
Version 4.1.2 for Mainframes System Functions

This document applies to Natural Version 4.1.2 for Mainframes and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release
notes or new editions.

© Copyright Software AG 1979 - 2003.
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

Table of Contents
.................. 1Natural System Functions
.................. 1Natural System Functions
........... 2Natural System Functions for Use in Processing Loops
........... 2Natural System Functions for Use in Processing Loops
............. 2Using System Functions in Processing Loops
................. 2Specification/Evaluation
............ 3Use in SORT GIVE FUNCTIONS Statement
......... 3Arithmetic Overflows in AVER, NAVER, SUM or TOTAL
................. 4Statement Referencing (r)
.................. 4Detailed Descriptions
................... 4AVER(r)(field)
.................. 4COUNT(r)(field)
................... 4MAX (r)(field)
................... 4MIN (r)(field)
.................. 4NAVER(r)(field)
.................. 5NCOUNT(r)(field)
................... 5NMIN (r)(field)
................... 5OLD(r)(field)
................... 5SUM(r)(field)
................... 5TOTAL(r)(field)
..................... 5Examples
.................. 10Mathematical Functions
.................. 10Mathematical Functions
.................. 13Miscellanous Functions
.................. 13Miscellanous Functions
................ 14POS - Field Identification Function
................ 14POS - Field Identification Function
................. 16RET - Return Code Function
................. 16RET - Return Code Function
................ 17SORTKEY - Sort-Key Function
................ 17SORTKEY - Sort-Key Function
.......... 19*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum
.......... 19*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum
..................... 19Function
..................... 19operand
.................. 19result-format-length
............ 20Resulting Format/Length Conversion Rule Tables
.......... 20Explicit Specification of the Resulting Format/Length
.......... 20Implicit Specification of the Resulting Format/Length
............... 22Evaluating the result-format-length
............... 23Format/Length Evaluation Order
.......... 24*TRANSLATE - Translate to Lower/Upper Case Characters
.......... 24*TRANSLATE - Translate to Lower/Upper Case Characters
..................... 24Function
..................... 24operand
..................... 24LOWER
..................... 24UPPER
..................... 24Example
..................... 25Output
............ 26*TRIM - Remove Leading and/or Trailing Blanks
............ 26*TRIM - Remove Leading and/or Trailing Blanks
..................... 26Function
..................... 26operand

iCopyright © Software AG 2003

Table of ContentsNatural System Functions

...................... 26LEADING

..................... 26TRAILING

................ 27Operand Not Followed by a Keyword

...................... 28Examples

.............. 28Example Using an Alphanumeric Argument

...................... 30Output

.............. 30Example Using an Alphanumeric Argument

...................... 31Output

Copyright © Software AG 2003ii

Natural System FunctionsTable of Contents

Natural System Functions
This document describes various Natural "built-in" functions for use in certain statements.

Note:
As of Natural Version 6 for Windows and UNIX, all new system functions are preceded by an asterisk (*) to
avoid naming conflicts with, for example, user-defined variables in existing applications.
The same will apply to all new system functions in future Natural for Mainframes versions.

System Functions Grouped by Function

System Functions for Use in Processing Loops
Mathematical Functions
Miscellaneous Functions

See also:

System Functions in the Natural Programming Guide.
Example of System Variables and System Functions in the Natural Programming Guide.

1Copyright © Software AG 2003

Natural System FunctionsNatural System Functions

Natural System Functions for Use in
Processing Loops
This document describes those Natural system functions which can be used in a program loop context.

The following topics are covered below:

Using System Functions in Processing Loops
Specification/Evaluation
System Functions in SORT GIVE FUNCTIONS Statement
Arithmetic Overflows in AVER, NAVER, SUM or TOTAL
Statement Referencing (r)

Detailed Descriptions
AVER(r)(field)
COUNT(r)(field)
MAX(r)(field)
MIN(r)(field)
NAVER(r)(field)
NCOUNT(r)(field)
NMIN(r)(field)
OLD(r)(field)
SUM(r)(field)
TOTAL(r)(field)

Examples

Using System Functions in Processing Loops
The following topics are covered:

Specification/Evaluation
Use in SORT GIVE FUNCTIONS Statement
Arithmetic Overflows in AVER, NAVER, SUM or TOTAL
Statement Referencing (r)

Specification/Evaluation

Natural system functions may be specified in

assignment and arithmetic statements:

MOVE,
ASSIGN,
COMPUTE,
ADD,
SUBJECT,
MULTIPLY ,
DIVIDE

Copyright © Software AG 20032

Natural System Functions for Use in Processing LoopsNatural System Functions for Use in Processing Loops

input/output statements:

DISPLAY,
PRINT,
WRITE

that are used within any of the following statement blocks:

AT BREAK,
AT END OF DATA,
AT END OF PAGE,

that is, for all FIND, READ, HISTOGRAM, SORT or READ WORK FILE processing loops.

If a system function is used within an AT END OF PAGE statement, the corresponding DISPLAY statement
must include the GIVE SYSTEM FUNCTIONS clause.

Records rejected by a WHERE clause are not evaluated by a system function.

If system functions are evaluated from database fields which originated from different levels of processing loops
initiated with a FIND, READ, HISTOGRAM or SORT statement, the values are always processed according to
their position in the loop hierarchy. For example, values for an outer loop will only be processed when new data
values have been obtained for that loop.

If system functions are evaluated from user-defined variables, the processing is dependent on the position in the
loop hierarchy where the user-defined variable was introduced in reporting mode. If the user-defined variable is
defined before any processing loop is initiated, it will be evaluated for system functions in the loop where the AT
BREAK, AT END OF DATA or AT END OF PAGE statement is defined. If a user-defined variable is
introduced within a processing loop it will be processed the same as a database field from that processing.

For selective referencing of system function evaluation for user-defined variables it is recommended to specify a
loop reference with the user-defined variable to indicate in which loop the value is to be processed. The loop
reference may be specified as a statement label or source code line number.

Use in SORT GIVE FUNCTIONS Statement

System functions may also be referenced when they have been evaluated in a GIVE FUNCTIONS clause of a
SORT statement.

