NALURAL

| Natural RPC (Remote | Version 5.1.1 for Mainframes | Natural RPC (Remote Procedure Call)
Procedure Call)

fy softwARE AG

This document applies to Natural RPC (Remote Procedure Call) Version 5.1.1 for Mainframes and to all
subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release
notes or new editions.

© Copyright Software AG 1979 - 2003.
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

Natural RPC - Overview

Table of Contents

Natural RPC - Overview
Natural RPC - Overview .
Principles of Natural RPC .
Principles of Natural RPC
General Information
Purpose
Advantages of Natural Remote Procedure Calls
Natural RPC Modes of Operation
Availability on Various Platforms.
Support of Non-Natural Environments
Prerequisites
Natural RPC Operation in Non Conversatlonal Mode
Issuing CALLNATSs in an RPC Environment .
Natural RPC Operation in Conversational Mode .
General Rules for Local/Remote Subprogram Execution .
Conversational versus Non-Conversational Mode .
General Rules for Use of Conversational/Non- Conversauonal RPC
Possible Disadvantage of Using Conversational RPC.
Database Transactions
Non-conversational CALLNAT
Conversational CALLNAT .
Restrictions and Limitations when Using Natural RPC .
User Context Transfer
System Variable Transfer
Parameter Handling in Error S|tuat|ons
Variable Arrays in Subprograms.
Natural Statement Reactions
Location of Conversations
Future Restrictions of Statement Usage W|th RPC
Setting Up a Natural RPC Environment.
Setting Up a Natural RPC Environment
Setting Up a Natural Client
Setting Up A Natural Server .
Setting Up an EntireX Broker Access .
Using TCP/IP as a Transport Method
Setting Up an EntireX Broker Environment.
Starting a Natural Server .
Starting a Natural Server in a Mamframe OnIme Enwronment
Starting a Batch Server in a Mainframe Environment.
Starting a Server in a UNIX Environment.
Starting a Server in a Windows Environment.
Considerations for Natural RPC Servers with Replicates
Natural RPC Batch Server with NTASKS >1 .
Running a Batch Server with Replicates .
Operating a Natural RPC Environment .
Operating a Natural RPC Environment
Specifying RPC Server Addresses.
Using Local Directory Entries
Using Remote Directory Entries .
Specifying a Default Server Address at Natural Startup
Specifying a Default Server Address within a Natural Session
Using an Alternative Server .
Using EntireX Location Transparency

Copyright © Software AG 2003

Table of Contents

CONOCUOUDRRPRWWWWWERPRF

Table of Contents

Stubs and Automatic RPC Executian
Creating Stub Subprograms . . .
Working with Automatic Natural RPC Executron .
Modifying RPC Profile Parameters Dynamically.
Executing Server Commands . .
Logon to a Server Library .
Using the LOGON Option .
Settings Required on the Client S|de
Settings Required on the Server Side
Using Natural RPC with Natural Security
Using Natural RPC with EntireX Securrty
Client Side . S
Server Side .
Using Compression
Using Secure Socket Layer.
Using Interface USR2035N .
Monitoring the Status of an RPC Session
Using the RPCERR Program.
Using the RPCINFO Subprogram
Using the Server Trace Facility
Defining the Trace File
Handling Errors .
Remote Error Handling . .
Avoiding Error Message NAT3009 from Server Program .
User Exit NATRPCO1 e
Terminating a Natural RPC Server .
Using SYSRPC .
Using Entirex Control Center or Ent|reX System Management Hub
User Exit NATRPC99
Using a Conversational RPC
Using a Conversational RPC .
Opening a Conversation
Closing a Conversation
Defining a Conversation Context
Modifying the System Variable *CONVID
Using a Remote Directory Server - RDS.
Using a Remote Directory Server - RDS .
RDS Principles of Operation
Using a Remote Directory Server
Creating an RDS Interface .
Creating a Remote Directory Service Routrne
Remote Directory Service Program RDSSCDIR.

Natural RPC - Overview

27
28
28
28
28
29
29
30
30
30
31
31
32
33
34
34
35
35
35
37
38
41
41
41
41
42
42
42
42
43
43
43
44
45
45
46
46
46
48
50
52
53

Copyright © Software AG 2003

Natural RPC - Overview Natural RPC - Overview

Natural RPC - Overview

Remote procedure call (RPC) techniques establish a framework for communication between server and client
systems that can be located on the same computer or based on a network of identical or heterogeneous machines
and operating systems. Several basically similar methods are known. This documentation describes the theory of
operation and the use of the RPC techniques provided by Natural to enable the design and to simplify the
application of distributed software systems.

Related Documentation:
For instructions on the functions provided to maintain remote procedure calls refer to the SBR&IC
Utility documentation.

This document is organized in the following sections:

Principles of Natural RPC
Setting up a Natural RPC Environment
Operating a Natural RPC Environment

Using a Conversational RPC

“ L ¢ L L

Using a Remote Directory Server (RDS)

Related Products
EntireX RPC for 3GL, Entire Network, EntireX Broker
Definition of Terms

The following table provides an overview of important key terms used in the SYSRPC Utility and the Natural
RPC documentation:

Copyright © Software AG 2003 1

Natural RPC - Overview Natural RPC - Overview

Term

Explanation

Client Stub

Accepts the CALLNAT requests on the client side, marshalls the parameters passed
transmits the data through the Natural RPC runtime and the transport layer to the re
server, unmarshalls the result and returns it to the caller.

The client stub is the local subprogram via which the server subprogram is called. T
client stub has the same name and contains the same parameters as the correspon
subprogram.

mote

ne
ling server

EntireX Broker
Stub

Interface between the Natural RPC runtime and the EntireX Broker transport layer W
exchanges marshalled data between client and server.

hich

t the

NATCLTGS The name of the Natural subprogram generated with the SYSRPC utility to impleme
service directorysee below).
Node Name The name of the node to which the remote CALLNAT is sent.

In case of communication via the EntireX Broker, the node name is the name of the
EntireX Broker for example, as defined in the EntireX Broker attribute file, in the field
BROKER-ID.

RPC Parameters

All parameters available to control a Natural RPC as described in the Natural Param
Reference documentation:

The RPC parameters are included in the NTRPC macro (static definition) or are defi
with the RPC profile parameter (dynamic definition).
SeeNTRPC MacroandProfile Parameter@RPC - Remote-Procedure-Call Settings).

eter

ned

Service Directory

The service directory contains information on the services (subprograms) that a seny

er

provides. It can be locally available on each client node, or it can be located on a refote

directory server referenced by tR®S profile parametgsee the relevant section in the
Natural Parameter Reference documentation).

Server Name

The name of the server on which the CALLNAT is to be executed.

In case of communication via EntireX Broker, the server name is the name as defing
EntireX Broker attribute file, located in the field SERVER.

din the

Server Task

A Natural task which offers services (subprograms). This is typically a batch task or

asynchronous task. It is identified by a server name.

Copyright © Software AG 2003

Principles of Natural RPC Principles of Natural RPC

Principles of Natural RPC

This section covers the following topics:

General Information

Natural RPC Operation in Non-Conversational Mode
Natural RPC Operation in Conversational Mode
Conversational versus Non-Conversational Mode
Database Transactions

Restrictions and Limitations when Using Natural RPC

General Information

The following topics are covered below:

Purpose

Advantages of Natural Remote Procedure Calls
Natural RPC Modes of Operation

Availability on Various Platforms

Support of Non-Natural Environments
Prerequisites

Purpose

The Natural RPC facility enables a client Natural program to issue a CALLNAT statement to invoke a
subprogram in a server Natural. The Natural client and server sessions may run on the same or on a different
computer.

Example:

A Natural client program on a Windows computer can issue a CALLNAT against a mainframe server in order to
retrieve data from a mainframe database. The same Windows computer can act as a server if a Natural client
program running under, for example, UNIX issues a CALLNAT requesting data from this server Natural.

Advantages of Natural Remote Procedure Calls

Natural RPC exploits the advantages of client server computing. In a typical scenario, Natural on a Windows
client computer accesses server data (using a middleware layer) from a Natural on a mainframe computer. The
following advantages arise from that:

® The end user on the client can use a Natural application with a graphical user interface.
® A large database can be accessed on a mainframe server.
® Network traffic can be minimized when only relevant data are sent from client to server and back.

Copyright © Software AG 2003 3

Natural RPC Modes of Operation Principles of Natural RPC

Natural RPC Modes of Operation
The Natural Remote Procedure Call offers the following modes of operation:

® non-conversational mode (in the following texts this mode is meant unless otherwise specified)
® conversational mode

These modes are described in detail in the following sections. For a comparison of the advantages and
disadvantages of these modes refeConversational versus Non-Conversational Mode.

Availability on Various Platforms

You can use the Natural RPC on various platforms under the following operating systems:

Mainframe Environments

0S/390
VSE/ESA
VM/CMS
BS2000/0SD

Natural RPC on mainframes is supported under the following TP monitors:

® Com-plete
CICS
IMS/TM
TSO

°
°
°
e UTM

Also, it is available in batch mode.

Other Environments

e UNIX
® \Windows

On all of these platforms, Natural can act as both client and server.

Exception: Under Windows 98 and Windows ME, Natural can only act as client.

4 Copyright © Software AG 2003

Principles of Natural RPC Support of Non-Natural Environments

Support of Non-Natural Environments

Non-Natural environments (3GL and other programming languages) are supported on the client and the server
side. Thus, a non-Natural client can communicate with a Natural RPC server, and a Natural client can
communicate with a non-Natural RPC server. This is enabled by the use of the EntireX SDK.

Prerequisites
The Natural RPC interface requires the following products:

Software AG EntireX Broker (including the stubs).

Software AG Entire Net-work (if the transport method used by EntireX Broker is Entire Net-work)
TCP/IP (if the transport method used by EntireX Broker is TCP/IP)

EntireX SDK for non-Natural programming language support.

Directory services if the location transpareny provided by Software AG EntireX Broker is used.

For the supported versions, refeMNatural and Other Software AG Produittghe current Natural release Notes
for Mainframes.

Copyright © Software AG 2003 5

Natural RPC Operation in Non-Conversational Mode Principles of Natural RPC

Natural RPC Operation in Non-Conversational Mode

The non-conversational mode should be used only to accomplish a single exchange of data with a partner. See
alsoConversational versus Non-Conversational Mode.

The Natural RPC technique uses the Natural statement CALLNAT, so that both local and remote subprogram
calls can be issued in parallel. Remote program calls work synchronously. As a remote procedure call, a
CALLNAT would, simply speaking, take the following route:

The CALLNAT issued from the Natural Client is routed via a middleware layer to the Natural Server which
passes data back to the client.

Usually, the middleware layer consists of the Software AG product EntireX Broker which uses the ACI protocol.
EntireX Broker uses either Entire Net-Work or TCP/IP as communication layer.

A detailed example of the RPC control flow is described below.

6 Copyright © Software AG 2003

Principles of Natural RPC Issuing CALLNATS in an RPC Environment

Issuing CALLNATSs in an RPC Environment

CALLNAT control flow details in a remote procedure are illustrated below. For greater clarity, the return path is
not shown, but it is analogous; the numbers refer to the description:

Natural Client
Program PGM1 Subprogram SUB1 (Client Stub)

3

Middleware Layer

Natural Server (SRV1)

_
_
_
_
_

1. From the Natural client, the program PGML1 issues a CALLNAT to the subprogram SUB1. PGM1 does not
know if its CALLNAT will result in a local or in a remote CALLNAT.
As the target SUBL1 resides on a server, the CALLNAT accesses a "stub" subprogram SUBL1 instead. This

Target of Remote CALLMAT)

Copyright © Software AG 2003 7

Issuing CALLNATS in an RPC Environment Principles of Natural RPC

client stub subprogram has been created automatically or by using the SYSRPC Utility’s Stub Generation
(SG) function.

