

emhdpm

([EM = value] [HD = ’ value ’] [PM = value])

245Copyright © Software AG 2003

emhdpmDEFINE DATA

With this option, additional parameters to be in effect for the field/variable may be defined.

EM=value This parameter may be used to define an edit mask. See the session parameter EM in the Natural
Parameter Reference documentation.

HD=’value’ This parameter may be used to define the header to be used as the default header for the field (see
the DISPLAY statement).

PM=value This parameter may be used to set the print mode, which indicates how fields are to be output.
See the session parameter PM in the Natural Parameter Reference documentation.

If for a database field you specify neither an edit mask (EM=) nor a header (HD=), the default edit mask and
default header as defined in the DDM will be used.
However, if you specify one of the two, the other’s default from the DDM will not be used.

Copyright © Software AG 2003246

DEFINE DATAemhdpm

AIV-data-definition

level

variable-definition

redefinition

handle-definition

Additional Rules

An application-independent variable must be defined at level 01. Other levels are only used in a
redefinition.
The CONSTANT clause must not be used in this context.
The first character of the name must be a "+". Rules for Natural variable names apply. For information on
naming conventions for user-defined variables, see the section Naming Conventions under User-Defined
Variables
The fields resulting from the redefinition must not be application-independent variables, that is their name
must not start with a ’+’. These fields are treated as local variables.

247Copyright © Software AG 2003

AIV-data-definitionDEFINE DATA

DEFINE DATA INDEPENDENT is used to define application-independent variables (AIVs).

An application-independent variable is referenced by its name, and its content is shared by all programming
objects executed within one application that refer to that name. The variable is allocated by the first executed
programming object that references this variable and is deallocated by the LOGON command or a RELEASE
VARIABLES statement. The optional INIT clause is evaluated in each executed programming object that
contains this clause (not only in the programming object that allocates the variable).

level

variable-definition

redefinition

handle-definition

context-data-definition

level

variable-definition

redefinition

handle-definition

Copyright © Software AG 2003248

DEFINE DATAcontext-data-definition

Additional rules:

A context variable must be defined at level 01. Other levels are only used in a redefinition.
The CONSTANT clause must not be used in this context.
The fields resulting from the redefinition are not considered a context variable. These fields are treated as
local variables.

DEFINE DATA CONTEXT is used in conjunction with Natural RPC. It is used to define variables known as
context variables, which are meant to be available to multiple remote subprograms within one conversation,
without having to explicitly pass the variables as parameters with the corresponding CALLNAT statements.

A context variable is referenced by its name, and its content is shared by all programming objects executed in
one conversation that refer to that name. The variable is allocated by the first executed programming object that
contains the definition of the variable and is deallocated when the conversation ends. The optional INIT clause is
evaluated in each executed programming object that contains this clause (not only in the programming object
that allocates the variable). This is different to the way the INIT works for global variables.

Context variables can also be used in a non-conversational CALLNAT. In this case, the context variables only
exist during a single invocation of this CALLNAT but the variables can be shared with all its callees.

A context variable is not shared with subprograms that are called within the conversation. If such a subprogram
or one of its callees references a context variable, a separate storage area is allocated for this variable.

For further information, see Defining a Conversation Context in the Natural RPC documentation.

level

variable-definition

redefinition

handle-definition

249Copyright © Software AG 2003

context-data-definitionDEFINE DATA

Qualifying Data Structures
To identify a field when referencing it, you may qualify the field; that is, before the field name, you specify the
name of the level-1 data element in which the field is located and a period.

If a field cannot be identified uniquely by its name (for example, if the same field name is used in multiple
groups/views), you must qualify the field when you reference it.

The combination of level-1 data element and field name must be unique (see first example below).

The qualifier must be a level-1 data element (see second example below).

Example:

 DEFINE DATA LOCAL
 1 FULL-NAME
 2 LAST-NAME (A20)
 2 FIRST-NAME (A15)
 1 OUTPUT-NAME
 2 LAST-NAME (A20)
 2 FIRST-NAME (A15)
 END-DEFINE
 ...
 MOVE FULL-NAME.LAST-NAME TO OUTPUT-NAME.LAST-NAME
 ...

Example:

 DEFINE DATA LOCAL
 1 GROUP1
 2 SUB-GROUP
 3 FIELD1 (A15)
 3 FIELD2 (A15)
 END-DEFINE
 ...
 MOVE ’ABC’ TO GROUP1.FIELD1
 ...

Note:
If you use the same name for a user-defined variable and a database field (which you should not do anyway), you
must qualify the database field when you want to reference it; because if you do not, the user-defined variable
will be referenced instead.

Copyright © Software AG 2003250

DEFINE DATAQualifying Data Structures

Example 1

 /* EXAMPLE ’DDAEX1’: DEFINE DATA
 /***
 DEFINE DATA LOCAL
 01 #VAR1 (A15)
 01 #VAR2
 02 #VAR2A (N4.1) INIT <1111>
 02 #VAR2B (N6.2) INIT <22222>
 01 REDEFINE #VAR2
 02 #VAR2C (A2)
 02 #VAR2D (A2)
 02 #VAR2E (A6)
 END-DEFINE
 /**
 WRITE NOTITLE ’=’ #VAR2A / ’=’ #VAR2B /
 ’=’ #VAR2C / ’=’ #VAR2D / ’=’ #VAR2E
 /***
 END

#VAR2A: 1111.0
 #VAR2B: 222222.00
 #VAR2C: 11
 #VAR2D: 11
 #VAR2E: 022222

Example 2

 /* EXAMPLE ’DDAEX2’: DEFINE DATA (ARRAY DEFINITION/INITIALIZATION)
 /***
 DEFINE DATA LOCAL
 01 #VAR1 (A1/1:2,1:2) INIT (1,V) <’A’,’B’>
 01 #VAR2 (N5/1:2,1:3) INIT (1,2) <200>
 01 #VAR3 (A1/1:4,1:3) INIT (V,2:3) <’W’,’X’,’Y’,’Z’>
 END-DEFINE
 /***
 WRITE NOTITLE ’=’ #VAR1 (1,1) ’=’ #VAR1 (1,2)
 / ’=’ #VAR1 (2,1) ’=’ #VAR1 (2,2)
 /***
 WRITE /// ’=’ #VAR2 (1,1) ’=’ #VAR2 (1,2)
 / ’=’ #VAR2 (2,1) ’=’ #VAR2 (2,2)
 /***
 WRITE /// ’=’ #VAR3 (1,1) ’=’ #VAR3 (1,2) ’=’ #VAR3 (1,3)
 WRITE / ’=’ #VAR3 (2,1) ’=’ #VAR3 (2,2) ’=’ #VAR3 (2,3)
 WRITE / ’=’ #VAR3 (3,1) ’=’ #VAR3 (3,2) ’=’ #VAR3 (3,3)
 WRITE / ’=’ #VAR3 (4,1) ’=’ #VAR3 (4,2) ’=’ #VAR3 (4,3)
 /***
 END

251Copyright © Software AG 2003

Example 1DEFINE DATA

#VAR1: A #VAR1: B
 #VAR1: #VAR1:

 #VAR2: 0 #VAR2: 200
 #VAR2: 0 #VAR2: 0

 #VAR3: #VAR3: W #VAR3: W

 #VAR3: #VAR3: X #VAR3: X

 #VAR3: #VAR3: Y #VAR3: Y

 #VAR3: #VAR3: Z #VAR3: Z

Example 3

 /* EXAMPLE ’DDAEX3’: DEFINE DATA (VIEW DEFINITION, REDEFINE ARRAY)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 ADDRESS-LINE (A20/2)
 2 PHONE
 1 #ARRAY (A75/1:4)
 1 REDEFINE #ARRAY
 2 #ALINE (A25/1:4,1:3)
 1 #X (N2) INIT <1>
 1 #Y (N2) INIT <1>
 END-DEFINE
 /***
 FORMAT PS=20
 LIMIT 5
 FIND EMPLOY-VIEW WITH NAME = ’SMITH’
 MOVE NAME TO #ALINE (#X,#Y)
 MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
 MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
 MOVE PHONE TO #ALINE (#X+3,#Y)
 IF #Y = 3
 RESET INITIAL #Y
 PERFORM PRINT
 ELSE
 ADD 1 TO #Y
 END-IF
 AT END OF DATA
 PERFORM PRINT
 END-ENDDATA
 END-FIND
 /***
 DEFINE SUBROUTINE PRINT
 WRITE NOTITLE (AD=OI) #ARRAY(*)
 RESET #ARRAY(*)
 SKIP 1
 END-SUBROUTINE
 /***
 END

Copyright © Software AG 2003252

DEFINE DATAExample 3

SMITH SMITH SMITH
 ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.
 MILWAUKEE MONTERREY
 554349 (414)877-4563 (408)994-2260

 SMITH SMITH
 5 HAWTHORN 2307 DARIUS LANE
 OAK BROOK TAMPA
 (312)150-9351 (813)131-4010

Example 4

 /* EXAMPLE ’DDAEX4’: DEFINE DATA (GLOBAL, PARAMETER AND LOCAL AREAS)
 /***
 /* MAIN PROGRAM
 /***
 DEFINE DATA GLOBAL USING GLOBAL-1
 LOCAL
 1 #FIELD1 (A10)
 1 #FIELD2 (N5)
 END-DEFINE
 /***
 /* ...
 CALLNAT ’SUBP1’ #FIELD1 #FIELD2
 /* ...
 END

 /* SUBPROGRAM ’SUBP1’
 DEFINE DATA PARAMETER
 1 #FIELDA (A10)
 1 #FIELDB (N5)
 END-DEFINE
 /***
 /* ...
 END

Example 5

 * EXAMPLE ’DDAEX5’: DEFINE DATA (INITIALIZATION)
 **
 DEFINE DATA LOCAL
 1 #START-DATE (D) INIT <*DATX>
 1 #UNDERLINE (A50) INIT FULL LENGTH <’_’>
 1 #SCALE (A65) INIT LENGTH 65 <’....+..../’>
 END-DEFINE
 *
 WRITE NOTITLE #START-DATE (DF=L)
 / #UNDERLINE
 / #SCALE
 END

253Copyright © Software AG 2003

Example 4DEFINE DATA

1999-01-19
 __
 +..../....+..../....+..../....+..../....+..../....+..../....+

Example 6

 /* EXAMPLE ’DDAEX6’: DEFINE DATA (VARIABLE ARRAY)
 /***
 DEFINE DATA
 PARAMETER
 01 #STRING (A1/1:V)
 01 #MAX (P3)
 LOCAL
 01 #I (P3)
 END-DEFINE
 /***
 F0R #I = 1 TO #MAX
 IF #STRING (#I) < H’40’
 MOVE H’40’ TO #STRING (#I)
 END-IF
 END-FOR
 END

Example 7

DEFINE DATA LOCAL
 1 #MyHomePage (A4096) /* alpha variable with max. 4096 characters
 1 #MyStream (B1000000/1:10) /* binary array with 10 occurrences and max. 1000000 bytes per occ.
 1 #MyDynHomePage (A) DYNAMIC /* dynamic alpha variable
 1 #MyDynStream (B) DYNAMIC /* dynamic binary variable
 END-DEFINE

Copyright © Software AG 2003254

DEFINE DATAExample 6

DEFINE FUNCTION

DEFINE FUNCTION function-name

[return-data-definition]

[function-data-definition]

statement...

END-FUNCTION

Function
The DEFINE FUNCTION statement may be used in order to create new user defined functions, which may be
called instead of operands in the Natural statements.

Functions can be defined inside the "Function" object type only. Each Function object may contain only one
function definition. Each function may contain only one definition of the return variable, in other words, only
one RETURNS clause is possible. But each parameter may be defined as BY VALUE RESULT or by reference,
so that it is possible to return values back to the caller using the parameters. Recursive function calls may be
used inside a function definition. If you’re using the BY VALUE keyword inside the RETURNS clause, the
return value of the function will be converted into the return format-length which is set by the RETURNS clause.
If the BY VALUE keyword is missing, the format-length of the RETURNS clause must match the format-length
which is returned by the function evaluated at run time.

function-name
The function-name is the symbolic name of the Natural function which is to be defined. The name must follow
the same rules as used for User-Defined Variables. This means that the name may consist of max. 32 characters
and may start with a letter or some special characters like ’#’ etc.

You may not use the same function name twice in one library (including the libraries of the STEPLIB
mechanism). Function overloading is not allowed, meaning that all function definitions must have unique
function names.

return-data-definition

 (format-length)

RETURNS [variable-name]
(

A
) DYNAMIC

[BY VALUE]

 B

The return value may be assigned using the variable-name. If no explicit variable-name is given in the definition,
the name of the function is used as a return variable.

Note:
The return value must not be an array.

255Copyright © Software AG 2003

DEFINE FUNCTIONDEFINE FUNCTION

function-data-definition

DEFINE
DATA

PARAMETER

USING parameter-data-area

 parameter-data-definition

LOCAL
USING

local-data-area

 parameter-data-area

 data-definition

 [INDEPENDENT AIV-data-definition]

END-DEFINE

When a function calls another Natural object which uses a global data area, it establishes its own global data
area. Therefore, it is not possible to modify the current global data area data of the calling object. A global data
area cannot be defined in the function.

Example
Function object containing function definition:

/* DFUNX1: Example for DEFINE FUNCTION
/*
DEFINE FUNCTION GET-FIRST-BYTE
 RETURNS (A1)
 DEFINE DATA PARAMETER
 1 #PARA (A10)
 END-DEFINE
 GET-FIRST-BYTE := #PARA /* return value is assigned
END-FUNCTION
END

Copyright © Software AG 2003256

DEFINE FUNCTIONfunction-data-definition

DEFINE PRINTER

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A yes no

Operand2 C S A yes no

Operand3 C S N yes no

Operand4 C S N P I yes no

Related Statements: CLOSE PRINTER | DISPLAY | WRITE

Function
The DEFINE PRINTER statement is used to assign a symbolic name to a report number and to control the
allocation of a report to a logical destination. This provides you with additional flexibility when creating output
for various logical print queues.

When this statement is executed and the specified printer is already open, the statement will implicitly cause that
printer to be closed. To explicitly close a printer, however, you should use the CLOSE PRINTER statement.

Printer
As logical-printer-name, you specify the logical name which is to be allocated to printer n. This is the name
which will be used for the "rep" notation in a DISPLAY/WRITE statement. Naming conventions for the
logical-printer-name are the same as for user-defined variables (see General Information in the section Statement
Usage Related Topics).

The printer number n may be a value in the range of 0 - 31. For Natural Advanced Facilities, the valid range is
also 0 - 31.

The printer number 0 indicates the hardcopy printer.

257Copyright © Software AG 2003

DEFINE PRINTERDEFINE PRINTER

Multiple logical names may be assigned to the same printer number.

Unlike the output destination (see below), logical-printer-name=n is evaluated at compilation time and therefore
independent of the program control flow.

The following topics are covered:

Printers under OS/390 with Access Method AM=STD - Standard Batch
Printers under VM/CMS with Access Method AM=STD - Standard Batch
Printers under BS2000/OSD with Access Method AM=STD - Standard Batch
Printers under Com-plete
Printers under Com-plete (SMARTS)
Printers under Natural Advanced Facilities
Additional Reports

Printers under OS/390 with Access Method AM=STD - Standard Batch

Logical Dataset Names
Physical Dataset Names
HFS File
JES Spool File Class
NULLFILE
Allocation and De-Allocation of Datasets
Print Files in Server Environments

Under OS/390, for a printer number that is defined with access method AM=STD (either automatically in the
JCL or in the NTPRINT macro of the Natural parameter module or with the dynamic profile parameter PRINT),
you can use operand1 to specify a logical or a physical dataset name to be assigned to that printer number.

In this case, operand1 can be 1 to 253 characters long and can be one of the following:

a logical dataset name (DD name, 1 to 8 characters);
a physical dataset name of a cataloged dataset (1 to 44 characters), or a physical dataset member name (1 to
44 characters for the dataset name, plus 1 to 8 characters in parentheses for the member name);
a path name and member name of an HFS file (1 to 253 characters) in an MVS UNIX Services
environment;
a JES spool file class;
"NULLFILE" (to indicate a dummy dataset).

Logical Dataset Names

For example:

DEFINE PRINTER (21) OUTPUT ’SYSPRINT’

The specified dataset must have been allocated before the DEFINE PRINTER statement is executed.

The allocation can be done via JCL, CLIST or dynamic allocation (SVC 99). For dynamic allocation you can use
the user exit USR2021 in library SYSEXT.

The dataset name specified in the DEFINE PRINTER statement overrides the name specified with the
subparameter DEST of the NTPRINT macro or PRINT profile parameter.

Optionally, the dataset name may be prefixed by "DDN=" to indicate that it is a DD name and to avoid name
conflicts with additional reports. For example:

Copyright © Software AG 2003258

DEFINE PRINTERPrinters under OS/390 with Access Method AM=STD - Standard Batch

DEFINE PRINTER (22) OUTPUT ’DDN=SOURCE’

259Copyright © Software AG 2003

Printers under OS/390 with Access Method AM=STD - Standard BatchDEFINE PRINTER

Physical Dataset Names

For example:

DEFINE PRINTER (23) OUTPUT ’TEST.PRINT.FILE’

The specified dataset must exist in cataloged form. When the DEFINE PRINTER statement is executed, the
dataset is allocated dynamically by SVC 99 with the current DD name and option DISP=SHR.

If the dataset name is 8 characters or shorter and does not contain a period ".", it might be misinterpreted as a DD
name. To avoid this, prefix the name with "DSN=". For example:

DEFINE PRINTER (22) OUTPUT ’DSN=PRINTXYZ’

If the dataset is a PDS member, you specify the PDS member name (1 to 8 characters) in parentheses after the
dataset name (1 to 44 characters). For example:

DEFINE PRINTER (4) OUTPUT ’TEST.PRINT.PDS(TEST1)’

If the specified member does not exist, a new member of that name will be created.

HFS File

For example:

DEFINE PRINTER (14) OUTPUT ’/u/nat/rec/test.txt’

The specified path name must exist. When the DEFINE PRINTER statement is executed, the HFS file is
allocated dynamically. If the specified member does not exist, a new member of that name will be created.

For the dynamic allocation of the dataset, the following OS/390 path options are used:

PATHOPTS=(OCREAT,OTRUNC,ORDWR)
 PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
 FILEDATA=TEXT

When an HFS file is closed, it is automatically de-allocated by OS/390 (regardless of the setting of the
subparameter FREE in the NTPRINT macro or PRINT profile parameter).

JES Spool File Class

To create a JES spool dataset, you specify SYSOUT=x (where x is the desired spool file class). For the default
spool file class, you specify SYSOUT=*.

Examples:

DEFINE PRINTER (10) OUTPUT ’SYSOUT=A’
 DEFINE PRINTER (12) OUTPUT ’SYSOUT=*’

To specify additional parameters for the dynamic allocation, use the user exit USR2021 in library SYSEXT
instead of the DEFINE PRINTER statement.

Copyright © Software AG 2003260

DEFINE PRINTERPrinters under OS/390 with Access Method AM=STD - Standard Batch

NULLFILE

To allocate a dummy dataset, you specify NULLFILE as operand1:

DEFINE PRINTER (n) OUTPUT ’NULLFILE’

This corresponds to the JCL definition:

// DD-name DD DUMMY

Allocation and De-Allocation of Datasets

When the DEFINE PRINTER statement is executed and a physical dataset name, HFS file, spool file class or
dummy dataset has been specified, the corresponding dataset is allocated dynamically. If the logical print file is
already open, it will be closed automatically, except when the profile parameter CLOSE=FIN has been specified,
in which case an error will be issued. Moreover, an existing dataset allocated with the same current DD name is
automatically de-allocated before the new dataset is allocated. Print files that are to be allocated dynamically
have to be predefined in the Natural parameter module with AM=STD.

To avoid unnecessary overhead by unsuccessful premature opening of print files not yet allocated at the start of
the program, print files should be defined with the subparameter OPEN=ACC (open at first access) in the
NTPRINT macro or PRINT profile parameter.

In the case of an HFS file, or a print file defined with the subparameter FREE=ON in the NTPRINT macro or
PRINT profile parameter, the print file is automatically de-allocated as soon as it has been closed.

As an alternative for the dynamic allocation and de-allocation of datasets, the user exit USR2021 in library
SYSEXT is provided. This user exit also allows you to specify additional parameters for dynamic allocation.

Print Files in Server Environments

In server environments, errors may occur if multiple Natural sessions attempt to allocate or open a dataset with
the same DD name. To avoid this, you either specify the print file with subparameter DEST=* in the NTPRINT
macro or PRINT profile parameter, or you specify OUTPUT ’*’ in the DEFINE PRINTER statement; Natural
then generates a unique DD name at the physical dataset allocation when the first DEFINE PRINTER statement
for that print file is executed.

All print files whose DD names begin with "CM" are shared by all sessions in a server environment. A shared
print file is opened by the first session, and is physically closed when the server is terminated. For further
information, see the section Natural as a Server in the Natural Operations for Mainframes documentation.

261Copyright © Software AG 2003

Printers under OS/390 with Access Method AM=STD - Standard BatchDEFINE PRINTER

Printers under VM/CMS with Access Method AM=STD - Standard Batch

Under VM/CMS, for a printer number that is defined with the access method AM=STD (either automatically in
the JCL or in the NTPRINT macro of the Natural parameter module or with the dynamic profile parameter
PRINT), you can use operand1 to specify a logical or a physical dataset name to be assigned to that printer
number.

For this, the same applies as under OS/390 (see Printers under OS/390 with Access Method AM=STD - Standard
Batch), but with the following differences:

Instead of dynamic allocation via MVS SVC 99, the CMS command FILEDEF is used to define a dataset.
HFS files are not supported.
JES spool classes are not supported.
In addition, the following syntax is used:

DEFINE PRINTER (n) OUTPUT (’ fname ftype fmode (options)’)

This generates the CMS command:

FILEDEF ddname-n DISK fname ftype fmode (options)

Moreover, the following syntax is allowed:

DEFINE PRINTER (n) OUTPUT (’FILEDEF= filedef-parameters ’)

This generates the CMS command:

FILEDEF ddname-n =filedef-parameters

Copyright © Software AG 2003262

DEFINE PRINTERPrinters under VM/CMS with Access Method AM=STD - Standard Batch

Printers under BS2000/OSD with Access Method AM=STD - Standard
Batch

Under BS2000/OSD, for a printer number that is defined with the access method AM=STD (whether
automatically in the JCL, in the NTPRINT macro of the Natural parameter module or dynamically using the
profile parameter PRINT), you can use operand1 to specify a file name, link name or system file that is allocated
to this printer number.

In this case, operand1 can have a length of from 1 to 253 characters and one of the following meanings:

a BS2000/OSD link name (1 to 8 characters)
a BS2000/OSD file name (9 to 54 characters)
a generic BS2000/OSD file name (wildcard)
a BS2000/OSD file name and link name
a generic BS2000/OSD file name and link name (wildcard)
the logical BS2000/OSD system file SYSOUT
the logical BS2000/OSD system file SYSLST (or SYSLSTnn, nn=01-99)
the logical BS2000/OSD system file SYSLST (SYSLSTnn) with allocation to a file name
the logical BS2000/OSD system file SYSLST (SYSLSTnn) with allocation to a generic file name
(wildcard)
*DUMMY

The following rules apply:

1. File name and link name can be specified as positional parameters or keyword parameters. The
corresponding keywords are FILE= and LINK= . Mixing positional and keyword parameters is allowed but
not recommended.

2. A string with a length of 1 to 8 characters without commas is interpreted as a link name. This notation is
compatible with earlier versions of Natural.

Example:

DEFINE PRINTER (1) OUTPUT ’P01’

The corresponding definition with a keyword parameter is:

DEFINE PRINTER (1) OUTPUT ’LINK=P01’

3. A string of of 9 to 54 characters without commas is interpreted as a file name.

Example:

DEFINE PRINTER (2) OUTPUT ’NATURAL31.TEST.PRINTER02’

The corresponding definition with a keyword parameter is:

DEFINE PRINTER (2) OUTPUT ’FILE=NATURAL31.TEST.PRINTER02’

263Copyright © Software AG 2003

Printers under BS2000/OSD with Access Method AM=STD - Standard BatchDEFINE PRINTER

4. The following input is interpreted without considering the length and therefore forms exceptions to Rules 2
and 3:

keyword input: LINK=, FILE=
*DUMMY
NULLFILE (equivalent to *DUMMY)
*
,
SYSOUT
SYSLST or SYSLST(nn)

Example: DEFINE PRINTER (7) OUTPUT ’FILE=Y’ is a valid file allocation and not a link name,
although the string of characters contains fewer than 9 characters.

5. Generic file names are formed as follows:
pnn.userid.tsn.date.time.number
where

nn is a report number

userid is a Natural user-ID, 8 characters

tsn is the BS2000/OSD TSN of the current task, 4 digits

date is DDMMYYYY

time is HHIISS

number is a sequential number, 5 digits

6. Generic link names are formed as follows:

NPFnnnnn

nnnnn is a 5-digit number that is increased by one after every generation of a dynamic link name.

7. Changing the file allocation for a printer number causes an implicit CLOSE of the print file allocated so far.

You are strongly recommended, in all cases except when you only specify a link name (for example: P01), to
work with keyword parameters. This avoids conflicts of names with additional reports and is essential for file
names with fewer than 9 characters.

Examples:

DEFINE PRINTER (1) OUTPUT ’LINK=SOURCE’
 DEFINE PRINTER (1) OUTPUT ’FILE=SOURCE’
 DEFINE PRINTER (1) OUTPUT ’SOURCE’

Copyright © Software AG 2003264

DEFINE PRINTERPrinters under BS2000/OSD with Access Method AM=STD - Standard Batch

Link Name

Example:

DEFINE PRINTER (1) OUTPUT ’LINKP01’

means the same as

DEFINE PRINTER (1) OUTPUT ’LINK=LINKP01’

A file with the LINK ’LINKP01’ must exist at runtime. This can be created either using JCL before starting
Natural or by dynamic allocation from the current application. For dynamic allocation, the user exit USR2029 in
the library SYSEXT can be used. If, before execution, the link was active as a destination to another file, for
example: ’P01’, this will be released or retained depending on the value of the profile parameter FREE (possible
values are ON and OFF). Release is done via an explicit RELEASE call to the BS2000/OSD command
processor.

File Name

Example:

DEFINE PRINTER (2) OUTPUT ’NATURAL31.TEST.PRINTER02’

means the same as

DEFINE PRINTER (2) OUTPUT ’FILE=NATURAL31.TEST.PRINTER02’

The file specified in operand1 is set up using a FILE macro call and inherits the link name that was valid for the
corresponding print file before execution of the DEFINE PRINTER statement.

Generic File Name

Example:

DEFINE PRINTER (21) OUTPUT ’*’

means the same as

DEFINE PRINTER (21) OUTPUT ’FILE=*’

A file with a name created according to Rule 4 is set up using a FILE macro call and inherits the link name that
was valid for the corresponding print file before execution of the DEFINE PRINTER statement.

DEFINE PRINTER (22) OUTPUT ’FILE=*,LINK=GENFLK22’

A file with a name created according to Rule 4 is set up with the specified link name using a FILE macro call.

File Name and Link Name

Example:

DEFINE PRINTER (11) OUTPUT ’NATURAL31.TEST.PRINTER11,LNKP11’

means the same as

DEFINE PRINTER (11) OUTPUT ’FILE=NATURAL31.TEST.PRINTER11,LINK=LNKP11’

which means the same as

265Copyright © Software AG 2003

Printers under BS2000/OSD with Access Method AM=STD - Standard BatchDEFINE PRINTER

DEFINE PRINTER (11) OUTPUT ’FILE=NATURAL31.TEST.PRINTER11,LNKP11’

The file specified in operand1 is set up with the specified link name using a FILE macro call and allocated to the
corresponding printer number.

Generic File Name and Link Name

Example:

DEFINE PRINTER (27) OUTPUT ’*,*’

means the same as

DEFINE PRINTER (27) OUTPUT ’FILE=*,LINK=*’

A file with a file name and link name created according to Rule 4 and Rule 5 is set up using a FILE macro call
and allocated to the specified printer number (27).

Note:
When file name and link name are specified, the previous link name is not released, regardless of the value of the
profile parameter FREE.

System File SYSOUT

Example:

DEFINE PRINTER (14) OUTPUT ’SYSOUT’

Report 14 is written to SYSOUT.

Note:
Under TIAM, SYSOUT is by default output on the screen.

System File SYSLST

Example:

DEFINE PRINTER (15) OUTPUT ’SYSLST’

Report 15 is written to the system file SYSLST.

Copyright © Software AG 2003266

DEFINE PRINTERPrinters under BS2000/OSD with Access Method AM=STD - Standard Batch

System File SYSLSTnn - nn=01,...,99

Example:

DEFINE PRINTER (16) OUTPUT ’SYSLST16’

Report 16 is written to the system file SYSLST16.

System File SYSLST - nn - with Implicit Allocation to a BS2000/OSD File

Examples:

DEFINE PRINTER (11) OUTPUT ’SYSLST=LST.PRINTER11’

The system file SYSLST is allocated to the file LST.PRINTER11; Report 11 is written to the system file
SYSLST.

DEFINE PRINTER (13) OUTPUT ’SYSLST13=LST.PRINTER13’

The system file SYSLST13 is allocated to the file LST.PRINTER13; Report 13 is written to the system file
SYSLST13.

DEFINE PRINTER (19) OUTPUT ’SYSLST19=*’

The system file SYSLST19 is allocated to a file with a name generated according to Rule 4; Report 19 is written
to the system file SYSLST19.

Printers under Com-plete

For Natural users under Com-plete, any printer name can be assigned, even if it has not been defined to Natural.

Printers under Com-plete (SMARTS)

For Natural users under Com-plete (SMARTS AM=SMARTS), any printer name can be assigned, even if it has
not been defined to Natural.

For example:

DEFINE PRINTER (14) OUTPUT ’/nat/path/printer’
DEFINE PRINTER (14) OUTPUT ’/nat/path/printer/file/’
DEFINE PRINTER (14) OUTPUT ’printer’

It depends on the MOUNT_FS parameter of SMARTS whether the file is located on a SMARTS portable file
system or on the native file system. The first element of the path (/nat/) determines the target file system.

If the string is terminated with a slash "/", the last element is taken as the name of the print file. Otherwise, the
name of the file is generated from the UserID and a sequence number. If the string does not start with a slash, the
path of the file is taken from the environment variable $NAT_PRINT_ROOT.

The specified path name must exist. When the DEFINE PRINTER statement is executed, the file is allocated
dynamically. If the specified member does not exist, a new member of that name will be created.

Printers under Natural Advanced Facilities

For Natural Advanced Facilities users, the name of any predefined logical printer profile can be specified. This
logical printer profile need not belong to the currently active user profile. It may be any logical printer profile
defined on the NATSPOOL file. It will be active only for the duration of the Natural program which contains the
DEFINE PRINTER statement. For more information, see the Natural Advanced Facilities documentation.

267Copyright © Software AG 2003

Printers under Com-pleteDEFINE PRINTER

Additional Reports

Additional reports can be assigned for default with the following names:

Report Mainframes
Only Y/N?

Function

BROADCST Y Output message line to a TP monitor terminal. Same function as MESSAGE
(see below), except that under Com-plete, the message is not sent to the
desired terminal until no transactions are active on that terminal.

CCONTROL Y CCONTROL is the name of a special printer control table associated to the
printer "n-1"; it must not be modified. For further information, refer to
Printer-Advance Control Characters in the Natural Operations for
Mainframes documentation.

CONNECT Y Output into a Con-nect folder.
Note for Natural installation:
the NATPCNT module of Natural must be linked to the Natural nucleus.

DUMMY N Output to be deleted.

HARDCOPY Y Output to the current hardcopy device.

INCORE Y Output into the NSPF incore database.

INFOLINE N Output to the Natural infoline. For details on the infoline, see the Natural
terminal command %X in the Natural Reference documentation.

MESSAGE Y Output message line to a TP monitor terminal. The first 8 bytes of a message
must contain the target terminal id. TSO and CMS require the user id instead
of the terminal id. An example program MSGSW is supplied in the library
SYSEXTP.

SOURCE N Output to the Natural source area.

WORKPOOL Y Output into the Natural ISPF workpool.

Copyright © Software AG 2003268

DEFINE PRINTERAdditional Reports

OUTPUT operand1
With operand1, you specify the destination within the online spooling system. The destination is evaluated at
runtime.

If operand1 is a variable, its length must be at least 8.

Any logical printer name may be assigned, provided that it has been defined in the parameter file/parameter
module used, or via parameters or JCL during startup of Natural.

Under UNIX and Windows, the name must be specified as LPTnn, where nn may be 1 to 31.

Example:

LPT12 (UNIX or Windows printer name)

CMPRT01 (OS/JCL DDNAME)

P01 (BS2000/OSD file command)

TID111 (Com-plete printer name)

PCPRNT01 (printer defined for Natural Connection)

Assignment Algorithm on Mainframes

To assign the OUTPUT destination name to a report number, an algorithm is executed which works identical for
all access methods (as defined with the AM=xxx parameter of the NTPRINT macro).

This algorithm scans the list of printers defined to NATURAL (as it is displayed by the SYSFILE Print File
Information screen) to find a name which matches the OUTPUT destination name. During this scan, the access
method of the related logical printer is not taken into account.

If a matching name is found, the logical printer of this destination is used to spool the report. The SYSFILE
output, however, will not be changed, i.e., this routing is internal only and not visible to the user.

If a matching name is not found, the logical printer of the LAST entry in the list of defined printers is used to
spool the report. In this case, the logical printer name will physically be overwritten. The SYSFILE output
reflects this change.

If the OUTPUT clause is omitted, the destination depends on the "Device Assignment" in the parameter file
used; on mainframe computers, it depends on the profile parameter PRINT or macro NTPRINT respectively (see
the corresponding Natural Installation or Natural Operations documentation).

PROFILE/FORMS/NAME/DISP/CLASS/COPIES/PRTY
With these clauses, you can provide printing control information to be interpreted by the spooling system of the
TP monitor or operating system respectively.

Note:
The clauses FORMS, NAME, DISP, CLASS, COPIES and PRTY can only be used on mainframe computers.

You can specify one or more of these clauses, but each of them only once.

269Copyright © Software AG 2003

OUTPUT operand1DEFINE PRINTER

PROFILE

With the PROFILE clause, you specify as operand2 the name of a printer control characters table. Such a table is
defined under Windows and UNIX in the configuration file NATCONF.CFG. See the section for more details on
how to set printer profiles.

On mainframe computers, you define the printer control characters table in the NTCCTAB macro respectively
(as described in your Natural Installation or Operations documentation).

Note:
With Natural Advanced Facilities, the NTCC table can be maintained online (as described in the Natural
Advanced Facilities documentation).

With the other clauses, you can provide values for parameters of the TP monitor’s spooling system:

FORMS Form

NAME Listname

DISP Disposition

CLASS Spool class

COPIES Number of copies

PRTY Listing priority (1 - 255)

Those clauses will only use the default values for the first execution.

If one of the clauses listed above was defined once for a certain output, a subsequent DEFINE PRINTER
statement with the same output and without this clause will use this definition. If the previous definitions are not
clear in a Natural environment, Software AG recommends to set them in each module using DEFINE PRINTER
statement.

For the PROFILE, FORMS and NAME clauses, the maximum length allowed for operand2 is 8; for the DISP
clause, its maximum length is 4; for the CLASS clause, its length has to be 1.

For the DISP clause, the possible values for operand2 are "DEL", "HOLD", "KEEP" and "LEAV". If the DISP
clause is omitted (or incorrectly specified), "DEL" applies by default.

Operand3 and operand4 must be integer values.

Default values can be set with the corresponding subparameters of the profile parameter PRINT.

Copyright © Software AG 2003270

DEFINE PRINTERPROFILE

Example 1

 DEFINE PRINTER (1) OUTPUT ’TID100’
 WRITE (1) ’PRINTED ON PRINTER TID100’
 END

Example 2

 DEFINE PRINTER (REPORT1 = 1) OUTPUT ’LPT1’
 WRITE (REPORT1) ’REPORT1 PRINTED ON PRINTER LPT1’
 END

Example 3

 DEFINE PRINTER (REPORT1 = 1) /* NO ’OUTPUT’
 WRITE (REPORT1) ’DEPENDS ON NATPARM SETTING OR JCL IN BATCH’
 ’OR ’’PRINTER PARAMETER’’ UNDER COM-PLETE OR A/F’
 END

Example 4

 /* EXAMPLE ’DPIEX1’: DEFINE PRINTER INFOLINE
 *
 SET CONTROL ’XT’ /* INFOLINE TOP
 SET CONTROL ’XI’ /* SWITCH INFOLINE MODE
 DEFINE PRINTER (1) OUTPUT ’INFOLINE’
 WRITE (1) ’EXECUTING’ *PROGRAM ’BY’ *INIT-USER
 WRITE ’TEST OUTPUT’
 SET CONTROL ’XI’ /* SWITCH BACK TO NORMAL
 END

271Copyright © Software AG 2003

Example 1DEFINE PRINTER

Page 1 03-05-18 13:31:25

 TEST OUTPUT

 IO=814,AI =650,L=0 C= ,LS=80,P =3,PLS=80,PCS=24,FLD=90,CLS=5,ADA=22

Copyright © Software AG 2003272

DEFINE PRINTERExample 4

DEFINE PROTOTYPE

DEFINE PROTOTYPE

 UNKNOWN

prototype-name signature-clause

[FOR] VARIABLE prototype-variable-name same-clause

END-PROTOTYPE

Function
The prototype definition may be used to specify a signature according to a certain function call. For each
function call, the return type must be known, as well as the kind of the function call (VARIABLE). Therefore,
this data must be available for each function call. If any of this data is missing, the prototype keyword must be
used inside the function call reference. If there is a parameter definition inside the prototype, the parameter
values of the function call are compared with the parameters of the prototype definition. If the parameters should
not be checked, use the UNKNOWN keyword inside the define data parameter statement of the prototype
definition.

prototype-name
The prototype-name must follow the same rules as those used for defining user-defined variables (with one
exception: prototype-names may contain periods "."). The prototype-name is completely arbitrary. It is not
necessary for it to have the same name as a corresponding function definition. The maximum length of the whole
prototype-name is 32 characters.

prototype-variable-name
The prototype-variable-name allows you to call functions using variable function names. This is similar to
CALLNAT function calls. The prototype-variable-name is the name of an alphanumeric variable containing the
real name of the function, which is to be called in the function reference.

signature-clause

273Copyright © Software AG 2003

DEFINE PROTOTYPEDEFINE PROTOTYPE

 [prototype-return-data-definition]

 DEFINE DATA

PARAMETER UNKNOWN

PARAMETER
USING parameter-data-area

parameter-data-definition ...

 END-DEFINE

 END-PROTOTYPE

The signature-clause looks like a certain function call. Normally, the prototype agrees with the function
definition. But it does not need to be exactly the same. So it is possible to omit the parameter data and to set the
keyword UNKNOWN instead. In this case, there will be no parameter checking at compilation time. The type of
the return value must be set in every case. If no return value is defined, there is no assignment allowed from the
function call to a variable. If no signature is specified inside a prototype definition (signature is UNKNOWN),
the corresponding signature of a function call must be specified using the keyword PT.

prototype-return-data-definition

 (format-length)

RETURNS [variable-name]
(

A
) DYNAMIC

 B

Definition of the type of the return variable. The RETURNS clause is nearly the same as the RETURNS clause
of the function definition except that the extension "BY VALUE" is not allowed in the prototype definition. The
type of the return value must be known at compilation time.

same-clause

SAME AS [PROTOTYPE]
prototype-name

prototype-variable-name

The same clause may be used in order to use signatures previously defined to define a new prototype.

Example
This is a prototype definition of a function named "GET-FIRST-BYTE". Using the following prototype, the
function "GET-FIRST-BYTE" can be called as a symbolic function call: GET-FIRST-BYTE(<#A>) .

Copyright © Software AG 2003274

DEFINE PROTOTYPEprototype-return-data-definition

/* DPROX1: Example 1 for DEFINE PROTOTYPE
/*
DEFINE DATA LOCAL
1 #A(A10) INIT <’abcdefghij’>
END-DEFINE

DEFINE PROTOTYPE GET-FIRST-BYTE
 RETURNS (A1)
 DEFINE DATA PARAMETER
 1 PARM1(A10)
 END-DEFINE
END-PROTOTYPE

WRITE GET-FIRST-BYTE(<#A>)
END

The following Natural code contains the prototype definition of a function, in this case "GET-FIRST-BYTE". In
order to be able to call the function dynamically, the name of the function must be stored inside the alphanumeric
variable #A. The variable #A must be defined as an alphanumeric variable inside the DEFINE DATA statement
before it may be used.

/* DPROX2: Example 2 for DEFINE PROTOTYPE
/*
DEFINE DATA LOCAL
1 FUNCTION-NAME(A32) INIT<’GET-FIRST-BYTE’>
1 #A(A10) INIT <’abcdefghij’>
END-DEFINE

DEFINE PROTOTYPE VARIABLE FUNCTION-NAME
 RETURNS (A1)
 DEFINE DATA PARAMETER
 1 PARM1(A10)
 END-DEFINE
END-PROTOTYPE

WRITE FUNCTION-NAME(<#A>)
END

275Copyright © Software AG 2003

ExampleDEFINE PROTOTYPE

DEFINE SUBROUTINE

Related Statements: PERFORM | DEFINE DATA PARAMETER

Function
The DEFINE SUBROUTINE statement is used to define a Natural subroutine. A subroutine is invoked with a
PERFORM statement.

Inline/External Subroutines
A subroutine may be defined within the object which contains the PERFORM statement that invokes the
subroutine (inline subroutine); or it may be defined external to the object that contains the PERFORM statement
(external subroutine). An inline subroutine may be defined before or after the first PERFORM statement which
references it.

Note:
Although the structuring of a program function into multiple external subroutines is recommended for achieving
a clear program structure, please note that a subroutine should always contain a larger function block because the
invocation of the external subroutine represents an additional overhead as compared with inline code or
subroutines.

subroutine-name
For a subroutine name (maximum 32 characters), the same naming conventions apply as for user-defined
variables see the section User-Defined Variables of the Natural Statements documentation.

The subroutine name is independent of the name of the module in which the subroutine is defined (it may but
need not be the same).

Subroutine Termination
The subroutine definition is terminated with END-SUBROUTINE. In reporting mode, RETURN may also be
used to terminate a subroutine.

Restrictions
Any processing loop initiated within a subroutine must be closed before END-SUBROUTINE is issued.

Copyright © Software AG 2003276

DEFINE SUBROUTINEDEFINE SUBROUTINE

An inline subroutine must not contain another DEFINE SUBROUTINE statement (see Example 1 below).

An external subroutine (that is, an object of type subroutine) must not contain more than one DEFINE
SUBROUTINE statement block (see Example 2 below). However, an external DEFINE SUBROUTINE block
may contain further inline subroutines (see Example 1 below).

Example 1

The following construction is possible in an object of type subroutine, but not in any other object (where
SUBR01 would be considered an inline subroutine):

 ...
 DEFINE SUBROUTINE SUBR01
 ...
 PERFORM SUBR02
 PERFORM SUBR03
 ...
 DEFINE SUBROUTINE SUBR02
 /* inline subroutine...
 END-SUBROUTINE
 ...
 DEFINE SUBROUTINE SUBR03
 /* inline subroutine...
 END-SUBROUTINE
 END-SUBROUTINE
 END

Example 2 (invalid):

The following construction is not allowed in an object of type subroutine:

 ...
 DEFINE SUBROUTINE SUBR01
 ...
 END-SUBROUTINE
 DEFINE SUBROUTINE SUBR02
 ...
 END-SUBROUTINE
 END

Data Available in a Subroutine
Inline Subroutines
External Subroutines

Inline Subroutines

No explicit parameters can be passed from the invoking program via the PERFORM statement to an internal
subroutine.

An inline subroutine has access to the currently established global data area as well as to the local data area used
by the invoking program.

277Copyright © Software AG 2003

Data Available in a SubroutineDEFINE SUBROUTINE

External Subroutines

An external subroutine has access to the currently established global data area. Moreover parameters can be
passed directly with the PERFORM statement from the invoking object to the external subroutine; thus, you may
reduce the size of the global data area.

An external subroutine has no access to the local data area defined in the calling program; however, an external
subroutine may have its own local data area.

Copyright © Software AG 2003278

DEFINE SUBROUTINEExternal Subroutines

Example 1

 /* EXAMPLE ’DSREX1S’: DEFINE SUBROUTINE (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 ADDRESS-LINE (A20/2)
 2 PHONE
 1 #ARRAY (A75/1:4)
 1 REDEFINE #ARRAY
 2 #ALINE (A25/1:4,1:3)
 1 #X (N2) INIT <1>
 1 #Y (N2) INIT <1>
 END-DEFINE
 /**
 FORMAT PS=20
 LIMIT 5
 FIND EMPLOY-VIEW WITH NAME = ’SMITH’
 MOVE NAME TO #ALINE (#X,#Y)
 MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
 MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
 MOVE PHONE TO #ALINE (#X+3,#Y)
 IF #Y = 3
 RESET INITIAL #Y
 PERFORM PRINT
 ELSE
 ADD 1 TO #Y
 END-IF
 AT END OF DATA
 PERFORM PRINT
 END-ENDDATA
 END-FIND
 /**
 DEFINE SUBROUTINE PRINT
 WRITE NOTITLE (AD=OI) #ARRAY(*)
 RESET #ARRAY(*)
 SKIP 1
 END-SUBROUTINE
 /**
 END

SMITH SMITH SMITH
 ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.
 MILWAUKEE MONTERREY
 554349 (414)877-4563 (408)994-2260

 SMITH SMITH
 5 HAWTHORN 2307 DARIUS LANE
 OAK BROOK TAMPA
 (312)150-9351 (813)131-4010

279Copyright © Software AG 2003

Example 1DEFINE SUBROUTINE

Example 2

 /* EXAMPLE ’DSREX2’
 /* SAMPLE STRUCTURE FOR EXTERNAL SUBROUTINE USING GLOBAL DATA
 /**
 /* PROGRAM CONTAINING SUBROUTINE
 DEFINE DATA GLOBAL USING GLOBAL-1
 LOCAL 1 FIELD (N7)
 END-DEFINE
 /* ...
 /* ...
 /* ...
 /***
 /* SUBROUTINE ’SUBROUT1’
 DEFINE SUBROUTINE SUBROUT1
 /* ...
 WRITE ’IN SUBROUTINE:’ FIELD
 /* ...
 END-SUBROUTINE
 /* ***
 END

Copyright © Software AG 2003280

DEFINE SUBROUTINEExample 2

DEFINE WINDOW

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S N P I yes no

Operand2 C S N P I yes no

Operand3 C S N P I yes no

Operand4 C S N P I yes no

Operand5 C S A yes no

Related Statements: SET WINDOW | INPUT WINDOW=’window-name’ | SET CONTROL ’W’

See also Screen Design / Windows in the Natural Programming Guide.

Function
The DEFINE WINDOW statement is used to specify the size, position and attributes of a window.

A window is that segment of a logical page, built by a program, which is displayed on the terminal screen. There
is always a window present, although you may not be aware of its existence: unless specified differently, the size
of the window is identical to the physical size of your terminal screen.

281Copyright © Software AG 2003

DEFINE WINDOWDEFINE WINDOW

A DEFINE WINDOW statement does not activate a window; this is done with a SET WINDOW statement or
with the WINDOW clause of an INPUT statement.

Note:
There is always only one Natural window, that is, the most recent window. Any previous windows may still be
visible on the screen, but are no longer active and are ignored by Natural. You may enter input only in the most
recent window. If there is not enough space to enter input, the window size must be adjusted first.

Control of Full Screen
Even if a window is active, Natural maintains control of the full screen. This does not affect single-session
systems like CICS or TSO; when Natural is running under a multiple-session system like Com-plete or
Multi-pass, however, the complete Natural screen - that is, not only the currently active window, but also the
Natural screen "underneath" it - will be displayed when a suspended Natural session is resumed; at the same
time, the attributes of the full-screen fields partially overlaid by the window will not be influenced by the
window.

window-name
The window-name identifies the window. The name may be up to 32 characters long. For a window name, the
same naming conventions apply as for user-defined variables. See the section User-Defined Variables of the
Natural Statements documentation.

Copyright © Software AG 2003282

DEFINE WINDOWControl of Full Screen

SIZE
With the SIZE clause, you specify the size of the window.

SIZE AUTO - The size of the window is determined automatically by Natural at runtime. The size is
determined by the data generated into the window as follows:
The number of window lines will be the number of INPUT lines generated (plus possibly the PF-key lines,
message line, and infoline/statistics line).
The number of window columns is determined by the longest INPUT line: Natural scans, starting from the
ends of the lines, for the rightmost significant byte in a line. This may cause an input-only or modifiable
field (AD=A or AD=M) to be truncated; to avoid this, you either put a single-character text string after such
a field or explicitly set the window size with "SIZE operand1 * operand2".
Note: The title is not part of the window data. Therefore, if the window size has been determined as
described above and the title is longer than the window, it will be truncated.
SIZE QUARTER - The size of the window will be one quarter of the physical screen.
SIZE operand1 * operand2 - The size of the window will be n lines by n columns. The number of lines is
determined by operand1, the number of columns by operand2. Neither of the two operands must contain
decimal digits.
If the window is FRAMED, the specified size will be inclusive of the frame.
The minimum possible window size is:
- without frame: 2 lines by 10 columns,
- with frame: 4 lines by 13 columns.
The maximum possible window size is the size of the physical screen.

If you omit the SIZE clause, SIZE AUTO applies by default.

Note:
On mainframe computers, Natural requires additional columns for so-called attribute bytes to be able to display
data on the screen (on other platforms, such attribute bytes are not needed). Consequently, on mainframe
computers the screen area overlaid by a window is wider, and the size of the page segment visible inside a
window is smaller than on other platforms. Example: Assume a window whose size is defined as "SIZE 5 * 15"
(that is, with a width of 15 columns):

On mainframe computers, the screen area overlaid by the window is 16 columns; the size of what is visible
inside the window is 14 columns without frame, and 10 columns with frame respectively.
On other platforms, the screen area overlaid by the window is 15 columns; the size of what is visible inside
the window is 15 columns without frame, and 13 columns with frame respectively.

BASE
With the BASE clause, you determine the position of the window on the physical screen.

BASE CURSOR places the top left corner of the window at the current cursor position. The cursor position
is the physical position of the cursor on the screen.
If the size of the window makes it impossible to place the window at the cursor position, Natural
automatically places the window as close as possible to the desired position.
BASE TOP/BOTTOM LEFT/RIGHT places the window at the top-left, bottom-left, top-right, or
bottom-right corner respectively of the physical screen.
BASE operand3/operand4 - This places the top left corner of the window at the specified line/column of
the physical screen. The line number is determined by operand3 , the column number by operand4.
Neither of the two operands must contain decimal digits.
If the size of the window makes it impossible to place the window at the specified position, you will get an
error message.

283Copyright © Software AG 2003

SIZEDEFINE WINDOW

If you omit the BASE clause, BASE CURSOR applies by default.

REVERSED
REVERSED will cause the window to be displayed in reverse video (if the screen used supports this feature; if it
does not, REVERSED will be ignored).

REVERSED - CD=background-color

This will cause the window to be displayed in reverse video and the background of the window in the specified
color (if the screen used supports these features; if it does not, the respective specification will be ignored).

For information on valid color codes, see the session parameter CD in the Natural Parameter Reference
documentation.

TITLE operand5
With the TITLE clause, you may specify a heading for the window. The specified title (operand5) will be
displayed centered in the top frame-line of the window. The title can be specified either as a text constant (in
apostrophes) or as the content of a user-defined variable. If the title is longer than the window, it will be
truncated. The title is only displayed if the window is FRAMED; if FRAMED OFF is specified for the window,
the TITLE clause will be ignored.

Note:
If the title contains trailing blanks, these will be removed.
If the first character of the title is a blank, one blank will automatically be appended to the title.

CONTROL
With the CONTROL clause, you determine whether the PF-key lines, the message line and the statistics line are
displayed in the window or on the full physical screen.

CONTROL WINDOW

CONTROL WINDOW causes the lines to be displayed inside the window.

CONTROL SCREEN

CONTROL SCREEN causes the lines to be displayed on the full physical screen outside the window.

If you omit the CONTROL clause, CONTROL WINDOW applies by default.

Copyright © Software AG 2003284

DEFINE WINDOWREVERSED

FRAMED
By default, i.e. if you omit the FRAMED clause, the window is framed. If you specify FRAMED OFF, the
framing and everything attached to the frame (window title and position information) will be switched off.

The top and bottom frame lines are cursor-sensitive: where applicable, you can page forward, backward, left or
right within the window by simply placing the cursor over the appropriate symbol (<, -, +, or >; see
position-clause below) and then pressing ENTER. If no symbols are displayed, you can page backward and
forward within the window by placing the cursor in the top frame line (for backward positioning) or bottom
frame line (for forward positioning) and then pressing ENTER.

Note:
If the window size is smaller than 4 lines by 12 (or 13 on mainframe computers) columns, the frame will not be
visible.

FRAMED - CD=frame-color

This causes the frame of the window to be displayed in the specified color (if the screen used is a color screen; if
it is not, the color specification will be ignored).

For information on valid color codes, see the session parameter CD in the Natural Parameter Reference
documentation.

position-clause
Note:
The POSITION clause is only evaluated on mainframe computers: on all other platforms it is ignored.

The POSITION clause causes information on the position of the window on the logical page to be displayed in
the frame of the window. This applies only if the logical page is larger than the window; if it is not, the
POSITION clause will be ignored. The position information indicates in which directions the logical page
extends above, below, to the left and to the right of the current window.

If the POSITION clause is omitted, POSITION SYMBOL TOP RIGHT applies by default.

285Copyright © Software AG 2003

FRAMEDDEFINE WINDOW

POSITION SYMBOL

POSITION SYMBOL causes the position information to be displayed in form of symbols: "More: < - + >". The
information is displayed in the top and/or bottom frame line.

TOP/BOTTOM determines whether the position information is displayed in the top or bottom frame line.

AUTO is only applicable if the logical page is fully visible in the window as far as its horizontal size is
concerned, that is, if only "-" and/or "+" are to be displayed. In this case, AUTO automatically switches from the
symbols to the words "Top", "Bottom" and "More" respectively.

SHORT causes the word "More:" before the symbols "< - + >" to be suppressed.

LEFT/RIGHT determines whether the position information is displayed in the left or right part of the frame
line.

POSITION TEXT

POSITION TEXT causes the position information to be displayed in text form. The information is displayed in
the top and/or bottom frame line with the words "More", "Top" and "Bottom". The text is language-dependent
and may also be displayed in another language if the language code is set accordingly.

POSITION TEXT MORE suppresses the words "Top" and "Bottom" and only displays the word "More" where
applicable, i.e., in the top or bottom frame line or both.

LEFT/RIGHT determines whether the position information is displayed in the left or right part of the top frame
line.

POSITION OFF

POSITION OFF causes the position information to be suppressed; no position information will be displayed.

Protection of Input Fields in a Window
The following rules apply to input fields (AD=A or AD=M) which are not entirely within the window:

Input fields whose beginning is not inside the window are always made protected.
Input fields which begin inside and end outside the window are only made protected if the values they
contain cannot be displayed completely in the window. Please note that in this case it is decisive whether
the value length, not the field length, exceeds the window size. Filler characters (as specified with the
profile parameter FC) do not count as part of the value.

If you wish to access input fields thus protected, you have to adjust the window size accordingly so that the
beginning of the field/end of the value is within the window.

Copyright © Software AG 2003286

DEFINE WINDOWProtection of Input Fields in a Window

Invoking Different Windows
A DEFINE WINDOW statement must not be placed within a logical condition statement block. To invoke
different windows depending on a condition, use different SET WINDOW statements (or INPUT statements
with a WINDOW clause respectively) in a condition.

Example

 /* EXAMPLE ’DWDEX1’: DEFINE WINDOW
 DEFINE DATA LOCAL
 01 #I(P3)
 END-DEFINE
 *
 SET KEY PF1=’%W<<’ PF2=’%W>>’ PF4=’%W--’ PF5=’%W++’
 *
 DEFINE WINDOW WIND1
 SIZE QUARTER
 BASE TOP RIGHT
 FRAMED ON POSITION SYMBOL AUTO
 *
 SET WINDOW ’WIND1’
 FOR #I = 1 TO 10
 WRITE 25X #I ’THIS IS SOME LONG TEXT’ #I
 LOOP
 *
 END

> r +------------------------More: + >+
 All +....1....+....2....+....3.. ! Page 1 !
 0010 /* EXAMPLE ’DWDEX1’: DEFINE WIND ! !
 0020 DEFINE DATA LOCAL ! 1 THIS !
 0030 01 #I(P3) ! 2 THIS !
 0040 END-DEFINE ! 3 THIS !
 0050 * ! 4 THIS !
 0060 SET KEY PF1=’%W<<’ PF2=’%W>>’ PF ! 5 THIS !
 0070 * ! 6 THIS !
 0080 DEFINE WINDOW WIND1 ! 7 THIS !
 0090 SIZE QUARTER ! MORE !
 0100 BASE TOP RIGHT +-------------------------------------+
 0110 FRAMED ON POSITION SYMBOL AUTO
 0120 *
 0130 SET WINDOW ’WIND1’
 0140 FOR #I = 1 TO 10
 0150 WRITE 25X #I ’THIS IS SOME LONG TEXT’ #I
 0160 END-FOR
 0170 *
 0180 END
 0190
 0200
 +....1....+....2....+....3....+....4....+....5....+... S 18 L 1

287Copyright © Software AG 2003

Invoking Different WindowsDEFINE WINDOW

DEFINE WORK FILE

DEFINE WORK FILE n operand1 [TYPE operand2]

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1C S A yes no

Operand2C S A yes no

Related Statements: WRITE WORK FILE | READ WORK FILE | CLOSE WORK FILE

Function
The DEFINE WORK FILE statement is used to assign a file name to a Natural work file number within a
Natural application.

This allows you to make or change work file assignments dynamically within a Natural session or overwrite
work file assignments made at another level.

When this statement is executed and the specified work file is already open, the statement will implicitly cause
that work file to be closed.

Work File Number - n
n is the work file number (1 to 32). This is the number to be used in a WRITE WORK FILE, READ WORK
FILE or CLOSE WORK FILE statement.

Work File Name - operand1
operand1 is the name of the work file.

Work File Name on UNIX and Windows
Work File Name on Mainframe Computers

Work File Name on UNIX and Windows

The file name (operand1) may contain environment variables.

If a file with the specified name does not exist, it will be created.

Under UNIX and Windows, it is possible to use physical work file names.

Work File Name on Mainframe Computers

As operand1 you specify the name of the dataset to be assigned to the work file number.

Copyright © Software AG 2003288

DEFINE WORK FILEDEFINE WORK FILE

Operand1 can be 1 to 253 characters long. You can specify either a logical or a physical dataset name.

Note for CMS:
For work files assigned to the CMS work file access method (see NTWORK profile parameter), operand1 must
be omitted.

Work File Type - operand2
Operand2 specifies the type of work file.

The following is a list of work file types:

DEFAULT
TRANSFER
SAG
ASCII
ASCII-COMPRESSED
ENTIRECONNECTION
UNFORMATTED
PORTABLE
FORMATTED

DEFAULT

Determines the file type from the extension for upward compatibility.

TRANSFER

Is used to transfer data to and from a PC with Entire Connection.

This work file type represents a data connection between a Natural session on UNIX and a Entire Connection
terminal on a PC. The work file data is written in Entire Connection format on the PC.

Note:
This format cannot be used under Windows.

SAG

This is the binary format.

ASCII

Files in ASCII are "text" files with records terminated by [a carriage return] linefeed.

ASCII-COMPRESSED

Is a file in ASCII format, with the exception that all trailing blanks are removed.

ENTIRECONNECTION

With this work file type, you can read and write (using the statements READ and WRITE, for example) directly
to a work file in Entire Connection format on the local disc.

289Copyright © Software AG 2003

Work File Type - operand2DEFINE WORK FILE

Note:
This work file type is available on PCs and on UNIX. No transfer to PC is possible. The Entire Connection
terminal is not used in this process.

UNFORMATTED

Is a completely unformatted file. No formatting information is written (neither for fields nor for records).

PORTABLE

files which can handle dynamic variables exactly and can also be transported: e.g., from a little endian machine
to a big endian machine, and vice versa

FORMATTED

(Mainframe only) regular record-oriented work files

The value of operand2 is handled in a case insensitive way and must be enclosed in quotes or provided in an
alphanumeric variable.
Examples:

DEFINE WORK FILE 17 #FILE TYPE ’unformatted’
 #TYPE := ’SAG’
 DEFINE WORK FILE 18 #FILE TYPE #TYPE

Note for mainframes:
The only TYPEs accepted by Natural for mainframes are FORMATTED and UNFORMATTED: FORMATTED
defines a regular record-oriented work file, which is subject to the same handling as in previous Natural versions.
UNFORMATTED treats a work file as a byte-stream with no record boundaries. Note that type
UNFORMATTED will be rejected by Entire Connection.

For more information on work files, see the section Work File Formats.

Work File Name under OS/390
Under OS/390, for a work-file number that is defined with the access method AM=STD (whether automatically
in the JCL, in the NTWORK macro of the Natural parameter module or dynamically using the profile parameter
WORK), operand1 can be:

a logical dataset name (DD name, 1 to 8 characters);
a physical dataset name of a cataloged dataset (1 to 44 characters) or a physical dataset member name;
a path name and member name of an HFS file (1 to 253 characters) in an MVS UNIX Services
environment;
a JES spool file class;
"NULLFILE" (to indicate a dummy dataset).

Logical Dataset Names
Physical Dataset Names
HFS Files
PFS Files
JES Spool File Class
NULLFILE
Allocation and De-Allocation of Datasets
Work Files in Server Environments
Further Information

Copyright © Software AG 2003290

DEFINE WORK FILEWork File Name under OS/390

Logical Dataset Names

For example:

DEFINE WORK FILE 21 ’SYSOUT’

The specified dataset must have been allocated before the DEFINE WORK FILE statement is executed.

The allocation can be done via JCL, CLIST or dynamic allocation (SVC 99). For dynamic allocation you can use
the user exit USR2021 in library SYSEXT.

The dataset name specified in the DEFINE WORK FILE statement overrides the name specified with the
subparameter DEST of the NTWORK macro or WORK profile parameter.

Optionally, the dataset name may be prefixed by "DDN=" to indicate that it is a DD name. For example:

DEFINE WORK FILE 22 ’DDN=XYZ’

Physical Dataset Names

For example:

DEFINE WORK FILE 23 ’TEST.WORK.FILE’

The specified dataset must exist in cataloged form. When the DEFINE WORK FILE statement is executed, the
dataset is allocated dynamically by SVC 99 with the current DD name and option DISP=SHR.

If the dataset name is 8 characters or shorter and does not contain a period ".", it might be misinterpreted as a DD
name. To avoid this, prefix the name with "DSN=". For example:

DEFINE WORK FILE 22 ’DSN=WORKXYZ’

If the dataset is a PDS member, you specify the PDS member name (1 to 8 characters) in parentheses after the
dataset name (1 to 44 characters). For example:

DEFINE WORK FILE 4 ’TEST.WORK.PDS(TEST1)’

If the specified member does not exist, a new member of that name will be created.

HFS Files

For example:

DEFINE WORK FILE 14 ’/u/nat/rec/test.txt’

The specified path name must exist. When the DEFINE WORK FILE statement is executed, the HFS file is
allocated dynamically. If the specified member does not exist, a new member of that name will be created.

For the dynamic allocation of the dataset, the following OS/390 path options are used:

PATHOPTS=(OCREAT,OTRUNC,ORDWR)
 PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
 FILEDATA=TEXT

When an HFS file is closed, it is automatically de-allocated by OS/390 (regardless of the setting of the
subparameter FREE in the NTWORK macro or WORK profile parameter).

To read an HFS file, you have to use the user exit USR2021 instead of the DEFINE WORK FILE statement,
because of the OTRUNC option. This option will reset the HFS file at the first read access and result in an empty
file.

291Copyright © Software AG 2003

Work File Name under OS/390DEFINE WORK FILE

PFS Files

PFS files are available under Com-plete (SMARTS AM=SMARTS). Any printer name can be assigned, even if
it has not been defined to Natural.

For example:

DEFINE PRINTER (14) OUTPUT ’/nat/path/workfile’
DEFINE PRINTER (14) OUTPUT ’workfile’

It depends on the MOUNT_FS parameter of SMARTS whether the file is located on a SMARTS portable file
system or on the native file system. The first element of the path (/nat/) determines the target file system.

If the string does not start with a slash "/", the path of the file is taken from the environment variable
$NAT_WORK_ROOT.

The specified path name must exist. When the DEFINE PRINTER statement is executed, the file is allocated
dynamically. If the specified member does not exist, a new member of that name will be created.

JES Spool File Class

To create a JES spool dataset, you specify SYSOUT=x (where x is the desired spool file class). For the default
spool file class, you specify SYSOUT=*.

Examples:

DEFINE WORK FILE 10 ’SYSOUT=A’
 DEFINE WORK FILE 12 ’SYSOUT=*’

To specify additional parameters for the dynamic allocation, use the user exit USR2021 in the library SYSEXT
instead of the DEFINE WORK FILE statement.

NULLFILE

To allocate a dummy dataset, you specify NULLFILE as operand1:

DEFINE WORK FILE n ’NULLFILE’

This corresponds to the JCL definition:

// DD-name DD DUMMY

Allocation and De-Allocation of Datasets

When the DEFINE WORK FILE statement is executed and a physical dataset name, HFS file, spool file class or
dummy dataset has been specified, the corresponding dataset is allocated automatically. If the logical file is
already open, it will be closed automatically, except when the profile parameter CLOSE=FIN has been specified,
in which case an error will be issued. Moreover, an existing dataset allocated with the same current DD name is
automatically de-allocated before the new dataset is allocated. Work files that are to be allocated dynamically
have to be predefined in the Natural parameter module with AM=STD.

To avoid unneccessary overhead by unsuccessful premature opening of work files not yet allocated at the start of
the program, work files should be defined with the subparameter OPEN=ACC (open at first access) in the
NTWORK macro or WORK profile parameter.

In the case of an HFS file, or a work file defined with the subparameter FREE=ON in the NTWORK macro or
WORK profile parameter, the work file is automatically de-allocated as soon as it has been closed.

Copyright © Software AG 2003292

DEFINE WORK FILEWork File Name under OS/390

As an alternative for the dynamic allocation and de-allocation of datasets, the user exit USR2021 in the library
SYSEXT is provided. This user exit also allows you to specify additional parameters for dynamic allocation.

Work Files in Server Environments

In server environments, errors may occur if multiple Natural sessions attempt to allocate or open a dataset with
the same DD name. To avoid this, you either specify the work file with the subparameter DEST=* in the
NTWORK macro or WORK profile parameter, or you specify DEFINE WORK FILE ’*’ in your program before
the actual DEFINE WORK FILE statement; Natural then generates a unique DD name at the physical dataset
allocation when the first DEFINE WORK FILE statement for that work file is executed.

All work files whose DD names begin with "CM" are shared by all sessions in a server environment. A shared
work file opened for output by the first session is physically closed when the server is terminated. A shared work
file opened for input is physically closed when the last session closes it, that is, when it receives an end-of-file
condition. When a work file is read concurrently, one file record is supplied to one READ WORK FILE
statement only.

Further Information

For information on work files, see also Operations for Mainframes.

Work File Name under VM/CMS
Under VM/CMS (for work files defined in the Natural parameter module with AM=STD), the same applies to
operand1 as under OS/390 (see above) but with the following differences:

Instead of dynamic allocation via MVS SVC 99, the CMS command FILEDEF is used to define a file.
HFS files are not supported.
JES spool classes are not supported.
In addition, the following syntax is used:

DEFINE WORK FILE n ’ fname ftype fmode (options)’

This generates the CMS command:

FILEDEF ddname-n DISK fname ftype fmode (options)

293Copyright © Software AG 2003

Work File Name under VM/CMSDEFINE WORK FILE

Moreover, the following syntax is allowed:

DEFINE WORK FILE n ’FILEDEF= filedef-parameters ’

This generates the CMS command:

FILEDEF ddname-n =filedef-parameters

For example:

DEFINE WORK FILE 5 ’FILEDEF=TAP1 SL 2 VOLID BKUP08 (BLKSIZE 20000)’

This generates the CMS command:

FILEDEF CMWKF05 TAP1 SL 2 VOLID BKUP08

Copyright © Software AG 2003294

DEFINE WORK FILEWork File Name under VM/CMS

Work File Name under BS2000/OSD
Under BS2000/OSD, for a work-file number that is defined with the access method AM=STD (whether
automatically in the JCL, in the NTWORK macro of the Natural parameter module or dynamically using the
profile parameter WORK), you can use operand1 to specify a file name or a link name that is allocated to this
work file.

In this case, operand1 can have a length of 1 to 253 characters and one of the following meanings:

a BS2000/OSD link name (1 to 8 characters)
a BS2000/OSD file name (9 to 54 characters)
a generic BS2000/OSD file name (wildcard)
a BS2000/OSD file name and link name
a generic BS2000/OSD file name and link name (wildcard)
*DUMMY

The following rules apply.

1. File name and link name can be specified as positional parameters or keyword parameters. The
corresponding keywords are FILE= and LINK= . Mixing positional and keyword parameters is allowed but
not recommended.

2. A string with a length of 1 to 8 characters without commas is interpreted as a link name. This notation is
compatible with earlier versions of Natural.

Example:

DEFINE WORK FILE 1 ’W01’

The corresponding definition with a keyword parameter is:

DEFINE WORK FILE 1 ’LINK=W01’

3. A string of 9 to 54 characters without commas is interpreted as a file name.

Example:

DEFINE WORK FILE 2 ’NATURAL31.TEST.WORKFILE02’

The corresponding definition with a keyword parameter is:

DEFINE WORK FILE 2 ’FILE=NATURAL31.TEST.WORKFILE02’

4. The following input is interpreted without considering the length and therefore forms exceptions to Rules 2
and 3:

keyword input: LINK=, FILE=
*DUMMY
NULLFILE (equivalent to *DUMMY)
*
,

Example: DEFINE WORK FILE 7 ’FILE=Y’ is a valid file allocation and not a link name, although the
string of characters contains fewer than 9 characters.

5. Generic file names are formed as follows:

Wnn.userid.tsn.date.time.number

295Copyright © Software AG 2003

Work File Name under BS2000/OSDDEFINE WORK FILE

where
 nn is a work-file number
 userid is a Natural user-ID, 8 characters
 tsn is the BS2000/OSD TSN of the current task, 4 digits
 date is DDMMYYYY
 time is HHIISS
 number is a number, 5 digits

6. Generic link names are formed as follows:

NWFnnnnn

nnnnn is a 5-digit number that is increased by one after every generation of a dynamic link name.

7.

Changing the file allocation for a work-file number causes an implicit CLOSE of the work file allocated so
far.

You are strongly recommended, in all cases except when you only specify a link name (for example: W01), to
work with keyword parameters. This avoids conflicts of interpretation with additional reports and is essential for
file names with fewer than 9 characters.

Example:

DEFINE WORK FILE 3 ’LINK=#W03’
 DEFINE WORK FILE 3 ’FILE=#W03’

Link Name

Example:

DEFINE WORK FILE 1 ’LINKW01’

means the same as

DEFINE WORK FILE 1 ’LINK=LINKW01’

A file with the LINK ’LINKW01’ must exist at runtime. This can be created either using JCL before starting
Natural or by dynamic allocation from the current application. For dynamic allocation, the user exit USR2029 in
the library SYSEXT can be used. If, before execution, the link was active on another file, for example: ’W01’,
this will be released or retained depending on the value of the profile parameter FREE (possible values are ON
and OFF). Release is done via an explicit RELEASE call to the BS2000/OSD command processor.

File Name

Example:

DEFINE WORK FILE 2 ’NATURAL31.TEST.WORK02’

means the same as

DEFINE WORK FILE 2 ’FILE=NATURAL31.TEST.WORK02’

The file specified in operand1 is set up using a FILE macro call and inherits the link name that was valid for the
corresponding work file before execution of the DEFINE WORK FILE statement.

Copyright © Software AG 2003296

DEFINE WORK FILELink Name

Generic File Name

Example:

DEFINE WORK FILE 21 ’*’

means the same as

DEFINE WORK FILE 21 ’FILE=*’

A file with a name created according to Rule 4 is set up using a FILE macro call and inherits the link name that
was valid for the corresponding work file before execution of the DEFINE WORK FILE statement.

DEFINE WORK FILE 22 ’FILE=*,LINK=WFLK22’

A file with a name created according to Rule 4 is set up with the specified link name, using a FILE macro call.

File Name and Link Name

Example:

DEFINE WORK FILE 11 ’NATURAL31.TEST.WORKF11,LNKW11’

means the same as

DEFINE WORK FILE 11 ’FILE=NATURAL31.TEST.WORKF11,LINK=LNKW11’

which means the same as

DEFINE WORK FILE 11 ’FILE=NATURAL31.TEST.WORKF11,LNKW11’

The file given in operand1 is set up with the specified link name, using a FILE macro call and allocated to the
corresponding work-file number.

Generic File Name and Link Name

Example:

DEFINE WORK FILE 27 ’*,*’

means the same as

DEFINE WORK FILE 27 ’FILE=*,LINK=*’

A file with a file name and link name created according to Rule 4 and Rule 5 is set up using a FILE macro call
and allocated to the specified work file 27.

Note:
When file name and link name are specified, the previous link name is not released, regardless of the value of the
profile parameter FREE.

297Copyright © Software AG 2003

Generic File NameDEFINE WORK FILE

DELETE

Related Statements: END TRANSACTION | BACKOUT TRANSACTION | STORE | UPDATE

Function
The DELETE statement is used to delete a record from a database.

Considerations for DL/I Databases
The DELETE statement is used to delete a segment from a DL/I database, which also results in the deletion of all
descendants of the segment.

Due to GSAM restrictions, the UPDATE statement cannot be used for GSAM databases.

Considerations for SQL Databases
The DELETE statement is used to delete a row from the database table. It corresponds with the SQL statement
DELETE WHERE CURRENT OF CURSOR-NAME, that is, only the row which was read last can be deleted.

With most SQL databases, a row that was read with a FIND SORTED BY or READ LOGICAL statement
cannot be deleted.

Considerations for VSAM Databases
The DELETE statement is not valid for VSAM entry-sequenced datasets (ESDS).

Considerations for XML Databases
The DELETE statement is used to delete an XML object from a database. For XML databases, this implies that
only the record which was read last can be deleted.

Statement Reference - r
The "(r)" notation is used to reference the statement which was used to select/read the record to be deleted.

If no statement reference is specified, the DELETE statement will reference the innermost active processing loop
in which a database record was selected/read.

Note:
The DELETE statement must be placed within the READ or FIND loop it references.

Copyright © Software AG 2003298

DELETEDELETE

Restriction
A DELETE statement cannot be specified in the same statement line as a FIND, READ, or GET statement.

Hold Status
The use of the DELETE statement causes each record selected in the corresponding FIND or READ statement to
be placed in hold status.

Record hold logic is explained in the section Database Access of the Natural Programming Guide.

Example 1
In this example, all records with the name = ’ALDEN’ are deleted.

 /* EXAMPLE ’DELEX1S’: DELETE (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 END-DEFINE
 /***
 FIND EMPLOY-VIEW WITH NAME = ’ALDEN’
 DELETE
 END TRANSACTION
 /***
 AT END OF DATA
 WRITE NOTITLE *NUMBER ’RECORDS DELETED’
 END-ENDDATA
 /***
 END-FIND
 END

Equivalent reporting-mode example: See the program DELEX1R in the library SYSEXRM.

Example 2
If no records are found in the VEHICLES file for the person named ALDEN, the EMPLOYEE record for
ALDEN is deleted.

299Copyright © Software AG 2003

RestrictionDELETE

 /* EXAMPLE ’DELEX2S:’ DELETE (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 1 VEHIC-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 END-DEFINE
 /***
 EMPL. FIND EMPLOY-VIEW WITH NAME = ’ALDEN’
 /***
 VEHC. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMPL.)
 IF NO RECORDS
 DELETE (EMPL.)
 END TRANSACTION
 END-NOREC
 END-FIND
 /***
 END-FIND
 /***
 END

Equivalent reporting-mode example: See the program DELEX2R in the library SYSEXRM.

Copyright © Software AG 2003300

DELETEExample 2

DISPLAY

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A G N A N P I F B D T L G O yes no

Related Statements: WRITE | WRITE TITLE | WRITE TRAILER

See also Output of Data, Statements DISPLAY and WRITE in the Natural Programming Guide.

Function
The DISPLAY statement is used to specify the fields to be output on a report in column format. A column is
created for each field and a field header is placed over the column.

Report Specification - rep
The notation (rep) may be used to specify the identification of the report for which the DISPLAY statement is
applicable. A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified. If (rep) is not specified, the DISPLAY statement will apply to the first report (report
0).

If this printer file is defined to Natural as PC, the report will be downloaded to the PC.

options

Page Title/NOTITLE

By default, Natural generates a single title line for each page resulting from a DISPLAY statement. This title
contains the page number, the time of day, and the date. Time of day is set at the beginning of the program
execution (TP mode) or at the beginning of the job (batch mode).

The default title line may be overridden by using a WRITE TITLE statement, or it may be suppressed by
specifying the keyword NOTITLE in the DISPLAY statement.

301Copyright © Software AG 2003

DISPLAYDISPLAY

Default title will be produced:

 DISPLAY NAME

User title will be produced:

 DISPLAY NAME
 WRITE TITLE ’USER TITLE’

No title will be produced:

 DISPLAY NOTITLE NAME

If the NOTITLE option is used, it applies to all DISPLAY, PRINT and WRITE statements within the same
object which write data to the same report.

Copyright © Software AG 2003302

DISPLAYPage Title/NOTITLE

Column Headers/NOHDR

Column headers are produced for each field specified in the DISPLAY statement using the following rules:

The header text may be explicitly specified in the DISPLAY statement before the field name. For example:

 DISPLAY ’EMPLOYEE’ NAME ’SALARY’ SALARY

If you do not specify an explicit header for a field, the header as defined in the DEFINE DATA statement will be
used. If for a database field no header is defined in the DEFINE DATA statement, the default header as defined
in the DDM will be used; if no default header is defined in the DDM, the field name will be used as header. If for
a user-defined variable no header is defined in the DEFINE DATA statement, the variable name will be used as
header. See also the DEFINE DATA statement for header definition.

 DISPLAY NAME SALARY #NEW-SALARY

Natural always underlines column headings and generates one blank line between the underlining and the data
being displayed.

If there are multiple DISPLAY statements in a program, the first DISPLAY statement determines the column
header(s) to be used; this is evaluated at compilation time.