For a reference to a system function evaluated with a SORT GIVE FUNCTIONS statement, the name of the
system function must be prefixed with an asterisk (*).

Arithmetic Overflows in AVER, NAVER, SUM or TOTAL

Fields to which the system functions AVER, NAVER, SUM and TOTAL are to be applied must be long enough
(either by default or user-specified) to hold any overflow digits. If any arithmetic overflow occurs, an error
message will be issued.

Normally, the length is the same as that of the field to which the system function is applied; if this is not long
enough, use the NL parameter to increase the output length as follows:

SUM(field)(NL=nn)

This will not only increase the output length but also causes the field to be made longer internally.

3Copyright © Software AG 2003

Use in SORT GIVE FUNCTIONS StatementNatural System Functions for Use in Processing Loops

Statement Referencing (r)

Statement referencing is also available for system functions (see also Statement Reference Notation - r in the
section User-Defined Variables of the Natural Statements documentation).

By using a statement label or the source-code line number (r) you can determine in which processing loop the
system function is to be evaluated for the specified field.

Detailed Descriptions

AVER (r)(field)

Format/length: Same as field.
Exception: for a field of format N, AVER(field) will be of format P (with the same length as
the field).

This system function contains the average of all values encountered for the field specified with AVER. AVER is
updated when the condition under which AVER was requested is true.

COUNT(r)(field)

Format/length: P7

COUNT is incremented by 1 on each pass through the processing loop in which it is located. COUNT is
incremented regardless of the value of the field specified with COUNT.

MAX (r)(field)

Format/length: Same as field.

This system function contains the maximum value encountered for the field specified with MAX. MAX is
updated (if appropriate) each time the processing loop in which it is contained is executed.

MIN (r)(field)

Format/length: Same as field.

This system function contains the minimum value encountered for the field specified with MIN. MIN is updated
(if appropriate) each time the processing loop in which it is located is executed.

NAVER (r)(field)

Format/length: Same as field.
Exception: for a field of format N, NAVER(field) will be of format P (with the same length as
the field).

This system function contains the average of all values - excluding null values - encountered for the field
specified with NAVER. NAVER is updated when the condition under which NAVER was requested is true.

Copyright © Software AG 20034

Natural System Functions for Use in Processing LoopsDetailed Descriptions

NCOUNT(r)(field)

Format/length: P7

NCOUNT is incremented by 1 on each pass through the processing loop in which it is located unless the value of
the field specified with NCOUNT is a null value.

NMIN (r)(field)

Format/length:Same as field.

This system function contains the minimum value encountered - excluding null values - for the field specified
with NMIN. NMIN is updated (if appropriate) each time the processing loop in which it is located is executed.

OLD (r)(field)

Format/length: Same as field.

This system function contains the value which the field specified with OLD contained prior to a control break as
specified in an AT BREAK condition, or prior to the end-of-page or end-of-data condition.

SUM(r)(field)

Format/length: Same as field.
Exception: for a field of format N, SUM(field) will be of format P (with the same length as the
field).

This system function contains the sum of all values encountered for the field specified with SUM. SUM is
updated each time the loop in which it is located is executed. When SUM is used following an AT BREAK
condition, it is reset after each value break. Only values that occur between breaks are added.

TOTAL (r)(field)

Format/length: Same as field.
Exception: for a field of format N, TOTAL(field) will be of format P (with the same length as
the field).

This system function contains the sum of all values encountered for the field specified with TOTAL in all open
processing loops in which TOTAL is located.

Examples
System Functions Example 1:

5Copyright © Software AG 2003

ExamplesNatural System Functions for Use in Processing Loops

 /* EXAMPLE ’ATBEX3:’ AT BREAK WITH NATURAL SYSTEM FUNCTIONS
 /* ***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 2 SALARY (1)
 2 CURR-CODE (1)
 END-DEFINE
 /* ***
 LIMIT 3
 READ EMPLOY-VIEW LOGICAL BY CITY = ’SALT LAKE CITY’
 DISPLAY NOTITLE CITY NAME ’SALARY’ SALARY(1) ’CURRENCY’ CURR-CODE(1)
 AT BREAK OF CITY
 WRITE / OLD(CITY) (EM=X^X^X^X^X^X^X^X^X^X^X^X^X^X^X)
 31T ’ MINIMUM:’ MIN(SALARY(1)) CURR-CODE(1) /
 31T ’ AVERAGE:’ AVER(SALARY(1)) CURR-CODE(1) /
 31T ’ MAXIMUM:’ MAX(SALARY(1)) CURR-CODE(1) /
 31T ’ SUM:’ SUM(SALARY(1)) CURR-CODE(1) /
 35T COUNT(SALARY(1)) ’RECORDS FOUND’ /
 END-BREAK
 AT END OF DATA
 WRITE 22T ’TOTAL (ALL RECORDS):’
 T*SALARY TOTAL(SALARY(1)) CURR-CODE(1)
 END-ENDDATA
 END-READ
 /* ***
 END

 CITY NAME SALARY CURRENCY
 -------------------- -------------------- ---------- --------

 SALT LAKE CITY ANDERSON 50000 USD
 SALT LAKE CITY SAMUELSON 24000 USD

 S A L T L A K E C I T Y MINIMUM: 24000 USD
 AVERAGE: 37000 USD
 MAXIMUM: 50000 USD
 SUM: 74000 USD
 2 RECORDS FOUND

 SAN DIEGO GEE 60000 USD

 S A N D I E G O MINIMUM: 60000 USD
 AVERAGE: 60000 USD
 MAXIMUM: 60000 USD
 SUM: 60000 USD
 1 RECORDS FOUND

 TOTAL (ALL RECORDS): 134000 USD

System Functions Example 2:

Copyright © Software AG 20036

Natural System Functions for Use in Processing LoopsExamples

 /* EXAMPLE ’ATBEX4’: AT BREAK USING NATURAL SYSTEM FUNCTIONS
 /**
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 2 SALARY (2)
 1 #INC-SALARY (P11)
 END-DEFINE
 /**
 LIMIT 4
 EMPLOOP. READ EMPLOY-VIEW BY CITY STARTING FROM ’ALBU’
 COMPUTE #INC-SALARY = SALARY (1) + SALARY (2)
 DISPLAY NAME CITY SALARY (1:2) ’CUMULATIVE’ #INC-SALARY
 SKIP
 AT BREAK CITY
 WRITE NOTITLE
 ’AVERAGE:’ T*SALARY (1) AVER(SALARY(1)) /
 ’AVERAGE CUMULATIVE:’ T*#INC-SALARY
 AVER(EMPLOOP.) (#INC-SALARY)
 END-BREAK
 END-READ
 /**
 END

 NAME CITY ANNUAL CUMULATIVE
 SALARY
 -------------------- -------------------- ---------- ------------

 HAMMOND ALBUQUERQUE 22000 42200
 20200

 ROLLING ALBUQUERQUE 34000 65200
 31200

 FREEMAN ALBUQUERQUE 34000 65200
 31200

 LINCOLN ALBUQUERQUE 41000 78700
 37700

 AVERAGE: 32750
 AVERAGE CUMULATIVE: 62825

System Functions Example 3:

7Copyright © Software AG 2003

ExamplesNatural System Functions for Use in Processing Loops

 /* EXAMPLE ’AEDEX1S’: AT END OF DATA (STRUCTURED MODE)
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 FIRST-NAME
 2 SALARY (1)
 2 CURR-CODE (1)
 END-DEFINE
 /*
 LIMIT 5
 EMP. FIND EMPLOY-VIEW WITH CITY = ’STUTTGART’
 IF NO RECORDS FOUND
 ENTER
 END-NOREC
 DISPLAY PERSONNEL-ID NAME FIRST-NAME SALARY (1) CURR-CODE (1)
 /***
 AT END OF DATA
 IF *COUNTER (EMP.) = 0
 WRITE ’NO RECORDS FOUND’
 ESCAPE BOTTOM
 END-IF
 WRITE NOTITLE / ’SALARY STATISTICS:’
 / 7X ’MAXIMUM:’ MAX(SALARY(1)) CURR-CODE (1)
 / 7X ’MINIMUM:’ MIN(SALARY(1)) CURR-CODE (1)
 / 7X ’AVERAGE:’ AVER(SALARY(1)) CURR-CODE (1)
 END-ENDDATA
 /***
 END-FIND
 END

 PERSONNEL NAME FIRST-NAME ANNUAL CURRENCY
 ID SALARY CODE
 --------- -------------------- -------------------- ---------- --------

 11100328 BERGHAUS ROSE 70800 €
 11100329 BARTHEL PETER 42000 €
 11300313 AECKERLE SUSANNE 55200 €
 11300316 KANTE GABRIELE 61200 €
 11500304 KLUGE ELKE 49200 €

 SALARY STATISTICS:
 MAXIMUM: 70800 €
 MINIMUM: 42000 €
 AVERAGE: 55680 €

System Functions Example 4:

Copyright © Software AG 20038

Natural System Functions for Use in Processing LoopsExamples

 /* EXAMPLE ’AEPEX1S’: AT END OF PAGE (STRUCTURED MODE)
 /***
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 JOB-TITLE
 2 SALARY (1)
 2 CURR-CODE (1)
 END-DEFINE
 /***
 FORMAT PS=10
 LIMIT 10
 READ EMPLOY-VIEW BY PERSONNEL-ID FROM ’20017000’
 DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
 NAME JOB-TITLE ’SALARY’ SALARY(1) CURR-CODE (1)
 /***
 AT END OF PAGE
 WRITE / 28T ’AVERAGE SALARY: ...’ AVER(SALARY(1)) CURR-CODE (1)
 END-ENDPAGE
 /***
 END-READ
 /***
 END

 NAME CURRENT SALARY CURRENCY
 POSITION CODE
 -------------------- ------------------------- ---------- --------

 CREMER ANALYST 34000 USD
 MARKUSH TRAINEE 22000 USD
 GEE MANAGER 39500 USD
 KUNEY DBA 40200 USD
 NEEDHAM PROGRAMMER 32500 USD
 JACKSON PROGRAMMER 33000 USD

 AVERAGE SALARY: ... 33533 USD

9Copyright © Software AG 2003

ExamplesNatural System Functions for Use in Processing Loops

Mathematical Functions
The following mathematical functions are supported in arithmetic processing statements (ADD, COMPUTE,
DIVIDE, MULTIPLY , SUBTRACT) and in logical condition criteria:

Function Format/Length Explanation

ABS(field) same as field Absolute value of field.

ATN (field) F8 (*) Arc tangent of field.

COS(field) F8 (*) Cosine of field.
If the value of the field is equal to or greater than 1017, COS(field) will be "1".

EXP(field) F8 (*) Exponentiation of exponent field to base e, i.e. efield , where e is Euler’s
number.

FRAC(field) same as field Fractional part of field.

INT (field) same as field Integer part of field.

LOG (field) F8 (*) Natural logarithm of field.

SGN(field) same as field Sign of field (-1, 0, +1).

SIN(field) F8 (*) Sine of field.
If the value of the field is equal to or greater than 1017, SIN(field) will be "0".

SQRT(field) (*) (**) Square root of field.
A negative value in the argument field will be treated as positive. On
mainframe computers, the maximum number of digits before the decimal point
of the argument is 22.

TAN (field) F8 (*) Tangent of field.
If the value of the field is equal to or greater than 1017, TAN(field) will be "0".

VAL (field) same as
target field

Extract numeric value from an alphanumeric field. The content of the field
must be the character representation of a numeric value. Leading or trailing
blanks in the field will be ignored; decimal point and leading sign character
will be processed.
If the target field is not long enough, decimal digits will be truncated (see also
Field Truncation and Field Rounding in the section Rules for Arithmetic
Assignment of the Natural Statements documentation).
Note:
VAL cannot be used in conjunction with the COMPUTE statement.

* On UNIX and Windows platforms, these functions are evaluated as follows: The argument is converted to
format/length F8 and then passed to the operating system for computation; the result returned by the
operating system has format/length F8, which is then converted to the target format.

** On mainframe computers, the following applies:
If field has format/length F4, format/length of SQRT(field) will be F4;
if field has format/length F8 or I, format/length of SQRT(field) will be F8;
if field has format N or P, format/length of SQRT(field) will be Nn.7 or Pn.7 respectively (where n is
automatically calculated to be large enough).