The stub has the same name as the target subprogram and contains parameters identical with those used in
program PGM1 and the target subprogram SUB1 on the server. It also contains control information used
internally by the RPC.

If the parameter AUTORPC is set to ON and Natural cannot find the subprogram in the local environment,
Natural will interpret this as a remote procedure call and will generate the parameter area dynamically during
runtime.

It will also try to find this subprogram in the Service Directory.

For more information on the SYSRPC Stub Generation function, se€ralating Stub Subprograms
If you want to work without stubs, see aldtrking with Automatic Natural RPC Execution

2. The stub then sets up a CALLNAT to an RPC client service routine.
3. The client RPC runtime checks in the service directory NATCLTGS on which node and server the
CALLNAT is to be performed and whether a logon is required.
The CALLNAT data including the parameter list and optionally the logon data are passed to a middleware
layer.
4. In this example, this middleware layer consists of the Software AG product EntireX Broker. Therefore, the
CALLNAT data is first passed to an EntireX Broker stub on the client.
5. From the EntireX Broker stub, the CALLNAT data is passed to the EntireX Broker. The EntireX Broker is
a product that can reside:
e on the client computer
® on the server computer or
® on a third platform.
For the data to be passed on successfully, the server SRV1 must be defined in the EntireX Broker attribute
file and SRV1 must be already up, thus having registered with EntireX Broker.
For information on how to define servers in the EntireX Broker attribute file, see the EntireX Broker
documentation.
6. From the middleware layer, the CALLNAT data is passed on to the EntireX Broker Stub on the Natural
Server platform and from there to the RPC server runtime.
The server runtime validates the logon data (if present) and performs a logon (if requested).
7. The RPC server runtime invokes the target subprogram SUB1 and passes the data, if requested.
At this point, the target subprogram SUB1 has all the required data to execute just as if it had been invoked
by a local program PGML1.
8. Then, for example, SUBL1 can issue a FIND statement to the server's Adabas database. SUB1 does not
know whether it has been performed by a local or by a remote CALLNAT.
9. Adabas FINDs the data and passes them to SUB1.
Then, SUBL returns the Adabas data to the calling server service routine, which passes it back to PGML1 via
the middleware layer using the same route as described in Steps 1 to 8, but in reverse order.

8 Copyright © Software AG 2003

Principles of Natural RPC Natural RPC Operation in Conversational Mode

Natural RPC Operation in Conversational Mode

A conversational RPC is a static connection of limited duration between a client and a server. It provides a
number of services (subprograms) defined by the client, which are all executed within one process that is
exclusively available to the client for the duration of the conversation.

Multiple connections (conversations) can exist at the same time. They are maintained by the client by means of
conversation IDs, and each of them is performed on a different server. Remote procedure calls which do not
belong to a given conversation are executed on a different server, within a different process.

During a conversation, you can define and share a data area called context area between the remote subprograms
on the server side.

A conversation may be local or remote.

Example:

OPEN CONVERSATION USING SUBPROGRAM 'S1"S2’
CALLNAT 'S1' PARMS1
CALLNAT 'S2' PARMS2
CLOSE CONVERSATION ALL

Both subprograms (S1 and S2) must be accessed at the same location, i.e. either locally or remotely. You are
not allowed to mix up local and remote CALLNATSs within a conversation. If the subprograms are executed
remotely, both subprograms will be executed by the same server replicate.

Analogously to non-conversational RPC CALLNATS, conversations may first be written and tested locally and
can then be transferred to the servers.

General Rules for Local/Remote Subprogram Execution

Local Subprogram Execution
If you execute subprograms locally, the following rule applies:
® A subprogram may not call another subprogram which is a member of the conversation.

Other subprograms not listed in the OPEN CONVERSATION statement may be called. They are executed in
non-conversational mode.

Remote Subprogram Execution
If you execute subprograms remotely, the following rule applies:
® A subprogram S1 may call another subprogram S2 which is a member of the conversation.

This CALLNAT will be executed in non-conversational mode because it was invoked indirectly. Thus, the
subprogram S2 does not have access to the context area.

Copyright © Software AG 2003 9

Conversational versus Non-Conversational Mode Principles of Natural RPC

Conversational versus Non-Conversational Mode

In a client-server environment where several clients access several servers in non-conversational mode, there
may be the problem that identical CALLNAT requests from different clients are executed on the same server.

This means, for example, that a CALLNAT 'P1’ from Client 1 executes Subprogram 1 on server A (P1 is writing
a record to the database). The transaction for Client 1 is not yet complete (ho END TRANSACTION) when
Client 2 also sends a CALLNAT 'P1’ to server A, thus overwriting the data from Client 1. If Client 1 then sends
a CALLNAT 'P2’ (meaning END TRANSACTION), Client 1 thinks its data have been saved correctly while the
data from client 2’s identical CALLNAT have in fact been saved.

The diagram below illustrates this with two clients and three servers. In such a scenario, you cannot control
whether two identical CALLNATSs from two different clients access the same subprogram on the same server:

Server A

» Subprogram 1

/ Subprogram 2

Subprogram 3
Context area

Server B

.,

x‘ Subprogram 1

~~ "M Subprogram 2
~"" Subprogram 3
Context area

g

Server C

> Subprogram 1

= Subprogram 2
Subprogram 3
Context area

CALLNAT 'P1’ from Client 1 can access Subprogram 1 on server A, B, or C. CALLNAT 'P1’ from Client 2 has
the same choice. It is obvious that interference can be a problem here if the subprograms are designed to be
executed within one process context.

You can avoid the potential problems of a non-conversational RPC by defining a more complex RPC
transaction. You do this by opening a conversation, for example, on Client 1 comprising CALLNAT 'P1" and
CALLNAT 'P2'. Opening such a conversation reserves one entire server replicate (for example, server A) and
no other remote CALLNATS may interrupt this conversation on this server until the conversation is closed.

10 Copyright © Software AG 2003

Principles of Natural RPC Database Transactions

General Rules for Use of Conversational/Non-Conversational RPC
As a general rule, the following applies:

® Use theconversational RPCto ensure that a defined list of subprograms is executed exclusively within one
context.

® Use thenon-conversational RPCif each of your subprograms can be used within a different process or if
the transaction does not extend over more than one server call. The advantage of this is that no server blocks
over a significant amount of time and you only need a relatively small number of server replicates.

Possible Disadvantage of Using Conversational RPC

A possible disadvantage of conversational RPCs is that you reserve an entire server replicate, thus blocking all
other subprograms on this server. As a consequence, other CALLNATs might have to wait or more server
replicates must be started.

Database Transactions

The database transactions on the client and server side run independent of each other. That is, an END
TRANSACTION or BACKOUT TRANSACTION executed on the server side does not effect the database
transaction on the client side and vice-versa.

At the end of each non-conversational CALLNAT and at the end of each conversation, an implicit BACKOUT
TRANSACTION is executed on the server side. To commit the changes made by the remote CALLNAT(S), you
have the following options:

® Non-conversational CALLNAT
® Conversational CALLNAT

Non-conversational CALLNAT

1. Execute an explicit END TRANSACTION before leaving the CALLNAT.
2. Set the Natural profile parameter ETEOP to ON. This results in an implicit END TRANSACTION at the
end of each non-conversational CALLNAT.

Conversational CALLNAT

1. Execute an explicit END TRANSACTION on the server before the conversation is terminated by the client

2. Set the Natural profile parameter ETEOP to ON. This results in an implicit END TRANSACTION at the
end of each conversation.

3. Before executing the CLOSE CONVERSATION statement, call the interface USR2032N on the client side.
This will cause an implicit END TRANSACTION at the end of the individual conversation.

Copyright © Software AG 2003 11

Restrictions and Limitations when Using Natural RPC Principles of Natural RPC

Restrictions and Limitations when Using Natural RPC

When executing a subprogram by using the Natural RPC facility, several differences to local execution apply.

User Context Transfer

System Variable Transfer

Parameter Handling in Error Situations

Variable Arrays in Subprograms

Natural Statement Reactions

Location of Conversations

Future Restrictions of Statement Usage with RPC

User Context Transfer
Excepting the user identification, no user context is transferred to the server session, for example:

all client session parameters remain unchanged and do not affect the execution on the server side;
open transactions on the client side cannot be closed by the server and vice versa;

client report handling and work-file processing cannot be continued on the server side and vice versa;
the handling of the Natural stack cannot be continued either.

System Variable Transfer

No system variables except *USER can be transferred from the client to the server side.

Parameter Handling in Error Situations
Parameter handling in error situations is different:

e If an error occurs during local execution, all parameter modifications performed so far are in effect, because
parameters are passed via "call by reference".
e If an error occurs during remote execution, however, all parameters remain unchanged.

Variable Arrays in Subprograms
If the parameter data area of the subprogram contains a variable number of occurrences (31:VS notation), you

should not use a stub to call this subprogram. As a stub only supports array definitions with a fixed number of
occurrences, you cannot vary the number of occurrences from call to call.

12 Copyright © Software AG 2003

Principles of Natural RPC

Natural Statement Reactions

Natural Statement Reactions

Several Natural statements may react in a different way, for example:

executions by other users.

Statement Description
OPEN/CLOSE If executed on a server, these statements do not affect the client session. When the
CONVERSATION server itself acts as a client for another server (as agent), these statements orjly affect
the conversations on the second server.
PASSW The password setting remains active at the server side only, also for subsequént

SET CONTROL,
SET GLOBALS,
SET KEY,

SET TIME,

SET WINDOW

No settings are returned to the caller.

STACK

All stack data are released after execution.

STOP,
TERMINATE

These statements do not stop the client session.

Location of Conversations

Both subprograms (S1 and S2) must be accessed at the same location, i.e. either locally or remotely. You are not
allowed to mix up local and remote CALLNATS within a conversation. If the subprograms are executed
remotely, both subprograms will be executed by the same server replicate.

Future Restrictions of Statement Usage with RPC

Current State

With the current Natural version, the use of the following statements in conjunction with RPC is theoretically
possible, but not recommended, as it causes undesired effects:

Statement Description

TERMINATE | Using this statement causes the server to be terminated, regardless of conversations that may

still be open.
FETCH, Using these statements causes the CALLNAT context to be lost.
RUN, Upon a FETCH, RUN or STOP statement, the server detects that it has lost its CALLNAT
STOP context

and returns a corresponding Natural error message to the client; at that time, however, the
statement has already been executed by the server.
Exception: This does not apply to FETCH RETURN.

INPUT Input values are unpredictable when the input data are read from a file (and not from thef stack).

Future State

The use of the statements FETCH, INPUT and RUN in conjunction with the Natural RPC will be inhibited.

Copyright © Software AG 2003

13

Future Restrictions of Statement Usage with RPC Principles of Natural RPC

Statement Description

FETCH, Not permitted.
RUN, INPUT

STOP, Same as ESCAPE ROUTINE.
TERMINATE

14 Copyright © Software AG 2003

Setting Up a Natural RPC Environment Setting Up a Natural RPC Environment

Setting Up a Natural RPC Environment

To set up a Natural RPC environment, you must perform the following steps for all client and server Naturals:

Setting Up a Natural Client

Setting Up a Natural Server

Setting Up an EntireX Broker Access

Setting Up an EntireX Broker Environment

Starting a Natural Server

Considerations for Natural RPC Servers with Replicates

Setting Up a Natural Client
To set up a Natural client proceed as described below:

1. Define the name of the server to be used.
Use the SYSRPC utility to define the name of the server to be used for each CALLNAT to be executed
remotely. For details, refer ®ervice Directory Maintenande theSYSRPCutility documentation.
The generated directory subprogram NATCLTGS must be made available to the Natural client application.
If you have not generated NATCLTGS in your client library, you have to move NATCLTGS to this library
or to one of the Steplibs.
Optionally, you can use the following server selection techniques:
® Address a default server;
for more information, seBpecifying a Default Server Address Dynamically
or profile parameteDFS.
e Try alternative servers;
for more information, seklodifying RPC Profile Parameters Dynamically
or profile parameteFRYALT.
® Use a Remote Directory Server (RDS),
for more information, sedsing a Remote Directory Seryer profile parametdRDS.