Suppressing Column Headers

To suppress the column header for a single field, specify the characters ’/’ (apostrophe-slash-apostrophe) before
the field name. For example:

 DISPLAY ’/’ NAME ’SALARY’ SALARY

To suppress all column headers, specify the keyword NOHDR:

 DISPLAY NOHDR NAME SALARY

NOHDR only takes effect for the first DISPLAY, as subsequent DISPLAY statements cannot create column
headers anyhow.

If both NOTITLE and NOHDR are used, they must be specified in the following order:

 DISPLAY NOTITLE NOHDR NAME SALARY

303Copyright © Software AG 2003

Column Headers/NOHDRDISPLAY

GIVE SYSTEM FUNCTIONS

The GIVE SYSTEM FUNCTIONS clause is used to make available the Natural system functions AVER,
COUNT, MAX, MIN, NAVER, NCOUNT, NMIN, SUM, TOTAL. These are evaluated when the DISPLAY
statement containing the GIVE SYSTEM FUNCTIONS clause is executed.

These functions may then be referred to in a statement executed as a result of an end-of-page condition.

Only one DISPLAY statement per report may contain a GIVE SYSTEM FUNCTIONS clause. When system
functions are evaluated from a DISPLAY statement, they are evaluated on a page basis, which means that all
functions (except TOTAL) are reset to zero when a new page is initiated.

When system functions are used within a DISPLAY statement within a subroutine, the end-of-page processing
must occur within the same routine.

statement-parameters

One or more parameters, enclosed within parentheses, may be specified (see table and example below).

Each parameter specified will override any previous parameter specified in a GLOBALS command, SET
GLOBALS or FORMAT statement. If more than one parameter is specified, they must be separated by one or
more blanks from one another. Each parameter specification must not be split between two statement lines.

The parameter settings applied here will only be regarded for variable fields, but they have no effect on
text-constants. If you would like to set field attributes for a text-constant, they have to be set explicitly for this
element.

Copyright © Software AG 2003304

DISPLAYGIVE SYSTEM FUNCTIONS

Parameters that can be specified with the DISPLAY statementSpecification
S = at statement level
E = at element level

AD Attribute Definition SE

AL Alphanumeric Length for Output SE

BX Box Definition SE

CD Color Definition SE

CV Control Variable SE

DF Date Format SE

DY Dynamic Attributes SE

EM Edit Mask SE

ES Empty Line Suppression S

FC Filler Character SE

FL Floating Point Mantissa Length SE

GC Filler Character for Group Headers SE

HC Header Centering SE

HW Heading Width SE

IC Insertion Character SE

IS Identical Suppress SE

LC Leading Characters SE

LS Line Size S

MC Multiple-Value Field Count S

MP Maximum Number of Pages of a Report S

NL Numeric Length for Output SE

PC Periodic Group Count S

PM Print Mode SE

PS Page Size S

SF Spacing Factor SE

SG Sign Position SE

TC Trailing Characters SE

UC Underlining Character SE

ZP Zero Printing SE

The individual parameters are described in the section Session Parameters of the Natural Parameter Reference
documentation.

Example:

305Copyright © Software AG 2003

statement-parametersDISPLAY

DEFINE DATA LOCAL
1 VARI (A4) INIT <’1234’> /* Output
END-DEFINE /* Produced
* /* ---------
DISPLAY NOHDR ’Text’ ’=’ VARI /* Text 1234
DISPLAY NOHDR (PM=I) ’Text’ ’=’ VARI /* Text 4321
DISPLAY NOHDR ’Text’ (PM=I) ’=’ VARI (PM=I) /* txeT 4321
DISPLAY NOHDR ’Text’ (PM=I) ’=’ VARI /* txeT 1234
END

Line Advance - Slash
When specified within a text element, a slash "/" causes a line advance for the text displayed.

When specified between output elements, it causes the output element specified by "/" to be placed vertically
within the same column. The header for this column will be constructed by placing the headers of the vertically
displayed elements vertically above the column.

output-format

Copyright © Software AG 2003306

DISPLAYLine Advance - Slash

Field Positioning Notations

nX Example:
DISPLAY NAME 5X SALARY
Note: (for Mainframes Only)
This notation inserts n spaces between columns. n must not be "0".

nT This notation causes positioning (tabulation) to display position n. Backward positioning is not
permitted.
In the following example, NAME is displayed beginning in position 25, and SALARY
beginning in position 50:

DISPLAY 25T NAME 50T SALARY

x/y This notation causes the next element to be placed x lines below the output of the last statement,
beginning in column y.
y must not be "0". Backward positioning is not permitted.

T* field-name This notation is used to position to a specific print position of a field used in a previous
DISPLAY statement. Backward positioning is not permitted.

P*field-name This notation is used to position to a specific print position and line of a field used in a previous
DISPLAY statement. It is most often used in conjunction with vertical display mode. Backward
positioning is not permitted.

Override Column Heading Assignment

’=’ If placed immediately before the field, ’=’ indicates that either the default header specified for the field
in the DDM is to be used as header, or, if no default header is specified, the field name is to be used as
header.

’ text’ If placed immediately before a field, text overrides the column heading. The character ’/’ before a field
causes the header for the field to be suppressed.

DISPLAY ’EMPLOYEE’ NAME ’MARITAL/STATUS’ MAR-STAT

If multiple text elements are specified before a field name, the last text element will be used as the
column header and the other text elements will be placed before the value of the field within the column.

’c’ (n) The character c is displayed n times immediately before the field value.

DISPLAY ’*’ (5) ’=’ NAME

307Copyright © Software AG 2003

Field Positioning NotationsDISPLAY

attributes

Indicates the display and color attributes to be used for text display. Attributes may be:

Copyright © Software AG 2003308

DISPLAYattributes

1. Display attributes (see the session parameter AD in the Natural Parameter Reference documentation).
2. Color attributes (see the session parameter CD in the Natural Parameter Reference documentation).

Vertical/Horizontal Display

The VERT clause may be used to cause multiple field values to be positioned underneath one another in the
same column. In vertical mode, a new column may be initiated by specifying the keyword VERT or HORIZ.

The column heading in vertical mode is controlled using the entry or entries specified with the AS clause as
described below.

No column heading is produced if the AS clause is omitted.
DISPLAY VERT NAME SALARY
If AS ’text’ is specified, text is used as the column heading. The character "/" in the character string of text
will cause multiple lines of column headings.
DISPLAY VERT AS ’LAST/NAME’ NAME
If AS ’text’ CAPTIONED is specified, text is used as the column heading and the standard heading text or
field name is inserted immediately before the field value in each detail display line.
DISPLAY VERT AS ’PERSONS/SELECTED’ CAPTIONED NAME FIRST-NAME
If AS CAPTIONED is specified, the standard heading text for the field (either heading text or the field
name) will be used as the column heading.
DISPLAY VERT AS CAPTIONED NAME FIRST-NAME

Vertical and horizontal column orientation may be intermixed by using the respective keyword.

To suspend vertical display for a single output element, you may place a dash "-" in front of the element. For
example:

 DISPLAY VERT NAME - FIRST-NAME SALARY

In the above example, FIRST-NAME will be output horizontally next to NAME, while SALARY will be output
vertically again, i.e. below NAME.

The standard display mode is horizontal. A column is constructed for each field to be displayed.

Column headings are obtained and used by Natural according to the following priority:

1. heading ’text’ supplied in the DISPLAY statement;
2. the default heading defined in the DDM (database fields), or the name of a user-defined variable;
3. the field name as defined in the DDM

(if no heading text was defined for the database field).

For group names, a group heading is produced for the entire group. When specifying a group, only the heading
for the entire group may be overridden by a user-specified heading.

The maximum number of column header lines is 15.

Line size overflow is not permitted for output resulting from a DISPLAY statement. If a line overflow occurs, an
error message is issued.

output-element

309Copyright © Software AG 2003

output-elementDISPLAY

Copyright © Software AG 2003310

DISPLAYoutput-element

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A G N A N P I F B D T L G O yes no

nX This is the same as under output-format (see above).

nT This is the same as under output-format (see above).

x/y This is the same as under output-format (see above).

’ text’ This is the same as under output-format (see above).

’c’ (n) This is the same as under output-format (see above).

’ text’ ’ =’ If ’ text’ ’=’ is placed immediately before the field, text is output immediately before the field
value.

DISPLAY ’*****’ ’=’ NAME

attributes This is the same as under output-format (see above).

operand1 The field to be displayed.

Note for DL/I databases:
The DL/I AIX fields can be displayed only if a PCB is used with the AIX specified in the parameter
PROCSEQ. If not, an error message is returned by Natural at runtime.

parameters One or more parameters, enclosed within parentheses, may be specified immediately after
operand1. Each parameter specified in this manner will override any previous parameter specified
in a GLOBALS command, SET GLOBALS or FORMAT statement. If more than one parameter is
specified, one or more blanks must be placed between each entry. An entry must not be split
between two statement lines.

Defaults
The following defaults are applicable for a DISPLAY statement:

1. The width of the report defaults to the value set when Natural is installed. This default value is normally
132 in batch mode or the line length of the terminal in TP mode. It may be overridden with the session
parameter LS. In TP mode, line size (LS) and page size (PS) parameters are set by Natural based on the
physical characteristics of the terminal type in use.

2. When the DISPLAY output is displayed on a terminal screen, the output begins in physical column 2
(because column 1 must be reserved for possible use as an attribute position on a 3270-type terminal).
When the DISPLAY output is printed on paper, the printout begins in the leftmost column (column 1).

3. The default spacing factor between elements is one position. There is a minimum of one space between
columns (reserved for terminal attributes). This default may be overridden with the session parameter SF.

4. The length of the field or the field heading, whichever is greater, determines the column width for the report
(unless the HW parameter is used). If the field is longer than the heading, the heading will be centered over
the column unless the HC=L or HC=R parameter is used to produce a left-justified or right-justified
heading. If the heading is longer than the field, the field will be left-justified under the heading. The values
contained in the field are left-justified for alphanumeric fields and right-justified for numeric fields.
Numeric fields may be displayed left-justified by specifying AD=L. Alphanumeric fields may be displayed
right-justified by specifying AD=R. In a vertical display, the longest data value or heading among all fields
determines the column width (unless the HW parameter is used).

311Copyright © Software AG 2003

DefaultsDISPLAY

5. One extra high-order print position is reserved for a sign when printing a numeric field. The session
parameter SG may be used to suppress the sign position.

6. Page overflow is checked before execution of a DISPLAY statement. No new page title or trailer
information is generated during the execution of a DISPLAY statement.

Example 1

 /* EXAMPLE ’DISEX1:’ DISPLAY (USING NX, NT NOTATION)
 /***
 LIMIT 4
 READ EMPLOYEES BY NAME
 DISPLAY NOTITLE 5X NAME 50T JOB-TITLE
 /***
 END

 NAME CURRENT
 POSITION
 -------------------- -------------------------

 ABELLAN MAQUINISTA
 ACHIESON DATA BASE ADMINISTRATOR
 ADAM CHEF DE SERVICE
 ADKINSON SALES PERSON

Copyright © Software AG 2003312

DISPLAYExample 1

Example 2

 /* EXAMPLE ’DISEX2’ DISPLAY (GIVE SYSTEM FUNCTIONS)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 2 SALARY (1)
 2 CURR-CODE (1)
 END-DEFINE
 /***
 LIMIT 15
 FORMAT PS=15
 READ EMPLOY-VIEW
 DISPLAY GIVE SYSTEM FUNCTIONS
 PERSONNEL-ID NAME FIRST-NAME SALARY (1) CURR-CODE (1)
 AT END OF PAGE
 WRITE / ’SALARY STATISTICS:’
 / 7X ’MAXIMUM:’ MAX(SALARY(1)) CURR-CODE (1)
 / 7X ’MINIMUM:’ MIN(SALARY(1)) CURR-CODE (1)
 / 7X ’AVERAGE:’ AVER(SALARY(1)) CURR-CODE (1)
 END-ENDPAGE
 END-READ
 /***
 END

PAGE 1 03-04-02 14:29:16

 PERSONNEL NAME FIRST-NAME ANNUAL CURRENCY
 ID SALARY CODE
 --------- -------------------- -------------------- ---------- --------

 50005600 MORENO HUMBERTO 165810 FRA
 50005500 BLOND ALEXANDRE 172000 FRA
 50005300 MAIZIERE ELISABETH 166900 FRA
 50004900 CAOUDAL ALBERT 167350 FRA
 50004600 VERDIE BERNARD 170100 FRA
 50004300 GUERIN MICHELE 163900 FRA
 50004200 VAUZELLE BERNARD 159790 FRA
 50004100 CHAPUIS ROBERT 169900 FRA
 50004000 MONTASSIER JEAN 175550 FRA

 SALARY STATISTICS:
 MAXIMUM: 175550 FRA
 MINIMUM: 159790 FRA
 AVERAGE: 167922 FRA

313Copyright © Software AG 2003

Example 2DISPLAY

Example 3

 * EXAMPLE ’DISEX3’: DISPLAY (USING P* NOTATION)

 DEFINE DATA LOCAL
 1 EMP-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 SALARY (1)
 2 BIRTH
 2 CITY
 END-DEFINE
 *
 LIMIT 2
 READ EMP-VIEW BY CITY FROM ’N’
 DISPLAY NOTITLE NAME CITY
 VERT AS ’BIRTH/SALARY’ BIRTH (EM=YYYY-MM-DD) SALARY (1)
 SKIP 1
 AT BREAK OF CITY
 DISPLAY P*SALARY (1) AVER(SALARY (1))
 SKIP 1
 END-BREAK
 END-READ
 END

 NAME CITY BIRTH
 SALARY
 -------------------- -------------------- ----------

 WILCOX NASHVILLE 1970-01-01
 38000

 MORRISON NASHVILLE 1949-07-10
 36000

 37000

Copyright © Software AG 2003314

DISPLAYExample 3

Example 4

 /* EXAMPLE ’DISEX4:’ DISPLAY (USING ’TEXT’, ’C(N)’ NOTATION, AND
 /* ATTRIBUTE NOTATION)
 /***
 LIMIT 4
 READ EMPLOYEES BY DEPT FROM ’T’
 IF LEAVE-DUE GT 40
 DISPLAY NOTITLE ’EMPLOYEE’ NAME /* OVERRIDE STANDARD HEADER
 ’LEAVE ACCUMULATED’ LEAVE-DUE /* OVERRIDE STANDARD HEADER
 ’*’(10)(I) /* DISPLAY 10 ’*’ INTENSIFIED
 ELSE
 DISPLAY NAME LEAVE-DUE
 /***
 END

 EMPLOYEE LEAVE ACCUMULATED
 -------------------- -----------------

 LAVENDA 33
 BOYER 33
 CORREARD 45 **********
 BOUVIER 19

315Copyright © Software AG 2003

Example 4DISPLAY

Example 5

 /* EXAMPLE ’DISEX5’: DISPLAY (HORIZONTAL DISPLAY)
 /***
 LIMIT 4
 READ EMPLOYEES BY NAME
 DISPLAY NOTITLE NAME JOB-TITLE SALARY (1:2) ’CURR-CODE (1:2)
 SKIP 1
 /**
 END

 NAME CURRENT ANNUAL CURRENCY
 POSITION SALARY CODE
 -------------------- ------------------------- ---------- --------

 ABELLAN MAQUINISTA 1450000 PTA
 1392000 PTA

 ACHIESON DATA BASE ADMINISTRATOR 10500 UKL
 11300 UKL

 ADAM CHEF DE SERVICE 159980 FRA
 0

 ADKINSON SALES PERSON 36000 USD
 33100 USD

Copyright © Software AG 2003316

DISPLAYExample 5

Example 6

 /* EXAMPLE ’DISEX6’: DISPLAY (VERTICAL AND HORIZONTAL DISPLAY)
 /**
 LIMIT 1
 READ EMPLOYEES BY NAME
 DISPLAY NOTITLE VERT AS CAPTIONED
 NAME CITY ’POSITION’ JOB-TITLE
 HORIZ ’SALARY’ SALARY (1:2) ’CURRENCY’ CURR-CODE (1:2)
 /**
 SKIP 1
 END

 NAME SALARY CURRENCY
 CITY
 POSITION
 ------------------------- ---------- --------

 ABELLAN 1450000 PTA
 MADRID 1392000 PTA
 MAQUINISTA

317Copyright © Software AG 2003

Example 6DISPLAY

Example 7

 /* EXAMPLE ’DISEX7’: DISPLAY (USING STATEMENT/ELEMENT PARAMETERS)
 /**
 LIMIT 3
 READ EMPLOYEES BY NAME
 DISPLAY NOTITLE (AL=16 GC=+ NL=8 SF=3 UC==)
 PERSONNEL-ID NAME TELEPHONE (LC=< TC=>)
 /**
 END

 PERSONNEL NAME +++++++++++++++TELEPHONE++++++++++
 ID
 AREA TELEPHONE
 CODE
 ================ ================ ================== =============

 60008339 ABELLAN <1 > <4356726 >
 30000231 ACHIESON <0332 > <523341 >
 50005800 ADAM <1033 > <44864858 >

Copyright © Software AG 2003318

DISPLAYExample 7

DIVIDE

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N N P I F yes no

Operand2 C S A NM* N P I F yes no

Operand3 S A A N P I F B yes yes

* "N" if GIVING clause is used, "M" if GIVING clause is not used.

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N N P I yes no

Operand2 C S A N N P I yes no

Operand3 S A A N P I F B yes yes

Operand4 S A A N P I F B yes yes

Related Statement: COMPUTE

Function
The DIVIDE statement is used to divide two operands.

Result Field
The result field may be a database field or a user-defined variable.

The ROUNDED clause causes the result to be rounded.

If the keyword GIVING is used, operand2 will not be modified and the result will be stored in operand3; if the
GIVING clause is not used, the result will be stored in operand2. If operand2 is a constant or a non-modifiable
Natural system variable, the GIVING clause is required.

If a database field is used as the result field, the division only results in an update to the internal value of the field
as used within the program. The value for the field in the database remains unchanged.

319Copyright © Software AG 2003

DIVIDEDIVIDE

The number of decimal positions for the result of the division is evaluated from the result field (that is, operand2
if no GIVING clause is used, or operand3 if the GIVING clause is used).

For the precision of the result, see also Precision of Results for Arithmetic Operations in Statement Usage
Related Topics.

Division by Zero
If an attempt is made to use a divisor (operand1) which is "0", either an error message or a result equal to "0"
will be returned; this depends on the setting of the session parameter ZD (which is described in the Natural
Parameter Reference documentation).

REMAINDER Option
If the keyword REMAINDER is specified, the remainder of the division will be placed into the specified field
(operand4).

If GIVING and REMAINDER are used, none of the four operands may be an array range.

Internally, the remainder is computed as follows:
1. The quotient of the division of operand1 into operand2 is computed.
2. The quotient is multiplied by operand1.
3. The product of this multiplication is subtracted from operand2.
4. The result of this subtraction is assigned to operand4.
For each of these steps, the rules described under Precision of Results for Arithmetic Operations in Statement
Usage Related Topics apply.

Copyright © Software AG 2003320

DIVIDEDivision by Zero

Example

 /* EXAMPLE ’DIVEX1’: DIVIDE
 /***
 DEFINE DATA LOCAL
 1 #A (N7) INIT <20>
 1 #B (N7)
 1 #C (N3.2)
 1 #D (N1)
 1 #E (N1) INIT <3>
 1 #F (N1)
 END-DEFINE
 /**
 DIVIDE 5 INTO #A
 WRITE NOTITLE ’DIVIDE 5 INTO #A’ 20X ’=’ #A
 /**
 RESET INITIAL #A
 DIVIDE 5 INTO #A GIVING #B
 WRITE ’DIVIDE 5 INTO #A GIVING #B’ 10X ’=’ #B
 /**
 DIVIDE 3 INTO 3.10 GIVING #C
 WRITE ’DIVIDE 3 INTO 3.10 GIVING #C’ 8X ’=’ #C
 /**
 DIVIDE 3 INTO 3.1 GIVING #D
 WRITE ’DIVIDE 3 INTO 3.1 GIVING #D’ 9X ’=’ #D
 /**
 DIVIDE 2 INTO #E REMAINDER #F
 WRITE ’DIVIDE 2 INTO #E REMAINDER #F’ 7X ’=’ #E ’=’ #F
 /**
 END

 DIVIDE 5 INTO #A #A: 4
 DIVIDE 5 INTO #A GIVING #B #B: 4
 DIVIDE 3 INTO 3.10 GIVING #C #C: 1.03
 DIVIDE 3 INTO 3.1 GIVING #D #D: 1
 DIVIDE 2 INTO #E REMAINDER #F #E: 1 #F: 1

321Copyright © Software AG 2003

ExampleDIVIDE

DO/DOEND
Note:
The DO and DOEND statements are only valid in reporting mode.

Function
The statements DO and DOEND are used in reporting mode to specify a group of statements to be executed
based on a logical condition as specified in any of the following statements:

AT BREAK
AT END OF DATA
AT END OF PAGE
AT START OF DATA
AT TOP OF PAGE
BEFORE BREAK PROCESSING
FIND ... IF NO RECORDS FOUND
IF
IF SELECTION
ON ERROR
READ WORK FILE ... AT END OF FILE

Restrictions
WRITE TITLE, WRITE TRAILER, and AT condition statements are not permitted within a DO/DOEND
statement group.

A loop-initiating statement may be used within a DO/DOEND statement group provided that the loop is closed
prior to the DOEND statement.

Example
See the program DOEEX1 in the library SYSEXRM.

Copyright © Software AG 2003322

DO/DOENDDO/DOEND

DOWNLOAD PC FILE

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A G A N P I F B D T L C yes no

Operand2 C S A yes yes

Note:
Neither format C not G is valid for Natural Connection.

Related Statements: CLOSE PC FILE | UPLOAD PC FILE | WRITE WORK FILE

Function
This statement is used to transfer data from the mainframe to the PC.

work-file-number
The work file number to be used. This number must correspond to one of the work file numbers for the PC as
defined to Natural.

VARIABLE
The records in the PC file will be written in variable format. Note that variable records cannot be converted to
PC spreadsheet formats.

Field Specification - operand1
With operand1 you specify the fields to be downloaded to the PC.

COMMAND
With the COMMAND clause you can send PC commands (i.e any command that can be entered in the command
line of Entire Connection on the PC) from the mainframe to the PC.

Entire Connection checks whether the command sent is valid or not. A command that cannot be recognized by
the PC is rejected. In this case, Natural issues the error message that the downloaded command was rejected by
the PC.

323Copyright © Software AG 2003

DOWNLOAD PC FILEDOWNLOAD PC FILE

You can use the COMMAND clause, for example, to execute Entire Connection tasks from the mainframe. If
you have the task DIR which lists PC directory information, you can initiate this directly out of your Natural
program on the mainframe with the following statement:

DOWNLOAD PC FILE 7 COMMAND ’DIR’

In example 2 below, the COMMAND clause is used to define the name of the PC file that is to receive the
downloaded data. In this way, you can avoid prompting for the name of the file.

COMMAND Specification - operand2
With operand2 you specify the DOS command or Entire Connection task that is to be executed on the PC.

Operand2 must be an alphanumeric constant or variable.

SYNC

With SYNC, you specify that the PC returns control to Natural after executing and terminating COMMAND.
SYNC can be used, for example, to ensure that the command SET PCFILE has been executed before a file
transfer starts.

ASYNC

With ASYNC, you specify that the PC immediately returns control to Natural, regardless of whether the
execution of COMMAND has terminated or not.

Example 1
The following program demonstrates the use of the DOWNLOAD PC FILE statement. The data is first selected
and then downloaded to the PC by using Work File 7.

/* DOWNLEX1: Example for DOWNLOAD PC FILE
/*
DEFINE DATA LOCAL
 01 PERS VIEW OF EMPLOYEES
 02 PERSONNEL-ID
 02 NAME
 02 CITY
END-DEFINE
*
FIND PERS WITH CITY = ’NEW YORK’ /* Data selection
 DOWNLOAD PC FILE 7 CITY NAME PERSONNEL-ID /* Data download
END-FIND
END

When you run the program, a window appears in which you specify the name of the PC file into which the data
is to be downloaded. The data is then downloaded to the PC.

 CITY NAME PERSONNEL
 ID
 -------------------- -------------------- ---------

 NEW YORK RUBIN 20007100
 NEW YORK WALLACE 20025400

Copyright © Software AG 2003324

DOWNLOAD PC FILECOMMAND Specification - operand2

Example 2
The following program demonstrates the use of the COMMAND clause in the DOWNLOAD PC FILE
statement. The name of the receiving PC file is first defined. Then the data is selected and downloaded to this
file.

/* DOWNLEX2: Example for DOWNLOAD PC FILE
/*
DEFINE DATA LOCAL
 01 PERS VIEW OF EMPLOYEES
 02 PERSONNEL-ID
 02 NAME
 02 CITY
 01 CMD (A80) /* Variable for transfer
END-DEFINE /* of the PC command
*
MOVE ’SET PCFILE 7 DOWN DATA PERS.NCD’ TO CMD /* PC command to define
*
DOWNLOAD PC FILE 6 COMMAND CMD /* Command download
*
FIND PERS WITH CITY = ’NEW YORK’ /* Data selection
 DOWNLOAD PC FILE 7 CITY NAME PERSONNEL-ID /* Data download
END-FIND
END

Note:
The PC file number in two successive DOWNLOAD PC FILE statements must be different.

When you run the program, the data is downloaded to the PC file that was specified in the program. A window
does not appear.

 CITY NAME PERSONNEL
 ID
 -------------------- -------------------- ---------

 NEW YORK RUBIN 20007100
 NEW YORK WALLACE 20025400

325Copyright © Software AG 2003

Example 2DOWNLOAD PC FILE

EJECT
Syntax 1
Syntax 2

Syntax 1

Function

EJECT ON/OFF With Report Specification - Online and Batch Modes

"EJECT OFF (rep)" causes no page advance (except as specified with Syntax 2 of the EJECT statement) for the
specified report to be executed.

"EJECT ON (rep)" causes page advances for the specified report to be executed.

EJECT ON/OFF Without Report Specification - Batch Mode only

EJECT ON/OFF - without (rep) notation - may be used in batch mode to control page ejection between the
output listings created during the execution of a program.

EJECT ON (default) causes Natural to generate a page eject between the source program listing, the output
report and the message "EXECUTION COMPLETED".

EJECT OFF causes Natural to suppress page breaks between the above output. EJECT OFF remains in effect
until revoked with a subsequent EJECT ON statement.

Report Specification - rep

The notation (rep) may be used to specify the identification of the report for which the EJECT statement is
applicable. A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified. If (rep) is not specified, the EJECT statement will be applicable to the first report
(report 0).

Syntax 2

Copyright © Software AG 2003326

EJECTEJECT

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S N P I yes no

Function

This form of the EJECT statement may be used to cause a page advance without a title or heading line being
generated on the next page and without TOP/END PAGE processing.

Report Specification - rep

The notation (rep) may be used to specify the identification of the report for which the EJECT statement is
applicable. A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified. If (rep) is not specified, the EJECT statement will be applicable to the first report
(report 0).

IF LESS THAN operand1 LINES LEFT

A page advance will be performed only when the current line for the page is greater than the page size minus
operand1. The value for operand1 may be specified as a numeric constant or as a variable.

Processing

The execution of an EJECT statement does not cause any statements used with an AT TOP OF PAGE, AT END
OF PAGE, WRITE TITLE or WRITE TRAILER statement to be executed. It does not affect system functions
evaluated by DISPLAY GIVE SYSTEM FUNCTIONS.

EJECT causes a new physical page only. It causes the Natural system variable *LINE-COUNT to be set to "1"
but has no effect on the setting of the Natural system variable *PAGE-NUMBER.

327Copyright © Software AG 2003

FunctionEJECT

Example

 /* EXAMPLE ’EJTEX1:’ EJECT
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 JOB-TITLE
 END-DEFINE
 /***
 FORMAT PS=15
 LIMIT 9
 READ EMPLOY-VIEW BY CITY
 /***
 AT START OF DATA
 EJECT
 WRITE /// 20T ’%’ (29) /
 20T ’%%’ 47T ’%%’ /
 20T ’%%’ 3X ’REPORT OF EMPLOYEES’ 47T ’%%’ /
 20T ’%%’ 3X ’ SORTED BY CITY ’ 47T ’%%’ /
 20T ’%%’ 47T ’%%’ /
 20T ’%’ (29) /
 EJECT
 END-START
 EJECT WHEN LESS THAN 3 LINES LEFT
 /***
 WRITE ’*’ (64)
 DISPLAY NOTITLE NOHDR CITY NAME JOB-TITLE 5X *LINE-COUNT
 WRITE ’*’ (64)
 END-READ
 END

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %% %%
 %% REPORT OF EMPLOYEES %%
 %% SORTED BY CITY %%
 %% %%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Copyright © Software AG 2003328

EJECTExample

**
 AIKEN SENKO PROGRAMMER 2
 **
 **
 AIX EN OTHE. GODEFROY COMPTABLE 5
 **
 **
 AJACCIO CANALE CONSULTANT 8
 **
 **
 ALBERTSLUND PLOUG KONTORASSISTENT 11
 **
 **
 ALBUQUERQUE HAMMOND SECRETARY 14
 **

**
 ALBUQUERQUE ROLLING MANAGER 2
 **
 **
 ALBUQUERQUE FREEMAN MANAGER 5
 **
 **
 ALBUQUERQUE LINCOLN ANALYST 8
 **
 **
 ALFRETON GOLDBERG JUNIOR 11
 **

329Copyright © Software AG 2003

ExampleEJECT

END

Function
The END statement is used to mark the physical end of a Natural program. No symbols my follow the END
statement.

In reporting mode, any processing loop which is currently active (that is, which has not been closed with a
LOOP statement) is closed by the END statement.

period - .

If a period (.) is used instead of END, it must be preceded by at least one blank if other statements are contained
in the same line.

Considerations for Program Execution
When an END statement is executed in a main program (that is, a program executing on level 1), final end-page
processing is performed as well as final break processing for user-initiated breaks (PERFORM BREAK
PROCESSING) which have not been associated with a processing loop by specifying a reference (r) notation.

When an END statement is executed in a subprogram, or in a program invoked with FETCH RETURN, control
will be returned to the invoking program without any final processing.

Examples
See any program in this section.

Copyright © Software AG 2003330

ENDEND

END TRANSACTION

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S N A N P I F B D T yes no

Related Statements: GET TRANSACTION DATA | BACKOUT TRANSACTION | STORE | UPDATE |
DELETE

Function
The END TRANSACTION statement is used to indicate the end of a logical transaction. A logical transaction is
the smallest logical unit of work (as defined by the user) which must be performed in its entirety to ensure that
the information contained in the database is logically consistent.

Successful execution of an END TRANSACTION statement ensures that all updates performed during the
transaction have been or will be physically applied to the database regardless of subsequent user, Natural,
database or operating system interruption. Updates performed within a transaction for which the END
TRANSACTION statement has not been successfully completed will be backed out automatically.

The END TRANSACTION statement also results in the release of all records placed in hold status during the
transaction.

The END TRANSACTION statement can be executed based upon a logical condition.

For further information, see the section Database Access in the Natural Programming Guide.

Databases Affected
An END TRANSACTION statement without transaction data (that is, without operand1) will only be executed if
a database transaction under control of Natural has taken place. Depending on the setting of the Natural profile
parameter ET (see your Natural Operations documentation) the statement will be executed only for the database
affected by the transaction (ET=OFF), or for all databases that have been referenced since the last execution of a
BACKOUT TRANSACTION or END TRANSACTION statement (ET=ON).

An END TRANSACTION statement with transaction data (that is, with specifying operand1) will always be
executed and the transaction data be stored in a database as described in the following section. It depends on the
setting of the ET parameter (see above) for which other databases the END TRANSACTION statement will be
executed.

331Copyright © Software AG 2003

END TRANSACTIONEND TRANSACTION

Storage of Transaction Data - operand1
For a transaction applied to an Adabas database, or to a DL/I database in a batch-oriented BMP region (in IMS
environments only), you may also use this statement to store transaction-related information. These transaction
data must not exceed 2000 bytes. They may be read with a GET TRANSACTION DATA statement.

The transaction data are written to the database specified with the profile parameter ETDB.
If the ETDB parameter is not specified, the transaction data are written to the database specified with the profile
parameter UDB - except on mainframe computers: here, they are written to the database where the Natural
Security system file (FSEC) is located (if FSEC is not specified, it is considered to be identical to the Natural
system file, FNAT; if Natural Security is not installed, the transaction data are written to the database where
FNAT is located).

Considerations for DL/I Databases
Because PSB scheduling is terminated by a Syncpoint request, Natural saves the PSB position before executing
the END TRANSACTION statement. Before the next command execution, Natural re-schedules the PSB and
tries to set the PCB position as it was before the END TRANSACTION statement. The PCB position might be
shifted forward if any pointed segment had been deleted in the time period between the END TRANSACTION
and the following command.

Considerations for SQL Databases
As most SQL databases close all cursors when a logical unit of work ends, an END TRANSACTION statement
must not be placed within a database modification loop; instead, it has to be placed after such a loop.

Considerations for VSAM Databases
For information on the transaction logic that applies when accessing VSAM, see the Natural for VSAM
documentation.

Considerations for XML Databases
An END TRANSACTION statement must not be placed within a database modification loop; instead, it has to
be placed after such a loop.

Restriction
This statement cannot be used with Entire System Server.

Copyright © Software AG 2003332

END TRANSACTIONStorage of Transaction Data - operand1

Example 1

 /* EXAMPLE ’ETREX1S:’ END TRANSACTION (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 COUNTRY
 END-DEFINE
 /***
 FIND EMPLOY-VIEW WITH CITY = ’BOSTON’
 ASSIGN COUNTRY = ’USA’
 UPDATE
 END TRANSACTION
 /***
 AT END OF DATA
 WRITE NOTITLE *NUMBER ’RECORDS UPDATED’
 END-ENDDATA
 /***
 END-FIND
 END

7 RECORDS UPDATED

Equivalent reporting-mode example: See the program ETREX1R in the library SYSEXRM.

333Copyright © Software AG 2003

Example 1END TRANSACTION

Example 2

 /* EXAMPLE ’ETREX2:’ END TRANSACTION (WITH ET DATA)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 2 CITY
 1 #PERS-NR (A8) INIT <’ ’>
 END-DEFINE
 /**
 REPEAT
 INPUT ’ENTER PERSONNEL NUMBER TO BE UPDATED:’ #PERS-NR
 IF #PERS-NR = ’ ’
 ESCAPE BOTTOM
 END-IF
 /**
 FIND EMPLOY-VIEW PERSONNEL-ID = #PERS-NR
 INPUT (AD=M) NAME / FIRST-NAME / CITY
 UPDATE
 END TRANSACTION #PERS-NR
 END-FIND
 /**
 END-REPEAT
 END

ENTER PERSONNEL NUMBER TO BE UPDATED: 20027800

NAME LAWLER
 FIRST-NAME SUNNY
 CITY MILWAUKEE

Copyright © Software AG 2003334

END TRANSACTIONExample 2

ESCAPE

Structured Mode Syntax

Reporting Mode Syntax

Function
The ESCAPE statement is used to interrupt the linear flow of execution of a processing loop or a routine.

With the keywords TOP, BOTTOM and ROUTINE you indicate where processing is to continue when the
ESCAPE statement is encountered.

An ESCAPE TOP/BOTTOM statement, when encountered for processing, will internally refer to the innermost
active processing loop. The ESCAPE statement need not be physically placed within the processing loop.

If an ESCAPE TOP/BOTTOM statement is placed in a routine (subroutine, subprogram, or program invoked
with FETCH RETURN), the routine(s) entered during execution of the processing loop will be terminated
automatically.

ESCAPE TOP
TOP indicates that processing is to continue at the top of the processing loop. This starts the next repetition of
the processing loop.

REPOSITION

When an ESCAPE TOP REPOSITION statement is executed, Natural immediately continues processing at the
top of the active READ loop, using the current value of the search variable as new start value.

335Copyright © Software AG 2003

ESCAPEESCAPE

At the same time, ESCAPE TOP REPOSITION resets the system variable *COUNTER to "0".

ESCAPE TOP REPOSITION can be specified within a READ statement loop accessing an Adabas, DL/I or
VSAM database. The READ statement concerned must contain the option WITH REPOSITION.

ESCAPE BOTTOM
BOTTOM indicates that processing is to continue with the first statement following the processing loop. The
loop is terminated and loop-end processing (final BREAK and END DATA) is executed for all loops being
terminated.

If BOTTOM is followed by a label or reference number, processing will continue with the first statement
following the processing loop identified by the label or reference number.

If you specify the keyword IMMEDIATE, no loop-end processing will be performed.

In reporting mode, ESCAPE BOTTOM is the default.

ESCAPE ROUTINE
This option indicates that the current Natural routine, which may have been invoked via a PERFORM,
CALLNAT, FETCH RETURN, or as a main program, is to relinquish control.

In the case of a subroutine, processing will continue with the first statement after the statement used to invoke
the subroutine. In the case of a main program, Natural command mode will be entered.

All loops currently active within the routine will be terminated and loop-end processing performed as well as
final processing for user-initiated (PERFORM BREAK) processing. If the program containing the ESCAPE
ROUTINE is executed as a main program (level 1), final end-page processing is performed.

If you specify the keyword IMMEDIATE, no loop-end processing will be performed.

ESCAPE MODULE
This option indicates that the entire current program level, with all internal subroutines, is to relinquish control.
The control is then returned to the object of the former program level. If ESCAPE MODULE is used in a
hierarchy of internal subroutines, it allows to escape all routines working at this level at once. If no internal
subroutine is active, ESCAPE MODULE has the same result as ESCAPE ROUTINE.

ESCAPE MODULE is only relevant in inline subroutines. In external subroutines, subprograms and invoked
programs, it has the same effect as ESCAPE ROUTINE.

As with ESCAPE ROUTINE, loop-end processing will be performed. However, if you specify the keyword
IMMEDIATE, no loop-end processing will be performed.

Additional Considerations
More than one ESCAPE statement may be contained within the same processing loop.

The execution of an ESCAPE statement may be based on a logical condition.

If an ESCAPE statement is encountered during processing of an AT END OF DATA, AT BREAK or AT END
OF PAGE block, the execution of the special condition block will be terminated and ESCAPE processing will
continue as required.

Copyright © Software AG 2003336

ESCAPEESCAPE BOTTOM

If an ESCAPE statement is encountered during processing of an if-no-records-found condition, no loop-end
processing will be performed (equivalent to ESCAPE IMMEDIATE).

337Copyright © Software AG 2003

Additional ConsiderationsESCAPE

Example

 /* EXAMPLE ’ESCEX1S’: ESCAPE (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 FIRST-NAME
 2 NAME
 2 AREA-CODE
 2 PHONE
 1 #CITY (A20) INIT <’ ’>
 1 #CNTL (A1) INIT <’ ’>
 END-DEFINE
 /***
 RPT. REPEAT
 INPUT ’ENTER VALUE FOR CITY: ’ #CITY
 / ’(OR ’’.’’ TO TERMINATE)’
 IF #CITY = ’.’
 STOP
 END-IF
 /***
 FND. FIND EMPLOY-VIEW WITH CITY = #CITY
 /***
 IF NO RECORDS FOUND
 WRITE ’NO RECORDS FOUND’
 ESCAPE BOTTOM (FND.)
 END-NOREC
 AT START OF DATA
 INPUT (AD=O) ’RECORDS FOUND:’ *NUMBER //
 ’ENTER ’’D’’ TO DISPLAY RECORDS’ #CNTL (AD=M)
 IF #CNTL NE ’D’
 ESCAPE BOTTOM (FND.)
 END-IF
 END-START
 /**
 DISPLAY NOTITLE NAME FIRST-NAME PHONE
 END-FIND
 END-REPEAT
 /***
 END

 ENTER VALUE FOR CITY: PARIS
 (OR ’.’ TO TERMINATE)

 RECORDS FOUND: 24

 ENTER ’D’ TO DISPLAY RECORDS D

Copyright © Software AG 2003338

ESCAPEExample

 NAME FIRST-NAME TELEPHONE

 AREA TELEPHONE
 CODE
 -------------------- -------------------- ------ ---------------

 MAIZIERE ELISABETH 1033 46758304
 MARX JEAN-MARIE 1033 40738871
 REIGNARD JACQUELINE 1033 48472153
 RENAUD MICHEL 1033 46055008
 REMOUE GERMAINE 1033 36929371
 LAVENDA SALOMON 1033 40155905
 BROUSSE GUY 1033 37502323
 GIORDA LOUIS 1033 37497316
 SIECA FRANCOIS 1033 40487413
 CENSIER BERNARD 1033 38070268
 DUC JEAN-PAUL 1033 38065261
 CAHN RAYMOND 1033 43723961
 MAZUY ROBERT 1033 44286899
 VALLY ALAIN 1033 47326249
 BRETON JEAN-MARIE 1033 48467146
 GIGLEUX JACQUES 1033 40477399
 XOLIN CHRISTIAN 1033 46060015

Equivalent reporting-mode example: See the program ESCEX1R in the library SYSEXRM.

339Copyright © Software AG 2003

ExampleESCAPE

EXAMINE

EXAMINE [DIRECTION-clause]

[FULL [VALUE [OF]]]

operand1

 SUBSTRING (operand1, operand2, operand3)

[POSITION-clause]

[FOR] [FULL [VALUE [OF]]] [PATTERN] operand4

[DELIMITERS-option]

DELETE-REPLACE-clause

[DELETE-REPLACE-clause] GIVING-clause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C* S A A B yes no

Operand2 C S N P I yes no

Operand3 C S N P I yes no

Operand4 C S A A B yes no

* Operand1 can only be a constant if the GIVING clause is used, but not if the DELETE/REPLACE clause is
used.

Related Statements: COMPRESS | SEPARATE

Function
The EXAMINE statement is used to scan the contents of an alphanumeric field, or a range of fields within an
array, for a character string; to replace and/or count the number of occurrences of that character string; and to
give information about the result of the EXAMINE operation.

DIRECTION clause

 FORWARD

DIRECTION BACKWARD

 operand8

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand8C S A1 yes no

Copyright © Software AG 2003340

EXAMINEEXAMINE

The direction clause determines the search direction. If specify FORWARD, the contents of the field are
examined from left to right. If you specify BACKWARD, the contents of the field are examined from right to
left.

If you specify operand8, the search direction is determined by the contents of operand8. Operand8 must be
defined with the format/length of A1. If operand8 contains an "F", then the search direction is FORWARD, if
operand8 contains a "B", the search direction is BACKWARD. All other values are invalid and are rejected at
compile time if operand8 is a constant, or at run time if operand8 is a variable.

If the DIRECTION clause is not specified, the default direction is FORWARD.

operand1
Operand1 is the field whose content is to be examined.

If operand1 is a DYNAMIC variable, a REPLACE operation may cause its length to be increased or decreased;
a DELETE operation may cause its length to be set to "0". The current length of a DYNAMIC variable can be
ascertained by using the system variable *LENGTH. For general information on DYNAMIC variables, see the
section Large and Dynamic Variables/Fields.

POSITION clause

[[STARTING] FROM [POSITION] operand9]
ENDING AT

[POSITION] operand10
THRU

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand9 C S N P I yes no

Operand10C S N P I yes no

The POSITION clause may be used to specify a starting and ending position within operand1 (or the substring of
operand1) for the examination. The starting and ending position are relative to operand1 or the substring of
operand 1 and are both processed.

The search is performed starting from the starting position (operand9) and ending at the ending position
(operand10). If the starting and/or ending position are not specified, the default value applies.

The default position value is determined by the search direction:

Direction Default Starting Position Default Ending Position

FORWARD 1 (1st character) length of operand1 (last character)

BACKWARD length of operand1 (last character) 1 (1st character)

With this solution EXAMINE BACKWARD ... is identical to EXAMINE BACKWARD ... FROM
*LENGTH(...) THRU 1, and works as expected.

341Copyright © Software AG 2003

operand1EXAMINE

If the search direction is FORWARD and the start position is greater than the end position, or if the search
direction is BACKWARD and the start position is less than the end position, no search is performed.

operand4
Operand4 is the value to be used for the examine operation.

Operand4 can only be in binary format under Windows and UNIX.

For more information on operand4 and operand6, see operand6.

FULL
If FULL is specified for an operand, the entire value, including trailing blanks, will be processed. If FULL is not
specified, trailing blanks in the operand will be ignored.

SUBSTRING
Normally, the content of a field is examined from the beginning of the field to the end or to the last non-blank
character.

With the SUBSTRING option, you examine only a certain part of the field. After the field name (operand1) in
the SUBSTRING clause, you specify first the starting position (operand2) and then the length (operand3) of the
field portion to be examined.

For example, to examine the 5th to 12th position inclusive of a field #A, you would specify:

 EXAMINE SUBSTRING(#A,5,8).

Note:
If you omit operand2, the starting position is assumed to be "1". If you omit operand3, the length is assumed to
be from the starting position to the end of the field.

PATTERN
If you wish to examine the field for a value which contains variables, that is symbols for positions not to be
examined, you use the PATTERN option. Operand4 may then include the following symbols for positions to be
ignored:

A period (.), question mark (?) or underscore (_) indicates a single position that is not to be examined.
An asterisk (*) or a percent sign (%) indicates any number of positions not to be examined.

Example: With PATTERN ’NAT*AL’ you could examine the field for any value which contains "NAT" and
"AL" no matter which and how many other characters are between "NAT" and "AL" (this would include the
values Natural and NATIONAL as well as NATAL).

DELIMITERS-option

Copyright © Software AG 2003342

EXAMINEoperand4

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand5 C S A B yes no

The default option is ABSOLUTE. This results in an absolute scan of the field for the specified value regardless
of what other characters may surround the value.

WITH DELIMITERS is used to scan for a value which is delimited by blanks or by any characters that are
neither letters nor numeric characters.

WITH DELIMITERS operand5 is used to scan for a value which is delimited by the character(s) specified in
operand5.

DELETE-REPLACE-clause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand6 C S A A B yes no

The DELETE option is used to delete each value from operand1.

The REPLACE option is used to replace each value in operand1 by the value specified in operand6.

If you specify the keyword FIRST, only the first identical value will be deleted/replaced.

If the REPLACE operation results in more characters being generated than will fit into operand1, you will
receive an error message.

If operand1 is a DYNAMIC variable, a REPLACE operation may cause its length to be increased or decreased;
a DELETE operation may cause its length to be set to "0". The current length of a DYNAMIC variable can be
ascertained by using the system variable *LENGTH. For general information on DYNAMIC variables, see
Usage of Dynamic Variables.

343Copyright © Software AG 2003

DELETE-REPLACE-clauseEXAMINE

operand6

Operand6 can only be in binary format under Windows and UNIX.

Under Windows and UNIX, operand4 and operand6 may also be defined as 1, 2 or 3 dimensional arrays and
used as tables in order to realize n:m replacements. Operand4 is the source and operand6 the destination
replacement table. Operand4 and operand6 are valid references if the data transfer from operand6 to operand4 is
valid (operand4 := operand6). Both replacement tables are processed in ascending order of the index value per
dimension.

Starting with the 1st string in the source replacement table (operand4), operand1 is searched for a matching
string. If there is a match, this matching string will be replaced by the corresponding string in the destination
replacement table (operand6). If no match has been made, the search in operand1 continues string for string until
a match has been made. Then, the 1st string of the source table is used for the next search which starts directly
after the replaced string in operand1.

Each character (string) is replaced by a character (string) only once. In other words, each replaced character
(string) will not be replaced twice. The scan through the replacement table stops as soon as a match has been
found. If a runtime error occurs, the source operand remains unchanged.

Example

This example shows an HTML translation for the less than, greater than and the ampersand characters.

DEFINE DATA LOCAL
1 #html (A/1:10) DYNAMIC INIT <"<", ">", "&">
1 #tab (A/1:10) DYNAMIC INIT <"<", ">","&">
1 #doc(A) DYNAMIC /* document to be replaced
1 #res(A) DYNAMIC /* result string
1 #ii(I4)
END-DEFINE
#doc := "a<<b&b>c>"
/* Replace #doc using #html to #tab (n:1 replacement)
EXAMINE #doc FOR #html(1:3) REPLACE #tab(1:3)
/* "<" is replaced by "< " (4:1 replacement)
/* ">" is replaced by ">" (4:1 replacement)
/* "&" is replaced by "&" (5:1 replacement)

GIVING-clause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand7 S N P I yes yes

Copyright © Software AG 2003344

EXAMINEGIVING-clause

GIVING NUMBER is used to obtain the number of occurrences of the value sought. If the REPLACE FIRST or
DELETE FIRST option is also used, the number will not exceed 1.

GIVING POSITION is used to obtain the byte position within operand1 (or the substring of operand1) where
the first value identical to operand4 was found.

GIVING LENGTH is used to obtain the length of operand1 (or the substring of operand1) after all
delete/replace operations have been performed.

GIVING INDEX

GIVING INDEX is used to obtain the occurrence number (index) of the operand1 occurrence in which the first
value identical to operand4 was found.

GIVING INDEX is applicable only if operand1 is an array. Operand7 must be specified as many times as there
are dimensions contained in operand1 (maximum three times).

Operand7 will contain "0" if the value sought is found in none of the occurrences.

Note:
If the index range of operand1 includes the occurrence 0 (e.g. 0:5), a value of "0" in operand7 is ambiguous. In
this case, an additional GIVING NUMBER clause should be used to ascertain whether the value sought was
actually found or not.

345Copyright © Software AG 2003

GIVING INDEX EXAMINE

Example 1

 /* EXAMPLE ’EXMEX1’: EXAMINE
 /***
 DEFINE DATA LOCAL
 1 #TEXT (A40)
 1 #A (A1)
 1 #NMB1 (N2)
 1 #NMB2 (N2)
 1 #NMB3 (N2)
 1 #NMBEX2 (N2)
 1 #NMBEX3 (N2)
 1 #NMBEX4 (N2)
 1 #POSEX5 (N2)
 1 #LGHEX6 (N2)
 END-DEFINE
 /***
 WRITE ’EXAMPLE 1 (GIVING NUMBER, WITH DELIMITER)’
 MOVE ’ABC A B C .A. .B. .C. -A- -B- ’ TO #TEXT
 ASSIGN #A = ’A’
 EXAMINE #TEXT FOR #A GIVING NUMBER #NMB1
 EXAMINE #TEXT FOR #A WITH DELIMITER GIVING NUMBER #NMB2
 EXAMINE #TEXT FOR #A WITH DELIMITER ’.’ GIVING NUMBER #NMB3
 WRITE NOTITLE ’=’ #NMB1 ’=’ #NMB2 ’=’ #NMB3
 /***
 WRITE / ’EXAMPLE 2 (WITH DELIMITER, REPLACE, GIVING NUMBER)’
 WRITE ’=’ #TEXT
 EXAMINE #TEXT FOR #A WITH DELIMITER ’-’ REPLACE WITH ’*’
 GIVING NUMBER #NMBEX2
 WRITE ’=’ #TEXT ’=’ #NMBEX2
 /***
 WRITE / ’EXAMPLE 3 (REPLACE, GIVING NUMBER)’
 WRITE ’=’ #TEXT
 EXAMINE #TEXT ’ ’ REPLACE WITH ’+’ GIVING NUMBER #NMBEX3
 WRITE ’=’ #TEXT ’=’ #NMBEX3
 /***
 WRITE / ’EXAMPLE 4 (FULL, REPLACE, GIVING NUMBER)’
 WRITE ’=’ #TEXT
 EXAMINE FULL #TEXT ’ ’ REPLACE WITH ’+’ GIVING NUMBER #NMBEX4
 WRITE ’=’ #TEXT ’=’ #NMBEX4
 /***
 WRITE / ’EXAMPLE 5 (DELETE, GIVING POSITION)’
 WRITE ’=’ #TEXT
 EXAMINE #TEXT ’+’ DELETE GIVING POSITION #POSEX5
 WRITE ’=’ #TEXT ’=’ #POSEX5
 /***
 WRITE / ’EXAMPLE 6 (DELETE, GIVING LENGTH)’
 WRITE ’=’ #TEXT
 EXAMINE #TEXT FOR ’A’ DELETE GIVING LENGTH #LGHEX6
 WRITE ’=’ #TEXT ’=’ #LGHEX6
 END

Copyright © Software AG 2003346

EXAMINEExample 1

EXAMPLE 1 (GIVING NUMBER, WITH DELIMITER)
 #NMB1: 4 #NMB2: 3 #NMB3: 1

 EXAMPLE 2 (WITH DELIMITER, REPLACE, GIVING NUMBER)
 #TEXT: ABC A B C .A. .B. .C. -A- -B-
 #TEXT: ABC A B C .A. .B. .C. -*- -B- #NMBEX2: 1

 EXAMPLE 3 (REPLACE, GIVING NUMBER)
 #TEXT: ABC A B C .A. .B. .C. -*- -B-
 #TEXT: ABC+++A+B+C+++.A.++.B.++.C.++++-*-++-B- #NMBEX3: 18

 EXAMPLE 4 (FULL, REPLACE, GIVING NUMBER)
 #TEXT: ABC+++A+B+C+++.A.++.B.++.C.++++-*-++-B-
 #TEXT: ABC+++A+B+C+++.A.++.B.++.C.++++-*-++-B-+ #NMBEX4: 1

 EXAMPLE 5 (DELETE, GIVING POSITION)
 #TEXT: ABC+++A+B+C+++.A.++.B.++.C.++++-*-++-B-+
 #TEXT: ABCABC.A..B..C.-*--B- #POSEX5: 4

 EXAMPLE 6 (DELETE, GIVING LENGTH)
 #TEXT: ABCABC.A..B..C.-*--B-
 #TEXT: BCBC...B..C.-*--B- #LGHEX6: 18

347Copyright © Software AG 2003

Example 1EXAMINE

Example 2

 /* EXAMPLE ’EXMEX2’: EXAMINE SUBSTRING, PATTERN, TRANSLATE
 /***
 DEFINE DATA LOCAL
 1 #TEXT (A50)
 1 #A (A7)
 1 #NMB (N2)
 1 #START (N2)
 1 #TAB(A2/1:10)
 END-DEFINE
 /***
 MOVE ’ABC A B C .A. .B. .C. -A- -B- -C- ’ TO #TEXT
 /***
 ASSIGN #A = ’A B C’
 ASSIGN #START = 6
 EXAMINE SUBSTRING(#TEXT,#START,9) FOR #A GIVING NUMBER #NMB
 WRITE NOTITLE ’=’ #NMB
 /***
 EXAMINE #TEXT FOR PATTERN ’*B’ GIVING NUMBER #NMB
 WRITE NOTITLE ’=’ #NMB
 /***
 MOVE ’AX’ TO #TAB(1)
 MOVE ’BY’ TO #TAB(2)
 MOVE ’CZ’ TO #TAB(3)
 EXAMINE #TEXT TRANSLATE USING #TAB(*)
 WRITE NOTITLE ’=’ #TEXT
 EXAMINE #TEXT TRANSLATE USING INVERTED #TAB(*)
 WRITE NOTITLE ’=’ #TEXT
 /***
 END

#NMB: 1
 #NMB: 4
 #TEXT: XYZ X Y Z .X. .Y. .Z. -X- -Y- -Z-
 #TEXT: ABC A B C .A. .B. .C. -A- -B- -C-

Copyright © Software AG 2003348

EXAMINEExample 2

EXAMINE TRANSLATE

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A A B yes no

Operand2 C S N P I yes no

Operand3 C S N P I yes no

Operand4 S A A B yes no

Function
The EXAMINE TRANSLATE statement is used to translate the characters contained in a field into upper-case
or lower-case, or into other characters.

operand1
Operand1 is the field whose content is to be translated.

SUBSTRING
Normally, the entire content of a field is translated.

With the SUBSTRING option, you translate only a certain part of the field. After the field name (operand1) in
the SUBSTRING clause, you specify first the starting position (operand2) and then the length (operand3) of the
field portion to be examined.

For example, to translate the 5th to 12th position inclusive of a field #A, you would specify:

 EXAMINE SUBSTRING(#A,5,8) AND TRANSLATE ...

Note:
If you omit operand2, the starting position is assumed to be "1". If you omit operand3, the length is assumed to
be from the starting position to the end of the field.

349Copyright © Software AG 2003

EXAMINE TRANSLATEEXAMINE TRANSLATE

INTO UPPER/LOWER CASE
If you specify INTO UPPER CASE, the content of operand1 will be translated into upper case.

If you specify INTO LOWER CASE, the content of operand1 will be translated into lower case.

Translation Table
Operand4 is the translation table to be used for character translation.

The table must be of format/length A2 or B2.

Note:
If for a character to be translated more than one translation is defined in the translation table, the last of these
translations applies.

INVERTED
If you specify the keyword INVERTED, the translation table (operand4) will be used inverted; that is, the
translation direction will be reversed.

Example

 /* EXAMPLE ’EXMEX2’: EXAMINE SUBSTRING, PATTERN, TRANSLATE
 /***
 DEFINE DATA LOCAL
 1 #TEXT (A50)
 1 #A (A7)
 1 #NMB (N2)
 1 #START (N2)
 1 #TAB(A2/1:10)
 END-DEFINE
 /***
 MOVE ’ABC A B C .A. .B. .C. -A- -B- -C- ’ TO #TEXT
 /***
 ASSIGN #A = ’A B C’
 ASSIGN #START = 6
 EXAMINE SUBSTRING(#TEXT,#START,9) FOR #A GIVING NUMBER #NMB
 WRITE NOTITLE ’=’ #NMB
 /***
 EXAMINE #TEXT FOR PATTERN ’*B’ GIVING NUMBER #NMB
 WRITE NOTITLE ’=’ #NMB
 /***
 MOVE ’AX’ TO #TAB(1)
 MOVE ’BY’ TO #TAB(2)
 MOVE ’CZ’ TO #TAB(3)
 EXAMINE #TEXT TRANSLATE USING #TAB(*)
 WRITE NOTITLE ’=’ #TEXT
 EXAMINE #TEXT TRANSLATE USING INVERTED #TAB(*)
 WRITE NOTITLE ’=’ #TEXT
 /***
 END

Copyright © Software AG 2003350

EXAMINE TRANSLATEINTO UPPER/LOWER CASE

#NMB: 1
 #NMB: 4
 #TEXT: XYZ X Y Z .X. .Y. .Z. -X- -Y- -Z-
 #TEXT: ABC A B C .A. .B. .C. -A- -B- -C-

351Copyright © Software AG 2003

ExampleEXAMINE TRANSLATE

EXPAND

EXPAND
dynamic-clause

[GIVING operand5]
array-clause

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A A B no no

Operand2 C S I no no

Operand3 A G A N P I F B D T L C G O yes no

Operand4 C S N P I no no

Operand5 S I4 no yes

Related statements: REDUCE | RESIZE

Function
The EXPAND statement is used to expand:

the size of a dynamic variable (dynamic clause), or
the number of occurrences of X-arrays (array clause).

Note:
The array clause is only available under Windows and UNIX.

dynamic-clause

[SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2

The EXPAND DYNAMIC statement expands the size of the currently allocated storage of a dynamic variable
(operand1) to the value specified in operand2.

When using the EXPAND statement it is only possible to increase the number of occurrences. If operand 2 is
less than the size of the currently allocated storage of operand1, the statement will be ignored for this dynamic
variable. The currently used size (*LENGTH) of the dynamic variable is not modified.

operand1

Operand1 is the dynamic variable for which the size is to be expanded.

Copyright © Software AG 2003352

EXPANDEXPAND

operand2

Operand2 is used to specify the size to which the dynamic variable is to be expanded. The value specified must
be a non-negative integer constant or a variable of type Integer4 (I4).

array-clause

[AND RESET] [OCCURRENCES OF] ARRAY operand3 TO (dim [,dim [,dim]])

Note:
The clause is only valid under Windows and UNIX.

The EXPAND ARRAY statement increases the number of occurrences of the X-array (operand3) to the upper
and lower bound specified with (dim [,dim [,dim]]).

The RESET option resets all occurrences of the resized X-array to its default zero value. By default (no RESET
option), the actual values are kept and the resized (new) occurrences are reset.

When using the EXPAND statement it is only possible to increase the number of occurrences. If the requested
number is smaller as the currently allocated number of occurrences, it will simply be ignored.

An upper or lower bound used in an EXPAND statement must be exactly the same as the corresponding upper or
lower bound defined for the array.

Example:

DEFINE DATA LOCAL
1 #a(I4/1:*)
1 #i(i4)
END-DEFINE
...
EXPAND ARRAY #a TO (1:10) /* THIS IS ALLOWED
EXPAND ARRAY #a TO (*:10) /* THIS IS ALLOWED
EXPAND ARRAY #a TO (5:10) /* THIS IS REJECTED
EXPAND ARRAY #a TO (#i:10) /* THIS IS REJECTED

operand3

Operand3 is the X-array for which the number of occurrences may be increased. The index notation of the array
is optional. As index notation only the complete range notation * is allowed for each dimension.

dim

operand4
:

operand4

* *

The lower and upper bound notation (operand4 or asterisk) to which the X-array should be expanded is specified
here. If the upper or lower bound must not be changed, an asterisk (*) must be specified instead of operand4.

353Copyright © Software AG 2003

array-clauseEXPAND

The number of dimensions (dim) must exactly match the defined number of dimensions of the X-array (1,2 or 3).

If the number of occurrences for a specified dimension is less than the number of the currently allocated
occurrences, the number of occurrences is not changed for the corresponding dimension.

GIVING operand5
If the GIVING clause is not specified, Natural runtime error processing is triggered if an error occurs.

If the GIVING clause is specified, operand5 contains the Natural message number if an error occurred, or zero
upon success.

Copyright © Software AG 2003354

EXPANDGIVING operand5

FETCH

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A yes no

Operand2 C S A G A N P I F B D T L G yes yes

Related Statements: CALLNAT | PERFORM

Function
The FETCH statement is used to execute a Natural object program written as a main program. The program to be
loaded must have been previously stored in the Natural system file with a CATALOG or STOW command.
Execution of the FETCH statement does not overwrite any source program in the Natural source work area.

REPEAT
REPEAT causes Natural to suppress the prompt for user input for each INPUT statement issued during the
execution of the FETCHed program. It may be used to send information about the execution of the program to
the terminal without the user having to reply with ENTER.

RETURN
Without the specification of RETURN, the execution of the program issuing the FETCH statement will be
terminated immediately and the FETCHed program will be activated as a main program (level 1).

If a program is invoked with FETCH RETURN, the execution of the invoking program will be suspended - not
terminated - and the FETCHed program will be activated as a subordinate program on a higher level. Control is
returned to the invoking program when an END or ESCAPE ROUTINE statement is encountered in the
FETCHed program. Processing is continued with the statement following the FETCH RETURN statement.

With FETCH RETURN, you invoke and execute an object of type program as a routine.

Program Name - operand1
The name of the program module (maximum 8 characters) can be specified as an alphanumeric constant or the
content of an alphanumeric variable of length 1 to 8.

Natural will attempt to locate the program in the library currently active at the time the FETCH is issued. If the
program is not found, Natural will attempt to locate the program in the steplibs. If the program is still not found,
an error message will be issued.

355Copyright © Software AG 2003

FETCHFETCH

The program name may contain an ampersand (&); at execution time, this character will be replaced by the
current value of the system variable *LANGUAGE. This makes it possible, for example, to invoke different
programs for the processing of input, depending on the language in which input is provided.

Parameters - operand2
The FETCH statement may also be used to pass parameter fields to the invoked program. A parameter field may
be defined with any format. The parameters are converted to a format suitable for a corresponding INPUT field.
All parameters are placed on the top of the Natural stack.

The parameter fields can be read by the FETCHed program using an INPUT statement. The first INPUT
statement will result in the insertion of all parameter field values into the fields specified in the INPUT
statement. The INPUT statement must have the sign specification (SG=ON) for parameter fields defined with
numeric format, because each parameter field defined with numeric format in the FETCH statement will receive
a sign position if its value is negative.

If more parameters are passed than are read by the next INPUT statement, the extra parameters are ignored. The
number of parameters may be obtained with the Natural system variable *DATA.

Note:
If operand2 is a time variable (format T), only the time component of the variable content is passed, but not the
date component.

parameter
If operand2 is a date variable, you can specify the session parameter DF as parameter for this variable. The
session parameter DF is described in the Natural Parameter Reference documentation.

Additional Considerations
In addition to the parameters passed explicitly with FETCH, the FETCHed program also has access to the
established global data area.

The FETCH statement may cause the internal execution of an END TRANSACTION statement based on the
setting of the Natural profile parameter OPRB as set by the Natural administrator. If a logical transaction is to
span multiple Natural programs, the Natural administrator should be consulted to ensure that the OPRB
parameter is set correctly.

Copyright © Software AG 2003356

FETCHParameters - operand2

Example

Invoking Program:

 /* EXAMPLE ’FETEX1’: FETCH
 /**
 DEFINE DATA LOCAL
 1 #PNUM (A8)
 1 #FNC (A1)
 END-DEFINE
 /**
 INPUT 10X ’SELECTION MENU FOR EMPLOYEES SYSTEM’ /
 10X ’-’ (54) //
 10X ’ADD ’ ’(A)’ /
 10X ’PURGE’ ’(P)’ /
 10X ’UPDATE’ ’(U)’ /
 10X ’TERMINATE’ ’(.)’ //
 10X ’PERSONNEL NUMBER:’ #PNUM ///
 10X ’PLEASE ENTER FUNCTION: ’ #FNC
 /**
 DECIDE ON EVERY VALUE OF #FNC
 VALUE ’A’
 FETCH ’ADD-RT’ #PNUM
 VALUE ’P’
 FETCH ’PUR-RT’ #PNUM
 VALUE ’U’
 FETCH ’UPD-RT’ #PNUM
 VALUE ’.’
 STOP
 NONE
 REINPUT ’PLEASE ENTER A VALID FUNCTION’ MARK *#FNC
 END-DECIDE
 /**
 END

357Copyright © Software AG 2003

ExampleFETCH

Invoked Program:

 /* EXAMPLE ’PUR-RT’ (PROGRAM FETCHED IN EXAMPLE ’FETEX1’)
 /**
 DEFINE DATA LOCAL
 1 #PERS-NR (A8)
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 END-DEFINE
 /**
 INPUT #PERS-NR
 /**
 FIND NUMBER EMPLOY-VIEW WITH PERSONNEL-ID = #PERS-NR
 IF *NUMBER = 0
 WRITE NOTITLE ’NO RECORD FOUND’
 STOP
 END-IF
 /**
 FIND EMPLOY-VIEW WITH PERSONNEL-ID = #PERS-NR
 DELETE
 END TRANSACTION
 WRITE NOTITLE ’RECORD DELETED’
 END-FIND
 /**
 END

 SELECTION MENU FOR EMPLOYEES SYSTEM
 --

 ADD (A)
 PURGE (P)
 UPDATE (U)
 TERMINATE (.)

 PERSONNEL NUMBER: 1150304

 PLEASE ENTER FUNCTION: P

RECORD DELETED

Copyright © Software AG 2003358

FETCHInvoked Program:

FIND

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S N P I yes no

Operand2 C S A yes no

Operand3 C S N yes no

Operand4 C S N P I B yes no

Operand5 C S N P I B yes no

Related Statements: READ | HISTOGRAM

Function
The FIND statement is used to select a set of records from the database based on a search criterion consisting of
fields defined as descriptors (keys).

This statement causes a processing loop to be initiated and then executed for each record selected. Each field in
each record may be referenced within the processing loop. It is not necessary to issue a READ statement
following the FIND in order to reference the fields within each record selected.

359Copyright © Software AG 2003

FINDFIND

Considerations for DL/I Databases
When accessing a field starting after the last byte of the given segment occurrence, the storage copy of this field
is filled according to its format (numeric, blank, etc.). The term segment occurrences should be substituted for
the term records as used in this description of the FIND statement.

Considerations for SQL Databases
FIND FIRST as well as the PASSWORD, CIPHER, COUPLED and RETAIN clauses are not permitted.

FIND UNIQUE is not permitted. (Exception: On mainframe computers, FIND UNIQUE can be used for primary
keys; however, this is only permitted for compatibility reasons and should not be used.)

The SORTED BY clause corresponds with the SQL clause ORDER BY.

The basic search criterion for an SQL-database table may be specified in the same manner as for an Adabas file.
The term record used in this context corresponds with the SQL term row .

Considerations for VSAM Databases
The FIND statement is only valid for key-sequenced (KSDS) and entry-sequenced (ESDS) VSAM datasets. For
ESDS, an alternate index for the base cluster must be defined.

Considerations for XML Databases
FIND FIRST, as well as the PASSWORD, CIPHER, COUPLED and RETAIN clauses are not permitted.

FIND UNIQUE is not permitted.

The basic search criterion for an XML-database may be specified in the same manner as for an Adabas file. The
term record used in this context corresponds with the XML term XML object .

Entire System Server Restrictions
FIND NUMBER and FIND UNIQUE as well as the PASSWORD, CIPHER, COUPLED and RETAIN clauses
are not permitted.

Processing Limit - ALL/operand1
The number of records to be processed from the selected set may be limited by specifying operand1 either as a
numeric constant or as the name of a numeric variable enclosed in parentheses. ALL may be optionally specified
and emphasizes that all selected records are to be processed.

If you specify a limit with operand1, this limit applies to the FIND loop being initiated. Records rejected for
processing by the WHERE clause are not counted against this limit.

 FIND (5) IN EMPLOYEES WITH ...

 MOVE 10 TO #CNT(N2)
 FIND (#CNT) EMPLOYEES WITH ...

Copyright © Software AG 2003360

FINDConsiderations for DL/I Databases

For this statement, the specified limit has priority over a limit set with a LIMIT statement.

If a smaller limit is set with the LT parameter, the LT limit applies.

Notes:
If you wish to process a 4-digit number of records, specify it with a leading zero: (0nnnn); because Natural
interprets every 4-digit number enclosed in parentheses as a line-number reference to a statement.
Operand1 has no influence on the size of an ISN set that is to be retained by a RETAIN clause.
Operand1 is evaluated when the FIND loop is entered. If the value of operand1 is modified within the FIND
loop, this does not affect the number of records processed.

FIND FIRST, FIND NUMBER, FIND UNIQUE
These options are used to select the first record of a selected set (FIND FIRST), to determine the number of
records in a selected set (FIND NUMBER), or to ensure that only one record satisfies a selection criterion (FIND
UNIQUE).

These options are described in detail at the end of the FIND statement description.

MULTI-FETCH Clause
Note:
This clause can only be used for Adabas databases.

[MULTI-FETCH ON | OFF | OF value]

Note:
[MULTI-FETCH OF value] is not evaluated under Windows and UNIX. The default processing mode is applied.

In standard mode, Natural does not read multiple records with a single database call; it always operates in a
one-record-per-fetch mode. This kind of operation is solid and stable, but can take some time if a large number
of database records are being processed.

To improve the performance of those programs, Natural offers a new MULTI-FETCH clause, that allows one to
read more than several records per database access.

For more information, see the section Multi-Fetch Clause in the Natural Programming Guide.

view-name
The name of a view as defined either within a DEFINE DATA block or in a separate global or local data. In
reporting mode, view-name may also be the name of a DDM.

PASSWORD Clause
The PASSWORD clause applies only for Adabas or VSAM databases. This clause is not permitted with
Entire System Server.

The PASSWORD clause is used to provide a password (operand2) when retrieving data from an Adabas file
which is password protected. If you require access to a password-protected file, contact the person responsible
for database security concerning password usage/assignment.

361Copyright © Software AG 2003

FIND FIRST, FIND NUMBER, FIND UNIQUEFIND

If the password is specified as a constant, the PASSWORD clause should always be coded at the very beginning
of a source-code line; this ensures that the password is not visible/displayable in the source code of the program.
In TP mode, you may enter the PASSWORD clause invisible by entering the terminal command "%*" before
you type in the PASSWORD clause.

If the PASSWORD clause is omitted, the password specified with the PASSW statement applies.

The password value must not be changed during the execution of a processing loop.

Example of PASSWORD Clause:

 /* EXAMPLE ’FNDPWD’: FIND (USING PASSWORD CLAUSE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 PERSONNEL-ID
 1 #PASS (A8)
 END-DEFINE
 /**
 INPUT ’ENTER PASSWORD FOR EMPLOYEE FILE:’ #PASS (AD=N)
 LIMIT 2
 /**
 FIND EMPLOY-VIEW
 PASSWORD = #PASS
 WITH NAME = ’SMITH’
 DISPLAY NOTITLE NAME PERSONNEL-ID
 END-FIND
 /**
 END

ENTER PASSWORD FOR EMPLOYEE FILE:

CIPHER Clause
The CIPHER clause only applies to Adabas databases. This clause is not permitted with Entire System
Server.

The CIPHER clause is used to provide a cipher key (operand3) when retrieving data from Adabas files which are
enciphered. If you require access to an enciphered file, contact the person responsible for database security
concerning cipher key usage/assignment.

The cipher key may be specified as a numeric constant (8 digits) or the content of a user-defined variable with
format/length N8.

If the cipher key is specified as a constant, the CIPHER clause should always be coded at the very beginning of a
source-code line; this ensures that the cipher key is not visible/displayable in the source code of the program. In
TP mode, you may enter the CIPHER clause invisible by entering the Natural terminal command "%*" before
you type in the CIPHER clause.

Copyright © Software AG 2003362

FINDCIPHER Clause

The value of the cipher key must not be changed during the processing of a loop initiated by a FIND statement.

Example of CIPHER Clause:

 /* EXAMPLE ’FNDCIP’: FIND (USING CIPHER CLAUSE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 PERSONNEL-ID
 1 #PASS (A8)
 1 #CIPHER (N8)
 END-DEFINE
 /**
 LIMIT 2
 INPUT ’ENTER PASSWORD FOR EMPLOYEE FILE: ’ #PASS (AD=N)
 / ’ENTER CIPHER KEY FOR EMPLOYEE FILE: ’ #CIPHER (AD=N)
 /**
 FIND EMPLOY-VIEW
 PASSWORD = #PASS
 CIPHER = #CIPHER
 WITH NAME = ’SMITH’
 DISPLAY NOTITLE NAME PERSONNEL-ID
 END-FIND
 /**
 END

ENTER PASSWORD FOR EMPLOYEE FILE:
ENTER CIPHER KEY FOR EMPLOYEE FILE:

WITH Clause
The WITH clause is required. It is used to specify the basic-search-criterion consisting of key fields
(descriptors) defined in the database.

For Adabas files, you may use Adabas descriptors, subdescriptors, superdescriptors, hyperdescriptors, and
phonetic descriptors within a WITH clause. On mainframe computers, a non-descriptor (that is, a field marked in
the DDM with "N") can also be specified.

For DL/I files, you may only use key fields marked with "D" in the DDM.

For VSAM files, you may use VSAM key fields only.

The number of records to be selected as a result of a WITH clause may be limited by specifying the keyword
LIMIT together with a numeric constant or a user-defined variable, enclosed within parentheses, which contains
the limit value (operand4). If the number of records selected exceeds the limit, the program will be terminated
with an error message.

Note:
If the limit is to be a 4-digit number, specify it with a leading zero: (0nnnn); because Natural interprets every
4-digit number enclosed in parentheses as a line-number reference to a statement.

363Copyright © Software AG 2003

WITH ClauseFIND

Search Criterion for Adabas Files - basic-search-criterion

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Descriptor S A A N P I F B D T L no no

Value C S A N P I F B D T L yes no

Set-name C S A no no

descriptor

Adabas descriptor, subdescriptor, superdescriptor, hyperdescriptor, or phonetic descriptor. A field marked as
non-descriptor in the DDM can also be specified.

i

A descriptor contained within a periodic group may be specified with or without an index. If no index is
specified, the record will be selected if the value specified is located in any occurrence. If an index is specified,
the record is selected only if the value is located in the occurrence specified by the index. The index specified
must be a constant. An index range must not be used.

Copyright © Software AG 2003364

FINDSearch Criterion for Adabas Files - basic-search-criterion

No index must be specified for a descriptor which is a multiple-value field. The record will be selected if the
value is located in the record regardless of the position of the value.

value

Search value. The formats of the descriptor and the search value must be compatible.

set-name

Identifies a set of records previously selected with a FIND statement in which the RETAIN clause was specified.
The set referenced in a FIND must have been created from the same physical Adabas file. set-name may be
specified as a text constant (maximum 32 characters) or as the content of an alphanumeric variable. set-name
cannot be used with Entire System Server.

Examples of Basic Search Criterion in WITH Clause:

 FIND STAFF WITH NAME = ’SMITH’
 FIND STAFF WITH CITY NE ’BOSTON’
 FIND STAFF WITH BIRTH = 610803
 FIND STAFF WITH BIRTH = 610803 THRU 610811
 FIND STAFF WITH NAME = ’O HARA’ OR = ’JONES’ OR = ’JACKSON’
 FIND STAFF WITH PERSONNEL-ID = 100082 THRU 100100
 BUT NOT 100087 THRU 100095

365Copyright © Software AG 2003

Search Criterion for Adabas Files - basic-search-criterionFIND

Examples of Basic Search Criterion with Multiple-Value Field:

When the descriptor used in the basic search criterion is a multiple-value field, basically four different kinds of
results can be obtained (the field MU-FIELD in the following examples is assumed to be a multiple-value field):

1. FIND XYZ-VIEW WITH MU-FIELD = ’A’
This statement returns records in which at least one occurrence of MU-FIELD has the value "A".

2. FIND XYZ-VIEW WITH MU-FIELD NOT EQUAL ’A’
This statement returns records in which at least one occurrence of MU-FIELD does not have the value "A".

3. FIND XYZ-VIEW WITH NOT MU-FIELD NOT EQUAL ’A’
This statement returns records in which every occurrence of MU-FIELD has the value "A".

4. FIND XYZ-VIEW WITH NOT MU-FIELD = ’A’
This statement returns records in which none of the occurrences of MU-FIELD has the value "A".

Search Criterion with Null Indicator - basic-search-criterion

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Null-indicator S I no no

Value C S N P I F B yes no

Possible value is "-1" (= the corresponding field contains no value) or "0" (= the corresponding field does
contain a value).

Connecting Search Criteria (for Adabas Files)

Basic-search-criteria can be combined using the Boolean operators AND, OR, and NOT. Parentheses may also
be used to control the order of evaluation. The order of evaluation is as follows:

1. () Parentheses
2. NOT Negation (only for a basic-search-criterion of form [2]).
3. AND AND connection
4. OR OR connection

Basic-search-criteria may be connected by logical operators to form a complex search-expression. The syntax
for such a complex search-expression is as follows:

Copyright © Software AG 2003366

FINDSearch Criterion for Adabas Files - basic-search-criterion

Examples of Complex Search Expression in WITH Clause:

 FIND STAFF WITH BIRTH LT 19770101 AND DEPT = ’DEPT06’

 FIND STAFF WITH JOB-TITLE = ’CLERK TYPIST’
 AND (BIRTH GT 19560101 OR LANG = ’SPANISH’)

 FIND STAFF WITH JOB-TITLE = ’CLERK TYPIST’
 AND NOT (BIRTH GT 19560101 OR LANG = ’SPANISH’)

 FIND STAFF WITH DEPT = ’ABC’ THRU ’DEF’
 AND CITY = ’WASHINGTON’ OR = ’LOS ANGELES’
 AND BIRTH GT 19360101

 FIND CARS WITH MAKE = ’VOLKSWAGEN’
 AND COLOR = ’RED’ OR = ’BLUE’ OR = ’BLACK’

Descriptor - Key - Usage

Adabas users may use database fields which are defined as descriptors to construct basic search criteria.