Copyright © Software AG 200310

Mathematical FunctionsMathematical Functions

A field to be used with a mathematical function - except VAL - may be a constant or a scalar; its format must be
numeric, packed numeric, integer, or floating point (N, P, I or F).

A field to be used with the VAL function may be a constant, a scalar, or an array; its format must be
alphanumeric.

Mathematical Functions Example:

 /* EXAMPLE ’MATHEX’: MATHEMATICAL FUNCTIONS
 /***
 DEFINE DATA LOCAL
 1 #A (N2.1) INIT <10>
 1 #B (N2.1) INIT <-6.3>
 1 #C (N2.1) INIT <0>
 1 #LOGA (N2.6)
 1 #SQRTA (N2.6)
 1 #TANA (N2.6)
 1 #ABS (N2.1)
 1 #FRAC (N2.1)
 1 #INT (N2.1)
 1 #SGN (N1)
 END-DEFINE
 /***
 COMPUTE #LOGA = LOG(#A)
 WRITE NOTITLE ’=’ #A 5X ’LOG’ 40T #LOGA
 /***
 COMPUTE #SQRTA = SQRT(#A)
 WRITE ’=’ #A 5X ’SQUARE ROOT’ 40T #SQRTA
 /***
 COMPUTE #TANA = TAN(#A)
 WRITE ’=’ #A 5X ’TANGENT’ 40T #TANA
 /***
 COMPUTE #ABS = ABS(#B)
 WRITE // ’=’ #B 5X ’ABSOLUTE’ 40T #ABS
 /***
 COMPUTE #FRAC = FRAC(#B)
 WRITE ’=’ #B 5X ’FRACTIONAL’ 40T #FRAC
 /***
 COMPUTE #INT = INT(#B)
 WRITE ’=’ #B 5X ’INTEGER’ 40T #INT
 /***
 COMPUTE #SGN = SGN(#A)
 WRITE // ’=’ #A 5X ’SIGN’ 40T #SGN
 /***
 COMPUTE #SGN = SGN(#B)
 WRITE ’=’ #B 5X ’SIGN’ 40T #SGN
 /***
 COMPUTE #SGN = SGN(#C)
 WRITE ’=’ #C 5X ’SIGN’ 40T #SGN
 /***
 END

11Copyright © Software AG 2003

Mathematical FunctionsMathematical Functions

 #A: 10.0 LOG 2.302585
 #A: 10.0 SQUARE ROOT 3.162277
 #A: 10.0 TANGENT 0.648360

 #B: -6.3 ABSOLUTE 6.3
 #B: -6.3 FRACTIONAL -0.3
 #B: -6.3 INTEGER -6.0

 #A: 10.0 SIGN 1
 #B: -6.3 SIGN -1
 #C: 0.0 SIGN 0

Copyright © Software AG 200312

Mathematical FunctionsMathematical Functions

Miscellanous Functions
The following topics are covered:

POS - Field Identification Function
RET - Return Code Function
SORTKEY - Sort-Key Function
*MINVAL/*MAXVAL - Minimum/Maximum Value of a Field
*TRANSLATE - Translate Operand1 to Lower/Upper Case Character
*TRIM - Remove Leading and/or Trailing Blanks from Operand1

Note:
As of Natural Version 6 for Windows and UNIX, all new system functions are preceded by an asterisk (*) to
avoid naming conflicts with, for example, user-defined variables in existing applications.
The same will apply to all new system functions in future Natural for Mainframes versions.

13Copyright © Software AG 2003

Miscellanous FunctionsMiscellanous Functions

POS - Field Identification Function
Format/length: I4

The system function POS(field-name) contains the internal identification of the field whose name is specified
with the system function.

POS(field-name) may be used to identify a specific field, regardless of its position in a map. This means that the
sequence and number of fields in a map may be changed, but POS(field-name) will still uniquely identify the
same field. With this, for example, you need only a single REINPUT statement to make the field to be MARKed
dependent on the program logic.

Example:

 DECIDE ON FIRST VALUE OF ...
 VALUE ...
 COMPUTE #FIELDX = POS(FIELD1)
 VALUE ...
 COMPUTE #FIELDX = POS(FIELD2)
 ...
 END-DECIDE
 ...
 REINPUT ... MARK #FIELDX

If the field specified with POS is an array, a specific occurrence must be specified; for example,
"POS(FIELDX(5))". POS cannot be applied to an array range.

POS and *CURS-FIELD

The system function POS(field-name) may be used in conjunction with the Natural system variable
*CURS-FIELD to make the execution of certain functions dependent on which field the cursor is currently
positioned in.

*CURS-FIELD contains the internal identification of the field in which the cursor is currently positioned; it
cannot be used by itself, but only in conjunction with POS(field-name). You may use them to check if the cursor
is currently positioned in a specific field and have processing performed depending on that condition.

Example:

 IF *CURS-FIELD = POS(FIELDX)
 MOVE *CURS-FIELD TO #FIELDY
 END-IF
 ...
 REINPUT ... MARK #FIELDY

Note:
The values of *CURS-FIELD and POS(field-name) serve only as internal identifications of the fields and cannot
be used for arithmetic operations.
The value returned by POS(field-name) for an occurrence of an X-array (an array for which at least one bound in
at least one dimension is specified as expansible) may change after the number of occurrences for a dimension of
the array has been changed using the EXPAND, RESIZE or REDUCE statements.

Note for Natural RPC:
If *CURS-FIELD and POS(field-name) refer to a context variable, the resulting information can only be used
within the same conversation.

Copyright © Software AG 200314

POS - Field Identification FunctionPOS - Field Identification Function

See also Dialog Design, Field Sensitive Processing and Simplifying Programming, in the Natural Programming
Guide.

15Copyright © Software AG 2003

POS - Field Identification FunctionPOS - Field Identification Function

RET - Return Code Function
Format/length: I4

The system function RET(program-name) may be used to receive the return code from a non-Natural program
called via a CALL statement.