For Windows and UNIX Environments:

Predict servers are not maintained in the SYSRPC utility. For information on how to connect to a Predict
server, see the profile parametdE8EDIC or the Dictionary Server Assignments function in the Global
Configuration File.

2. Generate a stub subprogram.
Skip this step, if you want to work without stub. In this case, set the Natural profile parah&@RPC
to ON, seaNorking with Automatic Natural RPC Execution
For each CALLNAT to be executed remotely, use the Stub Generation function of the SYSRPC utility, see
Creating Stub Subprograms
The generated stub must be made available to the Natural client environment. If you have not generated the
stub subprogram in your client library, you have to move the stub subprogram to this library or to one of the
Steplibs.

3. Set the Natural profile parameters relevant to the client-specific handling of remote procedure calls.
These parameters are (all optional, except RPCSIZE on mainframe clients):
RPCSIZE MAXBUFF, TIMEOUT, AUTORPC TRYALT, COMPR DFS RDSand the Natural profile
parameteCP.

Copyright © Software AG 2003 15

Setting Up A Natural Server Setting Up a Natural RPC Environment

Setting Up A Natural Server

A Natural server is a Natural task that can execute Natural subprograms (services). This Natural task is typically
an asynchronous or background task (detached process). The EntireX Broker and the client identify it by using a
nodenamend aservername

To set up a Natural server proceed as described below:

1. Set the Natural profile parameters relevant to the general and server-specific handling of remote procedure

16

calls in a parameter module for the server NATURAL.

The mandatory profile parameters are:

SERVER SRVNAME, SRVNODE RPCSIZE(RPCSIZE refers to mainframe servers only).

Optional parameters are:

RPCSIZE MAXBUFF, TIMEOUT, LOGONRQ SRVUSER TRANSP, TRACE, ACIVERS and the

Natural profile parametezP.

If the EntireX Broker is used, the name specified with SRVNODE must identify an active EntireX Broker
and the name specified with SRVNAME must match a server definition in the EntireX Broker Attribute
File, seeSetting Up an EntireX Broker Environment

For Mainframe Environments:

If you want to use TCP/IP, you are recommended to set the TRANSP parameter accordingly, as the
preferred transport method is using Entire Net-work.

. Ensure that your Natural server session will enter command mode:

® Set MENU=OFF in your Natural profile parameters.

e Do not put a program onto the Natural stack which never terminates.
® Do not use a STARTUP program which never terminates.

® Do not disallow NEXT mode in Natural Security for your server library.

. Ensure that the ADABAS ETID used by the Natural server session is unique within a certain Adabas

nucleus.

. Start a Natural server as described in the seStamming a Natural Servéelow. This server then waits for

remote CALLNAT requests from a client.

For OS/390 and VSE/ESA in batch mode:

For information about servers using the NTASK parameter, reféonsiderations for Natural RPC Servers
with Replicates

Copyright © Software AG 2003

Setting Up a Natural RPC Environment Setting Up an EntireX Broker Access

Setting Up an EntireX Broker Access

To set up an EntireX Broker interface proceed as follows:

1. Make the EntireX Broker stub accessible to your Natural environment.
For Mainframe Environments:

e If you use the Entire Net-work protocol:
Link the EntireX Broker stub NATETB23 to your Natural or specify RCA=BROKER to load
NATETB23 dynamically at run-time.

e If you use the TCP/IP protocol:
Specify RCA=BROKER RCALIAS=(BROKER{ubnamg
wherestubnameefers to one of the TCP/IP-enabled EntireX Broker stubs BKIMBTSO, BKIMBTIA,
EXAAPSB or EXAAPSC.

In OS/390 batch mode and under TSO, you may either use BKIMBTSO or
EXAAPSB.
You must use the SMARTS-based EXAAPSB:

e [f you want to communicate with the EntireX Broker using SSL.
e |f you want to use the location transparency provided by the EntireX Broker.

Refer to the EntireX documentation for details.
For UNIX:
The EntireX Broker library stub can be assigned in the Local Configuration File of the Natural parameter
module, entry NATEXTLIB.
For Windows:
The EntireX Broker stub must be accessible over the registry.
2. Set the RPC parameter ACIVERS according to your requirements:
Note: The ACIVERS value set in the parameter module can only work if the EntireX Broker and EntireX
Broker stub support this version as well.

Copyright © Software AG 2003 17

Setting Up an EntireX Broker Environment Setting Up a Natural RPC Environment

Setting Function

ACIVERS=2 | (Default) Support of the EntireX Broker functions LOGON and LOGOFF.
The server performs a LOGON to the EntireX Broker before executing the REGISTER,

and a LOGOFF after the DEREGISTER. This does not imply any security checks, but it is
a pure EntireX Broker management function, see EntireX Broker function LOGON.

ACIVERS=3 | Support of EntireX Broker non-numeric conversation IDs.
When this Natural parameter is set to 3 or higher, the EntireX Broker will also assigf
non-numeric conversation IDs.
If a Natural client issues an OPEN CONVERSATION and the client's ACIVERS is 3|or
higher, the EntireX Broker will be able to automatically assign non-numeric conversation
IDs. It will not check whether the associated server does accept non-numeric conversation
IDs, but only the ACIVERS of the requestor (a Natural client in this case) will be dedisive.
Therefore, make sure that both the Natural client and the server support the
respective ACI version.

ACIVERS=4 | Support of code pages and (for servers only) Natural Security.
With EntireX Broker ACI Version 4 or higher, the Natural RPC supports code pages} For
this, the name of the code page can be specified in the Natural profile parameter CF for
clients and servers.

The evaluation of the code page is done by the EntireX Broker. The EntireX Broker
translates the RPC data sent according to the code page of client and server to the
corresponding target code page.

The CP parameter can be set by the client and/or by the server. It applies for the cufrrent
process. This means that the client code page does not need to be identical with the server
code page.

The server is enabled to logon to the EntireX Broker using a qualified user ID.
If the Natural parameter/subparameter SRVUSER is set to *NSC and the server is unning
under Natural Security, the Natural RPC will automatically pass the current Natural pser
ID (*USER) and the password defined in Natural Security to the EntireX Broker, where
they are checked for conformity with the EntireX Broker security data.

ACIVERS=6 | If you are using the EntireX Broker stub EXAAPSC (CICS only), we strongly recommend
that you use the specification of the ACI Version 6. In this case, Natural will use the
TERMINATE option for the LOGOFF from the EntireX Broker.

3. For additional RPC parameters affecting the EntireX Broker, refer Rrofiee Parametersection in the
Parameter Reference documentation.

Using TCP/IP as a Transport Method

If TCP/IP is used as transport method and you use a host name to address the server node, you must either define
the server node in the hosts and services directory of your TCP/IP installation or use a DNS.

Setting Up an EntireX Broker Environment
In the EntireX Broker Attribute File, add the following:

1. For each Natural RPC server, a service definition must be specified as follows:
CLASS=RPC, SERVICE=CALLNAT, SERVER=servername .

2. If you want to use the conversion services, set CONVERSI®&texit In this case, you must set the
Natural profile parameter CP accordingly.

3. If the Natural RPC client and the Natural RPC server are of Natural Version 3.1 or higher (mainframe
environments) or of Natural Version 4.1 or higher (Windows and UNIX environments), you can set
AUTOLOGON=NO.

In this case, ACIVERS must be 2 or higher.

18 Copyright © Software AG 2003

Setting Up a Natural RPC Environment Setting Up an EntireX Broker Environment

4. If both the Natural RPC client and the Natural RPC server are of Natural Version 3.1 or higher (mainframe

environments) or of Natural Version 4.1 or higher (Windows and UNIX environments) and Natural Security is
installed, you can enable EntireX Security by setting:
SECURITY=YES.

In this case, SRVUSER must be set to *NSC on the server side.

Copyright © Software AG 2003 19

Starting a Natural Server Setting Up a Natural RPC Environment

Starting a Natural Server

Any kind of Natural session can be used as a Natural RPC server. But typically, a Natural server is a Natural
session which is started as an asynchronous or as a background task.

For the purpose of starting a server, you have the following options:

® Create an RPC-specific Natural parameter moduleSsttimg Up a Natural Server
This parameter module is either specified dynamically with PABM#erparmwhereserverparms the
name of the parameter module (all platforms) or linked to your Natural (on mainframe only).

® Alternatively, you can also specify the profile parameters dynamically.

e In mainframe environments only: The RPC-specific Natural profile parameter may be specified in a
profile created with the SYSPARM utility.
Natural would then be started with
PROFILE=serverprofile
whereserverprofileis the name of the profile.

How a Natural server is started depends on the environment, refer to the corresponding paragraph:

e Starting a Natural Server in a Mainframe Online Environment
e Starting a Batch Server in a Mainframe Environment

e Starting a Server in a UNIX Environment

e Starting a Server in a Windows Environment

Starting a Natural Server in a Mainframe Online Environment

To start a Natural server in a mainframe online environment, enter the following command:

<natural>
RPC=(SERVER=0N, SRVNAME=servername , SRVNODE=nodename,
RPCSIZE= n, MAXBUFF=n)

Wherenatural is the name with which you start your Natural (transaction code, transaction ID,
environment-dependent nucleus name).

For CICS and Com-plete only:

You can also use the Natural program STARTSRYV in library SYSRPC to start a Natural server in asynchronous
mode. STARTSRYV is a sample front-end for RPCSSRYV that starts the asynchronous Natural session. By default,
the asynchronous Natural is started with the same Natural name in the same library as the current session. If
Natural Security Security (NSC) is used, the user ID of the current Natural session is propagated, too. You may
adapt the input to your requirements.

Some Natural profile parameters are implicitly added by RPCSSRV. If you enter *SHOW?* in the Transaction ID
field, STARTSRYV will show you all dynamic profile parameters that will be used by RPCSSRYV to start the
asynchronous Natural session.

Starting a Batch Server in a Mainframe Environment

Batch servers are started correspondingly. A batch server is a standard Natural batch session that is started with
the RPC profile parameters above. For a sample JCUsiag the Server Trace Facility

Under OS/390, a sample JCL for a started task is provided in Installing Natural under G&£380 Sample

JCL for Natural RPC Server

20 Copyright © Software AG 2003

Setting Up a Natural RPC Environment Starting a Batch Server in a Mainframe Environment

For Batch Mode under OS/390 and VSE/ESA only:

You can also run a batch server with replicates by setting the RPC parblif&fiKS to a value greater than 1.
Replicates are attached to a Natural main task as additional server tasks. They enable you to start several
identical servers in the same region.

Copyright © Software AG 2003 21

Starting a Server in a UNIX Environment Setting Up a Natural RPC Environment

Starting a Server in a UNIX Environment

To start a Natural server under UNIX, enter the following command:

natural parm= serverparm >/dev/null </dev/null &
or
natural server=on,srvname= servername ,srvnode= nodename,maxbuff= n >/dev/null </dev/null &

Starting a Server in a Windows Environment
To start a Natural server under Windows, proceed as follows:

1. Create a shortcut for Natural.

2. Enter the shortcut properties.

3. Create a Natural parameter module with the RPC server parameters set.

4. In the Target input field, edit the Natural path and append:
parm=serverparm batch

or

server=on,srvname= servername ,srvnode= nodename,maxbuff= n batch

22 Copyright © Software AG 2003

Setting Up a Natural RPC Environment Considerations for Natural RPC Servers with Replicates

Considerations for Natural RPC Servers with Replicates
For OS/390 and VSE/ESA only.