Subdescriptors, Superdescriptors, Hyperdescriptors and Phonetic Descriptors

With Adabas, subdescriptors, superdescriptors, hyperdescriptors and phonetic descriptors may be used to
construct search criteria.

A subdescriptor is a descriptor formed from a portion of a field.
A superdescriptor is a descriptor whose value is formed from one or more fields or portions of fields.
A hyperdescriptor is a descriptor which is formed using a user-defined algorithm.
A phonetic descriptor is a descriptor which allows the user to perform a phonetic search on a field (for
example, a person’s name). A phonetic search results in the return of all values which sound similar to the
search value.

Which fields may be used as descriptors, subdescriptors, superdescriptors, hyperdescriptors and phonetic
descriptors with which file is defined in the corresponding DDM.

Values for Subdescriptors, Superdescriptors, Phonetic Descriptors

Values used with these types of descriptors must be compatible with the internal format of the descriptor. The
internal format of a subdescriptor is the same as the format of the field from which the subdescriptor is derived.
The internal format of a superdescriptor is binary if all of the fields from which it is derived are defined with
numeric format; otherwise, the format is alphanumeric. Phonetic descriptors always have alphanumeric format.

367Copyright © Software AG 2003

Search Criterion for Adabas Files - basic-search-criterionFIND

Values for subdescriptors and superdescriptors may be specified in the following ways:

Numeric or hexadecimal constants may be specified. A hexadecimal constant must be used for a value for a
superdescriptor which has binary format (see above).
Values in user-defined variable fields may be specified using the REDEFINE statement to select the
portions that form the subdescriptor or superdescriptor value.

Using Descriptors Contained within a Database Array

A descriptor which is contained within a database array may also be used in the construction of basic search
criterion. For Adabas databases, such a descriptor may be a multiple-value field or a field contained within a
periodic group.

A descriptor contained within a periodic group may be specified with or without an index. If no index is
specified, the record will be selected if the value specified is located in any occurrence. If an index is specified,
the record is selected only if the value is located in the occurrence specified by the index. The index specified
must be a constant. An index range must not be used.

No index must be specified for a descriptor which is a multiple-value field. The record will be selected if the
value is located in the record regardless of the position of the value.

Examples using Database Arrays:

The following examples assume that the field SALARY is a descriptor contained within a periodic group, and
the field LANG is a multiple-value field.

 1. FIND EMPLOYEES WITH SALARY LT 20000

(results in a search of all occurrences of SALARY)

 2. FIND EMPLOYEES WITH SALARY (1) LT 20000

(results in a search of the first occurrence only)

 3. FIND EMPLOYEES WITH SALARY (1:4) LT 20000 /* invalid

(a range specification must not be specified for a field within a periodic group used as a search criterion)

 4. FIND EMPLOYEES WITH LANG = ’FRENCH’

(results in a search of all values of LANG)

 5. FIND EMPLOYEES WITH LANG (1) = ’FRENCH’ /* invalid

(an index must not be specified for a multiple-value field used as a search criterion)

Copyright © Software AG 2003368

FINDSearch Criterion for Adabas Files - basic-search-criterion

Search Criterion for VSAM Files - basic-search-criterion

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Descriptor S A A N P B no no

Value C S A N P B yes no

descriptor

The descriptor must be defined in a VSAM file as a VSAM key field and is marked in the DDM with "P" for
primary key or "A" for alternate key.

value

The search value.

The formats of the descriptor and the search value must be compatible.

369Copyright © Software AG 2003

Search Criterion for VSAM Files - basic-search-criterionFIND

Search Criterion for DL/I Files - basic-search-criterion

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Descriptor S A A N P B no no

Value C S A N P B yes no

descriptor

The descriptor must be a field defined in DL/I and is marked in the DDM with "D".

value

The search value.

For HDAM databases, only the following basic-search-criterion is possible:

Copyright © Software AG 2003370

FINDSearch Criterion for DL/I Files - basic-search-criterion

Connecting Search Criteria - for DL/I Files

basic-search-criteria that refer to different segment types must not be connected with the "OR" logical operator.

Examples:

 FIND COURSE WITH COURSEN > 1
 FIND COURSE WITH COURSEN > 1 AND COURSEN < 100
 FIND OFFERING WITH (COURSEN-COURSE > 1 OR TITLE-COURSE = ’Natural’)
 AND LOCATION = ’DARMSTADT’

Invalid example:

FIND OFFERING WITH COURSEN-COURSE > 1 OR LOCATION = ’DARMSTADT’

COUPLED-clause
This clause only applies to Adabas databases.
This clause is not permitted with Entire System Server.

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Descriptor1 S A A N P B no no

Descriptor2 S A A N P B no no

Note:
Without the VIA clause, the COUPLED clause may be specified up to 4 times; with the VIA clause, it may be
specified up to 42 times.

371Copyright © Software AG 2003

COUPLED-clauseFIND

The COUPLED clause is used to specify a search which involves the use of the Adabas coupling facility. This
facility permits database descriptors from different files to be specified in the search criterion of a single FIND
statement.

The same Adabas file must not be used in two different FIND COUPLED clauses within the same FIND
statement.

A set-name (see RETAIN-clause) must not be specified in the basic-search-criteria.

Database fields in a file specified within the COUPLED clause are not available for subsequent reference in the
program unless another FIND or READ statement is issued separately against the coupled file.

Note:
If the COUPLED clause is used, the main WITH clause may be omitted. If the main WITH clause is omitted, the
keywords AND/OR of the COUPLED clause must not be specified.

Physical Coupling without VIA clause

The files used in a COUPLED clause without VIA must be physically coupled using the appropriate Adabas
utility (as described in the Adabas documentation).

Example using Physically Coupled Files:

 /* EXAMPLE ’FNDCPL’: FIND (USING COUPLED FILES)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 1 VEHIC-VIEW VIEW OF VEHICLES
 2 MAKE
 END-DEFINE
 /**
 FIND EMPLOY-VIEW WITH CITY = ’FRANKFURT’
 AND COUPLED TO VEHIC-VIEW WITH MAKE = ’VW’
 DISPLAY NOTITLE NAME
 END-FIND
 /**
 END

The reference to NAME in the DISPLAY statement of the above example is valid since this field is contained in
the EMPLOYEES file, whereas a reference to MAKE would be invalid since MAKE is contained in the
VEHICLES file, which was specified in the COUPLED clause.

In this example, records will be found only if EMPLOYEES and VEHICLES have been physically coupled.

Logical Coupling - VIA clause

The option "VIA descriptor1 = descriptor2" allows you to logically couple multiple Adabas files in a search
query. Descriptor1 is a field from the first view, and descriptor2 is a field from the second view. The two files
need not be physically coupled in Adabas. This COUPLED option uses the soft-coupling feature of Adabas
Version 5, as described in the Adabas documentation.

Example using VIA Clause:

Copyright © Software AG 2003372

FINDPhysical Coupling without VIA clause

 /* EXAMPLE ’FNSEX1’: FIND (USING SOFT COUPLING)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 1 VEHIC-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 END-DEFINE
 /**
 FIND EMPLOY-VIEW WITH NAME = ’ADKINSON’
 AND COUPLED TO VEHIC-VIEW
 VIA PERSONNEL-ID = PERSONNEL-ID
 WITH MAKE = ’VOLVO’
 DISPLAY PERSONNEL-ID NAME FIRST-NAME
 END-FIND
 /**
 END

Page 1 91-06-18 14:30:38

 PERSONNEL NAME FIRST-NAME
 ID
 --------- -------------------- --------------------

 20011000 ADKINSON BOB

STARTING WITH ISN=operand5
This clause applies only to Adabas and VSAM databases; for VSAM, it is only valid for ESDS.

You can use this clause to specify as operand5 an Adabas ISN (internal sequence number) or VSAM RBA
(relative byte address) respectively, which is to be used as a start value for the selection of records.

This clause may be used for repositioning within a FIND loop whose processing has been interrupted, to easily
determine the next record with which processing is to continue. This is particularly useful if the next record
cannot be identified uniquely by any of its descriptor values. It can also be useful in a distributed client/server
application where the reading of the records is performed by a server program while further processing of the
records is performed by a client program, and the records are not processed all in one go, but in batches.

Note:
The start value actually used will not be the value of operand5, but the next higher value.

Example:

See the program FNDSISN in the library SYSEXRM.

SORTED BY-clause
This clause only applies to Adabas, Tamino and SQL databases.
This clause is not permitted with Entire System Server.

373Copyright © Software AG 2003

STARTING WITH ISN=operand5FIND

The SORTED BY clause is used to cause Adabas to sort the selected records based on the sequence of one to
three descriptors. The descriptors used for controlling the sort sequence may be different from those used for
selection.

By default, the records are sorted in ascending sequence of values; if you want them to be in descending
sequence, specify the keyword DESCENDING. The sort is performed using the Adabas inverted lists and does
not result in any records being read.

Note:
The use of this clause may result in significant overhead if any descriptor used to control the sort sequence
contains a large number of values. This is because the entire value list may have to be scanned until all selected
records have been located in the list. When a large number of records is to be sorted, you should use the SORT
statement.

Adabas sort limits (see the ADARUN LS parameter in the Adabas documentation) are in effect when the
SORTED BY clause is used.

A descriptor which is contained in a periodic group must not be specified in the SORTED BY clause. A
multiple-value field (without an index) may be specified.

Non-descriptors may also be specified in the SORTED BY clause. However, this function is not available on
mainframes.

If the SORTED BY clause is used, the RETAIN clause must not be used.

Example of SORTED BY Clause:

 /* EXAMPLE ’FNDSOR’: FIND (SORTED BY CLAUSE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 FIRST-NAME
 2 PERSONNEL-ID
 END-DEFINE
 /***
 LIMIT 10
 FIND EMPLOY-VIEW WITH CITY = ’FRANKFURT’
 SORTED BY NAME PERSONNEL-ID
 DISPLAY NOTITLE NAME (IS=ON) FIRST-NAME PERSONNEL-ID
 END-FIND
 /***
 END

Copyright © Software AG 2003374

FINDExample of SORTED BY Clause:

 NAME FIRST-NAME PERSONNEL
 ID
 -------------------- -------------------- ---------

 BAECKER JOHANNES 11500345
 BECKER HERMANN 11100311
 BERGMANN HANS 11100301
 BLAU SARAH 11100305
 BLOEMER JOHANNES 11200312
 DIEDRICHS HUBERT 11600301
 DOLLINGER MARGA 11500322
 FALTER CLAUDIA 11300311
 HEIDE 11400311
 FREI REINHILD 11500301

RETAIN-clause
This clause only applies to Adabas databases.
This clause is not permitted with Entire System Server.

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand6 C S A yes no

By using the RETAIN clause, the result of an extensive search in large files can be retained for further
processing. The selection is retained as an "ISN-set" in the Adabas work file. The set may be used in subsequent
FIND statements as a basic search criterion for further refinement of the set or for further processing of the
records. The set created is file-specific and may only be used in another FIND statement that processes the same
file. The set may be referenced by any Natural program.

Set Name - operand6

The set name is used to identify the record set. It may be specified as an alphanumeric constant or as the content
of an alphanumeric user-defined variable. Duplicate set names are not checked; consequently, if a duplicate set
name is specified, the new set replaces the old set.

Releasing Sets

There is no specific limit for the number of sets that can be retained or the number of ISNs in a set. It is
recommended that the minimum number of ISN sets needed at one time be defined. Sets that are no longer
needed should be released using the RELEASE SETS statement.

If they are not released with a RELEASE statement, retained sets exist until the end of the Natural session, or
until a logon to another library, when they are released automatically. A set created by one program may be
referenced by another program for processing or further refinement using additional search criteria.

375Copyright © Software AG 2003

RETAIN-clauseFIND

Updates by Other Users

The records identified by the ISNs in a retained set are not locked against access and/or update by other users.
Before you process records from the set, it is therefore useful to check whether the original search criteria which
were used to create the set are still valid: This check is done with another FIND statement, using the set name in
the WITH clause as basic search criterion and specifying in a WHERE clause the original search criterion (that
is, the basic search criteria as specified in the WITH clause of the FIND statement which was used to create the
set).

Restriction

If the RETAIN clause is used, the SORTED BY clause must not be used.

Example of a RETAIN Clause:

 * EXAMPLE ’’: FIND (RETAIN CLAUSE) AND RELEASE
 **
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 BIRTH
 2 NAME
 1 #BIRTH (D)
 END-DEFINE
 *
 MOVE EDITED ’19400101’ TO #BIRTH (EM=YYYYMMDD)
 *
 FIND NUMBER EMPLOY-VIEW WITH BIRTH GT #BIRTH
 RETAIN AS ’AGESET1’
 IF *NUMBER = 0
 STOP
 END-IF
 *
 FIND EMPLOY-VIEW WITH ’AGESET1’ AND CITY = ’NEW YORK’
 DISPLAY NOTITLE NAME CITY BIRTH (EM=YYYY-MM-DD)
 END-FIND
 *
 RELEASE SET ’AGESET1’
 END

 NAME CITY DATE
 OF
 BIRTH
 -------------------- -------------------- ----------

 RUBIN NEW YORK 1945-10-27
 WALLACE NEW YORK 1945-08-04

WHERE Clause

Copyright © Software AG 2003376

FINDWHERE Clause

The WHERE clause may be used to specify an additional selection criterion (logical-condition) which is
evaluated after a value has been read and before any processing is performed on the value (including the AT
BREAK evaluation).

The syntax for a logical-condition is described in the section Logical Condition Criteria.

If a processing limit is specified in a FIND statement containing a WHERE clause, records which are rejected as
a result of the WHERE clause are not counted against the limit. These records are, however, counted against a
global limit specified in the Natural session parameter LT, the GLOBALS command, or LIMIT statement.

Example of WHERE Clause:

 /* EXAMPLE ’FNDWHE’: FIND (WHERE CLAUSE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 JOB-TITLE
 2 CITY
 END-DEFINE
 /***
 FIND EMPLOY-VIEW WITH CITY = ’PARIS’
 WHERE JOB-TITLE = ’INGENIEUR COMMERCIAL’
 DISPLAY NOTITLE CITY JOB-TITLE PERSONNEL-ID NAME
 END-FIND
 /***
 END

 CITY CURRENT PERSONNEL NAME
 POSITION ID
 -------------------- ------------------------- --------- --------------------

 PARIS INGENIEUR COMMERCIAL 50007300 CAHN
 PARIS INGENIEUR COMMERCIAL 50006500 MAZUY
 PARIS INGENIEUR COMMERCIAL 50004400 VALLY
 PARIS INGENIEUR COMMERCIAL 50002800 BRETON
 PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX

IF NO RECORDS FOUND-clause

Structured Mode Syntax

377Copyright © Software AG 2003

IF NO RECORDS FOUND-clauseFIND

Reporting Mode Syntax

The IF NO RECORDS FOUND clause may be used to cause a processing loop initiated with a FIND statement
to be entered in the event that no records meet the selection criteria specified in the WITH and WHERE clauses.

If no records meet the specified WITH and WHERE criteria, the IF NO RECORDS FOUND clause causes the
FIND processing loop to be executed once with an "empty" record. If this is not desired, specify the statement
ESCAPE BOTTOM within the IF NO RECORDS FOUND clause.

If one or more statements are specified with the IF NO RECORDS FOUND clause, the statements will be
executed immediately before the processing loop is entered. If no statements are to be executed before entering
the loop, the keyword ENTER must be used.

Database Values

Unless other value assignments are made in the statements accompanying an IF NO RECORDS FOUND clause,
Natural will reset to empty all database fields which reference the file specified in the current loop.

Evaluation of System Functions

Natural system functions are evaluated once for the empty record that is created for processing as a result of the
IF NO RECORDS FOUND clause.

Restriction

This clause cannot be used with FIND FIRST, FIND NUMBER and FIND UNIQUE.

Example of IF NO RECORDS FOUND Clause:

Copyright © Software AG 2003378

FINDReporting Mode Syntax

 /* EXAMPLE ’FNDIFN’: FIND (IF NO RECORDS FOUND CLAUSE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 1 VEHIC-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 END-DEFINE
 /***
 LIMIT 15
 EMP. READ EMPLOY-VIEW BY NAME STARTING FROM ’JONES’
 /***
 VEH. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)
 IF NO RECORDS FOUND
 MOVE ’*** NO CAR ***’ TO MAKE
 END-NOREC
 DISPLAY NOTITLE
 NAME (EMP.) (IS=ON) FIRST-NAME (EMP.) (IS=ON) MAKE (VEH.)
 END-FIND
 /***
 END-READ
 END

 NAME FIRST-NAME MAKE
 -------------------- -------------------- --------------------

 JONES VIRGINIA CHRYSLER
 MARSHA CHRYSLER
 CHRYSLER
 ROBERT GENERAL MOTORS
 LILLY FORD
 MG
 EDWARD GENERAL MOTORS
 MARTHA GENERAL MOTORS
 LAUREL GENERAL MOTORS
 KEVIN DATSUN
 GREGORY FORD
 JOPER MANFRED *** NO CAR ***
 JOUSSELIN DANIEL RENAULT
 JUBE GABRIEL *** NO CAR ***
 JUNG ERNST *** NO CAR ***
 JUNKIN JEREMY *** NO CAR ***
 KAISER REINER *** NO CAR ***

System Variables with the FIND Statement
The Natural system variables *ISN, *NUMBER, and *COUNTER are automatically created for each FIND
statement issued. A reference number must be supplied if the system variable was referenced outside the current
processing loop or through a FIND UNIQUE, FIND FIRST, or FIND NUMBER statement. The format/length of
each of these system variables is P10; this format/length cannot be changed.

379Copyright © Software AG 2003

System Variables with the FIND StatementFIND

*ISN

For Adabas databases, *ISN contains the Adabas internal sequence number (ISN) of the record currently being
processed. *ISN is not available for the FIND NUMBER statement.

For Tamino, *ISN contains the XML object ID.

For VSAM databases, see *ISN for VSAM in the Natural System Variables documentation.

For DL/I and SQL databases, and with Entire System Server, *ISN is not available.

Copyright © Software AG 2003380

FIND*ISN

*NUMBER

The system variable *NUMBER contains the number of records which satisfied the basic search criterion
specified in the WITH clause.

For DL/I databases, see *NUMBER for DL/I in the Natural System Variables documentation.

For VSAM databases, see *NUMBER for VSAM in the Natural System Variables documentation.

For SQL databases, see *NUMBER for SQL Databases in the Natural System Variables documentation.

With Entire System Server, *NUMBER is not available.

*COUNTER

The system variable *COUNTER contains the number of times the processing loop has been entered.

Example Using System Variables:

 /* EXAMPLE ’FNDVAR’: FIND (SYSTEM VARIABLES *ISN, *NUMBER, *COUNTER)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 CITY
 END-DEFINE
 /**
 LIMIT 3
 FIND EMPLOY-VIEW WITH CITY = ’MADRID’
 DISPLAY NOTITLE PERSONNEL-ID NAME
 *ISN *NUMBER *COUNTER
 END-FIND
 /**
 END

PERSONNEL NAME ISN NMBR CNT
 ID
 --------- -------------------- --------- --------- ---------

 60000114 DE JUAN 401 41 1
 60000136 DE LA MADRID 402 41 2
 60000209 PINERO 406 41 3

Multiple FIND Statements
Multiple FIND statements may be issued to create nested loops whereby an inner loop is entered for each record
selected in the outer loop.

381Copyright © Software AG 2003

Multiple FIND StatementsFIND

Example of Multiple FIND Statements:

In the following example, first all people named SMITH are selected from the EMPLOYEES file. Then the
PERSONNEL-ID from the EMPLOYEES file is used as the search key for an access to the VEHICLES file. The
resulting report shows the NAME and FIRST-NAME (obtained from the EMPLOYEES file) of all people
named SMITH as well as the MAKE of each car (obtained from the VEHICLES file) owned by these people:

 /* EXAMPLE ’FNDMUL’: FIND (USING MULTIPLE FILES)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 1 VEHIC-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 END-DEFINE
 /**
 LIMIT 15
 EMP. FIND EMPLOY-VIEW WITH NAME = ’SMITH’
 VEH. FIND VEHIC-VIEW WITH PERSONNEL-ID = EMP.PERSONNEL-ID
 IF NO RECORDS FOUND
 MOVE ’*** NO CAR ***’ TO MAKE
 END-NOREC
 DISPLAY NOTITLE
 EMP.NAME (IS=ON)
 EMP.FIRST-NAME (IS=ON) VEH.MAKE
 END-FIND
 END-FIND
 /**
 END

 NAME FIRST-NAME MAKE
 -------------------- -------------------- --------------------

 SMITH GERHARD ROVER
 SEYMOUR *** NO CAR ***
 MATILDA FORD
 ANN *** NO CAR ***
 TONI TOYOTA
 MARTIN *** NO CAR ***
 THOMAS FORD
 SUNNY *** NO CAR ***
 JUNE JAGUAR
 MARK FORD
 LOUISE CHRYSLER
 MAXWELL MERCEDES-BENZ
 MERCEDES-BENZ
 ELSA CHRYSLER
 CHARLY CHRYSLER
 LEE *** NO CAR ***

Copyright © Software AG 2003382

FINDExample of Multiple FIND Statements:

FIND FIRST
The FIND FIRST statement may be used to select and process the first record which meets the WITH and
WHERE criteria.

For Adabas databases, the record processed will be the record with the lowest Adabas ISN from the set of
qualifying records.

This statement does not initiate a processing loop.

Restrictions

FIND FIRST can only be used in reporting mode.

FIND FIRST is not available for DL/I and SQL databases.

The IF NO RECORDS FOUND clause must not be used in a FIND FIRST statement.

System Variables with FIND FIRST

The following Natural system variables are available with the FIND FIRST statement:

*ISN

The system variable *ISN contains the Adabas ISN of the selected record. *ISN will be "0" if no record is found
after the evaluation of the WITH and WHERE criteria.

*ISN is not available for VSAM databases or with Entire System Server.

*NUMBER

The system variable *NUMBER contains the number of records found after the evaluation of the WITH criterion
and before evaluation of any WHERE criterion. *NUMBER will be "0" if no record meets the WITH criterion.

*NUMBER is not available with Entire System Server.

*COUNTER

The system variable *COUNTER contains "1" if a record was found; contains "0" if no record was found.

Example of FIND FIRST

See the program FNDFIR in the library SYSEXRM.

FIND NUMBER
The FIND NUMBER statement is used to determine the number of records which satisfy the WITH/WHERE
criteria specified. It does not result in the initiation of a processing loop and no data fields from the database are
made available.

Note:
Use of the WHERE clause may result in significant overhead.

383Copyright © Software AG 2003

FIND FIRSTFIND

Restrictions

The SORTED BY and IF NO RECORDS FOUND clauses must not be used with the FIND NUMBER
statement.

The WHERE clause cannot be used in structured mode.

FIND NUMBER is not available for DL/I databases.

FIND NUMBER is not available with Entire System Server.

System Variables with FIND NUMBER

The following Natural system variables are available with the FIND NUMBER statement:

*NUMBER

The system variable *NUMBER contains the number of records found after the evaluation of the WITH
criterion.

*COUNTER

The system variable *COUNTER contains the number of records found after the evaluation of the WHERE
criterion.

*COUNTER is only available if the FIND NUMBER statement contains a WHERE clause.

Copyright © Software AG 2003384

FINDRestrictions

Example of FIND NUMBER:

 * EXAMPLE ’’: FIND NUMBER

 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 BIRTH
 1 #BIRTH (D)
 END-DEFINE
 *
 MOVE EDITED ’19500101’ TO #BIRTH (EM=YYYYMMDD)
 *
 FIND NUMBER EMPLOY-VIEW WITH CITY = ’MADRID’
 WHERE BIRTH LT #BIRTH
 *
 WRITE NOTITLE ’TOTAL RECORDS SELECTED: ’ *NUMBER
 / ’TOTAL BORN BEFORE 1 JAN 1950: ’ *COUNTER
 *
 END

 TOTAL RECORDS SELECTED: 41
 TOTAL BORN BEFORE 1 JAN 1950: 16

FIND UNIQUE
The FIND UNIQUE statement may be used to ensure that only one record is selected for processing. It does not
result in the initiation of a processing loop. If a WHERE clause is specified, an automatic internal processing
loop is created to evaluate the WHERE clause.

If no records or more than one record satisfy the criteria, an error message will be issued. This condition can be
tested with the ON ERROR statement.

System Variables with FIND UNIQUE

*ISN

The system variable *ISN contains the unique ISN number of the record, which itself must be unique.

*NUMBER

The system variable *NUMBER always contains 1 for a valid FIND UNIQUE execution.

*NUMBER may contain any other positive value (=0 or > 2) if an error has occurred. This error condition may
be used by the ON ERROR statement. *NUMBER is not allowed if the WHERE clause is missing.

*COUNTER

The system variable *COUNTER contains the number of records found after the evaluation of the WHERE
criterion. *COUNTER is not allowed if the WHERE clause is missing.

385Copyright © Software AG 2003

FIND UNIQUEFIND

Restrictions

FIND UNIQUE can only be used in reporting mode.

FIND UNIQUE is not available for DL/I databases or with Entire System Server.

For SQL databases, FIND UNIQUE cannot be used. (Exception: On mainframe computers, FIND UNIQUE can
be used for primary keys; however, this is only permitted for compatibility reasons and should not be used.)

The SORTED BY and IF NO RECORDS FOUND clauses must not be used with the FIND UNIQUE statement.

Example of FIND UNIQUE

See the program FNDUNQ in the library SYSEXRM.

Copyright © Software AG 2003386

FINDRestrictions

FOR

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S N P I F yes yes

Operand2 C S N N P I F yes no

Operand3 C S N N P I F yes no

Operand4 C S N N P I F yes no

Related Statement: REPEAT

Function
The FOR statement is used to initiate a processing loop and to control the number of times the loop is processed.

Loop Control Variable - operand1 and Initial Setting -
operand2
Operand1 is used to control the number of times the processing loop is to be executed. It may be a database field
or a user-defined variable. The value specified after the keyword FROM (operand2) is assigned to the loop
control variable field before the processing loop is entered for the first time. This value is incremented (or
decremented if the STEP value is negative) using the value specified after the STEP keyword (operand4) each
additional time the loop is processed.

The loop control variable value may be referenced during the execution of the processing loop and will contain
the current value of the loop control variable.

387Copyright © Software AG 2003

FORFOR

TO Value - operand3
The processing loop is terminated when operand1 is greater than (or less than if the initial value of the STEP
value was negative) the value specified for operand3.

STEP Value - operand4
The STEP value may be positive or negative. If a STEP value is not specified, an increment of "+1" is used.

The compare operation will be adjusted to "less than" or "greater than" depending on the sign of the STEP value
when the loop is entered for the first time.

Operand4 must not be "0".

Consistency Check
Before the FOR loop is entered, the values of the operands are checked to ensure that they are consistent (that is,
the value of operand3 can be reached or exceeded by repeatedly adding operand4 to operand2). If the values are
not consistent, the FOR loop is not entered (however, no error message is output).

Copyright © Software AG 2003388

FORTO Value - operand3

Example

 /* EXAMPLE ’FOREX1S’: FOR (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 #INDEX (I1)
 1 #ROOT (N2.7)
 END-DEFINE
 /**
 FOR #INDEX 1 TO 5
 COMPUTE #ROOT = SQRT (#INDEX)
 WRITE NOTITLE ’=’ #INDEX 3X ’=’ #ROOT
 END-FOR
 /**
 SKIP 1
 FOR #INDEX 1 TO 5 STEP 2
 COMPUTE #ROOT = SQRT (#INDEX)
 WRITE ’=’ #INDEX 3X ’=’ #ROOT
 END-FOR
 /**
 END

#INDEX: 1 #ROOT: 1.0000000
 #INDEX: 2 #ROOT: 1.4142135
 #INDEX: 3 #ROOT: 1.7320508
 #INDEX: 4 #ROOT: 2.0000000
 #INDEX: 5 #ROOT: 2.2360679

 #INDEX: 1 #ROOT: 1.0000000
 #INDEX: 3 #ROOT: 1.7320508
 #INDEX: 5 #ROOT: 2.2360679

Equivalent reporting-mode example: See the program FOREX1R in the library SYSEXRM.

389Copyright © Software AG 2003

ExampleFOR

FORMAT

FORMAT [(rep)] parameter

Function
The FORMAT statement is used to specify input and output parameter settings. Settings specified with a
FORMAT statement override (at compilation time) default settings in effect for the session that have been set by
a GLOBALS command, SET GLOBALS statement, or by the Natural administrator. These settings may in turn
be overridden by parameters specified in a DISPLAY, INPUT, PRINT, WRITE, WRITE TITLE, or WRITE
TRAILER statement.

The settings remain in effect until the end of a program or until another FORMAT statement is encountered.

A FORMAT statement does not generate any executable code in the Natural program. It is not executed in
dependence of the logical flow of a program. It is evaluated during program compilation in order to set
parameters for compiling DISPLAY, WRITE, and INPUT statements. The settings defined with a FORMAT
statement are applicable to all DISPLAY, WRITE, and INPUT statements which follow. Multiple FORMAT
statements are permitted within a program, but only one per report.

Report Specification - rep
The notation (rep) may be used to specify the identification of the report for which the FORMAT statement is
applicable. A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified. If (rep) is not specified, the FORMAT statement will be applicable to the first report
(report 0).

Parameters
The parameters can be specified in any order and must be separated by one or more spaces. A single entry must
not be split between two statement lines.

Field sensitive parameter settings applied here will only be regarded for variable fields used in a INPUT,
WRITE, DISPLAY or PRINT statement of the selected report. They do not apply for text-constants used in any
of the mentioned statements.

DEFINE DATA LOCAL
1 VARI (A4) INIT <’1234’> /* Output
END-DEFINE /* Produced
FORMAT PM=I /* ---------
WRITE ’Text’ VARI /* Text 4321
WRITE ’Text’ (PM=I) VARI /* txeT 4321
END

Parameters that can be specified with the FORMAT statement

Copyright © Software AG 2003390

FORMATFORMAT

See the section Session Parameters in the Natural Parameter Reference documentation for a detailed description
of the parameters which may be used.

Applicable Parameters

AD Attribute Definition

AL Alphanumeric Length for Output

BX Box Definition

CD Color Definition

DF Date Format

EM Edit Mask

ES Empty Line Suppression

FC Filler Character

FL Floating Point Mantissa Length

GC Filler Character for Group Heading

HC Header Centering

HW Heading Width

IC Insertion Character

IP Input Prompting Text

IS Identical Suppress

KD Key Definition

LC Leading Characters

LS Line Size

MC Multiple-Value Field Count

MP Maximum Number of Pages of a Report

MS Manual Skip

NL Numeric Length for Output

PC Periodic Group Count

PM Print Mode

PS Page Size

SF Spacing Factor

SG Sign Position

TC Trailing Characters

UC Underlining Character

ZP Zero Printing

391Copyright © Software AG 2003

ParametersFORMAT

Example

 /* EXAMPLE ’FMTEX1:’ FORMAT
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 2 POST-CODE
 2 COUNTRY
 END-DEFINE
 /***
 FORMAT AL=7 /* ALPHANUMERIC FIELD OUTPUT LENGTH
 FC=+ /* FILLER CHARACTER FOR FIELD HEADER
 GC=* /* FILLER CHARACTER FOR GROUP HEADER
 HC=L /* HEADER LEFT JUSTIFIED
 IC=<< /* INSERT CHARACTERS
 IS=ON /* IDENTICAL SUPPRESS ON
 TC=>> /* TRAILING CHARACTERS
 UC== /* UNDERLINE CHARACTER
 ZP=OFF /* ZERO PRINT OFF
 /***
 LIMIT 5
 READ EMPLOY-VIEW BY NAME
 DISPLAY NOTITLE NAME 3X CITY 3X POST-CODE 3X COUNTRY
 END-READ
 /***
 END

 NAME+++++++ CITY+++++++ POSTAL+++++ COUNTRY++++
 ADDRESS
 =========== =========== =========== ===========

 <<ABELLAN>> <<MADRID >> <<28014 >> <<E >>
 <<ACHIESO>> <<DERBY >> <<DE3 4TR>> <<UK >>
 <<ADAM >> <<JOIGNY >> <<89300 >> <<F >>
 <<ADKINSO>> <<BEDFORD>> <<1730 >> <<USA>>
 <<FRAMING>> <<1701 >>

Copyright © Software AG 2003392

FORMATExample

GET

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A yes no

Operand2 C S N no no

Operand3 C S N N P I B yes no

Operand4 S A A N P I F B D T L yes yes

Function
The GET statement is used to read a record with a given Adabas ISN (Internal Sequence Number).

For XML databases, the GET statement is used to read an XML object with a given object ID.

The GET statement does not cause a processing loop to be initiated.

Restrictions
The GET statement cannot be used for DL/I and SQL databases.

The GET statement cannot be used with Entire System Server.

view-name
The name of a view as defined either within a DEFINE DATA statement or in a separate global or local data
area. In reporting mode, view-name may also be the name of a DDM.

PASSWORD and CIPHER
These clauses are applicable only to Adabas and VSAM databases.

393Copyright © Software AG 2003

GETGET

The PASSWORD clause is used to provide a password when retrieving data from an Adabas file which is
password protected.

The CIPHER clause is used to provide a cipher key when retrieving data from an Adabas file which is
enciphered.

See the statements FIND and PASSW for further information.

*ISN / operand3
The ISN must be provided either in the form of a numeric constant or user-defined variable (operand3), or via
the Natural system variable *ISN.

Note for VSAM databases:
For VSAM ESDS, the RBA must be contained in a user-defined variable (numeric format) or must be specified
as an integer constant. The same rules apply to VSAM RRDS with the exception that the RRN must be provided
instead of the RBA.

Reference to Database Fields - operand4
Subsequent references to database fields that have been read with a GET statement must contain the label or line
number of the GET statement.

Operand4 is not valid in structured mode.

Copyright © Software AG 2003394

GET*ISN / operand3

Example

 /* EXAMPLE ’GETEX1’: GET
 /**
 DEFINE DATA LOCAL
 1 PERSONS VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 1 SALARY-INFO VIEW OF EMPLOYEES
 2 NAME
 2 CURR-CODE (1:1)
 2 SALARY (1:1)
 1 #ISN-ARRAY (B4/1:10)
 1 #LINE-NR (N2)
 END-DEFINE
 /**
 FORMAT PS=16
 LIMIT 10
 READ PERSONS BY NAME
 MOVE *COUNTER TO #LINE-NR
 MOVE *ISN TO #ISN-ARRAY (#LINE-NR)
 DISPLAY #LINE-NR PERSONNEL-ID NAME FIRST-NAME
 /**
 AT END OF PAGE
 INPUT / ’PLEASE SELECT LINE-NR FOR SALARY INFORMATION:’ #LINE-NR
 IF #LINE-NR = 1 THRU 10
 GET SALARY-INFO #ISN-ARRAY (#LINE-NR)
 WRITE / SALARY-INFO.NAME
 SALARY-INFO.SALARY (1)
 SALARY-INFO.CURR-CODE (1)
 END-IF
 END-ENDPAGE
 /**
 END-READ
 END

PAGE 1 03-05-29 14:53:1

 #LINE-NR PERSONNEL NAME FIRST-NAME
 ID
 -------- --------- -------------------- --------------------

 1 60008339 ABELLAN KEPA
 2 30000231 ACHIESON ROBERT
 3 50005800 ADAM EDWIN
 4 20005700 ADKINSON TIMMIE
 5 20008600 ADKINSON MARTHA
 6 20008800 ADKINSON JEFF
 7 20009800 ADKINSON PHYLLIS
 8 20011000 ADKINSON BOB
 9 20012700 ADKINSON HAZEL
 10 20013800 ADKINSON DAVID

 PLEASE SELECT LINE-NR FOR SALARY INFORMATION: 1

 ABELLAN 1450000 PTA

395Copyright © Software AG 2003

ExampleGET

GET SAME
Note:
This statement is only valid for Natural users who are using Adabas or VSAM. This statement cannot be used
with Entire System Server.

Structured Mode Syntax

Reporting Mode Syntax

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A A N P B no yes

Function
The GET SAME statement is used to re-read the record currently being processed. It is most frequently used to
obtain database array values (periodic groups or multiple-value fields) if the number and range of existing or
desired occurrences was not known when the record was initially read.

Statement Reference - r
The notation "(r)" is used to specify the statement which contains the FIND or READ statement used to initially
read the record. If "(r)" is not specified, the GET SAME statement will be related to the innermost active
processing loop. "(r)" may be specified as a reference statement number or as a statement label.

operand1
As operand1, you specify the field(s) to be made available as a result of the GET SAME statement.

Note:
Operand1 cannot be specified if the field is defined in a DEFINE DATA statement.

Copyright © Software AG 2003396

GET SAMEGET SAME

Restrictions
An UPDATE or DELETE statement must not reference a GET SAME statement. These statements should
instead make reference to the FIND, READ or GET statement used to read the record initially.

For VSAM databases, GET SAME can only be applied to ESDS and RRDS. For ESDS, the RBA must be
contained in a user-defined variable (numeric format) or be specified as an integer constant. The same applies to
RRDS, except that the RRN must be provided instead of the RBA.

Example

 /* EXAMPLE ’GSAEX1S’: GET SAME
 /**
 DEFINE DATA LOCAL
 1 I (P3)
 1 #NAME (A30)
 1 POST-ADDRESS VIEW OF EMPLOYEES
 2 FIRST-NAME
 2 NAME
 2 ADDRESS-LINE (I:I)
 2 C*ADDRESS-LINE
 2 POST-CODE
 2 CITY
 END-DEFINE
 /**
 FORMAT PS=20
 MOVE 1 TO I
 READ POST-ADDRESS BY NAME
 COMPRESS NAME FIRST-NAME INTO #NAME WITH DELIMITER ’,’
 WRITE // 12T #NAME
 WRITE / 12T ADDRESS-LINE (I.1)
 IF C*ADDRESS-LINE > 1
 FOR I = 2 TO C*ADDRESS-LINE
 GET SAME /* READ NEXT OCCURRENCE
 WRITE 12T ADDRESS-LINE (I.1)
 END-FOR
 END-IF
 WRITE / POST-CODE CITY
 SKIP 3
 END-READ
 END

397Copyright © Software AG 2003

RestrictionsGET SAME

PAGE 1 03-05-01 11:35:33

 ABELLAN,KEPA

 CASTELAN 23-C

 28014 MADRID

 ACHIESON,ROBERT

 144 ALLESTREE LANE
 DERBY
 DERBYSHIRE

 DE3 4TR DERBY

Copyright © Software AG 2003398

GET SAMEExample

GET TRANSACTION DATA
Note:
This statement is only valid for transactions applied to Adabas databases, or to DL/I databases in a
batch-oriented BMP region (in IMS environments only).

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A N P I F B D T yes yes

Related Statements: END TRANSACTION

Function
The GET TRANSACTION DATA statement is used to read the data saved with a previous END
TRANSACTION statement.

GET TRANSACTION DATA does not create a processing loop.

Note for DL/I:
The GET TRANSACTION DATA statement retrieves checkpoint data saved by an END TRANSACTION
statement.

System Variable *ETID
The content of the Natural system variable *ETID identifies the transaction data to be retrieved from the
database.

Field Specification operand1
The sequence, lengths and formats of the fields used in the GET TRANSACTION DATA statement must be
identical to the sequence, lengths and formats of the fields specified with the corresponding END
TRANSACTION statement.

Note for DL/I:
The first operand1 must be an 8-byte checkpoint ID.

No Transaction Data Stored
If the GET TRANSACTION DATA statement is issued and no transaction data are found, all fields specified in
the GET TRANSACTION DATA statement will be filled with blanks regardless of format definition. Make sure
that arithmetic operations are not performed on "empty" transaction data, because this would result in an
abnormal termination of the program.

399Copyright © Software AG 2003

GET TRANSACTION DATAGET TRANSACTION DATA

Example

 /* EXAMPLE ’GTREX1S’: GET TRANSACTION DATA (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 2 MIDDLE-I
 2 CITY
 1 #PERS-NR (A8) INIT <’ ’>
 END-DEFINE
 /***
 GET TRANSACTION DATA #PERS-NR
 IF #PERS-NR NE ’ ’
 WRITE ’LAST TRANSACTION PROCESSED FROM PREVIOUS SESSION’ #PERS-NR
 END-IF
 /***
 REPEAT
 /***
 INPUT 10X ’ENTER PERSONNEL NUMBER TO BE UPDATED:’ #PERS-NR
 IF #PERS-NR = ’ ’
 STOP
 END-IF
 /***
 FIND EMPLOY-VIEW WITH PERSONNEL-ID = #PERS-NR
 IF NO RECORDS FOUND
 REINPUT ’NO RECORD FOUND’
 END-NOREC
 INPUT (AD=M) PERSONNEL-ID (AD=O)
 / NAME
 / FIRST-NAME
 / CITY
 UPDATE
 END TRANSACTION #PERS-NR
 END-FIND
 /***
 END-REPEAT
 END

Copyright © Software AG 2003400

GET TRANSACTION DATAExample

HISTOGRAM

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S N P I yes no

Operand2 C S A yes no

Operand3 S A yes no

Operand4 S A N P I F B D T L no no

Related Statements: FIND | READ

Function
The HISTOGRAM statement is used to read the values of a database field which is defined as a descriptor,
subdescriptor, or a superdescriptor. The values are read directly from the Adabas inverted lists (or VSAM index).

The HISTOGRAM statement causes a processing loop to be initiated but does not provide access to any database
fields other than the field specified in the HISTOGRAM statement.

Note for SQL databases:
HISTOGRAM returns the number of rows which have the same value in a specific column.

Restrictions
This statement cannot be used with DL/I databases or Entire System Server.

When applied to a VSAM database, the HISTOGRAM statement is only valid for KSDS and ESDS.

401Copyright © Software AG 2003

HISTOGRAMHISTOGRAM

The statement cannot be used with XML databases.

Processing Loop Limit - operand1/ALL
You can limit the number of descriptor values to be processed with the HISTOGRAM statement by specifying
operand 1 - either as a numeric constant (0 to 99999999) or as a user-defined variable (containing an integer
value). ALL may optionally be specified to emphasize that all descriptor values are to be processed.

For this statement, the specified limit has priority over a limit set with a LIMIT statement.

If a smaller limit is set with the LT parameter, the LT limit applies.

Notes:
If you wish to process a 4-digit number of descriptor values, specify it with a leading zero: (0nnnn); because
Natural interprets every 4-digit number enclosed in parentheses as a line-number reference to a statement.
Operand1 is evaluated when the HISTOGRAM loop is entered. If the value of operand1 is modified within the
HISTOGRAM loop, this does not affect the number of values read.

MULTI-FETCH Clause
Note:
This clause can only be used for Adabas databases.

[MULTI-FETCH ON | OFF | OF value]

Note:
[MULTI-FETCH OF value] is not evaluated under Windows and UNIX. The default processing mode is applied.

In standard mode, Natural does not read multiple records with a single database call; it always operates in a
one-record-per-fetch mode. This kind of operation is solid and stable, but can take some time if a large number
of database records are being processed.

To improve the performance of those programs, Natural offers a new MULTI-FETCH clause, that allows one to
read more than several records per database access.

For more information, see the section Multi-Fetch Clause in the Natural Programming Guide.

view-name
As view-name, you specify the name of a view, which is defined either within a DEFINE DATA statement or in
a separate global or local data area.

The view must not contain any other fields apart from the field used in the HISTOGRAM statement (operand4).

If the field in the view is a periodic-group field or multiple-value field that is defined with an index range, only
the first occurrence of that range is filled by the HISTOGRAM statement; all other occurrences are not affected
by the execution of the HISTOGRAM statement.

In reporting mode, view-name may also be the name of a DDM.

Copyright © Software AG 2003402

HISTOGRAMProcessing Loop Limit - operand1/ALL

PASSWORD Clause
The PASSWORD clause is used to provide a password (operand2) when retrieving data from an Adabas file
which is password-protected. See the statements FIND and PASSW for further information.

403Copyright © Software AG 2003

PASSWORD ClauseHISTOGRAM

SEQUENCE Clause
This clause can only be used for Adabas, VSAM and SQL databases.

With this clause, you can determine whether the records are to be read in ascending sequence or in descending
sequence.

The default sequence is ascending (which may, but need not, be explicitly specified by using the keyword
ASCENDING).
If the records are to be read in descending sequence, you specify the keyword DESCENDING.
If, instead of determining it in advance, you want to have the option of determining at runtime whether the
records are to be read in ascending or descending sequence, you either specify the keyword VARIABLE or
DYNAMIC, followed by a variable (operand3). Operand3 has to be of format/length A1 and can contain the
value "A" (for "ascending") or "D" (for "descending").

If keyword VARIABLE is used, the reading direction (value of operand3) is evaluated at start of the
HISTOGRAM processing loop and remains same until the loop is terminated, regardless if the
operand3 field is altered in the HISTOGRAM loop or not.
If keyword DYNAMIC is used, the reading direction (value of operand3) is evaluated before every
record fetch in the HISTOGRAM processing loop and may be changed from record to record. This
allows to change the scroll sequence from ascending to descending (and vice versa) at any place in the
HISTOGRAM loop.

Note for Adabas databases:

In order to use the sequences DESCENDING and VARIABLE, your system requires the following Adabas
versions (or above): Version 3.1 on UNIX and Windows and Version 6.1 on mainframe computers.
In order to use the DYNAMIC sequence, your system requires Adabas V7 on mainframe computers and
Adabas 3.1.1 on Open Systems (or above).

Examples of SEQUENCE Clause:

See the programs HSTDSCND and HSTVSEQ in the library SYSEXRM.

Descriptor - operand4
As operand4, a descriptor, subdescriptor, superdescriptor or hyperdescriptor may be specified.

A descriptor contained within a periodic group may be specified with or without an index. If no index is
specified, the descriptor will be selected if the value specified is located in any occurrence. If an index is
specified, the descriptor will be selected only if the value is located in the occurrence specified by the index. The
index specified must be a constant. An index range must not be used.

For a descriptor which is a multiple-value field an index must not be specified; the descriptor will be selected if
the value is located in the record regardless of the position of the value.

Copyright © Software AG 2003404

HISTOGRAMSEQUENCE Clause

STARTING-ENDING-clause
Note:
In Diagram 3 you will find comparators that may be used as of Natural Version 4.1.1 for Mainframes, Natural
Version 6.1.1 for Windows and UNIX and above. If these comparators are used, the options ENDING AT,
THRU and TO may not be used. These comparators are also valid for the READ statement.

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand5 C S A N P I F B D T L yes no

Operand6 C S A N P I F B D T L yes no

Starting and ending values may be specified using the keywords STARTING and ENDING (or THRU) followed
by a constant or a user-defined variable representing the value with which processing is to begin/end.

If a starting value is specified and the value is not present, the next higher value is used as the starting value. If
no higher value is present, the HISTOGRAM loop will not be entered.

If an ending value is specified, values will be read up to and including the ending value.

Hexadecimal constants may be specified as a starting or ending value for descriptors of format A or B.

WHERE Clause

The WHERE clause may be used to specify an additional selection criterion (logical-condition) which is
evaluated after a value has been read and before any processing is performed on the value (including the AT
BREAK evaluation).

The descriptor specified in the WHERE clause must be the same descriptor referenced in the HISTOGRAM
statement. No other fields from the selected file are available for processing with a HISTOGRAM statement.

The syntax for a logical-condition is described in the section Logical Condition Criteria.

405Copyright © Software AG 2003

STARTING-ENDING-clauseHISTOGRAM

System Variables
The Natural system variables *ISN, *NUMBER, and *COUNTER are available with the HISTOGRAM
statement.

*NUMBER and *ISN are only set after the evaluation of the WHERE clause. They must not be used in the
logical condition of the WHERE clause.

*NUMBER

The system variable *NUMBER contains the number of database records that contain the last value read.

For SQL databases, see *NUMBER for SQL Databases in the Natural System Variables documentation.

*ISN

The system variable *ISN contains the number of the occurrence in which the descriptor value last read is
contained. *ISN will contain "0" if the descriptor is not contained within a periodic group.

*ISN is not available for SQL and VSAM databases.

*COUNTER

The system variable *COUNTER contains a count of the total number of values which have been read (after
evaluation of the WHERE clause).

Copyright © Software AG 2003406

HISTOGRAMSystem Variables

Example

 /* EXAMPLE ’HSTEX1S’: HISTOGRAM (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 END-DEFINE
 /**
 LIMIT 8
 HISTOGRAM EMPLOY-VIEW CITY STARTING FROM ’M’
 DISPLAY NOTITLE CITY
 ’NUMBER OF/PERSONS’ *NUMBER *COUNTER
 END-HISTOGRAM
 /**
 END

 CITY NUMBER OF CNT
 PERSONS
 -------------------- --------- ---------

 MADISON 3 1
 MADRID 41 2
 MAILLY LE CAMP 1 3
 MAMERS 1 4
 MANSFIELD 4 5
 MARSEILLE 2 6
 MATLOCK 1 7
 MELBOURNE 2 8

Equivalent reporting-mode example: See the program HSTEX1R in the library SYSEXRM.

407Copyright © Software AG 2003

ExampleHISTOGRAM

IF

Structured Mode Syntax

Reporting Mode Syntax

Related Statements: DECIDE FOR | DECIDE ON

Function
The IF statement is used to control execution of a statement or group of statements based on a logical condition.

Note:
If no action is to be performed if the condition is met, you must specify the statement IGNORE in the THEN
clause.

logical-condition
The logical condition which is used to determine whether the statement or statements specified with the IF
statement are to be executed.

Examples:

 IF #A = #B
 IF LEAVE-TAKEN GT 30
 IF #SALARY(1) * 1.15 GT 5000
 IF SALARY (4) = 5000 THRU 6000
 IF DEPT = ’A10’ OR = ’A20’ OR = ’A30’

Copyright © Software AG 2003408

IFIF

For further information, see the section Logical Condition Criteria in the Statement Usage Related Topics.

THEN
In the THEN clause, you specify the statement(s) to be executed if the logical condition is true.

ELSE
In the ELSE clause, you specify the statement(s) to be executed if the logical condition is not true.

409Copyright © Software AG 2003

THENIF

Example

 * EXAMPLE ’IFEX1S’: IF (STRUCTURED MODE)
 **
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 2 SALARY (1)
 2 BIRTH
 1 VEHIC-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 1 #BIRTH (D)
 END-DEFINE
 *
 MOVE EDITED ’19450101’ TO #BIRTH (EM=YYYYMMDD)
 SUSPEND IDENTICAL SUPPRESS
 LIMIT 20
 *
 FND. FIND EMPLOY-VIEW WITH CITY = ’FRANKFURT’
 SORTED BY NAME BIRTH
 IF SALARY (1) LT 40000
 WRITE NOTITLE ’*****’ NAME 30X ’SALARY LT 40000’
 ELSE
 IF BIRTH GT #BIRTH
 FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FND.)
 DISPLAY (IS=ON) NAME BIRTH (EM=YYYY-MM-DD)
 SALARY (1) MAKE (AL=8)
 END-FIND
 END-IF
 END-IF
 END-FIND
 END

Copyright © Software AG 2003410

IFExample

 NAME DATE ANNUAL MAKE
 OF SALARY
 BIRTH
 -------------------- ---------- ---------- --------

 BAECKER 1956-01-05 74400 BMW
 ***** BECKER SALARY LT 40000
 BLOEMER 1979-11-07 45200 FIAT
 FALTER 1954-05-23 70800 FORD
 ***** FALTER SALARY LT 40000
 ***** GROTHE SALARY LT 40000
 ***** HEILBROCK SALARY LT 40000
 ***** HESCHMANN SALARY LT 40000
 HUCH 1952-09-12 67200 MERCEDES
 ***** KICKSTEIN SALARY LT 40000
 ***** KLEENE SALARY LT 40000
 ***** KRAMER SALARY LT 40000

Equivalent reporting-mode example: See the program IFEX1R in the library SYSEXRM.

411Copyright © Software AG 2003

ExampleIF

IF SELECTION

Structured Mode Syntax

Reporting Mode Syntax

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A A L C yes no

Function
The IF SELECTION statement is used to verify that in a sequence of alphanumeric fields one and only one
contains a value.

The statements specified in the THEN clause will be executed if one of the following conditions is true:

None of the specified fields (operand1) contains a value.
More than one of the specified fields (operand1) contains a value.

This statement is generally used to verify that a terminal user has entered only one function in response to a map
displayed via an INPUT statement.

Note:
If no action is to be performed if one of the conditions is met, you specify the statement IGNORE in the THEN
clause.

Copyright © Software AG 2003412

IF SELECTIONIF SELECTION

Selection Field - operand1
As operand1 you specify the fields which are to be checked.

If you specify an attribute control variable (format C), it is considered to contain a value if its status has been
changed to "MODIFIED". To check if an attribute control variable has been assigned the status "MODIFIED",
use the MODIFIED Option.

Example

 /* EXAMPLE ’IFSEL’: IF SELECTION
 /***
 DEFINE DATA LOCAL
 1 #A (A1)
 1 #B (A1)
 END-DEFINE
 /***
 INPUT ’SELECT FUNCTION:’ //
 10X ’READ EMPLOYEES FILE:’ #A
 10X ’READ VEHICLES FILE: ’ #B
 /***
 IF SELECTION NOT UNIQUE #A #B
 REINPUT ’PLEASE ENTER ONE FUNCTION ONLY:’
 END-IF
 /***
 IF #A NE ’ ’
 FETCH ’READEMPL’
 END-IF
 IF #B NE ’ ’
 FETCH ’READVEHC’
 END-IF
 /***
 END

SELECT FUNCTION:

 READ EMPLOYEES FILE: x READ VEHICLES FILE: x

PLEASE ENTER ONE FUNCTION ONLY:
SELECT FUNCTION:

 READ EMPLOYEES FILE: x READ VEHICLES FILE: x

413Copyright © Software AG 2003

Selection Field - operand1IF SELECTION

IGNORE

Function
The IGNORE statement is an "empty" statement which itself does not perform any function.

During the development phase of an application, you can insert IGNORE temporarily within statement blocks in
which one or more statements are required, but which you intend to code later (for example, within AT BREAK
or AT START/END OF DATA). This allows you to continue programming in another part of the application
without the as yet incomplete statement block leading to an error.

The IGNORE statement must also be used in condition statements like IF or DECIDE FOR, if no function is to
be performed in the case of a condition being met.

Example

 ...
 ...
 AT TOP OF PAGE
 IGNORE /* top-of-page processing still to be coded
 END-TOPPAGE
 ...
 ...

Copyright © Software AG 2003414

IGNOREIGNORE

INCLUDE

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C A no no

Function
The INCLUDE statement is used to include source lines from an external object of type copycode into another
object at compilation.

The INCLUDE statement is evaluated at compilation time. The source lines of the copycode will not be
physically included in the source of the program that contains the INCLUDE statement, but they will be included
during the program compilation and thus in the resulting object module.

A source code line which contains an INCLUDE statement must not contain any other statement.

copycode-name
As copycode-name you specify the name of the copycode whose source is to be included.
The copycode-name may contain an ampersand (&); at compile time, this character will be replaced by the
current value of the Natural system variable *LANGUAGE. This feature allows the use of multilingual
copycode-names.

The object you specify must be of the type copycode. The copycode must be contained either in the same library
as the program which contains the INCLUDE statement or in the respective steplib (the default steplib is
SYSTEM).

When the source of a copycode is modified, all programs using that copycode must be compiled again to reflect
the changed source in their object codes.

The source code of the copycode must consist of syntactically complete statements.

operand1
You can dynamically insert values in the copycode which is included. These values are specified with operand1.

In the copycode, the values are referenced with the notation & n& ; that is, you mark the position where a value is
to be inserted with &n&. n is the sequential number of each value passed with the INCLUDE statement. For
example, &3& would refer to the third value specified with the statement.

415Copyright © Software AG 2003

INCLUDEINCLUDE

For every &n& notation in the copycode you must specify a value in the INCLUDE statement. For example, if
the copycode contains &5&, operand1 must be specified at least five times.

You may write one copy code parameter (&n&) after another without blanks (i.e &1&&2&&3&). This method
is used to concatenate multiple copy code parameters to a source.

A string may follow one or several copy code parameters without a blank (i.e. &1&abc or &1&&2&abc). This
method is used to concatenate a string to multiple copy code parameters.

Note:
Because &n& is a valid part of an identifier, this notation may not be used as a copy code parameter substitution
in other positions described above (i.e. abc&1& or &1&abc&2&). In other words, a string may only come after
copy code parameters, not before or between.

Values that are specified in the INCLUDE statement but not referenced in the copycode will be ignored.

Example 1

 /* EXAMPLE ’INCEX1:’ INCLUDE
 /******************************
 /* ...
 /* ...
 /* ...
 /******************************
 INCLUDE MEM1
 /******************************
 /* ...
 /* ...
 /* ...
 END

Example 2
Copycode to be included:

 /* EXAMPLE ’COPEX1’: COPYCODE USING PARAMETERS
 READ (&4&) &1& BY &2& = &3&
 DISPLAY &2&
 IF &2& = &5& DO
 WRITE 5X ’LAST RECORD FOUND’
 STOP
 DOEND
 LOOP

Program containing INCLUDE statement:

 /* EXAMPLE ’COPEX2’: PROGRAM USING COPYCODE WITH PARAMETERS
 *
 INCLUDE COPEX1 ’EMPLOYEES’ ’NAME’ ’’’ALDEN’’’ ’20’ ’’’ALLEN’’’
 END

Copyright © Software AG 2003416

INCLUDEExample 1

Page 1 03-01-30 14:01:26

 LAST-NAME

 ALDEN
 ALEXANDER
 ALEXANDER
 ALEXANDER
 ALEXANDER
 ALEXANDER
 ALEXANDER
 ALEXANDER
 ALEXANDER
 ALEXANDER
 ALLDERIDGE
 ALLDERIDGE
 ALLDERIDGE
 ALLEN
 LAST RECORD FOUND

Example 3
Copycode 1 to be included:

 /* EXAMPLE ’Object ASSIGN’:
 &1& := &2&

Copycode 2 to be included:

 /* EXAMPLE ’Object ASET’:
 INCLUDE ASSIGN &1& := &2&

Program containing INCLUDE statement:

 /* EXAMPLE: PROGRAM USING COPYCODE WITH PARAMETERS
 *
 reset #a(i4)
 move 123 to #a
 write ’=’ #a
 include ASSIGN ’#a’ ’5’
 write ’=’ #a
 move 123 to #a
 write ’=’ #a
 include ASET ’’’#a’’’ ’’’5’’’
 write ’=’ #a
 end

417Copyright © Software AG 2003

Example 3INCLUDE

Page 1 03-01-30 14:01:26

 #A: 123
 #A: 5
 #A: 123
 #A: 5

Example 4

DEFINE DATA LOCAL
1 #G
 2 ABC(A10)
END-DEFINE

INCLUDE MYCOPY1 ’#G.’ ’ABC’ ’AB’
END

MYCOPY1:

WRITE &1&ABC /* is replaced by #G.ABC
 &1&&2& /* is replaced by #G.ABC
 &1&&3&C /* is replaced by #G.ABC

Copyright © Software AG 2003418

INCLUDEExample 4

INPUT
Syntax 1 - Dynamic Screen Layout Specification
Syntax 2 - Using Predefined Map Layout

Related Statement: REINPUT

See also Screen Design / Windows in the Natural Programming Guide.

Function
The INPUT statement is used in interactive mode to create a formatted screen or map for data entry.
It may also be used in conjunction with the Natural stack (see the STACK statement); and on mainframe
computers, it may also be used to provide user data for programs being executed in batch mode.

Input Modes
The INPUT statement may be used in screen, forms, or keyword/delimiter mode. Screen mode is generally used
with video terminals/screens. Forms mode may be used with TTY terminals. Delimiter mode is used with TTY
terminals, and also in batch mode (on mainframe computers). The default mode is screen mode.

You can change the input mode with the session parameter IM or the terminal commands %F and %D.

Screen Mode

In screen mode, execution of the INPUT statement results in the display of a screen according to the fields and
positioning notation specified. The message line of the screen is used by Natural for error messages. The position
of the message line (top or bottom of screen) may be controlled by the terminal command %M. The terminal
user may position to specific fields using the various tabulation keys.

As Natural allows for screen window processing, the layout of the logical screen map may be larger
(theoretically 250 characters per line and 250 lines, but limited by the internal screen buffer) than the physical
screen size.

The windowing terminal command %W may be used to modify logical and physical window position and size
(see the terminal command %W for details of window handling).

For input fields (AD=A or AD=M) that are not fully displayed on the physical screen, the following rules apply:

Input fields whose beginning is not inside the window are always made protected.
Input fields which begin inside and end outside the window are only made protected if the values they
contain cannot be displayed completely in the window. Please note that in this case it is decisive whether
the value length, not the field length, exceeds the window size. Filler characters (as specified with the
profile parameter FC or session parameter AD) do not count as part of the value.
Before an input field thus protected can be accessed and processed, the window size must be adjusted so as
to fully display the field or value respectively (see the terminal command %W).

Non-Screen Modes

The INPUT statement may be used for an operation on line-oriented devices or for the processing of batch input
from sequential files.

419Copyright © Software AG 2003

INPUTINPUT

The same map layouts as defined for screen mode operation can also be processed in non-screen mode.

Forms mode and keyword/delimiter mode are also available to process the input either by simulating the screen
layout in line mode or by just processing the data without any map layout.

See also:
Using the INPUT Statement in Non-Screen Modes | Using the INPUT Statement in Batch Mode on Mainframe
Computers | Processing Data from the Natural Stack

Entering Data in Response to an INPUT Statement
Data for an alphanumeric field must be entered left-justified. Any character, including a blank, is meaningful.
The data are assigned one character per byte to the internal field. Data entered for an alphanumeric field are not
validated.

Lower and upper case translation are controlled by the terminal commands %L and %U as well as the attributes
AD=T and AD=W.

Data for a numeric field may be placed anywhere in the input field. Leading and/or trailing blanks, leading zeros,
a leading sign and one decimal point are permitted. Natural adjusts the value according to the internal definition
of the field. If SG=OFF is specified, Natural does not assume or allocate a position for a sign position. Data for a
field defined with format P must be entered in decimal form. Natural will convert decimal to packed wherever
necessary. A field containing all blanks is interpreted as a zero value. Data for a numeric field are validated by
Natural to ensure that the value consists only of leading and/or trailing blanks, an optional leading sign, an
optional decimal point, and numeric characters. If no decimal point is entered, it is assumed to be to the right of
the value entered.

Data for a binary field must be entered for all positions (two characters per byte). Only valid hexadecimal
characters (0 - 9, A - F) may be used. A blank (H’20’ in ASCII or H’40’ in EBCDIC respectively) is valid and is
converted to binary zeros. Data for a binary field are validated by Natural for hexadecimal characters.

Data for format L fields may be entered as blank ("false") or non-blank ("true").

Data for format F, D, and T are entered according to the rules stated for F, D, and T constants.

Numeric Edit Mask Free Mode

Within a field element, you may format the representation of the field content with an edit mask. The edit mask
is used for two purposes:

to build the layout for displaying the field on the screen;
when a string has been modified and ENTER has been pressed, to extract the field data from the string
entered.

The advantage of improving the format of the field data displayed with additional insert characters may actually
be a disadvantage, because a new data value entered has to perfectly match the format of the edit mask.

Example:

SET GLOBALS ID=; DC=,
RESET N (N7,3)
INPUT N (AD=M EM=Z’.’ZZZ’.’ZZZ,999EUR)
END

Copyright © Software AG 2003420

INPUTEntering Data in Response to an INPUT Statement

Output
value

is displayed
as:

 Input
value

must be entered
as:

leads to Input error NAT1145 if
entered as:

0 ,000EUR 1 1,000EUR 1
1EUR
01,000EUR

1234 1.234,000EUR 1234567 1.234.567,000EUR 1234567
1.234.567
1.234.567EUR

0,123 ,123EUR 1,234 1,234EUR 1,234

Another option for entering numeric fields with the edit mask is to use an alternative INPUT mode, which is
called the edit mask free mode. When activated (either at session Startup with the profile parameter EMFM or in
a running Natural session via the terminal command %FM+), all or some of the edit mask insert characters may
be left out from input.

However, when a contiguous string of insertion characters appears in the edit mask (like "EUR" in the example
below), you may only supply or leave out the string completely. The number of optional or mandatory digits
(edit-mask character "Z" and "9") to be supplied is not affected.

Example with Edit Mask Free Mode activated:

SET GLOBALS ID=; DC=,
SET CONTROL ’FM+’ /* activate numeric Edit Mask Free Mode
RESET N (N7,3)
INPUT N (AD=M EM=Z’.’ZZZ’.’ZZZ,999EUR)
END

Input value can be entered as:leads to error NAT1145 if entered as:

1 1
1,0
001
1,00EUR
0.001
1,EUR

1EUR

1234567 1234567
1.234.567
1234.567
1234567,0
1.234.567,0
1.234.567,EUR
1.234.567,0EUR
1.234.567,000EUR

1.234.567EUR
1.234.567,000EUR

1,234 1,234
1,234EUR
001,234
0.001,234EUR
00001,234EUR

1,234EU

421Copyright © Software AG 2003

Numeric Edit Mask Free ModeINPUT

Note:
The edit mask free mode applies only for INPUT, but is ignored in a MOVE EDITED statement.

SB - Selection Box
Selection boxes in an INPUT statement are available on mainframe computers only. For other platforms,
selection boxes may be defined in the map editor only.

Selection boxes can be attached to input fields. They are a comfortable alternative to help routines attached to
fields, since you can code a selection box direct in your program. You do not need an extra program as with help
routines.

For more information, see SB in the Session Parameters documentation.

Error Correction
If the value entered in an input field does not correspond to the format or edit mask of the field, Natural displays
an error message (without terminating the program execution) and positions the cursor in the field in error. The
user may then enter a valid value, whereupon processing continues.

Split-Screen Feature
In general, each INPUT statement generates a new page (or terminal screen) of output. Any INPUT statement
which is specified within an AT END OF PAGE statement will not produce a new screen. This feature allows for
the creation of a split screen where the upper portion of the screen may be used to display multiple lines and the
lower portion can be used to create an input map for communication. The PS parameter (page size) should be
used, either in a SET GLOBALS or FORMAT statement, to set the logical page size to ensure that the input map
is built on the same physical screen.

The first INPUT line will be placed after the last displayed line. If the NO ERASE option is used, the first
INPUT line will be placed at the top of the page.

Syntax 1 - Dynamic Screen Layout Specification

Copyright © Software AG 2003422

INPUTSB - Selection Box

Operand
Possible

Structure
Possible Formats

Referencing
Permitted

Dynamic
Definition

Operand1 S A G N A N P I F B D T L G yes yes

This form of the INPUT statement is used to create a layout of an INPUT screen, or to create an INPUT data
layout which is to be read (on mainframe computers) in batch mode from a sequential input file.

INPUT WINDOW=’window-name’

With the option WINDOW=’window-name’, you indicate that the INPUT statement is to be executed for the
specified window. The specified window must be defined in a DEFINE WINDOW statement. The specified
window is only active for the duration of that INPUT statement, and is automatically deactivated when the
INPUT statement has been executed.

See also the statements DEFINE WINDOW and SET WINDOW.

NO ERASE

NO ERASE causes a screen map of an INPUT statement to be overlaid onto an existing screen without erasing
the screen contents.

Screen as used here refers to a logical screen rather than a physical screen.

All unprotected fields that existed on the screen are converted to protected (display only) fields. The old data
remain on the screen until the new layout is displayed. If a field from the new screen content partially overlays
an existing field, the one character before the new field and the next character in the existing field will be
replaced by a blank.

statement-parameters

One or more parameters, enclosed within parentheses, may be specified immediately after the INPUT statement
or an element being displayed.

Each parameter specified in this manner will override any previous parameter specified in a GLOBALS
command, SET GLOBALS or FORMAT statement. If more than one parameter is specified, one or more blanks
must be present between each entry. An entry may not be split between two statement lines.

The parameter settings applied here will only be regarded for variable fields, but they have no effect on
text-constants. If you would like to set field attributes for a text-constant, they have to be set explicitly for this
element.

423Copyright © Software AG 2003

INPUT WINDOW=’window-name’INPUT

Parameters that can be specified with the INPUT statementSpecification
S = at statement level
E = at element level

AD Attribute Definition SE

AL Alphanumeric Length for Output SE

BX Box Definition SE

CD Color Definition SE

CV Control Variable SE

DF Date Format SE

DY Dynamic Attributes SE

EM Edit Mask SE

FL Floating Point Mantissa Length SE

HE Helproutine SE

IP Input Prompting Text SE

LS Line Size S

MC Multiple-Value Field Count S

MS Manual Skip S

NL Numeric Length for Output SE

PC Periodic Group Count S

PM Print Mode SE

PS Page Size S

SB Selection Box E

SG Sign Position SE

ZP Zero Printing SE

The individual parameters are described in the section Session Parameters of the Natural Parameter Reference
documentation.

Example:

DEFINE DATA LOCAL
1 VARI (A4) INIT <’1234’> /* Displays
END-DEFINE /* as
FORMAT AD=M /* ---------
INPUT ’Text’ VARI /* Text 1234
INPUT (PM=I) ’Text’ VARI /* Text 4321
INPUT ’Text’ (PM=I) VARI (PM=I) /* txeT 4321
INPUT ’Text’ (PM=I) VARI /* txeT 1234
END

Examples of using parameters at the statement and element level are provided below.

Copyright © Software AG 2003424

INPUTstatement-parameters

WITH TEXT-option

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S N P I B yes yes

Operand2 C S A yes yes

Operand3 C S A N P I F B D T L yes yes

WITH TEXT is used to provide text which is to be displayed in the message line. This is usually a message
indicating what action should be taken to process the screen or to correct an error.

Message Text from Natural Message File - *operand1

Operand1 represents the number of a message text that is to be retrieved from a Natural message file.

You can retrieve either user-defined messages or Natural system messages. If you specify a positive value (for
example: 0954), you will retrieve user-defined messages. If you specify a negative value (for example: -0954),
you will retrieve Natural system messages.

Natural message files are created and maintained with the SYSERR utility as described in the relevant
documentation.

Message Text - operand2 and Attributes - attributes

Operand2 represents the message to be placed in the message line.

Attributes may be used to assign display and color attributes for operand1/2. The following attributes may be
used:

425Copyright © Software AG 2003

WITH TEXT-optionINPUT

1. Display attributes (see the session parameter AD in the Natural Parameter Reference documentation).
2. Color attributes (see the session parameter CD in the Natural Parameter Reference documentation).

Copyright © Software AG 2003426

INPUTWITH TEXT-option

Dynamic Replacement of Message Text - operand3

Operand3 represents a numeric or text constant or the name of a variable.

The values provided are used to replace parts of the message text.

The notation ":n:" is used within the message text as a reference to operand3 contents, where "n" represents the
operand3 occurrence (1 - 7).

Example:

 ...
 MOVE ’MESSAGE-1’ TO #FIELD
 ...
 INPUT WITH TEXT ’THE ERROR IS :1: ’,#FIELD ...
 ...

This would cause the following message to be output:

THE ERROR IS MESSAGE-1

Note:
Multiple specifications of operand3 must be separated from each other by a comma. If the comma is used as a
decimal character (as defined with the session parameter DC) and numeric constants are specified as operand3,
put blanks before and after the comma so that it cannot be misinterpreted as a decimal character.
Alternatively, multiple specifications of operand3 can be separated by the input delimiter character (as defined
with the session parameter ID); however, this is not possible in the case of ID=/ (slash), because the slash has a
different meaning in the INPUT statement syntax.

Insignificant zeros or blanks will be removed from the field value before it is displayed in a message.

MARK-option

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand4 C S N P I yes yes

Operand1 C S A N P I yes yes

Field to be Marked - operand1

Each AD=A or AD=M (that is, non-protected field) specified in an INPUT statement is assigned a field reference
number, beginning with 1. The MARK option positions the cursor to the field number specified. The *fieldname
notation may be used to position to a field using the name of the field as a reference.

427Copyright © Software AG 2003

MARK-optionINPUT

MARK POSITION

With MARK POSITION, you can have the cursor placed at a specific position - as specified with operand4 -
within a field. Operand4 must not contain decimal digits.

Examples:

 MARK 3
 MARK #A
 MARK *#
 MARK POSITION 3 IN #A

ALARM-option

This option causes the sound alarm feature of the terminal to be activated when the INPUT statement is
executed. The appropriate hardware must be available to be able to use this feature.

Default Prompting Text

Unless the session parameter IP (input prompting) is set to IP=OFF, the field name of the field used in an INPUT
statement will be displayed preceding the field value (forms mode) or as a prompting keyword to select the field
(keyword/delimiter mode). This default field name may be overridden by specifying either a ’text’ element
(which replaces the default name) or ’-’ (which suppresses the display of the default field name) immediately
preceding the field name.

Field Positioning, Text Specification, Attribute Assignment

 Several notations are available for field positioning, attribute assignment, and text creation.

nX

Causes n spaces to be inserted between fields.

Note: (for Mainframes only)
This notation inserts n spaces between columns. n must not be "0".

Copyright © Software AG 2003428

INPUTALARM-option

nT

Causes positioning (tabulation) to print position n.

x/y

Places the next element on line x, beginning in column y. y must not be "0". Backward positioning in the same
line is not permitted.

’ text’

Causes text to be displayed write protected.

’c’ (n)

Identical to ’text’, except that the character c is displayed n times. n must be 1 - 132.

attributes

Indicates the attributes to be used for display. The following attributes may be used:

1. Display attributes (see the session parameter AD in the Natural Parameter Reference documentation).
2. Color attributes (see the session parameter CD in the Natural Parameter Reference documentation).
3. Outlining attributes (see the session parameter BX in the Natural Parameter Reference documentation).
4. Print mode attributes (see the session parameter PM in the Natural Parameter Reference documentation).

Minus Sign ’-’

When placed before a field, ’-’ suppresses the generation of a field name as prompting text.

Note:
Any text string before a field will replace the field name as prompting text.

Equal Sign ’=’

When placed before a field, ’=’ results in the display of the field heading followed by the field contents.

Slash Sign ’/’

When placed between fields or text elements, "/" causes positioning to the beginning of the next print line.

The contents of fields may be specified for input, output only, and output for modification using the attribute
settings AD=A, AD=O, and AD=M respectively. The default is AD=A. All fields specified with AD=A (input
only) or AD=M (output for modification) will create unprotected fields on the screen. A value for such a field

429Copyright © Software AG 2003

Field Positioning, Text Specification, Attribute AssignmentINPUT

may be entered by the user.
For TTY devices, output for modification fields will occupy twice the size of the field (one for output, one for
input) so that a new value may be entered. An input field (AD=A/M) specified as non-displayable will always
start on a new line on a TTY device.

Example:

INPUT #A (AD=A) #B (AD=O) #C (AD=M)

#A is an input field which is unprotected, i.e., a value is to be entered for the field.

#B is a field which is to be displayed write-protected, i.e., no value may be entered for the field.

#C is a field whose current value is to be displayed, and the value may be modified by entering a new value for
the field.

*IN, *OUT and *OUTIN

Equivalent to the attributes AD=A, AD=O, AD=M respectively.

Field Specification - operand1

Operand1 represents the field to be used. Database fields or user-defined variables may be specified.

Natural directly maps the content of each field from the data area to the INPUT statement, no move operation is
necessary.

When the content of a database field is modified as a result of INPUT processing, only the value as contained in
the data area is modified. Appropriate database UPDATE/STORE statements must be used to change the content
of the database.

When the name of a group of database fields is referenced in an INPUT statement, all fields belonging to that
group will be individually used as input fields.

When reference is made to a range of occurrences within an array, all occurrences are individually processed as
input fields, but no prompting text will be created for each individual occurrence, only for the first one.

parameters

One or more parameters, enclosed within parentheses, may be specified immediately after operand1 (see table
and example below).

Each parameter specified will override any previous parameter specified in a GLOBALS command, SET
GLOBALS or FORMAT statement. If more than one parameter is specified, they must be separated by one or
more blanks from one another. Each parameter specification must not be split between two statement lines.

The parameter settings applied here will only be regarded for variable fields, but they have no effect on
text-constants. If you would like to set field attributes for a text-constant, they have to be set explicitly for this
element.

For information on the individual parameters, see the table in the section statement-parameters.

Note:
The session parameter EM will be referenced dynamically in the DDM if an edit mask is defined for a database
field. Edit masks may be specified for output and input fields. When an edit mask is defined for an input field,
the data for the field must be entered according to the edit mask specification.

Copyright © Software AG 2003430

INPUT*IN, *OUT and *OUTIN

Example 1 - Syntax 1

 /* EXAMPLE ’IPTEX1’: INPUT
 /**
 DEFINE DATA LOCAL
 1 #PNUM (A8)
 1 #FNC (A1)
 END-DEFINE
 /**
 INPUT 10X ’SELECTION MENU FOR EMPLOYEES SYSTEM’ /
 10X ’-’ (54) //
 10X ’ADD ’ ’(A)’ /
 10X ’PURGE’ ’(P)’ /
 10X ’UPDATE’ ’(U)’ /
 10X ’TERMINATE’ ’(A)’ ///
 10X ’PLEASE ENTER FUNCTION: ’ #FNC
 /**
 DECIDE ON EVERY VALUE OF #FNC
 VALUE ’A’
 WRITE ’Add function selected’
 /* invoke the object containing the Add function here
 VALUE ’P’
 WRITE ’Purge function selected’
 /* invoke the object containing the Purge function here
 VALUE ’U’
 WRITE ’Update function selected’
 /* invoke the object containing the Update function here
 VALUE ’.’
 STOP
 NONE
 REINPUT ’PLEASE ENTER A VALID FUNCTION’ MARK *#FNC
 END-DECIDE
 /**
 END

 SELECTION MENU FOR EMPLOYEES SYSTEM
 --

 ADD (A)
 PURGE (P)
 UPDATE (U)
 TERMINATE (.)