RET(program-name) can be used in an IF statement and within the arithmetic statements ADD, COMPUTE,
DIVIDE, MULTIPLY and SUBTRACT.

Example:

 DEFINE DATA LOCAL
 1 #RETURN (I4)
 ...
 END-DEFINE
 ...
 ...
 CALL ’PROG1’
 IF RET(’PROG1’) > #RETURN
 WRITE ’ERROR OCCURRED IN PROGRAM 1’
 END-IF
 ...

Copyright © Software AG 200316

RET - Return Code FunctionRET - Return Code Function

SORTKEY - Sort-Key Function
Format/length: A253

Several national languages contain characters (or combinations of characters) which are not sorted in the correct
alphabetical order by a sort program or database system, because the sequence of the characters in the character
set used by the computer does not always correspond to the alphabetical order of the characters.

For example, the Spanish letter "CH" would be treated by a sort program or database system as two separate
letters and sorted between "CG" and "CI" - although in the Spanish alphabet it is in fact a letter in its own right
and belongs between "C" and "D".

Or it may be that, contrary to your requirements, lower-case and upper-case letters are not treated equally in a
sort sequence, that letters are sorted after numbers (although you may wish them to be sorted before numbers), or
that special characters (for example, hyphens in double names) lead to an undesired sort sequence.

In such cases, you can use the system function SORTKEY(character-string) to convert "incorrectly sorted"
characters (or combinations of characters) into other characters (or combinations of characters) that are
"correctly sorted" alphabetically by the sort program or database system.

The values computed by SORTKEY are then only used as sort criterion, while the original values are used for
the interaction with the end-user.

You can use the SORTKEY function as an arithmetic operand in a COMPUTE statement and in a logical
condition.

As character-string you can specify an alphanumeric constant or variable, or a single occurrence of an
alphanumeric array.

When you specify the SORTKEY function in a Natural program, the user exit NATUSKnn will be invoked - nn
being the current language code (that is, the current value of the system variable *LANGUAGE).

You can write this user exit in any programming language that provides a standard CALL interface. The
character-string specified with SORTKEY will be passed to the user exit. The user exit has to be programmed
so that it converts any "incorrectly sorted" characters in this string into corresponding "correctly sorted"
characters. The converted character string is then used in the Natural program for further processing.

For details on the user exit, see your Natural Operations documentation.

Example:

17Copyright © Software AG 2003

SORTKEY - Sort-Key FunctionSORTKEY - Sort-Key Function

 DEFINE DATA LOCAL
 1 CUST VIEW OF CUSTOMERFILE
 2 NAME
 2 SORTNAME
 END-DEFINE
 ...
 *LANGUAGE := 4
 ...
 REPEAT
 INPUT NAME
 SORTNAME := SORTKEY(NAME)
 STORE CUST
 END TRANSACTION
 ...
 END-REPEAT
 ...
 READ CUST BY SORTNAME
 DISPLAY NAME
 END-READ
 ...

Assume that in the above example, at repeated executions of the INPUT statement, the following values are
entered: "Sanchez", "Sandino" und "Sancinto" .

At the assignment of SORTKEY(NAME) to SORTNAME, the user exit NATUSK04 would be invoked. This
user exit would have to be programmed so that it first converts all lower-case letters to upper-case, and then
converts the character combination "CH" to "CX" - where X would correspond to the last character in the
character set used, i.e. hexadecimally H’FF’ (assuming that this last character is a non-printable character).

The "original" names (NAME) as well as the converted names to be used for the desired sorting (SORTNAME)
are stored. To read the file, SORTNAME is used. The DISPLAY statement would then output the names in the
correct Spanish alphabetical order:

 Sancinto
 Sanchez
 Sandino

Copyright © Software AG 200318

SORTKEY - Sort-Key FunctionSORTKEY - Sort-Key Function

*MINVAL/*MAXVAL - Evaluate the
Minimum/Maximum
This system function can only be used on Windows and UNIX.

*MINVAL ([(IR=result-format/length)]
operand,...) *MAXVAL

Format/length: Format and length may be specified explicitly using the IR clause or evaluated automatically
using the Format/Length Conversion Rule Tables below.

Function
The *MINVAL/*MAXVAL system function evaluates the minimum/maximum value of all given operand
values. The result is always a scalar value. If an array is specified as operand, the minimum/maximum of all
array fields is evaluated.

The *MINVAL/*MAXVAL system function may be specified as an operand in any position of a statement
wherever *MINVAL/*MAXVAL is allowed. However, *MINVAL/*MAXVAL must not be used where a target
variable is expected.

*MINVAL/*MAXVAL may not be nested in a system function.

When using alpha or binary data as an argument, if the data is the same (e.g. *MINVAL(’AB’,’AB’)), then the
result is the argument with the smallest/largest length value.

operand

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

operand C S A G A N P I F B D T yes no

result-format-length
The compiler tries to determine the result-format-length of the whole function. If the compiler cannot determine
a format/length in a way that no loss of precision is guaranteed, the format-length must be set by the programmer
using the IR operand extension.

format-length

(
A
B

) DYNAMIC

19Copyright © Software AG 2003

*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

The IR (Intermediate Result) clause may be used in order to specify explicitly the resulting format/length of the
whole *MINVAL/*MAXVAL system function. For an assortment of valid result-format/lengths, refer to the
Format/Length Conversion Rule Tables below.

Example:

DEFINE DATA LOCAL
1 #RESULTI (I4)
1 #RESULTA (A20)
1 #RESULTADYN (A) DYNAMIC
1 #A(I4) CONST <1234>
1 #B(A20) CONST <H’30313233’> /* ’0123’ stored
1 #C(I2/1:3) CONST <2000, 2100, 2200>
END DEFINE
*
#RESULTA := *MAXVAL((IR=A20) #A, #B) /*no error, I4->A20 is allowed!
#RESULTADYN := *MAXVAL((IR=(A)DYNAMIC) #A, #B) /*result is (A) dynamic
/* #RESULTI := *MAXVAL((IR=I4) #A, #B) /*compiler error, because conv. A20->I4 is not allowed!
#RESULTI := *MAXVAL((IR=I4) #A, #C(*)) /*maximum of the array is evaluated
DISPLAY #RESULTA #RESULTADYN (AL=10) #RESULTI
END

Resulting Format/Length Conversion Rule Tables
There are two different ways to define the resulting format/length of the whole *MINVAL/*MAXVAL system
function:

Explicit specification of the resulting format/length
Implicit specification of the resulting format/length which is evaluated automatically using all the operands
used as argument of the *MINVAL/*MAXVAL system function.