Natural RPC Batch Server with NTASKS >1

The main task and all replicates run in the same OS/390 region or VSE/ESA partition.

1. Use the reentrant version ADALNKR of the Adabas link module ADALNK.
If you use ADAUSER, you must rename ADALNKR to ADALNK.
Note:
You may need a separate Copy of the reentrant ADALNK module if you are using 3GL programs which do
not pass a work area as 7th Adabas parameter to the Adabas interface.
2. In the NATPARM module:
o Set the NTRPC subparameter NTASKS§,wheren is the number of parallel servers (< 100) to be
started, including the main task.
Note for VSE/ESA:
The number of subtasks is restricted by the operating system. Ask your system administrator.
o ETID must be specified asdank character to prevent a NAT3048 (ETID not unique in Adabas
nucleus) error when the subtask is started.
3. When using dynamic Natural profile parameters:
Use the CMPRMIN dataset to pass the dynamic Natural profile parameters to Naturai.u3e the
PARM card or the CMSYNIN dataset.
4. When using a local buffer pool (OS/390 only):
Each subtask allocates its own local buffer pool unless you specify a shared local buffer pool. See Natural
profile parameteL BPNAME in the section NTOS Macro - Generation Parameters for Natural under
0S/390 in the Natural Operations for Mainframes documentation.
5. In the Natural front-end link job (OS/390 only):
Link the front-end reentrant by using the RENT option of the linkage editor.
If the front-end is not linked with the RENT option, only the main task will start the communication with
the EntireX Broker. All subtasks are set to a WAIT status by OS/390, until the main task has been
terminated. If you terminate the RPC server lateron, the address space will hang and must be cancelled.
Note:
If you use ADAUSER you must not link ADAUSER with your front-end as ADAUSER is non-reentrant.
Instead, use the Natural profile parameter ADANAME and set ADANAME to ADAUSER. This will cause
Natural to load ADAUSER dynamically at runtime.
6. Make sure that any other modules that are additionally linked to the Natural nucleus are reentrant. Any
dynamically loaded programs must also be reentrant.
Note for OS/390:
If you cannot make a module reentrant, link the module as non-reusabilet &ecify the link option
RENT or REUS). This will ensure that each subtask gets its own copy.

Running a Batch Server with Replicates

For a sample JCL, ségsing the Server Trace Facility

Copyright © Software AG 2003 23

Operating a Natural RPC Environment Operating a Natural RPC Environment

Operating a Natural RPC Environment

This section mainly describes the tasks required to operate a Natural RPC environment. Some of these tasks are
performed with the SYSRPC utility. For instructions on the functions the SYSRPC utility provides, refer to the
NaturalSYSRPC Utilitydocumentation.

This section covers the following topics:

Specifying RPC Server Addresses

Stubs and Automatic RPC Execution
Modifying RPC Profile Parameters Dynamically
Executing Server Commands

Logon to a Server Library

Using the LOGON Option

Using Natural RPC with Natural Security
Using Natural RPC with EntireX Security
Using Compression

Using Secure Socket Layer

Monitoring the Status of an RPC Session
Handling Errors

Terminating a Natural RPC Server

Specifying RPC Server Addresses

To each remote CALLNAT request, a server must be assigned (identifssshi®rnamenndnodenamgon
which the CALLNAT is to be executed. Therefore, all subprograms to be accessed remotely must be defined:

in a local service directory on the client side,

or in a remote directory accessed via a remote directory server,

or by way of default server addressing with the RPC profile parameter DFS,
or within the client application itself by way of default server addressing.

In addition to the methods mentioned above, you can specify alternative servers.
If EntireX Broker is used, it is also possible to define servers using the EntireX location transparency.
Below is information on:

® Using Local Directory Entries

® Using Remote Directory Entries

e Specifying a Default Server Address at Natural Startup

e Specifying a Default Server Address within a Natural Session
® Using an Alternative Server

® Using EntireX Location Transparency

Using Local Directory Entries
All data of a client’s local service directory is stored in the subprogram NATCLTGS. At execution time, this

subprogram is used to retrieve the target server. As a consequence, NATCLTGS must be available in the client
application or in one of the Natural steplibs defined for the application.

24 Copyright © Software AG 2003

Operating a Natural RPC Environment Using Remote Directory Entries

If NATCLTGS has not been generated into a steplib or resides on another machine, use the appropriate Natural
utility (SYSMAIN, SYSTRANS or the Natural Object Handler) to move NATCLTGS into one of the steplib
defined for the application.

If you are using a NATCLTGS for joint usage, you must make it available to all client environments, for
example by copying it to the library SYSTEM, or, if an individual copy is used for a client, it must be maintained
for this client using the Service Directory maintenance function of the SYSRPC utility.

To define and edit RPC service entries, see the sestinvice Directory Maintenange the SYSRPC Utility
documentation.

Using Remote Directory Entries

A remote directory contains service entries that can be made available to several Natural clients. The Natural
clients can retrieve these service entries from remote directory servers. For information on the purpose and on
the installation of remote directory servers, ¥sang a Remote Directory Server

For information on the SYSRPRemote Directory Maintenandenction, see the relevant section in the
SYSRPC Utility documentation.

Specifying a Default Server Address at Natural Startup

Instead of addressing a server by using a local or remote service directory, you can preset a default server with
the RPC profile parameter DFS, as described in your Natural Operations documentation. This server address is
used if the subprogram can be found in neither the local nor the remote service directory.

The DFS setting determines the default server for the whole session or until it is overwritten dynamically.

If no DFS setting exists and the server address of a given remote procedure call could not be found in the service
directory, a Natural error message is returned.

A default server address defined within a client application remains active even if you log on to another library
or if a Natural error occurs.

Specifying a Default Server Address within a Natural Session

The client application itself may dynamically specify a default server address at runtime. For this purpose,
Natural provides the application programming interfd&R2007Nin the library SYSEXT. The interface

enables you to determine a default server address that is to be used each time a remote program cannot be
addressed via the service directory. It includes the following parameters:

Copyright © Software AG 2003 25

Using an Alternative Server Operating a Natural RPC Environment

Parameter | Format | Explanation

function Al P Put: Determines that the server address (composed of the parameters
nodenamendservernamesee below) is the default address for all subsequent
remote procedure calls not defined in the service directory.

To remove a default server address, specify a "blankiddenamend
servername

G Get: Retrieves the current default server address as set by the function P.

nodename |A192 | Specifies/returns the name of the server node to be addressed.
The node name may have up to 32 characters for physical node names and up tq 192
characters for logical node names. 8ség EntireX Location Transparency

Note:
For compatibility reasonservernameés defined with BY VALUE RESULT to support
existing callers which pass an A8 field for #exvername

servername A192 | Specifies/returns the server name to be addressed.
The server name may have up to 32 characters for physical server names and ug to 192
characters for logical service names. Bsig EntireX Location Transparency

Note:
For compatibility reasonsiodenames defined with BY VALUE RESULT to support
existing callers which pass an A8 field for thedename

logon Al Specifies/returns the logon option.

protocol Al Specifies/returns the transport method.
Valid value: B (=EntireX Broker).

The Natural subprogram NATCLTPS in the library SYSRPC is only maintained for compatibility reasons.

Using an Alternative Server

To avoid connection failures, you may want to define several alternative servers for a remote CALLNAT. If you
specify such alternative servers, Natural proceeds as follows:

e The client makes a first attempt to establish the connection.

e If this attempt fails, instead of providing an error message, a second attempt is made, however, this time not
on the same server. Instead, the service directory is searched again starting at the current entry to find out
whether or not another server is available which offers the desired service.

e [f a second entry is found, Natural tries to establish the connection to this server. If the remote procedure
call is performed successfully, the client application keeps on running. The user does not notice whether the
connection to the first server or to the alternative server produced the result.

e If no further entry is found or if the connection to alternative servers fail, Natural issues a corresponding
error message.

P To enable the use of an alternative server

1. Define more than one server in the service directory for the same service.
2. Set the Natural RPC profile parameter TRYALT to ON to give permission to use an alternative server.

This parameter can also be set dynamically for the current session Paeaimeter Maintenandenction as
described in the SYSRPC Utility documentation.

26 Copyright © Software AG 2003

Operating a Natural RPC Environment Stubs and Automatic RPC Execution

Using EntireX Location Transparency

Using EntireX location transparency, you can change physical node and server names without having to
configure anything or to change client and/or server progidms, instead of using a physical node and

physical server name, a server can be addressed by a logical name. The logical name is mapped to the physical
node and server names using directory services.

To take advantage of location transparency, the Natural RPC has been enabled to accept a logical name wherever
only a node and server name could be specified before. The logical name is passed to the EntireX Broker before
it is used the first time.

The maximum length of a logical name is 192 characters. To avoid new Natural profile parameters, a logical
name is specified in the server name part of the already existing parameters. There are two kinds of logical
names:

® |ogical node names
With a logical node name you specify a logical name for the node only in conjunction with a real server
name. A logical node name can be used in all places where you can also use a real node name. To define a
logical node name the keyword LOGBROK must be used.
Example:
SRVNVODE='LOGBRO¥gsgical_node _name,my_set '

® |ogical services
With a logical service, you specify a logical name for both the node and the server. A logical service can be
used in all places where you can also use a real node and server name. To define a logical service, the node
name must be set to * (intentionally left empty), and the server name contains the logical service name.
Example:
SRVNVODE="* SRVNAME='logical service_name,my_set '
Note:
In the case of interface USR2071N, you can LOGON to a logical service name by using the keyword
LOGSERVICE together with the logical service name in the fietder-id

For more details about the EntireX location transparency, refer to the EntireX documentation.
The following components refer to node and server names:

Natural profile parameters SRVNODE, SRVNAME, DFS and RDS
Service maintenance of the SYSRPC utility

Service directory (NATCLTGS)

User application interfaces USR2007N, USR2071N

Service programs RPCERR, RPCINFO

See alsd.ocation Transparendy Service Directory Maintenance in the Natural SYSRPC utility documentation.

Stubs and Automatic RPC Execution

Stubs are no longer required if automatic Natural RPC execution is used, as deséhibddrig with
Automatic Natural RPC Executidrelow.

However, generating stubs provides the advantage of controlling the CALLNAT(s) executed remotely and
facilitates error diagnoses. Should a remote call fail due to an incorrect CALLNAT name, the Natural error
message issued then helps to immediately identify the problem cause. Without a stub, for an incorrect
CALLNAT you may receive follow-up errors returned from the transport layer or the Natural server.

Below is information on:

Copyright © Software AG 2003 27

Modifying RPC Profile Parameters Dynamically Operating a Natural RPC Environment

® Creating Stub Subprograms
® Working with Automatic Natural RPC Execution

Creating Stub Subprograms

With the Stub Generation function of the SYSRPC utility, you can generate the Natural stub subprograms used
to connect the client’s calling program to a subprogram on a server. The stub consists of a parameter data area
(PDA) and of the server call logic.

The PDA contains the same parameters as used in the CALLNAT statement of the calling program and must be
defined in the Stub Generation screen of the Stub Generation function. If a compiled Natural subprogram with

the same name already exists, the PDA used by this subprogram is used to preset the screen. The server call logic
is generated automatically by the Stub Generation function after the PDA has been defined.

