
Processing Work Files and Nested Loops
This section describes restrictions on the use of work file attributes, the support of work file formats and the impact
of nested READ loops.

Work File Attributes
Nested READ Loops
Examples of Nested READ Loops

Work File Format (???) and Attributes
Below are the restrictions that apply to the use of work file attributes:

Accessing PC work files is restricted to a record length of 32 K.
Natural Connections does not support the Natural statement DEFINE WORKFILE TYPE ’UNFORMATTED’.
A work file is always transferred in formatted mode and contains non-streamed data (???) only, regardless of
whether the work file has been specified as FORMATTED or UNFORMATTED. For the work file type
UNFORMATTED, at FILE OPEN, Natural Connection (oder Natural???) issues the error NAT1190. To
transfer work files with non-streamed (unformatted???) data, see Streaming below.

Below is information on:

Streaming

Streaming

Entire Connection provides the streaming mode (???), which is a non-record-oriented mode where data is not
formatted. (???) Streaming mode processing is activated when a READ WORKFILE or WRITE WORKFILE
statement is coded with only one binary operand.

Nested READ Loops
Do not code nested READ loops into one (???) work file. The result of the inner loop(s) can be unpredictable if the
the operands of the inner loop do not correspond with the operands of the outer loop. The reason is, that all records
uploaded from the PC are processed in the format that was determined (???) during the OPEN of the outermost loop.

???If a READ loop is terminated by a conditional ESCAPE, close the work file explicitly with the CLOSE
WORKFILE statement so that (???) the same work file can be processed in a subsequent READ in the same object.
Exception:
You can omit the CLOSE WORKFILE if you need not read the file again from the beginning, and if the subsequent
READ uses the same record layout as the preceding one.???Absatz verschoben - o.k.???

Below is information on:

Dynamic Variables in READ WORKFILE

Dynamic Variables in READ WORKFILE

If you define a dynamic variable of the format binary or alphanumeric as operand of a READ WORKFILE
statement, when processing the corresponding READ loop, any resize operation on this variable will only be valid
until the next READ is performed. While processing the READ, Natural resizes all dynamic variables to the size
they had at OPEN time. This is required in the OPEN process which determines (???) the record layout. The record
layout is mandatory for processing the corresponding work file before the next CLOSE operation occurs.

1Copyright Software AG 2003

Processing Work Files and Nested Loops<Untitled>

Exception:
An internal resize cannot be performed for inner loops if nested READ loops are processed on the same work file.
See also the programming recommendations about nested loops. ??? If a dynamic variable of Size 0 is used as the
only operand of a READ WORKFILE statement, Natural Connection (oder Natural???) issues the OPEN error
NAT1500.

Examples of Nested READ Loops
Below are example programs that demonstrate the unpredictable results the inner loop(s) of nested READ loops can
have:

Example of Inner READ Loop
Example of Inner CALLNAT Loop
Example of Loop with CLOSE and ESCAPE

Example of Inner READ Loop

In the example program PCNESTED, during READ processing, another READ is performed:

/* PCNESTED
/*
DEFINE DATA LOCAL
 1 #REC1 (A) DYNAMIC
 1 #NUMBER (N10)
END-DEFINE
*
MOVE ALL ’TEST RECORD 1’ TO #REC1 UNTIL 100
READ WORK FILE 1 #REC1
 READ WORK FILE 1 #NUMBER
 DISPLAY #NUMBER
 END-WORK
END-WORK
END

Example of Inner CALLNAT Loop

In the example program PCMAIN and subprogram PCRSUB01, during READ loop processing, an external object is
called:

Copyright Software AG 20032

<Untitled>Examples of Nested READ Loops

/* PCMAIN
/*
DEFINE DATA
LOCAL
 1 RECL (A2000)
 1 REDEFINE RECL
 2 RECNR (N4)
 1 CO (N4
END-DEFINE
*
WRITE WORK 1 COMMAND
 ’SET PCFILE 2 UP DATA C:/TSTPCAM/PCMAIN.TXT’
READ WORK 2 RECL
 DISPLAY RECL (AL=72)
 CALLNAT ’PCRSUB01’ RECL
END-WORK
END

Subprogram PCRSUB01

/*Subprogram PCRSUB01
/*
DEFINE DATA
PARAMETER
 1 RECL (A2000)
LOCAL
 1 #CC1 (A20)
 1 #CC2 (N4)
*

Example of Loop with CLOSE and ESCAPE

In the example program PCESCAPE, the work file is explicity closed and a subsequent READ loop is separated
from the previous one by using ESCAPE BOTTOM:

/*PCESCAPE
/*
DEFINE DATA
LOCAL
 1 #CC1 (A20)
 1 #CC2 (A40)
 1 #COUNTER (I2)
*
END-DEFINE
READ WORK 2 #CC1
 DISPLAY #CC2
 ADD 1 TO #COUNTER
 IF #COUNTER GE 3
 ESCAPE BOTTOM
 END-IF
END-WORK
CLOSE WORK FILE 2
*
READ WORK 2 #CC2
 DISPLAY #CC2
END-WORK
END

3Copyright Software AG 2003

Example of Loop with CLOSE and ESCAPE<Untitled>

	Processing Work Files and Nested Loops
	Work File Format †???‡ and Attributes
	Streaming

	Nested READ Loops
	Dynamic Variables in READ WORKFILE

	Examples of Nested READ Loops
	Example of Inner READ Loop
	Example of Inner CALLNAT Loop
	Example of Loop with CLOSE and ESCAPE