 PLEASE ENTER FUNCTION:

Example 2 - Syntax 1

431Copyright © Software AG 2003

Example 1 - Syntax 1INPUT

 /* EXAMPLE ’INPEX1’: INPUT WINDOW
 *
 DEFINE WINDOW WIND1
 SIZE 10 * 40
 BASE 5 / 10
 FRAMED ON POSITION TEXT
 *
 INPUT WINDOW=’WIND1’ ’PLEASE ENTER HERE:’
 / #STRING(A15)
 *
 END

> r > + Program INPEX1 Lib SYSEXRM
 All +....1....+....2....+....3....+....4....+....5....+....6....+....7..
 0010 /* EXAMPLE ’INPEX1’: INPUT WINDOW
 0020 *
 0030 D +----------------------------------Top+
 0040 ! PLEASE ENTER HERE: !
 0050 ! #STRING !
 0060 ! !
 0070 * ! !
 0080 I ! !
 0090 ! !
 0100 * ! !
 0110 E ! !
 0120 +-------------------------------Bottom+
 0130
 0140
 0150
 0160
 0170
 0180
 0190
 0200
 +....1....+....2....+....3....+....4....+....5....+... S 11 L 1

Example 3 - Syntax 1

 /* EXAMPLE ’INPEX2’: INPUT WINDOW
 *
 ASSIGN #START (A30) = ’EXAM_’
 *
 INPUT (AD=M) MARK POSITION 5 IN *#START
 / ’PLEASE COMPLETE START VALUE FOR SEARCH’
 / 5X #START
 END

PLEASE COMPLETE START VALUE FOR SEARCH
 #START EXAM[]

Copyright © Software AG 2003432

INPUTExample 3 - Syntax 1

Syntax 2 - Using Predefined Map Layout

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Map-name C S A yes yes

Operand1 C S A A N P I F B D T L C yes yes

This form of the INPUT statement is used to perform input processing using a map layout that has been created
using the Natural map editor.

Map layouts can be used in two ways:

the program does not provide a parameter list;
the program does provide a parameter list (operand1).

INPUT USING MAP Without Parameter List

In this case the map-name must be specified as an alphanumeric constant (up to 8 characters).

The map used in this manner must have been created prior to the compilation of the program which references
the map.

The names of the fields to be processed are taken dynamically from the map source definition at compilation
time. The field names used in both program and map must be identical.

All fields to be referenced in the INPUT statement must be accessible at that point.

In structured mode, fields must have been previously defined (database fields must be properly referenced to
processing loops or views). In reporting mode, user-defined variables may be newly defined in the map.

When the map layout is changed, the programs using the map need not be recataloged. However, when array
structures or names, formats/lengths of fields are changed, or fields are added/deleted in the map, the programs
using the map must be recataloged.

The map source must be available at program compilation; otherwise the INPUT USING MAP statement cannot
be compiled. If you wish to compile the program even if the map is not yet available, specify NO
PARAMETER: the INPUT USING MAP can then be compiled even if the map is not yet available.

433Copyright © Software AG 2003

Syntax 2 - Using Predefined Map LayoutINPUT

INPUT Fields Defined in the Program

By specifying the names of the fields to be processed within the program (operand1), it is possible to have the
names of the fields in the program differ from the names of the fields in the map.

The sequence of fields in the program must match the map sequence. Please note that the map editor sorts the
fields as specified in the map in alphabetical order by field name. For more information, see the map editor
description in your Natural Editors documentation.

The program editor line command ".I(mapname)" can be used to obtain a complete INPUT USING MAP
statement with a parameter list derived from the fields defined in the specified map.

When the layout of the map is changed, the program using the map need not be recataloged. However, when
field names, field formats/lengths, or array structures in the map are changed or fields are added or deleted in the
map, the program must be recataloged.

A check is made at execution time to ensure that the format and length of the fields as specified in the program
match the fields as specified in the map. If both layouts do not agree, an error message is produced.

INPUT WINDOW=’window-name’

This option is described under Syntax 1 of the INPUT statement.

WITH TEXT/MARK/ALARM-options

These options are described under Syntax 1 of the INPUT statement.

USING MAP

USING MAP invokes a map definition which has been previously stored in a Natural system file using the map
editor.

The map-name may be a 1- to 8-character alphanumeric constant or user-defined variable. If a variable is used, it
must have been previously defined. The map name may contain an ampersand (&); at execution time, this
character will be replaced by the current value of the Natural system variable *LANGUAGE. This feature allows
the use of multi-lingual maps.

The execution of the INPUT statement causes the corresponding map to replace the current contents of the
screen, unless the NO ERASE option is specified, in which case the map will overlay the current contents of the
screen.

NO ERASE

This option is described under Syntax 1 of the INPUT statement.

Field Specification - operand1

A list of database fields and/or user-defined variables, all of which must have been previously defined. The fields
must agree in number, sequence, format and length with the fields in the referenced map; otherwise, an error
occurs.

When the content of a database field is modified as a result of INPUT processing, only the value as contained in
the data area is modified. Appropriate database UPDATE/STORE statements must be used to change the content
of the database.

Copyright © Software AG 2003434

INPUTINPUT Fields Defined in the Program

Using the INPUT Statement in Non-Screen Modes

Forms Mode

The terminal command %F causes forms mode to be in effect.

In forms mode, Natural will display all output text of the map layout on the terminal field by field according to
the positioning parameters. This permits the user to enter data on a field by field basis. When all data are entered,
the hardcopy output is produced exactly as it would have appeared on the screen.

In forms mode, entering %R permits the operator to retype the entire form in case of an error. The input is
processed as in the first execution of the INPUT statement.

Keyword/Delimiter Mode

The terminal command %D causes keyword/delimiter mode to be in effect.

Data can be entered using keywords or positional input values.

Using keyword input, the terminal operator may enter data for the individual fields using the prompting text that,
in forms mode, would have been displayed before the value as a keyword to identify the field. The keyword must
be followed by the input assign character (IA parameter), followed immediately by the data. Any spaces
following the assign character are taken as data up to the delimiter character (ID parameter). A delimiter
character is not required after the last data element. Keyword data for the different fields may be entered in any
order separated by the delimiter character. If the operator types in a keyword which is not defined in the INPUT
statement, an error message will be returned. Data need not be entered for all input fields. Fields for which no
data are entered are set to blank for alphanumeric fields and zero for numeric and hexadecimal fields.

Using positional value input, the terminal operator enters only data for all input fields separated by the currently
defined input delimiter character (ID parameter). The sequence of fields for input must correspond to the
sequence of the fields in the INPUT statement.

The user may switch from positional to keyword input by entering a number of values in positional input
separated by the delimiter character and then switching to keyword mode for selected fields by specifying
keywords in front of the values.

After a keyword has been used to position to a field, any non-keyword input following the keyword will be
processed as positional input to be assigned to fields following the previously selected field in the INPUT
statement.

Note:
A keyword and the corresponding input field must be on the same logical line. If their aggregate length exceeds
the line size, adjust the line size (LS parameter) accordingly so that keyword and field fit onto one line.

Data entered in keyword/delimiter mode are validated as for screen mode. An error message will be returned if
an attempt is made to enter more characters than defined for a field.

If the INPUT statement is to be processed in keyword/delimiter mode on a buffered (3270-type) terminal or a
workstation, all data to be assigned to one INPUT statement must be entered on one screen. ENTER is only to be
used when all data to the INPUT statement have been entered.

Processing Data from the Natural Stack

Data elements that have been placed in the Natural stack via a FETCH, RUN or STACK statement will be
processed by the next INPUT statement encountered for execution.

435Copyright © Software AG 2003

Using the INPUT Statement in Non-Screen ModesINPUT

The INPUT statement will process the data in keyword/delimiter mode as described above.

If data elements are not available to fill all input fields, fields will be filled with blank/zero depending on the
field format. If more data elements are specified than input fields exist, the remaining data are ignored.

When a field is filled with data from the stack, the field attributes do not apply to the data.

The Natural system variable *DATA may be referenced to determine the number of data elements currently
available in the Natural stack.

Using the INPUT Statement in Batch Mode on Mainframe Computers

Forms Mode

In batch forms mode, the INPUT map is displayed. A data record is read for each line containing one or more
AD=A and/or AD=M fields, and the data contained in the record are assigned to the appropriate field (or fields).

Input data fields are assumed to be contiguous. Unless the delimiter character is used, input data must be entered
in the exact length according to the internal definition of the field. For numeric fields, space must be allowed for
a sign (if SG=ON) and decimal point when appropriate.

Data may optionally be entered using the delimiter character to separate the values of the individual fields. In
this case, data need not be entered in the exact number of positions according to the internal definition but are
processed from left to right beginning in position 1. The rules for data entry are the same as described under
Entering Data in Response to an INPUT Statement. In addition, the assign character may be used to specify that
the contents of an *OUTIN field are not to be reset.

Keyword/Delimiter Mode

Keyword/delimiter mode, when used in batch mode, functions the same as keyword/delimiter mode in TP mode
with the following exceptions:

The entire input map may be printed under the control of the terminal command %Q.
*OUTIN fields retain their original values unless explicitly changed.

Use of Terminal Commands in Batch Mode

The following Natural terminal commands may be used when using the INPUT statement in batch mode on a
mainframe computer:

Copyright © Software AG 2003436

INPUTUsing the INPUT Statement in Batch Mode on Mainframe Computers

Command Explanation

%* Record Suppression. When entered in position one and two of a record, %* causes the printing of
the next input record to be suppressed.

DATA RECORD
%*
SUPPRESSED DATA RECORD

% Record Continuation. When % is entered as the last non-blank character of a record, the next input
record will be treated as a continuation record.

DATA, RECORD, WITH, CONTINUATION, %
CONTINUATION RECORD

INPUT V1 V2 V3 V4 V5 V6
DISPLAY V1 V2 V3 V4 V5 V6

will produce the following output:

DATA RECORD WITH CONTINUATION CONTINUATION RECORD

%/ End-of-file. When entered in the first two positions of a record (without any trailing non-blank
characters), %/ causes an end-of-file condition.

%% Set restart point in input data stream.

%. Reading of input values for the current INPUT statement will be terminated.

%K nn Simulate PF keys.

%KP n Simulate PA keys.

%Q This command causes printing of maps used to read input data to be suppressed.

See the Terminal Commands documentation for further information.

Additional JCL statements are required when using the INPUT statement for data entry in batch mode. The
Natural administrator should be contacted to ensure that these statements have been provided before attempting
to execute Natural in batch mode.

437Copyright © Software AG 2003

Using the INPUT Statement in Batch Mode on Mainframe ComputersINPUT

INTERFACE

Function
An interface is a collection of methods and properties that belong together semantically and represent a certain
feature of a class.

You can define one or several interfaces for a class. Defining several interfaces allows you to structure/group
methods according to what they do, e.g., you put all methods that deal with persistency (load, store, update) in
one interface and put other methods in other interfaces.

The INTERFACE statement is used to define an interface. It may only be used in a Natural class module and can
be defined as follows:

within a DEFINE CLASS statement. This form is used when the interface is only to be implemented in one
class, or
in a copycode which is included by the INTERFACE USING clause of the DEFINE CLASS statement.
This form is used when the interface is to be implemented in more than one class.

The properties and methods that are associated with the interface are defined by the property and method
definitions.

interface-name
This is the name to be assigned to the interface. The interface name can be up to a maximum of 32 characters
long and must conform to the Natural naming conventions for user variables (please refer to the section
Statement Usage Related Topics for further information). It must be unique per class and different from the class
name.

If the interface is planned to be used by clients written in different programming languages, the interface name
should be chosen in a way that it does not conflict with the naming conventions that apply in these languages.
Bolero for example uses the Java naming convention. So, an interface that is planned to be used in a Bolero
client should also respect the Java naming conventions.

Copyright © Software AG 2003438

INTERFACEINTERFACE

EXTERNAL
Note:
This clause applies only on Windows platforms. It is only available with Natural version 5.1.1 and above.

The EXTERNAL clause is used to indicate that this interface is implemented by the class, but which is originally
defined in a different class. The clause is only relevant if the class is to be registered with DCOM. Interfaces
with the EXTERNAL clause are ignored when the class is registered with DCOM. It is assumed that the
interface is registered by the class that originally defines it.

ID Clause
This clause applies only on Windows platforms.

The ID clause is used to assign a globally unique ID to the interface. The interface GUID is the name of a GUID
defined in a data area that is included by the LOCAL clause. The interface GUID is a (named) alpha constant. A
GUID must be assigned to an interface if the class is to be registered with DCOM.

property-definition

The property definition is used to define a property of the interface.

Properties are attributes of an object that can be accessed by clients. An object that represents an employee might
for example have a ’Name’ property and a ’Department’ property. Retrieving or changing the name or
department of the employee by accessing her ’Name’ or ’Department’ property is much simpler for a client than
calling one method that returns the value and another method that changes the value.

Each property needs a variable in the object data area of the class to store its value - this is referred to as the
object data variable. The property definition is used to make this variable accessible to clients. The property
definition defines the name and format of the property and connects it to the object data variable. In the simplest
case, the property takes the name and format of the object data variable itself. It is also possible to override the
name and format within certain limits.

439Copyright © Software AG 2003

EXTERNALINTERFACE

property-name

This is the name to be assigned to the property. The property name can contain up to a maximum of 32
characters and must conform to the Natural naming conventions for user variables (refer to the section Statement
Usage Related Topics for further information).

If the property is planned to be used by clients written in different programming languages, the property name
should be chosen in a way that it does not conflict with the naming conventions that apply in these languages.
Bolero for example uses the Java naming convention. So, a property that is planned to be used in a Bolero client
should also respect the Java naming conventions.

format-length/array-definition

This defines the format of the property as it will be seen by clients.

If format-length/array-definition is omitted, the format-length and array-definition will be taken from the object
data variable assigned in the IS clause.

If format-length/array-definition is specified, it must be data transfer-compatible both to and from the format of
the object data variable specified in operand in the IS clause. In the case of a READONLY property, the data
transfer-compatibility needs to hold only in one direction: with the object data variable as source operand and the
property as destination operand. If an array-definition is specified, it must be equal in dimensions, occurrences
per dimension, lower bounds and upper bounds to the array definition of the corresponding object data variable.
This is expressed by specifying an asterisk for each dimension.

ID Clause

Note:
This clause applies only on Windows platforms. It is only available with version 5.1.1 and above.

The ID clause is used to assign a specific numeric identifier to a property. This identifier (the so-called dispatch
ID) is only relevant if the class is to be registered with DCOM.

Normally, Natural automatically assigns a dispatch ID to a property. It is only necessary to explicitly define a
specific dispatch ID for a property if the property belongs to an interface with the EXTERNAL clause. (This is
an interface that shall be implemented in this class, but which is originally defined in a different class.) In this
case the dispatch IDs to be used are usually dictated by the original implementation of the interface.

The dispatch ID is a positive, non-zero constant of format I4.

READONLY

If this keyword is specified, the value of the property can only be read and not set. The format of the object data
variable specified in operand in the IS clause must be data transfer-compatible to the format specified in
format-length/array-definition. It does not have to be data transfer-compatible in the inverse direction.

If the keyword READONLY is omitted, the property value can be both read and set.

IS Clause

The operand in the IS clause assigns an object data variable as the place to store the property value. The assigned
object data variable may not be a group. The variable is referenced in normal operand syntax. This means that if
the object data variable is an array, it must be referenced with index notation. Only the full index range notation
and asterisk notation is allowed.

Copyright © Software AG 2003440

INTERFACEproperty-name

The IS clause should not be used if the INTERFACE statement will be included from a copycode member and
reused in several classes. If you want to reuse the INTERFACE statement, you must assign the object data
variable in a PROPERTY statement outside the INTERFACE statement.

If the IS clause is omitted, the property is connected to the object data variable with the same name as the
property. If a variable with this name is not defined or if it is a group, a syntax error results.

Examples

Let the object data area contain the following data definitions:

1 Salary(p7.2)
 1 SalaryHistory(p7.2/1:10)

Then the following property definitions are allowed:

property Salary
 end-property
 property Pay is Salary
 end-property
 property Pay(P7.2) is Salary
 end-property
 property Pay(N7.2) is Salary
 end-property
 property SalaryHistory
 end-property
 property OldPay is SalaryHistory(*)
 end-property
 property OldPay is SalaryHistory(1:10)
 end-property
 property OldPay(P7.2/*) is SalaryHistory(1:10)
 end-property
 property OldPay(N7.2/*) is SalaryHistory(*)
 end-property

441Copyright © Software AG 2003

ExamplesINTERFACE

The following property definitions are not allowed:

/* Not data transfer-compatible. */
 property Pay(L) is Salary
 end-property
 /* Not data transfer-compatible. */
 property OldPay(L/*) is SalaryHistory(*)
 end-property
 /* Not data transfer-compatible. */
 property OldPay(L/1:10) is SalaryHistory(1:10)
 end-property
 /* Assigns an array to a scalar. */
 property OldPay(P7.2) is SalaryHistory(1:10)
 end-property
 /* Takes only a sub-array. */
 property OldPay(P7.2/3:5) is SalaryHistory(*)
 end-property
 /* Index specification omitted in ODA variable SalaryHistory. */
 property OldPay is SalaryHistory
 end-property
 /* Only asterisk notation allowed in property format specification. */
 property OldPay(P7.2/1:10) is SalaryHistory(*)
 end-property

method-definition

The method definition is used to define a method for the interface.

To make the interface reusable in different classes, include the interface definition from a copycode and define
the subprogram after the interface definition with a METHOD statement. Then you can implement the method
differently in different classes.

Copyright © Software AG 2003442

INTERFACEmethod-definition

method-name

This is the name to be assigned to the method. The method name can contain a maximum of up to 32 characters
and must conform to the Natural naming conventions for user variables (please refer to the section Statement
Usage Related Topics for further information). It must be unique per interface.

If the method is planned to be used by clients written in different programming languages, the method name
should be chosen in a way that it does not conflict with the naming conventions that apply in these languages.
Bolero for example uses the Java naming convention. So, a method that is planned to be used in a Bolero client
should also respect the Java naming conventions.

ID Clause

Note:
This clause applies only on Windows platforms. It is only available with version 5.1.1 and above.

The ID clause is used to assign a specific numeric identifier to a method. This identifier (the so-called dispatch
ID) is only relevant if the class is to be registered with DCOM.

Normally, Natural automatically assigns a dispatch ID to a method. It is only necessary to explicitly define a
specific dispatch ID for a property if the property belongs to an interface with the EXTERNAL clause. (This is
an interface that shall be implemented in this class, but which is originally defined in a different class.) In this
case, the dispatch IDs to be used are usually dictated by the original implementation of the interface.

The dispatch ID is a positive, non-zero constant of format I4.

IS Clause

This is the name of the subprogram that implements the method. The name of the subprogram consists of up to 8
characters. The default is method-name (if the IS clause is not specified).

PARAMETER Clause

This specifies the parameters of the method, and has the same syntax as the PARAMETER clause of the
DEFINE DATA statement. For further information on the DEFINE DATA statement, see the Natural Statements
documentation.

The parameters must match the parameters which are later used in the implementation of the subprogram. This is
ensured best by using a parameter data area.

Parameters that are marked ’BY VALUE’ in the parameter data area are input parameters of the method.

Parameters which are not marked ’BY VALUE’ are passed by reference and are input/output parameters. This is
the default.

The first parameter that is marked ’BY VALUE RESULT’ is returned as the return value for the method. If more
than one parameter is marked in this way, the others will be treated as input/output parameters.

Parameters that are marked ’OPTIONAL’ are available with Version 4.1.2 and all subsequent releases. Optional
parameters need not to be specified when the method is called. They can be left unspecified by using the nX
notation in the SEND METHOD statement.

443Copyright © Software AG 2003

method-nameINTERFACE

LIMIT

Function
The LIMIT statement is used to limit the number of iterations of a processing loop initiated with a FIND, READ,
or HISTOGRAM statement.

The limit remains in effect for all subsequent processing loops in the program until it is overridden with another
LIMIT statement. The LIMIT statement does not apply to individual statements in which a limit is explicitly
specified (for example, FIND (n) ...).

If the limit is reached, processing stops and a message is displayed (see also the session parameter LE in the
Natural Parameter Reference documentation).

If no LIMIT statement is specified, the default limit defined during Natural installation will be used.

Limit Specification - n
The limit n must be specified as a numeric constant in the range from 0 to 99999999 (leading zeros are optional).
The processing loop is not entered if the limit is set to "0".

Record Counting
To determine whether a processing loop has reached the limit, each record read in the loop is counted against the
limit. If the processing loop has reached the limit, the following will apply:

A record that is rejected because of criteria specified in a FIND or READ statement WHERE clause is not
counted against the limit.
A record that is rejected as a result of an ACCEPT/REJECT statement is counted against the limit.

Copyright © Software AG 2003444

LIMITLIMIT

Example 1

 /* EXAMPLE ’LMTEX1’: LIMIT
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 CITY
 END-DEFINE
 /**
 LIMIT 4
 /**
 READ EMPLOY-VIEW BY NAME STARTING FROM ’BAKER’
 DISPLAY NOTITLE NAME PERSONNEL-ID CITY *COUNTER
 END-READ
 /**
 END

 NAME PERSONNEL CITY CNT
 ID
 -------------------- --------- -------------------- ---------

 BAKER 20016700 OAK BROOK 1
 BAKER 30008042 DERBY 2
 BALBIN 60000110 BARCELONA 3
 BALL 30021845 DERBY 4

445Copyright © Software AG 2003

Example 1LIMIT

Example 2

 /* EXAMPLE ’LMTEX2’: LIMIT
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 END-DEFINE
 /**
 LIMIT 3
 /**
 FIND EMPLOY-VIEW WITH NAME > ’A’
 READ EMPLOY-VIEW BY NAME STARTING FROM ’BAKER’
 DISPLAY NOTITLE ’CNT(0100)’ *COUNTER(0100)
 ’CNT(0110)’ *COUNTER(0110)
 END-READ
 END-FIND
 /**
 END

CNT(0100) CNT(0110)
 --------- ---------

 1 1
 1 2
 1 3
 2 1
 2 2
 2 3
 3 1
 3 2
 3 3

Copyright © Software AG 2003446

LIMITExample 2

LOOP
Note:This statement may be used in reporting mode only; it is not permitted in structured mode.

Function
The LOOP statement is used to close a processing loop. It causes processing of the current pass through the loop
to be terminated and control to be returned to the beginning of the processing loop.

When the processing loop for which the LOOP statement is issued is terminated (that is, when all records have
been processed or iterations have been performed), execution continues with the statement after the LOOP
statement.

Statement Reference Notation - r
The LOOP statement may be specified with a statement label or reference number, in which case all inner loops
up to and including the loop initiated by the statement referenced will be closed. If no statement reference is
specified, the innermost active processing loop will be closed.

Database Variable References
A LOOP statement, in addition to closing a processing loop, will eliminate all field references to FIND, FIND
FIRST, FIND UNIQUE, READ and GET statements contained within the loop.

A field within a view may be referenced outside the processing loop by using the view name as a qualifier.

Restrictions
A LOOP statement may not be specified based on a conditional statement such as IF or AT BREAK.

Example 1

 0010 FIND ...
 0020 READ ...
 0030 READ ...
 0040 LOOP (0010) /* closes all loops

447Copyright © Software AG 2003

LOOPLOOP

Example 2

 0010 FIND ...
 0020 READ ...
 0030 READ ...
 0040 LOOP /* closes loop initiated on line 0030
 0050 LOOP /* closes loop initiated on line 0020
 0060 LOOP /* closes loop initiated on line 0010

Copyright © Software AG 2003448

LOOPExample 2

METHOD

Function
The METHOD statement assigns a subprogram as the implementation to a method, outside an interface
definition. It is used if the interface definition in question is included from a copycode and is to be implemented
in a class-specific way.

The METHOD statement may only be used within the DEFINE CLASS statement and after the interface
definition. The interface and method names specified must be defined in the interface definitions.

Example
The following example shows how the same interface is implemented differently in two classes and how the
PROPERTY statement and the METHOD statement are used to achieve this.

The interface Measure is defined in the Copycode iface-c. The Classes Elephant and Mouse implement both the
interface Measure. Therefore, they both include the Copycode iface-c. But the Classes implement the property
Height using different variables from their respective object data areas, and they implement the method Init with
different subprograms. They use the PROPERTY statement to assign the selected data area variable to the
property and the METHOD statement to assign the selected subprogram to the method.

Now the program prog can create objects of both classes and initialize them using the same method Init, leaving
the specifics of the initialization to the respective Class implementation.

449Copyright © Software AG 2003

METHODMETHOD

The following shows the complete contents of the Natural modules used in the example above:

Copycode: iface-c

interface Measure
 *
 property Height(p5.2)
 end-property
 *
 property Weight(i4)
 end-property
 *
 method Init
 end-method
 *
 end-interface

Copyright © Software AG 2003450

METHODExample

Class: class1

define class elephant
 object using class1-o
 interface using iface-c
 *
 property Height of interface Measure is height
 end-property
 *
 property Weight of interface Measure is weight
 end-property
 *
 method Init of interface Measure is init1-n
 end-method
 *
 end-class
 end

Object Data Area: class1-o

* *** Top of Data Area ***
 1 HEIGHT P 5.2
 1 WEIGHT I 2
 * *** End of Data Area ***

Method Subprogram: init1-n

define data
 object using class1-o
 end-define
 *
 height := 17.3
 weight := 120
 *
 end

Class: class2

define class mouse
 object using class2-o
 interface using iface-c
 *
 property Height of interface Measure is size
 end-property
 *
 property Weight of interface Measure is weight
 end-property
 *
 method Init of interface Measure is init2-n
 end-method
 *
 end-class
 end

451Copyright © Software AG 2003

ExampleMETHOD

Object Data Area: class2-o

* *** Top of Data Area ***
 1 SIZE P 3.2
 1 WEIGHT I 1
 * *** End of Data Area ***

Method Subprogram: init2-n

define data
 object using class2-o
 end-define
 *
 size := 1.24
 weight := 2
 * end

Program: prog

define data local
 1 #o handle of object
 1 #height(p5.2)
 1 #weight(i4)
 end-define
 *
 create object #o of class "Elephant"
 send "Init" to #o
 #height := #o.Height
 #weight := #o.Weight
 write #height #weight
 *
 create object #o of class "Mouse"
 send "Init" to #o
 #height := #o.Height
 #weight := #o.Weight
 write #height #weight
 *
 end

Copyright © Software AG 2003452

METHODExample

MOVE

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A N A N P I F B D T L C G O yes no

Operand2 S A M A N P I F B D T L C G O yes yes

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A A N* B yes no

Operand2 S A A B yes no

Operand3 C S N P I yes no

Operand4 C S N P I yes no

Operand5 C S N P I yes no

Operand6 C S N P I yes no

* see text.

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 G yes no

Operand2 G yes no

453Copyright © Software AG 2003

MOVEMOVE

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A A B yes no

Operand2 S A A N P I F B D T L yes yes

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A N A N P I F B D T L yes no

Operand2 S A A B yes yes

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A N A N P I F B D T L yes no

Operand2 S A A yes yes

Related Statement: COMPUTE

Function
The MOVE statement is used to move the value of an operand to one or more operands (field or array).

If operand2 is a DYNAMIC variable, its length may be modified by the MOVE operation. The current length of
a DYNAMIC variable can be ascertained by using the system variable *LENGTH. For general information on
the DYNAMIC variable, see the section Large and Dynamic Variables/Fields.

If operand2 is of format C, operand1 may also be specified as (parameter). Valid parameters are:

Copyright © Software AG 2003454

MOVEFunction

Parameters that can be specified with the MOVE statementSpecification
S = at statement level
E = at element level

AD Attribute Definition SE

CD Color Definition S

For more information on data transfer compatibility and the rules for data transfer, see the section Data Transfer.

ROUNDED
This option causes operand2 to be rounded.

ROUNDED is ignored if operand2 is not numeric.

If operand2 is of format N or P and operand2 is specified more than once, ROUNDED is ignored for target
operands with seven positions after the decimal point.

parameter
As parameter, you can specify the option "PM=I" or the session parameter DF:

PM=I
In order to support languages whose writing direction is from right to left, you can specify "PM=I" so as to
transfer the value of operand1 in inverse (right-to-left) direction to operand2.

For example, as a result of the following statements, the content of #B would be "ZYX":

 MOVE ’XYZ’ TO #A
 MOVE #A (PM=I) TO #B

PM=I can only be specified if operand2 has alphanumeric format.

Any trailing blanks in operand1 will be removed, then the value is reversed and moved to operand2. If operand1
is not of alphanumeric format, the value will be converted to alphanumeric format before it is reversed.

See also the use of PM=I in conjunction with MOVE LEFT/RIGHT JUSTIFIED.

DF
If operand1 is a date variable and operand2 is an alphanumeric field, you can specify the session parameter DF
as parameter for this date variable. The session parameter DF is described in the Natural Parameter Reference
documentation.

SUBSTRING
Without the SUBSTRING option, the whole content of a field is moved. The SUBSTRING option allows you to
move only a certain part of an alphanumeric or a binary field. After the field name (operand1) in the
SUBSTRING clause you specify first the starting position (operand3) and then the length (operand4) of the field
portion to be moved.

455Copyright © Software AG 2003

ROUNDEDMOVE

For example, to move the 5th to 12th position inclusive of the value in a field #A into a field #B, you would
specify:

 MOVE SUBSTRING(#A,5,8) TO #B

If operand1 is a DYNAMIC variable, the specified field portion to be moved must be within its current length;
otherwise, a runtime error will occur.

Also, you can move a value of an alphanumeric, binary or numeric field into a certain part of the target field.
After the field name (operand2) in the SUBSTRING clause you specify first the starting position (operand5) and
then the length (operand6) of the field portion into which the value is to be moved.

For example, to move the value of a field #A into the 3rd to 6th position inclusive of a field #B, you would
specify:

 MOVE #A TO SUBSTRING(#B,3,4)

If operand2 is a DYNAMIC variable, the specified starting position (operand5) must not be greater than the
variable’s current length plus 1; a greater starting position will lead to a runtime error, because it would cause an
undefined gap within the content of operand2.

If you omit operand3/5, the starting position is assumed to be "1". If you omit operand4/6, the length is assumed
to be from the starting position to the end of the field.

If operand2 is a DYNAMIC variable and the specified starting position (operand5) is the variable’s current
length plus 1, which means that the MOVE operation is used to increase the length of the variable, operand6
must be specified in order to determine the new length of the variable.

Note:
MOVE with the SUBSTRING option is a byte-by-byte move (that is, the rules described under Rules for
Arithmetic Assignment in the Natural Statements documentation do not apply).

MOVE BY NAME
This option is used to move individual fields contained in a data structure to another data structure, independent
of their position in the structure. A field is moved only if its name appears in both structures (this includes
REDEFINEd fields as well as fields resulting from a redefinition). The individual fields may be of any format.
The operands can also be views.

Note:
The sequence of the individual moves is determined by the sequence of the fields in operand1.

MOVE BY NAME with Arrays

If the data structures contain arrays, these will internally be assigned the index "(*)" when moved; this may lead
to an error if the arrays do not comply with the rules for assignment operations with arrays (see the section
Processing of Arrays in the Natural Statements documentation).

Copyright © Software AG 2003456

MOVEMOVE BY NAME

Example 1 of MOVE BY NAME with Arrays:

 DEFINE DATA LOCAL
 1 #GROUP1
 2 #FIELD (A10/1:10)
 1 #GROUP2
 2 #FIELD (A10/1:10)
 END-DEFINE
 ...
 MOVE BY NAME #GROUP1 TO #GROUP2
 ...

In this, example, the MOVE statement would internally be resolved as:

 MOVE #GROUP1.#FIELD (*) TO #GROUP2.#FIELD (*)

If part of an indexed group is moved to another part of the same group, this may lead to unexpected results as
shown in the example below.

Example 2 of MOVE BY NAME with Arrays:

 DEFINE DATA LOCAL
 1 #GROUP1 (1:5)
 2 #FIELDA (N1) INIT <1,2,3,4,5>
 2 REDEFINE #FIELDA
 3 #FIELDB (N1)
 END-DEFINE
 ...
 MOVE BY NAME #GROUP1 (2:4) TO #GROUP1 (1:3)
 ...

In this, example, the MOVE statement would internally be resolved as:

 MOVE #FIELDA (2:4) TO #FIELDA (1:3)
 MOVE #FIELDB (2:4) TO #FIELDB (1:3)

First, the contents of the occurrences 2 to 4 of #FIELDA are moved to the occurrences 1 to 3 of #FIELDA; that
is, the occurrences receive the following values:

Occurrence: 1. 2. 3. 4. 5.

Value before: 1 2 3 4 5

Value after: 2 3 4 4 5

Then the contents of the occurrences 2 to 4 of #FIELDB are moved to the occurrences 1 to 3 of #FIELDB; that
is, the occurrences receive the following values:

Occurrence: 1. 2. 3. 4. 5.

Value before: 2 3 4 4 5

Value after: 3 4 4 4 5

457Copyright © Software AG 2003

MOVE BY NAME with ArraysMOVE

MOVE BY POSITION
This option allows you to move the contents of fields in a group to another group, regardless of the field names.
The values are moved field by field from one group to the other in the order in which the fields are defined (this
does not include fields resulting from a redefinition). The individual fields may be of any format. The number of
fields in each group must be the same; also, the level structure and array dimensions of the fields must match.
Format conversion is done according to the rules for arithmetic assignment described in the Natural Statements
documentation. The operands can also be views.

Example of MOVE BY POSITION:

 DEFINE DATA LOCAL
 1 #GROUP1
 2 #FIELD1A (N5)
 2 #FIELD1B (A3/1:3)
 2 REDEFINE #FIELD1B
 3 #FIELD1BR (A9)
 1 #GROUP2
 2 #FIELD2A (N5)
 2 #FIELD2B (A3/1:3)
 2 REDEFINE #FIELD2B
 3 #FIELD2BR (A9)
 END-DEFINE
 ...
 MOVE BY POSITION #GROUP1 TO #GROUP2
 ...

In this example, the content of #FIELD1A is moved to #FIELD2A, and the content of #FIELD1B to #FIELD2B;
the fields #FIELD1BR and #FIELD2BR are not affected.

MOVE EDITED
An edit mask may be specified with operand1 or operand2.

If an edit mask is specified for operand2, the value of operand1 will be placed into operand2 using this edit
mask.

If an edit mask is specified for operand1, the edit mask will be applied to operand1 and the result will be moved
to operand2. The length of the operand1 value after the edit mask has been applied to it must not exceed the
length of operand2.

For details on edit masks, see the session parameter EM in the Natural Parameter Reference documentation.

MOVE LEFT/RIGHT JUSTIFIED
This option is used to cause the values to be moved to be left- or right-justified in operand2.

With MOVE LEFT JUSTIFIED, any leading blanks in operand1 are removed (on mainframes, blanks and
binary zeros are removed) before the value is placed left-justified into operand2. The remainder of operand2 will
then be filled with blanks. If the value is longer than operand2, the value will be truncated on the right-hand side.

With MOVE RIGHT JUSTIFIED, any trailing blanks in operand1 are truncated (on mainframes, blanks and
binary zeros are removed) before the value is placed right-justified into operand2. The remainder of operand2
will then be filled with blanks. If the value is longer than operand2, the value will be truncated on the left-hand
side.

Copyright © Software AG 2003458

MOVEMOVE BY POSITION

MOVE LEFT/RIGHT JUSTIFIED cannot be used if operand2 is a DYNAMIC variable.

MOVE LEFT/RIGHT JUSTIFIED with PM=I

When you use MOVE LEFT/RIGHT JUSTIFIED in conjunction with PM=I, the move is performed in the
following steps:

1. If operand1 is not of alphanumeric format, the value is converted to alphanumeric format.
2. Any trailing blanks in operand1 are removed (on mainframes, blanks and binary zeros are removed).
3. In the case of LEFT JUSTIFIED, any leading blanks in operand1 are also removed (on mainframes, blanks

and binary zeros are removed).
4. The value is reversed, and then moved to operand2.
5. If applicable, the remainder of operand2 is filled with blanks, or the value is truncated (see above).

Other Considerations
If a database field is used as the result field, the MOVE operation results in an update only to the internal value
of the field as used within the program. The value of the field in the database remains unchanged.

A Natural system function may be used only if the MOVE statement is specified in conjunction with an AT
BREAK, AT END OF DATA or AT END OF PAGE statement.

See also the section Rules for Arithmetic Assignment in the Natural Statements documentation.

Note:
If operand1 is a time variable (format T), only the time component of the variable content is transferred, but not
the date component (except with MOVE EDITED).

459Copyright © Software AG 2003

Other ConsiderationsMOVE

Example 1

 /* EXAMPLE ’MOVEX1’: MOVE
 /***
 DEFINE DATA LOCAL
 1 #A (N3)
 1 #B (A5)
 1 #C (A2)
 1 #D (A7)
 1 #E (N1.0)
 1 #F (A5)
 1 #G (N3.2)
 1 #H (A6)
 END-DEFINE
 /**
 MOVE 5 TO #A
 WRITE NOTITLE ’MOVE 5 TO #A’ 30X ’=’ #A
 /**
 MOVE ’ABCDE’ TO #B #C #D
 WRITE ’MOVE ABCDE TO #B #C #D’ 20X ’=’ #B ’=’ #C ’=’ #D
 /**
 MOVE -1 TO #E
 WRITE ’MOVE -1 TO #E’ 28X ’=’ #E
 /**
 MOVE ROUNDED 1.995 TO #E
 WRITE ’MOVE ROUNDED 1.995 TO #E’ 18X ’=’ #E
 /**
 MOVE RIGHT JUSTIFIED ’ABC’ TO #F
 WRITE ’MOVE RIGHT JUSTIFIED ’’ABC’’ TO #F’ 10X ’=’ #F
 /**
 MOVE EDITED ’003.45’ TO #G (EM=999.99)
 WRITE ’MOVE EDITED ’’003.45’’ TO #G (EM=999.99)’ 4X ’=’ #G
 /**
 MOVE EDITED 123.45 (EM=999.99) TO #H
 WRITE ’MOVE EDITED 123.45 (EM=999.99) TO #H’ 6X ’=’ #H
 /**
 END

 MOVE 5 TO #A #A: 5
 MOVE ABCDE TO #B #C #D #B: ABCDE #C: AB #D: ABCDE
 MOVE -1 TO #E #E: -1
 MOVE ROUNDED 1.995 TO #E #E: 2
 MOVE RIGHT JUSTIFIED ’ABC’ TO #F #F: ABC
 MOVE EDITED ’003.45’ TO #G (EM=999.99) #G: 3.45
 MOVE EDITED 123.45 (EM=999.99) TO #H #H: 123.45

Copyright © Software AG 2003460

MOVEExample 1

Example 2

 /* EXAMPLE ’MOVEX2’: MOVE BY NAME
 /**
 DEFINE DATA LOCAL
 1 #SBLOCK
 2 #FIELDA (A10) INIT <’AAAAAAAAAA’>
 2 #FIELDB (A10) INIT <’BBBBBBBBBB’>
 2 #FIELDC (A10) INIT <’CCCCCCCCCC’>
 2 #FIELDD (A10) INIT <’DDDDDDDDDD’>
 1 #TBLOCK
 2 #FIELD1 (A15) INIT <’ ’>
 2 #FIELDA (A10) INIT <’ ’>
 2 #FIELD2 (A10) INIT <’ ’>
 2 #FIELDB (A10) INIT <’ ’>
 2 #FIELD3 (A20) INIT <’ ’>
 2 #FIELDC (A10) INIT <’ ’>
 END-DEFINE
 /**
 MOVE BY NAME #SBLOCK TO #TBLOCK
 /**
 WRITE NOTITLE ’CONTENTS OF #TBLOCK AFTER MOVE BY NAME:’
 // ’=’ #TBLOCK.#FIELD1
 / ’=’ #TBLOCK.#FIELDA
 / ’=’ #TBLOCK.#FIELD2
 / ’=’ #TBLOCK.#FIELDB
 / ’=’ #TBLOCK.#FIELD3
 / ’=’ #TBLOCK.#FIELDC
 /**
 END

CONTENTS OF #TBLOCK AFTER MOVE BY NAME:

 #FIELD1:
 #FIELDA: AAAAAAAAAA
 #FIELD2:
 #FIELDB: BBBBBBBBBB
 #FIELD3:
 #FIELDC: CCCCCCCCCC

461Copyright © Software AG 2003

Example 2MOVE

MOVE ALL

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N B yes no

Operand2 S A A B yes yes

Operand3 C S N P I yes no

Function
The MOVE ALL statement is used to move repeatedly the value of operand1 to operand2 until operand2 is full.

Source Operand - operand1
The source operand contains the value to be moved.

All digits of a numeric operand including leading zeros are moved.

Target Operand - operand2
The target operand is not reset prior to the execution of the MOVE ALL operation. This is of particular
importance when using the UNTIL option since data previously in operand2 is retained if not explicitly overlaid
during the MOVE ALL operation.

UNTIL Option - operand3
The UNTIL option is used to limit the MOVE ALL operation to a given number of positions in operand2.
Operand3 is used to specify the number of positions. The MOVE ALL operation is terminated when this value is
reached.

If operand3 is greater than the length of operand2, the MOVE ALL operation is terminated when operand2 is
full.

The UNTIL option may also be used to assign an initial value to a DYNAMIC variable: if operand2 is a
DYNAMIC variable, its length after the MOVE ALL operation will correspond to the value of operand3. The
current length of a DYNAMIC variable can be ascertained by using the system variable *LENGTH. For general
information on DYNAMIC variables, see Usage of Dynamic Variables.

Copyright © Software AG 2003462

MOVE ALLMOVE ALL

Example

 /* EXAMPLE ’MOAEX1’: MOVE ALL
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 FIRST-NAME
 2 NAME
 2 CITY
 1 VEH-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 END-DEFINE
 /**
 LIMIT 4
 RD. READ EMPLOY-VIEW BY NAME
 SUSPEND IDENTICAL SUPPRESS
 /**
 FD. FIND VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)
 IF NO RECORDS FOUND
 MOVE ALL ’*’ TO FIRST-NAME (RD.)
 MOVE ALL ’*’ TO CITY (RD.)
 MOVE ALL ’*’ TO MAKE (FD.)
 END-NOREC
 /**
 DISPLAY NOTITLE (ES=OFF IS=ON ZP=ON AL=15)
 NAME (RD.) FIRST-NAME (RD.) CITY (RD.)
 MAKE (FD.) (IS=OFF)
 /**
 END-FIND
 END-READ
 END

 NAME FIRST-NAME CITY MAKE
 --------------- --------------- --------------- ---------------

 ABELLAN *************** *************** ***************
 ACHIESON ROBERT DERBY FORD
 ADAM *************** *************** ***************
 ADKINSON TIMMIE BEDFORD GENERAL MOTORS

Equivalent reporting-mode example: See the program MOAEX1R in the library SYSEXRM.

463Copyright © Software AG 2003

ExampleMOVE ALL

MULTIPLY

Syntax 1

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A M N P I F yes no

Operand2 C S A N N P I F yes no

Syntax 2

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A M N P I F yes no

Operand2 C S A N N P I F yes no

Operand3 S A M A N P I F B yes yes

Related Statement: COMPUTE

Function
The MULTIPLY statement is used to multiply two operands.

For multiplications involving arrays, see also Arithmetic Operations with Arrays in the section Statement Usage
Related Topics.

Result Field
The result of the multiplication may be stored in operand1 or in operand3.

If Syntax 1 is used, the result is stored in operand1.

If Syntax 2 (with GIVING clause) is used, operand1 will not be modified and the result will be stored in
operand3.

Copyright © Software AG 2003464

MULTIPLYMULTIPLY

If operand1 is a numeric constant, the GIVING clause is required.

If a database field is used as the result field, the multiplication results in an update only to the internal value of
the field as used within the program. The value for the field in the database remains unchanged.

Example

 /* EXAMPLE ’MULEX1’: MULTIPLY
 /***
 DEFINE DATA LOCAL
 1 #A (N3) INIT <20>
 1 #B (N5)
 1 #C (N3.1)
 1 #D (N2)
 1 #ARRAY1 (N5/1:4,1:4) INIT (2,*) <5>
 1 #ARRAY2 (N5/1:4,1:4) INIT (4,*) <10>
 END-DEFINE
 /**
 MULTIPLY #A BY 3
 WRITE NOTITLE ’MULTIPLY #A BY 3’ 25X ’=’ #A
 /**
 MULTIPLY #A BY 3 GIVING #B
 WRITE ’MULTIPLY #A BY 3 GIVING #B’ 15X ’=’ #B
 /**
 MULTIPLY ROUNDED 3 BY 3.5 GIVING #C
 WRITE ’MULTIPLY ROUNDED 3 BY 3.5 GIVING #C’ 6X ’=’ #C
 /**
 MULTIPLY 3 BY -4 GIVING #D
 WRITE ’MULTIPLY 3 BY -4 GIVING #D’ 15X ’=’ #D
 /**
 MULTIPLY -3 BY -4 GIVING #D
 WRITE ’MULTIPLY -3 BY -4 GIVING #D’ 14X ’=’ #D
 /**
 MULTIPLY 3 BY 0 GIVING #D
 WRITE ’MULTIPLY 3 BY 0 GIVING #D’ 14X ’=’ #D
 /**
 WRITE / ’=’ #ARRAY1 (2,*) ’=’ #ARRAY2 (4,*)
 MULTIPLY #ARRAY1 (2,*) BY #ARRAY2 (4,*)
 WRITE ’MULTIPLY #ARRAY1 (2,*) BY #ARRAY2 (4,*)’
 / ’=’ #ARRAY1 (2,*) ’=’ #ARRAY2 (4,*)
 /**
 END

MULTIPLY #A BY 3 #A: 60
 MULTIPLY #A BY 3 GIVING #B #B: 180
 MULTIPLY ROUNDED 3 BY 3.5 GIVING #C #C: 10.5
 MULTIPLY 3 BY -4 GIVING #D #D: -12
 MULTIPLY -3 BY -4 GIVING #D #D: 12
 MULTIPLY 3 BY 0 GIVING #D #D: 0

 #ARRAY1: 5 5 5 5 #ARRAY2: 10 10 10 10
 MULTIPLY #ARRAY1 (2,*) BY #ARRAY2 (4,*)
 #ARRAY1: 50 50 50 50 #ARRAY2: 10 10 10 10

465Copyright © Software AG 2003

ExampleMULTIPLY

NEWPAGE

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S N P I yes no

Related Statements: AT TOP OF PAGE | AT END OF PAGE

Function
The NEWPAGE statement is used to cause an advance to a new page. NEWPAGE also causes any AT END OF
PAGE and WRITE TRAILER statements to be executed. A default title containing the date, time of day, and
page number will appear on each new page unless a WRITE TITLE, WRITE NOTITLE, or DISPLAY
NOTITLE statement is specified to define specific title processing.

Notes:
The advance to a new page is not performed at the time when the NEWPAGE statement is executed. It is
performed only when a subsequent statement
which produces output is executed.
If the NEWPAGE statement is not used, page advance is controlled automatically based on the session parameter
PS.

Report Specification - rep
The notation (rep) may be used to specify the identification of the report for which the NEWPAGE statement is
applicable. A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified.

If (rep) is not specified, the NEWPAGE statement will be applicable to the first report (report 0).

EVEN IF TOP OF PAGE
This option is used to cause a new page (with corresponding AT TOP OF PAGE and page title processing) to be
generated, even if a new page was initiated immediately before the NEWPAGE statement was encountered.

Copyright © Software AG 2003466

NEWPAGENEWPAGE

WHEN LESS THAN operand1 LINES LEFT
This option is used to cause a new page to be generated when there are less than operand1 lines left on the
current page (current line count compared with value for session parameter PS).

WITH TITLE
The WITH TITLE option may be used to specify a title which is to be written to the new page generated. The
title is specified using the same syntax as described for the WRITE TITLE statement, except that the SKIP
clause in a NEWPAGE WITH TITLE statement is not allowed.

Example

 /* EXAMPLE ’NWPEX1S’: NEWPAGE
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 SALARY (1)
 2 CURR-CODE (1)
 END-DEFINE
 /**
 LIMIT 15
 READ EMPLOY-VIEW BY CITY FROM ’DENVER’
 DISPLAY CITY (IS=ON) NAME SALARY (1) CURR-CODE (1)
 AT BREAK OF CITY
 SKIP 1
 /**
 NEWPAGE WHEN LESS THAN 10 LINES LEFT
 WRITE ’**’
 / ’SUMMARY FOR ’ OLD(CITY)
 / ’**’
 / ’**’
 / ’SUM OF SALARIES:’ SUM(SALARY(1))
 / ’AVG OF SALARIES:’ AVER(SALARY(1))
 / ’**’
 NEWPAGE
 /**
 END-BREAK
 END-READ
 END

467Copyright © Software AG 2003

WHEN LESS THAN operand1 LINES LEFTNEWPAGE

PAGE 1 03-03-27 15:21:13

 CITY NAME ANNUAL CURRENCY
 SALARY CODE
 -------------------- -------------------- ---------- --------

 DENVER TANIMOTO 33000 USD
 MEYER 50000 USD

 **
 SUMMARY FOR DENVER
 **
 **
 SUM OF SALARIES: 83000
 AVG OF SALARIES: 41500
 **

PAGE 2 03-03-27 15:21:13

 CITY NAME ANNUAL CURRENCY
 SALARY CODE
 -------------------- -------------------- ---------- --------

 DERBY DEAKIN 7950 UKL
 GARFIELD 7200 UKL
 MUNN 8200 UKL
 MUNN 5200 UKL
 GREBBY 8450 UKL
 WHITT 7450 UKL
 PONSONBY 4450 UKL
 MAGUIRE 4000 UKL
 HEYWOOD 3800 UKL
 BRYDEN 6450 UKL
 SMITH 29000 UKL
 CONQUEST 34000 UKL
 ACHIESON 10500 UKL

Copyright © Software AG 2003468

NEWPAGEExample

PAGE 3 03-03-27 15:21:13

 CITY NAME ANNUAL CURRENCY
 SALARY CODE
 -------------------- -------------------- ---------- --------

 **
 SUMMARY FOR DERBY
 **
 **
 SUM OF SALARIES: 136650
 AVG OF SALARIES: 10511
 **

Equivalent reporting-mode example: See program NWPEX1R in library SYSEXRM.

469Copyright © Software AG 2003

ExampleNEWPAGE

NOTITLE...
The following is a list of the NOTITLE... related statements:

DISPLAY
PRINT
WRITE

Copyright © Software AG 2003470

NOTITLE...NOTITLE...

OBTAIN
Note: This statement is valid in reporting mode only.

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A G A N P I F B D T L yes yes

Function
The OBTAIN statement is used to make available database fields, or a range of occurrences of a database array
in contiguous storage. It may also be used to make available multiple ranges of occurrences.

To be able to identify the different ranges, the beginning index of the range must be used as a qualifier before the
index positioning within the range. The index always positions within the range beginning with 1.

operand1
With operand1 you specify the field(s) to be made available as a result of the OBTAIN statement.

Examples
See the programs OBTEX1 and OBTEX2 in the library SYSEXRM.

471Copyright © Software AG 2003

OBTAINOBTAIN

ON ERROR

Structured Mode Syntax

Reporting Mode Syntax

Function
The ON ERROR statement is used to intercept execution time errors which would otherwise result in a Natural
error message, followed by termination of Natural program execution, and a return to command input mode.

When the ON ERROR statement block is entered for execution, the normal flow of program execution has been
interrupted and cannot be resumed except for error 3145 (record requested in hold), in which case a RETRY
statement will cause processing to be resumed exactly where it was suspended.

This statement is non-procedural (that is, its execution depends on an event, not on where in a program it is
located).

ON ERROR Processing within Subroutines
When a subroutine structure is built by using CALLNAT, PERFORM or FETCH RETURN, each module may
contain an ON ERROR statement.

When an error occurs, Natural will automatically trace back the subroutine structure and select the first ON
ERROR statement encountered in a subroutine for execution. If no ON ERROR statement is found in any
module on any level, standard error message processing is performed and program execution is terminated.

Restriction
Only one ON ERROR statement is permitted in a Natural object.

Copyright © Software AG 2003472

ON ERRORON ERROR

System Variables *ERROR-NR and *ERROR-LINE
The Natural system variable *ERROR-NR contains the number of the error detected by Natural.

The Natural system variable *ERROR-LINE contains the line number of the statement which caused the error.

Exiting from an ON ERROR Block
An ON ERROR block may be exited by using a FETCH, STOP, TERMINATE, RETRY or ESCAPE ROUTINE
statement. If the block is not exited using one of these statements, standard error message processing is
performed and program execution is terminated.

Example

 /* EXAMPLE ’ONEEX1’: ON ERROR
 /***************************************
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 1 #NAME (A20)
 1 #CITY (A20)
 END-DEFINE
 /***************************************
 REPEAT
 INPUT ’ENTER NAME:’ #NAME
 IF #NAME = ’ ’
 STOP
 END-IF
 FIND EMPLOY-VIEW WITH NAME = #NAME
 INPUT (AD=M) ’ENTER NEW VALUES:’ ///
 ’NAME:’ NAME /
 ’CITY:’ CITY
 UPDATE
 END TRANSACTION
 /***************************************
 ON ERROR
 IF *ERROR-NR = 3009
 WRITE ’LAST TRANSACTION NOT SUCCESSFUL’
 / ’HIT ENTER TO RESTART PROGRAM’
 FETCH ’PROGUPD’
 END-IF
 END-ERROR
 /***************************************
 END-FIND
 END-REPEAT
 END

473Copyright © Software AG 2003

System Variables *ERROR-NR and *ERROR-LINEON ERROR

OPEN CONVERSATION

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A A yes no

Related Statements: CLOSE CONVERSATION | DEFINE DATA CONTEXT

Function
The statement OPEN CONVERSATION is used in conjunction with Natural RPC. It allows the client to open a
conversation and specify the remote subprograms to be included in the conversation.

When the OPEN CONVERSATION statement is executed, it assigns a unique ID identifying the conversation to
the system variable *CONVID.

Subprogram Names - operand1
As operand1 you specify the names of the remote subprograms to be included in the conversation. The name of a
subprogram can be specified either as a constant of 1 to 8 characters, or as an alphanumeric variable of length 1
to 8.

Further Information and Examples
See the Natural RPC description in your Natural RPC documentation or Natural Installation and Operations
documentation.

Copyright © Software AG 2003474

OPEN CONVERSATIONOPEN CONVERSATION

OPEN DIALOG

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A yes no

Operand2 C S * G no no

Operand3 S I yes no

Operand4 C S A A N P I F B D T L C G O yes no

* Handle

Note:
This statement is only available under Windows.

Related Statement: CLOSE DIALOG

Function
This statement is used to open a dialog dynamically.

Dialog Name - operand1
Operand1 is the name of the dialog to be opened.

If the PARAMETERS-clause is used, operand1 must be a constant.

Handle Name - operand2
Operand2 is the handle name of the parent.

475Copyright © Software AG 2003

OPEN DIALOGOPEN DIALOG

Dialog ID - operand3
Operand3 is a unique identifier returned from the creation of the dialog. It must be defined with format/length I4.

AD=
If operand4 is a variable, you can mark it in one of the following ways:

AD=O Non-modifiable, see Session Parameter AD=O.

AD=M Modifiable, see Session Parameter AD=M.

AD=A Input only, see Session Parameter AD=A.

Operand4 cannot be explicitly specified if operand4 is a constant. AD=O always applies to constants.

Passing Parameters to the Dialog
When a dialog is opened, parameters may be passed to this dialog.

As operand4 you specify the parameters which are passed to the dialog.

With the PARAMETERS-clause, parameters may be passed selectively.

nX

With the notation nX you can specify that the next n parameters are to be skipped (for example, 1X to skip the
next parameter, or 3X to skip the next three parameters); this means that for the next n parameters no values are
passed to the dialog.
A parameter that is to be skipped must be defined with the keyword OPTIONAL in the dialog’s DEFINE DATA
PARAMETER statement. OPTIONAL means that a value can - but need not - be passed from the invoking
object to such a parameter.

PARAMETERS-clause

Note:
You can only use the PARAMETERS-clause if operand1 is a constant and the dialog is cataloged.

Parameter-name is the name of the parameter as defined in the parameter data area section of the dialog.

Note:
If the value of a parameter marked with AD=O and passed "by reference" is changed in a dialog, this will lead to
a runtime error.

Copyright © Software AG 2003476

OPEN DIALOGDialog ID - operand3

Further Information and Examples
See the section Event-Driven Programming Techniques in the Natural Programming Guide.

477Copyright © Software AG 2003

Further Information and ExamplesOPEN DIALOG

OPTIONS
This use of this statement is platform-dependent.

OPTIONS parameter

OPTIONS on Mainframes
The OPTIONS statement can be used to specify various compilation options for the current Natural
programming object. The same options can be used to specify

statically with the NTCMPO macro;
dynamically with the CMPO parameter;
within a Natural session with the COMPOPT system command.

In addition, the OPTIONS statement can be used to specify options for the Natural Optimizer Compiler. These
options are described in the Natural Optimizer Compiler documentation.

Natural Optimizer Compiler options specified with the MCG option are checked for validity even if the Natural
Optimizer Compiler is not installed.

If multiple OPTIONS statements are specified within the same programming object, the option settings take
effect immediately. However, this is not the case with the options PSIGNF, TSENABL and GFID. For these
options, the option value specified with the last OPTIONS statement applies.

Note:
Unknown options are ignored under Windows and UNIX.

Copyright © Software AG 2003478

OPTIONSOPTIONS

PARSE
This statement can only be used on Windows and UNIX.

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A B yes no

Operand2 S A B yes yes

Operand3 S A B yes yes

Operand4 S A B yes yes

Operand5 S A A B yes yes

Operand6 S A A B yes yes

Function
This statement allows you to parse XML documents from a Natural program.

It is recommended that you use dynamic variables when using the PARSE statement. The reason being, that it is
impossible to determine the length of a static variable. Using static variables could in turn lead to the truncation
of the value that is to be written into the variable.

The following are markings used in path strings to represent the different data types in an XML document (on
ASCII-based systems):

479Copyright © Software AG 2003

PARSEPARSE

Marking XML Data Location in Path String

? Processing instruction (except for <?XML...?>)end

! Comment end

C CDATA section end

@ Attribute before the attribute name

/ Closing tag
and
Parent name separator in a path

end
or
between parent names

$ Parsed data - character data string end

By using this additional markup in the path string, one can more easily identify the different elements of the
XML document in the output document.

operand1
Operand1 represents the XML document in question. The XML document may not be changed while it is being
parsed. If you try to change the XML document during parsing (by writing into it, for example), an error
message will be displayed.

operand2
Operand2 represents the PATH of the data in the XML document.

The PATH contains the name of the identified XML part, the names of all parents, as well as the type of the
XML part.

Note:
The information given with PATH can be used to easily fill a tree view.

Example using operand2

The following XML code:

/*PARXX1 : Example XML code 1 for PARSE
/*
myxml: = ’<?xml version="1.0" encoding="ISO-8859-1" ?>’-
 ’<employee personnel-id="30016315" >’-
 ’<full-name>’-
 ’<!--this is just a comment-->’-
 ’<first-name>RICHARD</first-name>’-
 ’<name>FORDHAM</name>’-
 ’</full-name>’-
 ’</employee>’-

processed by the following Natural code:

Copyright © Software AG 2003480

PARSEoperand1

/*PARNX1 : Example Natural program 1 for PARSE
/*
*
PARSE XML myxml INTO PATH mypath
 PRINT mypath
END-PARSE

produces the following output:

employee
employee/@personnel-id
employee/full-name
employee/full-name/!
employee/full-name/first-name
employee/full-name/first-name/$
employee/full-name/first-name//
employee/full-name/name
employee/full-name/name/$
employee/full-name/name//
employee/full-name//
employee//

operand3
Operand3 represents the NAME of a data element in the XML document.

If NAME has no value, then the dynamic variable associated with it will be set to *length()=0, which is a static
variable filled with a blank.

Example using operand3

The following XML code:

/*PARXX2 : Example XML code 2 for PARSE
/*
myxml: = ’<?xml version="1.0" encoding="ISO-8859-1" ?>’-
 ’<employee personnel-id="30016315" >’-
 ’<full-name>’-
 ’<!--this is just a comment-->’-
 ’<first-name>RICHARD</first-name>’-
 ’<name>FORDHAM</name>’-
 ’</full-name>’-
 ’</employee>’-

processed by the following Natural code:

/*PARNX2 : Example Natural program 2 for PARSE
/*
*
PARSE XML myxml INTO PATH mypath NAME myname
 DISPLAY (AL=39) mypath myname
END-PARSE

481Copyright © Software AG 2003

operand3PARSE

produces the following output:

 MYPATH MYNAME
---------------------------------- -----------------------------------

employee employee
employee/@personnel-id personnel-id
employee/full-name full-name
employee/full-name/!
employee/full-name/first-name first-name
employee/full-name/first-name/$
employee/full-name/first-name// first-name
employee/full-name/name name
employee/full-name/name/$
employee/full-name/name// name
employee/full-name// full-name
employee// employee

operand4
Operand4 represents the content (VALUE) of a data element in the XML document.

If there is no value, a given dynamic variable will be set to *length()=0, which is a static variable filled with a
blank.

Example using operand4

The following XML code:

/*PARXX3 : Example XML code 3 for PARSE
/*
myxml: = ’<?xml version="1.0" encoding="ISO-8859-1" ?>’-
 ’<employee personnel-id="30016315" >’-
 ’<full-name>’-
 ’<!--this is just a comment-->’-
 ’<first-name>RICHARD</first-name>’-
 ’<name>FORDHAM</name>’-
 ’</full-name>’-
 ’</employee>’-

processed by the following Natural code:

/*PARNX3 : Example Natural program 3 for PARSE
/*
*
PARSE XML myxml INTO PATH mypath VALUE myvalue
 DISPLAY (AL=39) mypath myvalue
END-PARSE

produces the following output:

Copyright © Software AG 2003482

PARSEoperand4

 MYPATH MYVALUE
---------------------------------- -----------------------------------

employee
employee/@personnel-id 30016315
employee/full-name
employee/full-name/! this is just a comment
employee/full-name/first-name
employee/full-name/first-name/$ RICHARD
employee/full-name/first-name//
employee/full-name/name
employee/full-name/name/$ FORDHAM
employee/full-name/name//
employee/full-name//
employee//

operand5 and operand6
The NAMESPACE URI or Uniform Resource Identifier (operand5) and the namespace PREFIX (operand6) are
copied during runtime. Therefore, modifying the namespace mapping arrays inside the PARSEXML loop will
not affect the parser.

NORMALIZE NAMESPACE

Operand5 and operand6 are one-dimensional arrays with an equal number of occurrences.

Namespace normalization is a feature of the PARSE statement. XML is capable of defining namespaces for the
element names:

<myns:myentity xmlns:myns="http://myuri" />

The NAMESPACE definition consists of two parts: a namespace PREFIX (which is, in this case, myns) and a
URI (myuri) to define the namespace. The namespace PREFIX is part of the element name. This means, that for
the PARSE statement, and especially for operand2, the generated PATH strings depend on the namespace
PREFIX. If the path inside a Natural program is used to indicate specific tags, then this will fail if an XML
document uses the correct NAMESPACE (URI), but with a different PREFIX.

With NAMESPACE NORMALIZATION, all namespace PREFIXes can be set to defaults which have been
defined in the NAMESPACE clause. The first entry will be the one used if a URI is specified more than once. If
more than one PREFIX is used in the XML document, then only the first one will be taken into account for the
output. The rest will be ignored.

The NAMESPACE clause contains pairs of namespace URIs and prefixes. For example:

uri(1) := ’http://namespaces.softwareag.com/natural/demo’
pre(1) := ’nat:’

If NAMESPACE is defined inside an XML document, the parser checks to see if that namespace (URI) exists in
the normalization table. The prefix of the normalization table is used for all output data from the PARSE
statement, instead of the namespace defined in the XML document.

483Copyright © Software AG 2003

operand5 and operand6PARSE

Example 1 Using Operands 5 and 6

The following XML code:

/*PARXX4 : Example XML code 4 for PARSE
/*
myxml: = ’<?xml version="1.0" encoding="ISO-8859-1" ?>’-
 ’<nat:employee nat:personnel-id="30016315"’-
 ’ xmlns:nat="http://namespaces.softwareag.com/natural/demo">’-
 ’<nat:full-Name>’-
 ’<nat:first-name>RICHARD</nat:first-name>’-
 ’<nat:name>FORDHAM</nat:name>’-
 ’</nat:full-Name>’-
 ’</nat:employee>’-

processed by the following Natural code:

/*PARNX4 : Example Natural program 4 for PARSE
/*
*
PARSE XML myxml INTO PATH mypath
 PRINT mypath
END-PARSE

produces the following output:

nat:employee
nat:employee/@nat:personnel-id
nat:employee/@xmlns:nat
nat:employee/nat:full-Name
nat:employee/nat:full-Name/nat:first-name
nat:employee/nat:full-Name/nat:first-name/$
nat:employee/nat:full-Name/nat:first-name//
nat:employee/nat:full-Name/nat:name
nat:employee/nat:full-Name/nat:name/$
nat:employee/nat:full-Name/nat:name//
nat:employee/nat:full-Name//
nat:employee//

Example 2 using operands 5 and 6

Using NAMESPACE NORMALIZATION, the same XML document as in Example 1 with a different
NAMESPACE PREFIX would produce exactly the same output.

XML code:

/*PARXX5 : Example XML code 5 for PARSE
/*
myxml: = ’<?xml version="1.0" encoding="ISO-8859-1" ?>’-
 ’<natural:employee natural:personnel-id="30016315"’-
 ’ xmlns:natural="http://namespaces.softwareag.com/natural/demo">’-
 ’<natural:full-Name>’-
 ’<natural:first-name>RICHARD</natural:first-name>’-
 ’<natural:name>FORDHAM</natural:name>’-
 ’</natural:full-Name>’-
 ’</natural:employee>’-

Copyright © Software AG 2003484

PARSEExample 1 Using Operands 5 and 6

Natural code:

/*PARNX5 : Example Natural program 5 for PARSE
/*
*
uri(1) := ’http://namespaces.softwareag.com/natural/demo’
pre(1) := ’nat:’
*
PARSE XML myxml INTO PATH mypath NORMALIZE NAMESPACE uri(*) PREFIX pre(*)
 PRINT mypath
END-PARSE

Output of above program:

nat:employee
nat:employee/@nat:personnel-id
nat:employee/@xmlns:nat
nat:employee/nat:full-Name
nat:employee/nat:full-Name/nat:first-name
nat:employee/nat:full-Name/nat:first-name/$
nat:employee/nat:full-Name/nat:first-name//
nat:employee/nat:full-Name/nat:name
nat:employee/nat:full-Name/nat:name/$
nat:employee/nat:full-Name/nat:name//
nat:employee/nat:full-Name//
nat:employee//

Addtional Information

The prefix definition in the namespace normalization array always has to end in a colon ":", since this is the
string that will be replaced.

A PREFIX or a URI may only occur once in a namespace normalization array.

If a PREFIX or the NAMESPACE URI contains trailing blanks (eg. when using a static variable), the trailing
blanks will be removed before the external parser is called.

If the PREFIX definition at the namespace normalization only contains a colon ":", then the NAMESPACE
PREFIX will be deleted.

Global Namespace

To specify the global namespace, use the prefix ":" and an empty URI.

Related System Variables

The following Natural system variables are automatically created for each PARSE statement issued.

*PARSE-TYPE
*PARSE-LEVEL
*PARSE-ROW
*PARSE-COL
*PARSE-NAMESPACE-URI

485Copyright © Software AG 2003

Addtional InformationPARSE

(r) in parentheses after *PARSE-TYPE, *PARSE-LEVEL, *PARSE-ROW, *PARSE-COL and
*PARSE-NAMESPACE-URI is used to indicate the label or statement number of the statement in which the
PARSE was issued. If (r) is not specified, System Variable represents the system variable of the XML currently
being processed in the currently active processing loop.

For more information on these system variables, see the System Variables documentation.

Copyright © Software AG 2003486

PARSERelated System Variables

PASSW

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A yes no

Function
The PASSW statement is used to specify a password for access to Adabas or VSAM files which have been
password-protected.

Password - operand1
The password (operand1) may be specified as an alphanumeric constant or the content of an alphanumeric
variable. It may consist of up to 8 characters, and must not contain special characters or embedded blanks. If the
password is specified as a constant, it must be enclosed in apostrophes.

The password specified with the PASSW statement applies to all database access statements (FIND, GET,
HISTOGRAM, READ, STORE) for which no individual password is specified. It remains in effect until another
password is specified in the execution of a subsequent PASSW statement or the Natural session is terminated.

A password specified with a specific database access statement applies only to that statement, not to any
subsequent statement.

487Copyright © Software AG 2003

PASSWPASSW

Natural Security Considerations
In the security profile of a library, you can specify a default Adabas password (as described in the Natural
Security documentation); this password applies to all database access statements for which neither an individual
password is specified nor a PASSW statement applies. It applies within the library in whose security profile it is
specified, and also remains in effect in other libraries you subsequently log on to and in whose security profiles
no password is specified.

Restriction
This statement is not valid for DL/I databases.

Password Display Protection - Mainframe only
If the password is specified as a constant, the PASSW statement should always be coded at the very beginning of
a source-code line, and there should be no blank between the keyword "PASSW" and the equal sign; this ensures
that the password is not visible/displayable in the source code of the program.

In TP mode, you may enter the PASSW statement invisible by entering the terminal command "%*" before you
type in the PASSW statement.

In batch mode, a password may be provided by specifying:

 ADHOC
 PASSW=’password’
 END
 ENDHOC

The password value will not appear in the printed output.

Example

 /* EXAMPLE ’PWDEX1:’ PASSW
 /*********************************
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 END-DEFINE
 /*********************************
 PASSW=’PASSW1’
 /*********************************
 LIMIT 5
 READ EMPLOY-VIEW
 DISPLAY NOTITLE PERSONNEL-ID NAME
 END-READ
 /*********************************
 END

Copyright © Software AG 2003488

PASSWNatural Security Considerations

PERSONNEL NAME
 ID
 --------- --------------------

 50005600 MORENO
 50005500 BLOND
 50005300 MAIZIERE
 50004900 CAOUDAL
 50004600 VERDIE

489Copyright © Software AG 2003

ExamplePASSW

PERFORM

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand2 C S A G A N P I F B D T L C G O yes yes

Related Statements: DEFINE SUBROUTINE | DEFINE DATA PARAMETER | CALLNAT | FETCH

Function
The PERFORM statement is used to invoke a Natural subroutine.

subroutine-name
For a subroutine name (maximum 32 characters), the same naming conventions apply as for user-defined
variables (see the Natural Parameter Reference documentation).

The subroutine name is independent of the name of the module in which the subroutine is defined (it may but
need not be the same).

The subroutine to be invoked must be defined with a DEFINE SUBROUTINE statement. It may be an inline or
external subroutine (see DEFINE SUBROUTINE statement).

Within one object, no more than 50 external subroutines may be referenced.

Data Available in a Subroutine

Inline Subroutines

No explicit parameters can be passed from the invoking object to an inline subroutine.

An inline subroutine has access to the currently established global data area as well as the local data area defined
within the same object module.

External Subroutines

An external subroutine has access to the currently established global data area. Moreover parameters can be
passed with the PERFORM statement from the invoking object to the external subroutine (see operand2); thus,
you may reduce the size of the global data area.

Copyright © Software AG 2003490

PERFORMPERFORM

Parameters - operand2
When an external subroutine is invoked with the PERFORM statement, one or more parameters (operand2) can
be passed with the PERFORM statement from the invoking object to the external subroutine. For an inline
subroutine, operand2 cannot be specified.

If parameters are passed, the structure of the parameter list must be defined in a DEFINE DATA statement.

By default, the parameters are passed "by reference", that is, the data are transferred via address parameters, the
parameter values themselves are not moved.
However, it is also possible to pass parameters "by value", that is, pass the actual parameter values. To do so,
you define these fields in the DEFINE DATA PARAMETER statement of the subroutine with the option BY
VALUE or BY VALUE RESULT.

If parameters are passed "by reference" the following applies: The sequence, format and length of the
parameters in the invoking object must match exactly the sequence, format and length of the DEFINE
DATA PARAMETER structure of the invoked subroutine. The names of the variables in the invoking
object and the subroutine may be different.
If parameters are passed "by value" the following applies: The sequence of the parameters in the invoking
object must match exactly the sequence in the DEFINE DATA PARAMETER structure of the invoked
subroutine. Formats and lengths of the variables in the invoking object and the subroutine may be different;
however, they have to be data transfer compatible. The names of the variables in the invoking object and the
subroutine may be different.
If parameter values that have been modified in the subroutine are to be passed back to the invoking object,
you have to define these fields with BY VALUE RESULT.
With BY VALUE (without RESULT) it is not possible to pass modified parameter values back to the
invoking object (regardless of the AD specification; see also below).

Note:
With BY VALUE, an internal copy of the parameter values is created. The subroutine accesses this copy and can
modify it, but this will not affect the original parameter values in the invoking object.
With BY VALUE RESULT, an internal copy is likewise created; however, after termination of the subroutine,
the original parameter values are overwritten by the (modified) values of the copy.

For both ways of passing parameters, the following applies:

In the parameter data area of the invoked subroutine, a redefinition of groups is only permitted within a
REDEFINE block.

If an array is passed, its number of dimensions and occurrences in the subroutine’s parameter data area must be
same as in the PERFORM parameter list.

Note:
If multiple occurrences of an array that is defined as part of an indexed group are passed with the PERFORM
statement, the corresponding fields in the subroutine’s parameter data area must not be redefined, as this would
lead to the wrong addresses being passed.

AD=
If operand2 is a variable, you can mark it in one of the following ways:

491Copyright © Software AG 2003

Parameters - operand2PERFORM

AD=O Non-modifiable, see Session Parameter AD=O.

Note:
Internally, AD=O is processed in the same way as BY VALUE (see note under Parameters -
operand2).

AD=M Modifiable, see Session Parameter AD=M.

This is the default setting.

AD=A Input only, see Session Parameter AD=A.

If operand2 is a constant, AD cannot be explicitly specified. For constants, AD=O always applies.

nX
With the notation nX you can specify that the next n parameters are to be skipped (for example, 1X to skip the
next parameter, or 3X to skip the next three parameters); this means that for the next n parameters no values are
passed to the external subroutine.
A parameter that is to be skipped must be defined with the keyword OPTIONAL in the subroutine’s DEFINE
DATA PARAMETER statement. OPTIONAL means that a value can - but need not - be passed from the
invoking object to such a parameter.

Nested PERFORM Statements
The invoked subroutine may contain a PERFORM statement to invoke another subroutine (the number of nested
levels is limited by the size of the required memory).

A subroutine may invoke itself (recursive subroutine). If database operations are contained within an external
subroutine that is invoked recursively, Natural will ensure that the database operations are logically separated.

Parameter Transfer with Dynamic Variables
See the statement CALLNAT .

Example 1

Copyright © Software AG 2003492

PERFORMnX

 /* EXAMPLE ’PEREX1S’: PERFORM (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 ADDRESS-LINE (A20/2)
 2 PHONE
 1 #ARRAY (A75/1:4)
 1 REDEFINE #ARRAY
 2 #ALINE (A25/1:4,1:3)
 1 #X (N2) INIT <1>
 1 #Y (N2) INIT <1>
 END-DEFINE
 /***
 LIMIT 5
 FIND EMPLOY-VIEW WITH CITY = ’BALTIMORE’
 MOVE NAME TO #ALINE (#X,#Y)
 MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
 MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
 MOVE PHONE TO #ALINE (#X+3,#Y)
 IF #Y = 3
 RESET INITIAL #Y
 PERFORM PRINT
 ELSE
 ADD 1 TO #Y
 END-IF
 AT END OF DATA
 PERFORM PRINT
 END-ENDDATA
 END-FIND
 /***
 DEFINE SUBROUTINE PRINT
 WRITE NOTITLE (AD=OI) #ARRAY(*)
 RESET #ARRAY(*)
 SKIP 1
 END-SUBROUTINE
 /***
 END

 JENSON LAWLER FORREST
 2120 HASSELL 4588 CANDLEBERRY AVE 37 TENNYSON DRIVE
 #206 BALTIMORE BALTIMORE
 (301)998-5038 (301)629-0403 (301)881-3609

 ALEXANDER NEEDHAM
 409 SENECA DRIVE 12609 BUILDERS LANE
 BALTIMORE BALTIMORE
 (301)345-3690 (301)641-9789

Example 2
Program containing PERFORM statement:

493Copyright © Software AG 2003

Example 2PERFORM

 /* EXAMPLE ’PEREX2’ PERFORM EXTERNAL WITH PARAMETER
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 ADDRESS-LINE (A20/2)
 2 PHONE
 1 #ALINE (A25/1:4,1:3)
 1 #X (N2) INIT <1>
 1 #Y (N2) INIT <1>
 END-DEFINE
 /**
 LIMIT 5
 FIND EMPLOY-VIEW WITH CITY = ’BALTIMORE’
 MOVE NAME TO #ALINE (#X,#Y)
 MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
 MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
 MOVE PHONE TO #ALINE (#X+3,#Y)
 IF #Y = 3
 DO
 RESET INITIAL #Y
 PERFORM PEREX2E #ALINE(*,*)
 DOEND
 ELSE
 ADD 1 TO #Y
 AT END OF DATA
 PERFORM PEREX2E #ALINE(*,*)
 LOOP
 /**
 END

Invoked Subroutine:

 /* EXAMPLE ’PEREX2E’ SUBROUTINE WITH PARAMETER
 /**
 DEFINE DATA PARAMETER
 1 #ALINE (A25/1:4,1:3)
 END-DEFINE
 /**
 DEFINE SUBROUTINE PEREX2E
 WRITE NOTITLE (AD=OI) #ALINE(*,*)
 RESET #ALINE(*,*)
 SKIP 1
 RETURN
 /**
 END

 JENSON LAWLER FORREST
 2120 HASSELL 4588 CANDLEBERRY AVE 37 TENNYSON DRIVE
 #206 BALTIMORE BALTIMORE
 (301)998-5038 (301)629-0403 (301)881-3609

 ALEXANDER NEEDHAM
 409 SENECA DRIVE 12609 BUILDERS LANE
 BALTIMORE BALTIMORE
 (301)345-3690 (301)641-9789

Copyright © Software AG 2003494

PERFORMExample 2

PERFORM BREAK PROCESSING

Related Statement: AT BREAK

Function
This statement is used to establish break processing in loops created by FOR, REPEAT, CALL LOOP and
CALL FILE statements where no automatic break processing is established, or whenever a user-initiated break
processing is desired. Unlike automatic break processing which is executed immediately after the record is read,
the PERFORM BREAK statement is executed when it is encountered in the normal flow of the program.

This statement causes a check for a break processing condition (based on the value of a control field) and also
results in the evaluation of Natural system functions. This check and system function evaluation are performed
each time the statement is encountered for execution. This statement may be executed depending on a condition
specified in an IF statement.

Statement Reference Notation - r
By default, the final PERFORM BREAK condition is true at the end of execution of the program, subprogram or
subroutine.

The (r) notation may be used to relate the final processing of a PERFORM BREAK to a specific loop. In this
case the PERFORM BREAK is executed in the loop end handling of this loop; after the final automatic BREAK
processing and before the AT END OF DATA statements are executed.

AT BREAK statement...
See the syntax of the AT BREAK statement.