At execution time, the Natural application program containing the CALLNAT statement and the stub
subprogram must exist on the client side. The Natural application subprogram must exist on the server side. Both
the stub and server subprograms must have the same name.

For information on the SYSRP&tub Generatiofunction, see the relevant section in the SYSRPC Utility
documentation.

Working with Automatic Natural RPC Execution

You are not required to generate Natural RPC stubs, but you can work with automatic Natural RPC execution
(i.e. without using Natural stubs). To work with automatic Natural RPC execution set the RPC parameter
AUTORPC as follows:

AUTORPC=0ON

In that case, you can omit the generation of the client stub during your preparations for RPC usage. When the
automatic Natural RPC execution is ON, Natural behaves as follows:

e if a subprogram cannot be found locally, Natural tries to execute it remotely (a stub subprogram is not
needed),
® the parameter data area will then be generated dynamically during runtime.

As stubs only exist for client programs, this feature has no effect on the CALLNAT program on the server.

If AUTORPC is set to ON, and a Natural stub exists, it will still be used.

Modifying RPC Profile Parameters Dynamically

With theParameter Maintenandenction, you can dynamically modify some of the RPC profile parameters set
in the Natural profile parameter module for the current session.

Attention:
These modifications are retained as long as the user session is active; they are lost when the session is
terminated. Static settings are only made using Natural profile parameters.

Executing Server Commands

Active servers that have been defined in the service directorgfemifying RPC Server Addres¥esan be
controlled with the SYSRP&erver command execution functias described in the relevant section in the
SYSRPC Utility documentation.

28 Copyright © Software AG 2003

Operating a Natural RPC Environment Logon to a Server Library

Logon to a Server Library

The server library on which the callnat is executed depends on the ®BON optionon the client side and a
couple of parameters on the server side.

The following table shows which the relevant parameters are and how they influence the library setting:

Client Server
1 2 3 4 5 6 7
*library-id RPC LOGONRQ Server NSC NSC: Server
LOGON set? started with or RPC LOGON *library-id
flag for STACK= native option in
server entry Natural? library
set? profile
1| Libl no no logon libl | No influence N/-- Libl
2| Libl no no logon lib2 | No influence N/-- Lib2
3| Libl no yes (Client LOGON flag = nopnd (LOGONRQ = yes)
is not possible.
4| Libl yes No influence No influence NSC AUTO Libl
5| Libl yes No influence No influence NSC N Libl
6| Libl yes No influence No influence Native Natura -- Libl

Explanation of the table columns:

1. The library ID of the client application where the callnat is initiated.

2. The value of the RPC LOGON flag. Can be set for a whole node or a server.
The flag can be set by using
the Service Directory Maintenandanction of the SYSRPC utility,
or the DFS parameter,
or the application programming interface USR2007N.

. LOGONRQ can be set as a Natural profile parameter at server startup.

. The library ID to which the server is positioned at its startup.

. Does the server run under Natural Security (NSC) or not?

. The setting of the LOGON option in the NSC library profile (Session options > RPC restrictions) of the
NSC server application. If the NSC LOGON option is set to AUTO, only library and user ID are taken. If
set to N (default), the library, user ID and password parameters are evaluated.

7. The library on the server where the CALLNAT program is finally executed.

o 01~ W

Using the LOGON Option

The LOGON option defines on which library the remote subprogram is to be executed. $egafsm a
Server Library

When you do not use the LOGON option, the CALLNAT is executed on the library to which the server is
currently logged on. This server logon is defined with the Natural profile parameter STACK = (LOGON
library). The server will search for the CALLNATS to be executelibitary (and all associated steplibs defined
for library).

Copyright © Software AG 2003 29

Using Natural RPC with Natural Security Operating a Natural RPC Environment

A client application can be enabled to execute a subprogram on a different library by setting the LOGON option
for this subprogram. This causes the client to pass the name of its current library to the server, together with this
LOGON option. The server will then logon to this library, searching it for the desired subprogram and, if the
latter is found, it will execute it. After that, it will make a logoff to the previous library.

Settings Required on the Client Side

To set the LOGON option, you can use either the SYS8&wice Directory maintenanéenction (see the
relevant section in the SYSRPC Utility documentation) or - when using a default servBx~Speofile
parameter or thenterface USR2007N

Settings Required on the Server Side

No setting is required on the server side.

Using Natural RPC with Natural Security

Natural RPC also supports Natural Security in client/server environments, where security may be active on either
(or both) sides. If security data is to be passed to the server, the LOGON option (§tngisbe LOGON
Option) must be used.

The user ID and password are established as follows:

e If the client runs under Natural Security:
The user ID and password from the Natural Security logon on the client are used and passed to the server.
® For non-Natural Security clients:
The application programming interfadsSR1071Nis provided which the user has to call for specifying
logon data which are then passed to the server. USR1071N is contained in the library SYSEXT. The logon
data contains the user ID and password from which the so-called security token is generated, and
additionally some administrative information.
Two samples are providedSR1071Pwhich is passing just user ID and password, d8&81071X
(extended version) which enables the user in addition to set/retrieve various data.
To invoke, for example, USR1071P from within a program, specify:
FETCH RETURN 'USR1071P’ USERID(A8) PASSWORD(AS8) .
For a more detailed description, seettf@R1071Tmember in library SYSEXT.

If the server runs under Natural Security, the user ID and password from the client are verified against the
corresponding user security profile on the server, and the logon to the requested library and the execution of the
subprogram are performed according to the corresponding Natural Security library and user profile definitions on
the server.

After the execution of the subprogram, the library used before the CALLNAT request is made current again on
the server. In the case of a conversational RPC, the first CALLNAT request within the conversation sets the
library ID on the server; and the CLOSE CONVERSATION statement resets the library ID on the server to the
one before the conversation was opened.

To enforce the LOGON option - that is, if you want a server to accept only requests from clients where the
LOGON option is set - set the profile parameter/subparameter LOGONRQ to ON for the server.

As part of the Natural RPC Restrictions in library profiles of Natural Security, a session option "Close all
databases" is provided. It causes all databases which have been opened by remote subprograms contained in the
library to be closed when a Natural logon/logoff to/from the libraries is performed. This means that each client
uses its own database session.$ateiral RPC Restrictions the Natural Security documentation.

30 Copyright © Software AG 2003

Operating a Natural RPC Environment Using Natural RPC with EntireX Security

Using Natural RPC with EntireX Security

Natural RPC fully supports EntireX Security on thient sideand theserver side

Client Side

To logon to and logoff from the EntireX Broker, the application programming interface USR2071N is provided

in library SYSEXT. To logon to EntireX Broker, you use the logon function of USR2071N and pass your user

ID and password to the selected EntireX Broker. After a successful logon, the security token returned is saved by
Natural and passed to the EntireX Broker on each subsequent call. The logon feature is fully transparent to the
Natural application.

If EntireX Security has been installed or if AUTOLOGON=NO has been specified in the EntireX Broker
attribute file, you must invoke USR2071N with the logon function before the very first remote CALLNAT
execution.

You are recommended to invoke USR2071N with the logoff function as soon as you no longer intend to use a
remote CALLNAT.

Using the Application Programming Interface USR2071N

USR2071N has the following parameters:

Parameter| I/O | Format | Description

function | AO08 Function code.
Values:

LOGON Logon to EntireX Broker
LOGOFF Logoff from EntireX Broker

broker-id

A192 |Broker ID
Thebroker-idmay have up to 32 characters for physical node names and up o 192
characters for logical node names or logical service names&lsieg EntireX
Location Transparency

Note:
For compatibility reasonsroker-idis defined with BY VALUE RESULT to
support existing callers which pass an A8 field forkiheker-id

user-id AO08 User ID.

password A08 User ID’s password.

newpassw A08 User ID’s new password.

rc O |NO4 Return value:

0 ok
1 invalid function code

9999 EntireX Broker error (semessage

message |O |A80 Message text, returned by EntireX Broker.

Copyright © Software AG 2003 31

Server Side Operating a Natural RPC Environment

The Subprogram USR2071N should be copied to the Library SYSTEM or to the steplib library, or to any
application.

The parameters listed above must be defined via DEFINE DATA.
The calling program must contain the following statement:
CALLNAT "USR2071N’ FUNCTION BROKER-ID USER-ID PASSWORD NEWPASSW RC MESSAGE
Special considerations when using location transparency:
e If you want to LOGON using a logical node name, you have to use the LOGBROK keyword.
BROKER-ID :='LOGBROK= my _logical_node,my_set
e If you want to LOGON using a logical service name, you have to use the LOGSERVICE keyword.

BROKER-ID :='LOGSERVICE= my_logical service,my_set
Functionality

LOGON

An EntireX Broker LOGON function is executed to the nareaker-idwith theuser-idand thepassword
passed. After a successful LOGON call, the client can communicate with the EntireX Bakesrid as usual.

With newpassvthe client user can change her/his password via the EntireX Security features.

Notes:

e If a successful LOGON has been performed, the user ID used in this LOGON will be passed to the named
EntireX Broker on all subsequent remote procedure CALLNATSs which are routed via this EntireX Broker.
Without an explicit LOGON, the current contents of *USER is used. The same applies if you have issued a
LOGON to EntireX Broker 1, but your remote procedure CALLNAT is routed via EntireX Broker 2.

® It is possible to concurrently LOGON to multiple EntireX Brokers. For each LOGON, a different user ID
may be used.

® The user ID used for the LOGON to the EntireX Broker may be different from the Natural user ID under
which the client application runs.

® An internal reLOGON is done after an EntireX Broker timeout has occurred, if the original LOGON was
done without a password (the password used in the LOGON is not saved). If no internal reLOGON is
possible after a timeout has occurred, the client has to explicitly reissue the LOGON.

e At the end of the Natural session, an implicit LOGOFF is executed to all EntireX Brokers to which a
LOGON has been performed.

LOGOFF

An EntireX Broker LOGOFF function is executed to breker-id named.

Server Side

If the value of ACIVERS is 2 or higher, the server will log on to the EntireX Broker at the session start using the
LOGON function. The user ID is the same as the user ID defined by SRVUSER.

If EntireX Security has been installed and if the EntireX trusted user ID feature is not available, there are two
alternative ways to specify the required password:

32 Copyright © Software AG 2003

Operating a Natural RPC Environment Using Compression

® SRVUSER=*NSC

If Natural Security is installed on the server, you can specify SRVUSER=*NSC to determine that the
current Natural Security userID which was used when the server was started is used for the LOGON in
conjunction with the accompanying Natural Security password. In this case, the value set for ACIVERS
must be at least 4.

® USR2072N

The application programming interface USR2072N enables you to specify a password which is used for the
LOGON in conjunction with SRVUSER.

Using the Interface USR2072N

USR2072N has the following parameter:

Parameter| I/O | Format | Description

password A08 User ID’s password.

The Subprogram USR2071N should be copied to the library SYSTEM or to the steplib library, or to any
application.

The parameter listed above must be defined using the DEFINE DATA statement.
The calling program must contain the following statement:
CALLNAT '"USR2072N’ PASSWORD

The calling program must be executed before the Natural RPC server has started its initialization. To accomplish
this, put the name of the calling program on the Natural stack when starting the server:

STACK=(LOGONSserver-library ;USR2072P password)

Using Compression

Compression types may be: 0, 1 or 2. Stubs generated with COMPR = 1 or 2 can help reduce the data transfer
rate.

Compression Description
Type

COMPR=0 All CALLNAT parameter values are sent to and returned from the server,
i.e. no compression is performed.

COMPR=1 M-type parameters are sent to and returned from the server, whereas O-type parametdrs
(default) are only transferred in the send buffer. A-type parameters are only included in the reply buffer.
The reply buffer does not contain the Format description.