Explicit Specification of the Resulting Format/Length

The resulting format/length of the whole *MINVAL/*MAXVAL system function may be specified by the IR
clause. All operands specified will be converted into this resulting format/length, if this is possible without any
loss of precision. Afterwards the minimum/maximum of all the converted operands will be evaluated and one
single scalar value with the evaluated format/length will be set as result of the whole system function.

Implicit Specification of the Resulting Format/Length

If no IR clause is used inside the *MINVAL/*MAXVAL system function, the resulting format/length will be
evaluated regarding the format/length of all operands specified as arguments inside the *MINVAL/*MAXVAL
system function. The format/length of each operand is taken and combined with the format/length of the next
following operand of the argument list. The resulting format/length of two single operands are then evaluated
using the Format/Length Conversion Rule Tables below.

The Format/Length Conversion Rule Table is separated into two different subtables. The first table covers all the
numeric combinations of two different operands. The second table covers all other formats and lengths which
may be used for *MINVAL/*MAXVAL system function operands.

All combinations not shown in the two tables below are invalid and must not be applied inside the argument list
of the *MINVAL/*MAXVAL system function. The keyword "FLF" indicates that the IR clause must be used in
order to define the resulting format/length, because there otherwise may be a loss of precision.

Copyright © Software AG 200320

*MINVAL/*MAXVAL - Evaluate the Minimum/MaximumResulting Format/Length Conversion Rule Tables

 Second Operand

First
Operand

Format-
length

I1 I2 I4 Pa.b, Na.b F4, F8

I1 I1 I2 I4 Pmax(3,a).b F8

I2 I2 I2 I4 Pmax(5,a).b F8

I4 I4 I4 I4 Pmax(10,a).b F8

Px.y,
Nx.y

Pmax(3,x).y Pmax(5,x).y Pmax(10,x).y
if max(x,a) + max(y,b) <= 29

Pmax(x,a).max(y,b)
else FLF

if y=0 and x <=15;
F8

else FLF

F4, F8 F8 F8 F8
if b=0 and a <=15

F8
else FLF

F8

Legend:

FLF
Format-length declaration forced. The resulting format must be specified using the IR
clause.

Ix
Format/length is Integer. x specifies the number of bytes which are used to store the
Integer value.

Fx
Format/length is Float. x specifies the number of bytes which are used to store the Float
value

Px.y
Pa,b

Packed format with corresponding number of digits before the decimal point (x,a) and the
precision (y,b).

Nx.y
Na,b

Numeric format with corresponding number of digits before the decimal point (x,a) and
the precision (y,b).

Pmax(c,d).e
The resulting format is packed. The length is evaluated by the information following. The
number of digits before the decimal point is the maximum value of c and d. Ther precision
value is e.

Pmax(c,d).max(e,f)
The resulting format is packed. The length is evaluated by the information following. The
number of digits before the decimal point is the maximum value of c and d. Ther precision
value is the maximum value of e and f.

 Second Operand

First Operand

Format-
length

D T Aa, A dynamic Ba, B dynamic

D D T NA NA

T T T NA NA

Ax, A dynamic NA NA A dynamic B dynamic

Bx, B dynamic NA NA B dynamic B dynamic

21Copyright © Software AG 2003

Implicit Specification of the Resulting Format/Length*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

Legend:

FLF Format-length declaration forced. The resulting format must be specified using the IR clause.

NA This combination is not allowed.

D Date format

T Time format

Bx Binary format with length x.

Ax Alphanumeric format with length x.

B dynamic Binary format with dynamic length.

A dynamic Alphanumeric format with dynamic length.

Evaluating the result-format-length
Using the rules described above, the compiler is able to process the source operands by regarding pairs of
operands and calculating an intermediate result for each pair. The first pair consists of the first and the second
operand, the second pair of the intermediate result and the third operand, etc. After all operands have been
processed, the last result shows the comparison of format and length which will be used to compare all operands
in order to evaluate the minimum/maximum. When you use method of format-length evaluation, the operand
format-lengths can appear in any order.

Example:

DEFINE DATA LOCAL
1 A (I2) INIT <34>
1 B (P4.2) INIT <1234.56>
1 C (N4.4) INIT <12.6789>
1 D (I1) INIT <100>
1 E (I4/1:3) INIT <32, 6745, 456>
1 #RES-MIN (P10.7)
1 #RES-MAX (P10.7)
END-DEFINE
*
MOVE *MINVAL(A, B, C, D, E(*)) TO #RES-MIN
MOVE *MAXVAL(A, B, C, D, E(*)) TO #RES-MAX
DISPLAY #RES-MIN #RES-MAX
END

Output:

 #RES-MIN #RES-MAX
--------------------------- ---------------------------

 12.6789000 6745.0000000

The following table shows the single steps evaluating the format/length of the example automatically. It shows
the intermediate result (ir) of all steps and the comparison format/length (cf) which is used as
result-format/length.

Copyright © Software AG 200322

*MINVAL/*MAXVAL - Evaluate the Minimum/MaximumEvaluating the result-format-length

Evaluation
Order

Name of
First

Operand

Format/Length of
First Operand or

Intermediate Result

Name of
Second

Operand

Format/Length of
Second Operand or
Intermediate Result

Format/Length of
the Intermediate

Result (ir)

1. A I2 B P4.2 ir1 = P5.2

2. ir1 P5.2 C N4.4 ir2 = P5.4

3. ir2 P5.4 D I1 ir3 = P5.4

4. ir3 P5.4 E I4 cf = P10.4

During runtime, all operands are converted into the cf format/length. Then, all converted values are compared,
and the corresponding minimum/maximum is evaluated.