495Copyright © Software AG 2003

PERFORM BREAK PROCESSINGPERFORM BREAK PROCESSING

Example

 /* EXAMPLE ’PBPEX1’: PERFORM BREAK PROCESSING
 /***
 DEFINE DATA LOCAL
 1 #INDEX (N2)
 1 #LINE (N2) INIT <1>
 END-DEFINE
 /***
 FOR #INDEX 1 TO 18
 PERFORM BREAK PROCESSING
 AT BREAK OF #INDEX /1/
 WRITE NOTITLE / ’PLEASE COMPLETE LINES 1-9 ABOVE’ /
 RESET INITIAL #LINE
 END-BREAK
 WRITE NOTITLE ’_’ (64) ’=’ #LINE
 ADD 1 TO #LINE
 END-FOR
 /***
 END

 __ #LINE: 1
 __ #LINE: 2
 __ #LINE: 3
 __ #LINE: 4
 __ #LINE: 5
 __ #LINE: 6
 __ #LINE: 7
 __ #LINE: 8
 __ #LINE: 9

 PLEASE COMPLETE LINES 1-9 ABOVE

 __ #LINE: 1
 __ #LINE: 2
 __ #LINE: 3
 __ #LINE: 4
 __ #LINE: 5
 __ #LINE: 6
 __ #LINE: 7
 __ #LINE: 8
 __ #LINE: 9

 PLEASE COMPLETE LINES 1-9 ABOVE

Equivalent reporting-mode example: See the program PBPEX1R in the library SYSEXRM.

Copyright © Software AG 2003496

PERFORM BREAK PROCESSINGExample

PRINT

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A G N A N P I F B D T L G O yes no

Related Statement: WRITE

Function
The PRINT statement is used to produce output in free format.

The PRINT statement differs from the WRITE statement in the following aspects:

The output for each operand is written according to the value content rather than the length of the operand.
Leading zeros for numeric values and trailing blanks for alphanumeric values are suppressed. The session
parameter AD defines whether numeric values are printed left or right justified. With AD=L, the trailing
blanks of a numeric value are suppressed. With AD=R, the leading blanks of a numeric value are printed.
If the resulting output exceeds the current line size (LS parameter), the output is continued on the next line
as follows:
An alphanumeric constant or the content of an alphanumeric variable (without edit mask) is split at the
rightmost blank or character which is neither a letter nor a numeric character contained on the current line.
The first part of the split value is output to the current line, and the second part is written to the next line.
For all other operands, the entire value is written to the next line.

Report Specification - rep
The notation (rep) may be used to specify the identification of the report for which the PRINT statement is
applicable. A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified. If (rep) is not specified, the PRINT statement will be applicable to the first report
(report 0).

If this printer file is defined to Natural as PC, the report will be downloaded to the PC.

497Copyright © Software AG 2003

PRINTPRINT

NOTITLE
Natural generates a single title line for each page resulting from a PRINT statement. This title contains the page
number, the time of day, and the date. Time of day is set at the beginning of the session (TP mode) or at the
beginning of the job (batch mode). This title line may be overridden by using a WRITE TITLE statement or may
be suppressed by specifying the NOTITLE clause in the PRINT statement.

 PRINT NAME (default title will be produced)
 PRINT NAME
 WRITE TITLE ’USER TITLE’ (user title will be produced)
 PRINT NOTITLE NAME (no title will be produced)

If the NOTITLE option is used, it applies to all DISPLAY, PRINT and WRITE statements within the same
object which write data to the same report.

NOHDR
The PRINT statement itself does not produce any column headers. However, if you use the PRINT statement in
conjunction with a DISPLAY statement, you can use the NOHDR option of the PRINT statement to suppress the
column headers generated by the DISPLAY statement: the NOHDR option only takes effect if the PRINT
statement is executed after a DISPLAY statement, the output spans more than one page, and the execution of the
PRINT statement causes a new page to be output. Without the NOHDR option, the column headers of the
DISPLAY statement would be output on this new page; with NOHDR they will not.

statement-parameters
One or more parameters, enclosed within parentheses, may be specified immediately after the PRINT statement
or an element being displayed.

Each parameter specified in this manner will override any previous parameter specified in a GLOBALS
command, SET GLOBALS or FORMAT statement. If more than one parameter is specified, the parameters must
be separated from one another by one or more blanks. A parameter entry must not be split between two statement
lines.

The parameter settings applied here will only be regarded for variable fields, but they have no effect on
text-constants. If you would like to set field attributes for a text-constant, they have to be set explicitly for this
element.

One or more parameters, enclosed within parentheses, may be specified immediately after the WRITE statement
(see table and example below).

Each parameter specified will override any previous parameter specified in a GLOBALS command, SET
GLOBALS or FORMAT statement. If more than one parameter is specified, they must be separated by one or
more blanks from one another. Each parameter specification must not be split between two statement lines.

The parameter settings applied here will only be regarded for variable fields, but they have no effect on
text-constants. If you would like to set field attributes for a text-constant, they have to be set explicitly for this
element.

Copyright © Software AG 2003498

PRINTNOTITLE

Parameters that can be specified with the PRINT statement Specification
S = at statement level
E = at element level

AD Attribute Definition SE

AL Alphanumeric Length for Output SE

CD Color Definition SE

CV Control Variable SE

DF Date Format SE

DY Dynamic Attributes SE

EM Edit Mask SE

FL Floating Point Mantissa Length SE

MC Multiple-Value Field Count S

MP Maximum Number of Pages of a Report S

NL Numeric Length for Output SE

PC Periodic Group Count S

PM Print Mode SE

PS Page Size for Natural Reports (under Windows and UNIX only) S

SG Sign Position SE

ZP Zero Printing SE

The individual parameters are described in the section Session Parameters of the Natural Parameter Reference
documentation.

Example:

DEFINE DATA LOCAL
1 VARI (A4) INIT <’1234’> /* Output
END-DEFINE /* Produced
* /* ---------
PRINT ’Text’ VARI /* Text 1234
PRINT (PM=I) ’Text’ VARI /* Text 4321
PRINT ’Text’ (PM=I) VARI (PM=I) /* txeT 4321
PRINT ’Text’ (PM=I) VARI /* txeT 1234
END

Field Positioning, Text, Attribute Assignment

499Copyright © Software AG 2003

Field Positioning, Text, Attribute AssignmentPRINT

Field Positioning Notations

nX

The nX notation is used to insert n spaces between columns.

Note: (for Mainframes Only)
n must not be "0".

 PRINT NAME 5X SALARY

nT

The nT notation causes positioning (tabulation) to print position n. Backward positioning results in a line
advance.

 PRINT 25T NAME 50T SALARY

(causes NAME to print beginning in position 25 and SALARY to print beginning in position 50).

/

A slash causes a line advance when placed between fields or text elements.

 PRINT NAME / SALARY

Text/Attribute Assignment

’text’

text is displayed as text.

 PRINT ’EMPLOYEE’ NAME ’MARITAL/STATUS’ MAR-STAT

’c’ (n)

Identical to ’text’, except that the specified character c is displayed n times.

 PRINT ’*’ (5) ’=’ NAME

’=’

If ’=’ is placed immediately before the field, the field name is output immediately before the field value.

 PRINT ’=’ NAME

Copyright © Software AG 2003500

PRINTField Positioning Notations

attributes

The display and color attributes to be used for text/field display:

1. Display attributes (see the session parameter AD in the Natural Parameter Reference documentation).
2. Color attributes (see the session parameter CD in the Natural Parameter Reference documentation).

operand1
As operand1 you specify the field to be printed.

Under Windows and UNIX, the operands of a single PRINT statement may not occupy more than 250 lines of
output.

parameters
One or more parameters, enclosed within parentheses, may be specified immediately after operand1.

Each parameter specified in this manner will override any previous parameter specified in a GLOBALS
command, SET GLOBALS or FORMAT statement. If more than one parameter is specified, one or more blanks
must be placed between each entry. An entry must not be split between two statement lines.

For information on the individual parameters, see the table in the section statement-parameters.

501Copyright © Software AG 2003

operand1PRINT

Example

 /* EXAMPLE ’PRTEX1’: PRINT
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
 2 JOB-TITLE
 2 ADDRESS-LINE (2)
 END-DEFINE
 LIMIT 1
 READ EMPLOY-VIEW BY CITY
 /**
 WRITE NOTITLE ’EXAMPLE 1:’
 // ’RESULT OF WRITE STATEMENT:’
 WRITE / NAME ’,’ FIRST-NAME ’:’ JOB-TITLE ’*’ (30)
 WRITE / ’RESULT OF PRINT STATEMENT:’
 PRINT / NAME ’,’ FIRST-NAME ’:’ JOB-TITLE ’*’ (30)
 /**
 WRITE // ’EXAMPLE 2:’
 // ’RESULT OF WRITE STATEMENT:’
 WRITE / NAME 60X ADDRESS-LINE (1:2)
 WRITE / ’RESULT OF PRINT STATEMENT:’
 PRINT / NAME 60X ADDRESS-LINE (1:2)
 /**
 END-READ
 END

 EXAMPLE 1:

 RESULT OF WRITE STATEMENT:

 SENKO , WILLIE : PROGRAMMER

 RESULT OF PRINT STATEMENT:

 SENKO , WILLIE : PROGRAMMER ******************************

 EXAMPLE 2:

 RESULT OF WRITE STATEMENT:

 SENKO
 2200 COLUMBIA PIKE #914

 RESULT OF PRINT STATEMENT:

 SENKO 2200 COLUMBIA
 PIKE #914

Copyright © Software AG 2003502

PRINTExample

PROCESS
Note: This statement is only available with Entire System Server.

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N P B yes no

Operand2 C S A N P B yes no

Operand3 S A N P B yes no

Function
The PROCESS statement is used in conjunction with Entire System Server. Entire System Server allows you to
use various operating system facilities such as reading and writing files, VTOC and catalog management, JES
queues, etc.

See the section Getting Started in the Entire System Server User’s Guide for further information on the
PROCESS statement and its individual clauses.

USING
The USING clause is used to pass parameters to the Entire System Server processor. This is done by assigning a
value (operand2) to a field (operand1) in a view defined to Entire System Server. See the Entire System Server
documentation for view description.

Note:
Multiple specifications of "operand1=operand2" must be separated either by the input delimiter character (as
specified with the session parameter ID) or by a comma. A comma must not be used for this purpose, however, if
the comma is defined as decimal character (with the session parameter DC).

GIVING
The GIVING clause is used to specify the fields (operand3) for which values are to be returned by the Entire
System Server processor. Each field must be defined in a view used by Entire System Server.

503Copyright © Software AG 2003

PROCESSPROCESS

PROCESS COMMAND

Structured Mode Syntax

Copyright © Software AG 2003504

PROCESS COMMANDPROCESS COMMAND

Reporting Mode Syntax

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A no no

Operand2 C S A G A N no no

Operand3 C S A N no no

Operand4 C S A N P I no no

Function
Once a Command Processor has been created using the Natural utility SYSNCP, it can be invoked from a
Natural program using the PROCESS COMMAND statement.

For details on how to create a Natural Command Processor, please refer to the section Command Processor
Maintenance of your Natural SYSNCP Utility documentation.

Note:
The word "COMMAND" in the PROCESS COMMAND statement is in fact the name of a view. The name of
the view that is used need not necessarily be "COMMAND"; however, we recommend the use of "COMMAND"
because there exists a DDM with the same name. This DDM must be referenced within the DEFINE DATA
statement, for example "COMMAND VIEW OF COMMAND".

505Copyright © Software AG 2003

Reporting Mode SyntaxPROCESS COMMAND

CLOSE
CLOSE terminates the use of the command processor and releases the command processor buffer. When the
command processor is used during a session and is not released with CLOSE, then there exists a buffer named
NCPWORK in your thread. The parameters of this buffer may be evaluated by using the system command BUS.
The runtime part of the command processor requires this buffer; it can be released using the statement
PROCESS COMMAND ACTION CLOSE. If any PROCESS COMMAND statement follows this statement,
then the command processor buffer will be opened again.

CHECK
CHECK is used as a precautionary measure to determine if a command is executable with the statement
PROCESS COMMAND EXEC. It works as follows: for the given processor name, a runtime check is performed
in two steps:

It is checked whether the processor exists in the current library or one of its steplibs;
The content of the command line COMMAND-LINE (1) is analyzed to determine whether it is acceptable.

In addition, the runtime action definitions "R", "M" and "1-9" are written into RESULT-FIELD (1:9).

If the field NATURAL-ERROR is specified in the view or in the GIVING clause, it returns the error code. If this
field is not available and the command analysis fails, a Natural system error occurs.

Note:
As the function of the CHECK option is also performed as part of the EXEC option (see below), it is not
necessary to use CHECK before every EXEC.

EXEC
EXEC works exactly the same as CHECK with the addition that the runtime actions are executed as specified in
the runtime action editor.

Only COMMAND-LINE (1) is needed. You can use up to 9 occurrences of RESULT-FIELD (however, for
optimum performance, you should not use more occurrences than you really need).

Note:
EXEC is the only option which can be used to leave the currently active program. This is the case when the
runtime action definition contains a FETCH or STOP statement.

HELP
HELP returns a list of all valid keywords, synonyms, and functions for the purpose of, for example, the creation
of online help windows. This list is contained in the field(s) of RESULT-FIELD. The type of help returned is
dependent on the content of the command lines. COMMAND-LINE (1) must contain the search criteria.
COMMAND-LINE (2), if specified, must contain the start value or a search value. COMMAND-LINE (3), if
specified, must contain a start value.

Note:
For optimum performance, the number of occurrences of the field RESULT-FIELD should not exceed the
number of lines to be displayed on the screen. At least one occurrence must be used.

Copyright © Software AG 2003506

PROCESS COMMANDCLOSE

HELP for Keywords

This option returns an alphabetically sorted list of keywords and/or synonyms with their IKNs.

Command
Line

Contents

1 Must begin with indicator "K".

The types of keywords to be returned:

* Keywords of all types
1 Keywords with type "1"
2 Keywords with type "2"
3 Keywords with type "3"
P Keywords with type "P" (parameter)

Options:

I Return IKN in addition to keywords.
T Show keyword partially in upper case (to show possible abbreviation).
S Return synonyms in addition to keywords.
X Return only synonyms of specified keywords.
A Internal keywords are also returned.
+ Search does not include start value.

2 Start value for the keyword search (optional).

By default, the search begins with the start value. However, if you specify the option "+", the
search does not include the start value itself, but begins with the next higher value.

The field RESULT-FIELD (1:n) returns the specified list.

Example:

 Command Line 1: K*X Returns all synonyms of all keyword types.

 Command Line 1: K123S Returns all keywords of type 1, 2 and 3 including synonyms.

HELP for Synonyms

For a given IKN, this option returns the original keyword and all synonyms.

Command Line Contents

1 Must begin with the indicator "S".

Option:

T Shows keyword partially in upper case (to show possible abbreviation).

2 Internal Keyword Number (IKN) of the keyword in format N4.

507Copyright © Software AG 2003

HELP for KeywordsPROCESS COMMAND

The field RESULT-FIELD (1) returns the original keyword. The fields RESULT-FIELD (2:n) return associated
synonyms for this keyword.

Example:

 Input:
 Command Line 1: S
 Command Line 2: 1003

 Output:
 Result-Field 1: Edit
 Result-Field 2: Maintain
 Result-Field 3: Modify

HELP for Global Functions

This option returns a list of all global functions.

Command
Line

Contents

1 Must begin with the indicator "G".

Options:

I Internal Function Number (IFN) is also returned.
T Shows keyword partially in upper case (to show possible abbreviation).
S The keywords returned in RESULT-FIELD will be aligned in columns.
A Internal keywords are also returned.
1 Only functions containing the given keyword of type 1 are to be returned.
2 Only functions containing the given keyword of type 2 are to be returned.
3 Only functions containing the given keyword of type 3 are to be returned.
+ Search does not include start value.

2 Start value for global function search. Keywords must be given in sequence "123".

By default, the search begins with the start value. However, if you specify the option "+", the
search does not include the start value itself, but begins with the next higher value.

3 Must be blank.

4 To search only for global functions with a specific keyword, you specify the keyword here.

If you specify a keyword, you also have to specify the keyword type (1, 2 or 3) as option (see
above).

The field RESULT-FIELD (1:n) returns the specified list.

Example:

 Input:
 Command Line 1: G
 Command Line 2: ADD

Copyright © Software AG 2003508

PROCESS COMMANDHELP for Global Functions

 Output:
 Result-Field 1: ADD CUSTOMER
 Result-Field 2: ADD FILE
 Result-Field 3: ADD USER

HELP for Local Functions

This option returns a list of all local functions for a specified location.

Command
Line

Contents

1 Must begin with the indicator "L".

Options :

I IFN is also returned.
T Shows keyword partially in upper case (to show possible abbreviation).
S The keywords returned in RESULT-FIELD will be aligned in columns.
A Internal keywords are also returned.
1 Only functions containing given keyword of type 1 are to be returned.
2 Only functions containing given keyword of type 2 are to be returned.
3 Only functions containing given keyword of type 3 are to be returned.
C Only those functions are returned which are defined for the current location
(command line 3 is ignored).
F Invoke "recursive" listing of local functions; that is, all local commands that lead
to the current/specified location will be returned.

2 Start value for local function search (optional).

Keywords must be given in sequence "123".

3 The location for which the list is to be returned.

Keywords must be given in sequence "123".

If no location is specified, the current location of the command processor will be used.

4 Keyword restriction (optional):

If you specify a keyword, or an IKN with the format N4, only functions with this keyword
will be returned.

The field RESULT-FIELD (1:n) returns the specified list.

HELP for IKN

For any given internal keyword numbers (IKN), this option returns the original keyword.

509Copyright © Software AG 2003

HELP for Local FunctionsPROCESS COMMAND

Command Line Contents

1 Must start with "IKN".

Options:

A The internal keyword will be shown.

T Shows keyword partially in upper case (to show possible abbreviation).

2 The IKN to be translated, in format N4.

The field RESULT-FIELD (1) returns the keyword.

Example:

 Input:
 Command Line 1: IKN
 Command Line 2: 0000002002

 Output:
 Result-Field 1: CUSTOMER

HELP for IFN

For any given internal function numbers (IFN), this option returns the keywords of a function.

Command Line Contents

1 Must start with "IFN".

Option:

A Functions with internal keywords will not be suppressed.

2 The IFN to be translated, in format N10.

3 Further options:

S Keywords belonging to the IFN will be returned in RESULT-FIELD (1:3).

T Shows keywords partially in upper case (to show possible abbreviations).

L IFN will be returned if IFN is used as a location.

C IFN will be returned if IFN is used as a command.

The field RESULT-FIELD (1) returns the function; if option "S" is used, the function is returned in
RESULT-FIELD (1:3).

Example:

 Input:
 Command Line 1: IFN
 Command Line 2: 0001048578

Copyright © Software AG 2003510

PROCESS COMMANDHELP for IFN

 Output:
 Result-Field 1: DISPLAY INVOICE

TEXT
The TEXT option is used to deliver general information about the processor and text associated with a keyword
or function. This text is the same as that entered in the keyword editor or action editor of the SYSNCP utility
during command processor definition.

Note:
To access texts for keywords and functions, you must have specified "Y" in the field "Catalog user texts" in the
processor header maintenance (screen 3) of the SYSNCP utility.

TEXT for General Information

For general information, COMMAND-LINE (*), i.e., all command lines, must be blank. Up to nine fields of
RESULT-FIELD are returned containing the following information:

RESULT-FIELD Contents Format

1 Header 1 for User Text Text (A40)

2 Header 2 for User Text Text (A40)

3 "First Entry used as" text Text (A16)

4 "Second Entry used as" text Text (A16)

5 "Third Entry used as" text Text (A16)

6 Number of Entry 1 Keywords Numeric (N3)

7 Number of Entry 2 Keywords Numeric (N3)

8 Number of Entry 3 Keywords Numeric (N3)

9 Number of Cataloged Functions Numeric (N7)

TEXT for Keyword Information

For keyword information, COMMAND-LINE (1) must contain the corresponding keyword; COMMAND-LINE
(2) can optionally contain the keyword type (1, 2, 3 or P); COMMAND-LINE (3:6) must be empty.

511Copyright © Software AG 2003

TEXTPROCESS COMMAND

RESULT-FIELD Contents Format

1 Keyword comment text Text (A40)

2 Keyword in full length Text (A16)

3 Keyword in unique short form Text (A16)

4 "Keyword used as" entry Text (A16)

5 Internal keyword number (IKN) Numeric (N4)

6 Minimum length of keyword Numeric (N2)

7 Maximum length of keyword Numeric (N2)

8 Keyword type (1, 2, 3, 1S, 2S, 3S, P) Text (A2)

TEXT for Function Information

For function information, COMMAND-LINE (1:3) must contain the keywords which specify the wanted
location. COMMAND-LINE (4:6) contains the keywords which specify the wanted function. For example, if
information about the global command ADD USER is to be returned, the command lines 1, 2, 3, and 6 must be
blank; the command line 4 must contain "ADD", and the command line 5 must contain "USER".

RESULT-FIELD Contents Format

1 Text as defined with the option "T" in runtime action definition. Text (A40)

2 Internal function number (IFN) of the specified location. Numeric (N10)

3 Internal function number (IFN) of the specified function. Numeric (N10)

GET
The GET option is used to read internal command processor information and current command processor
settings from the dynamically allocated buffer NCPWORK. The following fields are used:

Field Name Contents

GETSET-FIELD-NAME
(A32)

The name of the variable to be read.

GETSET-FIELD-VALUE
(A32)

The value of the specified variable after PROCESS COMMAND ACTION
GET is performed.

For a list of possible values for GETSET-FIELD-NAME, see next page.

SET
The SET option is used to modify internal command processor settings in the buffer NCPWORK.

Field Name Contents

GETSET-FIELD-NAME (A32) The name of the variable to be modified.

GETSET-FIELD-VALUE (A32) The value which is to written to the specified variable.

Copyright © Software AG 2003512

PROCESS COMMANDGET

For a list of possible values for GETSET-FIELD-NAME, see next page.

The possible values for GETSET-FIELD-NAME are:

Field Name Format G/S* Content

NAME A8 G Name of current processor.

LIBRARY A8 G Loaded from library.

FNR N10 G Loaded from file.

DBID N10 G Loaded from database.

TIMESTMP A8 G Time stamp of the current processor.

COUNTER N10 G Access counter.

BUFFER-LENGTH N10 G Bytes allocated for NCPWORK.

C-DELIMITER A1 G/S Multiple command delimiter.

DATA-DELIMITER A1 G Delimiter to precede data.

PF-KEY A1 G/S PF key may be command (Y/N).

UPPER-CASE A1 G Keywords in upper case (Y/N).

UQ-KEYWORDS A1 G Keywords unique (Y/N).

IMPLICIT-KEYWORD A1 G/S Identifier for implicit keyword entry.

MIN-LEN N10 G Minimum length of keywords.

MAX-LEN N10 G Maximum length of keywords.

KEYWORD-SEQ A8 G/S Keyword sequence.

ALT-KEYWORD-SEQ A8 G/S Alternative keyword sequence.

USER-SEQUENCE A1 G User may override KEYWORD-SEQ (Y/N).

CURR-LOCATION N10 G/S Current location (IFN).

CURR-IKN1 N10 G/S IKN1 of current location.

CURR-IKN2 N10 G/S IKN2 of current location.

CURR-IKN3 N10 G/S IKN3 of current location.

CHECK-LOCATION N10 G Last checked location (IFN).

CHECK-IKN1 N10 G IKN1 of CHECK-LOCATION.

CHECK-IKN2 N10 G IKN2 of CHECK-LOCATION.

CHECK-IKN3 N10 G IKN3 of CHECK-LOCATION.

TOP-IKN1 N10 G IKN1 of topmost keyword.

TOP-IKN2 N10 G IKN2 of topmost keyword.

TOP-IKN3 N10 G IKN3 of topmost keyword.

KEY1-TOTAL N10 G Number of keywords of type 1.

KEY2-TOTAL N10 G Number of keywords of type 2.

KEY3-TOTAL N10 G Number of keywords of type 3.

FUNCTIONS-TOTAL N10 G Number of cataloged functions.

513Copyright © Software AG 2003

SETPROCESS COMMAND

Field Name Format G/S* Content

LOCAL-GLOBAL-SEQ A8 G/S Local/global function validation.

ERROR-HANDLER A8 G/S General error program.

SECURITY A1 G Natural Security installed (Y/N).

SEC-PREFETCH A1 G Natural Security data are to be read (Y/N) or have been read (D =
done).

PREFIX1 A1 G Corresponds to the field "Prefix Character 1" of the Processor
Header Maintenance 2 screen.

PREFIX2 A1 G Corresponds to the field "Prefix Character 2" of the Processor
Header Maintenance 2 screen.

HEX1 A1 G Corresponds to the field "Hex. Replacement 1" of the Processor
Header Maintenance 2 screen.

HEX2 A1 G Corresponds to the field "Hex. Replacement 2" of the Processor
Header Maintenance 2 screen.

DYNAMIC A32 G Dynamic part (:n:) of last error message.

LAST - G Last command placed on top of stack as data.

LAST-ALL - G Last commands placed on top of stack as data.

LAST-COM - G Last command moved to *COM.

MULTI - G Places the last of multiple commands as data on top of the stack.

MULTI-COM - G Places the last of multiple commands in the system variable *COM.

*G = Can be used with the GET option.
*S = Can be used with the SET option.

USING Clause
The contents of the fields in the USING clause specify, for example, the processor name and the command line.

Specified in the USING clause are fields to be sent to the command processor.

Option Field Name

 PROCESSOR-NAME COMMAND-LINE GETSET-
FIELD-NAME

GETSET-
FIELD-VALUE

CLOSE

CHECK mandatory mandatory

EXEC mandatory mandatory

TEXT mandatory mandatory

HELP mandatory mandatory

GET mandatory mandatory

SET mandatory mandatory mandatory

Copyright © Software AG 2003514

PROCESS COMMANDUSING Clause

GIVING Clause
Note:
This clause can only be used in reporting mode.

Specified in the GIVING clause are fields to be filled by the command processor as a result of the processing of
any option.

Option Field Name

 Natural-
ERROR

RETURN-
CODE

RESULT-
FIELD

GETSET-
FIELD-VALUE

CLOSE recommended

CHECK recommended mandatory mandatory

EXEC recommended mandatory mandatory

TEXT recommended mandatory mandatory

HELP recommended mandatory mandatory

GET recommended mandatory

SET recommended

Note:
The GIVING clause is not available in structured mode, because there exists an implicit GIVING clause made up
of all fields specified in the DEFINE DATA statement, which are usually referenced in the GIVING clause for
reporting mode.
This means that in structured mode all fields that are marked as "mandatory" in the table above must be defined
in the DEFINE DATA statement.

DDM "COMMAND"
The DDM "COMMAND" has been created specifically for use in conjunction with the PROCESS COMMAND
statement:

 DB: 1 File: 1 - COMMAND Default Sequence: ?

 TYL DB NAME F LENG S D REMARKS
 --- -- -------------------------------- - ---- - - ------------------------
 1 AA PROCESSOR-NAME A 8 N D DE USING
 M 1 AB COMMAND-LINE A 80 N D MU/DE USING
 1 AF GETSET-FIELD-NAME A 32 N D DE USING
 1 BA NATURAL-ERROR N 4.0 N GIVING
 1 BB RETURN-CODE A 4 N GIVING
 M 1 BC RESULT-FIELD A 80 N MU GIVING
 1 BD GETSET-FIELD-VALUE A 32 N D USING; GIVING
 ***** DDM OUTPUT TERMINATED ******

Note:
To avoid possible compilation or runtime errors, please make sure that the DDM "COMMAND" is cataloged as
type "C" (field "DDM Type" on the SYSDDM Menu) before you use it. (If you re-catalog the DDM, any
DBID/FNR specification in SYSDDM will be ignored.)

515Copyright © Software AG 2003

GIVING ClausePROCESS COMMAND

The DDM "COMMAND" contains the following fields:

DDM Field Explanation

PROCESSOR-NAME The name of the command processor for which the PROCESS COMMAND
statement is issued. The command processor specified must be cataloged.

COMMAND-LINE The command line to be processed by the command processor (options CHECK,
EXEC), or the keyword/command for which user text or help text is to be
returned to the program (TEXT, HELP options). Note that this field may extend
beyond one line.

GETSET-FIELD-NAME This field is used with the GET and SET options and is used to specify the name
of a constant or variable which is to be read (GET) or written (SET).

RETURN-CODE This field contains the return code of an action resulting from the option EXEC or
CHECK as specified within a runtime action definition (see the Natural utility
SYSNCP).

NATURAL-ERROR This field is used in conjunction with all options. When the field is used in
DEFINE DATA, then it returns the Natural error code for the command
processor. When the field is absent, normal Natural error handling is active.

RESULT-FIELD This field contains information resulting from the use of various options as
specified within a runtime action definition (see Runtime Actions in the Natural
SYSNCP Utility). Please note that this field may be more than one line.

GETSET-FIELD-VALUE This field is used with the GET and SET options and contains the value of the
constant or variable which is specified in the field GETSET-FIELD-NAME (see
above).

Security Considerations
With Natural Security, it is possible to restrict the usage of certain keywords and/or functions which are defined
in a Command Processor. Keywords and/or functions can be allowed/disallowed for a specific user or group of
users. See your Natural Security documentation for details.

Example 1

 /* EXAM-CLS - Example for PROCESS COMMAND ACTION CLOSE (Structured Mode)
 /***
 DEFINE DATA LOCAL
 01 COMMAND VIEW OF COMMAND
 END-DEFINE
 /*
 PROCESS COMMAND ACTION CLOSE
 /*
 DEFINE WINDOW CLS
 INPUT WINDOW = ’CLS’
 ’NCPWORK has just been released.’
 /*
 END

Copyright © Software AG 2003516

PROCESS COMMANDSecurity Considerations

Example 2

 /* EXAM-EXS - Example for PROCESS COMMAND ACTION EXEC (Structured Mode)
 /**
 DEFINE DATA LOCAL
 01 COMMAND VIEW OF COMMAND
 02 PROCESSOR-NAME
 02 COMMAND-LINE (1)
 02 NATURAL-ERROR
 02 RETURN-CODE
 02 RESULT-FIELD (1)
 01 MSG (A65) INIT <’Please enter a command.’>
 END-DEFINE
 /*
 REPEAT
 INPUT (AD=MIT’ ’ IP=OFF) WITH TEXT MSG
 ’Example for PROCESS COMMAND ACTION EXEC (Structured Mode)’ (I)
 / ’Command ==>’ COMMAND-LINE (1) (AL=64)
 /*******
 PROCESS COMMAND ACTION EXEC
 USING
 PROCESSOR-NAME = ’DEMO’
 COMMAND-LINE (1) = COMMAND-LINE (1)
 /*******
 COMPRESS ’NATURAL-ERROR =’ NATURAL-ERROR TO MSG
 END-REPEAT
 END

Note:
You will find other example programs in the library SYSNCP. These programs all begin with "EXAM".

517Copyright © Software AG 2003

Example 2PROCESS COMMAND

PROCESS GUI
Note:
This statement is only available under Windows.

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1* C S A A N P I F B D T L G yes no

Operand2 S N P I yes no

* The structure and format actually possible depend on the action to be performed.

Function
The PROCESS GUI statement is used to perform an action. An action in this context is a procedure frequently
needed in event-driven applications.

For general information on these standard procedures, see the section Event-Driven Programming Techniques of
the Natural Programming Guide.

For information on the individual actions available, their parameters, and examples, see the section Executing
Standardized Procedures of the Natural Dialog Components documentation for Windows.

action-name
As action-name, you specify the name of the action to be invoked.

Passing Parameters to the Action
As operand1, you specify the parameter(s) to be passed to the action. The parameters are passed in the sequence
in which they are specified.

For the action "ADD", you can also pass parameters by name (instead of position); to do so, you use the
PARAMETERS-clause:

PARAMETERS-clause

Copyright © Software AG 2003518

PROCESS GUIPROCESS GUI

This clause can only be used for the action "ADD", not for any other action.

If the action has optional parameters (i. e. parameters that need not to be specified), you can use the notation nX
as a placeholder for n not specified parameters. Currently, the only actions that can have optional parameters are
the methods and the parameterized properties of ActiveX controls.

nX
With the notation nX you can specify that the next n parameters are to be skipped (for example, 1X to skip the
next parameter, or 3X to skip the next three parameters); this means that for the next n parameters no values are
passed to the action. This is only possible for actions which are applied to ActiveX controls.

A parameter that is to be skipped must be defined as "optional" in the ActiveX control’s method. If a parameter
is defined as "optional", this means that a value can - but need not - be passed from the invoking object to such a
parameter.

GIVING operand2
As operand2, you can specify a field to receive the response code from the invoked action after the action has
been performed.

519Copyright © Software AG 2003

nXPROCESS GUI

PROCESS REPORTER
Note:
This statement is only available under Windows.

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A N P I F B D T L yes no

Operand2 S N P I yes no

Function
The PROCESS REPORTER statement is used to communicate with the Natural reporter from within a program,
instructing the reporter to perform a particular action.

For a description of the reporter, please refer to the Natural Reporter online help.

Note:
For actions that apply to a specific report, you may abbreviate the second keyword to REPORT. This is only to
enhance the readability of your programs; Natural does not distinguish between the written-out and abbreviated
forms of the keyword.

Copyright © Software AG 2003520

PROCESS REPORTERPROCESS REPORTER

Actions
You can specify one of the following actions to be performed by the reporter:

INITIALIZE - This action initializes and loads the reporter. This must always be the first action to be
performed.
TERMINATE - This action terminates and unloads the reporter. This must always be the last action to be
performed.
OPEN - This action opens a specified report, and returns a handle which can be used to identify the report
for subsequent actions.
CLOSE - This action closes a specified report, after which the report handle can no longer be used.
REPLACE-TABLE - This action replaces the path name of a table.
SET-PRINTER - This action selects a printer to be used for subsequent printing of all reports. The print
method for the selected printer must be set to "TTY" in NATPARM.
SET-PRINT-OPTIONS - This action is used to set print options for a specified report.
PRINT - This action prints a specified report on the currently selected printer.
PREVIEW - This action previews a specified report, based on the currently selected printer.
EDIT - If no report is specified, this action shows the main reporter window. If a report is specified, this
action shows the main reporter window together with the edit window for the specified report.

WITH Clause
As operand1, you specify the parameter(s) to be passed to the action.

Alternatively, you can use the PARAMETERS-clause:

PARAMETERS-clause

With this clause, you specify the parameter(s) by name (instead of by position).

Parameters for OPEN Action

For this action, you specify as first parameter the name of the report to be opened (without .rpt extension or path
specification), and as second parameter the field to receive the handle. The format/length of the first parameter
must be compatible with A8, that of the second parameter with I4.

The report is searched for in the logon library’s RES subdirectory first, then in the RES subdirectory of each
steplib, then in the directory assigned to the environment variable NATGUI_BMP.

Note that the report data is first searched for in the path specified when the report was created (if it exists), then
in the directory in which the report was found.

If you use the PARAMETERS-clause, the parameter-name must be "REPORT-NAME" for the report name, and
"REPORT-ID" for the handle field.

Examples:

 PROCESS REPORT ACTION OPEN WITH ’MYREPORT’ #HANDLE

521Copyright © Software AG 2003

ActionsPROCESS REPORTER

 PROCESS REPORT ACTION OPEN WITH
 PARAMETERS
 REPORT-NAME = ’MYREPORT’
 REPORT-ID = #HANDLE
 END-PARAMETERS

Parameters for REPLACE-TABLE Action

For this action, you specify as first parameter the handle identifying the report to which the action is to be
applied, as second parameter the work file number, and, optionally, as third parameter the table name. The
format/length of the first two parameters must be compatible with I4, that of the third parameter with A8.

If you use the PARAMETERS-clause, the parameter-names must be "REPORT-ID", "WORK-FILE" and
"TABLE-NAME" respectively.

Example:

 PROCESS REPORT ACTION REPLACE-TABLE WITH
 PARAMETERS
 REPORT-ID = #HANDLE
 WORK-FILE = 5
 END-PARAMETERS

Parameter for SET-PRINTER Action

For this action, you specify as operand1 the logical device name (’LPT1’ to ’LPT31’) of the printer to be
selected. The format/length of operand1 must be compatible with A8.

If you use the PARAMETERS-clause, the parameter-name must be "DEVICE-NAME".

Example:

 PROCESS REPORTER ACTION SET-PRINTER WITH ’LPT1’

Parameters for SET-PRINT-OPTIONS Action

For this action, you specify as first parameter the handle identifying the report to which the action is to be
applied, followed by the printer options to be set - all of which are optional. If a parameter is omitted, the
corresponding option remains unchanged.

The 1st parameter (which must be compatible with format/length I4) is the handle identifying the report to which
the action is to be applied.

The 2nd parameter (which must be compatible with format/length I2) is one of the paper-size constants defined
in the local data area NGULKEY1. The possible values here are:

CUSTOM-PAPER (use explicit paper width and height)
LETTER (8.5 x 11 inches)
LEGAL (8.5 x 14 inches)
EXECUTIVE (7.25 x 10.5 inches)
A4 (210 x 297 mm)
COM-10-ENVELOPE (4.125 x 9.5 inches)
DL-ENVELOPE (110 x 220 mm)

Copyright © Software AG 2003522

PROCESS REPORTERParameters for REPLACE-TABLE Action

C5-ENVELOPE (162 x 229 mm)
B5-ENVELOPE (176 x 250 mm)
MONARCH-ENVELOPE (3.875 x 7.5 inches)

The 3rd and 4th parameters (which must be compatible with format/length I2) are the paper width and height
respectively (in twips; 1 twip = 1/1440 inches). These parameters are only used with paper size
CUSTOM-PAPER.

The 5th, 6th, 7th and 8th parameters (which must be compatible with format/length I2) specify the left, top, right
and bottom margins respectively (in twips).

The 9th parameter (which must be of format L) is the paper orientation: TRUE = landscape, FALSE = portrait.
This parameter is not used with paper size CUSTOM-PAPER.

The 10th parameter (which must be of format L) is the fast (text only) print option: TRUE = suppression of
graphics, FALSE = no suppression.

The 11th parameter (which must be of format L) determines whether records that consist entirely of blanks are to
be suppressed in the output: TRUE = suppression, FALSE = no suppression.

The 12th parameter (which must be of format L) determines whether successive records with identical data are to
be ignored: TRUE = ignore, FALSE = do not ignore.

The 13th parameter (which must be of format L) determines whether a printer selection dialog is to be displayed
during printing: TRUE = display, FALSE = no display.

The 14th parameter (which must be compatible with format/length I2) is one of the paper-source constants
defined in the local data area NGULKEY1. The possible values here are: AUTOMATIC = automatic feed,
MANUAL = manual feed.

If you use the PARAMETERS-clause, the parameter-names must be REPORT-ID, PAPER-SIZE,
PAPER-WIDTH, PAPER-HEIGHT, LEFT-MARGIN, TOP-MARGIN, RIGHT-MARGIN,
BOTTOM-MARGIN, LANDSCAPE, FAST-PRINT, SUPPRESS- BLANK-LINES, IGNORE-DUPLICATES,
SHOW-PRINT-DIALOG and PAPER-SOURCE respectively.

Examples:

 DEFINE DATA LOCAL
 USING ’NGLUKEY1’
 END-DEFINE
 ...
 PROCESS REPORT ACTION SET-PRINT-OPTIONS WITH #HANDLE
 A4 0 0 0 0 0 0 FALSE FALSE FALSE FALSE FALSE AUTOMATIC

523Copyright © Software AG 2003

Parameters for SET-PRINT-OPTIONS ActionPROCESS REPORTER

 DEFINE DATA LOCAL
 USING ’NGLUKEY1’
 END-DEFINE
 ...
 PROCESS REPORT ACTION SET-PRINT-OPTIONS WITH PARAMETERS
 REPORT-ID = #HANDLE
 PAPER-SIZE = A4
 PAPER-WIDTH = 0
 PAPER-HEIGHT = 0
 LEFT-MARGIN = 0 TOP-MARGIN = 0
 RIGHT-MARGIN = 0 BOTTOM-MARGIN = 0
 LANDSCAPE = FALSE
 FAST-PRINT = FALSE
 SUPPRESS-BLANK-LINES = FALSE
 IGNORE-DUPLICATES = FALSE
 SHOW-PRINT-DIALOG = FALSE
 PAPER-SOURCE = AUTOMATIC
 END-PARAMETERS

Parameter for CLOSE, PRINT, PREVIEW, EDIT Actions

For these actions, you specify as operand1 the handle identifying the report to which the action is to be applied.
The format/length of operand1 must be compatible with I4.

If you use the PARAMETERS-clause, the parameter-name must be "REPORT-ID".

Examples:

 PROCESS REPORT ACTION PRINT WITH #HANDLE
 PROCESS REPORT ACTION PREVIEW WITH #HANDLE
 PROCESS REPORT ACTION CLOSE WITH #HANDLE
 PROCESS REPORT ACTION EDIT WITH #HANDLE
 PROCESS REPORTER ACTION EDIT

GIVING operand2
With the GIVING clause, you can retrieve the response code from the invoked action.

As operand2, you specify the field to receive the response code.

The response code is returned in format/length I4.

Response code "0" indicates that the action was successful. Any other response code corresponds to a Natural
system error number (NATnnnn).

Copyright © Software AG 2003524

PROCESS REPORTERGIVING operand2

PROPERTY

Function
The PROPERTY statement assigns an object data variable operand as the implementation to a property, outside
an interface definition. It is used if the interface definition in question is included from a copycode and is to be
implemented in a class-specific way.

It may only be used within the DEFINE CLASS statement and after the interface definitions. The interface and
property names specified must be defined in the interface definitions.

525Copyright © Software AG 2003

PROPERTYPROPERTY

READ

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S N P I B yes no

Operand2 C S A yes no

Operand3 C S N yes no

Operand4 C S N P I B yes no

Related Statement: FIND | HISTOGRAM

Function
The READ statement is used to read records from a database. The records can be retrieved in physical sequence,
in Adabas ISN sequence, or in the value sequence of a descriptor (key) field.

This statement causes a processing loop to be initiated.

Number of Records - operand1/ALL
The number of records to be read may be limited by specifying operand1 (enclosed in parentheses, immediately
after the keyword READ) - either as a numeric constant (0 - 99999999) or as a variable, enclosed within
parentheses, immediately after the keyword READ. For example:

 READ (5) IN EMPLOYEES ...

 MOVE 10 TO CNT(N2)
 READ (CNT) EMPLOYEES ...

Copyright © Software AG 2003526

READREAD

For this statement, the specified limit has priority over a limit set with a LIMIT statement.

If a smaller limit is set with the profile or session parameter LT, the LT limit applies.

To emphasize that all records are to be read, you can optionally specify the keyword ALL.

Notes:
If you wish to read a 4-digit number of records, specify it with a leading zero: (0nnnn); because Natural
interprets every 4-digit number enclosed in parentheses as a line-number reference to a statement.
Operand1 is evaluated when the READ loop is entered. If the value of operand1 is modified within the READ
loop, this does not affect the number of records read.

MULTI-FETCH Clause
Note:
This clause can only be used for Adabas databases.

[MULTI-FETCH ON | OFF | OF value]

Note:
[MULTI-FETCH OF value] is not evaluated under Windows and UNIX. The default processing mode is applied.

In standard mode, Natural does not read multiple records with a single database call; it always operates in a
one-record-per-fetch mode. This kind of operation is solid and stable, but can take some time if a large number
of database records are being processed.

To improve the performance of those programs, Natural offers a new MULTI-FETCH clause, that allows one to
read more than several records per database access.

For more information, see the section Multi-Fetch Clause in the Natural Programming Guide.

view-name
As view-name, you specify the name of a view, which must have been defined either within a DEFINE DATA
statement or outside the program in a global or local data area.

In reporting mode, view-name may also be the name of a DDM.

PASSWORD and CIPHER Clauses
These clauses are applicable only to Adabas or VSAM databases. They cannot be used with Entire System
Server.

The PASSWORD clause is used to provide a password when retrieving data from a file which is
password-protected.

The CIPHER clause is used to provide a cipher key when retrieving data from a file which is enciphered.

See the statements FIND and PASSW for further information.

527Copyright © Software AG 2003

MULTI-FETCH ClauseREAD

WITH REPOSITION
This option can only be applied if the underlying database is Adabas V7 (or above), Adabas 3.1.1 on Open
Systems, VSAM or DL/I.

With a WITH REPOSITION option, you can make a READ statement sensitive for repositioning events. This
allows you to reposition to another start value within an active READ loop. Processing of the READ statement
then continues with the new start value.

A repositioning event is triggered by one of two ways when you use a READ statement with the WITH
REPOSITION option:

1. When an ESCAPE TOP REPOSITION statement is executed.
At execution of an ESCAPE TOP REPOSITION statement, Natural makes an instant branch to the loop
begin and performs a restart; that is, the database repositions to a new record in the file according to the
current content of the search value variable. At the same time, the loop-counter *COUNTER is reset to
zero.

2. when a READ loop tries to fetch the next record from the database and the value of the system variable
*COUNTER is "0".
Note:
If *COUNTER is set to "0" within the active READ loop, processing of the current record is continued; no
instant branch to the loop begin is performed.
You cannot trigger a reposition event in this fashion on Natural for Windows and for UNIX. This
functionality has only been retained for compatibility reasons with Natural Version 3.1 for Mainframes.
Therefore, it is not recommended that you use this process.

Functional Considerations

If the READ statement has a loop-limit (e.g. READ (10) EMPLOYEES WITH REPOSITION ..) and a
restart event was triggered, the loop gets another 10 new records, no matter how many records where
already processed until the repositioning takes place.
If an ESCAPE TOP REPOSITION statement is executed, but the innermost loop is not capable of
repositioning (since the "WITH REPOSITION" keyword is not set in the READ statement or the posted
loop statement is anything else but a READ), a corresponding runtime error is issued.
Since the ESCAPE TOP statement does not allow a reference, you can only initiate a reposition event if the
innermost processing loop is a READ ..WITH REPOSITION statement.
A reposition event does not trigger the execution of the AT START OF DATA section nor, does it trigger
the re-evaluation of the loop-limit operand (if it is a variable).
If the search value was not altered, the loop repositions to the same record like at initial loop start.

Example:

Copyright © Software AG 2003528

READWITH REPOSITION

 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF ...
 2 NAME
 1 #STARTVAL (A20) INIT <’A’>
 1 #ATTR (C)
 END-DEFINE
 ...
 SET KEY PF3
 ...
 READ MYVIEW WITH REPOSITION BY NAME = #STARTVAL
 INPUT (IP=OFF AD=O) ’NAME:’ NAME /
 ’Enter new start value for repositioning:’ #STARTVAL (AD=MT CV=#ATTR) /
 ’Press PF3 to stop’
 IF *PF-KEY = ’PF3’
 THEN STOP
 END-IF
 IF #ATTR MODIFIED
 THEN ESCAPE TOP REPOSITION
 END-IF
 END-READ
 ...

 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF ...
 2 NAME
 1 #STARTVAL (A20) INIT <’A’>
 1 #ATTR (C)
 END-DEFINE
 ...
 SET KEY PF3
 ...
 READ MYVIEW WITH REPOSITION BY NAME = #STARTVAL
 INPUT (IP=OFF AD=O) ’NAME:’ NAME /
 ’Enter new start value for repositioning:’ #STARTVAL (AD=MT CV=#ATTR) /
 ’Press PF3 to stop’
 IF *PF-KEY = ’PF3’
 THEN STOP
 END-IF
 IF #ATTR MODIFIED
 THEN RESET *COUNTER
 END-IF
 END-READ
 ...

sequence/range-specification
Note:
In Diagram 3 you will find comparators that may be used as of Natural Version 4.1.1 for Mainframes, Natural
Version 6.1.1 for Windows/UNIX and above. If these comparators are used, the options ENDING AT, THRU
and TO may not be used. These comparators are also valid for the HISTOGRAM statement.

529Copyright © Software AG 2003

sequence/range-specificationREAD

Options [2] and [3] are not available with Entire System Server.

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand5 S A yes no

Operand6 C S A N P I F B D T L yes no

Operand7 C S A N P I F B D T L yes no

READ IN PHYSICAL SEQUENCE

PHYSICAL SEQUENCE is used to read records in the order in which they are physically stored in a database.

Copyright © Software AG 2003530

READREAD IN PHYSICAL SEQUENCE

For VSAM databases, READ PHYSICAL can only be applied to ESDS and RRDS.

PHYSICAL is the default sequence.

READ BY ISN

READ BY ISN can only be used for Adabas and VSAM databases; for VSAM databases, it is only valid for
ESDS and RRDS.

READ BY ISN is used to read records in the order of Adabas ISNs (internal sequence numbers) or VSAM RBAs
(relative byte addresses of ESDS) or RRNs (relative record numbers of RRDS) respectively.

For XML databases, READ BY ISN is used to read XML objects according to the order of Tamino object IDs.

READ IN LOGICAL SEQUENCE

LOGICAL SEQUENCE is used to read records in the order of the values of a descriptor (key) field.

If you specify a descriptor, the records will be read in the value sequence of the descriptor. A descriptor,
subdescriptor, superdescriptor or hyperdescriptor may be used for sequence control. A phonetic descriptor, a
descriptor within a periodic group, or a superdescriptor which contains a periodic-group field cannot be used.

If you do not specify a descriptor, the default descriptor as specified in the DDM (field "Default Sequence") will
be used.

For DL/I databases, the descriptor used must be either the sequence field of a root segment, or a secondary
index field. If a secondary index field is specified, it must also be specified in the PROCSEQ parameter of a
PCB. Natural uses this PCB and the corresponding hierarchical structure to process the database.
As HDAM databases use a randomizing routine to locate root segments, no sensible results will be returned
when using READ LOGICAL for HDAM databases; therefore you should use READ PHYSICAL for HDAM
databases.

For VSAM databases, LOGICAL is only valid for KSDS with primary and alternate keys defined and for ESDS
with alternate keys defined.

If the descriptor used for sequence control is defined with null-value suppression (Adabas only), any record
which contains a null value for the descriptor will not be read.

If the descriptor is a multiple-value field (Adabas only), the same record will be read multiple times depending
on the number of values present.

Note:
READ IN LOGICAL SEQUENCE is also discussed in the Natural Programming Guide; see Statements for
Database Access, READ Statement.

ASCENDING/DESCENDING/VARIABLE/DYNAMIC SEQUENCE

This clause only applies to Adabas, Adabas 3.1.1 on Open Systems, XML databases, VSAM and SQL
databases. In a READ PHYSICAL statement, it can only be applied to VSAM and DB2 databases.

With this clause, you can determine whether the records are to be read in ascending sequence or in descending
sequence.

The default sequence is ascending (which may, but need not, be explicitly specified by using the keyword
ASCENDING).
If the records are to be read in descending sequence, you specify the keyword DESCENDING.
If, instead of determining it in advance, you want to have the option of determining at runtime whether the

531Copyright © Software AG 2003

READ BY ISNREAD

records are to be read in ascending or descending sequence, you either specify the keyword VARIABLE or
DYNAMIC, followed by a variable (operand5). Operand5 has to be of format/length A1 and can contain the
value "A" (for "ascending") or "D" (for "descending").

If keyword VARIABLE is used, the reading direction (value of operand5) is evaluated at start of the
READ processing loop and remains same until the loop is terminated, regardless if the operand5 field
is altered in the READ loop or not.
If keyword DYNAMIC is used, the reading direction (value of operand5) is evaluated before every
record fetch in the READ processing loop and may be changed from record to record. This allows to
change the scroll sequence from ascending to descending (and vice versa) at any place in the READ
loop.

Note for Adabas databases:

In order to use the sequences DESCENDING and VARIABLE, your system requires the following Adabas
versions (or above): Version 3.1 on UNIX and Windows and Version 6.1 on mainframe computers.
In order to use the DYNAMIC sequence, your system requires Adabas V7 (or above) and on mainframe
computers and Adabas 3.1.1 on Open Systems.

Note for XML databases:
For XML databases, DYNAMIC SEQUENCE is not available.

Example of DESCENDING Option:

 READ EMPLOYEES IN DESCENDING SEQUENCE BY NAME = ’SMITH’

Example of VARIABLE Option:

 DEFINE DATA LOCAL
 1 #DIRECTION (A1) INIT <’A’> /* ’A’ = ASCENDING
 1 #EMPVIEW VIEW OF EMPLOYEES
 2 NAME
 ...
 END-DEFINE
 ...
 IF *PF-KEY = ’PF7’
 THEN MOVE ’D’ TO #DIRECTION
 END-IF
 READ #EMPVIEW IN VARIABLE #DIRECTION SEQUENCE BY NAME = ’SMITH’
 ...
 END-READ
 ...

Example of DYNAMIC Option:

Copyright © Software AG 2003532

READASCENDING/DESCENDING/VARIABLE/DYNAMIC SEQUENCE

 DEFINE DATA LOCAL
 1 #DIRECTION (A1) INIT <’A’> /* ’A’ = ASCENDING
 1 #EMPVIEW VIEW OF EMPLOYEES
 2 NAME
 ...
 END-DEFINE
 ...
 READ #EMPVIEW IN DYNAMIC #DIRECTION SEQUENCE BY NAME = ’SMITH’
 INPUT (AD=O) NAME
 / ’Press PF7 to scroll in DESCENDING sequence’
 / ’Press PF8 to scroll in ASCENDING sequence’
 ..
 IF *PF-KEY = ’PF7’ THEN MOVE ’D’ TO #DIRECTION END-IF
 IF *PF-KEY = ’PF8’ THEN MOVE ’A’ TO #DIRECTION END-IF
 END-READ
 ...

Further Examples:

See the programs READSCND and REAVSEQ in the library SYSEXRM.

STARTING FROM ... ENDING AT/TO

The STARTING FROM and ENDING AT clauses are used to limit reading to a set of records based on a
user-specified range of values.

The STARTING FROM clause (= or EQ or EQUAL TO or [STARTING] FROM) determines the starting value
for the read operation. If a starting value is specified, reading will begin with the value specified. If the starting
value does not exist in the file, the next higher (or lower for a DESCENDING read) value will be used. If no
higher (or lower for DESCENDING) value exists, the loop will not be entered.

In order to limit the records to an end-value, you may specify an ENDING AT clause with the terms THRU,
ENDING AT or TO, that imply an inclusive range. Whenever the read descriptor field exceeds the end-value
specified, an automatic loop termination is performed. Although the basic functionality of the TO, THRU and
ENDING AT keywords looks quite similar, internally they differ in how they work.

THRU/ENDING AT

If THRU or ENDING AT is used, only the start-value is supplied to the database, but the end-value check is
performed by the Natural runtime system, after the record is returned by the database. If the read direction is
ASCENDING, you have to supply the lower value as the start-value and the higher-value as the end-value, since
the start-value represents the value (and record) returned first in the READ loop. However, if you invoke a
backwards read (DESCENDING), the higher value has to appear in the start-value and the lower-value in the
end-value.

Internally, to determine the end of the range to be read, Natural reads one record beyond the end-value. If you
have left the READ loop because the end-value has been reached, be aware that this last record is in fact not the
last record within the demanded range, but the first record beyond that range (except if the file does not contain a
further record after the last result record).

The THRU and ENDING AT clauses can be used for all databases which support the READ or HISTOGRAM
statements.

533Copyright © Software AG 2003

STARTING FROM ... ENDING AT/TOREAD

TO

If the keyword ’TO’ is used, both the start-value and the end-value are sent to the database and Natural does not
perform checks for value ranges. If the end-value is exceeded, the database reacts the same as when "end-of-file"
is reached and the database loop is exited. Since the complete range checking is done by the database, the
lower-value (of the range) is always supplied in the start-value and the higher-value filled into the end-value,
regardless if you are browsing in ASCENDING or DESCENDING order.

The TO option is only applicable if the underlying database is Adabas V7 (or above), Adabas 3.1.1 on Open
Systems, Tamino, DB2, VSAM or DL1.

The following list describes the functional differences between the usage of the THRU/ENDING AT and TO
options.

THRU/ENDING AT TO

When the READ loop terminates because the end-value
has been reached, the view contains the first record
"out-of-range".

When the READ loop terminates because the
end-value has been reached, the view contains the last
record of the specified range.

If a end-value variable is modified during the READ
loop, the new value will be used for end-value check on
next record being read.

The end-value variable will only be evaluated at
READ loop start. All further modifications during the
READ loop have no effect.

An incorrect range (e.g. READ .. = ’B’ THRU ’A’)
does not cause a database error, but just returns no
record.

An incorrect range results in a database error (e.g.
Adabas RC=61), because a value range must not be
supplied in descending order.

If a READ .. DESCENDING is used with start- and
end-value, the start value is used to position in the file,
whereas the end-value is used by Natural to check for
"end-of-range". Therefore the start-value is higher than
(or equal to) the end-value.

Since both values are passed to the database, they
have to appear in ascending order. In other words, the
start-value is lower than (or equal to) the end-value,
no matter if you are reading in ascending or
descending order.

In order to check for range overflow, the descriptor
value has to appear in the underlying database view;
that is, it must be returned in the record buffer.

The descriptor is not required in the record fields
returned.

The end-value check for an Adabas multi-value field
(MU-field) or a sub-/super-/hyper-descriptor is not
possible and leads to syntax error NAT0160 at program
compilation.

You may specify an end-value for MU-fields and
sub-/super-/hyper-descriptors.

Can be used for all databases. Can only be used for Adabas V7 (or above), Adabas
3.1.1 on Open Systems, DB2, VSAM or DL1.

STARTING WITH ISN=operand4
This clause applies only to Adabas and VSAM databases.

Access to Adabas

This clause can be used in conjunction with a READ statement in physical or in logical (ascending/descending)
sequence. The value supplied (operand4) represents an Adabas ISN (Internal Sequence Number) and is used to
specify a definite record where to start the READ loop.

Copyright © Software AG 2003534

READSTARTING WITH ISN=operand4

Logical Sequence

Even if documented with an equal character "=", the READ statement does not return only those records with
exactly the start value in the corresponding descriptor field, but starts a logical browse in ascending or
descending order, beginning with the start value supplied. If some records have the same contents in the
descriptor field, they will be returned in an ISN-sorted sequence.

The STARTING WITH ISN clause is some kind of a "second level" selection criterion that applies only if the
start value matches the descriptor value for the first record.

All records with a descriptor value that is the same as the start value and an ISN that is "less equal"("greater
equal" for a descending READ) than the start ISN are ignored by Adabas. The first record returned in the READ
loop is either

the first record with descriptor = start value and an ISN "greater" ("less" for a descending READ) than the
start ISN,
or if such a record does not exist, the first record with a descriptor "greater" ("less" for a descending READ)
than the start value.

Physical Sequence

The records are returned in the order in which they are physically stored. If a STARTING WITH ISN clause is
specified, Adabas ignores all records until the record with the ISN that is the same as the start ISN is reached.
The first record returned is the next record following the ISN=start ISN record.

Access to VSAM

This clause can only be used in physical sequence. The value supplied (operand4) represents a VSAM RBA
(relative byte address of ESDS) or RRN (relative record number of RRDS), which is to be used as a start value
for the read operation.

Examples

This clause may be used for repositioning within a READ loop whose processing has been interrupted, to easily
determine the next record with which processing is to continue. This is particularly useful if the next record
cannot be identified uniquely by any of its descriptor values. It can also be useful in a distributed client/server
application where the reading of the records is performed by a server program while further processing of the
records is performed by a client program, and the records are not processed all in one go, but in batches.

For an example, see the program REASISND in the library SYSEXRM.

WHERE Clause

The WHERE clause may be used to specify an additional selection criterion (logical-condition) which is
evaluated after a value has been read and before any processing is performed on the value (including the AT
BREAK evaluation).

The syntax for a logical-condition is described in the section Logical Condition Criteria.

535Copyright © Software AG 2003

WHERE ClauseREAD

If a LIMIT statement or a processing limit is specified in a READ statement containing a WHERE clause,
records which are rejected as a result of the WHERE clause are not counted against the limit.

System Variables
The Natural system variables *ISN and *COUNTER are available with the READ statement.

The format/length of these system variables is P10. This format/length cannot be changed.

The usage of the system variables is illustrated below.

*ISN

The system variable *ISN contains the Adabas ISN of the record currently being processed.

For VSAM databases, *ISN contains either the RRN (for RRDS) or the RBA (for ESDS) of the current record.

For Tamino, *ISN contains the XML object ID.

For DL/I and SQL databases and with Entire System Server, *ISN is not available.

*COUNTER

The system variable *COUNTER contains the number of times the processing loop has been entered.

Copyright © Software AG 2003536

READSystem Variables

Example 1

 /* EXAMPLE ’REAEX1S’: READ (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 1 VEHIC-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 END-DEFINE
 LIMIT 3
 /***
 WRITE ’READ IN PHYSICAL SEQUENCE’
 READ EMPLOY-VIEW IN PHYSICAL SEQUENCE
 DISPLAY NOTITLE PERSONNEL-ID NAME *ISN *COUNTER
 END-READ
 /***
 WRITE / ’READ IN ISN SEQUENCE’
 READ EMPLOY-VIEW BY ISN
 STARTING FROM 1 ENDING AT 3
 DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
 END-READ
 /***
 WRITE / ’READ IN NAME SEQUENCE’
 READ EMPLOY-VIEW BY NAME
 DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
 END-READ
 /***
 WRITE / ’READ IN NAME SEQUENCE STARTING FROM ’’M’’’
 READ EMPLOY-VIEW BY NAME
 STARTING FROM ’M’
 DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
 END-READ
 /***
 END

Equivalent reporting-mode example: See the program REAEX1R in the library SYSEXRM.

537Copyright © Software AG 2003

Example 1READ

PERSONNEL NAME ISN CNT
 ID
 --------- -------------------- --------- ---------

 READ IN PHYSICAL SEQUENCE
 50005600 MORENO 2 1
 50005500 BLOND 3 2
 50005300 MAIZIERE 4 3

 READ IN ISN SEQUENCE
 50005800 ADAM 1 1
 50005600 MORENO 2 2
 50005500 BLOND 3 3

 READ IN NAME SEQUENCE
 60008339 ABELLAN 479 1
 30000231 ACHIESON 884 2
 50005800 ADAM 1 3

 READ IN NAME SEQUENCE STARTING FROM ’M’
 30008125 MACDONALD 929 1
 20028700 MACKARNESS 780 2
 40000045 MADSEN 509 3

Copyright © Software AG 2003538

READExample 1

Example 2 - Combining READ with FIND
The following program reads records from the EMPLOYEES file in logical sequential order based on the values
of the descriptor NAME. A FIND statement is then issued to the VEHICLES file using the personnel number
from the EMPLOYEES file as search criterion. The resulting report shows the name (read from the
EMPLOYEES file) of each person read and the model of automobile (read from the VEHICLES file) owned by
this person. Multiple lines with the same name are produced if the person owns more than one automobile.

 /* EXAMPLE ’REAEX2’: READ AND FIND
 DEFINE DATA
 LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 FIRST-NAME
 2 NAME
 2 CITY
 1 VEH-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 END-DEFINE
 LIMIT 10
 RD. READ EMPLOY-VIEW BY NAME STARTING FROM ’JONES’
 SUSPEND IDENTICAL SUPPRESS
 FD. FIND VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)
 IF NO RECORDS FOUND
 ENTER
 END-NOREC
 DISPLAY NOTITLE (ES=OFF IS=ON ZP=ON AL=15)
 PERSONNEL-ID (RD.) FIRST-NAME (RD.)
 MAKE (FD.) (IS=OFF)
 END-FIND
 END-READ
 END

 PERSONNEL FIRST-NAME MAKE
 ID
 --------------- --------------- ---------------

 20007500 VIRGINIA CHRYSLER
 20008400 MARSHA CHRYSLER
 CHRYSLER
 20021100 ROBERT GENERAL MOTORS
 20000800 LILLY FORD
 MG
 20001100 EDWARD GENERAL MOTORS
 20002000 MARTHA GENERAL MOTORS
 20003400 LAUREL GENERAL MOTORS
 30034045 KEVIN DATSUN
 30034233 GREGORY FORD
 11400319 MANFRED

539Copyright © Software AG 2003

Example 2 - Combining READ with FINDREAD

READ WORK FILE

Structured Mode Syntax

Reporting Mode Syntax

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A G A N P I F B D T L C G yes yes

Operand2 S A G A N P I F B D T L C yes yes

Operand3 S I yes yes

Copyright © Software AG 2003540

READ WORK FILEREAD WORK FILE

Note:
Format C is not valid for Natural Connection.

Related Statements: DEFINE WORK FILE | CLOSE WORK FILE

Function
The READ WORK FILE statement is used to read data from a non-Adabas physical sequential work file. The
data is read sequentially from the work file. How it is read is independent of how it was written to the work file.

On mainframe computers, this statement can only be used within a program to be executed under Com-plete,
CMS, TSO or TIAM, or in batch mode. The appropriate JCL must be supplied in the execution JCL when a
work file is to be read. See the Natural Operations for Mainframes documentation for additional information.

READ WORK FILE initiates and executes a processing loop for reading of all records on the work file.
Automatic break processing may be performed within a READ WORK FILE loop.

Note:
When an end-of-file condition occurs during the execution of a READ WORK FILE statement, Natural
automatically closes the work file.

Note for Entire Connection:
If an Entire Connection work file is read, no I/O statement may be placed within the READ WORK FILE
processing loop.

Note for Open Systems:
If an ASCII work file is read, it is possible that an empty record is returned as the last record after the last
physical record. This is caused by the fact that Natural does not read individual records, but reads larger blocks
of the work file in order to optimize file-access performance.

work-file-number
The number of the work file (as defined to Natural) to be read.

ONCE Option
ONCE is used to indicate that only one record is to be read. No processing loop is initiated (and therefore the
loop-closing keyword END-WORK or LOOP must not be specified). If ONCE is specified, the AT END OF
FILE clause should also be used.

If a READ WORK FILE statement specified with the ONCE option is controlled by a user-initiated processing
loop, an end-of-file condition may be detected on the work file before the loop ends. All fields read from the
work file still contain the values from the last record read. The work file is then repositioned to the first record
which will be read upon the next execution of READ WORK FILE ONCE.

Variable Index Range
When reading an array from a work file, you can specify a variable index range for the array. For example:

READ WORK FILE work-file-number #ARRAY (I:J)

541Copyright © Software AG 2003

FunctionREAD WORK FILE

RECORD Option
If RECORD is specified, all fields in each record read are made available for processing. An operand list
(operand1) must be provided corresponding to the layout of the record. A FILLER nX entry indicates n bytes are
to be skipped in the input record. The record as defined in the RECORD clause must be in contiguous storage.
FILLER is not permitted in structured mode.

In structured mode, or if the record to be used is defined using a DEFINE DATA statement, only one field (or
group) may be used. FILLER is not permitted in this case.

No checking is performed by Natural on the data contained in the record. It is the user’s responsibility to
describe the record layout correctly in order to avoid program abends caused by non-numeric data in numeric
fields. Because no checking is performed by Natural, this option is the fastest way to process records from a
sequential file. The record area defined by operand1 is filled with blanks before the record is read. Thus, an
end-of-file condition will return a cleared area. Short records will have blanks appended.

Note for Entire Connection:
If an Entire Connection work file is read, the RECORD option cannot be used.

SELECT Option - default
If SELECT is specified, only those fields specified in the operand list (operand2) will be made available. The
position of the field in the input record may be indicated with an OFFSET and/or FILLER specification.
OFFSET 0 indicates the first byte of the record. FILLER nX indicates that n bytes are to be skipped in the input
record. On mainframes, OFFSET cannot be specified for work files defined as TYPE UNFORMATTED.

Natural will assign the selected values to the individual fields and check that numeric fields as selected from the
record actually contain valid numeric data according to their definition. Because checking of selected fields is
performed by Natural, this option results in more overhead for the processing of a sequential file.

If a record does not fill all fields specified in the SELECT option, the following applies:

For a field which is only partially filled, the section which has not been filled is reset to blanks or zeros.
Fields which are not filled at all still have the contents they had before.

Note:
If the file types ENTIRECONNECTION or TRANSFER are read, the OFFSET option is ignored.

Field Lengths
The field lengths in the operand list are determined as follows:

For A, B, I and F fields, the number of bytes in the input record is the same as the internal length definition.
For N format fields, the number of bytes in the input record is the sum of internal positions before and after
the decimal point. The decimal point and sign do not occupy a byte position in the input record.
For P, D and T fields, the number of bytes in the input record is the sum of positions before and after the
decimal point plus 1 for the sign, divided by 2 rounded upwards.
For L format fields, 1 byte is used. For C format fields, 2 bytes are used.

Examples of Field Lengths:

Copyright © Software AG 2003542

READ WORK FILERECORD Option

Field Definition Input Record

#FIELD1 (A10) 10 bytes

#FIELD2 (B15) 15 bytes

#FIELD3 (N1.3) 4 bytes

#FIELD4 (N0.7) 7 bytes

#FIELD5 (P1.2) 2 bytes

#FIELD6 (P6.0) 4 bytes

See also the section Definition of Format and Length.

GIVING LENGTH operand3
The GIVING LENGTH clause can be used to retrieve the actual length of the record being read. The length
(number of bytes) is returned in operand3. Operand3 must be defined with format/length I4.

If the work file is defined as TYPE UNFORMATTED, the length returned indicates the number of bytes read
from the byte-stream, including bytes skipped using the FILLER operand.

AT END OF FILE
The AT END OF FILE clause can only be used in conjunction with the ONCE option. If the ONCE option is
used, this clause should be specified to indicate the action to be taken when an end-of-file condition is detected.

If the ONCE option is not used, an end-of-file condition is handled like a normal processing loop termination.

Handling of Large and Dynamic Variables
When the operand list includes a dynamic variable (that could change in size, depending on the WRITE WORK
FILE statement), the VARIABLE entry must be specified in all WRITE WORK FILE statements.

ASCII, ASCII-COMPRESSED and SAG (binary)

The work file types ASCII, ASCII-COMPRESSED and SAG (binary) cannot handle dynamic variables and will
produce an error. They can, however, handle large variables with a maximum field/record length of 32766 bytes.

TRANSFER and ENTIRE CONNECTION

The work file type TRANSFER can handle dynamic variables. There is no size limit here. The work file type
ENTIRE CONNECTION cannot handle dynamic variables. They can both, however, handle large variables with
a maximum field/record length of 107341824 bytes.

The RECORD option is not allowed if any dynamic variables are used.

PORTABLE and UNFORMATTED

Large and Dynamic Variables can be written into work files or read from work files using the two work file
types PORTABLE and UNFORMATTED. For these types, there is no size restriction for dynamic variables.
However, large variables may not exceed a maximum field/record length of 32766 bytes.

543Copyright © Software AG 2003

GIVING LENGTH operand3READ WORK FILE

Reading a dynamic variable from a PORTABLE work file leads to resizing to the stored length.

Reading a dynamic variable from an UNFORMATTED work file puts the complete rest of the file into the
variable (from the current position). If the file exceeds 1073741824 bytes, then a maximum 1073741824 bytes is
placed into the variable. Reading a dynamic variable from a FORMATTED work file fills the variable in its
currently defined length (including length 0). If the end-of-file is reached, the remainder of the current field is
filled with blanks. The subsequent fields are unchanged.

Copyright © Software AG 2003544

READ WORK FILEPORTABLE and UNFORMATTED

Example

 /* EXAMPLE ’RWFEX1’: READ WORK FILE
 /***************************************
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 1 #RECORD
 2 #PERS-ID (A8)
 2 #NAME (A20)
 END-DEFINE
 /***************************************
 FIND EMPLOY-VIEW WITH CITY = ’STUTTGART’
 WRITE WORK FILE 1
 PERSONNEL-ID
 NAME
 END-FIND
 /***************************************
 /* ...
 /***************************************
 READ WORK FILE 1
 RECORD
 #RECORD
 DISPLAY NOTITLE #PERS-ID #NAME
 END-WORK
 /***************************************
 END

PAGE 1 87-03-27 15:46:58

 #PERS-ID #NAME
 -------- --------------------

 11100328 BERGHAUS
 11100329 BARTHEL
 11300313 AECKERLE
 11300316 KANTE
 11500304 KLUGE
 11500308 DIETRICH
 11500318 GASSNER
 11500343 ROEHM
 11600303 BERGER
 11600320 BLAETTEL
 11500336 JASPER
 11100330 BUSH
 11500328 EGGERT

545Copyright © Software AG 2003

ExampleREAD WORK FILE

REDEFINE
Note:
This statement is only valid in reporting mode. To redefine a field in structured mode, use the DEFINE DATA
statement.

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A G A N P I F B D T L C yes no

Operand2 S A G A N P I F B D T L C yes yes

Function
The REDEFINE statement is used to redefine a field. The resulting definition may consist of one or more
user-defined variables.

With one REDEFINE statement, several fields may be redefined.

Method of Redefinition
The byte positions of operand1 are redefined from left to right regardless of format. The format of operand2
may be different from the format of operand1. The bytes as specified in the REDEFINE statement must
positionally match the data contained in the field being redefined. If an alphanumeric field is redefined as
numeric and does not contain numeric data according to the format specification, an abnormal termination may
result when it is used.

Further Redefinition
Fields defined using a REDEFINE statement may be subsequently redefined with another REDEFINE statement.

Filler Notation
The nX notation is used to denote filler bytes within the field/variable being redefined. Any trailing nX notation
is optional.

Copyright © Software AG 2003546

REDEFINEREDEFINE

Example 1
The user-defined variable #A (format/length A10) contains the value "123ABCDEFG".

 REDEFINE #A (#A1(N3) #A2(A7))

The value in #A1 is "123". The value in #A2 is "ABCDEFG".

Example 2
The user-defined variable #B (format/length A10) contains the value (shown in hexadecimal)
"12345CC1C2C3C4C5C6C7".

 REDEFINE #B (#B1(P4) #B2(A7))

The value in #B1 is "12345C" (in hexadecimal).
The value in #B2 is "C1C2C3C4C5C6C7" (in hexadecimal).

 REDEFINE #B (#BB1(B2)8X)) or REDEFINE #B(#BB1(B2))

The value in #BB1 is "1234" (in hexadecimal).

Note:
For packed data (P format), the number of decimal positions required must be specified. The following formula
can be used to determine the number of bytes that the packed number occupies:

Number of bytes = (number of decimal positions + 1) / 2 , rounded upwards to full
bytes.

Example 3

 COMPUTE #V (N8.2) = #Y (N10) = ...
 REDEFINE #V (3X #A(N3) 2X #P (N2)) #Y (#B(N3) 7X)

547Copyright © Software AG 2003

Example 1REDEFINE

Example 4
This example redefines the value of the system variable *DATN, which is in the form "YYYYMMDD", and
displays the result as three separate fields in the order "day/month/year":

 MOVE *DATN TO #DATINT (N8)
 REDEFINE #DATINT (#YEAR (N4) #MONTH (N2) #DAY (N2))
 DISPLAY NOTITLE #DATINT #DAY #MONTH #YEAR
 END

 #DATINT #DAY #MONTH #YEAR
 --------- ---- ------ -----

 19950108 8 1 1995

Copyright © Software AG 2003548

REDEFINEExample 4

REDUCE

REDUCE
dynamic-clause

[GIVING operand5]
array-clause

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A A B no no

Operand2 C S I no no

Operand3 A G A N P I F B D T L C G O yes no

Operand4 C S N P I no no

Operand5 S I4 no yes

Related statements: EXPAND | RESIZE

Function
The REDUCE statement is used to reduce:

the size of a dynamic variable (dynamic clause), or
the number of occurrences of X-arrays (array clause).

Note:
The array clause is only available under Windows and UNIX.

dynamic-clause

[SIZE OF] DYNAMIC [VARIABLE] operand 1 TO operand2

The REDUCE DYNAMIC statement reduces the size of the currently allocated storage of a dynamic variable
(operand1) to the value specified in operand2.

If operand 2 is less than the size of the currently allocated storage of operand1, the statement will be ignored for
this dynamic variable. The currently used size (*LENGTH) of the dynamic variable is not modified.

When using the REDUCE statement it is only possible to decrease the number of occurrences. If the requested
number is larger than the currently allocated number of occurrences, it will simply be ignored.

549Copyright © Software AG 2003

REDUCEREDUCE

operand1

Operand1 is the dynamic variable for which the size of the used storage is to be reduced.

operand2

Operand2 is used to specify the size to which the dynamic variable is to be reduced. The value specified must be
a non-negative integer constant or a variable of type Integer4 (I4).

array-clause

[OCCURRENCES OF] ARRAY operand3 TO
0

(dim [,dim [,dim]])

Note:
The clause is only valid under Windows and UNIX.

The REDUCE ARRAY statement reduces the number of occurrences of the X-array (operand3) to the upper and
lower bound specified with (dim [,dim [,dim]]).

If REDUCE TO 0 (zero) is specified, all occurrences of the X-array are released. In other words, the whole array
is reduced.

An upper or lower bound used in an REDUCE statement must be exactly the same as the corresponding upper or
lower bound defined for the array.

Example:

DEFINE DATA LOCAL
1 #a(I4/1:*)
1 #i(i4)
END-DEFINE
...
REDUCE ARRAY #a TO (1:10) /* THIS IS ALLOWED
REDUCE ARRAY #a TO (*:10) /* THIS IS ALLOWED
REDUCE ARRAY #a TO (5:10) /* THIS IS REJECTED
REDUCE ARRAY #a TO (#i:10) /* THIS IS REJECTED

operand3

Operand3 is the X-array. The occurrences of the X-array can be reduced. The index notation of the array is
optional. As index notation only the complete range notation * is allowed for each dimension.

dim

operand4
:

operand4

* *

Copyright © Software AG 2003550

REDUCEarray-clause

The lower and upper bound notation (operand4 or asterisk) to which the X-array should be reduced is specified
here. If the upper or lower bound must not be changed an asterisk (*) must be specified instead of operand4.

The number of dimensions (dim) must exactly match the defined number of dimensions of the X-array (1,2, or
3).

When using the REDUCE statement, it is only possible to decrease the number of occurrences. If the requested
number is larger than the currently allocated number of occurrences, it will simply be ignored.

GIVING operand5
If the GIVING clause is not specified, Natural runtime error processing is triggered if an error occurs.

If the GIVING clause is specified, operand5 contains the Natural message number if an error occurred, or zero
upon success.

551Copyright © Software AG 2003

GIVING operand5REDUCE

REINPUT

Related Statement: INPUT

See also Dialog Design (Statements REINPUT/REINPUT FULL) in the Natural Programming Guide.

Function
The REINPUT statement is used to return to and re-execute an INPUT statement. It is generally used to display a
message indicating that the data input as a result of the previous INPUT statement were invalid.

No WRITE or DISPLAY statements may be executed between an INPUT statement and its corresponding
REINPUT statement. The REINPUT statement is not valid in batch mode.

The REINPUT statement, when executed, repositions the program status regarding subroutine, special condition
and loop processing as it existed when the INPUT statement was executed (as long as the status of the INPUT
statement is still active). If the loop was initiated after the execution of the INPUT statement and the REINPUT
statement is within this loop, the loop will be discontinued and then restarted after the INPUT statement has been
reprocessed as a result of REINPUT.

If a hierarchy of subroutines was invoked after the execution of the INPUT statement, and the REINPUT is
performed within a subroutine, Natural will trace back all subroutines automatically and reposition the program
status to that of the INPUT statement.

It is not possible, however, to have an INPUT statement positioned within a loop, a subroutine or a special
condition block, and then execute the REINPUT statement when the status under which the INPUT statement
was executed has already been terminated. An error message will be produced and program execution terminated
when this error condition is detected.