COMPR=2 Same as for COMPR = 1, except that the server reply message still contains the format
description of the CALLNAT parameters. This might be useful if you want to use certain
options for data conversion in the Software AG product EntireX Broker (for more information,
see the description of Translation Services in the EntireX Broker documentation).

Copyright © Software AG 2003 33

Using Secure Socket Layer Operating a Natural RPC Environment

Using Secure Socket Layer
The Natural RPC supports Secure Socket Layer (SSL) for the TCP/IP communication to the EntireX Broker.

To enable the EntireX Broker to recognize that the TCP/IP communication should use SSL, you must use one of
the following methods:

® Append the string :SSL to the node name. If the node name has already been postfixed by the string :TCP,
:TCP must be replaced by :SSL.
® Prefix the node name with the string //SSL:

Example:
SRVNODE="157.189.160.95:1971:SSL’

Before you access an EntireX Broker using SSL, you must first invoke the application programming interface
USR2035N to set the required SSL parameter string

Using Interface USR2035N

USR2035N has the following parameters:

Parameter | 1/O | Format Description
function I A0l Function code.

Values:

P | Put: Specify a new SSL parameter string.

G | Get: Retrieve previously specified SSL parameter string.
SSLPARM{I |Al128 |SSL parameter string as required by the EntireX Broke

The Subprogram USR2035N should be copied to the library SYSTEM or to the steplib library, or to any
application.

The parameters listed above must be defined via DEFINE DATA.
The calling program must contain the following statement:
CALLNAT 'USR2035N’ FUNCTION SSLPARMS

Functionality of Interface USR2035N

P (specify a new SSL parameter string)

The SSL parameter string is internally saved and passed to EntireX each time an EntireX Broker using SSL
communication is referenced the first time. You may use different SSL parameter strings for several EntireX
Broker connections by calling USR2035N each time before you access the EntireX Broker the first time.

Example:

FUNCTION :="P’

SSLPARMS :='TRUST_STORE=FILE://DDN:CACERT&VERIFY_SERVER=N’
CALLNAT 'USR2035N’ USING FUNCTION SSLPARMS

To set SSL parameters in case of an Natural RPC server, put the name of the calling program onto the Natural
stack when starting the server.

34 Copyright © Software AG 2003

Operating a Natural RPC Environment Monitoring the Status of an RPC Session

Example:
STACK=(LOGONSserver-library ; set-SSL-parms)

Whereset-SSL-parmis a Natural program that invokes the user application programming interface USR2035N
to set the SSL parameter string.

G (retrieve previously specified SSL parameter string)
The previously put SSL parameter string is returned to the caller.

For more information about the SSL parameter string, refer to the EntireX documentation.

Monitoring the Status of an RPC Session

This part is organized in the following sections:

Using the RPCERR Program
Using the RPCINFO Subprogram
Using the Server Trace Facility
Defining the Trace File

Using the RPCERR Program

You can use the RPCERR program from the command line or invoke it via FETCH from within a Natural
program.

RPCERR displays the last Natural error number and message if it was RPC related and it also displays the last
BROKER reason code and associated message. Additionally, the node and server name from the last EntireX
Broker call can be retrieved.

Example of an RPC Error Display: RPCERROR

NATURAL error number: NAT6972
NATURAL error text :
Directory error on Client, reason 3 :3..

RPC error information:
No additional information available.

Server Node: Library: SYSRPC

Server Name: Program: NATCLT3
Line No: 0480

Using the RPCINFO Subprogram

You can use the subprogram RPCINFO in your application program to retrieve information on the state of the
current RPC session. This also enables you to handle errors more appropriately by reacting to a specific error
class.

The subprogram RPCINFO is included in the library SYSRPC.

Example:

Copyright © Software AG 2003 35

Using the RPCINFO Subprogram

DEFINE DATA LOCAL USING RPCINFOL
LOCAL
1PARM (Al)
1 TEXT (A80)
1 REDEFINE TEXT
2 CLASS (A4)
2 REASON (A4)
END-DEFINE

OPEN CONVERSATION USING SUBPROGRAM "APPLSUB1’
CALLNAT 'APPLSUB1’ PARM
CLOSE CONVERSATION *CONVID

ON ERROR
CALLNAT 'RPCINFO’ SERVER-PARMS CLIENT-PARMS
ASSIGN TEXT=C-ERROR-TEXT
DISPLAY CLASS REASON

END-ERROR

END

Operating a Natural RPC Environment

RPCINFO has the following parameters which are provided in the PDA RPCINFOL:

36

Copyright © Software AG 2003

Operating a Natural RPC Environment

Using the Server Trace Facility

Parameter

Format

Description

SERVER-PARMS

Contains information about the Natural session when acting as a server.
The SERVER-PARMS only apply if you execute RPCINFO remotely on an
server.

RPC

TRUE if a conversation is open, otherwise it contains FALSE.

S-BIKE Al Transport protocol used.
Possible valueB (EntireX Broker)

S-NODE A8 The node name of the server.

S-NAME A8 The name of the server.

S-ERROR-TEXT | A80 Contains the message text returned from the transport layer.

S-CON-ID 14 Current conversation ID. Note that this is the physical ID from EntireX Brokgr,
not the logical Natural ID.
This parameter always contains a value as EntireX Broker generates IDs fgr both
conversational and non-conversational calls.
If the physical conversation ID is either non-numeric or greater than 14, a -1 is
returned.

S-CON-OPEN L Indicates whether there is an open conversation. This parameter contains yalue
TRUE if a conversation is open, otherwise it contains FALSE.

CLIENT-PARMS Contain information about the Natural session when acting as a client.
The CLIENT-PARMS only apply if you execute RPCINFO remotely on an RPC
client.

C-BIKE Al Transport protocol used.
Possible valueB (EntireX Broker)

C-NODE A8 The node name of the previously addressed server.

C-NAME A8 The name of the previously addressed server.

C-ERROR-TEXT | A80 Contains the message text returned from the transport layer.

C-CON-ID 14 Conversation ID of the last server call. Note that this is the physical ID from
EntireX Broker, not the logical Natural ID.
If no conversation is open, the value of this parameter is less than or equal|to 0. If
the physical conversation ID is either
non-numeric or greater than 14, a -1 is returned.

C-CON-OPEN L Indicates whether there is an open conversation. This parameter contains Value

Using the Server Trace Facility

Natural RPC includes a trace facility that enables you to monitor server activities and trace possible error

situations.

Activating/Deactivating the Server Trace Facility

To activate/deactivate the server trace facility, start the server with the option

TRACE=

Copyright © Software AG 2003

37

Defining the Trace File Operating a Natural RPC Environment

The integer valuer” represents the desired trace level; that is, the level of detail in which you want your server
to be traced. The following values are possible:

Value Trace Level

0 No trace is performed (default).

1 All client requests and corresponding server responses are traced and documented.

2 All client requests and corresponding server responses are traced and documented; in addition

data are written to the trace file.

The RPC trace facility writes the trace data to the Natural Report Number 10.

Defining the Trace File

The trace file definition depends on the environment. The following topics are covered below:

Trace File Handling for Mainframe Environments - General Information
Trace File Handling in OS/390 Batch Mode

Trace File Handling under CICS

Trace File Handling in VSE/ESA Batch Mode

Trace File Handling in BS2000/0SD Batch Mode

Trace File Handling for Mainframe Environments - General Information

all RPC

On the mainframe, define the trace file appropriate to your environment, see also the NTPRINT macro in the
Natural Operations Manual for Mainframes.

Trace File Handling in OS/390 Batch Mode

a) Running A Server As Single Task

In the server start job, assign an OS/390 dataset to the Natural additional report CMPRT10.

Example:

/INAT31 JOB CLASS=K,MSGCLASS=X
/INATSTEP EXEC PGM=NATOS31
/ISTEPLIB DD DISP=SHR,DSN=SAG.NAT.LOAD

1

DD DISP=SHR,DSN=SAG.ETB.LOAD

/ICMPRMIN DD *
IM=D,MADIO=0,MT=0,0BJIN=R,AUTO=0FF,MAXCL=0,ID=",’,INTENS=1,
PRINT=((10),AM=STD)

/*

/ISYSUDUMP DD SYSOUT=X
//ICMPRT10 DD SYSOUT=X
/ICMPRINT DD SYSOUT=X

/*

b) Running a Server With Replicates

1. Setthe RPC parameter NTASKS to a value greater than 1.

2. Assign CMPRMIN to a dataset with DISP = SHR or to *.

3. As each task writes on a separate CMPRINT dataset, define the following DD card names:
CMPRINT for the main task;
CMPRINT1 to CMPRINTQ for the first nine subtasks;
CMPRIN10 to CMPRINN for the next two-digit numbers of subtagk, = NTASKS-1.

38

Copyright © Software AG 2003

Operating a Natural RPC Environment

Defining the Trace File

4. If the RPC subparameter TRACE is set, the trace facility writes to Printer 10.

You must define the following DD card names:
CMPRT10 for the main task;
CMPRT101 to CMPRTHdnN for all subtaskspn = NTASKS-1;

Example:

/INAT31 JOB CLASS = K,MSGCLASS = X

/INATSTEP EXEC PGM=NATOS31,REGION = 8M

/ISTEPLIB DD DISP = SHR,DSN = SAG.NAT.LOAD

I DD DISP = SHR,DSN = SAG.ETB.LOAD

/ICMPRMIN DD *

IM = D,MADIO = 0,MT = 0,0BJIN = R,AUTO = OFF,MAXCL = 0,ID="",INTENS = 1,
PRINT = ((10),AM = STD)

/*

/[SYSUDUMP DD SYSOUT = X
/ICMPRT10 DD SYSOUT = X

/ICMPRT101 DD SYSOUT = X

/ICMPRT102 DD SYSOUT = X

/ICMPRT103 DD SYSOUT = X

/ICMPRINT DD SYSOUT = X

/ICMPRINT1 DD SYSOUT = X

/ICMPRINT2 DD SYSOUT = X

/ICMPRINT3 DD SYSOUT = X

/*

Trace File Handling under CICS

Under CICS, Natural Advanced Facilities is required to write to the additional Report 10. If Natural Advanced
Facilities is not installed or not wanted, the trace file is written to the Work File 10, provided that this file exists

and Print File 10 has not been defined, otherwise the trace is disabled.

The Natural work file should be assigned to an extra-partitioned transient data queue.

Examples:

Natural definition:
NTWORK ((10),AM=CICS,DEST=RPCT,TYPE=TD)
CICS definition:

RPCTRAC DFHDCT TYPE=SDSCI, X
BLKSIZE=136, X
BUFNO=1, X
DSCNAME=RPCTRACE, X
RECFORM=VARUNB, X
RECSIZE=132, X
TYPEFLE=OUTPUT

SPACE

RPCT DFHDCT TYPE=EXTRA, X
DSCNAME=RPCTRACE, X
DESTID=RPCT, X
OPEN=INITIAL

CICS Startup JCL:

RPCTRACE DD SYSOUT=*

Copyright © Software AG 2003

39

Defining the Trace File Operating a Natural RPC Environment

Trace File Handling in VSE/ESA Batch Mode
In VSE/ESA batch mode assign a trace file to the Printer Number 10.

Example:

// LIBDEF PHASE, SEARCH=(SAGLIB.NATnnn,SAGLIB.ETBnnn), TEMP

/I ASSGN SYS000,READER // ASSGN SYSLST,FEE // ASSGN SYS050,FEF
/I EXEC RPCVSEE3,RPCSIZE=AUTO,PARM="SYSRDR'

IM=D,MADIO=0,MT=0,0BJIN=R,AUTO=0FF,MAXCL=0,ID="’,INTENS=1,
PRINT=((10),AM=STD,SYSNR=50)

/*

Trace File Handling in BS2000/0OSD Batch Mode
In BS2000/0OSD batch mode assign a trace file to Printer Number 10.