Format/Length Evaluation Order

The following graphic represents the order in which format and length are evaluated:

Legend:

ir1, ir2, ir3 Intermediate result 1, 2, 3

cf Comparison of format and length

23Copyright © Software AG 2003

Format/Length Evaluation Order*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

*TRANSLATE - Translate to Lower/Upper
Case Characters
This system function can only be used on Windows and UNIX.

*TRANSLATE (operand ,
LOWER

)
UPPER

Format/length: same as the operand.

Function
The system function *TRANSLATE converts the characters of an alpha or binary operand to upper case or lower
case characters. The content of operand is not modified.

*TRANSLATE may be specified as an operand in any position of a statement wherever an operand of Format A
or B is allowed. However, *TRANSLATE must not be used where a target variable is expected. You may not
nest *TRANSLATE in a system function.

operand

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

operand C S A A B yes no

LOWER
Translates operand to lower case characters when using the keyword LOWER as a second argument.

*TRANSLATE (..., LOWER)

UPPER
Translates operand to upper case characters when using the keyword UPPER as a second argument.

*TRANSLATE (..., UPPER)

Example

Copyright © Software AG 200324

*TRANSLATE - Translate to Lower/Upper Case Characters*TRANSLATE - Translate to Lower/Upper Case Characters

DEFINE DATA LOCAL
1 #SRC (A)DYNAMIC INIT <’aBcDeFg !§$%&/()=?’>
1 #DEST (A)DYNAMIC
END-DEFINE

PRINT ’Source string to be translated:..........’ #SRC

MOVE *TRANSLATE(#SRC, UPPER) TO #DEST
PRINT ’Source string translated into upper case:’ #DEST

MOVE *TRANSLATE(#SRC, LOWER) TO #DEST
PRINT ’Source string translated into lower case:’ #DEST
END

Output

Source string to be translated:.......... aBcDeFg !§$%&/()=?

Source string translated into upper case: ABCDEFG !§$%&/()=?

Source string translated into lower case: abcdefg !§$%&/()=?

25Copyright © Software AG 2003

Output*TRANSLATE - Translate to Lower/Upper Case Characters

*TRIM - Remove Leading and/or Trailing
Blanks
This system function can only be used on Windows and UNIX.

*TRIM (operand ,
LEADING

)
TRAILING

Format/length: same as operand (A or B)/DYNAMIC

Function
The system function *TRIM removes all leading and/or trailing blanks from an alphanumeric or a binary string.
The content of operand is not modified. When using a dynamic variable like operand, the length of this variable
is adapted according to the result.

The *TRIM system function may be specified as an operand in any position of a statement wherever an operand
of Format A or B is allowed.

However, *TRIM must not be used where a target variable is expected. You may not nest *TRIM in a system
function.

Note:
The operand behaves differently when removing trailing blanks depending on whether it used as a static or
dynamic variable. If the operand is a static variable, it is not possible to remove trailing blanks using *TRIM.
This is because for static variables, the remaining trailing positions of the variable memory are filled with space
characters. However, it is possible to remove trailing blanks when using dynamic variables.

operand

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

operand C S A A B yes no

LEADING
Removes leading blanks from operand, when using the keyword LEADING as a second argument.

*TRIM(..., LEADING)

TRAILING

*TRIM(..., TRAILING)

Copyright © Software AG 200326

*TRIM - Remove Leading and/or Trailing Blanks*TRIM - Remove Leading and/or Trailing Blanks

Removes leading blanks from operand, when using the keyword TRAILING as a second argument.

Operand Not Followed by a Keyword
Removes leading and trailing blanks from operand, when not using a keyword as a second argument.

*TRIM(...)

27Copyright © Software AG 2003

Operand Not Followed by a Keyword*TRIM - Remove Leading and/or Trailing Blanks

Examples

Example Using an Alphanumeric Argument

Copyright © Software AG 200328

*TRIM - Remove Leading and/or Trailing BlanksExamples

DEFINE DATA LOCAL
/*******************************
/* STATIC VARIABLE DEFINITIONS
/*******************************
1 #SRC (A15) INIT <’ ab CD ’>
1 #DEST (A15)

/* FOR PRINT OUT WITH DELIMITERS
1 #SRC-PRN (A20)
1 #DEST-PRN (A20)

/*******************************
/* DYNAMIC VARIABLE DEFINITIONS
/*******************************
1 #DYN-SRC (A)DYNAMIC INIT <’ ab CD ’>
1 #DYN-DEST (A)DYNAMIC

/* FOR PRINT OUT WITH DELIMITERS
1 #DYN-SRC-PRN (A)DYNAMIC
1 #DYN-DEST-PRN (A)DYNAMIC

END-DEFINE

PRINT ’static variable definition:’
PRINT ’---------------------------’
COMPRESS FULL ’:’ #SRC ’:’ TO #SRC-PRN LEAVING NO SPACE
PRINT ’ ’
PRINT ’ 123456789012345 123456789012345’

MOVE *TRIM(#SRC, LEADING) TO #DEST
COMPRESS FULL ’:’ #DEST ’:’ TO #DEST-PRN LEAVING NO SPACE
DISPLAY #SRC-PRN #DEST-PRN ’*TRIM(#SRC, LEADING)’

MOVE *TRIM(#SRC, TRAILING) TO #DEST
COMPRESS FULL ’:’ #DEST ’:’ TO #DEST-PRN LEAVING NO SPACE
DISPLAY #SRC-PRN #DEST-PRN ’*TRIM(#SRC, TRAILING)’

MOVE *TRIM(#SRC) TO #DEST
COMPRESS FULL ’:’ #DEST ’:’ TO #DEST-PRN LEAVING NO SPACE
DISPLAY #SRC-PRN #DEST-PRN ’*TRIM(#SRC)’

PRINT ’ ’
PRINT ’dynamic variable definition:’
PRINT ’----------------------------’
COMPRESS FULL ’:’ #DYN-SRC ’:’ TO #DYN-SRC-PRN LEAVING NO SPACE
PRINT ’ ’
PRINT ’ 1234567890 12345678’

MOVE *TRIM(#DYN-SRC, LEADING) TO #DYN-DEST
COMPRESS FULL ’:’ #DYN-DEST ’:’ TO #DYN-DEST-PRN LEAVING NO SPACE
DISPLAY (AL=20) #DYN-SRC-PRN #DYN-DEST-PRN ’*TRIM(#SRC, LEADING)’

MOVE *TRIM(#DYN-SRC, TRAILING) TO #DYN-DEST
COMPRESS FULL ’:’ #DYN-DEST ’:’ TO #DYN-DEST-PRN LEAVING NO SPACE
DISPLAY (AL=20) #DYN-SRC-PRN #DYN-DEST-PRN ’*TRIM(#SRC, TRAILING)’

MOVE *TRIM(#DYN-SRC) TO #DYN-DEST
COMPRESS FULL ’:’ #DYN-DEST ’:’ TO #DYN-DEST-PRN LEAVING NO SPACE
DISPLAY (AL=20) #DYN-SRC-PRN #DYN-DEST-PRN ’*TRIM(#SRC)’

PRINT ’ ’
PRINT ’":" := delimiter character to show the start and ending of a string!’