Note:
The execution of a REINPUT statement (without FULL option) does not reset the "MODIFIED" status of an
attribute control variable used in the corresponding INPUT statement. To check if an attribute control variable
has been assigned the status "MODIFIED", use the MODIFIED Option.

REINPUT FULL
If you specify the FULL option in a REINPUT statement, the corresponding INPUT statement will be
re-executed fully:

With an ordinary REINPUT statement (without FULL option), the contents of variables that were changed
between the INPUT and REINPUT statement will not be displayed; that is, all variables on the screen will
show the contents they had when the INPUT statement was originally executed.
With a REINPUT FULL statement, all changes that have been made after the initial execution of the
INPUT statement will be applied to the INPUT statement when it is re-executed; that is, all variables on the

Copyright © Software AG 2003552

REINPUTREINPUT

screen contain the values they had when the REINPUT statement was executed.

Note:
The contents of input-only fields (AD=A) will be deleted again by REINPUT FULL.

Another characteristic of the REINPUT FULL statement is that the status of attribute control variables is reset to
NOT MODIFIED. This is not done with the ordinary REINPUT statement. To check if an attribute control
variable has been assigned the status "MODIFIED", use the MODIFIED Option.

statement-parameters
Parameters specified in a REINPUT statement will be applied to all fields specified in the statement.

Any parameter specified at field level (see MARK option) will override any corresponding parameter at
statement level.

Parameters that can be specified with the REINPUT statementSpecification
S = at statement level
E = at element level

AD Attribute Definition * SE

CD Color Definition S

* Note:
If AD=P is specified as a statement parameter, all fields - except those used in the MARK option - are protected.

The individual parameters are described in the section Session Parameters of the Natural Parameter Reference
documentation.

USING HELP
USING HELP causes the helproutine defined for the INPUT map to be invoked.

USING HELP used in combination with the MARK option (see below) causes the helproutine defined for the
first field specified in the MARK option to be invoked. If no helproutine is defined for that field, the helproutine
for the map will be invoked.

Example:

 REINPUT USING HELP MARK 3

As a result, the helproutine defined for the third field in the INPUT map will be invoked.

WITH TEXT-option

553Copyright © Software AG 2003

statement-parametersREINPUT

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S N P I B yes no

Operand2 C S A yes no

Operand3 C S A N P I F B D T L yes no

WITH TEXT is used to provide text which is to be displayed in the message line. This is usually a message
indicating what action should be taken to process the screen or to correct an error.

Message Text from Natural Message File - *operand1

Operand1 represents the number of a message text that is to be retrieved from a Natural message file.

You can retrieve either user-defined messages or Natural system messages. If you specify a positive value (for
example: 0954), you will retrieve user-defined messages. If you specify a negative value (for example: -0954),
you will retrieve Natural system messages.

Natural message files are created and maintained with the SYSERR utility as described in the relevant
documentation.

Message Text - operand2 and Attributes - attributes

Operand2 represents the message to be placed in the message line.

Attributes may be used to assign display and color attributes for operand1/2. The following attributes may be
specified:

With AD= you specify a display attribute; with CD= you specify a color attribute (see also the session
parameters AD and CD in the Natural Parameter Reference documentation).

Dynamic Replacement of Message Text - operand3

Operand3 represents a numeric or text constant or the name of a variable.

The values provided are used to replace parts of the message text.

Copyright © Software AG 2003554

REINPUTMessage Text from Natural Message File - *operand1

The notation ":n:" is used within the message text as a reference to operand3 contents, where "n" represents the
occurrence (1 - 7) of operand3.

Example:

 ...
 MOVE ’MESSAGE-1’ TO #FIELD
 ...
 REINPUT ’THE ERROR IS :1:’,#FIELD
 ...

As a result, the following message will be output:

THE ERROR IS MESSAGE-1

Note:
Multiple specifications of operand3 must be separated from each other by a comma. If the comma is used as a
decimal character (as defined with the session parameter DC) and numeric constants are specified as operand3,
put blanks before and after the comma so that it cannot be misinterpreted as a decimal character.
Alternatively, multiple specifications of operand3 can be separated by the input delimiter character (as defined
with the session parameter ID); however, this is not possible in the case of ID=/ (slash).

Insignificant zeros or blanks will be removed from the field value before it is displayed in a message.

MARK-option

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand4 C S N P I yes no

Operand5 C S A N P I yes no

With the MARK option, you can mark a specific field, that is, specify a field in which the cursor is to be placed
when the REINPUT statement is executed. You can also mark a specific position within a field. Moreover, you
can make fields input-protected, and change their display and color attributes.

Field to be Marked - operand5

All AD=A or AD=M (that is, non-protected) fields specified in an INPUT statement are sequentially numbered
(beginning with 1) by Natural. Operand5 represents the number of the field in which the cursor is to be
positioned.

The *fieldname notation is used to position to a field (as used in the INPUT statement) using the name of the
field as a reference.

555Copyright © Software AG 2003

MARK-optionREINPUT

If the corresponding INPUT field is an array, a unique index or an index range may be used to reference one or
more occurrences of the array.

 INPUT #ARRAY (A1/1:5)
 ...
 REINPUT (AD=P) ’TEXT’ MARK *#ARRAY (2:3)

If operand5 is also an array, the values in operand5 are used as field numbers for the INPUT array.

 RESET #X(N2/1:2)
 INPUT #ARRAY ...
 ...
 REINPUT (AD=P) ’TEXT’ MARK #X (1:2)

MARK POSITION

With MARK POSITION, you can have the cursor placed at a specific position - as specified with operand4 -
within a field.

Operand4 must not contain decimal digits.

attributes

With the attribute AD=P, you can make an input field (AD=A or AD=M) input-protected.

Note:
It is not possible via an attribute to make output-only fields (AD=O) available for input.

If AD=P is specified at statement level, all fields except those specified in the MARK option are input-protected.

Moreover, you can change display and color attributes of fields. For information on these attributes, see the
session parameters AD and CD in the Natural Parameter Reference documentation.

ALARM-option

Copyright © Software AG 2003556

REINPUTALARM-option

This option causes the sound alarm feature of the terminal to be activated when the REINPUT statement is
executed. The appropriate hardware must be available to be able to use this feature.

Example 1

 /* EXAMPLE ’REIEX1’: REINPUT
 /**
 /* IF FUNCTION = A AND PARM = X
 /* ROUTINE-A IS TO BE EXECUTED.
 /* IF FUNCTION = B AND PARM = X
 /* ROUTINE-B IS TO BE EXECUTED.
 /* IF FUNCTION = C THRU D
 /* ROUTINE-CD IS TO BE EXECUTED.
 /* FOR ALL OTHER CASES,
 /* REINPUT STATEMENT IS TO BE EXECUTED.
 /**
 DEFINE DATA LOCAL
 1 #FUNCTION (A1)
 1 #PARM (A1)
 END-DEFINE
 /**
 INPUT #FUNCTION #PARM
 /**
 DECIDE FOR FIRST CONDITION
 WHEN #FUNCTION = ’A’ AND #PARM = ’X’
 PERFORM ROUTINE-A
 WHEN #FUNCTION = ’B’ AND #PARM = ’X’
 PERFORM ROUTINE-B
 WHEN #FUNCTION = ’C’ THRU ’D’
 PERFORM ROUTINE-CD
 WHEN NONE
 REINPUT ’PLEASE ENTER A VALID FUNCTION’
 MARK *#FUNCTION
 END-DECIDE
 /**
 END

#FUNCTION a #PARM y

PLEASE ENTER A VALID FUNCTION
 #FUNCTION a #PARM y

557Copyright © Software AG 2003

Example 1REINPUT

Example 2

 /* EXAMPLE ’REIEX2’: REINPUT WITH ATTRIBUTE ASSIGNMENT
 /***
 DEFINE DATA LOCAL
 1 #A (A20)
 1 #B (N7.2)
 1 #C (A5)
 1 #D (N3)
 END-DEFINE
 /***
 INPUT (AD=A)
 #A #B #C #D
 /***
 IF #A = ’ ’ OR #B = 0
 REINPUT (AD=P) ’RETYPE VALUES’
 MARK *#A (AD=I CD=RE)
 *#B (AD=U CD=PI)
 END-IF
 /***
 END

Example 3

 /* EXAMPLE ’REIEX3’: REINPUT FULL WITH POSITION
 /***
 DEFINE DATA LOCAL
 1 #A (A20)
 1 #B (N7.2)
 1 #C (A5)
 1 #D (N3)
 END-DEFINE
 /***
 INPUT (AD=M)
 #A #B #C #D
 IF #A = ’ ’
 COMPUTE #B = #B + #D
 RESET #D
 END-IF
 /***
 IF #A = SCAN ’TEST’ OR = ’ ’
 REINPUT FULL ’RETYPE VALUES’ MARK POSITION 5 IN *#A
 END-IF
 /***
 END

Copyright © Software AG 2003558

REINPUTExample 2

#A #B 0.00 #C #D 0

 RETYPE VALUES

559Copyright © Software AG 2003

Example 3REINPUT

REJECT
For more information about this statement, see the statement ACCEPT/REJECT.

Copyright © Software AG 2003560

REJECTREJECT

RELEASE

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Set-name C S A no no

Related Statements: STACK | FIND with RETAIN option | DEFINE DATA GLOBAL

Function
The RELEASE statement is used to:

delete the entire contents of the Natural stack;
release sets of ISNs retained via a FIND statement that contained a RETAIN clause (applicable to Adabas
databases only);
reset global and application-independent variables.

RELEASE STACK
RELEASE STACK causes all data/commands currently in the Natural stack to be deleted.

RELEASE SET
RELEASE SET is applicable to Adabas databases only.

RELEASE SET set-name causes a specific single ISN set to be released.

 RELEASE SET ’CITY-SET’

 MOVE ’CITY-SET’ TO #SET(A32)
 RELEASE SET #SET

If only RELEASE SETS, without a set-name, is specified, all ISN sets retained with a FIND statement with a
RETAIN clause will be released.

RELEASE VARIABLES

561Copyright © Software AG 2003

RELEASERELEASE

RELEASE VARIABLES causes all variables defined in the current global data area to be reset to their initial
values. Also, it eliminates all AIVs (application-independent variables), thus making them no longer available.

The variables are reset/eliminated either when the execution of the level 1 program is finished, or when the
program invokes another program via a FETCH or RUN statement.

Example

 * EXAMPLE ’RELEX1’: FIND (RETAIN CLAUSE) AND RELEASE
 **
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 BIRTH
 2 NAME
 1 #BIRTH (D)
 END-DEFINE
 *
 MOVE EDITED ’19400101’ TO #BIRTH (EM=YYYYMMDD)
 *
 FIND NUMBER EMPLOY-VIEW WITH BIRTH GT #BIRTH
 RETAIN AS ’AGESET1’
 IF *NUMBER = 0
 STOP
 END-IF
 *
 FIND EMPLOY-VIEW WITH ’AGESET1’ AND CITY = ’NEW YORK’
 DISPLAY NOTITLE NAME CITY BIRTH (EM=YYYY-MM-DD)
 END-FIND
 *
 RELEASE SET ’AGESET1’
 END

 NAME CITY DATE
 OF
 BIRTH
 -------------------- -------------------- ----------

 RUBIN NEW YORK 1945-10-27
 WALLACE NEW YORK 1945-08-04

Copyright © Software AG 2003562

RELEASEExample

REPEAT

Syntax 1

Syntax 2

Related Statement: FOR

Function
The REPEAT statement is used to initiate a processing loop.

If no logical condition is specified, the loop must be exited by an ESCAPE, STOP or TERMINATE statement
specified within the loop. If a logical condition is specified, the condition determines when the execution of the
loop is to be terminated.

Using syntax 1, the statements are executed one or more times.

Using syntax 2, the statements are executed zero or more times.

The placement of the condition (either at the beginning or at the end of the loop) determines when it is to be
evaluated.

For further information on logical conditions, see the section Logical Condition Criteria.

563Copyright © Software AG 2003

REPEATREPEAT

UNTIL
The processing loop will be continued until the logical condition becomes true.

WHILE
The processing loop will be continued as long as the logical condition is true.

Example 1

 /* EXAMPLE ’RPTEX1S’: REPEAT (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 1 #PERS-NR (A8)
 END-DEFINE
 /**
 REPEAT
 INPUT ’ENTER A PERSONNEL NUMBER:’ #PERS-NR
 IF #PERS-NR = ’ ’
 ESCAPE BOTTOM
 END-IF
 FIND EMPLOY-VIEW WITH PERSONNEL-ID = #PERS-NR
 IF NO RECORD FOUND
 REINPUT ’NO RECORD FOUND’
 END-NOREC
 DISPLAY NOTITLE NAME
 END-FIND
 END-REPEAT
 /**
 END

ENTER A PERSONNEL NUMBER: 11500304

 NAME

 KLUGE

Equivalent reporting-mode example: See the program RPTEX1R in the library SYSEXRM.

Example 2:

Copyright © Software AG 2003564

REPEATUNTIL

 /* EXAMPLE ’RPTEX2S’: REPEAT (WHILE AND UNTIL OPTIONS)
 /***
 DEFINE DATA LOCAL
 1 #X (I1) INIT <0>
 1 #Y (I1) INIT <0>
 END-DEFINE
 /***
 REPEAT WHILE #X <= 5
 ADD 1 TO #X
 WRITE NOTITLE ’=’ #X
 END-REPEAT
 /***
 SKIP 1
 REPEAT
 ADD 1 TO #Y
 WRITE ’=’ #Y
 UNTIL #Y = 6
 END-REPEAT
 /***
 END

 #X: 1
 #X: 2
 #X: 3
 #X: 4
 #X: 5
 #X: 6

 #Y: 1
 #Y: 2
 #Y: 3
 #Y: 4
 #Y: 5
 #Y: 6

Equivalent reporting-mode example: See the program RPTEX2R in the library SYSEXRM.

565Copyright © Software AG 2003

Example 2:REPEAT

REQUEST DOCUMENT
Note:
This statement is available under UNIX and Windows.

Copyright © Software AG 2003566

REQUEST DOCUMENTREQUEST DOCUMENT

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A no no

Operand2 C S A no no

Operand3 C S A no no

Operand4 C S A no no

Operand5 C S A N P I F D T L no no

Operand6 C S A N P I F B D T L no no

Operand7 C S A no no

Operand8 C S A N P I F D T L no no

Operand9 S A no yes

Operand10 C S A no yes

Operand11 S A N P I F B D T L no yes

Operand12 S A B no yes

Operand13 S I no yes

Operand14 S I no no

Function
The REQUEST DOCUMENT statement gives you the means to access an external system.

Restrictions for Cookies

Under the HTTP Protocol, a server uses cookies to maintain state information on the client workstation.

REQUEST DOCUMENT is implemented using internet option settings. This means that, depending on the
security settings, Cookies will be used.

If the internet option setting "Disabled" is set, no cookies will be sent, even if a cookie header (operand 4/5) is
sent.

For Server environments, do not use the internet option setting "Prompt". This setting leads to a "hanging"
server, because no client will be able to answer the prompt.

In the Windows environment, cookies are handled automatically by the Windows API. This means that, if
cookies are enabled in the browser, all incoming cookies will be saved and sent automatically with the next
request.

Note:
In a UNIX environment, the following profile parameters have to be considered: NOPROX, PROXPORT,
PROX.

For information on these parameters, refer to the profile parameter descriptions in the Natural Parameter
Reference documentation.

567Copyright © Software AG 2003

FunctionREQUEST DOCUMENT

operand1
Operand1 is the URL to access a document.

The information below is only valid if operand1 begins with "http://" or, in a Windows environment, also with
"https://".

operand2
Operand2 is the name of the user that is used for the request.

operand3
Operand3 is the password of the user that is used for the request.

operand4/5
Operand4 is the name of a HEADER variable sent with this request.

Operand5 is the value of a HEADER variable sent with this request.

Note:
Operand4 and operand5 can only be used in conjunction with each other.

Header Name for Operand4

Header names are not allowed to contain CR/LF (carriage return/line feed) or ":" (colon). This will not be
checked by the REQUEST DOCUMENT statement. For valid header names, please see the HTTP specifications.
For compatibility with the web interface, header names can be written with "_" (underscore) instead of "-"
(dash). (Internally, "_" is replaced by"-").

Header Value for Operand5

Header values are not allowed to contain CR/LF. This will not be checked by the REQUEST DOCUMENT
statement. For valid header values and formats, please see the HTTP specifications.

General Information

For a HTTP request, some headers are required, eg: Request-Method or Content-Type.

These headers will be automatically generated depending on the parameters given with the REQUEST
DOCUMENT statement.

Automatically Generated Headers (operand 4/5)

Request-Method

The following values are supported for operand5: "HEAD", "POST", "GET", and "PUT".

The following table shows the automatic calculation of Request-Method depending on the given operands:

Copyright © Software AG 2003568

REQUEST DOCUMENToperand1

HEAD POST GET PUT

WITH HEADER

(operands 4/5)

optional optional optional optional

WITH DATA

(operands 7/8)

not specifiedspecifiednot specifiedonly with option ALL (operand 6)

RETURN HEADER

(operands 9 to 11)

specified optional optional optional

RETURN PAGE

(operand 12)

not specifiedspecifiedspecified optional

Content-Type

If the request method is POST, a content-type header has to be delivered with the HTTP request. If no
content-type is set explicitly, the automatically generated value of operand5 is
"application/x-www-form-urlencoded" .

Note:

It is possible to overwrite the automatically generated headers. Natural will not check them for errors.
Unexpected errors may occur.

operand6
Operand6 is a complete document that is to be sent. This value is needed for the HTTP request method PUT.

operand7/8
Operand7 is the name of a DATA variable to be sent with this request. This value is needed for the HTTP
request method POST (URL-encoding necessary, especially "&", "=", "%").

Operand8 is the value of a DATA variable to be sent with this request. This value is needed for HTTP request
method POST (URL-encoding necessary, especially "&", "=", "%").

Note:
Operand7 and operand8 can only be used in conjunction with each other.

Restriction

If operand 7/8 is given, and the communication is "http://" or "https://" by default, the request method POST (see
table above) with content type application/x-www-form-urlencoded is used.

During the request, the operands 7/8 will be separated by "=" and "&" characters. Therefore the operands are not
allowed to contain "=", "&" and, because of URL-encoding, "%" characters. These characters are considered
"unsafe" and need to be encoded as:

569Copyright © Software AG 2003

operand6REQUEST DOCUMENT

Character URL-Encoding Syntax

% %25

& %26

= %3D

General Note for URL-Encoding

When sending POST data with the content type application/x-www-form-urlencoded, certain characters must
be represented by means of URL-encoding, which means substituting the character with
%hexadecimal-character-code. The full details of when and why URL-encoding is necessary, are discussed in
RFC 1630, RFC 1738 and RFC 1808. Some basic details are given here. All non-ASCII characters (i.e., valid
ISO 8859/1 characters that are not also ASCII characters) must be URL-encoded, e.g., the file köln.html would
appear in an URL as k%F6ln.html.

Some characters are considered to be "unsafe" when web pages are requested by e-mail.

These characters are:

Character URL-Encoding Syntax

 the tab character %09

 the space character %20

[%5B

\ %5C

] %5D

^ %5E

‘ %60

{ %7B

| %7C

} %7D

~ %7E

When writing URLs, you should URL-encode these characters.

Some characters have special meanings in URLs, such as the colon (:) that separates the URL scheme from the
rest of the URL, the double slash (//) that indicates that the URL conforms to the Common Internet Scheme
syntax and the percent sign (%). Generally, when these characters appear as parts of file names, they must be
URL-encoded to distinguish them from their special meaning in URLs (this is a simplification, read the RFCs for
full details).

These characters are:

Copyright © Software AG 2003570

REQUEST DOCUMENToperand7/8

Character URL-Encoding Syntax

" %22

%23

% %25

& %26

+ %2B

, %2C

/ %2F

: %3A

< %3C

= %3D

> %3E

? %3F

@ %40

operand9
Operand9 contains all header values delivered with the HTTP response.

The first line contains the status information and all following lines contain the headers as pairs of name and
value. The names always end in a colon (:) and the values end in a carriage return (CR). (Internally, all "CR/LF"s
are transformed to "CR"s.)

operand10/11
Operand10 is the name of a HEADER received with this request. The HEADER is needed for HTTP.

Operand11 is the value of a HEADER received with this request. The HEADER is needed for HTTP.

Note:
Operand10 and operand11 can only be used in conjunction with each other.

Return Header Name for Operand10

For compatibility with the web interface, header names can be written with "_" instead of "-". Internally, "_" is
replaced by "-".

If operand10 is a blank string, the status information is returned.

HTTP/1.0 200 OK

operand12
Operand12 is the document returned for this request.

571Copyright © Software AG 2003

operand9REQUEST DOCUMENT

operand13
Operand13 is the response number of the request (e.g. 200).

Overview of Response Numbers - for HTTP/HTTPs Requests

Copyright © Software AG 2003572

REQUEST DOCUMENToperand13

Status Value Response

STATUS CONTINUE 100 OK to continue with request

STATUS SWITCH_PROTOCOLS 101 Server has switched protocols in upgrade header

STATUS OK 200 Request completed

STATUS CREATED 201 Object created, reason = new URL

STATUS ACCEPTED 202 Async completion (TBS)

STATUS PARTIAL 203 Partial completion

STATUS NO_CONTENT 204 No info to return

STATUS RESET_CONTENT 205 Request completed, but clear form

STATUS PARTIAL_CONTENT 206 Partial GET fulfilled

STATUS AMBIGUOUS 300 Server could not decide what to return

STATUS MOVED 301 Object permanently moved

STATUS REDIRECT 302 Object temporarily moved

STATUS REDIRECT_METHOD 303 Redirection w/o new access method

STATUS NOT_MODIFIED 304 If-modified-since was not modified

STATUS USE_PROXY 305 Redirection to proxy, location header specifies proxy to use

STATUS REDIRECT_KEEP_VERB307 HTTP/1.1: keep same verb

STATUS BAD_REQUEST 400 Invalid syntax

STATUS DENIED 401 Access denied

STATUS PAYMENT_REQ 402 Payment required

STATUS FORBIDDEN 403 Request forbidden

STATUS NOT_FOUND 404 Object not found

STATUS BAD_METHOD 405 Method is not allowed

STATUS NONE_ACCEPTABLE 406 No response acceptable to client found

STATUS PROXY_AUTH_REQ 407 Proxy authentication required

STATUS REQUEST_TIMEOUT 408 Server timed out waiting for request

STATUS CONFLICT 409 User should resubmit with more info

STATUS GONE 410 The resource is no longer available

STATUS LENGTH_REQUIRED 411 The server refused to accept request w/o a length

STATUS PRECOND_FAILED 412 Precondition given in request failed

STATUS REQUEST_TOO_LARGE413 Request entity was too large

STATUS URL_TOO_LONG 414 Request URL too long

STATUS UNSUPPORTED_MEDIA415 Unsupported media type

STATUS SERVER_ERROR 500 Internal server error

STATUS NOT_SUPPORTED 501 "Required" not supported

STATUS BAD_GATEWAY 502 Error response received from gateway

STATUS SERVICE_UNAVAIL 503 Temporarily overloaded

STATUS GATEWAY_TIMEOUT 504 Timed out waiting for gateway

STATUS VERSION_NOT_SUP 505 HTTP version not supported

573Copyright © Software AG 2003

Overview of Response Numbers - for HTTP/HTTPs RequestsREQUEST DOCUMENT

Response 301 - 303 (Redirection)

Redirection means that the requested URL has moved. As a response, the Return Header with the name
LOCATION will be displayed. This header contains the URL where the requested page has moved to. A new
REQUEST DOCUMENT request can be used to retrieve the page moved.

HTTP browsers redirect automatically to the new URL, but the REQUEST DOCUMENT statement does not
handle redirection automatically.

Response 401 (Denied)

The response "Access Denied" means that the requested page can only be accessed if a valid user ID and
password are provided with the request. As a response, the Return Header with the name
WWW-AUTHENTICATE will be delivered with the realm needed for this request.

HTTP browsers normally display a dialog with user ID and password, but with the REQUEST DOCUMENT
statement, no dialog is displayed.

operand14
Operand14 contains the Natural error if the request could not be performed.

Examples
Note:

There is an example dialog V5-RDOC for this statement in the example library SYSEXV.

General Request

/*REQDX1S : Example program 1 for REQUEST DOCUMENT
/*
REQUEST DOCUMENT FROM "http://bolsap1:5555/invoke/sap.demo/handle_RFC_XML_POST"
 WITH
 USER #User PASSWORD #Password
 DATA
 NAME ’XMLData’ VALUE #Queryxml
 NAME ’repServerName’ VALUE ’NT2’
 RETURN
 PAGE #Resultxml
 RESPONSE #rc

Simple Get Request (no data)

/*REQDX2S : Example program 2 for REQUEST DOCUMENT
/*
REQUEST DOCUMENT FROM "http://pcnatweb:8080"
 RETURN
 PAGE #Resultxml
 RESPONSE #rc

Copyright © Software AG 2003574

REQUEST DOCUMENToperand14

Simple Head Request (no return page)

/*REQDX3S : Example program 3 for REQUEST DOCUMENT
/*
REQUEST DOCUMENT FROM "http://pcnatweb"
 RESPONSE #rc

Simple Post Request (default)

/*REQDX4S : Example program 4 for REQUEST DOCUMENT
/*
REQUEST DOCUMENT FROM "http://pcnatweb/cgi-bin/nwwcgi.exe/sysweb/nat-env"
 WITH
 DATA
 NAME ’XMLData’ VALUE #Queryxml
 NAME ’repServerName’ VALUE ’NT2’
 RETURN
 PAGE #Resultxml
 RESPONSE #rc

Simple Put Request (with data all)

/*REQDX5S : Example program 5 for REQUEST DOCUMENT
/*
REQUEST DOCUMENT FROM "http://pcnatweb/test.txt"
 WITH
 DATA ALL #document
 RETURN
 PAGE #Resultxml
 RESPONSE #rc

575Copyright © Software AG 2003

Simple Head Request (no return page)REQUEST DOCUMENT

RESET

RESET [INITIAL] operand1

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A G M A N P I F B D T L C G O yes yes

Function
The RESET statement is used to set the value of an operand(s) to a null value, or to an initial value as defined in
a DEFINE DATA statement.

If operand1 is a DYNAMIC variable, it will be reset to a null value with the length the variable currently has at
the time the RESET statement is executed. The current length of a DYNAMIC variable can be ascertained by
using the system variable *LENGTH. For general information on DYNAMIC variables, see the section Large
and Dynamic Variables/Fields.

(In reporting mode, the RESET statement may also be used to define a variable, provided that the program
contains no DEFINE DATA LOCAL statement.)

INITIAL
RESET (without INITIAL) sets the value of each specified field (operand1) to a null value.

RESET INITIAL sets each specified field to the initial value as defined for the field in the DEFINE DATA
statement. If no initial value is defined for a field, it will be reset to a default initial value (see below).

If a dynamic variable is used, *LENGTH is set to zero if no initial value is defined.

If you apply RESET INITIAL to an array, it must be applied to the entire array (as defined in the DEFINE
DATA statement); a RESET INITIAL of individual array occurrences is not possible.

If an X-array is used, *OCCURRENCE is set to zero (on Windows and UNIX systems only).

RESET INITIAL of fields resulting from a redefinition is not possible either.

RESET INITIAL is applied to a DYNAMIC variable.

RESET INITIAL cannot be applied to database fields.

Default Initial Values
If you specify no INIT or CONST value in the DEFINE DATA statement, a field will be initialised with a
default initial value depending on its format.

Copyright © Software AG 2003576

RESETRESET

Example

 /* EXAMPLE ’RSTEX1’: RESET
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME (A10)
 1 #BINARY (B4) INIT <1>
 1 #INTEGER (I4) INIT <5>
 1 #NUMERIC (N2) INIT <25>
 END-DEFINE
 /***
 LIMIT 1
 READ EMPLOY-VIEW
 /**
 WRITE NOTITLE ’VALUES BEFORE RESET STATEMENT:’
 WRITE / ’=’ NAME ’=’ #BINARY ’=’ #INTEGER ’=’ #NUMERIC
 /**
 RESET NAME #BINARY #INTEGER #NUMERIC
 WRITE /// ’VALUES AFTER RESET STATEMENT:’
 WRITE / ’=’ NAME ’=’ #BINARY ’=’ #INTEGER ’=’ #NUMERIC
 /**
 RESET INITIAL #BINARY #INTEGER #NUMERIC
 WRITE /// ’VALUES AFTER RESET INITIAL STATEMENT:’
 WRITE / ’=’ NAME ’=’ #BINARY ’=’ #INTEGER ’=’ #NUMERIC
 /**
 END-READ
 END

VALUES BEFORE RESET STATEMENT:

 NAME: MORENO #BINARY: 00000001 #INTEGER: 5 #NUMERIC: 25

 VALUES AFTER RESET STATEMENT:

 NAME: #BINARY: 00000000 #INTEGER: 0 #NUMERIC: 0

 VALUES AFTER RESET INITIAL STATEMENT:

 NAME: #BINARY: 00000001 #INTEGER: 5 #NUMERIC: 25

577Copyright © Software AG 2003

ExampleRESET

RESIZE

RESIZE
dynamic-clause

[GIVING operand5]
array-clause

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A A B no no

Operand2 C S I no no

Operand3 A G A N P I F B D T L C G O yes no

Operand4 C S N P I no no

Operand5 S I4 no yes

Related Statements: EXPAND | REDUCE

Function
The RESIZE statement is used to adjust

the size of dynamic variable (dynamic clause) or
the number of occurrences of X-arrays (array clause).

Note:
The array clause is only available under Windows and UNIX.

dynamic-clause

[SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2

The RESIZE DYNAMIC statement adjusts the size of the currently allocated storage of a dynamic variable
(operand1) to the value specified with operand2.

When using the RESIZE statement the number of occurrences will be adjusted to the requested values,
regardless if the number of occurrence must be inceased or decreased.

operand1

Operand1 is the dynamic variable for which the size is to be adjusted.

Copyright © Software AG 2003578

RESIZERESIZE

operand2

Operand2 is used to specify the new size of the dynamic variable. The value specified must be a non-negative
numeric integer constant or a variable of type Integer4 (I4).

array-clause

[AND RESET] [OCCURRENCES OF] ARRAY operand3 TO (dim [,dim [,dim]])

Note:
The clause is only valid under Windows and UNIX.

The RESIZE ARRAY statement adjusts the number of occurrences of the X-array (operand3) to the upper and
lower bound specified with (dim [,dim [,dim]]).

The RESET option resets all occurrences of the resized X-array to its default zero value. By default (no RESET
option), the actual values are kept and the resized (new) occurrences are reset.

An upper or lower bound used in an RESIZE statement must be exactly the same as the corresponding upper or
lower bound defined for the array.

Example:

DEFINE DATA LOCAL
1 #a(I4/1:*)
1 #i(i4)
END-DEFINE
...
RESIZE ARRAY #a TO (1:10) /* THIS IS ALLOWED
RESIZE ARRAY #a TO (*:10) /* THIS IS ALLOWED
RESIZE ARRAY #a TO (5:10) /* THIS IS REJECTED
RESIZE ARRAY #a TO (#i:10) /* THIS IS REJECTED

operand3

Operand3 is the X-array. The occurrences of the X-array can be expanded or reduced. The index notation of the
array is optional. As index notation only the complete range notation * is allowed for each dimension.

dim

operand4
:

operand4

* *

The lower and upper bound notation (operand4 or asterisk) to which the X-array should be expanded is specified
here. If the upper or lower bound must not be changed an asterisk (*) must be specified instead of operand4.

The number of dimensions (dim) must exactly match the defined number of dimensions of the X-array (1,2, or
3).

579Copyright © Software AG 2003

array-clauseRESIZE

If the number of occurrences for a specified dimension is less than the number of the currently allocated
occurrences, the number of occurrences is not changed for the corresponding dimension.

GIVING operand5
If the GIVING clause is not specified, Natural runtime error processing is triggered if an error occurs.

If the GIVING clause is specified, operand5 contains the Natural message number if an error occurred, or zero
upon success.

Copyright © Software AG 2003580

RESIZEGIVING operand5

RETRY
Note:
This statement can only be used when accessing Adabas databases.

Related Statements: FIND | READ

Function
The RETRY statement is used within an ON ERROR statement block (see ON ERROR statement). It is used to
reattempt to obtain a record which is in hold status for another user.

When a record to be held is already in hold status for another user, Natural issues error message 3145. See also
the session parameter WH in the Natural Parameter Reference documentation.

The RETRY statement must be placed in the object that causes the error 3145.

For details on records hold logic, see the section Database Access of the Natural Programming Guide.

581Copyright © Software AG 2003

RETRYRETRY

Example

 /* EXAMPLE ’RTYEX1S’: RETRY (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 1 #RETRY (A1) INIT <’ ’>
 END-DEFINE
 /**
 FIND EMPLOY-VIEW WITH NAME = ’ALDEN’
 DELETE
 END TRANSACTION
 /**
 ON ERROR
 IF *ERROR-NR = 3145
 INPUT NO ERASE 10/1
 ’RECORD IS IN HOLD’ /
 ’DO YOU WISH TO RETRY ’ /
 #RETRY ’(Y)ES OR (N)O ’
 IF #RETRY = ’Y’
 RETRY
 ELSE
 STOP
 END-IF
 END-IF
 END-ERROR
 /**
 AT END OF DATA
 WRITE NOTITLE *NUMBER ’RECORDS DELETED’
 END-ENDDATA
 END-FIND
 /**
 END

Equivalent reporting-mode example: See the program RTYEX1R in the library SYSEXRM.

Copyright © Software AG 2003582

RETRYExample

RUN

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A yes no

Operand2 C S A G A N P I F B D T L G yes no

Function
The RUN statement is used to read a Natural source program from the Natural system file and then execute it.

REPEAT
RUN REPEAT causes the program not to prompt the user for input until the program has finished executing
even if multiple output screens (produced by INPUT statements) are produced.

This feature may be used if the program is to display multiple screens of information without having the user
respond to each screen.

Program Name - operand1
The name of the program can be specified as an alphanumeric constant or as the content of an alphanumeric
variable. If a variable is used, it must be 8 characters in length.

The program may be stored in the current library or in a concatenated library (default steplib is SYSTEM). If the
program is not found, an error message is issued.

The program is read into the source program work area and overlays any current source program.

Parameters - operand2
The RUN statement may also be used to pass parameters to the program to be run. A parameter may be defined
with any format. The parameters are converted to a format suitable for a corresponding INPUT field. All
parameters are placed on the top of the Natural stack.

The parameters can be read using an INPUT statement. The first INPUT statement issued will result in the
insertion of all parameters into the fields specified in the INPUT statement. The INPUT statement must have the
sign specification (SG=ON) for parameter fields defined with numeric format.

583Copyright © Software AG 2003

RUNRUN

If more parameters are passed than are read by the next INPUT statement, the extra parameters are ignored. The
number of parameters may be obtained with the system variable *DATA.

Note:
If operand2 is a time variable (format T), only the time component of the variable content is passed, but not the
date component.

parameter
If operand2 is a date variable, you can specify the session parameter DF as parameter for this variable. The
session parameter DF is described in the Natural Parameter Reference documentation.

Dynamic Source Text Creation/Execution
The RUN statement may be used to dynamically compile and execute a program for which the source or parts
thereof are created dynamically.

Dynamic source text creation is performed by placing source text into global variables and then referring to these
variables by using "&" instead of "+" as the first character of the variable name in the source text. The content of
the global variable will be interpreted as source text when the program is invoked using the RUN statement.

A global variable with index must not be used within a program that is invoked via a RUN statement.

It is not allowed to place a comment or an INCLUDE statement in a global variable.

Copyright © Software AG 2003584

RUNparameter

Example

Program containing RUN statement:

 /* EXAMPLE ’RUNEX1’: RUN (WITH DYNAMIC SOURCE PROGRAM CREATION)
 /**
 /* GLOBAL AREA ’GDA1’ CONTAINS ’+CRITERIA’
 /* +CRITERIA (A80)
 /* PROGRAM CREATING SOURCE
 DEFINE DATA GLOBAL USING GDA1
 LOCAL
 1 #NAME (A20)
 1 #CITY (A20)
 END-DEFINE
 /**
 INPUT ’Please specify the search values:’ /
 ’Name:’ #NAME /
 ’City:’ #CITY
 RESET +CRITERIA
 /**
 IF #NAME = ’ ’ AND #CITY = ’ ’
 REINPUT ’Enter at least 1 value’
 END-IF
 /**
 IF #NAME NE ’ ’
 COMPRESS ’NAME’ ’ =’’’ #NAME ’’’’ INTO +CRITERIA LEAVING NO
 END-IF
 IF #CITY NE ’ ’
 IF +CRITERIA NE ’ ’
 COMPRESS +CRITERIA ’AND’ INTO +CRITERIA
 END-IF
 COMPRESS +CRITERIA ’ CITY =’’’ #CITY ’’’’ INTO +CRITERIA
 END-IF
 /**
 RUN ’FIND-EMP’
 /**
 END

Program FIND-EMP executed by RUN statement:

 /* PROGRAM EXECUTED WITH RUN STATEMENT (’FIND-EMP’)
 /**
 DEFINE DATA GLOBAL USING GDA1
 LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 END-DEFINE
 /**
 FIND NUMBER EMPLOY-VIEW WITH &CRITERIA
 RETAIN AS ’EMP-SET’
 DISPLAY *NUMBER
 END

585Copyright © Software AG 2003

ExampleRUN

SEND EVENT
Note:
This statement is only available under Windows.

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A yes no

Operand2 S I yes no

Operand3 C S A A N P I F B D T L C G O yes no

Function
You use this statement to trigger a user-defined event within a Natural application.

Operands
Operand1 is the name of the event to be sent.

Operand2 is the identifier of the dialog receiving the user event. Operand2 must be defined with format/length
I4.

AD=
If operand3 is a variable, you can mark it in one of the following ways:

AD=O Non-modifiable, see Session Parameter AD=O.

AD=M Modifiable, see Session Parameter AD=M.

This is the default setting.

AD=A Input only, see Session Parameter AD=A.

Copyright © Software AG 2003586

SEND EVENTSEND EVENT

Operand3 cannot be explicitly specified if operand3 is a constant. AD=O always applies to constants.

Passing Parameters to the Dialog
It is possible to pass parameters to the dialog.

As operand3 you specify the parameter(s) to be passed to the dialog.

With the PARAMETERS-clause, parameters may be passed selectively.

nX
With the notation nX you can specify that the next n parameters are to be skipped (for example, 1X to skip the
next parameter, or 3X to skip the next three parameters); this means that for the next n parameters no values are
passed to the dialog.
A parameter that is to be skipped must be defined with the keyword OPTIONAL in the dialog’s DEFINE DATA
PARAMETER statement. OPTIONAL means that a value can - but need not - be passed from the invoking
object to such a parameter.

PARAMETERS-clause

Note:
You can only use the PARAMETERS-clause if the specified target dialog (dialog-name) is cataloged.

Dialog-name is the name of the dialog receiving the user event.

Note:
If the value of a parameter marked with AD=O and passed "by reference" is changed in a dialog, this will lead to
a runtime error.

Further Information and Examples
See the section Event-Driven Programming Techniques in the Natural Programming Guide.

587Copyright © Software AG 2003

Passing Parameters to the DialogSEND EVENT

SEND METHOD

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A yes no

Operand2 S O no no

Operand3 C S A G A N P I F B D T L C G O yes no

Operand4 S A A N P I F B D T L C G O yes no

Operand5 S N I yes no

The formats C and G can only be passed to methods of local classes. For more information, see the section Local
Classes.

Function
The SEND METHOD statement is used to invoke a particular method of an object.

Note: Optional parameters (nX notation) are available with Version 4.1.1 and all subsequent releases. The
AD option is available with Version 4.1.2 and all subsequent releases.

Copyright © Software AG 2003588

SEND METHODSEND METHOD

Method-Name - operand1
Operand1 is the name of a method which is supported by the object specified in operand2.

Since the method names can be identical in different interfaces of a class, the method name in operand1 can also
be qualified with the interface name to avoid ambiguity.

In the following example, the object #O3 has an interface Iterate with the method Start. The following statements
apply:

* Specifying only the method name.
 SEND "Start" TO #O3
 * Qualifying the method name with the interface name.
 SEND "Iterate.Start" TO #O3

If no interface name is specified, Natural searches the method name in all the interfaces of the class. If the
method name is found in more than one interface, a runtime error occurs.

Object Handle - operand2
The handle of the object to which the method call is to be sent.

Operand2 must be defined as an object handle (HANDLE OF OBJECT). The object must already exist.

To invoke a method of the current object inside a method, use the system variable *THIS-OBJECT.

Parameter - operand3
As operand3 you can specify parameters specific to the method.

In the following example, the object #O3 has the method PositionTo with the parameter Pos. The method is
called in the following way:

 SEND "PositionTo" TO #O3 WITH Pos

Methods can have optional parameters. Optional parameters need not to be specified when the method is called.
To omit an optional parameter, use the placeholder 1X. To omit n optional parameters, use the placeholder nX.

In the following example, the method SetAddress of the object #O4 has the parameters FirstName, MiddleInitial,
LastName, Street and City, where MiddleInitial, Street and City are optional. The following statements apply:

* Specifying all parameters.
 SEND "SetAddress" TO #O4 WITH FirstName MiddleInitial LastName Street City
 * Omitting one optional parameter.
 SEND "SetAddress" TO #O4 WITH FirstName 1X LastName Street City
 * Omitting all optional parameters.
 SEND "SetAddress" TO #O4 WITH FirstName 1X LastName 2X

Omitting a non-optional (mandatory) parameter results in a runtime error.

AD=
If operand3 is a variable, you can mark it in one of the following ways:

589Copyright © Software AG 2003

Method-Name - operand1SEND METHOD

AD=O Non-modifiable, see Session Parameter AD=O.

AD=M Modifiable, see Session Parameter AD=M.

This is the default setting.

AD=A Input only, see Session Parameter AD=A.

If operand3 is a constant, AD cannot be explicitly specified. For constants AD=O always applies.

Parameter - nX
With the notation nX you can specify that the next n parameters are to be skipped (for example, 1X to skip the
next parameter, or 3X to skip the next three parameters). This means that for the next n parameters no values are
passed to the method.

For a method implemented in Natural, a parameter that is to be skipped must be defined with the keyword
OPTIONAL in the method subprogram’s DEFINE DATA PARAMETER statement. OPTIONAL means that a
value can - but need not - be passed from the invoking object to such a parameter.

RETURN - operand4
If the RETURN clause is omitted and the method has a return value, the return value is discarded.

If the RETURN clause is specified, operand4 contains the return value of the method. If the method execution
fails, operand4 is reset to its initial value.

Note:
For classes written in Natural, the return value of a method is defined by entering one additional parameter
in the parameter data area of the method and by marking it with ’BY VALUE RESULT’. (For more
information, see the section PARAMETER Clause.) Therefore the parameter data area of a method that is
written in Natural and that has a return value always contains one additional field next to the method
parameters. This is to be considered when you call a method of a Natural written class and want to use the
parameter data area of the method in the SEND statement.

GIVING - operand5
If the GIVING clause is not specified, the Natural run time error processing is triggered if an error occurs.

If the GIVING clause is specified, operand5 contains the Natural message number if an error occurred, or zero
on success.

Copyright © Software AG 2003590

SEND METHODParameter - nX

SEPARATE

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A B yes no

Operand2 C S N P I yes no

Operand3 C S N P I yes no

Operand4 S A G A B yes yes

Operand5 S A B yes yes

Operand6 C S A B yes no

Operand7 S N P I yes yes

Related Statements: COMPRESS | EXAMINE

Function
The SEPARATE statement is used to separate the content of an alphanumeric or binary operand into two or
more alphanumeric or binary operands (or into multiple occurrences of an alphanumeric or binary array).

Source Operand - operand1
Operand1 is the alphanumeric/binary constant or variable whose content is to be separated.

Trailing blanks in operand1 are removed before the value is processed (even if the blank is used as a delimiter
character; see also the DELIMITER option).

591Copyright © Software AG 2003

SEPARATESEPARATE

SUBSTRING
Normally, the whole content of a field is separated, starting from the beginning of the field. The SUBSTRING
option allows you to separate only a certain part of the field. After the field name (operand1) in the
SUBSTRING clause you specify first the starting position (operand2) and then the length (operand3) of the field
portion to be separated. For example, if a field #A contained "CONTRAPTION", SUBSTRING(#A,5,3) would
contain "RAP".

Note:
If you omit operand2, the starting position is assumed to be "1". If you omit operand3, the length is assumed to
be from the starting position to the end of the field.

LEFT JUSTIFIED
This option causes leading blanks which may occur between the delimiter character and the next non-blank
character to be removed from the target operand.

Target Operand - operand4
Operand4 represents the target operands. If an array is specified as target operand, it is filled occurrence by
occurrence with the separated values.

The number of target operands corresponds to the number of delimiter characters (including trailing delimiter
characters) in operand1, plus 1.

If operand4 is a DYNAMIC variable, its length may be modified by the SEPARATE operation. The current
length of a DYNAMIC variable can be ascertained by using the system variable *LENGTH. For general
information on DYNAMIC variables, see the section Large and Dynamic Variables/Fields.

IGNORE / REMAINDER
If you do not specify enough target fields for the source value to be separated into, you will receive an
appropriate error message.

To avoid this, you have two options:

If you specify IGNORE, Natural will ignore it if there are not enough target operands to receive the source
value.
If you specify REMAINDER operand5, that section of the source value which could not be placed into
target operands will be placed into operand5. You may then use the content of operand5 for further
processing, for example in a subsequent SEPARATE statement.

DELIMITER Option

Copyright © Software AG 2003592

SEPARATESUBSTRING

Delimiter characters within operand1 indicate the positions at which the value is to be separated.

If you omit the DELIMITER option (or specify WITH ANY DELIMITER), a blank and any character
which is neither a letter nor a numeric character will be treated as delimiter character.
WITH INPUT DELIMITER indicates that the blank and the default delimiter character (as specified with
the session parameter ID) is to be used as delimiter character.
WITH DELIMITER operand6 indicates that each of the specified characters (operand6) is to be treated as
delimiter character. If operand6 contains trailing blanks, these will be ignored.

WITH RETAINED DELIMITERS
Normally, the delimiter characters themselves are not moved into the target operands.

When you specify RETAINED, however, each delimiter (that is, either default delimiters and blanks, or the
delimiter specified with operand6) will also be placed into a target operand.

Example:

The following SEPARATE statement would place "150" into #B, "+" into #C, and "30" into #D:

 ...
 MOVE ’150+30’ TO #A
 SEPARATE #A INTO #B #C #D WITH RETAINED DELIMITER ’+’
 ...

GIVING NUMBER
The GIVING NUMBER option causes the number of filled target operands (including those filled with blanks)
to be returned in operand7. The number actually obtained is the number of delimiters plus 1.

If you use the IGNORE option, the maximum possible number returned in operand7 will be the number of target
operands (operand4).

If you use the REMAINDER option, the maximum possible number returned in operand7 will be the number of
target operands (operand4) plus operand5.

593Copyright © Software AG 2003

WITH RETAINED DELIMITERSSEPARATE

Example 1

 /* EXAMPLE ’SEPEX1’: SEPARATE
 /**
 DEFINE DATA LOCAL
 1 #TEXT1 (A6) INIT <’AAABBB’>
 1 #TEXT2 (A7) INIT <’AAA BBB’>
 1 #TEXT3 (A7) INIT <’AAA-BBB’>
 1 #TEXT4 (A7) INIT <’A.B/C,D’>
 1 #FIELD1A (A6)
 1 #FIELD1B (A6)
 1 #FIELD2A (A3)
 1 #FIELD2B (A3)
 1 #FIELD3A (A3)
 1 #FIELD3B (A3)
 1 #FIELD4A (A3)
 1 #FIELD4B (A3)
 1 #FIELD4C (A3)
 1 #FIELD4D (A3)
 1 #NBT (N1)
 1 #DEL (A5)
 END-DEFINE
 /**
 WRITE NOTITLE ’EXAMPLE A (SOURCE HAS NO BLANKS)’
 SEPARATE #TEXT1 INTO #FIELD1A #FIELD1B GIVING NUMBER #NBT
 WRITE / ’=’ #TEXT1 5X ’=’ #FIELD1A 4X ’=’ #FIELD1B 4X ’=’ #NBT
 /**
 WRITE NOTITLE /// ’EXAMPLE B (SOURCE HAS EMBEDDED BLANK)’
 SEPARATE #TEXT2 INTO #FIELD2A #FIELD2B GIVING NUMBER #NBT
 WRITE / ’=’ #TEXT2 4X ’=’ #FIELD2A 7X ’=’ #FIELD2B 7X ’=’ #NBT
 /**
 WRITE NOTITLE /// ’EXAMPLE C (USING DELIMITER ’’-’’)’
 SEPARATE #TEXT3 INTO #FIELD3A #FIELD3B WITH DELIMITER ’-’
 WRITE / ’=’ #TEXT3 4X ’=’ #FIELD3A 7X ’=’ #FIELD3B
 /**
 MOVE ’,/’ TO #DEL
 WRITE NOTITLE /// ’EXAMPLE D USING DELIMITER’ ’=’ #DEL
 SEPARATE #TEXT4 INTO #FIELD4A #FIELD4B
 #FIELD4C #FIELD4D WITH DELIMITER #DEL
 WRITE / ’=’ #TEXT4 4X ’=’ #FIELD4A 7X ’=’ #FIELD4B
 / 19X ’=’ #FIELD4C 7X ’=’ #FIELD4D
 /**
 END

Copyright © Software AG 2003594

SEPARATEExample 1

EXAMPLE A (SOURCE HAS NO BLANKS)

 #TEXT1: AAABBB #FIELD1A: AAABBB #FIELD1B: #NBT: 1

 EXAMPLE B (SOURCE HAS EMBEDDED BLANK)

 #TEXT2: AAA BBB #FIELD2A: AAA #FIELD2B: BBB #NBT: 2

 EXAMPLE C (USING DELIMITER ’-’)

 #TEXT3: AAA-BBB #FIELD3A: AAA #FIELD3B: BBB

 EXAMPLE D USING DELIMITER #DEL: ,/

 #TEXT4: A.B/C,D #FIELD4A: A.B #FIELD4B: C
 #FIELD4C: D #FIELD4D:

Example 2

 /* EXAMPLE ’SEPEX2’: SEPARATE (USING AN ARRAY)
 /***
 DEFINE DATA LOCAL
 1 #INPUT-LINE (A60) INIT <’VALUE1, VALUE2,VALUE3’>
 1 #FIELD (A20/1:5)
 1 #NUMBER (N2)
 END-DEFINE
 /***
 SEPARATE #INPUT-LINE LEFT JUSTIFIED INTO #FIELD (1:5)
 GIVING NUMBER IN #NUMBER
 WRITE NOTITLE #INPUT-LINE //
 #FIELD (1) /
 #FIELD (2) /
 #FIELD (3) /
 #FIELD (4) /
 #FIELD (5) /
 #NUMBER
 /***
 END

VALUE1, VALUE2,VALUE3

 VALUE1
 VALUE2
 VALUE3

 3

595Copyright © Software AG 2003

Example 2SEPARATE

Example 3

 /* EXAMPLE ’SEPEX3’: SEPARATE (REMAINDER, RETAIN)
 /***
 DEFINE DATA LOCAL
 1 #INPUT-LINE (A60) INIT <’VAL1, VAL2, VAL3,VAL4’>
 1 #FIELD (A10/1:4)
 1 #REM (A30)
 END-DEFINE
 WRITE TITLE LEFT ’INP:’ #INPUT-LINE /
 ’#FIELD (1)’ 13T ’#FIELD (2)’ 25T ’#FIELD (3)’
 37T ’#FIELD (4)’ 49T ’REMAINDER’
 / ’----------’ 13T ’----------’ 25T ’----------’
 37T ’----------’ 49T ’------------------------------’
 /***
 SEPARATE #INPUT-LINE INTO #FIELD (1:2)
 REMAINDER #REM WITH DELIMITERS ’,’
 WRITE #FIELD(1) 13T #FIELD(2) 25T #FIELD(3) 37T #FIELD(4) 49T #REM
 /***
 RESET #FIELD(*) #REM
 SEPARATE #INPUT-LINE INTO #FIELD (1:2)
 IGNORE WITH DELIMITERS ’,’
 WRITE #FIELD(1) 13T #FIELD(2) 25T #FIELD(3) 37T #FIELD(4) 49T #REM
 /***
 RESET #FIELD(*) #REM
 SEPARATE #INPUT-LINE INTO #FIELD (1:4) IGNORE
 WITH RETAINED DELIMITERS ’,’
 WRITE #FIELD(1) 13T #FIELD(2) 25T #FIELD(3) 37T #FIELD(4) 49T #REM
 /***
 RESET #FIELD(*) #REM
 SEPARATE SUBSTRING(#INPUT-LINE,1,50) INTO #FIELD (1:4)
 IGNORE WITH DELIMITERS ’,’
 WRITE #FIELD(1) 13T #FIELD(2) 25T #FIELD(3) 37T #FIELD(4) 49T #REM
 /***
 END

INP: VAL1, VAL2, VAL3,VAL4
 #FIELD (1) #FIELD (2) #FIELD (3) #FIELD (4) REMAINDER
 ---------- ---------- ---------- ---------- ------------------------------
 VAL1 VAL2 VAL3,VAL4
 VAL1 VAL2
 VAL1 , VAL2 ,
 VAL1 VAL2 VAL3 VAL4

Copyright © Software AG 2003596

SEPARATEExample 3

SET CONTROL

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A yes no

Function
The SET CONTROL statement is used to perform terminal commands from within a program.

The terminal commands (operand1) are specified without the control character and can be specified as a text
constant or as the content of an alphanumeric variable.

For further information on terminal commands, see the Natural Terminal Commands documentation.

Example 1

 ...
 SET CONTROL ’L’
 ...

Switches to lower case (equivalent to the terminal command %L).

Example 2

 ...
 SET CONTROL ’HDEST’
 ...

Activates hardcopy output to destination "DEST" (equivalent to the terminal command %Hdestination).

597Copyright © Software AG 2003

SET CONTROLSET CONTROL

SET GLOBALS
Note:
This statement is permitted in reporting mode only.

SET GLOBALS parameter=value

Function
The SET GLOBALS statement is used to set values for session parameters.

The parameters are evaluated either when the program that contains the SET GLOBALS statement is compiled,
or when it is executed; this depends on the individual parameters.

The parameter settings specified with SET GLOBALS remain in effect until the end of the Natural session,
unless they are overridden with a subsequent SET GLOBALS statement (or GLOBALS system command).

Exception: On mainframe computers, a SET GLOBALS statement in a subordinate program (that is, a
subroutine, subprogram, or program invoked with FETCH RETURN) only applies until control is returned from
the subordinate program to the invoking object; then the parameter values set for the invoking object apply
again.

Parameters
If you specify multiple parameters, you have to separate them from one another by one or more blanks. The
parameters can be specified in any order.

Unless otherwise specified, the parameters can be used on all platforms supported by Natural.

Parameters that can be set with the SET GLOBALS statement Evaluation
R = at runtime
C = at compilation

CC - Conditional Program Execution (UNIX only) R

CF - Character for Terminal Commands R

CO - Compiler Output R

DC - Character for Decimal Point Notation R

DFOUT - Date Format for Output R

DFSTACK - Date Format for Stack R

DFTITLE - Date Format in Default Page Title R

DU - Dump Generation R

EJ - Page Eject R

ENDIAN - Endian Mode for Compiled Objects (Windows and UNIX only) R

Copyright © Software AG 2003598

SET GLOBALSSET GLOBALS

FCDP - Filler Character for Dynamically Protected Fields R

FS - Format Specification R

IA - INPUT Assign Character R

ID - INPUT Delimiter Character R

IM - INPUT Mode R

LE - Limit Error Processing C

LS - Line Size C

LT - Limit of Records Read R

ML - Msg Line Position (Windows only) R

MT - Maximum CPU Time (Mainframes only) R

NC - Use of Natural System Commands (Mainframes and Windows only) R

OPF - Overwriting of Protected Fields by Helproutines R

PD - NATPAGE Page Dataset R

PM - Print Mode C

PS - Page Size RC

REINP - Internal REINPUT for Invalid Data R

SA - Sound Terminal Alarm R

SF - Spacing Factor C

SL - Source Line Length (Mainframes only) R

SM - Structured Mode R

SYMGEN - Generate Symbol Tables (Windows and UNIX only) R

TS - Translate Output from Programs in System Libraries (Mainframes only) R

WH - Wait for Record in Hold Status R

ZD - Zero Division Check R

ZP - Zero Printing R

The individual parameters are described in the section Session Parameters of the Natural Parameter Reference
documentation.

Example

 SET GLOBALS LS=74 LT=5000
 ...

599Copyright © Software AG 2003

ExampleSET GLOBALS

SET KEY

Syntax 1 - Affecting All Keys

Syntax 2 - Affecting Individual Keys

Copyright © Software AG 2003600

SET KEYSET KEY

Syntax 3 - Affecting Individual Keys

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A yes no

Operand2 C S A yes no

Operand3 C S A yes no

Operand4 C S A yes no

Function
The SET KEY statement is used to assign functions to video terminal PA (program attention) keys, PF (program
function) keys, and the CLEAR key.

When a SET KEY statement is executed, Natural receives control of the keys during program execution and uses
the values assigned to the keys.

The Natural system variable *PF-KEY identifies which key was pressed last.

Notes:
If a user presses a key to which no function is assigned, either a warning message will be issued prompting the
user to press a valid key, or the value "ENTR" will be placed into the Natural system variable *PF-KEY, i.e.
Natural will react as if the ENTER key had been pressed (this depends on the Natural profile parameter IKEY as
set by the Natural administrator).
On mainframe computers, processing of PA and PF keys is also affected by the Natural profile parameter KEY
as set by the Natural administrator.

Making Keys Program-Sensitive
Making a key program-sensitive means that the key will be available for interrogation by the currently active
program. If a key is made program-sensitive, pressing the key has the same effect as pressing ENTER. All data
that have been entered on the screen are transferred to the program.

Note:
PA keys and the CLEAR key, when made program-sensitive, do not cause any data to be transferred from the
screen.

601Copyright © Software AG 2003

Syntax 3 - Affecting Individual KeysSET KEY

The program-sensitivity remains in effect only for the execution of the current program. See also the section SET
KEY Statements on Different Program Levels.

Examples:

SET KEY ALL

This statement causes all keys to be made program-sensitive. All function assignments to any keys are
overwritten.

SET KEY PF2
SET KEY PF2=PGM

Each of these statements cause PF2 to be made program-sensitive.

SET KEY OFF

This statement de-activates all key settings.

SET KEY ON

This statement re-activates the functions assigned to all keys that had an assignment and re-activates the
program-sensitivity of keys that were made program-sensitive before they were de-activated.

SET KEY PF2=OFF

This statement de-activates PF2.

SET KEY PF2=ON

This statement re-activates the function assigned to PF2 before it was de-activated or made program-sensitive. If
no function had been assigned to PF2, it will be made program-sensitive again.

Assigning Commands/Programs
You can assign a command or program name to a key. When the key is pressed, the current program is
terminated and the command/program assigned to the key is invoked via the Natural stack. When assigning a
command/program, you can also pass parameters to the command/program (see third example below).

You can also assign a terminal command to a key. When the key is pressed, the terminal command assigned to
the key is executed.

When operand2 is specified as a constant, it must be enclosed within apostrophes.

Examples:

The command "SAVE" is assigned to PF4:

SET KEY PF4 = ’SAVE’

The value contained in the variable #XYZ is assigned to PF4:

SET KEY PF4 = #XYX

The command "LIST", including the LIST parameters "MAP" and "*", is assigned to PF6:

SET KEY PF6 = ’LIST MAP *’

Copyright © Software AG 2003602

SET KEYAssigning Commands/Programs

The terminal command "%%" is assigned to PF2:

SET KEY PF2=’%%’

The assignment remains in effect until it is overwritten by another SET KEY statement, until the user logs on to
another application, or until the end of the Natural session. See also the section SET KEY Statements on
Different Program Levels.

Note:
Before a program invoked via a key is executed, Natural internally issues a BACKOUT TRANSACTION
statement.

Assigning Input DATA
You can assign a data string (operand3) to a key. When the key is pressed, the data string is placed into the input
field in which the cursor is currently positioned, and the data are transferred to the executing program (as if
ENTER had been pressed).

When operand3 is specified as a constant, it must be enclosed within apostrophes.

Example:

SET KEY PF12=DATA ’YES’

For the validity of a DATA assignment, the same applies as for a command assignment, that is, it remains in
effect until it is overwritten by another SET KEY statement, until the user logs on to another application, or until
the end of the Natural session. See also the section SET KEY Statements on Different Program Levels.

COMMAND OFF/ON
With COMMAND OFF, you can temporarily de-activate any function (command, program, or data) assigned to
a key. If the key had been program-sensitive before the function was assigned, COMMAND OFF will make it
program-sensitive again.

With a subsequent COMMAND ON, you can re-activate the assigned function again.

Examples:

SET KEY PF4=COMMAND OFF

The function that has been assigned to PF4 is temporarily de-activated; if PF4 had been program-sensitive before
the function was assigned, it is now made program-sensitive again.

SET KEY PF4=COMMAND ON

The function assigned to PF4 is re-activated again.

SET KEY COMMAND OFF

All functions assigned to all keys are temporarily de-activated; those keys which had been program-sensitive
before functions were assigned to them, are now made program-sensitive again.

SET KEY COMMAND ON

All functions assigned to all keys are re-activated again.

603Copyright © Software AG 2003

Assigning Input DATASET KEY

With SET KEY PFnn=’ ’ you can delete the function assigned to a key and at the same time deactivate the
program sensitivity of the key.

Assigning HELP
You can assign "HELP" to a key. When the key is pressed, the helproutine assigned to the field in which the
cursor is currently positioned will be invoked.

The effect is the same as when entering the help character in the field to invoke help. (The help character -
default is "?" - is determined by the Natural profile parameter HI as set by the Natural administrator.)

Example:

SET KEY PF1=HELP

For the validity of a HELP assignment, the same applies as for program-sensitivity, that is, it remains in effect
only for the execution of the current program. See also the section SET KEY Statements on Different Program
Levels.

DYNAMIC
Instead of specifying a specific key with the SET KEY statement, you can use the DYNAMIC option with a
variable (operand1), and assign a value (PFn, PAn, CLR) to this variable in the program. This allows you to
specify a function and make it dependent on the program logic which key this function is assigned to.

Example:

 ...
 IF ...
 MOVE ’PF4’ TO #KEY
 ELSE
 MOVE ’PF7’ TO #KEY
 END-IF
 ...
 SET KEY DYNAMIC #KEY = ’SAVE’
 ...

DISABLED
Graphical user interface (GUI) elements, such as push-buttons, menus, and bitmaps, are implemented as PF keys.
With the DISABLED option, you can disable the use the of a GUI element assigned to a PF key. The GUI
element will then be displayed in grey and is not available for selection.

To cancel the effect of SET KEY PFnn=DISABLED, you use SET KEY PFnn=ON.

Example:

SET KEY PF10=DISABLED

Disables the use of the GUI element assigned to PF10.

The DISABLED option can only be used within a processing rule.

Copyright © Software AG 2003604

SET KEYAssigning HELP

SET KEY Statements on Different Program Levels
When an application contains SET KEY statements at different levels, the following applies:

When keys are made program-sensitive, the program-sensitivity also applies to all lower level (called)
programs, unless these programs contain further SET KEY statements. When control is returned to a higher
level program, the SET KEY assignments made at the higher level come into effect again.
For keys which are defined as HELP keys, the same applies as for keys which are program-sensitive.
When a function (program, command, terminal command, or data string) is assigned to a key, this
assignment is valid at all higher and lower levels - regardless of the level at what the assignment is made -
until another function is assigned to the key or it is made program-sensitive, or until the user logs on to
another application or the Natural session is terminated.

Example of SET KEY Statements on Different Program Levels:

605Copyright © Software AG 2003

SET KEY Statements on Different Program LevelsSET KEY

Assigning Names
With the NAMED clause, you can assign a name (operand4) to a key. The name will then be displayed in the
PF-key lines on the screen; this allows the users to identify the functions assigned to the keys:

Copyright © Software AG 2003606

SET KEYAssigning Names

 ? Help
 . Exit
 ---- --
 Code ..: ? Library ..: *_______
 Object ...: *_______________________________________
 DBID: 0__ FILENR ...: 0__

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Exit Last Flip Canc

The display of the PF-key lines is activated with the session parameter KD (see the Natural Parameter Reference
documentation). You can control the way in which the PF-key lines are displayed by using the terminal
command %Y (see the Natural Parameter Reference documentation).

The maximum length of a name to be assigned to a key is 10 characters. In normal tabular PF-key line format
(%YN), only the first 5 characters are displayed.

When operand4 is specified as a constant, it must be enclosed within apostrophes (see examples).

You cannot assign a name to a key without assigning a function to it or making it program-sensitive. To the
ENTER key, however, you can only assign a name, but no function.

With NAMED OFF, you delete the name assigned to a program-sensitive key.

Examples:

SET KEY ENTR NAMED ’EXEC’

The name "EXEC" is assigned to the ENTER key.

SET KEY PF3 NAMED ’EXIT’

PF3 is made program-sensitive, and the name "EXIT" is assigned to PF3.

SET KEY PF3 NAMED OFF

PF3 is made program-sensitive, and the name that has been assigned to PF3 is deleted.

SET KEY NAMED OFF

All names that have been assigned to any program-sensitive keys are deleted.

SET KEY PF4=’AP1’ NAMED ’APPL1’

The program "AP1" and the name "APPL1" are assigned to PF4.

When you use normal tabular PF-key line format (%YN), the following applies:

If you omit the NAMED clause when assigning a command/program to a key, the command/program name
will be displayed in the PF-key line; if the command/program name is longer than 5 characters, "CMND"
will be displayed.
If you omit the NAMED clause when assigning input data to a key, "DATA" will be displayed in the
PF-key line.

When you use sequential PF-key line format (%YS or %YP), only those keys to which names have been
assigned will be displayed in the PF-key line; that is, if you omit the NAMED clause when assigning a
command/program/data to a key, the key will not be displayed in the PF-key line.

607Copyright © Software AG 2003

Assigning NamesSET KEY

Example

 /* EXAMPLE ’SKYEX1’: SET KEY
 /***
 DEFINE DATA LOCAL
 1 #PF4 (A56)
 1 #FCT (A8)
 END-DEFINE
 /***
 MOVE ’LIST VIEW’ TO #PF4
 /***
 SET KEY PF1 PF2
 SET KEY PF3 = ’MENU’
 PF4 = #PF4
 PF5 = ’LIST VIEW EMPLOYEES’
 /**
 INPUT 10X ’THE FOLLOWING FUNCTION KEYS ARE AVAILABLE:’ //
 10X ’PF1: EMPLOYEES UPDATE PROGRAM’ /
 10X ’PF2: EMPLOYEES READ PROGRAM’ /
 10X ’PF3: RETURN TO MENU ’ /
 10X ’PF4: LIST VIEW ’ /
 10X ’PF5: LIST VIEW EMPLOYEES ’ ///
 10X ’ OR YOU MAY ENTER A PROGRAM TO BE EXECUTED:’ #FCT
 /**
 IF #FCT NE ’ ’
 FETCH #FCT
 END-IF
 IF *PF-KEY = ’PF1’
 FETCH ’UPDPERS’
 END-IF
 IF *PF-KEY = ’PF2’
 FETCH ’READPERS’
 END-IF
 /**
 END

 THE FOLLOWING FUNCTION KEYS ARE AVAILABLE:

 PF1: EMPLOYEES UPDATE PROGRAM
 PF2: EMPLOYEES READ PROGRAM
 PF3: RETURN TO MENU
 PF4: LIST VIEW
 PF5: LIST VIEW EMPLOYEES

 OR YOU MAY ENTER A PROGRAM TO BE EXECUTED:

Copyright © Software AG 2003608

SET KEYExample

SET TIME

Function
The SETTIME statement is used in conjunction with the Natural system variable *TIMD to measure the time it
takes to execute a specific section of a program.

The SETTIME statement is placed at a specific position in the program, and *TIMD will contain the amount of
time elapsed since the execution of the SETTIME statement.

*TIMD must always contain a reference to the SETTIME statement, either by using the source-code line number
of the SETTIME statement or by assigning a label to the SETTIME statement which can then be used as a
reference.

Example

 /* EXAMPLE ’STIEX1’: SETTIME
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 END-DEFINE
 /***
 ST. SETTIME
 WRITE 10X ’START TIME:’ *TIME
 READ (100) EMPLOY-VIEW BY NAME
 END-READ
 WRITE NOTITLE 10X ’END TIME: ’ *TIME
 WRITE 10X ’ELAPSED TIME TO READ 100 RECORDS’
 ’(HH:SS:SS.T) :’ *TIMD (ST.) (EM=99:99:99’.’9)
 /***
 END

 START TIME: 16:34:17.3
 END TIME: 16:34:24.0
 ELAPSED TIME TO READ 100 RECORDS (HH:II:SS.T) : 00:00:06.7

609Copyright © Software AG 2003

SET TIMESET TIME

SET WINDOW

Related Statements: DEFINE WINDOW | INPUT WINDOW=’window-name’

Function
The SET WINDOW statement is used to activate and de-activate a window.

With SET WINDOW ’window-name’, you activate the specified window, which means that all subsequent
statements refer to that window until either the window is de-activated or another window is activated. The
specified window must have been defined with a DEFINE WINDOW statement.

With SET WINDOW OFF, you de-activate the currently active window.

Any SET WINDOW ’window-name’ or INPUT WINDOW=’window-name’ statement de-activates the window
which has currently been active and activates the window specified in the statement. This means that only one
window can be active at a time.

Note:
If you use SET WINDOW to activate a window which is defined with SIZE AUTO, the data on the screen
before the window is activated determine the size of the window.

Example
See DEFINE WINDOW statement.

Copyright © Software AG 2003610

SET WINDOWSET WINDOW

SKIP

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S N P I yes no

Related Statements: DISPLAY | PRINT | WRITE

Function
The SKIP statement is used to generate one or more blank lines in an output report.

Report Specification - rep
The notation (rep) may be used to specify the identification of the report for which the SKIP statement is
applicable. A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified.

If (rep) is not specified, the SKIP statement will apply to the first report (report 0).

Number of Lines to be Skipped - operand1
Operand1 represents the number (1 - 250) of blank lines to be generated. This number may be specified as a
numeric constant or as the content of a numerical variable.

If operand1 exceeds the page size of the report, the SKIP statement will result in a newpage condition.

Additional Considerations
If the execution of a SKIP statement would cause the page size to be exceeded, exceeding lines will be ignored
(except in an AT TOP OF PAGE statement).

A SKIP statement is only executed if something has already been output on the page (output from an AT TOP
OF PAGE statement is not taken into account here).

611Copyright © Software AG 2003

SKIPSKIP

Example

 /* EXAMPLE ’SKPEX1’: SKIP
 /**
 LIMIT 7
 READ EMPLOYEES BY CITY STARTING FROM ’W’
 AT BREAK OF CITY
 SKIP 2
 DISPLAY NOTITLE CITY (IS=ON) COUNTRY (IS=ON) NAME
 /**
 END

 CITY COUNTRY NAME
 -------------------- ------- --------------------

 WASHINGTON USA REINSTEDT
 PERRY

 WEITERSTADT D BUNGERT
 UNGER
 DECKER

 WEST BRIDGFORD UK ENTWHISTLE

 WEST MIFFLIN USA WATSON

Copyright © Software AG 2003612

SKIPExample

SORT

Structured Mode Syntax

* If a statement label is specified, it must be placed before the keyword SORT, but after END-ALL (and AND).

Reporting Mode Syntax

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A N P I F B D T no no

Related Statement: FIND with SORTED BY option

Function
The SORT statement is used to perform a sort operation, sorting the records from all processing loops that are
active when the SORT statement is executed.

For the sort operation, Natural’s internal sort program is used. On mainframe and UNIX computers, it is also
possible to use another, external sort program. The sort program to be used is determined by the Natural
administrator in the macro NTSORT of the Natural parameter module (see also the Natural Operations for
Mainframes documentation).

613Copyright © Software AG 2003

SORTSORT

Note:
The external sort program to be used is determined by the Natural administrator in the macro NTSORT of the
Natural parameter module (see also the Natural Operations for Mainframes documentation). For the use of an
external sort program, additional JCL is required. Ask your Natural administrator for additional information.

Restrictions
The SORT statement must be contained in the same object as the processing loops whose records it sorts.

Nested SORT statements are not allowed.

The total length of a record to be sorted must not exceed 10240 bytes.

The number of sort criteria must not exceed 10.

Processing Loops
In reporting mode, the SORT statement closes all active processing loops and initiates a new processing loop.

In structured mode, the SORT statement must be preceded by END-ALL, which serves to close all active
processing loops. The SORT statement itself initiates a new processing loop, which must be closed with
END-SORT.

Sort Criteria - operand1
Operand1 represents the fields/variables to be used as the sort criteria. 1 to 10 database fields (descriptors and
non-descriptors) and/or user-defined variables may be specified. A multiple-value field or a field contained
within a periodic group may be used. A group or an array is not permitted.

The default sort sequence is ASCENDING. If you wish the values to be sorted in descending sequence, specify
DESCENDING. ASCENDING/DESCENDING may be specified for each sort field.

USING-clause

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand2 S A A N P I F B D T L C no no

The USING clause indicates the fields which are to be written to intermediate sort storage. It is required in
structured mode and optional in reporting mode. However, it is strongly recommended to also use it in reporting
mode so as to reduce memory requirements.

Copyright © Software AG 2003614

SORTRestrictions

If you specify USING KEYS, only the sort key fields, as specified with operand1, will be written to intermediate
sort storage.

With USING operand2 you can specify additional fields that are to be written to intermediate sort storage - in
addition to the sort key fields (as specified with operand1).

If you omit the USING clause in reporting mode, all database fields of processing loops initiated before the
SORT statement, as well as all user-defined variables defined before the SORT statement, will be written to
intermediate sort storage.

If, after sort execution, a reference is made to a field which was not written to sort intermediate storage, the value
for the field will be the last value of the field before the sort.

GIVE-clause

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand3 S A * yes no

* depends on function

The GIVE clause is used to specify Natural system functions (MAX, MIN, etc.) that are to be evaluated in the
first phase of the SORT statement. These system functions may be referenced in the third phase (see SORT
Statement Processing). A reference to a system function after the SORT statement must be preceded by an
asterisk, for example, *AVER (SALARY).

For details on the individual system functions, see the Natural System Functions documentation.

(NL=nn)

This option may be used to prevent an arithmetic overflow during the evaluation of system functions; it is
described under Arithmetic Overflows in AVER, NAVER, SUM or TOTAL in the section System Functions of
the Natural System Functions documentation.

This option applies to AVER, NAVER, SUM and TOTAL only and will be ignored for any other system
function.

615Copyright © Software AG 2003

GIVE-clauseSORT

SORT Statement Processing
A program containing a SORT statement is executed in three phases.

1st Phase - Selecting the Records to be Sorted

The statements before the SORT statement are executed. Data as described in the USING clause will be written
to intermediate sort storage.

In reporting mode, any variables to be used as accumulators following the sort must not be defined before the
SORT statement. In structured mode, they must not be included in the USING clause. Fields written to
intermediate sort storage cannot be used as accumulators because they are read back with each individual record
during the 3rd processing phase. Consequently, the accumulation function would not produce the desired result
because with each record the field would be overwritten with the value for that individual record.

The number of records written to intermediate storage is determined by the number of processing loops and the
number of records processed per loop. One record on the internal intermediate storage is created each time the
SORT statement is encountered in a processing loop.
In the case of nested loops, a record is only written to intermediate storage if the inner loop is executed. If in the
example below a record is to be written to intermediate storage even if no records are found for the inner (FIND)
loop, the FIND statement must contain an IF NO RECORDS FOUND clause.

 READ ...
 ...
 FIND ...
 ...
 END-ALL
 SORT ...
 DISPLAY ...
 END-SORT
 ...

2nd Phase - Sorting the Records

The records are sorted.

3rd Phase -Processing the Sorted Records

The statements after the SORT statement are executed for all records on the intermediate storage in the specified
sorting sequence.
Database fields to be referenced after a SORT statement must be correctly referenced using the appropriate
statement label or reference number.

Example

Copyright © Software AG 2003616

SORTSORT Statement Processing

 /* EXAMPLE ’SRTEX1R’: SORT (REPORTING MODE)
 /**
 LIMIT 3
 FIND EMPLOYEES WITH CITY = ’BOSTON’
 OBTAIN SALARY(1:2)
 COMPUTE #TOTAL-SALARY (P11) = SALARY (1) + SALARY (2)
 ACCEPT IF #TOTAL-SALARY GT 0
 /**
 SORT BY PERSONNEL-ID USING #TOTAL-SALARY SALARY(*) CURR-CODE
 GIVE AVER(#TOTAL-SALARY)
 /**
 AT START OF DATA
 DO
 WRITE NOTITLE
 ’*’ (40)
 ’AVG CUMULATIVE SALARY:’ *AVER (#TOTAL-SALARY) /
 MOVE *AVER (#TOTAL-SALARY) TO #AVG (P11)
 DOEND
 COMPUTE #AVER-PERCENT (N3.2) = #TOTAL-SALARY / #AVG * 100
 ADD #TOTAL-SALARY TO #TOTAL-TOTAL (P11)
 DISPLAY NOTITLE PERSONNEL-ID SALARY (1) SALARY (2)
 #TOTAL-SALARY CURR-CODE (1)
 ’PERCENT/OF/AVER’ #AVER-PERCENT
 AT END OF DATA
 WRITE / ’*’ (40) ’TOTAL SALARIES PAID: ’ #TOTAL-TOTAL
 /**
 END

PERSONNEL ANNUAL ANNUAL #TOTAL-SALARY CURRENCY PERCENT
 ID SALARY SALARY CODE OF
 AVER
 --------- ---------- ---------- ------------- -------- -------

 ** AVG CUMULATIVE SALARY: 41900

 20007000 16000 15200 31200 USD 74.00
 20019200 18000 17100 35100 USD 83.00
 20020000 30500 28900 59400 USD 141.00

 ** TOTAL SALARIES PAID: 125700

The previous example is executed as follows:

First Phase:

Records with CITY=BOSTON are selected from the EMPLOYEES file.
The first 2 occurrences of SALARY are accumulated in the field #TOTAL-SALARY.
Only records with #TOTAL-SALARY greater than 0 are accepted.
The records are written to the sort intermediate storage. The database arrays SALARY (first 2 occurrences)
and CURR-CODE (first occurrence), the database field PERSONNEL-ID, and the user-defined variable
#TOTAL-SALARY are written to the intermediate storage.
The average of #TOTAL-SALARY is evaluated.

617Copyright © Software AG 2003

First Phase:SORT

Second Phase:

The records are sorted.