Example:

/.RPCSERV LOGON

/ SYSFILE SYSOUT = output-file
/ SYSFILE SYSDTA = (SYSCMD)
/ SYSFILE SYSIPT = (SYSCMD)
/ FILE trace-file ,LINK = P10,0PEN = EXTEND */server trace file
/ STEP
/ SETSW ON=2
/ EXEC $DC1.NATDB64B
MADIO=0O,IM=D,ID =", PRINT = ((10),AM = STD)

40 Copyright © Software AG 2003

Operating a Natural RPC Environment Handling Errors

Handling Errors

® Remote Error Handling
e Avoiding Error Message NAT3009 from Server Program
e User Exit NATRPCO1

Remote Error Handling
Any Natural error on the server side is returned to the client as follows:

o Natural RPC moves the appropriate error number to the *ERROR-NR system variable.
e Natural reacts as if the error had occurred locally.

Note:

If AUTORPC is set to ON and a subprogram cannot be found in the local environment, Natural will
interpret this as a remote procedure call. It will then try to find this subprogram in the service directory.

If it is not found there, a NAT6972 error will be issued. As a consequence, no NAT0082 error will be issued
if a subprogram cannot be found.

See alsdJsing the RPCERR Program

Avoiding Error Message NAT3009 from Server Program

If a server application program does not issue a database call during a longer period of time, the next database
call might return a NAT3009 error message.

To avoid this problem, proceed as follows:

1. Add a FIND FIRST or HISTOGRAM statement in program NATRPC39, library SYSRPC.
2. Copy the updated program to library SYSTEM on FUSER.
The STEPLIB concatenation of the library to which the server currently is logged on is not evaluated.

User Exit NATRPCO1

This exit is called when a Natural error has occurred, actually after the error has been handled by the Natural
RPC runtime and immediately before the response is sent back to the client. This means, the exit is called at the
same logical point as an error transaction, that is, at the end of the Natural error handling, after all ON ERROR
blocks have been processed.

In contrast to an error transaction, this exit is called with a CALLNAT statement and must therefore be a
subprogram which must return to its caller.

The interface to this exit is similar to the interface of an error transaction. In addition, the exit can pass back up
to 10 lines of information which will be traced by the Natural RPC runtime. Only lines which begin with a
non-blank character will be traced.

Important Notes:

1. NATRPCO1 must be located in library SYSTEM on FUSER. The STEPLIB concatenation of the library to
which the server currently is logged omist evaluated.
2. The DEFINE DATA PARAMETER block must not be changed.

Copyright © Software AG 2003 41

Terminating a Natural RPC Server Operating a Natural RPC Environment

Terminating a Natural RPC Server

® Using SYSRPC
e Using Entirex Control Center or EntireX System Management Hub
e User Exit NATRPC99

Using SYSRPC

Use theTE commanaf the Server Command Execution function.

A Natural RPC server can only be terminated if the server is currently neither executing a remote CALLNAT nor
waiting for the next CALLNAT request in a conversation.

Using Entirex Control Center or EntireX System Management Hub

Use the Shutdown command (EntireX Control Center) or the Deregister Button (EntireX System Management
Hub).

A Natural RPC server can only be terminated if the server is not currently executing a remote CALLNAT
request.

User Exit NATRPC99

This exit is called after the Natural RPC server has deregistered and logged off from the server node.

e If no NATRPC99 is found, the server terminates immediately as usual.
o |f NATRPC99 is found, the server continues to run as a normal Natural session.

NATRPC99 is called with a FETCH statement without any parameters, that is, no data is put on the Natural
stack before NATRPC99 has been called.

You may add any coding to NATRPC99, including transfer control statements (FETCH, CALLNAT,
PERFORM) and statements that terminate the program (STOP, ESCAPE, TERMINATE).

If NATRPC99 is terminated with a RETURN or STOP statement, Natural returns to the NEXT prompt. If the
NEXT prompt is not supported in the environment usad£OFF, asynchronous Natural session, etc.) the

session terminates. Otherwise, the session tries to read the next command from the primary input file/dataset for
Natural commands and INPUT data (CMSYNIN).

Important Notes:

1. NATRPC99 must be a Natural program.

2. NATRPC99 is currently only called if the server is terminated witeB aommandssued using the Server
Command Execution function of the SYSRPC utility. The exit is not called if the server is terminated via
the Entirex Control Center or the EntireX System Management Hub.

3. NATRPC99 must be located in the library SYSTEM on FUSER. The STEPLIB concatenation of the library
to which the server currently is logged on is not evaluated to find NATRPC99.

4. Natural objects that are called by NATRPC99 (FETCH, CALLNAT, PERFORM) must be located either in
the library to which the server is logged on or in one of its STEPLIBs (including SYSTEM FUSER).

42 Copyright © Software AG 2003

Using a Conversational RPC Using a Conversational RPC

Using a Conversational RPC

This section covers the following topics:

Opening a Conversation

Closing a Conversation

Defining a Conversation Context
Modifying the System Variable *CONVID

Opening a Conversation

¥ To open a conversation

1. Specify atDPEN CONVERSATIONstatement on the client side.
2. In the OPEN CONVERSATION statement, specify a list of services (subprograms) as members of this
conversation.

The OPEN CONVERSATION statement assigns a unique conversation identifier to the system variable
*CONVID.

More than one conversation may be open in parallel. If subprograms interfere with each other, the application
programs are responsible to manage the various conversations by setting the appropriate *CONVID, which is
evaluated by th€ALLNAT instruction.

e If the subprogram is a member of the current conversation (referred to by *CONVID), it will be executed at
the server process which is exclusively reserved for this conversation.

e If it is not member of the current conversation, it will be executed in a different server process. This also
applies to different conversations.

A conversation can be opened on any program level and CALLNATSs within this conversation can be executed
on any other program level below or above.

It is possible to open a client conversation within a remote CALLNAT executed on a server so the server acts as
an agent. As the client only controls its own conversations, and not the server’s, it is the application
programmer’s responsibility to ensure that the conversation on the server is closed properly before the main
client is closed.

Copyright © Software AG 2003 43

Closing a Conversation Using a Conversational RPC

Additional Restrictions

The conversational RPC can still be tested locally. To keep the behavior identical if you execute a conversational
CALLNAT remotely or locally, the following additional restrictions apply:

® A CLOSE CONVERSATIONS not possible within an object which is currently running as a member of
this conversationThis corresponds to the restriction that it is not possible to close a conversation from
within a remotely running program.

® |t is not possible to execute a conversational CALLNAT which is member of the conversation from within
another (or the same) member of this conversation. This corresponds to the restriction that it is not possible
to execute a conversational CALLNAT which is member of the client’'s conversation from a server
subprogram.

® |t is not recommended to open a conversation from within another conversation’s subprogram.

Closing a Conversation

¥ To close a conversation
® Specify aCLOSE CONVERSATIONstatement on the client side.

This enables the client to close a specific conversation or all conversations. All context variables of the closed
conversation are then released and the server replicate will be available again for another client.

If you terminate Natural, you implicitly close all conversations.

When a server receives a CLOSE CONVERSATION request, it issues a CLOSE CONVERSATION ALL
statement so that all conversations the server might have opened (as agent) are also closed.

¥ To close a conversation with implicit BACKOUT TRANSACTION (Rollback)

By default, when a CLOSE CONVERSATION statement is executed, the Rollback option will be sent to the
server together with the CLOSE CONVERSATION statement. This will cause an irBACKOUT
TRANSACTION on the server side at the end of the conversation processing.

¥ To close a conversation with implicit END TRANSACTION (Commit)

You can use the interfat$SR2032Navailable in library SYSEXT to cause an implicit END TRANSACTION
on the server side.

The exit has to be called before the next CLOSE CONVERSATION statement is executed. The result is that the
commit option is sent to the server together with the CLOSE CONVERSATION statement and that the server
executes aEND TRANSACTIONSstatement at the end of the conversation processing.

The commit option applies to the next CLOSE CONVERSATION statement executed by the client application.
After the conversation(s) has (have) been closed, the default option is used again. This means, that the following
CLOSE CONVERSATION statements will result again in a BACKOUT TRANSACTION statement.

44 Copyright © Software AG 2003

Using a Conversational RPC Defining a Conversation Context

Defining a Conversation Context

During a conversation the subprograms that are members of this conversation may share a context area on this
server.

¥ To do so, declare a data area with@E-INE DATA CONTEXT statement in each of the concerned
subprograms.

The subprograms, using a context area, behave in the same way if the conversation were local or remote. The
DEFINE DATA CONTEXT statement closely corresponds toRi#=INE DATA INDEPENDENTSstatement.

All rules which apply to the definition of AlV variables also apply to context variables, with the exception that a
context variable does not need to be prefixed by a "+".

The compiler does not check format/length definition because this requires that the variables be created by
running a program which includes all definitions for this application (as usual with AlVs). This makes no sense
for context variables, because a library containing RPC service routines is usually not application-dependent.

In contrast to AlVs, the caller’s context variables are not passed &bsNAT boundaries. Context

variables are referenced by their name and the context ID they apply to. A context variable is shared by all
service routines referring to the same variable name within one conversation. Therefore each conversation has its
own set of context variables. Context variables cannot be shared between different conversations even if they
have the same variable name.

The context area will be reset to initial values when an OPEN CONVERSATION statement or a
non-conversational CALLNAT statement is performed.

Modifying the System Variable *CONVID

The system variabl®CONVID (format 14) is set by th®@PEN CONVERSATIONstatement and may be
modified by the application program.

Modifying *CONVID is only necessary if you are using multiple conversations in parallel.

Copyright © Software AG 2003 45

Using a Remote Directory Server - RDS Using a Remote Directory Server - RDS

Using a Remote Directory Server - RDS

This section covers the following topics:

RDS Principles of Operation

Using a Remote Directory Server

Creating an RDS Interface

Creating a Remote Directory Service Routine
Remote Directory Service Program RDSSCDIR

RDS Principles of Operation

You have two options to use a service directory:

1. Using a service directory in a Natural subprogram.
Normally, to locate a service, the Natural RPC uses a service directory in a Natural subprogram. This
directory is an initialized LDA data structure in program NATCLTGS generated by the SYSRPC Service
Directory and has to be available to every RPC client application.

2. Using a remote directory.
You can use a remote directory to locate a service. A remote directory server (RDS) enables you to define
directory definitions in one place so that the RDS's services can be used by all clients in your environment.

This section describd®w to use a remote directory server to locate a service

46 Copyright © Software AG 2003

Using a Remote Directory Server - RDS RDS Principles of Operation

Service Directory CLIENT
SESSION
-4
4 SERVER
SESSION
¥ RDS
Remaote Directory Server Subprogram RDSSCDIR SESSION

imple®
as

accesses

The remote directory server is implemented as a Natural subprogram.

A sample of this subprogram is provided in library SYSRPC as subprogram RDSSCDIR. It reads the required
directory information from a work file. The interface of this subprogram is documented, which enables you to
develop your own remote directory service. For more information, see the seéaating an RDS Interface

The RDS interface is the Natural parameter data area of the Natural subprogram and the directory service routine
is the code section of the Natural subprogram. If a remote CALLNAT is not found within the client’s local

service directory, the RPC runtime contacts the remote directory server by executing an internal remote
CALLNAT.

An internal directory cache minimizes the access to the remote directory. The cache information is controlled by
an expiration time which is defined by the remote directory server.

Copyright © Software AG 2003 a7

Using a Remote Directory Server Using a Remote Directory Server - RDS

Using a Remote Directory Server

» To use a remote directory server

1. Create a directory file for the remote directory service usinBé¢hsote Directory Maintenandenction of
the SYSRPC utility. The subprogram RDSSCDIR is provided in the library SYSRPC and reads the
directory information from a Natural work file (fixed-block, record length 80 bytes).

This is the CMWKFO01 assigned to the appropriate dataset in the server startup JCL.

2. Start the remote directory server and proceed with the following steps.

3. Define the RDS in the profile parameter RDS.

48

Alternatively, you can use the maintenance function of the SYSRPC utility to define remote directory
servers (refer t&ervice Directory Maintenande the SYSRPC Ultility documentation. The definition of

remote directory servers is still supported for reasons of compatibility. You should, however, define your
RDS in the RDS subparameter of session parameter RPC. For this purpose, entries are provided that allow
to define the location of the directory server. This enables you to expand existing local directory

information by one or more remote directory server definitions. The example below shows how to define a
remote directory server in NATCLTGS.

Copyright © Software AG 2003

Using a Remote Directory Server - RDS

Service Directory

NODE SERVER | LIBRARY | PROGRAM| LOGON
1/ NODE1
2 SERVER1
3 SYSTEM
4 TESTS1
5 TESTS2
6 | RDSNODE
7 DIRSRV1
8 #ACI
9 RDSSCDIR

This example locally defines a server named SERVERL. This server may execute the services TESTS1 and

TESTS2.

Using a Remote Directory Server

Additionally, there are definitions for the remote directory server DIRSRV1. A remote directory server is
identified by a preceding "#" sign for the library definition.

The definitions of NODE and SERVER are used as usual in Natural RPC. The library definition defines the
transport protocol (ACI) which has to be used to connect the RDS.

Finally, the PROGRAM entry contains the name of the remote subprogram which represents the remote
directory service (in this case, it refers to the sample subprogram RDSSCDIR).

Copyright © Software AG 2003

49

Creating an RDS Interface

Creating an RDS Interface

The RDS interface is the parameter data area (PDA) of a Natural subprogram.

Using a Remote Directory Server - RDS

To create your own RDS interface you can use the parameter data area shown below.

DEFINE DATA PARAMETER

For an explanation of the parameters, refer to the table below.

50

1 P_UDID(B8) /* OUT

1 P_UDID_EXPIRATION(I4) /* OUT
1 P_CURSOR(I4) /* INOUT

1 P_ENTRIES(I4) /*IN

1 P_REQUEST(A16/1:250) /*IN

1 P_EXTENT (A16/1:250) /* OUT
1 P_RESULT(A32) /* OUT

1 REDEFINE P_RESULT
2 SRV_NODE(A8)
2 SRV_NODE_EXT(A8)
2 SRV_NAME(A8)
2 SRV_NAME_EXT(A8)
END-DEFINE

Copyright © Software AG 2003

Using a Remote Directory Server - RDS

Creating an RDS Interface

Parameter

Explanation

P_UDID(B8)

Unique directory identifier, should be increased after changing the directgry

information. The client saves this identifier in its cache. If the binary num

ber

increases from one client request to the next, it causes the client to deletg its

local cache information, because it no longer corresponds to the remote
directory information.

P_UDID_EXPIRATION (14)

This defines the expiration time in seconds, that is, the number of seconc
during which the client can use its local cache information without conne
the RDS to validate the UDID setting. It allows you to define a time limit g
which you can be sure that your directory modifications are active for all

clients. If you set this time to an unnecessarily low value, you may cause
of network traffic to the RDS.

P_CURSOR (14)

The remote procedure call has the option to scan for an alternative serve
connection to the previous one cannot be established (see RPC subparg
TRYALT).
This parameter contains zero for a scan from the top and may be modifig
the RDS to remember the record location to continue the scan. The valug
not be evaluated by the client, it will only be inserted from the cache to
continue scanning.

P_ENTRIES (14)

This parameter contains the number of service definitions in P_REQUES

P_REQUEST (A16/1:250)

A list of services for which a server address can be scanned. An entry is
structured as

program name (A8)

library name (A8)

S
Cting
fter
alot
rifa

meter

d by
b will

T.

P_EXTENT (A16/1:250)

Reserved for future use.

SRV_NODE (A8)

Contains the server node.

SRV_NODE_EXT (A8)

Contains the server node extension..

SRV_NAME (A8)

Contains the server name.

SRV_NAME_EXT (A8)

Contains the server name extension.

Copyright © Software AG 2003

51

Creating a Remote Directory Service Routine Using a Remote Directory Server - RDS

Creating a Remote Directory Service Routine

The Remote Directory Service Routine is the code area of a Natural subprogram (the default version of this code
area is subprogram RDSSCDIR in library SYSRPC).

To create your own RDS routine modify the pseudo-code documented below.

Set UDID and UDID_EXPIRATION values
IF P_ENTRIES =0
ESCAPE ROUTINE
IFP_CURSOR =0
position to next server entry after P_CURSOR
Scan for server which may execute P_REQUEST(*)

IF found
SRV_NODE = found node name
SRV_NODE_EXT = node extension
SRV_NAME = found server name
SRV_NAME_EXT = server extension
P_CURSOR = position of found server
ELSE
P_CURSOR =0

52 Copyright © Software AG 2003

Using a Remote Directory Server - RDS Remote Directory Service Program RDSSCDIR

Remote Directory Service Program RDSSCDIR

This program is to be found in library SYSRPC. It reads the directory information from a work file (fixed-block,
record length 80 byte).

Your program could also read the directory information from elsewhere (from a database, for example).

For the delivered version of RDSSCDIR, this is the CMWKF01, which is assigned to the appropriate dataset in
the server startup JCL.

Structure of the Directory Work File

* comment
UDID definition
UDID_EXPIRATION definition
node definition
node definition
UDID Definition

(UDID)
binary number

UDID_EXPIRATION Definition

(UDID_EXPIRATION)
number of seconds

Node Definition:

(NODE)
namevalue (logon-option)
server definition

server definition

Server Definition

(SERVER)
namevalue (logon-option)
library definition

library definition
Library Definition

(LIBRARY)
namevalue
program definition

program definition

Copyright © Software AG 2003 53

Remote Directory Service Program RDSSCDIR Using a Remote Directory Server - RDS

Program Definition

(PROGRAM)
namevalue

namevalue

Namevalue

Max. 8 characters in uppercase

Thelogon-optionafternamevalues well as the following definition lines are optional. For the possible values
of logon-option refer toService Directory Maintenanée the SYSRPC Utility documentation.

Example Directory Read from the Work File:

(UDID)

ACB8AAB4777CA000

(UDID_EXPIRATION)

3600

* this is a comment

(NODE)

NODE1
(SERVER)
SERVER1

(LIBRARY)
SYSTEM
(PROGRAM)
TESTS1
TESTS2
TESTS3
(SERVER)
SERVER2 (logon-option)
(LIBRARY)
SYSTEM
(PROGRAM)
TESTS4

(NODE)

NODE2 (logon-option)
(SERVER)
SERVER1

(LIBRARY)

SYSTEM
(PROGRAM)
TESTS1
TESTS2
TESTS3
TESTS4

In the above example, the directory contains:

® Two servers SERVER1 and SERVER2 running on node NODEL1.

® The server SERVER1 may execute TESTS1, TESTS2 and TESTS3 in library SYSTEM.

® The server SERVER2 may execute TESTS4 on library SYSTEM.

® One server SERVER1 on node NODE2 which may execute TESTS1 - TESTS4 in library SYSTEM.

54 Copyright © Software AG 2003

Using a Remote Directory Server - RDS Remote Directory Service Program RDSSCDIR

The indentation of the lines in the example above is not required. All lines may start at any position (one). You
can modify this file manually or generate it using the SYSRB®@ote Directory Maintenandenction.

Copyright © Software AG 2003 55

	Cover Page
	page 2

	Table of Contents
	Natural RPC - Overview
	Principles of Natural RPC
	General Information
	Purpose
	Advantages of Natural Remote Procedure Calls
	Natural RPC Modes of Operation
	Availability on Various Platforms
	Mainframe Environments
	Other Environments

	Support of Non-Natural Environments
	Prerequisites

	Natural RPC Operation in Non-Conversational Mode
	Issuing CALLNATs in an RPC Environment

	Natural RPC Operation in Conversational Mode
	General Rules for Local/Remote Subprogram Execution
	Local Subprogram Execution
	Remote Subprogram Execution

	Conversational versus Non-Conversational Mode
	General Rules for Use of Conversational/Non-Conversational RPC
	Possible Disadvantage of Using Conversational RPC

	Database Transactions
	Non-conversational CALLNAT
	Conversational CALLNAT

	Restrictions and Limitations when Using Natural RPC
	User Context Transfer
	System Variable Transfer
	Parameter Handling in Error Situations
	Variable Arrays in Subprograms
	Natural Statement Reactions
	Location of Conversations
	Future Restrictions of Statement Usage with RPC

	Setting Up a Natural RPC Environment
	Setting Up a Natural Client
	Setting Up A Natural Server
	Setting Up an EntireX Broker Access
	Using TCP/IP as a Transport Method

	Setting Up an EntireX Broker Environment
	Starting a Natural Server
	Starting a Natural Server in a Mainframe Online Environment
	Starting a Batch Server in a Mainframe Environment
	Starting a Server in a UNIX Environment
	Starting a Server in a Windows Environment

	Considerations for Natural RPC Servers with Replicates
	Natural RPC Batch Server with NTASKS >1
	Running a Batch Server with Replicates

	Operating a Natural RPC Environment
	Specifying RPC Server Addresses
	Using Local Directory Entries
	Using Remote Directory Entries
	Specifying a Default Server Address at Natural Startup
	Specifying a Default Server Address within a Natural Session
	Using an Alternative Server
	Using EntireX Location Transparency

	Stubs and Automatic RPC Execution
	Creating Stub Subprograms
	Working with Automatic Natural RPC Execution

	Modifying RPC Profile Parameters Dynamically
	Executing Server Commands
	Logon to a Server Library
	Using the LOGON Option
	Settings Required on the Client Side
	Settings Required on the Server Side

	Using Natural RPC with Natural Security
	Using Natural RPC with EntireX Security
	Client Side
	Using the Application Programming Interface USR2071N
	Functionality
	LOGON
	LOGOFF

	Server Side
	Using the Interface USR2072N

	Using Compression
	Using Secure Socket Layer
	Using Interface USR2035N
	Functionality of Interface USR2035N

	Monitoring the Status of an RPC Session
	Using the RPCERR Program
	Using the RPCINFO Subprogram
	Using the Server Trace Facility
	Activating/Deactivating the Server Trace Facility

	Defining the Trace File
	Trace File Handling for Mainframe Environments - General Information
	Trace File Handling in OS/390 Batch Mode
	Trace File Handling under CICS
	Trace File Handling in VSE/ESA Batch Mode
	Trace File Handling in BS2000/OSD Batch Mode

	Handling Errors
	Remote Error Handling
	Avoiding Error Message NAT3009 from Server Program
	User Exit NATRPC01

	Terminating a Natural RPC Server
	Using SYSRPC
	Using Entirex Control Center or EntireX System Management Hub
	User Exit NATRPC99

	Using a Conversational RPC
	Opening a Conversation
	
	Additional Restrictions

	Closing a Conversation
	Defining a Conversation Context
	Modifying the System Variable *CONVID

	Using a Remote Directory Server - RDS
	RDS Principles of Operation
	Using a Remote Directory Server
	Creating an RDS Interface
	Creating a Remote Directory Service Routine
	Remote Directory Service Program RDSSCDIR