END

29Copyright © Software AG 2003

Example Using an Alphanumeric Argument*TRIM - Remove Leading and/or Trailing Blanks

Output

 #SRC-PRN #DEST-PRN
-------------------- -----------------------

static variable definition:

 123456789012345 123456789012345
: ab CD : :ab CD : *TRIM(#src, leading)
: ab CD : : ab CD : *TRIM(#src, trailing)
: ab CD : :ab CD : *TRIM(#src)

dynamic variable definition:

 1234567890 12345678
: ab CD : :ab CD : *TRIM(#src, leading)
: ab CD : : ab CD: *TRIM(#src, trailing)
: ab CD : :ab CD: *TRIM(#src)

’:’ := delimiter character to show the start and ending of a string!

Example Using an Alphanumeric Argument

Copyright © Software AG 200330

*TRIM - Remove Leading and/or Trailing BlanksOutput

DEFINE DATA LOCAL
/*******************************
/* STATIC VARIABLE DEFINITIONS
/*******************************
1 #SRC (B10) INIT <H’2020FFFF2020FFFF2020’>
1 #DEST (B10)

/*******************************
/* DYNAMIC VARIABLE DEFINITIONS
/*******************************
1 #DYN-SRC (B)DYNAMIC INIT <H’2020FFFF2020FFFF2020’>
1 #DYN-DEST (B)DYNAMIC
END-DEFINE

FORMAT LS=100

PRINT ’static variable definition:
’PRINT ’---------------------------’
MOVE *TRIM(#SRC, LEADING) TO #DEST
PRINT #SRC #DEST ’*TRIM(#SRC, LEADING)’

MOVE *TRIM(#SRC, TRAILING) TO #DEST
PRINT #SRC #DEST ’*TRIM(#SRC, TRAILING)’

MOVE *TRIM(#SRC) TO #DEST
PRINT #SRC #DEST ’*TRIM(#SRC)’

PRINT ’ ’
PRINT ’dynamic variable definition:’
PRINT ’----------------------------’

MOVE *TRIM(#DYN-SRC, LEADING) TO #DYN-DEST
PRINT #DYN-SRC #DYN-DEST ’ *TRIM(#SRC, LEADING)’

MOVE *TRIM(#DYN-SRC, TRAILING) TO #DYN-DEST
PRINT #DYN-SRC #DYN-DEST ’ *TRIM(#SRC, TRAILING)’

MOVE *TRIM(#DYN-SRC) TO #DYN-DEST
PRINT #DYN-SRC #DYN-DEST ’ *TRIM(#SRC)’

PRINT ’ ’

PRINT ’hex."20" := space character’
END

Output

31Copyright © Software AG 2003

Output*TRIM - Remove Leading and/or Trailing Blanks

static variable definition:

2020FFFF2020FFFF2020 0000FFFF2020FFFF2020 *TRIM(#src, leading)
2020FFFF2020FFFF2020 00002020FFFF2020FFFF *TRIM(#src, trailing)
2020FFFF2020FFFF2020 00000000FFFF2020FFFF *TRIM(#src)

dynamic variable definition:

2020FFFF2020FFFF2020 FFFF2020FFFF2020 *TRIM(#src, leading)
2020FFFF2020FFFF2020 2020FFFF2020FFFF *TRIM(#src, trailing)
2020FFFF2020FFFF2020 FFFF2020FFFF *TRIM(#src)

hex.’20’ := space character

Copyright © Software AG 200332

*TRIM - Remove Leading and/or Trailing BlanksOutput

	Cover Page
	page 2

	Table of Contents
	Natural System Functions
	Natural System Functions for Use in Processing Loops
	Using System Functions in Processing Loops
	Specification/Evaluation
	Use in SORT GIVE FUNCTIONS Statement
	Arithmetic Overflows in AVER, NAVER, SUM or TOTAL
	Statement Referencing †r‡

	Detailed Descriptions
	AVER†r‡†field‡
	COUNT†r‡†field‡
	MAX†r‡†field‡
	MIN†r‡†field‡
	NAVER†r‡†field‡
	NCOUNT†r‡†field‡
	NMIN†r‡†field‡
	OLD†r‡†field‡
	SUM†r‡†field‡
	TOTAL†r‡†field‡

	Examples
	
	System Functions Example 1:
	System Functions Example 2:
	System Functions Example 3:
	System Functions Example 4:

	Mathematical Functions
	
	
	Mathematical Functions Example:

	Miscellanous Functions
	POS - Field Identification Function
	
	
	POS and *CURS-FIELD

	RET - Return Code Function
	SORTKEY - Sort-Key Function
	*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum
	Function
	operand
	result-format-length
	Resulting Format/Length Conversion Rule Tables
	Explicit Specification of the Resulting Format/Length
	Implicit Specification of the Resulting Format/Length

	Evaluating the result-format-length
	Format/Length Evaluation Order

	*TRANSLATE - Translate to Lower/Upper Case Characters
	Function
	operand
	LOWER
	UPPER
	Example
	Output

	*TRIM - Remove Leading and/or Trailing Blanks
	Function
	operand
	LEADING
	TRAILING
	Operand Not Followed by a Keyword
	Examples
	Example Using an Alphanumeric Argument
	Output
	Example Using an Alphanumeric Argument
	Output