Third Phase:

The sorted intermediate storage is read.
At the at-start-of-data condition, the average of #TOTAL-SALARY is displayed.
#TOTAL-SALARY is added to #TOTAL-TOTAL and the fields PERSONNEL-ID, SALARY(1),
SALARY(2), #AVER-PERCENT and #TOTAL-SALARY are displayed.
At the end-of-data condition, the variable #TOTAL-TOTAL is written.

Copyright © Software AG 2003618

SORTSecond Phase:

STACK

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A G N A yes yes

Operand2 C S A G N A N P I F B D T L G yes yes

Related Statements: INPUT | RELEASE

Function
The STACK statement is used to place any of the following into the Natural stack:

the name of a Natural program or Natural system command to be executed;
data to be used during the execution of an INPUT statement.

For further information on the stack, see the section Further Programming Aspects of the Natural Programming
Guide.

TOP
If you specify TOP, the data/program/command will be placed at the top of the Natural stack. Otherwise, they
are placed at the bottom of the stack.

619Copyright © Software AG 2003

STACKSTACK

Example:

The following statement causes the content of the variable #FIELDA to be placed as data on top of the stack:

 STACK TOP #FIELDA

DATA
DATA (which is also the default) causes data to be placed in the stack which are to be used as input data for an
INPUT statement.

Delimiter characters or input assign characters contained within the data values will be processed as delimiters.
For details on how data from the stack are processed by an INPUT statement, please refer to the description of
the INPUT statement.

Example:

The following statements cause the contents of the variables #FIELD1 and #FIELD2 to be placed in the stack:

 MOVE ’ABC’ TO #FIELD1
 MOVE ’XYZ’ TO #FIELD2
 STACK #FIELD1 #FIELD2

These variables will be passed as data to the next INPUT statement in the Natural program, using delimiter
mode:

 INPUT #FIELD1 #FIELD2

Note:
If operand2 is a time variable (format T), only the time component of the variable content is placed in the stack,
but not the date component.

FORMATTED
FORMATTED causes all data to be passed on a field-by-field basis to the next INPUT statement; no key
assignments or delimiter characters will be interpreted.

Examples:

The following statements cause "ABC,DEF" to be placed in #FIELD1 and "XYZ" in #FIELD2:

 MOVE ’ABC,DEF’ TO #FIELD1
 MOVE ’XYZ’ TO #FIELD2
 STACK TOP DATA FORMATTED #FIELD1 #FIELD2
 ...
 INPUT #FIELD1 #FIELD2

Assuming the input delimiter character to be the comma (ID=,), the following statements - without the keyword
FORMATTED - cause "ABC" to be placed in #FIELD1 and "DEF" in #FIELD2:

Copyright © Software AG 2003620

STACKDATA

 MOVE ’ABC,DEF’ TO #FIELD1
 STACK TOP DATA #FIELD1
 ...
 INPUT #FIELD1 #FIELD2

621Copyright © Software AG 2003

FORMATTEDSTACK

COMMAND operand1
To place a command (or program name) in the stack, you specify the keyword COMMAND followed by the
command (operand1). Natural will execute the command instead of displaying the NEXT prompt and prompting
the user for input.

Example:

The following statement causes the command RUN to be placed at the top of the stack. Natural will execute this
command at the point where the NEXT prompt would normally be issued.

 STACK TOP COMMAND ’RUN’

COMMAND operand1 operand2...
Together with a command (operand1), you may also place data (operand2) in the stack. These data will then be
processed by the next INPUT statement after the command has been executed.

Data stacked with a command are always stacked unformatted.

Note:
If the data to be stacked include empty alphanumeric fields (i.e., blanks), these blanks will be interpreted as
delimiters between values and thus not processed correctly by the corresponding INPUT statement. Therefore, if
you wish to stack empty alphanumeric fields as data with a command, you have to use two STACK statements:
one "STACK DATA operand2..." to stack the data, and one "STACK COMMAND operand1" to stack the
command.

parameter
If operand2 is a date variable, you can specify the session parameter DF as parameter for this variable. The
session parameter DF is described in the Natural Parameter Reference documentation.

Copyright © Software AG 2003622

STACKCOMMAND operand1

Example

 /* EXAMPLE ’STKEX1’: STACK
 /**
 INPUT ’PLEASE SELECT DESIRED FUNCTION:’ //
 10X ’LIST VIEW (V)’ /
 10X ’LIST PROGRAM * (P)’ /
 10X ’FUNCTION:’ #RSP (A1)
 /**
 IF NOT (#RSP = ’V’ OR = ’P’)
 REINPUT ’PLEASE ENTER A CORRECT FUNCTION’
 /**
 IF #RSP = ’V’
 DO STACK TOP COMMAND ’LIST VIEW’ STOP DOEND
 /**
 IF #RSP = ’P’
 STACK TOP COMMAND ’LIST PROGRAM *’
 STOP
 /**
 END

PLEASE SELECT DESIRED FUNCTION:

 LIST VIEW (V)
 LIST PROGRAM (P)
 FUNCTION: p

623Copyright © Software AG 2003

ExampleSTACK

11:05:01 ***** NATURAL LIST COMMAND ***** 2003-08-20
User RKE - LIST Objects in a Library - Library SYSEXRM

Cmd Name Type S/C SM Version User ID Date Time
--- *________ P__________ *__ * *______ *________ *__________ *________
__ ACREX1R Program S/C R 4.1.01 RKE 2003-07-09 09:58:26
__ ACREX1S Program S/C S 4.1.01 RKE 2003-07-09 09:58:29
__ ACREX2R Program S/C R 4.1.01 RKE 2003-07-09 09:58:49
__ ACREX2S Program S/C S 4.1.01 RKE 2003-07-09 09:58:51
__ ADD-RT Program S/C S 4.1.01 RKE 2003-07-09 09:58:52
__ ADDEX1 Program S/C S 4.1.01 RKE 2003-07-09 09:58:54
__ AEDEX1R Program S/C R 4.1.01 RKE 2003-07-09 09:58:55
__ AEDEX1S Program S/C S 4.1.01 RKE 2003-07-09 09:58:57
__ AEPEX1R Program S/C R 4.1.01 RKE 2003-07-09 09:58:58
__ AEPEX1S Program S/C S 4.1.01 RKE 2003-07-09 09:58:59
__ AEPEX2 Program S/C S 4.1.01 RKE 2003-07-09 09:59:01
__ ASDEX1R Program S/C R 4.1.01 RKE 2003-07-09 09:59:02
__ ASDEX1S Program S/C S 4.1.01 RKE 2003-07-09 09:59:04
__ ASGEX1R Program S/C R 4.1.01 RKE 2003-07-09 09:59:05
__ ASGEX1S Program S/C S 4.1.01 RKE 2003-07-09 09:59:06
__ ATBEX1R Program S/C R 4.1.01 RKE 2003-07-09 09:59:07
__ ATBEX1S Program S/C S 4.1.01 RKE 2003-07-09 09:59:09
__ ATBEX2 Program S/C S 4.1.01 RKE 2003-07-09 09:59:10
__ ATBEX3 Program S/C S 4.1.01 RKE 2003-07-09 09:59:11
__ ATBEX4 Program S/C S 4.1.01 RKE 2003-07-09 09:59:12
__ ATBEX5R Program S/C R 4.1.01 RKE 2003-07-09 09:59:13
__ ATBEX5S Program S/C S 4.1.01 RKE 2003-07-09 09:59:15
 22 Objects found
Top of List.
Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Print Exit Sort -- - + ++ > Canc

Copyright © Software AG 2003624

STACKExample

STOP

Function
The STOP statement is used to terminate the execution of a program and return to the command input prompt.

One or more STOP statements may be inserted anywhere within a Natural program.

The STOP statement will terminate the execution of the program immediately. Independent of the positioning of
a STOP statement in a subroutine, any end-page condition specified in the main program will be invoked for
final end-page processing during execution of the STOP statement.

Example

 /* EXAMPLE ’STPEX1’: STOP
 /***
 INPUT ’PLEASE SELECT DESIRED FUNCTION:’ //
 10X ’LIST VIEW (V)’ /
 10X ’LIST PROGRAM * (P)’ /
 10X ’FUNCTION:’ #RSP (A1)
 /***
 IF #RSP = ’ ’
 STOP
 /***
 IF NOT (#RSP = ’V’ OR = ’P’)
 REINPUT ’PLEASE ENTER A CORRECT FUNCTION’
 /***
 IF #RSP = ’V’
 DO
 STACK TOP COMMAND ’LIST VIEW’
 STOP
 DOEND
 /***
 IF #RSP = ’P’
 DO
 STACK TOP COMMAND ’LIST PROGRAM *’
 STOP
 DOEND
 /***
 END

625Copyright © Software AG 2003

STOPSTOP

STORE

Structured Mode Syntax

Reporting Mode Syntax

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A yes no

Operand2 C S N yes no

Operand3 S N P no yes

Operand4 S A A N P I F B D T L no no

Operand5 C S A A N P I F B D T L yes no

Related Statements: UPDATE | DELETE | END TRANSACTION | BACKOUT TRANSACTION

Copyright © Software AG 2003626

STORESTORE

Function
The STORE statement is used to add a record to a database.

Notes for DL/I databases:
This statement may be used to add a segment occurrence.
If the dataset is defined with a primary key, a value for the primary key field must be provided.
In the case of a GSAM database, records must be added at the end of the database (due to GSAM restrictions).

Note for SQL databases:
This statement may be used to add a row to a table. The PASSWORD, CIPHER, and GIVING NUMBER
clauses cannot be used. The STORE statement corresponds with the SQL statement INSERT.

Note for VSAM databases:
If the dataset is defined with a primary key, a value for the primary key field must be provided.

Note for XML databases:
This statement may be used to add an XML object to a database. The PASSWORD, CIPHER, and GIVING
NUMBER clauses cannot be used.

view-name
As view-name, you specify the name of a view, which must have been defined either in a DEFINE DATA
statement or outside the program in a global or local data area.

In reporting mode - if no DEFINE DATA statement is used - view-name may also be the name of a DDM.

PASSWORD/CIPHER
These clauses are applicable only for an Adabas or VSAM database.

The PASSWORD clause is used to provide a password when updating data from a file which is
password-protected.

The CIPHER clause is used to provide a cipher key when updating data from a file which is enciphered.

See the statements FIND and PASSW for further information.

USING/GIVING NUMBER
This clause can only be used for an Adabas or VSAM database.

This option is used to store a record with a user-supplied Adabas ISN. If a record with the specified ISN already
exists, an error message will be returned and the execution of the program will be terminated unless ON ERROR
processing was specified.

Note for VSAM databases:
This clause is only valid for VSAM RRDS, in which case a user-supplied RRN (relative record number)
corresponds to the ISN as described above.

627Copyright © Software AG 2003

FunctionSTORE

SET/WITH
SET/WITH can be used in reporting mode to specify the fields for which values are being provided. Any field
defined in the file that is not specified in the SET clause will contain a null value in the new record.

This clause is not permitted if a DEFINE DATA statement is used, because in that case the STORE statement
always refers to the entire view as defined in the DEFINE DATA statement.

DL/I Considerations

Values must be provided for the segment sequence field, and for all sequence fields of the ancestors.

Only I/O (sensitive) fields may be provided.

A segment of variable length is stored with the minimum length necessary to contain all fields as specified with
the STORE statement. The segment length will never be less than the minimum size specified in the SEGM
macro of the DBD.

If a multiple-value field or a periodic group is defined as variable in length, at the end of the segment only the
occurrences as specified in the STORE statement are written to the segment and define the segment length.

USING SAME
USING SAME can be used in reporting mode to indicate that the same field values as read in the statement
referenced by the STORE statement (FIND, GET, READ) are to be used to add a new record.

This clause is not permitted if a DEFINE DATA statement is used, because in that case the STORE statement
always refers to the entire view as defined in the DEFINE DATA statement.

System Variable *ISN
The Natural system variable *ISN contains the Adabas ISN or VSAM RBA/RRN assigned to the new record as a
result of the STORE statement execution. A subsequent reference to *ISN must include the statement number of
the related STORE statement.

For Tamino, *ISN contains the XML object ID assigned to the new record as a result of the STORE statement
execution. A subsequent reference to *ISN must include the statement number of the related STORE statement.

For VSAM databases, *ISN is available only for ESDS and RRDS files.

*ISN is not available for DL/I and SQL databases.

Copyright © Software AG 2003628

STORESET/WITH

Example

 /* EXAMPLE ’STOEX1’: STORE

 RESET #BIRTH-D (D)
 *
 REPEAT
 INPUT ’ENTER A PERSONNEL ID AND NAME (OR ’’END’’ TO END)’ //
 ’PERSONNEL-ID : ’ #PERSONNEL-ID (A8) //
 ’NAME : ’ #NAME (A20) /
 ’FIRST-NAME : ’ #FIRST-NAME (A15)

 * VALIDATE ENTERED DATA
 *
 IF #PERSONNEL-ID = ’END’ OR #NAME = ’END’ THEN STOP
 IF #NAME = ’ ’ THEN
 REINPUT WITH TEXT ’ENTER A LAST-NAME’ MARK 2 AND SOUND ALARM
 IF #FIRST-NAME = ’ ’ THEN
 REINPUT WITH TEXT ’ENTER A FIRST-NAME’ MARK 3 AND SOUND ALARM

 * ENSURE PERSON IS NOT ALREADY ON FILE
 *
 FIND NUMBER EMPLOYEES WITH PERSONNEL-ID = #PERSONNEL-ID
 IF *NUMBER > 0 THEN
 REINPUT ’PERSON WITH SAME PERSONNEL-ID ALREADY EXISTS’
 MARK 1 AND SOUND ALARM

 * GET FURTHER INFORMATION
 *
 INPUT
 ’ADDITIONAL PERSONNEL DATA’ ////
 ’PERSONNEL-ID :’ #PERSONNEL-ID (AD=IO) /
 ’NAME :’ #NAME (AD=IO) /
 ’FIRST-NAME :’ #FIRST-NAME (AD=IO) ///
 ’MARITAL STATUS :’ #MAR-STAT (A1) /
 ’DATE OF BIRTH (YYYYMMDD) :’ #BIRTH (A8) /
 ’CITY :’ #CITY (A20) /
 ’COUNTRY (3 CHARACTERS) :’ #COUNTRY (A3) //
 ’ADD THIS RECORD (Y/N) :’ #CONF (A1) (AD=M)

 * ENSURE REQUIRED FIELDS CONTAIN VALID DATA
 *
 IF NOT (#MAR-STAT = ’S’ OR = ’M’ OR = ’D’ OR = ’W’)
 REINPUT TEXT ’ENTER VALID MARITAL STATUS S=SINGLE ’ -
 ’M=MARRIED D=DIVORCED W=WIDOWED’ MARK 1
 IF NOT (#BIRTH = MASK(YYYYMMDD) AND #BIRTH = MASK(1582-2699))
 REINPUT TEXT ’ENTER CORRECT DATE’ MARK 2
 IF #CITY = ’ ’
 REINPUT TEXT ’ENTER A CITY NAME’ MARK 3
 IF #COUNTRY = ’ ’
 REINPUT TEXT ’ENTER A COUNTRY CODE’ MARK 4
 IF NOT (#CONF = ’N’ OR= ’Y’)
 REINPUT TEXT ’ENTER Y (YES) OR N (NO)’ MARK 5
 IF #CONF = ’N’
 ESCAPE TOP

 * continued on next page

629Copyright © Software AG 2003

ExampleSTORE

 * continued from previous page

 * ADD THE RECORD
 *
 MOVE EDITED #BIRTH TO #BIRTH-D (EM=YYYYMMDD)
 *
 STORE RECORD IN EMPLOYEES
 WITH PERSONNEL-ID = #PERSONNEL-ID
 NAME = #NAME
 FIRST-NAME = #FIRST-NAME
 MAR-STAT = #MAR-STAT
 BIRTH = #BIRTH-D
 CITY = #CITY
 COUNTRY = #COUNTRY
 END OF TRANSACTION
 *
 WRITE NOTITLE ’RECORD HAS BEEN ADDED’
 RESET INITIAL #CONF
 *
 LOOP
 END

 ENTER A PERSONNEL ID AND NAME (OR ’END’ TO END)

 PERSONNEL-ID : 90001100

 NAME : JONES
 FIRST-NAME : EDWARD

 ADDITIONAL PERSONNEL DATA

 PERSONNEL-ID : 90001100
 NAME : JONES
 FIRST-NAME : EDWARD

 MARITAL STATUS : m
 DATE OF BIRTH (YYYYMMDD) : 690511
 CITY : wan chai
 COUNTRY (3 CHARACTERS) : hkg

 ADD THIS RECORD (Y/N) : y

Copyright © Software AG 2003630

STOREExample

SUBTRACT

Syntax 1

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N N P I F D T yes no

Operand2 S A M N P I F D T yes no

Syntax 2

Operand Possible Structure Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A N N P I F D T yes no

Operand2 C S A N N P I F D T yes no

Operand3 S A M A N P I F B D T yes yes

Related Statement: COMPUTE

Function
The SUBTRACT statement is used to subtract the values of two or more operands.

Operands
As for the formats of the operands, see also the section Performance Considerations for Mixed Formats in
Statement Usage Related Topics.

If a database field is used as the result field, the SUBTRACT operation only results in an update to the internal
value that is used within the program. The value for the field in the database remains unchanged.

631Copyright © Software AG 2003

SUBTRACTSUBTRACT

Result Field
If the GIVING clause is used, operand2 will not be modified and the result will be stored in operand3. If the
GIVING clause is not used, the result will be stored in operand2.

ROUNDED
If you specify the keyword ROUNDED, the result will be rounded. See the section Rules for Arithmetic
Assignment in Statement Usage Related Topics for information on rounding.

Example

 /* EXAMPLE ’SUBEX1’: SUBTRACT
 /***
 DEFINE DATA LOCAL
 1 #A (P2) INIT <50>
 1 #B (P2)
 1 #C (P1.1) INIT <2.4>
 END-DEFINE
 /***
 SUBTRACT 6 FROM #A
 WRITE NOTITLE ’SUBTRACT 6 FROM #A ’ 10X ’=’ #A
 /***
 SUBTRACT 6 FROM 11 GIVING #A
 WRITE ’SUBTRACT 6 FROM 11 GIVING #A ’ 10X ’=’ #A
 /***
 SUBTRACT 3 4 FROM #A GIVING #B
 WRITE ’SUBTRACT 3 4 FROM #A GIVING #B ’ 10X ’=’ #A ’=’ #B
 /***
 SUBTRACT -3 -4 FROM #A GIVING #B
 WRITE ’SUBTRACT -3 -4 FROM #A GIVING #B’ 10X ’=’ #A ’=’ #B
 /***
 SUBTRACT ROUNDED 2.06 FROM #C
 WRITE ’SUBTRACT ROUNDED 2.06 FROM #C ’ 10X ’=’ #C
 /***
 END

 SUBTRACT 6 FROM #A #A: 44
 SUBTRACT 6 FROM 11 GIVING #A #A: 5
 SUBTRACT 3 4 FROM #A GIVING #B #A: 5 #B: -2
 SUBTRACT -3 -4 FROM #A GIVING #B #A: 5 #B: 12
 SUBTRACT ROUNDED 2.06 FROM #C #C: 0.3

Copyright © Software AG 2003632

SUBTRACTResult Field

SUSPEND IDENTICAL SUPPRESS

Related Statements: DISPLAY | WRITE

Function
The SUSPEND IDENTICAL SUPPRESS statement is used to suspend the parameter IS=ON (which suppresses
the output of identical field values) for the processing of one record. See also the session parameter IS in the
Natural Parameter Reference documentation.

Report Specification - rep
The notation (rep) may be used to specify the identification of the report for which the SUSPEND IDENTICAL
SUPPRESS statement is applicable. A value in the range 0 - 31 or a logical name which has been assigned using
the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the SUSPEND IDENTICAL SUPPRESS statement will be applicable to the first report
(report 0).

Example

Program with SUSPEND IDENTICAL SUPPRESS:

633Copyright © Software AG 2003

SUSPEND IDENTICAL SUPPRESSSUSPEND IDENTICAL SUPPRESS

 /* EXAMPLE ’SISEX1’: SUSPEND IDENTICAL SUPPRESS
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 FIRST-NAME
 2 NAME
 2 CITY
 1 VEH-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 END-DEFINE
 /**
 LIMIT 15
 RD. READ EMPLOY-VIEW BY NAME STARTING FROM ’JONES’
 SUSPEND IDENTICAL SUPPRESS
 FD. FIND VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)
 IF NO RECORDS FOUND
 MOVE ’***NO CAR***’ TO MAKE
 END-NOREC
 DISPLAY NOTITLE
 NAME (RD.) (IS=ON) FIRST-NAME (RD.) (IS=ON)
 MAKE (FD.)
 END-FIND
 END-READ
 END

 NAME FIRST-NAME MAKE
 -------------------- -------------------- --------------------

 JONES VIRGINIA CHRYSLER
 JONES MARSHA CHRYSLER
 CHRYSLER
 JONES ROBERT GENERAL MOTORS
 JONES LILLY FORD
 MG
 JONES EDWARD GENERAL MOTORS
 JONES MARTHA GENERAL MOTORS
 JONES LAUREL GENERAL MOTORS
 JONES KEVIN DATSUN
 JONES GREGORY FORD
 JOPER MANFRED ***NO CAR***
 JOUSSELIN DANIEL RENAULT
 JUBE GABRIEL ***NO CAR***
 JUNG ERNST ***NO CAR***
 JUNKIN JEREMY ***NO CAR***
 KAISER REINER ***NO CAR***

Same as Previous Program, but without SUSPEND IDENTICAL
SUPPRESS:

Copyright © Software AG 2003634

SUSPEND IDENTICAL SUPPRESSSame as Previous Program, but without SUSPEND IDENTICAL SUPPRESS:

 /* EXAMPLE ’SISEX2’: SUSPEND IDENTICAL SUPPRESS
 /* (SIMILAR TO EXAMPLE ’SISEX1’ EXCEPT THAT SUSPEND IDENTICAL SUPPRESS
 /* STATEMENT IS NOT USED. COMPARE OUTPUT OF EXAMPLES SISEX1 AND SISEX2
 /* TO SEE EFFECT OF SUSPEND IDENTICAL).
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 FIRST-NAME
 2 NAME
 2 CITY
 1 VEH-VIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 END-DEFINE
 /***
 LIMIT 15
 RD. READ EMPLOY-VIEW BY NAME STARTING FROM ’JONES’
 /***SUSPEND IDENTICAL SUPPRESS STATEMENT REMOVED *********************
 FD. FIND VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)
 IF NO RECORDS FOUND
 MOVE ’***NO CAR***’ TO MAKE
 END-NOREC
 DISPLAY NOTITLE
 NAME (RD.) (IS=ON) FIRST-NAME (RD.) (IS=ON)
 MAKE (FD.)
 END-FIND
 END-READ
 END

 NAME FIRST-NAME MAKE
 -------------------- -------------------- --------------------

 JONES VIRGINIA CHRYSLER
 MARSHA CHRYSLER
 CHRYSLER
 ROBERT GENERAL MOTORS
 LILLY FORD
 MG
 EDWARD GENERAL MOTORS
 MARTHA GENERAL MOTORS
 LAUREL GENERAL MOTORS
 KEVIN DATSUN
 GREGORY FORD
 JOPER MANFRED ***NO CAR***
 JOUSSELIN DANIEL RENAULT
 JUBE GABRIEL ***NO CAR***
 JUNG ERNST ***NO CAR***
 JUNKIN JEREMY ***NO CAR***
 KAISER REINER ***NO CAR***

635Copyright © Software AG 2003

Same as Previous Program, but without SUSPEND IDENTICAL SUPPRESS:SUSPEND IDENTICAL SUPPRESS

TERMINATE

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S N P yes no

Operand2* C S A A N P I F B D T L C yes yes

* Under UNIX and Windows, operand2 must be in alphanumeric format.

Function
The TERMINATE statement is used to terminate a Natural session.

A TERMINATE statement may be placed anywhere within a Natural program.

When a TERMINATE statement is executed, no end-of-page or end-loop processing will be performed.

operand1
Operand1 may be used to pass a return code to the program receiving control when Natural terminates. For
example, a return code setting may be passed to the operating system. This is done differently, depending on the
platform under which Natural is running:

UNIX

via "argc,argv";

Windows

via the operating-system function ERRORLEVEL;

Mainframes

via register 15.

The value supplied for operand1 must be in the range 0 - 255.

operand2
Note:
Operand2 is only available on mainframes.

Copyright © Software AG 2003636

TERMINATETERMINATE

Operand2 may be used to pass additional information to the program which receives control after the
termination.

Program Receiving Control after Termination
After the termination of the Natural session, the program whose name is specified with the profile parameter
PROGRAM (see your Natural Installation and Operations documentation) will receive control.

Under UNIX, Natural passes the three following parameters (if specified) to that program: operand1, operand2
and the value of the profile parameter PRGPAR (see the Natural Installation and Operations documentation for
UNIX).

Under UNIX, if the PROGRAM parameter is not set, the UNIX command shell will receive control after the
termination, and operand1 (if specified) will be passed to the command shell.

Example

 /* EXAMPLE ’TEREX1’: TERMINATE
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 SALARY (1)
 1 #PNUM (A8)
 1 #PASS (A8)
 END-DEFINE
 /***
 INPUT ’ENTER PASSWORD:’ #PASS
 IF #PASS NE ’USERPASS’
 TERMINATE
 END-IF
 /***
 INPUT ’ENTER PERSONNEL NUMBER:’ #PNUM
 FIND EMPLOY-VIEW WITH PERSONNEL-ID = #PNUM
 DISPLAY NAME SALARY (1)
 END-FIND
 /***
 END

637Copyright © Software AG 2003

Program Receiving Control after TerminationTERMINATE

UPDATE

Structured Mode Syntax

Reporting Mode Syntax

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A A N P I F B D T L no no

Operand2 C S A A N P I F B D T L yes no

Related Statements: STORE | DELETE | END TRANSACTION | BACKOUT TRANSACTION

Function
The UPDATE statement is used to update one or more fields of a record in a database. The record to be updated
must have been previously selected with a FIND, GET or READ statement (or, for Adabas only, with a STORE
statement).

Considerations for DL/I Databases
The UPDATE statement can be used to update a segment in a DL/I database. If necessary, the segment length is
increased to accommodate all fields specified with the UPDATE statement.

If a multiple-value field or a periodic group is defined as variable in length, only the occurrences as specified in
the UPDATE statement are written to the segment.

The DL/I AIX field name cannot be used in an UPDATE statement. AIX fields, however, may be updated by
referring to the source field which comprises the AIX field.

Copyright © Software AG 2003638

UPDATEUPDATE

DL/I sequence fields cannot be updated because of DL/I restrictions.

Due to GSAM restrictions, the UPDATE statement cannot be used for GSAM databases.

Considerations for SQL Databases
The UPDATE statement can be used to update a row in a database table. It corresponds with the SQL statement
UPDATE WHERE CURRENT OF cursor-name (positioned UPDATE), which means that only the row which
was read last can be updated.

On mainframe computers, only columns (fields) that have been modified within the program, as well as columns
that might have been (but not necessarily actually have been) modified outside the program (for example, as
input fields in maps), are updated. On all other platforms, all columns are updated.

With most SQL databases, a row that was read with a FIND SORTED BY or with a READ LOGICAL statement
cannot be updated.

Considerations for VSAM Databases
VSAM primary keys cannot be updated because of VSAM restrictions.

The DL/I AIX field name cannot be used in an UPDATE statement. AIX fields, however, may be updated by
referring to the source field which comprises the AIX field.

Considerations for XML Databases
The statement cannot be used with XML databases.

Restrictions
The UPDATE statement must not be entered on the same line as the statement used to select the record to be
updated.

The UPDATE statement cannot be applied to Entire System Server views.

Statement Reference - r
The notation "(r)" is used to indicate the statement in which the record to be modified was read. r may be
specified as a source-code line number or as a statement label.

If no reference is specified, the UPDATE statement will reference the innermost active READ or FIND
processing loop. If no READ or FIND loop is active, it will reference the last preceding GET (or STORE)
statement.

Note:
The UPDATE statement must be placed within the READ or FIND loop it references.

USING SAME
This clause is not permitted if a DEFINE DATA statement is used, because in that case the UPDATE statement
always refers to the entire view as defined in the DEFINE DATA statement.

639Copyright © Software AG 2003

Considerations for SQL DatabasesUPDATE

USING SAME can be used in reporting mode to indicate that the same fields as read in the statement referenced
by the UPDATE statement are to be used for the update function. In this case, the most recent value assigned to
each database field will be used to update the field. If no new value has been assigned, the old value will be used.

If the field to be updated is an array range of a multiple-value field or periodic group and you use a variable
index for this array range, the latest range will be updated. This means that if the index variable is modified after
the record has been read and before the UPDATE USING SAME (reporting mode) or UPDATE (structured
mode) statement respectively is executed, the range updated will not be the same as the range read.

SET/WITH operand1 = operand2
This clause can be used in reporting mode to specify the fields to be updated and the values to be used.

This clause is not permitted if a DEFINE DATA statement is used, because in that case the UPDATE statement
always refers to the entire view as defined in the DEFINE DATA statement.

Note for DL/I databases:
If the SET/WITH clause is used, only I/O (sensitive) fields can be provided. A segment sequence field cannot be
updated (DELETE and STORE must be used instead).

Hold Status
The use of the UPDATE statement causes each record read for processing in the corresponding FIND or READ
statement to be placed in hold status.

Record hold logic is explained in the Natural Programming Guide.

Copyright © Software AG 2003640

UPDATESET/WITH operand1 = operand2

Example

 /* EXAMPLE ’UPDEX1S’: UPDATE (STRUCTURED MODE)
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
 1 #NAME (A20)
 END-DEFINE
 /**
 INPUT ’ENTER A NAME:’ #NAME (AD=M)
 IF #NAME = ’ ’
 STOP
 END-IF
 /**
 FIND EMPLOY-VIEW WITH NAME = #NAME
 IF NO RECORDS FOUND
 REINPUT WITH ’NO RECORDS FOUND’ MARK 1
 END-NOREC
 INPUT ’NAME:’ NAME (AD=O) /
 ’FIRST NAME:’ FIRST-NAME (AD=M) /
 ’CITY:’ CITY (AD=M)
 UPDATE
 END TRANSACTION
 END-FIND
 /**
 END

 ENTER A NAME: BROWN

 NAME: BROWN
 FIRST NAME: KENNETH
 CITY: DERBY

Equivalent reporting-mode example: See the program UPDEX1R in the library SYSEXRM.

641Copyright © Software AG 2003

ExampleUPDATE

UPLOAD PC FILE

Structured Mode Syntax

Reporting Mode Syntax

Copyright © Software AG 2003642

UPLOAD PC FILEUPLOAD PC FILE

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A G A N P I F B D T L C yes yes

Operand2 S A G A N P I F B D T L C yes yes

Operand3 S I yes yes

Note:
Format C is not valid for Natural Connection.

Related Statements: CLOSE PC FILE | DOWNLOAD PC FILE | READ WORK FILE

Function
This statement is used to transfer data from the PC to the mainframe.

Note:
No I/O statement may be placed with the UPLOAD PC FILE processing.

work-file-number
The number of the work file to be used. This number must correspond to one of the work file numbers for the PC
as defined to Natural.

Field Specification - operand1-2
With operand1 and operand2 you specify the fields to be uploaded from the PC. The fields may be database
fields or user-defined variables.

Options
See the READ WORK FILE statement in the Natural Statements documentation for a description of the ONCE,
SELECT, GIVING LENGTH options.

The RECORD option is not permitted for PC work files. It will be rejected at runtime.

When uploading data, if you wish to define a filler, you must use a dummy variable instead of the standard filler
notation.

Example
The following program demonstrates the use of the UPLOAD PC statement. The data is first uploaded from the
PC and then processed on the mainframe.

/* UPLDEX: Example for UPLOAD PC FILE
/*
DEFINE DATA LOCAL
 01 EMPL VIEW OF EMPLOYEES
 02 PERSONNEL-ID
 02 INCOME
 03 SALARY (1)
 01 #PID (A8) /* Personnel ID on PC
 01 #NEW-INCREASE (N4) /* Increase for salary

643Copyright © Software AG 2003

FunctionUPLOAD PC FILE

END-DEFINE
*
UPLOAD PC FILE 7 #PID #NEW-INCREASE /* Data upload
*
 FIND EMPL WITH PERSONNEL-ID = #PID /* Data selection
 ADD #NEW-INCREASE TO SALARY (1) /* Data update on host
 UPDATE
 END TRANSACTION
 ESCAPE BOTTOM
 END-FIND
*
END-WORK
END

When you run the program, a window appears in which you specify the name of the PC file from which the data
is to be uploaded. The data is then uploaded from the PC.

Copyright © Software AG 2003644

UPLOAD PC FILEExample

WRITE

Syntax 1 - Dynamic Formatting

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A G N A N P I F B D T L G O yes no

Related Statements: DISPLAY | WRITE TITLE | WRITE TRAILER | INPUT

See also Output of Data, Statements DISPLAY and WRITE in the Natural Programming Guide.

Function
The WRITE statement is used to produce output in free format.

The WRITE statement differs from the DISPLAY statement in the following respects:

Line overflow is supported. If the line width is exceeded for a line, the next field (or text) is written on the
next line. Fields or text elements are not split between lines.
No default column headers are created. The length of the data determines the number of positions printed
for each field.
A range of values/occurrences for an array is output horizontally rather than vertically.

645Copyright © Software AG 2003

WRITEWRITE

Report Specification - rep
The notation (rep) is used to specify the number of the report if multiple reports are to be produced by the
program. A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified. If (rep) is not specified, the statement will apply to the first report (report 0).

If this printer file is defined to Natural as PC, the report will be downloaded to the PC.

NOTITLE
Natural generates a single title line for each page resulting from a WRITE statement. This title contains the page
number, the time of day, and the date. Time of day is set at the beginning of program execution.

This title line may be overridden by using a WRITE TITLE statement, or it may be suppressed by specifying the
NOTITLE clause in the WRITE statement.

Examples:

 Default title will be produced:
 WRITE NAME

 User title will be produced:
 WRITE NAME
 WRITE TITLE ’USER TITLE’

 No title will be produced:
 WRITE NOTITLE NAME

If the NOTITLE option is used, it applies to all DISPLAY, PRINT and WRITE statements within the same
object which write data to the same report.

Page overflow is checked before execution of a WRITE statement. No new page with title or trailer information
is generated during the execution of a WRITE statement.

NOHDR
The WRITE statement itself does not produce any column headers. However, if you use the WRITE statement in
conjunction with a DISPLAY statement, you can use the NOHDR option of the WRITE statement to suppress
the column headers generated by the DISPLAY statement: the NOHDR option only takes effect if the WRITE
statement is executed after a DISPLAY statement, the output spans more than one page, and the execution of the
WRITE statement causes a new page to be output. Without the NOHDR option, the column headers of the
DISPLAY statement would be output on this new page; with NOHDR they will not.

statement-parameters
One or more parameters, enclosed within parentheses, may be specified immediately after the WRITE statement
(see table and example below).

Copyright © Software AG 2003646

WRITEReport Specification - rep

Each parameter specified will override any previous parameter specified in a GLOBALS command, SET
GLOBALS or FORMAT statement. If more than one parameter is specified, they must be separated by one or
more blanks from one another. Each parameter specification must not be split between two statement lines.

The parameter settings applied here will only be regarded for variable fields, but they have no effect on
text-constants. If you would like to set field attributes for a text-constant, they have to be set explicitly for this
element.

Parameters that can be specified with the WRITE statementSpecification
S = at statement level
E = at element level

AD Attribute Definition SE

AL Alphanumeric Length for Output SE

BX Box Definition SE

CD Color Definition SE

CV Control Variable SE

DF Date Format SE

DY Dynamic Attributes SE

EM Edit Mask SE

FL Floating Point Mantissa Length SE

IS Identical Suppress SE

LS Line Size S

MC Multiple-Value Field Count S

MP Maximum Number of Pages of a Report S

NL Numeric Length for Output SE

PC Periodic Group Count S

PM Print Mode SE

PS Page Size S

SG Sign Position SE

UC Underlining Character S

ZP Zero Printing SE

The individual parameters are described in the section Session Parameters of the Natural Parameter Reference
documentation.

Example:

647Copyright © Software AG 2003

statement-parametersWRITE

DEFINE DATA LOCAL
1 VARI (A4) INIT <’1234’> /* Output
END-DEFINE /* Produced
* /* ---------
WRITE ’Text’ VARI /* Text 1234
WRITE (PM=I) ’Text’ VARI /* Text 4321
WRITE ’Text’ (PM=I) VARI (PM=I) /* txeT 4321
WRITE ’Text’ (PM=I) VARI /* txeT 1234
END

Output Format

Field Positioning Notations

nX

Note: (for Mainframes Only)
This notation inserts n spaces between columns. n must not be "0".

Example: WRITE NAME 5X SALARY

nT

The nT notation causes positioning (tabulation) to print position "n". Backward positioning is not permitted.

Example: WRITE 25T NAME 50T SALARY

(causes NAME to print beginning in position 25 and SALARY to print beginning in position 50).

x/y

Causes the next element to be placed x lines below the output of the last statement, beginning in column y.
y must not be "0". Backward positioning in the same line is not permitted.

T* field-name

The notation T* is used to position to a specific print position of a field used in a previous DISPLAY statement.
Backward positioning is not permitted.

Copyright © Software AG 2003648

WRITEOutput Format

P*field-name

The notation P* is used to position to a specific print position and line of a field used in a previous DISPLAY
statement. It is most often used in conjunction with vertical printing mode. Backward positioning is not
permitted.

Equal Sign ’=’

When placed before a field, ’=’ results in the display of the field heading (as defined in the DEFINE DATA
statement or in the DDM) followed by the field contents.

Slash ’/’

When placed between fields or text elements, "/" causes positioning to the beginning of the next print line.

Example: WRITE NAME / SALARY

Multiple "/" notations may be used to cause multiple line advances.

Text/Attribute Assignment

’text’

text is displayed.

Example: WRITE ’EMPLOYEE’ NAME ’MARITAL/STATUS’ MAR-STAT

’c’(n)

Identical to ’ text’ except that the specified character c is displayed n times.

Example: WRITE ’*’ (5) ’=’ NAME

attributes

Indicates the display and color attributes to be used for text/field display. The following attributes can be used:

1. Display attributes (see the session parameter AD in the Natural Parameter Reference documentation).
2. Color attributes (see the session parameter CD in the Natural Parameter Reference documentation).

649Copyright © Software AG 2003

Text/Attribute AssignmentWRITE

WRITE ’TEXT’ (BGR)
WRITE ’TEXT’ (B)
WRITE ’TEXT’ (BBLC)

operand1

The field to be written.

Note for DL/I databases:
The DL/I AIX fields can be displayed only if a PCB is used with the AIX specified in the parameter PROCSEQ.
If not, an error message is returned by Natural at runtime.

parameters

One or more parameters, enclosed within parentheses, may be specified immediately after operand1. Each
parameter specified in this manner will override any previous parameter specified in a GLOBALS command,
SET GLOBALS or FORMAT statement. If more than one parameter is specified, one or more blanks must be
present between each entry. An entry may not be split between two statement lines.

For information on the individual parameters, see the table in the section statement-parameters.

Syntax 2 - Using Predefined Map

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 C S A no no

Operand2 S A G N A N P I F B D T L yes no

FORM/MAP
This option may be used to indicate that a form/map layout previously defined using the Natural map editor is to
be used.

A map layout used in a WRITE statement does not automatically create a new page each time the map is output.

The LS parameter setting must be 1 byte greater than the LS setting defined in the map.

operand1
The name of the form/map to be used.

Copyright © Software AG 2003650

WRITESyntax 2 - Using Predefined Map

operand2
The field to be written.

If operand1 is a constant and operand2 is omitted, the fields are taken from the map source at compilation time.

NOTITLE/NOHDR
NOTITLE and NOHDR are described under Syntax 1 of the WRITE statement.

Example 1

 /* EXAMPLE ’WRTEX1’: WRITE (USING ’=’, ’TEXT’, ’/’)
 /***
 LIMIT 1
 READ EMPLOYEES BY NAME
 /***
 WRITE NOTITLE ’=’ NAME ’=’ FIRST-NAME ’=’ MIDDLE-I //
 ’L O C A T I O N’ /
 ’CITY:’ CITY /
 ’COUNTRY:’ COUNTRY //
 /***
 END

NAME: ABELLAN FIRST-NAME: KEPA MIDDLE-I:

 L O C A T I O N
 CITY: MADRID
 COUNTRY: E

Example 2

 /* EXAMPLE ’WRTEX2:’ WRITE (USING NX, NT NOTATION)
 /***
 LIMIT 4
 READ EMPLOYEES BY NAME
 WRITE NOTITLE 5X NAME 50T JOB-TITLE
 /***
 END

 ABELLAN MAQUINISTA
 ACHIESON DATA BASE ADMINISTRATOR
 ADAM CHEF DE SERVICE
 ADKINSON SALES PERSON

651Copyright © Software AG 2003

operand2WRITE

Example 3

 /* EXAMPLE ’WRTEX3’: WRITE (USING T* NOTATION)
 /**
 LIMIT 5
 READ EMPLOYEES BY CITY STARTING FROM ’ALBU’
 DISPLAY NOTITLE CITY NAME SALARY (1)
 AT BREAK CITY
 /**
 WRITE / ’CITY AVERAGE:’ T*SALARY (1) AVER(SALARY(1)) //
 /**
 END

 CITY NAME ANNUAL
 SALARY
 -------------------- -------------------- ----------

 ALBUQUERQUE HAMMOND 22000
 ALBUQUERQUE ROLLING 34000
 ALBUQUERQUE FREEMAN 34000
 ALBUQUERQUE LINCOLN 41000

 CITY AVERAGE: 32750

 ALFRETON GOLDBERG 4700

 CITY AVERAGE: 4700

Example 4

 * EXAMPLE ’WRTEX4’: WRITE (USING P* NOTATION)

 LIMIT 3
 READ EMPLOYEES BY CITY FROM ’N’
 DISPLAY NOTITLE NAME CITY
 VERT AS ’BIRTH/SALARY’ BIRTH (EM=YYYY-MM-DD) SALARY (1)
 SKIP 1
 AT BREAK CITY
 *
 WRITE / ’CITY AVERAGE:’ P*SALARY (1) AVER(SALARY(1)) //
 *
 LOOP
 END

Copyright © Software AG 2003652

WRITEExample 3

 NAME CITY BIRTH
 SALARY
 -------------------- -------------------- ----------

 WILCOX NASHVILLE 1970-01-01
 38000

 MORRISON NASHVILLE 1949-07-10
 36000

 CITY AVERAGE 37000

 BOYER NEMOURS 1955-11-23
 195900

 CITY AVERAGE 195900

Example 5

 /* EXAMPLE ’WRTEX5’: WRITE (USING ’=’, STATEMENT/ELEMENT PARAMETERS)
 /***
 LIMIT 2
 READ EMPLOYEES BY NAME
 WRITE NOTITLE (AL=16 NL=8)
 ’=’ PERSONNEL-ID ’=’ NAME ’=’ PHONE (AL=10 EM=XXX-XXXXXXX)
 /***
 END

 PERSONNEL ID: 60008339 NAME: ABELLAN TELEPHONE: 435-672
 PERSONNEL ID: 30000231 NAME: ACHIESON TELEPHONE: 523-341

653Copyright © Software AG 2003

Example 5WRITE

WRITE TITLE

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A G N A N P I F B D T L G O yes no

Operand2 C S N P I B yes no

Related Statements: WRITE | DISPLAY | WRITE TRAILER

See also Output of Data, Define Your Own Page Title in the Natural Programming Guide.

Function
The WRITE TITLE statement is used to override the default page title with a page title of your own. It is
executed whenever a new page is initiated.

This statement is non-procedural (that is, its execution depends on an event, not on where in a program it is
located).

Note:
If a report is produced by statements in different objects, the WRITE TITLE statement is only executed if it is
contained in the same object as the statement that causes a new page to be initiated.

Restrictions
WRITE TITLE may be specified only once per report.

WRITE TITLE cannot be specified within a special condition statement block.

WRITE TITLE cannot be specified within a subroutine.

Report Specification - rep
If multiple reports are to be produced, the notation (rep) may be used to specify the identification of the report
for which the WRITE TITLE statement is applicable. A value in the range 0 - 31 or a logical name which has
been assigned using the DEFINE PRINTER statement may be specified.

Copyright © Software AG 2003654

WRITE TITLEWRITE TITLE

If (rep) is not specified, the WRITE TITLE statement applies to the first report (report 0).

Justification and Underlining
By default, page titles are centered and not underlined. LEFT JUSTIFIED and/or UNDERLINED may be
specified to override these defaults. If UNDERLINED is specified, the underlining character (system default or
specified with the UC parameter in a FORMAT statement) is printed underneath the title and runs the width of
the line size (LS parameter).

Natural first applies all spacing or tab specifications and creates the line before centering the whole line. For
example, a notation of "10T" as the first element would cause the centered header to be positioned five positions
to the right.

statement-parameters
One or more parameters, enclosed within parentheses, may be specified immediately after WRITE TITLE. Each
parameter specified in this manner will override any previous parameter specified in a GLOBALS command,
SET GLOBALS or FORMAT statement.

If more than one parameter is specified, one or more blanks must be present between each entry. An entry may
not be split between two statement lines.

For a description of each parameter, see the section Session Parameters in the Natural Parameter Reference
documentation.

operand1
Operand1 represents the field(s) to be displayed within the title. The format notations and spacing elements to be
used are identical to those used with the WRITE statement (see the WRITE statement for more information).

SKIP - operand2
SKIP may be used to cause lines to be skipped immediately after the title line. The number of lines to be skipped
may be specified as a numeric constant or as the content of a numeric variable.

Note:
SKIP after WRITE TITLE is always interpreted as the SKIP clause of the WRITE TITLE statement, and not as
an independent statement. If you wish an independent SKIP statement after a WRITE TITLE statement, use a
semicolon (;) to separate the two statements from one another.

655Copyright © Software AG 2003

Justification and UnderliningWRITE TITLE

Example

 /* EXAMPLE ’WTIEX1’: WRITE TITLE
 /***
 FORMAT LS=70
 /***
 WRITE TITLE LEFT JUSTIFIED UNDERLINED
 *TIME 3X ’PEOPLE LIVING IN NEW YORK CITY’
 11X ’PAGE:’ *PAGE-NUMBER
 SKIP1
 /***
 FIND EMPLOYEES WITH CITY = ’NEW YORK’
 DISPLAY NAME FIRST-NAME 3X JOB-TITLE
 /***
 END

15:57:19.1 PEOPLE LIVING IN NEW YORK CITY PAGE: 1

 NAME FIRST-NAME CURRENT
 POSITION
 -------------------- -------------------- -------------------------

 RUBIN SYLVIA SECRETARY
 WALLACE MARY ANALYST

Copyright © Software AG 2003656

WRITE TITLEExample

WRITE TRAILER

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1 S A G N A N P I F B D T L G O yes no

Operand2 C S N P I B yes no

Related Statements: WRITE | DISPLAY | WRITE TITLE

Function
The WRITE TRAILER statement is used to output text or the contents of variables at the bottom of a page.

This statement is non-procedural (that is, its execution depends on an event, not on where in a program it is
located).

Restrictions
WRITE TRAILER may be specified only once per report.

WRITE TRAILER cannot be specified within a special condition statement block.

WRITE TRAILER cannot be specified within a subroutine.

Processing
This statement is executed when an end-of-page or end-of-data condition is detected, or when a SKIP or
NEWPAGE statement causes a page advance. It is not executed as a result of an EJECT statement.

The end-of-page condition is checked only after the processing of an entire DISPLAY/WRITE statement. If a
DISPLAY/WRITE statement produces multiple lines of output, overflow of the physical page may occur before
the end-of-page condition is reached.

657Copyright © Software AG 2003

WRITE TRAILERWRITE TRAILER

Note:
If a report is produced by statements in different objects, the WRITE TRAILER statement is only executed if it
is contained in the same object as the statement that causes the end-of-page condition.

Logical Page Size
The logical page size (specified with the session parameter PS) should be less than the physical page size to
ensure that the trailer information appears at the bottom of the same page.

Report Specification - rep
The notation (rep) may be used to specify the identification of the report for which the WRITE TRAILER
statement is applicable. A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE
PRINTER statement may be specified.

If (rep) is not specified, the WRITE TRAILER statement applies to the first report (report 0).

Justification and Underlining
By default, the trailer lines are centered and not underlined. LEFT JUSTIFIED and UNDERLINED may be
specified to override these defaults. If UNDERLINED is specified, the underlining character (either default or
specified with the session parameter UC) is printed underneath the trailer and runs the width of the line size
(session parameter LS).

Natural first applies all spacing or tab specifications and creates the line before centering the whole line. For
example, a notation of "10T" as the first element would cause the centered header to be positioned five positions
to the right.

statement-parameters
One or more parameters, enclosed within parentheses, may be specified immediately after WRITE TRAILER.
Each parameter specified in this manner will override any previous parameter specified in a GLOBALS
command, SET GLOBALS or FORMAT statement.

If more than one parameter is specified, one or more blanks must be present between each entry. An entry may
not be split between two statement lines.

For a description of each parameter, see the section Session Parameters of the Natural Parameter Reference
documentation.

operand1
Operand1 represents the field/fields to be output as trailer information.

Format notations and spacing elements are identical to those used with the WRITE statement (see the WRITE
statement for more information).

SKIP - operand2
SKIP may be used to cause lines to be skipped immediately after the trailer line. The number of lines to be
skipped (operand2) may be specified as a numeric constant or as the content of a numeric variable.

Copyright © Software AG 2003658

WRITE TRAILERLogical Page Size

Note:
SKIP after WRITE TRAILER is always interpreted as the SKIP clause of the WRITE TRAILER statement, and
not as an independent statement. If you wish an independent SKIP statement after a WRITE TRAILER
statement, use a semicolon (;) to separate the two statements from one another.

Example

 /* EXAMPLE ’WTLEX1’: WRITE TRAILER
 /**
 FORMAT PS=15
 WRITE TITLE LEFT JUSTIFIED UNDERLINED
 *TIME 3X ’PEOPLE LIVING IN BARCELONA’
 14X ’PAGE:’ *PAGE-NUMBER
 SKIP 1
 /**
 WRITE TRAILER LEFT JUSTIFIED UNDERLINED
 / ’CITY OF BARCELONA REGISTER’
 /**
 LIMIT 10
 FIND EMPLOYEES WITH CITY = ’BARCELONA’
 DISPLAY NAME FIRST-NAME 3X JOB-TITLE
 /**
 END

15:57:19.1 PEOPLE LIVING IN BARCELONA PAGE: 1
 --

 NAME FIRST-NAME CURRENT
 POSITION
 -------------------- -------------------- -------------------------

 DEL CASTILLO ANGEL EJECUTIVO DE VENTAS
 GARCIA M. DE LAS MERCEDES SECRETARIA
 GARCIA ENDIKA DIRECTOR TECNICO
 MARTIN ASUNCION SECRETARIA
 MARTINEZ TERESA SECRETARIA
 YNCLAN FELIPE ADMINISTRADOR
 FERNANDEZ ELOY OFICINISTA
 TORRES ANTONI OBRERA

 CITY OF BARCELONA REGISTER

 NAME FIRST-NAME CURRENT
 POSITION
 -------------------- -------------------- -------------------------

 RODRIGUEZ VICTORIA SECRETARIA
 GARCIA GERARDO INGENIERO DE PRODUCCION

 CITY OF BARCELONA REGISTER

659Copyright © Software AG 2003

ExampleWRITE TRAILER

WRITE WORK FILE

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

Operand1C S A G A N P I F B D T L C G yes no

Note:
Neither Format C nor Format G is valid for Natural Connection.

Related Statements: DEFINE WORK FILE | READ WORK FILE | CLOSE WORK FILE | DOWNLOAD PC
FILE

Function
The WRITE WORK FILE statement is used to write records to a physical sequential work file.

On mainframe computers, this statement can only be used in batch mode, or under Com-plete, CMS, TSO and
TIAM.

It is possible to create a work file in one program or processing loop and to read the same file in a subsequent
independent processing loop or in a subsequent program using the READ WORK FILE statement.

work-file-number
The work file number (as defined to Natural) to be used.

VARIABLE
It is possible to write records with different fields to the same work file with different WRITE WORK FILE
statements. In this case, the VARIABLE entry must be specified in all WRITE WORK FILE statements. The
records on the external file will be written in variable format. Natural will write all output files as
variable-blocked (unless you specify a record format and block size in the execution JCL).

When the operand list includes a dynamic variable (that could change in size for different executions of the
WRITE WORK FILE statement), the VARIABLE entry must be specified in all WRITE WORK FILE
statements.

Fields - operand1
With operand1 you specify the fields to be written to the work file. These fields may be database fields,
user-defined variables, and/or fields read from another work file using the READ WORK FILE statement.

Copyright © Software AG 2003660

WRITE WORK FILEWRITE WORK FILE

A database array may be referenced with one single range of indices which indicates the occurrences that are to
be written to the work file. Groups from database files may be referenced using the group name. All fields
belonging to that group will be written to the work file individually.

Variable Index Range
When writing an array to a work file, you can specify a variable index range for the array. For example:

WRITE WORK FILE work-file-number VARIABLE #ARRAY (I:J)

External Representation of Fields
Fields written with a WRITE WORK FILE statement are represented in the external file according to their
internal definition. No editing is performed on the field values.

For fields of format A and B, the number of bytes in the external file is the same as the internal length definition
as defined in the Natural program. No editing is performed and a decimal point is not represented in the value.

For fields of format N, the number of bytes on the external file is the sum of internal positions before and after
the decimal point. The decimal point is not represented on the external file.

For fields of format P, the number of bytes on the external file is the sum of positions before and after the
decimal point, plus 1 for the sign, divided by 2, rounded upward to a full byte.

Note:
No format conversion is performed for fields that are written to a work file.

Examples of Field Representation:

Field Definition Output Record

#FIELD1 (A10) 10 bytes

#FIELD2 (B15) 15 bytes

#FIELD3 (N1.3) 4 bytes

#FIELD4 (N0.7) 7 bytes

#FIELD5 (P1.2) 2 bytes

#FIELD6 (P6.0) 4 bytes

Note:
When the system functions AVER, NAVER, SUM or TOTAL for numeric fields (format N or P) are written to a
work file, the internal length of these fields is increased by one digit (for example, SUM of a field of format P3 is
increased to P4). This has to be taken into consideration when reading the work file.

Handling of large and dynamic variables

ASCII, ASCII-COMPRESSED and SAG (binary)

The work file types ASCII, ASCII-COMPRESSED and SAG (binary) cannot handle dynamic variables and will
produce an error. They can, however, handle large variables with a maximum field/record length of 32766 bytes.

661Copyright © Software AG 2003

Variable Index RangeWRITE WORK FILE

TRANSFER and ENTIRE CONNECTION

The work file type TRANSFER can handle dynamic variables with a maximum field/record length of 32766
bytes. The work file type ENTIRE CONNECTION cannot handle dynamic variables. They can both, however,
handle large variables with a maximum field/record length of 1073741824 bytes.

PORTABLE and UNFORMATTED

Large and Dynamic Variables can be written into work files or read from work files using the two work file
types PORTABLE and UNFORMATTED. For these types, there is no size restriction for dynamic variables.
However, large variables may not exceed a maximum field/record length of 32766 bytes.

For the work file type PORTABLE, the field information is stored within the work file. The dynamic variables
are resized during READ if the field size in the record is different from the current size.

In the WRITE WORK statement, fields are written to the file specified with their byte length. All data types
(DYNAMIC or not) are treated the same. No structural information is inserted. Note that Natural uses a
buffering mechanism, so you can expect the data to be completely written only after a CLOSE WORK. This is
especially important if the file is to be processed with another utility while Natural is running.

With the READ WORK statement, fields of fixed length are read with their whole length. If the end-of-file is
reached, the remainder of the current field is filled with blanks. The following fields are unchanged.
In the case of DYNAMIC data types, all the remainder of the file is read unless it exceeds 1073741824 bytes. If
the end of file is reached, the remaining fields (variables) are kept unchanged (normal Natural behavior).

On mainframe computers, work file type UNFORMATTED can be used to write variables, the size of which
exceeds the maximum record length. See also the section Work File Access With Large and Dynamic Variables -
Mainframes.

Example

 /* EXAMPLE ’WWFEX1’: WRITE WORK FILE
 /***************************************
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 END-DEFINE
 /***************************************
 FIND EMPLOY-VIEW WITH CITY = ’LONDON’
 WRITE WORK FILE 1
 PERSONNEL-ID
 NAME
 END-FIND
 /***************************************
 END

Copyright © Software AG 2003662

WRITE WORK FILEExample

Old Statements
The following is a list of old Natural statements.

They can be used in conjunction with NATURAL EXPERT and PREDICT CASE.

DLOGOFF/DLOGON
SHOW
IMPORT
EXPORT
INVESTIGATE

For more information about these statements, please see the NATURAL EXPERT and PREDICT CASE
documentation.

663Copyright © Software AG 2003

Old StatementsOld Statements

SQL Statements Overview
In addition to the Natural Statements, Natural also provides SQL statements for use in Natural programs so that
SQL can be used directly.

The following SQL Statements are available:

CALLDBPROC | COMMIT | DELETE | INSERT | PROCESS SQL | READ RESULT
SET | ROLLBACK | SELECT | UPDATE

Note:
Concerning the portability of Natural applications, please bear in mind that the Natural SQL statements can only
be used for SQL-eligible database systems, whereas Natural DML statements, like FIND or READ, can be used
for all database systems supported by Natural.

This section covers the following topics:

Common Set and Extended Set

Prior to the description of the actual statements, the following items - which apply to several SQL statements -
are described:

Basic Syntactical Items
Natural View Concept
Scalar Expressions
Search Conditions
Select Expressions

A further possibility of issuing SQL statements, the so-called Flexible SQL is described, which allows you to use
arbitrary SQL syntax.

Copyright © Software AG 2003664

SQL Statements OverviewSQL Statements Overview

Common Set and Extended Set
The SQL statements available within the Natural programming language comprise two different syntax sets on
mainframes. These are:

Common Set
The Common Set basically corresponds to the standard SQL syntax definitions and is provided for each
SQL-eligible database system supported by Natural.
Extended Set
The Extended Set, in addition, provides special enhancements to the Common Set to support specific
features of the various supported database systems. The supported part of the Extended Set differs with each
of these database systems.

On Windows and UNIX platforms, only the Common Set is available.

The following sections mainly describe the Natural SQL Common Set. The statement syntax adheres as far as
possible to the syntax described in the relevant literature on SQL; please refer to this literature for further details.
For details on the Natural SQL Extended Set, see the documentation of the Natural interface specific to the
database system you use.

Those syntax parts which are only supported by the SQL Extended Set have grey-colored text instead of black.

665Copyright © Software AG 2003

Common Set and Extended SetCommon Set and Extended Set

Basic Syntactical Items
This section describes basic syntactical items, which are not explained any further within the individual
statement descriptions. These items are:

Constants
Names
Parameters

Constants
The constants used in the syntactical descriptions of the Natural SQL statements are constant and integer.

Note:
If the character for decimal point notation (session parameter DC) is set to a comma (,), any specified numeric
constant must not be followed directly by a comma, but must be separated from it by a blank character;
otherwise an error or wrong results occur.

Valid Syntax:

VALUES (1,’A’) leads to a syntax error
VALUES (1,2,3) leads to wrong results

Invalid Syntax:

VALUES (1 ,’A’)
VALUES (1 ,2 ,3)

constant

The item constant always refers to a Natural constant.

integer

The item integer always represents an integer constant.

Copyright © Software AG 2003666

Basic Syntactical ItemsBasic Syntactical Items

Names
The names used in the syntactical descriptions of the Natural SQL statements are authorization-identifier,
ddm-name, view-name, column-name, table-name and correlation-name.

authorization-identifier

The item authorization-identifier, which is also called creator name, is used to qualify database tables and views.

ddm-name

The item ddm-name always refers to the name of a Natural DDM as created with the Natural utility SYSDDM.

view-name

The item view-name always refers to the name of a Natural view as defined in the DEFINE DATA statement.

column-name

The item column-name always refers to the name of a physical database column.

table-name

The item table-name in this section is used to reference both SQL base tables and SQL viewed tables. A Natural
DDM must have been created for a table to be used. The name of such a DDM must be the same as the
corresponding database table name or view name.

authorization-identifier

There are two ways of specifying the authorization-identifier of a database table or view.

One way corresponds to the standard SQL syntax, in which the authorization-identifier is separated from the
table name by a period. Using this form, the name of the DDM must be the same as the name of the database
table without the authorization-identifier.

Example:

 DEFINE DATA LOCAL
 01 PERS VIEW OF PERSONNEL
 02 NAME
 02 AGE
 END-DEFINE
 SELECT *
 INTO VIEW PERS
 FROM SQL. PERSONNEL
 ...

667Copyright © Software AG 2003

NamesBasic Syntactical Items

Alternatively, you can define the authorization-identifier as part of the DDM name. The DDM name then
consists of the authorization-identifier and the database table name separated by a hyphen (-). The hyphen
between the authorization-identifier and the table name is converted internally into a period.

Note:
This form of DDM name can also be used with a FIND or READ statement, because it conforms to the DDM
naming conventions applicable to these statements.

Example:

 DEFINE DATA LOCAL
 01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
 END-DEFINE
 SELECT *
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 ...

If the authorization-identifier has been specified neither explicitly nor within the DDM name, it is determined by
the SQL database system.

In addition to being used in SELECT statements, table-names can also be specified in DELETE, INSERT and
UPDATE statements.

Examples:

 ...
 DELETE FROM SQL.PERSONNEL
 WHERE AGE IS NULL
 ...

 ...
 INSERT INTO SQL.PERSONNEL (NAME,AGE)
 VALUES (’ADKINSON’,35)
 ...

 ...
 UPDATE SQL.PERSONNEL
 SET SALARY = SALARY * 1.1
 WHERE AGE > 30
 ...

correlation-name

The item correlation-name represents an alias name for a table-name. It can be used to qualify column names; it
also serves to implicitly qualify fields in a Natural view when used with the INTO clause of the SELECT
statement (see also the SELECT statement).

Example:

Copyright © Software AG 2003668

Basic Syntactical Itemscorrelation-name

 DEFINE DATA LOCAL
 01 PERS-NAME (A20)
 01 EMPL-NAME (A20)
 01 AGE (I2)
 END-DEFINE
 ...
 SELECT X.NAME , Y.NAME , X.AGE
 INTO PERS-NAME , EMPL-NAME , AGE
 FROM SQL-PERSONNEL X , SQL-EMPLOYEES Y
 WHERE X.AGE = Y.AGE
 END-SELECT
 ...

Although in most cases the use of correlation-names is not necessary, they may help to make the statement
clearer.

669Copyright © Software AG 2003

correlation-nameBasic Syntactical Items

Parameters

parameter

host-variable

A host-variable is a Natural program variable which is referenced in an SQL statement. It can be either an
individual field or defined as part of a Natural view.

When defined as a receiving field (for example, in the INTO clause), a host-variable identifies a variable to
which a value is assigned by the database system.

When defined as a sending field (for example, in the WHERE clause), a host-variable specifies a value to be
passed from the program to the database system.

colon [:]

To comply with SQL standards, a host-variable can also be prefixed by a colon (:). When used with flexible
SQL, host-variables must be qualified by colons.

Example:

 SELECT NAME INTO :#NAME FROM PERSONNEL
 WHERE AGE = :VALUE

The colon is always required if the variable name is identical to an SQL reserved word. In a context in which
either a host-variable or a column can be referenced, the use of a name without a colon is interpreted as a
reference to a column.

Copyright © Software AG 2003670

Basic Syntactical ItemsParameters

Natural Formats and SQL Data Types

The Natural format of a host-variable is converted to an SQL data type according to the following table:

Natural Format/Length SQL Data Type

An CHAR (n)

B2 SMALLINT

B4 INT

Bn; n not equal 2 or 4 CHAR (n)

F4 REAL

F8 DOUBLE PRECISION

I2 SMALLINT

I4 INT

Nnn.m NUMERIC (nn+m,m)

Pnn.m NUMERIC (nn+m,m)

T TIME

D DATE

Gn; for view fields only GRAPHIC (n)

Natural does not check whether the converted SQL data type is compatible to the database column. Except for
fields of format N, no data conversion is done.

In addition, the following extensions to standard Natural formats are available with Natural SQL:

A one-dimensional array of format A can be used to support alphanumeric columns longer than 253 bytes.
This array must be defined beginning with index 1 and can only be referenced by using an asterisk (*) as the
index. The corresponding SQL data type is CHAR (n), where n is the total number of bytes in the array.
A special host variable indicated by the keyword LINDICATOR can be used to support variable-length
columns. The corresponding SQL data type is VARCHAR (n); see also the LINDICATOR Clause.
The Natural formats date (D) and time (T) can be used with ENTIRE ACCESS and will be converted into
the corresponding database-dependent formats (see the ENTIRE ACCESS documentation for details)
The Natural formats date (D) and time (T) can be used with Natural for DB2. They are converted to DB2
DATE and TIME (see also the Natural for DB2 documentation for details.)

A sending field specified as one-dimensional array without a LINDICATOR field is converted into the SQL data
type VARCHAR. The length is the total number of bytes in the array, not taking into account trailing blanks.

671Copyright © Software AG 2003

parameterBasic Syntactical Items

INDICATOR Clause

The INDICATOR clause is an optional feature to distinguish between a "null" value (that is, no value at all) and
the actual values "0" or "blank".

When specified with a receiving host-variable (target field), the INDICATOR host-variable (null indicator field)
serves to find out whether a column to be retrieved is "null".

Example:

 DEFINE DATA LOCAL
 1 NAME (A20)
 1 NAMEIND (I2)
 END-DEFINE
 SELECT *
 INTO NAME INDICATOR NAMEIND
 ...

In this example, NAME represents the receiving host-variable and NAMEIND the null indicator field.

If a null indicator field has been specified and the column to be retrieved is null, the value of the null indicator
field is negative and the target field is set to "0" or "blank" depending on its data type. Otherwise, the value of
the null indicator field is greater than or equal to "0".

When specified with a sending host-variable (source field), the null indicator field is used to designate a null
value for this field.

Example:

 DEFINE DATA LOCAL
 1 NAME (A20)
 1 NAMEIND (I2)
 UPDATE ...
 SET NAME = :NAME INDICATOR :NAMEIND
 WHERE ...

In this example, :NAME represents the sending host-variable and :NAMEIND the null indicator field. By
entering a negative value as input for the null indicator field, a null value is assigned to a database column.

An INDICATOR host-variable is of format/length I2.

Copyright © Software AG 2003672

Basic Syntactical Itemsparameter

LINDICATOR Clause

The LINDICATOR clause is an optional feature which is used to support columns of varying lengths, for
example, VARCHAR or LONG VARCHAR type.

When specified with a receiving host-variable (target field), the LINDICATOR host-variable (length indicator
field) contains the number of characters actually returned by the database into the target field. The target field is
always padded with blanks.

If the VARCHAR or LONG VARCHAR column contains more characters than fit in the target field, the length
indicator field is set to the length actually returned (that is, the length of the target field) and the null indicator
field (if specified) is set to the total length of this column.

Example:

 DEFINE DATA LOCAL
 1 ADDRESSLIND (I2)
 1 ADDRESS (A50/1:6)
 END-DEFINE
 SELECT *
 INTO :ADDRESS(*) LINDICATOR :ADDRESSLIND
 ...

In this example, :ADDRESS(*) represents the target field which receives the first 300 bytes (if available) of the
addressed VARCHAR or LONG VARCHAR column, and :ADDRESSLIND represents the length indicator
field which contains the number of characters actually returned.

When specified with a sending host-variable (source field), the length indicator field specifies the number of
characters of the source field which are to be passed to the database.

Example:

 DEFINE DATA LOCAL
 1 NAMELIND (I2)
 1 NAME (A20)
 1 AGE (I2)
 END-DEFINE
 MOVE 4 TO NAMELIND
 MOVE ’ABC%’ TO NAME
 SELECT AGE
 INTO :AGE
 WHERE NAME LIKE :NAME LINDICATOR :NAMELIND
 ...

A LINDICATOR host-variable is of format/length I2 or I4. For performance reasons, it should be specified
immediately before the corresponding target or source field; otherwise, the field is copied to the temporary
storage at runtime.

If the LINDICATOR field is defined as an I2 field, the SQL data type VARCHAR is used for sending or
receiving the corresponding column. IF the LINDICATOR host-variable is specified as I4, a large object data
type (CLOB/BLOB) is used.

If the field is defined as DYNAMIC, the column is read in an internal loop up to its real length. The
LINDICATOR field and *LENGTH are set to this length. In case of a fixed length field, the column is read up to
the defined length. In both cases, the field is written up to the value defined in the LINDICATOR field.

673Copyright © Software AG 2003

parameterBasic Syntactical Items

Let a fixed length field be defined with a LINDICATOR field specified as I2. If the VARCHAR column
contains more characters than fit into this fixed length field, the length indicator field is set to the length actually
returned and the null indicator field (if specified) is set to the total length of this column (retrieval). This is not
possible for fixed length fields >= 32KB (length does not fit into null indicator field).

Copyright © Software AG 2003674

Basic Syntactical Itemsparameter

Natural View Concept
Some Natural SQL statements also support the use of Natural views.

A Natural view can be specified instead of a parameter list, where each field of the view - except group fields,
redefining fields and fields prefixed with "L@" or "N@"- corresponds to one parameter (host variable).

Fields with names prefixed with "L@" or "N@" can only exist with corresponding master fields; that is, fields of
the same name, where:

L@ fields are converted into LINDICATOR fields,
N@ fields are converted into INDICATOR fields.

L@ fields should have been specified at view definition, immediately before the master fields to which they
apply.

 DEFINE DATA LOCAL
 01 PERS VIEW OF SQL-PERSONNEL
 02 PERSID (I4)
 02 NAME (A20)
 02 N@NAME (I2) /* null indicator of NAME
 02 L@ADDRESS (I2) /* length indicator of ADDRESS
 02 ADDRESS (A50/1:6)
 02 N@ADDRESS (I2) /* null indicator of ADDRESS
 01 #PERSID (I4)
 END-DEFINE
 ...
 SELECT *
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE PERSID = #PERSID
 ...
 END-SELECT

The above example is equivalent to the following one:

 ...
 SELECT *
 INTO PERSID,
 NAME INDICATOR N@NAME,
 ADDRESS(*)INDICATOR N@ADDRESS LINDICATOR L@ADDRESS
 FROM SQL-PERSONNEL
 WHERE PERSID = #PERSID
 ...
 END-SELECT

675Copyright © Software AG 2003

Natural View ConceptNatural View Concept

Scalar Expressions
A scalar-expression consists of a factor or other scalar expressions including scalar operators.

Concerning reference priority, scalar expressions behave as follows: When a non-qualified variable name is
specified in a scalar expression, the first approach is to resolve the variable name as column name of the
referenced table. If no column with the specified name is available in the referenced table, Natural tries to
resolve this variable as a Natural user-defined variable (host variable).

scalar-operator

A scalar-operator can be any of the operators listed above; the operators "-" and "/" must be separated by at least
one blank from preceding operators.

factor

Copyright © Software AG 2003676

Scalar ExpressionsScalar Expressions

A factor can consist of one of the items listed in the above diagram.

atom

 An atom can be either a parameter or a constant; see also the section Basic Syntactical Items.

column-reference

A column-reference is a column name optionally qualified by either a table-name or a correlation-name (see also
the section Basic Syntactical Items). Qualified names are often clearer than unqualified names and sometimes
they are essential.

Note:
A table name in this context must not be qualified explicitly with an authorization identifier. Use a correlation
name instead if you need a qualified table name.

If a column is referenced by a table-name or correlation-name, it must be contained in the corresponding table.
If neither a table-name nor a correlation-name is specified, the respective column must be in one of the tables
specified in the FROM clause.

aggregate-function

677Copyright © Software AG 2003

atomScalar Expressions

SQL provides a number of special functions to enhance its basic retrieval power. The so-called SQL aggregate
functions currently available and supported by Natural are:

AVG which gives the average of the values in a column,
COUNT which gives the number of values in a column,
MAX which gives the highest value in a column,
MIN which gives the lowest value in a column,
SUM which gives the sum of the values in a column.

Apart from COUNT(*), each of these functions operates on the collection of scalar values in an argument (that
is, a single column or a scalar-expression) and produces a scalar value as its result.

Example:

 DEFINE DATA LOCAL
 1 AVGAGE (I2)
 END-DEFINE
 ...
 SELECT AVG (AGE)
 INTO AVGAGE
 FROM SQL-PERSONNEL
 ...

In general, the argument can optionally be preceded by the keyword DISTINCT to eliminate redundant duplicate
values before the function is applied.

If DISTINCT is specified, the argument must be the name of a single column; if DISTINCT is omitted, the
argument can consist of a general scalar-expression.

DISTINCT is not allowed with the special function COUNT(*), which is provided to count all rows without
eliminating any duplicates.

Copyright © Software AG 2003678

Scalar Expressionsaggregate-function

special-register

A reference to a special-register returns a scalar value.

With the exception of USER, special-registers do not conform to standard SQL and are therefore supported by
the Natural SQL Extended Set only.

scalar-function

679Copyright © Software AG 2003

special-registerScalar Expressions

Copyright © Software AG 2003680

Scalar Expressionsscalar-function

A scalar-function is a built-in function that can be used in the construction of scalar computational expressions.
The above scalar-functions are supported by the Natural SQL Extended Set.

units

681Copyright © Software AG 2003

unitsScalar Expressions

Units do not conform to standard SQL and are therefore supported by the Natural SQL Extended Set only.

case-expression

case-expressions do not conform to standard SQL and are therefore supported by the Natural SQL Extended Set
only.

searched-when-clause

See details on search-condition.

simple-when-clause

Copyright © Software AG 2003682

Scalar Expressionscase-expression

cast-expression

cast-expressions do not conform to standard SQL and are therefore only supported by the Natural SQL Extended
Set.

user-defined-function-reference

The option user-defined-function-reference belongs to the Natural SQL Extended Set. This options allows you to
invoke any user-defined function. Arguments have to be placed inbrackets and separated by commas. The
user-defined function must be declared in the target RDBMS.

683Copyright © Software AG 2003

cast-expressionScalar Expressions

Search Conditions

search-condition

A search-condition can consist of a simple predicate or of multiple search-conditions combined with the
Boolean operators AND, OR and NOT, and parentheses if required to indicate a desired order of evaluation.

Example:

 DEFINE DATA LOCAL
 01 NAME (A20)
 01 AGE (I2)
 END-DEFINE
 ...
 SELECT *
 INTO NAME, AGE
 FROM SQL-PERSONNEL
 WHERE AGE = 32 AND NAME > ’K’
 END-SELECT
 ...

Copyright © Software AG 2003684

Search ConditionsSearch Conditions

predicate

A predicate specifies a condition that can be "true", "false" or "unknown". In a search-condition, a predicate can
consist of a simple or complex comparison operation or other kinds of conditions.

Example:

 SELECT NAME, AGE
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE AGE BETWEEN 20 AND 30
 0R AGE IN (32, 34, 36)
 AND NAME LIKE ’%er’
 ...

Note:
The percent sign (%) may conflict with Natural terminal commands. If so, you must define a terminal command
control character different from "%".

The individual predicates are explained on the following pages (for further information on predicates, please
refer to the relevant literature). According to the syntax above, they are called as follows:

Comparison Predicate
BETWEEN Predicate
LIKE Predicate
NULL Predicate
IN Predicate
Quantified Predicate

685Copyright © Software AG 2003

predicateSearch Conditions

EXISTS Predicate

Comparison Predicate

A comparison predicate compares two values.

See information on scalar-expression.

comparison

Comparison can be any of the following operators:

= equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

< > not equal to

 = not equal to

 > not greater than

 < not less than

Copyright © Software AG 2003686

Search ConditionsComparison Predicate

subquery

A subquery is a select-expression that is nested inside another such expression.

Example:

 DEFINE DATA LOCAL
 1 #NAME (A20)
 1 #PERSNR (I4)
 END-DEFINE
 ...
 SELECT NAME, PERSNR
 INTO #NAME, #PERSNR
 FROM SQL-PERSONNEL
 WHERE PERSNR IN
 (SELECT PERSNR
 FROM SQL-AUTOMOBILES
 WHERE COLOR = ’black’)
 ...
 END-SELECT

See further information on Select Expressions.

BETWEEN Predicate

A BETWEEN predicate compares a value with a range of values.

See information on scalar-expression.

LIKE Predicate

687Copyright © Software AG 2003

BETWEEN PredicateSearch Conditions

A LIKE predicate searches for strings that have a certain pattern.

For information on column-reference , atom and special-register, see the section Scalar Expressions.

NULL Predicate

A NULL predicate tests for null values.

See information on column-reference.

IN Predicate

An IN predicate compares a value with a collection of values.

For information on scalar-expression, atom and special-register, see the section Scalar Expressions.

See information on subquery.

Quantified Predicate

A quantified predicate compares a value with a collection of values.

See information on scalar-expression, on comparison, and on subquery.

Copyright © Software AG 2003688

Search ConditionsNULL Predicate

EXISTS Predicate

An EXISTS predicate tests for the existence of certain rows.

The EXISTS predicate evaluates to true only if the result of evaluating the subquery is not empty; that is, if there
exists at least one record (row) in the FROM table of the subquery satisfying the search condition of the WHERE
clause of this subquery.

Example of EXISTS:

 DEFINE DATA LOCAL
 1 #NAME (A20)
 END-DEFINE
 ...
 SELECT NAME
 INTO #NAME
 FROM SQL-PERSONNEL
 WHERE EXISTS
 (SELECT *
 FROM SQL-EMPLOYEES
 WHERE PERSNR > 1000
 AND NAME < ’L’)
 ...
 END-SELECT
 ...

See information on subquery.

689Copyright © Software AG 2003

EXISTS PredicateSearch Conditions

Select Expressions

select-expression

A select-expression specifies a result table.

selection

The selection specifies the items to be selected.

ALL/DISTINCT

Duplicate rows are not automatically eliminated from the result of a select-expression. To request this, specify
the keyword DISTINCT.

The alternative to DISTINCT is ALL. ALL is assumed if neither is specified.

scalar-expression

Instead of, or as well as, simple column names, a selection can also include general scalar-expressions
containing scalar operators and scalar functions which provide computed values (see also the section Scalar
Expressions).

Example:

 SELECT NAME, 65 - AGE
 FROM SQL-PERSONNEL
 ...

correlation-name

A correlation-name can be assigned to a scalar-expression as alias name for a result column.

The correlation-name need not be unique. If no correlation-name is specified for a result column, the
corresponding column-name will be used (if the result column is derived from a column name; if not, the result
table will have no name). The name of a result column may be used, for example, as column name in the
ORDER BY clause of a SELECT statement.

Copyright © Software AG 2003690

Select ExpressionsSelect Expressions

Asterisk Notation - *

All columns of all tables specified in the FROM clause are selected.

Example:

 SELECT *
 FROM SQL-PERSONNEL, SQL-AUTOMOBILES
 ...

table-expression

The table-expression specifies from where and according to what criteria rows are to be selected.

FROM Clause

table-reference

The tables specified in the FROM clause must contain the column fields used in the selection list.

You can either specify a single table or produce an intermediate table resulting from a subquery or a "join"
operation (see below).

Since various tables (that is, DDMs) can be addressed in one FROM clause and since a table-expression can
contain several FROM clauses if subqueries are specified, the database ID (DBID) of the first DDM specified in
the first FROM clause of the whole expression is used to identify the underlying database involved.

Optionally a correlation-clause can be assigned to a table-name. For a subquery, a correlation-clause must be
assigned.

The TABLE function-name clause belongs to the SQL extended SET and requires a correlation-clause with a
column-name list.

691Copyright © Software AG 2003

table-expressionSelect Expressions

correlation-clause

A correlation-clause consists of optional KEYWORD AS and a correlation-name and is optionally followed by
a plain column-name list. The column-name list belongs to the SQL extended SET.

joined-table

A joined-table specifies an intermediate table resulting from a "join" operation.

The "join" can be an INNER, LEFT OUTER, RIGHT OUTER or FULL OUTER JOIN. If you do not specify
anything, "INNER" applies.

Multiple "join" operations can be nested; that is, the tables which create the intermediate result table can
themselves be intermediate result tables of a JOIN operation or a subquery; and the latter, in turn, can also have a
joined-table or another subquery in its FROM clause.

join-condition

AND

Multiple join-conditions can be combined with AND.

For a FULL OUTER JOIN, only the equal sign (=) is allowed as comparison. See details on comparison.

The first join-expression must refer to the first table-reference, the second join-expression must refer to the
second table-reference.

join-expression

Copyright © Software AG 2003692

Select Expressionstable-expression

Within a join-expression only column-names and the scalar-function VALUE (or its synonym COALESCE) are
allowed. See details on column-name.

WHERE Clause

The WHERE clause is used a to specify the selection criteria (search-condition) for the rows to be selected.

Example:

 DEFINE DATA LOCAL
 01 NAME (A20)
 01 AGE (I2)
 END-DEFINE
 ...
 SELECT *
 INTO NAME, AGE
 FROM SQL-PERSONNEL
 WHERE AGE = 32
 END-SELECT
 ...

See further information on search-condition .

GROUP BY Clause

The GROUP BY clause rearranges the table represented by the FROM clause into groups in a way that all rows
within each group have the same value for the GROUP BY columns.

Each column-reference in the selection list must be either a GROUP BY column or specified within an
aggregate-function. Aggregate-functions are applied to the individual groups (not to the entire table). The result
table contains as many rows as groups.

693Copyright © Software AG 2003

table-expressionSelect Expressions

See further details on column-reference and aggregate-function.

Example:

 DEFINE DATA LOCAL
 1 #AGE (I2)
 1 #NUMBER (I2)
 END-DEFINE
 ...
 SELECT AGE , COUNT(*)
 INTO #AGE, #NUMBER
 FROM SQL-PERSONNEL
 GROUP BY AGE
 ...

If the GROUP BY clause is preceded by a WHERE clause, all rows that do not satisfy the WHERE clause are
excluded before any grouping is done.

HAVING Clause

If the HAVING clause is specified, the GROUP BY clause should also be specified.

Just as the WHERE clause is used to exclude rows from a result table, the HAVING clause is used to exclude
groups and therefore also based on a search-condition. Scalar-expressions in a HAVING clause must be
single-valued per group.

See further details on scalar-expression and search-condition .

Example:

 DEFINE DATA LOCAL
 1 #NAME (A20)
 1 #AVGAGE (I2)
 1 #NUMBER (I2)
 END-DEFINE
 ...
 SELECT NAME, AVG(AGE), COUNT(*)
 INTO #NAME, #AVGAGE, #NUMBER
 FROM SQL-PERSONNEL
 GROUP BY NAME
 HAVING COUNT(*) > 1
 ...

Copyright © Software AG 2003694

Select Expressionstable-expression

Flexible SQL
Text Variables

In addition to the SQL syntax described in the previous sections, flexible SQL allows you to use arbitrary SQL
syntax.

"<<" and ">>" Characters

Flexible SQL is enclosed in "<<" and ">>" characters. It can include arbitrary SQL text and host variables.
Within flexible SQL, host variables must be prefixed by a colon (:).

The flexible SQL string can cover several statement lines. Comments are possible, too (see also the statement
PROCESS SQL).

Flexible SQL can be used as a replacement for any of the following syntactical SQL items:

atom
column-reference
scalar-expression
predicate

Flexible SQL can also be used between the clauses of a select expression:

 SELECT selection
 << ... >>
 INTO ...
 FROM ...
 << ... >>
 WHERE ...
 << ... >>
 GROUP BY ...
 << ... >>
 HAVING ...
 << ... >>
 ORDER BY ...
 << ... >>

Note:
The SQL text used in flexible SQL is not recognized by the Natural compiler. The SQL text (with replaced host
variables) is simply copied into the SQL string passed to the database system. Syntax errors in flexible SQL are
detected at runtime when the database executes the corresponding statement.

Example 1

 SELECT NAME
 FROM SQL-EMPLOYEES
 WHERE << MONTH (BIRTH) >> = << MONTH (CURRENT_DATE) >>

Example 2:

 SELECT NAME
 FROM SQL-EMPLOYEES
 WHERE << MONTH (BIRTH) = MONTH (CURRENT_DATE) >>

695Copyright © Software AG 2003

Flexible SQLFlexible SQL

Example 3:

 SELECT NAME
 FROM SQL-EMPLOYEES
 WHERE SALARY > 50000
 << INTERSECT
 SELECT NAME
 FROM SQL-EMPLOYEES
 WHERE DEPT = ’DEPT10’
 >>

Text Variables

Within flexible SQL, you can also specify so-called "text variables".

:T:

A text variable is a host-variable prefixed by ":T:". It must be in alphanumeric format.

At runtime, a text variable within an SQL statement will be replaced by its contents that is, the text string
contained in the text variable will be inserted into the SQL string.

After the replacement, trailing blanks will be removed from the inserted text string.

You have to make sure yourself that the content of a text variable results in a syntactically correct SQL string. In
particular, the content of a text variable must not contain host-variables.

A statement containing a text variable will always be executed in dynamic SQL mode.

LINDICATOR Option

The text variable can be followed by the keyword LINDICATOR and a length indicator variable (that is, a
host-variable prefixed by colon).

The length indicator variable has to be of format/length I2.

If no LINDICATOR variable is specified, the entire content of the text variable will be inserted into the SQL
string.

If you specify a LINDICATOR variable, only the first n characters (n being the value of the LINDICATOR
variable) of the text variable content will be inserted into the SQL string. If the number in the LINDICATOR
variable is greater than the length of the text variable content, the entire text variable content will be inserted. If
the number in the LINDICATOR variable is negative or 0, nothing will be inserted.

See general information on host-variables.

Example using Text Variable:

Copyright © Software AG 2003696

Flexible SQLText Variables

 DEFINE DATA LOCAL
 01 TEXTVAR (A200)
 01 TABLES VIEW OF SYSIBM-SYSTABLES
 02 NAME
 02 CREATOR
 END-DEFINE
 *
 MOVE ’WHERE NAME > ’’SYS’’ AND CREATOR = ’’SYSIBM’’’ TO TEXTVAR
 *
 SELECT * INTO VIEW TABLES
 FROM SYSIBM-SYSTABLES
 << :T:TEXTVAR >>
 DISPLAY TABLES
 END-SELECT
 *
 END

The generated SQL statement (as displayed with the LISTSQL system command) will look as follows:

 SELECT NAME, CREATOR FROM SYSIBM.SYSTABLES:T: FOR FETCH ONLY

The executed SQL statement will look as follows:

 SELECT TABNAME, CREATOR FROM SYSIBM.SYSTABLES
 WHERE TABNAME > ’SYS’ AND CREATOR = ’SYSIBM’

697Copyright © Software AG 2003

LINDICATOR OptionFlexible SQL

CALLDBPROC

Function
The statement CALLDBPROC is used to invoke a stored procedure of the SQL database system to which
Natural is connected.

The stored procedure can be either a Natural subprogram or a program written in another programming
language.

In addition to the passing of parameters between the invoking object and the stored procedure, CALLDBPROC
supports "result sets"; these make it possible to return a larger amount of data from the stored procedure to the
invoking object than would be possible via parameters.

The result sets are "temporary result tables" which are created by the stored procedure and which can be read and
processed by the invoking object via a READ RESULT SET statement.

Note:
In general, the invoking of a stored procedure could be compared with the invoking of a Natural subprogram:
when the CALLDBPROC statement is executed, control is passed to the stored procedure; after processing of the
stored procedure, control is returned to the invoking object and processing continues with the statement
following the CALLDBPROC statement.

dbproc
As dbproc you specify the name of the stored procedure to be invoked. The name can be specified either as an
alphanumeric variable or as a constant (enclosed in apostrophes).

The name must adhere to the rules for stored procedure names of the target database system.

If the stored procedure is a Natural subprogram, the actual procedure name must not be longer than 8 characters.

Copyright © Software AG 2003698

CALLDBPROCCALLDBPROC

ddm-name
The name of a DDM must be specified to provide the "address" of the database which executes the stored
procedure. For more information see ddm-name.

parameter
As parameter, you can specify parameters which are passed from the invoking object to the stored procedure.

A parameter can be a host-variable (optionally with INDICATOR and LINDICATOR clauses), a constant, or
the keyword NULL.

See further details on host-variable.

AD=
If the parameter is a host-variable, you can mark it as follows:

AD=O Non-modifiable, see Session Parameter AD=O.

(Corresponding procedure notation in DB2 for OS/390: IN.)

AD=M Modifiable, see Session Parameter AD=M.

(Corresponding procedure notation in DB2 for OS/390: INOUT.)

AD=A For input only, see Session Parameter AD=A.

(Corresponding procedure notation in DB2 for OS/390: OUT.)

If the parameter is a constant, AD cannot be explicitly specified. For constants AD=O always applies.

result-set
As result-set you specify a field in which a result-set locator is to be returned.

A result-set has to be a variable of format/length I4.

The value of a result-set variable is merely a number which identifies the result set and which can be referenced
in a subsequent READ RESULT SET statement.

The sequence of the result-set values correspond to the sequence of the result sets returned by the stored
procedure.

The contents of the result sets can be processed by a subsequent READ RESULT SET statement.

If no result set is returned, the corresponding result-set variable will contain "0".

On mainframe computers, multiple result sets can be specified. On all other platforms, only one result set can be
specified.

699Copyright © Software AG 2003

ddm-nameCALLDBPROC

GIVING sqlcode
This option may be used to obtain the SQL code of the SQL CALL statement invoking the stored procedure.

If this option is specified and the SQL code of the stored procedure is not "0", no Natural error message will be
issued. In this case, the action to be taken in reaction to the SQL code value has to be coded in the invoking
Natural object.

The sqlcode field has to be a variable of format/length I4.

If the GIVING sqlcode option is omitted, a Natural error message will be issued if the SQL code of the stored
procedure is not "0".

CALLMODE
If the stored procedure is a Natural subprogram, CALLMODE=NATURAL has to be specified.

Note:
CALLMODE=NATURAL also has an impact on internal parameters that are passed to/from the stored
procedure; see the corresponding Natural database interface documentation for details.
CALLMODE=NATURAL is only available on mainframe computers.

Example
The following example shows a Natural program that calls the stored procedure ’demo_proc’ to retrieve all
names of table PERSON that belong to a given range.

Three parameter fields are passed to ’demo_proc’: the first and second parameters pass starting and ending
values of the range of names to the stored procedure, and the third parameter receives a name that meets the
criterion.

In this example, the names are returned in a result set that is processed using the READ RESULT SET
statement.

Copyright © Software AG 2003700

CALLDBPROCGIVING sqlcode

DEFINE DATA LOCAL
1 PERSON VIEW OF DEMO-PERSON
 2 PERSON_ID
 2 LAST_NAME
1 #BEGIN (A2) INIT <’AB’>
1 #END (A2) INIT <’DE’>
1 #RESPONSE (I4)
1 #RESULT (I4)
1 #NAME (A20)
END-DEFINE

...

CALLDBPROC ’demo_proc’ DEMO-PERSON #BEGIN (AD=O) #END (AD=O) #NAME (AD=A)
 RESULT SETS #RESULT
 GIVING #RESPONSE

READ RESULT SET #RESULT INTO #NAME FROM DEMO-PERSON
 GIVING #RESPONSE
 DISPLAY #NAME
END-RESULT

...

END

See the corresponding Natural database interface documentation in the Natural for Mainframes documentation
for further examples.

701Copyright © Software AG 2003

ExampleCALLDBPROC

COMMIT

Function
The SQL COMMIT statement corresponds to the END TRANSACTION statement. It indicates the end of a
logical transaction and releases all data locked during the transaction. All data modifications are committed and
made permanent.

Example:

 ...
 DELETE FROM SQL-PERSONNEL WHERE NAME = ’SMITH’
 COMMIT
 ...

As all cursors are closed when a logical unit of work ends, a COMMIT statement must not be placed within a
database modification loop; instead, it has to be placed outside such a loop or after the outermost loop of nested
loops.

Consideration for Non-Natural-Programs
If an external program written in another standard programming language is called from a Natural program, this
external program should not contain its own COMMIT statement if the Natural program issues database calls,
too. The calling Natural program should issue the COMMIT statement on behalf of the external program.

Copyright © Software AG 2003702

COMMITCOMMIT

DELETE

Syntax 1 - Searched DELETE

Syntax 2 - Positioned DELETE

Function
The SQL DELETE statement is used to delete either rows in a table without using a cursor ("searched"
DELETE) or rows in a table to which a cursor is positioned ("positioned" DELETE).

The "searched" DELETE statement is a stand-alone statement not related to any SELECT statement. With a
single statement you can delete zero, one, multiple or all rows of a table. The rows to be deleted are determined
by a search-condition that is applied to the table. Optionally, the table name can be assigned a correlation-name.

The "positioned" DELETE statement always refers to a cursor within a database loop. Thus, the table referenced
by a positioned DELETE statement must be the same as the one referenced by the corresponding SELECT
statement; otherwise an error message is returned. A positioned DELETE cannot be used with a non-cursor
selection. The functionality of the positioned DELETE statement corresponds to that of the "normal" Natural
DELETE statement.

Note:
The number of rows that have actually been deleted with a "searched" DELETE can be ascertained by using the
system variable *ROWCOUNT (see Natural System Variables documentation).

FROM Clause
The FROM clause specifies the table from which the rows are to be deleted.

WHERE Clause
The WHERE clause is used to specify the selection criteria for the rows to be deleted.

703Copyright © Software AG 2003

DELETEDELETE

If no WHERE clause is specified, the entire table is deleted.

Statement Reference - r
The "(r)" notation is used to reference the statement which was used to select the row to be deleted. If no
statement reference is specified, the DELETE statement is related to the innermost active processing loop in
which a database record was selected.

WITH Isolation Level clause
The WITH Isolation Level clause belongs to the SQL Extended Set and allows the explicit sprecification of the
isolation level used when locating the row to be deleted.

QUERYNO clause
The QUERYNO clause belongs to the SQL Extended Set and explicitly specifies the number to be used in
EXPLAIN output and trace records for this statement.

Copyright © Software AG 2003704

DELETEStatement Reference - r

INSERT

Function
The SQL INSERT statement is used to add one or more new rows to a table.

INTO Clause
In the INTO clause, the table is specified into which the new rows are to be inserted.

See further information on table-name.

OVERRIDING USER VALUE
OVERRIDING USER VALUE belongs to the SQL Extended Set. This clause causes the value specified in the
VALUES clause or produced by a fullselect for a column that is defined as GENERATED ALWAYS to be
ignored.

column-list

In the column-list, one or more columns can be specified, which are to be supplied with values in the row
currently inserted.

If a column-list is specified, the sequence of the columns must match with the sequence of the values either
specified in the insert-item-list or contained in the specified view (see below).

If the column-list is omitted, the values in the insert-item-list or in the specified view are inserted according to an
implicit list of all the columns in the order they exist in the table.

705Copyright © Software AG 2003

INSERTINSERT

VALUES Clause
With the VALUES clause, you insert a single row into the table. Depending on whether an asterisk (*) or a
column-list has been specified, the VALUES clause can take one of the following forms:

VALUES Clause with Preceding Asterisk Notation

If asterisk notation is specified, a view must be specified in the VALUES clause. With the field values of this
view, a new row is inserted into the specified table using the field names of the view as column names of the
row.

VALUES Clause with Preceding Column List

If a column-list is specified and a view is referenced in the VALUES clause, the number of items specified in the
column list must correspond to the number of fields defined in the view.

If no column-list is specified, the fields defined in the view are inserted according to an implicit list of all the
columns in the order they exist in the specified table.

insert-item-list

In the insert-item-list, you can specify one or more values to be assigned to the columns specified in the
column-list. The sequence of the specified values must match the sequence of the columns.

If no column-list is specified, the values in the insert-item-list are inserted according to an implicit list of all the
columns in the order they exist in the table.

The values to be specified in the insert-item-list can be constants, parameters, special-registers or NULL.

See the section Basic Syntactical Items for information on view-name, constant and parameter. See also the
information on special-register.

If the value NULL has been assigned, this means that the addressed field is to receive no value (not even the
value "0" or "blank").

Example - INSERT Single Row:

Copyright © Software AG 2003706

INSERTVALUES Clause

 ...
 INSERT INTO SQL-PERSONNEL (NAME,AGE)
 VALUES (’ADKINSON’,35)
 ...

select-expression
With a select-expression, you insert multiple rows into a table. The select-expression is evaluated and each row
of the result table is treated as if the values in this row were specified as values in a VALUES clause of a
single-row INSERT operation.

See further information on select-expression.

Example - INSERT Multiple Rows:

 ...
 INSERT INTO SQL-RETIREE (NAME,AGE,SEX)
 SELECT LASTNAME, AGE, SEX
 FROM SQL-EMPLOYEES
 WHERE AGE > 60
 ...

Note:
The number of rows that have actually been inserted can be ascertained by using the system variable
*ROWCOUNT (see Natural System Variables documentation).

WITH isolation level clause
The WITH isolation level clause belongs to the SQL Extended Set and allows the explicit specification of the
isolation level used when locating the rows to be inserted.

QUERY NO Clause
The QUERYNO clause belongs to the SQL Extended Set and explicitly specifies the number to be used in
EXPLAIN output and trace records for this statement.

707Copyright © Software AG 2003

select-expressionINSERT

PROCESS SQL

Function
The PROCESS SQL statement is used to issue SQL statements to the underlying database.

ddm-name
The name of a DDM must be specified to provide the "address" of the database to which the statement string (see
below) is to be addressed. For more information, see ddm-name.

statement-string
The statements which can be specified in the statement-string are the same statements which can be issued with
the SQL statement "EXECUTE" (see also Flexible SQL).

Note:
To avoid transaction synchronization problems between the Natural environment and the underlying database,
the COMMIT and ROLLBACK statements must not be used within PROCESS SQL.

The statement string can cover several statement lines without any continuation character to be specified.
Comments at the end of a line as well as entire comment lines are possible.

The statement string can also include parameters.

Parameters

Unlike with the parameter described, in this context host-variables must be prefixed by a colon (:). In addition,
they can be preceded by a further qualifier (":U" or :"G").

See further details on host-variable.

Copyright © Software AG 2003708

PROCESS SQLPROCESS SQL

:U:host-variable

The prefix ":U" qualifies the host variable as a so-called "Using" variable. Such a variable indicates that its value
is to be passed to the database. ":U" is the default specification.

:G:host-variable

The prefix ":G" qualifies the host variable as a so-called "Giving" variable. Such a variable indicates that it is to
receive a value from the database.

Examples

Examples for DB2 (under OS/390):

 PROCESS SQL DB2_DDM << CONNECT TO :LOCATION >>

 PROCESS SQL DB2_DDM << SET :G:LOCATION = CURRENT SERVER >>

Example for Adabas D:

 PROCESS SQL ADABAS_D_DDM << LOCK TABLE EMPLOYEES IN SHARE MODE >>

Example of Calling a Procedure Stored in Adabas D:

The called procedure computes the sum of two numbers.

 ...
 COMPUTE #N1 = 1
 COMPUTE #N2 = 2
 COMPUTE #SUM = 0
 ...
 PROCESS SQL ADABAS_D_DDM << DBPROCEDURE DEMO.SUM (:#N1, :#N2, :G:#SUM) >>
 ...
 WRITE #N1 ’+’ #N2 ’ =’ #SUM
 ...

ENTIRE ACCESS Options
With ENTIRE ACCESS, you can also specify the following as statement-string:

SET SQLOPTION option = value
SQLCONNECT option = value
SQLDISCONNECT

These options are only possible with ENTIRE ACCESS, and are described in the ENTIRE ACCESS
documentation.

709Copyright © Software AG 2003

ExamplesPROCESS SQL

READ RESULT SET

Function
The statement READ RESULT SET is used to read a result set which was created by a stored procedure that was
invoked by a previous CALLDBPROC statement.

The READ RESULT SET statement can only be used in conjunction with a CALLDBPROC statement.

As result-set you specify a result-set locator variable filled by a preceding CALLDBPROC statement. Result-set
has to be a variable of format/length I4.

Note:
If a Syncpoint operation takes place between the CALLDBPROC statement and the READ RESULT SET
statement, the result sets can no longer be accessed by the READ RESULT SET statement.

limit
You can limit the number of rows to be read. You can specify the limit either as a numeric constant (0 to
99999999) or as a variable of format N, P or I.

ddm-name
As ddm-name you specify the name of the DDM which is used to "address" the database executing the stored
procedure. For more information, see ddm-name.

WITH INSENSITIVE SCROLL [:] scroll_hv
The WITH INSENSITIVE SCROLL [:] scroll_hv clause belongs to the SQL Extended Set. Using this clause
causes the application to use an insensitive scrollable cursor to access the result set created by the previously
invoked stored procedure. In order to use this clause, the stored procedure must have created the result set with a
scrollable cursor. The scroll_hv has to be an alphanumeric Natural variable which contains the scrolling
direction. The scroll_hv will be evaluated each time the READ RESULT SET processing loop is executed.

If the GIVING sqlcode option is specified as well, the processing loop will stay open, even if an sqlcode +100
(row not found) is returned from the RDBMS.

Copyright © Software AG 2003710

READ RESULT SETREAD RESULT SET

The processing will be terminated, if the application issues an ESCAPE statement or if the sqlcode +100 (row
not found) is encountered five times successively without a terminal I/O.

If the GIVING sqlcode option is not specified , the processing loop will be closed, if any sqlcode other than 0
(successs) is returned from the RDBMS.

GIVING sqlcode
This option may be used to obtain the SQL code of the SQL "fetch" operation used to process the result set.

If this option is specified and the SQL code of the SQL operation is not "0", no Natural error message will be
issued. In this case, the action to be taken in reaction to the SQL code value has to be coded in the invoking
Natural object.

The sqlcode field has to be a variable of format/length I4.

If the GIVING sqlcode option is omitted, a Natural error message will be issued if the SQL code is not "0".

Example
See the example in the CALLDBPROC statement.

In addition, see the corresponding Natural database interface documentation in the Natural for Mainframes
documentation.

711Copyright © Software AG 2003

GIVING sqlcodeREAD RESULT SET

ROLLBACK

Function
The SQL statement ROLLBACK corresponds to the Natural statement BACKOUT TRANSACTION. It undoes
all database modifications made since the beginning of the last recovery unit. A recovery unit may start either
after the beginning of a session or after the last SYNCPOINT, COMMIT, END TRANSACTION or BACKOUT
TRANSACTION statement. This statement also releases all records held during the transaction.

If a program tries to backout updates which have already been committed by a terminal I/O, a corresponding
Natural error message (NAT3711) is returned.

Example:

 ...
 DELETE FROM SQL-PERSONNEL WHERE NAME = ’SMITH’
 ROLLBACK
 ...

As all cursors are closed when a logical unit of work ends, a ROLLBACK statement must not be placed within a
database modification loop; instead, it has to be placed outside such a loop or after the outermost loop of nested
loops.

Consideration for Non-Natural Programs
If an external program written in another standard programming language is called from a Natural program, this
external program should not contain its own ROLLBACK statement if the Natural program issues database calls,
too. The calling Natural program should issue the ROLLBACK statement on behalf of the external program.

Copyright © Software AG 2003712

ROLLBACKROLLBACK

SELECT
According to the standard SQL functionality, Natural supports both the cursor-oriented selection that is used to
retrieve an arbitrary number of rows and the non-cursor selection (singleton SELECT) that retrieves at most one
single row.

With the "SELECT ... END-SELECT" construction, Natural uses the same database loop processing as with the
FIND statement.

Cursor-Oriented Selection

Like the FIND statement, a cursor-oriented selection is used to select a set of rows (records) from one or more
database tables, based on a search criterion. In addition, no cursor management is required from the application
program; it is automatically handled by Natural.

713Copyright © Software AG 2003

SELECTSELECT

Non-Cursor Selection

The SELECT SINGLE statement supports the functionality of a non-cursor selection (singleton SELECT); that
is, a select expression that retrieves at most one row without using a cursor. It cannot be referenced by a
positioned UPDATE or DELETE statement.

table-expression
The table-expression consists of a FROM clause and an optional WHERE clause. The GROUP BY and
HAVING clauses are not permitted.

Example 1:

 DEFINE DATA LOCAL
 01 #NAME (A20)
 01 #FIRSTNAME (A15)
 01 #AGE (I2)
 ...
 END-DEFINE
 ...
 SELECT NAME, FIRSTNAME, AGE
 INTO #NAME, #FIRSTNAME, #AGE
 FROM SQL-PERSONNEL
 WHERE NAME IS NOT NULL
 AND AGE > 20
 ...
 DISPLAY #NAME #FIRSTNAME #AGE
 END-SELECT
 ...
 END

Example 2:

Copyright © Software AG 2003714

SELECTNon-Cursor Selection

 DEFINE DATA LOCAL
 01 #COUNT (I4)
 ...
 END-DEFINE
 ...
 SELECT SINGLE COUNT(*) INTO #COUNT FROM SQL-PERSONNEL
 ...

See further information on selection and table-expression.

Note:
In the following, the term "SELECT statement" is used as a synonym for the whole query-expression consisting
of multiple select expressions concatenated with UNION operations.

715Copyright © Software AG 2003

table-expressionSELECT

INTO Clause

The INTO clause is used to specify the target fields in the program which are to be filled with the result of the
selection. The INTO clause can specify either single parameters or one or more views as defined in the DEFINE
DATA statement.

All target field values can come either from a single table or from more than one table as a result of a join
operation (see also the section Join Queries).

Note:
In standard SQL syntax, an INTO clause is only used in non-cursor select operations (singleton SELECT) and
can be specified only if a single row is to be selected. In Natural, however, the INTO clause is used for both
cursor-oriented and non-cursor select operations.

The selection can also merely consist of an asterisk (*). In a standard select expression, this is a shorthand for a
list of all column names in the table(s) specified in the FROM clause. In the Natural SELECT statement,
however, the same syntactical item "SELECT *" has a different semantic meaning: all the items listed in the
INTO clause are also used in the selection. Their names must correspond to names of existing database columns.

Examples:

 DEFINE DATA LOCAL
 01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
 END-DEFINE
 ...
 SELECT *
 INTO NAME, AGE

 ...
 SELECT *
 INTO VIEW PERS

These examples are equivalent to the following ones:

 ...
 SELECT NAME, AGE
 INTO NAME, AGE

 ...
 SELECT NAME, AGE
 INTO VIEW PERS

Copyright © Software AG 2003716

SELECTINTO Clause

parameter

If single parameters are specified as target fields, their number and formats must correspond to the number and
formats of the columns and/or scalar-expressions specified in the corresponding selection as described above
(see details on Scalar Expressions).

Example:

 DEFINE DATA LOCAL
 01 #NAME (A20)
 01 #AGE (I2)
 END-DEFINE
 ...
 SELECT NAME, AGE
 INTO #NAME, #AGE
 FROM SQL-PERSONNEL
 ...

The target fields #NAME and #AGE, which are Natural program variables, receive the contents of the table
columns NAME and AGE.

VIEW Clause

If one or more views are referenced in the INTO clause, the number of items specified in the selection must
correspond to the number of fields defined in the view(s) (not counting group fields, redefining fields and
indicator fields).

Note:
Both the Natural target fields and the table columns must be defined in a Natural DDM. Their names, however,
can be different, since assignment is made according to their sequence.

Example of INTO Clause with View:

 DEFINE DATA LOCAL
 01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
 END-DEFINE
 ...
 SELECT FIRSTNAME, AGE
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 ...

The target fields NAME and AGE, which are part of a Natural view, receive the contents of the table columns
FIRSTNAME and AGE.

717Copyright © Software AG 2003

parameterSELECT

correlation-name

If the VIEW clause is used within a "SELECT *" construction where multiple tables are to be joined,
correlation-names are required if the specified view contains fields that reference columns which exist in more
than one of these tables. In order to know which column to select, all these columns are qualified by the specified
correlation-name at generation of the selection list. The correlation-name assigned to a view must correspond to
one of the correlation-names used to qualify the tables to be joined. See also the section Join Queries.

Example:

 DEFINE DATA LOCAL
 01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 FIRST-NAME
 02 AGE
 END-DEFINE
 ...
 SELECT *
 INTO VIEW PERS A
 FROM SQL-PERSONNEL A, SQL-PERSONNEL B
 ...

Query involving UNION
UNION unites the results of two or more select-expressions. The columns specified in the individual
select-expressions must be UNION-compatible; that is, matching in number, type and format.

Redundant duplicate rows are always eliminated from the result of a UNION unless the UNION operator
explicitly includes the ALL qualifier. With UNION, however, there is no explicit DISTINCT option as an
alternative to ALL.

Example:

 DEFINE DATA LOCAL
 01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
 02 ADDRESS (1:6)
 END-DEFINE
 ...
 SELECT NAME, AGE, ADDRESS
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE AGE > 55
 UNION ALL
 SELECT NAME, AGE, ADDRESS
 FROM SQL-EMPLOYEES
 WHERE PERSNR < 100
 ORDER BY NAME
 ...
 END-SELECT
 ...

In general, any number of select expressions can be concatenated with UNION.

Copyright © Software AG 2003718

SELECTQuery involving UNION

The INTO clause must be specified with the first select-expression only.

Any ORDER BY clause must appear after the final select-expression; the ordering columns must be identified by
number, not by name.

719Copyright © Software AG 2003

Query involving UNIONSELECT

ORDER BY Clause

Note:
Scalar espressions in the ORDER BY clause are supported as of Natural for DB2 Version 4.1 for DB2 Version 7.

The ORDER BY clause arranges the result of a SELECT statement in a particular sequence.

Each ORDER BY clause must specify a column of the result table. In most ORDER BY clauses a column can be
identified either by column-reference (that is, by an optionally qualified column name) or by column number. In
a query involving UNION, a column must be identified by column number. The column number is the ordinal
left-to-right position of a column within the selection, which means it is an integer value. This feature makes it
possible to order a result on the basis of a computed column which does not have a name.

Example:

 DEFINE DATA LOCAL
 1 #NAME (A20)
 1 #YEARS-TO-WORK (I2)
 END-DEFINE
 ...
 SELECT NAME , 65 - AGE
 INTO #NAME, #YEARS-TO-WORK
 FROM SQL-PERSONNEL
 ORDER BY 2
 ...

The order specified in the ORDER BY clause can be either ascending (ASC) or descending (DESC). ASC is the
default.

Copyright © Software AG 2003720

SELECTORDER BY Clause

Example:

 DEFINE DATA LOCAL
 1 PERS VIEW OF SQL-PERSONNEL
 1 NAME
 1 AGE
 1 ADDRESS (1:6)
 END-DEFINE
 ...
 SELECT NAME, AGE, ADDRESS
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE AGE = 55
 ORDER BY NAME DESC
 ...

See further information on integer values and column-reference in the SQL Statements overview page.

OPTIMIZE FOR Clause
For more information, see the section Natural for DB2 in the Natural for Mainframes documentation.

WITH CS/RS/UR/...Clause
This option allows you to specify an explicit isolation level with which the statment is to be executed. This
option does not belong to the Natural SQL Common Set, but to the SQL Extended Set provided by Natural for
DB2. For more information about this clause, see the section Statement and System Variables in the Natural for
DB2 documentation.

QUERYNO Clause
The QUERYNO clause specifies the number to be used for this SQL statement in EXPLAIN output and trace
records. This option does not belong to the Natural SQL Common Set, but to the SQL Extended Set provided by
Natural for DB2. For more information about this clause, see the section Statement and System Variables in the
Natural for DB2 documentation.

FETCH FIRST Clause
The FETCH FIRST clause limits the number of rows that can be fetched. This option does not belong to the
Natural SQL Common Set, but to the SQL Extended Set provided by Natural for DB2. For more information
about this clause, see the section Statement and System Variables in the Natural for DB2 documentation.

WITH HOLD Clause
For more information, see the section Natural for DB2 in the Natural for Mainframes documentation.

WITH RETURN Clause
For more information, see the section Natural for DB2 in the Natural for Mainframes documentation.

721Copyright © Software AG 2003

OPTIMIZE FOR ClauseSELECT

WITH ... SCROLL Clause
This clause belongs to the SQL Extended Set. DB2 scrollable cursors are enabled with this clause. Scrollable
cursors can be either INSENSITIVE or SENSITIVE STATIC.

WITH INSENSITIVE SCROLL specifies that the cursor is insensitive for updates, deletes and inserts executed
against the base table, after the cursor has been updated. Positioned updates and deletes are not allowed against
INSENSITIVE SCROLL cursors.

WITH SENSITIVE STATIC specifies that the cursor is sensitive for updates and deletes against the base table,
but not against inserts, after the cursor has been opened. Positioned updates and deletes are allowed against
SENSITIVE STATIC SCROLL cursors.

Scrollable cursors allow the application to position any row in the Result Set at any time as long as the cursor is
open.

The positioning is performed depending on the content of the scroll_hv. The content is evaluated each time a
FETCH against DB2 is executed.

For more information, see the section Natural for DB2 in the Natural for Mainframes documentation.

Copyright © Software AG 2003722

SELECTWITH ... SCROLL Clause

IF NO RECORDS FOUND-Clause
Note:
This clause actually does not belong to Natural SQL; it represents Natural functionality which has been made
available to SQL loop processing.

Structured Mode Syntax

Reporting Mode Syntax

 The IF NO RECORDS FOUND clause is used to initiate a processing loop if no records meet the selection
criteria specified in the preceding SELECT statement.

If no records meet the specified selection criteria, the IF NO RECORDS FOUND clause causes the processing
loop to be executed once with an "empty" record. If this is not desired, specify the statement ESCAPE BOTTOM
within the IF NO RECORDS FOUND clause.

If one or more statements are specified with the IF NO RECORDS FOUND clause, the statements are executed
immediately before the processing loop is entered. If no statements are to be executed before entering the loop,
the keyword ENTER must be used.

Note:
If the result set of the SELECT statement consists of a single row of NULL values, the IF NO RECORDS
FOUND clause is not executed. This could occur if the "selection" list consists solely of one of the
"aggregate-functions" SUM, AVG, MIN or MAX on columns, and the set on which these "aggregate-functions"
operate is empty.
When you use these "aggregate-functions" in the above-mentioned way, you should therefore check the values of
the corresponding null-indicator fields instead of using an IF NO RECORDS FOUND clause.

723Copyright © Software AG 2003

IF NO RECORDS FOUND-ClauseSELECT

Database Values

Unless other value assignments are made in the statements accompanying an IF NO RECORDS FOUND clause,
Natural resets to empty all database fields which reference the file specified in the current loop.

Evaluation of System Functions

Natural system functions are evaluated once for the empty record that is created for processing as a result of the
IF NO RECORDS FOUND clause.

Copyright © Software AG 2003724

SELECTDatabase Values

Join Queries
A join is a query in which data is retrieved from more than one table. All the tables involved must be specified in
the FROM clause.

Example:

 DEFINE DATA LOCAL
 1 #NAME (A20)
 1 #MONEY (I4)
 END-DEFINE
 ...
 SELECT NAME, ACCOUNT
 INTO #NAME, #MONEY
 FROM SQL-PERSONNEL P, SQL-FINANCE F
 WHERE P.PERSNR = F.PERSNR
 AND F.ACCOUNT > 10000
 ...

A join always forms the Cartesian product of the tables listed in the FROM clause and later eliminates from this
Cartesian product table all the rows that do not satisfy the join condition specified in the WHERE clause.

Correlation-names can be used to save writing if table names are rather long. Correlation-names must be used
when a column specified in the selection list exists in more than one of the tables to be joined in order to know
which of the identically named columns to select.

725Copyright © Software AG 2003

Join QueriesSELECT

UPDATE

Syntax 1 - Searched UPDATE

Syntax 2 - Positioned UPDATE

Function
The SQL UPDATE statement is used to perform an UPDATE operation on either rows in a table without using a
cursor ("searched" UPDATE) or columns in a row to which a cursor is positioned ("positioned" UPDATE).

The "searched" UPDATE statement is a stand-alone statement not related to any SELECT statement. With a
single statement you can update zero, one, multiple or all rows of a table. The rows to be updated are determined
by a search-condition that is applied to the table. Optionally, view and table names can be assigned a
correlation-name.

The "positioned" UPDATE statement always refers to a cursor within a database loop. Thus, the table or view
referenced by a positioned UPDATE statement must be the same as the one referenced by the corresponding
SELECT statement; otherwise an error message is returned. A positioned UPDATE cannot be used with a
non-cursor selection.

See Basic Syntactical Items for further information on view-name, table-name, authorization-identifier and
correlation-name.

Note:
The number of rows that have actually been updated with a "searched" UPDATE can be ascertained by using the
system variable *ROWCOUNT in the Natural System Variables documentation.

Copyright © Software AG 2003726

UPDATEUPDATE

SET Clause
If a view has been specified for updating, an asterisk (*) has to be specified in the SET clause, because all
columns of the view must be updated.

If a table has been specified for updating, the SET clause must contain either an assignment-list or the name of
view which contains the columns to be updated.

727Copyright © Software AG 2003

SET ClauseUPDATE

assignment-list

In an assignment-list, you can assign values to one or more columns. A value can be either a scalar-expression
or NULL.

See further information on Scalar Expressions.

If the value NULL has been assigned, it means that the addressed field is to contain no value (not even the value
"0" or "blank").

WHERE search-condition
The WHERE clause is used to specify the selection criteria for the rows to be updated.

If no WHERE clause is specified, the entire table is updated.

Statement Reference - r
The "(r)" notation is used to reference the statement which was used to select the row to be updated. If no
statement reference is specified, the UPDATE statement is related to the innermost active processing loop in
which a database record was selected.

WITH isolation level Clause
The WITH isolation level clause belongs to the SQL Extended Set and allows you to explicitly specify the
isolation level used when locating the row to be updated.

QUERYNO Clause
The QUERYNO clause belongs to the SQL Extended Set and allows you to explicitly specify the number to be
used in EXPLAIN output and trace records for this statement.

Copyright © Software AG 2003728

UPDATEassignment-list

Examples

Example of Searched UPDATE:

 DEFINE DATA LOCAL
 1 PERS VIEW OF SQL-PERSONNEL
 2 NAME
 2 AGE
 ...
 END-DEFINE
 ...
 ASSIGN AGE = 45
 ASSIGN NAME = ’SCHMIDT’
 UPDATE PERS SET * WHERE NAME = ’SCHMIDT’
 ...

Example of Searched UPDATE with assignment-list:

 DEFINE DATA LOCAL
 1 PERS VIEW OF SQL-PERSONNEL
 2 NAME
 2 AGE
 ...
 END-DEFINE
 ...
 UPDATE SQL-PERSONNEL SET AGE = AGE + 1 WHERE NAME = ’SCHMIDT’
 ...

729Copyright © Software AG 2003

ExamplesUPDATE

Example of Positioned UPDATE:

 DEFINE DATA LOCAL
 1 PERS VIEW OF SQL-PERSONNEL
 2 NAME
 2 AGE
 ...
 END-DEFINE
 ...
 SELECT * INTO PERS FROM SQL_PERSONNEL WHERE NAME = ’SCHMIDT’
 COMPUTE AGE = AGE + 1
 UPDATE PERS SET * WHERE CURRENT OF CURSOR
 END-SELECT
 ...

Example of Positioned UPDATE with assignment-list:

 DEFINE DATA LOCAL
 1 PERS VIEW OF SQL-PERSONNEL
 2 NAME
 2 AGE
 ...
 END-DEFINE
 ...
 SELECT * INTO PERS FROM SQL-PERSONNEL WHERE NAME = ’SCHMIDT’
 UPDATE SQL-PERSONNEL SET AGE = AGE + 1 WHERE CURRENT OF CURSOR
 END-SELECT
 ...

Copyright © Software AG 2003730

UPDATEExample of Positioned UPDATE:

	Cover Page
	page 2

	Table of Contents
	Statements - Overview
	Example Programs

	Syntax Symbols and Operand Definition Tables
	Syntax Symbols
	Operand Definition Table
	Possible Structure
	Possible Formats
	Reference Permitted
	Dynamic Definition

	Statement Usage Related Topics
	User-Defined Variables
	Naming Conventions
	Length of Variable Names
	Limitations of Variable Names
	Characters Allowed in Variable Names
	First Character of Variable Names
	Special Considerations Regarding the Case of Characters in Variable Names

	Definition of Variables
	Statement Reference Notation - r
	Default Referencing of Database Fields
	Referencing with Statement Labels
	Referencing with Source-Code Line Numbers

	Definition of Format and Length
	Special Formats
	Format C - Attribute Control
	Formats D - Date, and T - Time
	Format L - Logical
	Format "Handle"

	Index Notation
	Using a Slash before an Array Occurrence

	Referencing a Database Array
	Referencing Multiple-Value Fields and Periodic-Group Fields
	Referencing Arrays defined with Constants
	Referencing Arrays defined with Variables
	Referencing Multiple-Defined Arrays

	Referencing the Internal Count for a Database Array
	C* for Multiple-Value Fields Within Periodic Groups

	Qualifying Data Structures

	X-Arrays
	Definition
	Storage Management of X-Arrays
	Storage Management of X-Group Arrays
	Referencing an X-Array
	Parameter Transfer with X-Arrays
	Example with CALL By Value
	CALL By Reference/CALL By Value Result

	Dynamic X-Arrays
	System Variables *LBOUND and *UBOUND

	Constants
	Numeric Constants
	Validation of Numeric Constants

	Alphanumeric Constants
	Apostrophes Within Alphanumeric Constants
	Concatenation of Alphanumeric Constants

	Date and Time Constants
	Extended Time Constants

	Hexadecimal Constants
	Logical Constants
	Floating Point Constants
	Attribute Constants
	Handle Constants
	Defining Named Constants

	Report Specification - rep
	Text Notation
	User Comments
	End of a Statement
	Logical Condition Criteria
	Relational Expression
	Arithmetic Expressions in Logical Conditions
	Handles in Logical Conditions
	SUBSTRING Option in Relational Expression

	Extended Relational Expression
	MASK Option
	Constant Mask
	Variable Mask
	Characters in a Mask
	Mask Length
	Checking Dates
	Checking Against the Content of Constants or Variables
	Range Checks
	Checking Packed or Unpacked Numeric Data

	SCAN Option
	BREAK Within Logical Condition Criteria
	/n/

	IS Option - Checking Format and Length of Value
	Evaluation of a Logical Variable
	MODIFIED Option
	SPECIFIED Option
	Fields Used Within Logical Condition Criteria
	Logical Operators in Complex Logical Expressions

	Rules for Arithmetic Assignment
	Field Initialization
	Data Transfer
	Data Conversion

	Field Truncation and Field Rounding
	Result Format and Length in Arithmetic Operations
	Arithmetic Operations with Floating-Point Numbers
	Some General Considerations
	The Precision of Floating-Point Numbers
	Conversion to Floating-Point Representation
	Platform-Dependent Differences

	Arithmetic Operations with Date and Time
	Performance Considerations for Mixed Format Expressions
	Precision of Results for Arithmetic Operations
	Digits after Decimal Point for Division Results

	Error Conditions in Arithmetic Operations
	Processing of Arrays
	Definitions of Array Dimensions
	Assignment Operations with Arrays
	Comparison Operations with Arrays
	Arithmetic Operations with Arrays

	Renumbering of Source-Code Line Number References
	Large and Dynamic Variables/Fields
	Introduction
	Definition of Dynamic Variables
	System Variable *LENGTH†field‡
	Statements EXPAND, REDUCE and RESIZE
	EXPAND
	Function
	Changing the Specified Size

	REDUCE
	Function
	Changing the Specified Size

	RESIZE
	Function
	Changing the Specified Size

	Usage of Dynamic Variables
	Assignments with Dynamic Variables
	Assignment Compatibility

	Initialization of Dynamic Variables
	String Manipulation with Dynamic Alpha Variables
	Logical Condition Criterion †LCC‡ with Dynamic Variables
	
	Comparison Compatibility

	Parameter Transfer with Dynamic Variables
	Call By Reference
	Call by Value †Result‡
	CALL 3GL Program

	Work File Access with Large and Dynamic Variables - Mainframes
	Performance Aspects with Dynamic Variables
	Output of Dynamic Variables

	Statements Grouped by Functions
	Database Access and Update
	Arithmetic and Data Movement Operations
	Loop Execution
	Creation of Output Reports
	Screen Generation for Interactive Processing
	Processing of Logical Conditions
	Invoking Programs and Routines
	Control of Work Files
	Component Based Programming
	Event-Driven Programming
	Miscellaneous

	ACCEPT/REJECT
	Function
	Fields used as Logical Criteria
	Processing of Multiple ACCEPT/REJECT Statements
	Limit Notation
	Hold Status
	Example 1
	Example 2

	ADD
	Function
	Operands
	Result Field - operand2
	TO
	GIVING

	ROUNDED
	Example

	ASSIGN
	AT...
	AT BREAK
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Reference Notation - r
	Control Field - operand1
	/n/

	Example 1
	Example 2
	System Functions
	Multiple Break Levels
	Example 3

	AT END OF DATA
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Restrictions
	Reference to a Specific Processing Loop - r
	Values of Database Fields
	System Functions
	Example

	AT END OF PAGE
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Report Specification - rep
	Logical Page Size
	Last-Page Handling
	System Functions
	INPUT Statement with AT END OF PAGE
	Example 1
	Example 2

	AT START OF DATA
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Value of Database Fields
	Positioning
	Reference to a Specific Processing Loop - r
	Example

	AT TOP OF PAGE
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Restriction
	Report Specification - rep
	Example

	BACKOUT TRANSACTION
	Function
	Considerations for DL/I Databases
	Considerations for SQL Databases
	Considerations for XML Databases
	Backout Transaction Issued by Natural
	Additional Information
	Example

	BEFORE BREAK PROCESSING
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Restrictions
	Example

	CALL
	CALL on Mainframe Computers
	Function
	Program Name - operand1
	Parameters - operand2
	Return Code
	Register Usage
	Boundary Alignment
	Adabas Calls
	Direct/Dynamic Loading
	Example
	Calling Natural Program:
	Called COBOL program "TABSUB":

	Linkage Conventions
	CALL using Com-plete
	CALL using CICS
	Return Codes under CICS
	Example using CICS:

	Calling a PL/I Program
	Example of calling a PL/I Program:
	Example of Calling a PL/I Program which is Operating under CICS:

	Part I: CALL under UNIX and Windows
	Function
	Name of Called Function - operand1
	Parameters - operand2

	INTERFACE4
	INTERFACE4 - External 3GL Program Interface
	Operand Structure for Interface4
	INTERFACE4 - Parameter Access
	Exported Functions
	Get Parameter Information
	Get Parameter Data
	Write Back Operand Data
	Create, Initialize and Delete a Parameter Set
	Initialize a Scalar of a Static Data Type
	Initialize an Array of a Static Data Type
	Initialize a Scalar of a Dynamic Data Type
	Initialize an Array of a Dynamic Data Type
	Resize an X-array Parameter

	Part II: CALL under UNIX and Windows
	Return Code
	User Exits under Windows
	User Exits under UNIX
	Step 1 - Defining the Jump Table
	Step 2 - Writing the External Functions
	Step 3 - Compiling and Linking
	How to Build a Shared Library
	Using the Shared Library
	How to Generate a Static Nucleus
	Example Programs:

	CALL FILE
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Restriction
	Control Field - operand1
	Record Area - operand2
	Example
	Calling Program:
	Called COBOL Program:

	CALL LOOP
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Program Name - operand1
	Parameters - operand2
	Loop Termination
	Restriction
	Example

	CALLNAT
	Function
	Subprogram Name - operand1
	Parameters - operand2
	AD=
	nX
	Other Considerations
	Parameter Transfer with Dynamic Variables
	
	Call By Reference
	Call by Value †Result‡

	Example 1
	Invoking Program:
	Invoked Subprogram:

	Example 2
	Invoking Program:
	Invoked Subprogram:

	CLOSE CONVERSATION
	Function
	Conversation to be Closed
	operand1
	*CONVID
	ALL

	Further Information and Examples

	CLOSE DIALOG
	Function
	Dialog to be Closed
	operand1
	*DIALOG-ID

	Further Information and Examples

	CLOSE PC FILE
	Function
	work-file-number
	Example

	CLOSE PRINTER
	Function
	Printer
	Example

	CLOSE WORK FILE
	Function
	Work File
	Automatic Closing
	Example

	COMPOSE
	Function
	Clauses
	Formatting Process
	Dialog Mode
	Dialog Mode for Input
	Dialog Mode for Output
	Dialog Mode for Input and Output
	Execution of COMPOSE Statements in Dialog Mode

	Non-Natural Programs - only Mainframe
	RESETTING-clause
	MOVING-clause
	Syntax 1
	Syntax 2
	Syntax 3
	Syntax 1
	Syntax 2
	Syntax 3

	ASSIGNING-clause
	FORMATTING-clause
	OUTPUT Subclause
	OUTPUT - rep
	OUTPUT SUPPRESSED
	OUTPUT CALLING
	OUTPUT TO VARIABLES
	DOCUMENT-option
	OUTPUT DOCUMENT

	INPUT-subclause
	STATUS-subclause
	PROFILE-subclause
	MESSAGES-subclause
	ERRORS-subclause
	ENDING-subclause
	STARTING-subclause
	EXTRACTING-clause
	Example 1
	Example 2
	Example 3
	Example 4
	Text Block "XYZ" in "XYLIB":
	Natural Program:
	Input Map produced by Program:
	Resulting Output:

	Example 5

	COMPRESS
	Function
	Source Fields - operand1
	Target Field - operand2
	FULL
	NUMERIC
	parameter
	PM=I
	DF

	SUBSTRING
	WITH DELIMITER - operand7
	ALL
	Processing
	Example 1
	Example 2
	Example 3

	COMPUTE
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Result Field - operand1
	ROUNDED
	arithmetic-expression
	Result Precision of a Division
	SUBSTRING
	Example 1
	Example 2

	CREATE OBJECT
	Function
	Object Handle - operand1
	Class-Name - operand2
	Node - operand3
	GIVING - operand4

	DECIDE FOR
	Function
	FIRST/EVERY
	WHEN logical-condition
	WHEN ANY
	WHEN ALL
	WHEN NONE
	Example 1
	Example 2

	DECIDE ON
	Function
	FIRST/EVERY
	Selection Field - operand1
	VALUES Clause
	ANY
	ALL
	NONE
	Example 1
	Example 2

	DEFINE...
	DEFINE CLASS
	Function
	class-name
	WITH ACTIVATION POLICY Clause
	OBJECT Clause
	LOCAL Clause
	ID Clause
	INTERFACE USING Clause
	copycode

	DEFINE DATA
	General Syntax
	Function
	DEFINE DATA in Structured Mode
	DEFINE DATA in Reporting Mode
	DEFINE DATA OBJECT

	data areas
	global data area
	parameter data area
	local data area

	block
	.block

	data-definition€
	parameter-data-definition
	Example of BY VALUE:
	Example of BY VALUE for Dialog:
	parameter-handle-definition
	handle-definition
	Examples of handle-definitions:

	view-definition
	array-definition

	redefinition
	REDEFINE - Example 1:
	REDEFINE - Example 2:
	REDEFINE - Example 3:

	variable-definition
	Default Initial Values

	init-definition
	Example of System Variable as Initial Value:
	Example of FULL LENGTH:
	Example of LENGTH n:

	array-definition
	Examples of Array Definitions:
	Variable Arrays in a Parameter Data Area

	array-init-definition
	Example of LENGTH n for Array:

	emhdpm

	AIV-data-definition
	Additional Rules

	context-data-definition
	Qualifying Data Structures
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	DEFINE FUNCTION
	Function
	function-name
	return-data-definition
	function-data-definition
	Example

	DEFINE PRINTER
	Function
	Printer
	Printers under OS/390 with Access Method AM=STD - Standard Batch
	Logical Dataset Names
	Physical Dataset Names
	HFS File
	JES Spool File Class
	NULLFILE
	Allocation and De-Allocation of Datasets
	Print Files in Server Environments

	Printers under VM/CMS with Access Method AM=STD - Standard Batch
	Printers under BS2000/OSD with Access Method AM=STD - Standard Batch
	Link Name
	File Name
	Generic File Name
	File Name and Link Name
	Generic File Name and Link Name
	System File SYSOUT
	System File SYSLST
	System File SYSLSTnn - nn=01,...,99
	System File SYSLST - nn - with Implicit Allocation to a BS2000/OSD File

	Printers under Com-plete
	Printers under Com-plete †SMARTS‡
	Printers under Natural Advanced Facilities
	Additional Reports

	OUTPUT operand1
	Assignment Algorithm on Mainframes

	PROFILE/FORMS/NAME/DISP/CLASS/COPIES/PRTY
	PROFILE

	Example 1
	Example 2
	Example 3
	Example 4

	DEFINE PROTOTYPE
	Function
	prototype-name
	prototype-variable-name
	signature-clause
	prototype-return-data-definition
	same-clause
	Example

	DEFINE SUBROUTINE
	Function
	Inline/External Subroutines
	subroutine-name
	Subroutine Termination
	Restrictions
	Data Available in a Subroutine
	Inline Subroutines
	External Subroutines

	Example 1
	Example 2

	DEFINE WINDOW
	Function
	Control of Full Screen
	window-name
	SIZE
	BASE
	REVERSED
	REVERSED - CD=background-color

	TITLE operand5
	CONTROL
	CONTROL WINDOW
	CONTROL SCREEN

	FRAMED
	FRAMED - CD=frame-color

	position-clause
	POSITION SYMBOL
	POSITION TEXT
	POSITION OFF

	Protection of Input Fields in a Window
	Invoking Different Windows
	Example

	DEFINE WORK FILE
	Function
	Work File Number - n
	Work File Name - operand1
	Work File Name on UNIX and Windows
	Work File Name on Mainframe Computers

	Work File Type - operand2
	DEFAULT
	TRANSFER
	SAG
	ASCII
	ASCII-COMPRESSED
	ENTIRECONNECTION
	UNFORMATTED
	PORTABLE
	FORMATTED

	Work File Name under OS/390
	
	Logical Dataset Names
	Physical Dataset Names
	HFS Files
	PFS Files
	JES Spool File Class
	NULLFILE
	Allocation and De-Allocation of Datasets
	Work Files in Server Environments
	Further Information

	Work File Name under VM/CMS
	Work File Name under BS2000/OSD
	Link Name
	File Name
	Generic File Name
	File Name and Link Name
	Generic File Name and Link Name

	DELETE
	Function
	Considerations for DL/I Databases
	Considerations for SQL Databases
	Considerations for VSAM Databases
	Considerations for XML Databases
	Statement Reference - r
	Restriction
	Hold Status
	Example 1
	Example 2

	DISPLAY
	Function
	Report Specification - rep
	options
	Page Title/NOTITLE
	Column Headers/NOHDR
	Suppressing Column Headers

	GIVE SYSTEM FUNCTIONS
	statement-parameters

	Line Advance - Slash
	output-format
	Field Positioning Notations
	Override Column Heading Assignment
	attributes
	Vertical/Horizontal Display

	output-element
	Defaults
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	DIVIDE
	Function
	Result Field
	Division by Zero
	REMAINDER Option
	Example

	DO/DOEND
	Function
	Restrictions
	Example

	DOWNLOAD PC FILE
	Function
	work-file-number
	VARIABLE
	Field Specification - operand1
	COMMAND
	COMMAND Specification - operand2
	SYNC
	ASYNC

	Example 1
	Example 2

	EJECT
	Syntax 1
	Function
	EJECT ON/OFF With Report Specification - Online and Batch Modes
	EJECT ON/OFF Without Report Specification - Batch Mode only

	Report Specification - rep

	Syntax 2
	Function
	Report Specification - rep
	IF LESS THAN operand1 LINES LEFT
	Processing
	Example

	END
	Function
	period - .

	Considerations for Program Execution
	Examples

	END TRANSACTION
	Function
	Databases Affected
	Storage of Transaction Data - operand1
	Considerations for DL/I Databases
	Considerations for SQL Databases
	Considerations for VSAM Databases
	Considerations for XML Databases
	Restriction
	Example 1
	Example 2

	ESCAPE
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	ESCAPE TOP
	REPOSITION

	ESCAPE BOTTOM
	ESCAPE ROUTINE
	ESCAPE MODULE
	Additional Considerations
	Example

	EXAMINE
	Function
	DIRECTION clause
	operand1
	POSITION clause
	operand4
	FULL
	SUBSTRING
	PATTERN
	DELIMITERS-option
	DELETE-REPLACE-clause
	operand6
	Example

	GIVING-clause
	GIVING INDEX€

	Example 1
	Example 2

	EXAMINE TRANSLATE
	Function
	operand1
	SUBSTRING
	INTO UPPER/LOWER CASE
	Translation Table
	INVERTED
	Example

	EXPAND
	Function
	dynamic-clause
	operand1
	operand2

	array-clause
	operand3
	dim

	GIVING operand5

	FETCH
	Function
	REPEAT
	RETURN
	Program Name - operand1
	Parameters - operand2
	parameter
	Additional Considerations
	Example
	Invoking Program:
	Invoked Program:

	FIND
	Function
	Considerations for DL/I Databases
	Considerations for SQL Databases
	Considerations for VSAM Databases
	Considerations for XML Databases
	Entire System Server Restrictions
	Processing Limit - ALL/operand1
	FIND FIRST, FIND NUMBER, FIND UNIQUE
	MULTI-FETCH Clause
	view-name
	PASSWORD Clause
	Example of PASSWORD Clause:

	CIPHER Clause
	Example of CIPHER Clause:

	WITH Clause
	Search Criterion for Adabas Files - basic-search-criterion
	descriptor
	i
	value
	set-name
	Examples of Basic Search Criterion in WITH Clause:
	Examples of Basic Search Criterion with Multiple-Value Field:
	Search Criterion with Null Indicator - basic-search-criterion
	Connecting Search Criteria †for Adabas Files‡
	Descriptor - Key - Usage
	Subdescriptors, Superdescriptors, Hyperdescriptors and Phonetic Descriptors
	Values for Subdescriptors, Superdescriptors, Phonetic Descriptors
	Using Descriptors Contained within a Database Array

	Search Criterion for VSAM Files - basic-search-criterion
	descriptor
	value

	Search Criterion for DL/I Files - basic-search-criterion
	descriptor
	value
	Connecting Search Criteria - for DL/I Files

	COUPLED-clause
	Physical Coupling without VIA clause
	Logical Coupling - VIA clause

	STARTING WITH ISN=operand5
	SORTED BY-clause
	Example of SORTED BY Clause:

	RETAIN-clause
	Set Name - operand6
	Releasing Sets
	Updates by Other Users
	Restriction
	Example of a RETAIN Clause:

	WHERE Clause
	Example of WHERE Clause:

	IF NO RECORDS FOUND-clause
	Structured Mode Syntax
	Reporting Mode Syntax
	Database Values
	Evaluation of System Functions
	Restriction
	Example of IF NO RECORDS FOUND Clause:

	System Variables with the FIND Statement
	*ISN
	*NUMBER
	*COUNTER
	Example Using System Variables:

	Multiple FIND Statements
	Example of Multiple FIND Statements:

	FIND FIRST
	Restrictions
	System Variables with FIND FIRST
	*ISN
	*NUMBER
	*COUNTER

	Example of FIND FIRST

	FIND NUMBER
	Restrictions
	System Variables with FIND NUMBER
	*NUMBER
	*COUNTER

	Example of FIND NUMBER:

	FIND UNIQUE
	System Variables with FIND UNIQUE
	*ISN
	*NUMBER
	*COUNTER

	Restrictions
	Example of FIND UNIQUE

	FOR
	Function
	Loop Control Variable - operand1 and Initial Setting - operand2
	TO Value - operand3
	STEP Value - operand4
	Consistency Check
	Example

	FORMAT
	Function
	Report Specification - rep
	Parameters
	Example

	GET
	Function
	Restrictions
	view-name
	PASSWORD and CIPHER
	*ISN / operand3
	Reference to Database Fields - operand4
	Example

	GET SAME
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Statement Reference - r
	operand1
	Restrictions
	Example

	GET TRANSACTION DATA
	Function
	System Variable *ETID
	Field Specification operand1
	No Transaction Data Stored
	Example

	HISTOGRAM
	Function
	Restrictions
	Processing Loop Limit - operand1/ALL
	MULTI-FETCH Clause
	view-name
	PASSWORD Clause
	SEQUENCE Clause
	Descriptor - operand4
	STARTING-ENDING-clause
	WHERE Clause
	System Variables
	*NUMBER
	*ISN
	*COUNTER

	Example

	IF
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	logical-condition
	THEN
	ELSE
	Example

	IF SELECTION
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Selection Field - operand1
	Example

	IGNORE
	Function
	Example

	INCLUDE
	Function
	copycode-name
	operand1
	Example 1
	Example 2
	
	Copycode to be included:
	Program containing INCLUDE statement:

	Example 3
	
	Copycode 1 to be included:
	Copycode 2 to be included:
	Program containing INCLUDE statement:

	Example 4

	INPUT
	Function
	Input Modes
	Screen Mode
	Non-Screen Modes

	Entering Data in Response to an INPUT Statement
	Numeric Edit Mask Free Mode

	SB - Selection Box
	Error Correction
	Split-Screen Feature
	Syntax 1 - Dynamic Screen Layout Specification
	INPUT WINDOW='window-name'
	NO ERASE
	statement-parameters
	WITH TEXT-option
	Message Text from Natural Message File - *operand1
	Message Text - operand2 and Attributes - attributes
	Dynamic Replacement of Message Text - operand3

	MARK-option
	Field to be Marked - operand1
	MARK POSITION

	ALARM-option
	Default Prompting Text
	Field Positioning, Text Specification, Attribute Assignment
	nX
	nT
	x/y
	'text'
	'c' †n‡
	attributes
	Minus Sign '-'
	Equal Sign '='
	Slash Sign '/'

	*IN, *OUT and *OUTIN
	Field Specification - operand1
	parameters
	Example 1 - Syntax 1
	Example 2 - Syntax 1
	Example 3 - Syntax 1

	Syntax 2 - Using Predefined Map Layout
	INPUT USING MAP Without Parameter List
	INPUT Fields Defined in the Program
	INPUT WINDOW='window-name'
	WITH TEXT/MARK/ALARM-options
	USING MAP
	NO ERASE
	Field Specification - operand1
	Using the INPUT Statement in Non-Screen Modes
	Forms Mode
	Keyword/Delimiter Mode

	Processing Data from the Natural Stack
	Using the INPUT Statement in Batch Mode on Mainframe Computers
	Forms Mode
	Keyword/Delimiter Mode
	Use of Terminal Commands in Batch Mode

	INTERFACE
	Function
	interface-name
	EXTERNAL
	ID Clause
	property-definition
	property-name
	format-length/array-definition
	ID Clause
	READONLY
	IS Clause
	Examples

	method-definition
	method-name
	ID Clause
	IS Clause
	PARAMETER Clause

	LIMIT
	Function
	Limit Specification - n
	Record Counting
	Example 1
	Example 2

	LOOP
	Function
	Statement Reference Notation - r
	Database Variable References
	Restrictions
	Example 1
	Example 2

	METHOD
	Function
	Example

	MOVE
	Function
	ROUNDED
	parameter
	PM=I
	DF
	SUBSTRING
	MOVE BY NAME
	MOVE BY NAME with Arrays

	MOVE BY POSITION
	MOVE EDITED
	MOVE LEFT/RIGHT JUSTIFIED
	MOVE LEFT/RIGHT JUSTIFIED with PM=I

	Other Considerations
	Example 1
	Example 2

	MOVE ALL
	Function
	Source Operand - operand1
	Target Operand - operand2
	UNTIL Option - operand3
	Example

	MULTIPLY
	Syntax 1
	Syntax 2
	Function
	Result Field
	Example

	NEWPAGE
	Function
	Report Specification - rep
	EVEN IF TOP OF PAGE
	WHEN LESS THAN operand1 LINES LEFT
	WITH TITLE
	Example

	NOTITLE...
	OBTAIN
	Function
	operand1
	Examples

	ON ERROR
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	ON ERROR Processing within Subroutines
	Restriction
	System Variables *ERROR-NR and *ERROR-LINE
	Exiting from an ON ERROR Block
	Example

	OPEN CONVERSATION
	Function
	Subprogram Names - operand1
	Further Information and Examples

	OPEN DIALOG
	Function
	Dialog Name - operand1
	Handle Name - operand2
	Dialog ID - operand3
	AD=
	Passing Parameters to the Dialog
	nX
	PARAMETERS-clause

	Further Information and Examples

	OPTIONS
	OPTIONS on Mainframes

	PARSE
	Function
	operand1
	operand2
	Example using operand2

	operand3
	Example using operand3

	operand4
	Example using operand4

	operand5 and operand6
	NORMALIZE NAMESPACE
	Example 1 Using Operands 5 and 6
	Example 2 using operands 5 and 6
	Addtional Information
	Global Namespace
	Related System Variables

	PASSW
	Function
	Password - operand1
	Natural Security Considerations
	Restriction
	Password Display Protection - Mainframe only
	Example

	PERFORM
	Function
	subroutine-name
	Data Available in a Subroutine
	Inline Subroutines
	External Subroutines

	Parameters - operand2
	AD=
	nX
	Nested PERFORM Statements
	Parameter Transfer with Dynamic Variables
	Example 1
	Example 2
	
	Program containing PERFORM statement:
	Invoked Subroutine:

	PERFORM BREAK PROCESSING
	Function
	Statement Reference Notation - r
	AT BREAK statement...
	Example

	PRINT
	Function
	Report Specification - rep
	NOTITLE
	NOHDR
	statement-parameters
	Field Positioning, Text, Attribute Assignment
	Field Positioning Notations
	nX
	nT
	/

	Text/Attribute Assignment
	'text'
	'c' †n‡
	'='
	attributes

	operand1
	parameters
	Example

	PROCESS
	Function
	USING
	GIVING

	PROCESS COMMAND
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	CLOSE
	CHECK
	EXEC
	HELP
	HELP for Keywords
	HELP for Synonyms
	HELP for Global Functions
	HELP for Local Functions
	HELP for IKN
	HELP for IFN

	TEXT
	TEXT for General Information
	TEXT for Keyword Information
	TEXT for Function Information

	GET
	SET
	USING Clause
	GIVING Clause
	DDM "COMMAND"
	Security Considerations
	Example 1
	Example 2

	PROCESS GUI
	Function
	action-name
	Passing Parameters to the Action
	PARAMETERS-clause

	nX
	GIVING operand2

	PROCESS REPORTER
	Function
	Actions
	WITH Clause
	PARAMETERS-clause
	Parameters for OPEN Action
	Parameters for REPLACE-TABLE Action
	Parameter for SET-PRINTER Action
	Parameters for SET-PRINT-OPTIONS Action
	Parameter for CLOSE, PRINT, PREVIEW, EDIT Actions

	GIVING operand2

	PROPERTY
	Function

	READ
	Function
	Number of Records - operand1/ALL
	MULTI-FETCH Clause
	view-name
	PASSWORD and CIPHER Clauses
	WITH REPOSITION
	Functional Considerations

	sequence/range-specification
	READ IN PHYSICAL SEQUENCE
	READ BY ISN
	READ IN LOGICAL SEQUENCE
	ASCENDING/DESCENDING/VARIABLE/DYNAMIC SEQUENCE
	STARTING FROM ... ENDING AT/TO
	THRU/ENDING AT
	TO

	STARTING WITH ISN=operand4
	Access to Adabas
	Logical Sequence
	Physical Sequence

	Access to VSAM
	Examples

	WHERE Clause
	System Variables
	*ISN
	*COUNTER

	Example 1
	Example 2 - Combining READ with FIND

	READ WORK FILE
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	work-file-number
	ONCE Option
	Variable Index Range
	RECORD Option
	SELECT Option - default
	Field Lengths
	
	Examples of Field Lengths:

	GIVING LENGTH operand3
	AT END OF FILE
	Handling of Large and Dynamic Variables
	ASCII, ASCII-COMPRESSED and SAG †binary‡
	TRANSFER and ENTIRE CONNECTION
	PORTABLE and UNFORMATTED

	Example

	REDEFINE
	Function
	Method of Redefinition
	Further Redefinition
	Filler Notation
	Example 1
	Example 2
	Example 3
	Example 4

	REDUCE
	Function
	dynamic-clause
	operand1
	operand2

	array-clause
	operand3
	dim

	GIVING operand5

	REINPUT
	Function
	REINPUT FULL
	statement-parameters
	USING HELP
	WITH TEXT-option
	Message Text from Natural Message File - *operand1
	Message Text - operand2 and Attributes - attributes
	Dynamic Replacement of Message Text - operand3

	MARK-option
	Field to be Marked - operand5
	MARK POSITION
	attributes

	ALARM-option
	Example 1
	Example 2
	Example 3

	REJECT
	RELEASE
	Function
	RELEASE STACK
	RELEASE SET
	RELEASE VARIABLES
	Example

	REPEAT
	Syntax 1
	Syntax 2
	Function
	UNTIL
	WHILE
	Example 1
	Example 2:

	REQUEST DOCUMENT
	Function
	operand1
	operand2
	operand3
	operand4/5
	Header Name for Operand4
	Header Value for Operand5
	General Information
	Automatically Generated Headers †operand 4/5‡

	operand6
	operand7/8
	operand9
	operand10/11
	operand12
	operand13
	Overview of Response Numbers - for HTTP/HTTPs Requests

	operand14
	Examples
	General Request
	Simple Get Request †no data‡
	Simple Head Request †no return page‡
	Simple Post Request †default‡
	Simple Put Request †with data all‡

	RESET
	Function
	INITIAL
	Default Initial Values
	Example

	RESIZE
	Function
	dynamic-clause
	operand1
	operand2

	array-clause
	operand3
	dim

	GIVING operand5

	RETRY
	Function
	Example

	RUN
	Function
	REPEAT
	Program Name - operand1
	Parameters - operand2
	parameter
	Dynamic Source Text Creation/Execution
	Example
	Program containing RUN statement:
	Program FIND-EMP executed by RUN statement:

	SEND EVENT
	Function
	Operands
	AD=
	Passing Parameters to the Dialog
	nX
	PARAMETERS-clause
	Further Information and Examples

	SEND METHOD
	Function
	Method-Name - operand1
	Object Handle - operand2
	Parameter - operand3
	AD=
	Parameter - nX
	RETURN - operand4
	GIVING - operand5

	SEPARATE
	Function
	Source Operand - operand1
	SUBSTRING
	LEFT JUSTIFIED
	Target Operand - operand4
	IGNORE / REMAINDER
	DELIMITER Option
	WITH RETAINED DELIMITERS
	GIVING NUMBER
	Example 1
	Example 2
	Example 3

	SET CONTROL
	Function
	Example 1
	Example 2

	SET GLOBALS
	Function
	Parameters
	Example

	SET KEY
	Syntax 1 - Affecting All Keys
	Syntax 2 - Affecting Individual Keys
	Syntax 3 - Affecting Individual Keys
	Function
	Making Keys Program-Sensitive
	Assigning Commands/Programs
	Assigning Input DATA
	COMMAND OFF/ON
	Assigning HELP
	DYNAMIC
	DISABLED
	SET KEY Statements on Different Program Levels
	Example of SET KEY Statements on Different Program Levels:

	Assigning Names
	Example

	SET TIME
	Function
	Example

	SET WINDOW
	Function
	Example

	SKIP
	Function
	Report Specification - rep
	Number of Lines to be Skipped - operand1
	Additional Considerations
	Example

	SORT
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Restrictions
	Processing Loops
	Sort Criteria - operand1
	USING-clause
	GIVE-clause
	†NL=nn‡

	SORT Statement Processing
	1st Phase - Selecting the Records to be Sorted
	2nd Phase - Sorting the Records
	3rd Phase -Processing the Sorted Records

	Example
	First Phase:
	Second Phase:
	Third Phase:

	STACK
	Function
	TOP
	DATA
	FORMATTED
	COMMAND operand1
	COMMAND operand1 operand2...
	parameter
	Example

	STOP
	Function
	Example

	STORE
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	view-name
	PASSWORD/CIPHER
	USING/GIVING NUMBER
	SET/WITH
	DL/I Considerations

	USING SAME
	System Variable *ISN
	Example

	SUBTRACT
	Syntax 1
	Syntax 2
	Function
	Operands
	Result Field
	ROUNDED
	Example

	SUSPEND IDENTICAL SUPPRESS
	Function
	Report Specification - rep
	Example
	Program with SUSPEND IDENTICAL SUPPRESS:
	Same as Previous Program, but without SUSPEND IDENTICAL SUPPRESS:

	TERMINATE
	Function
	operand1
	UNIX
	Windows
	Mainframes

	operand2
	Program Receiving Control after Termination
	Example

	UPDATE
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	Considerations for DL/I Databases
	Considerations for SQL Databases
	Considerations for VSAM Databases
	Considerations for XML Databases
	Restrictions
	Statement Reference - r
	USING SAME
	SET/WITH operand1 = operand2
	Hold Status
	Example

	UPLOAD PC FILE
	Structured Mode Syntax
	Reporting Mode Syntax
	Function
	work-file-number
	Field Specification - operand1-2
	Options
	Example

	WRITE
	Syntax 1 - Dynamic Formatting
	Function
	Report Specification - rep
	NOTITLE
	NOHDR
	statement-parameters
	Output Format
	Field Positioning Notations
	nX
	nT
	x/y
	T*field-name
	P*field-name
	Equal Sign '='
	Slash '/'

	Text/Attribute Assignment
	'text'
	'c'†n‡
	attributes
	operand1
	parameters

	Syntax 2 - Using Predefined Map€
	FORM/MAP
	operand1
	operand2
	NOTITLE/NOHDR
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	WRITE TITLE
	Function
	Restrictions
	Report Specification - rep
	Justification and Underlining
	statement-parameters
	operand1
	SKIP - operand2
	Example

	WRITE TRAILER
	Function
	Restrictions
	Processing
	Logical Page Size
	Report Specification - rep
	Justification and Underlining
	statement-parameters
	operand1
	SKIP - operand2
	Example

	WRITE WORK FILE
	Function
	work-file-number
	VARIABLE
	Fields - operand1
	Variable Index Range
	External Representation of Fields
	Handling of large and dynamic variables
	ASCII, ASCII-COMPRESSED and SAG †binary‡
	TRANSFER and ENTIRE CONNECTION
	PORTABLE and UNFORMATTED

	Example

	Old Statements
	SQL Statements Overview
	Common Set and Extended Set
	Basic Syntactical Items
	Constants
	constant
	integer

	Names
	authorization-identifier
	ddm-name
	view-name
	column-name
	table-name
	authorization-identifier

	correlation-name

	Parameters
	parameter
	host-variable
	colon [:]
	Natural Formats and SQL Data Types
	INDICATOR Clause
	LINDICATOR Clause

	Natural View Concept
	Scalar Expressions
	scalar-operator
	factor
	atom
	column-reference
	aggregate-function
	special-register
	scalar-function
	units
	case-expression
	searched-when-clause
	simple-when-clause

	cast-expression
	user-defined-function-reference

	Search Conditions
	search-condition
	predicate
	Comparison Predicate
	comparison
	subquery

	BETWEEN Predicate
	LIKE Predicate
	NULL Predicate
	IN Predicate
	Quantified Predicate
	EXISTS Predicate

	Select Expressions
	select-expression
	selection
	ALL/DISTINCT
	scalar-expression
	correlation-name
	Asterisk Notation - *

	table-expression
	FROM Clause
	table-reference
	WHERE Clause
	GROUP BY Clause
	HAVING Clause

	Flexible SQL
	Text Variables
	LINDICATOR Option

	CALLDBPROC
	Function
	dbproc
	ddm-name
	parameter
	AD=
	result-set
	GIVING sqlcode
	CALLMODE
	Example

	COMMIT
	Function
	Consideration for Non-Natural-Programs

	DELETE
	Syntax 1 - Searched DELETE
	Syntax 2 - Positioned DELETE
	Function
	FROM Clause
	WHERE Clause
	Statement Reference - r
	WITH Isolation Level clause
	QUERYNO clause

	INSERT
	Function
	INTO Clause
	OVERRIDING USER VALUE
	column-list
	VALUES Clause
	VALUES Clause with Preceding Asterisk Notation
	VALUES Clause with Preceding Column List
	insert-item-list

	select-expression
	WITH isolation level clause
	QUERY NO Clause

	PROCESS SQL
	Function
	ddm-name
	statement-string
	Parameters
	:U:host-variable
	:G:host-variable

	Examples
	Examples for DB2 †under OS/390‡:
	Example for Adabas D:
	Example of Calling a Procedure Stored in Adabas D:

	ENTIRE ACCESS Options

	READ RESULT SET
	Function
	limit
	ddm-name
	WITH INSENSITIVE SCROLL [:] scroll_hv
	GIVING sqlcode
	Example

	ROLLBACK
	Function
	Consideration for Non-Natural Programs

	SELECT
	Cursor-Oriented Selection
	Non-Cursor Selection
	table-expression
	INTO Clause
	parameter
	VIEW Clause
	correlation-name

	Query involving UNION
	ORDER BY Clause
	OPTIMIZE FOR Clause
	WITH CS/RS/UR/...Clause
	QUERYNO Clause
	FETCH FIRST Clause
	WITH HOLD Clause
	WITH RETURN Clause
	WITH ... SCROLL Clause
	IF NO RECORDS FOUND-Clause
	Structured Mode Syntax
	Reporting Mode Syntax
	Database Values
	Evaluation of System Functions

	Join Queries

	UPDATE
	Syntax 1 - Searched UPDATE
	Syntax 2 - Positioned UPDATE
	Function
	SET Clause
	assignment-list
	WHERE search-condition
	Statement Reference - r
	WITH isolation level Clause
	QUERYNO Clause
	Examples
	Example of Searched UPDATE:
	Example of Searched UPDATE with assignment-list:
	Example of Positioned UPDATE:
	Example of Positioned UPDATE with assignment-list:

