
COMPOPT
The COMPOPT command is available on all platforms, however, there are platform-specific differences.

COMPOPT for Mainframes
COMPOPT for Windows and UNIX

COMPOPT for Mainframes

COMPOPT [option=value]

This system command is used to set various compilation options. The options are evaluated when a Natural
programming object is compiled.

option=value

The keywords for the individual options are shown on the Compilation Options screen and are described in the
section Options.

The settings assigned to a compiler option are in effect until you issue the next LOGON command to another library.
At LOGON, the default settings set with the macro NTCMPO and/or profile parameter CMPO will be resumed.

This section covers the following topics:

General Information on Compiler Options
Options

General Information on Compiler Options
You can specify compiler parameters on different levels:

The default settings of the individual parameters are set with the macro NTCMPO in the Natural parameter
module NATPARM.
At session start, you can override the compiler parameters with the profile parameter CMPO.
During an active Natural session, there are two ways to change the compiler parameters with the COMPOPT
command: either directly using command assignment (COMPOPT option=value) or by issuing the COMPOPT
command without parameters which displays the Compilation Options screen. For further information, see the
section Options. The settings assigned to a compiler option are in effect until you issue the next LOGON
command to another library. At LOGON, the default settings set with the macro NTCMPO and/or the profile
parameter CMPO (see above) will be resumed.
Example:

COMPOPT DBSHORT=ON

In a Natural programming object (for example: program, subprogram), you can set compiler parameters with
the OPTIONS statement.
Example:

0010 OPTIONS KCHECK=ON
0020 WRITE ’Hello World’
0030 END

1Copyright Software AG 2003

COMPOPTCOMPOPT

The compiler options defined in an OPTIONS statement will only affect the compilation of this programming
object, but do not update settings set with the command COMPOPT.

Options
If you issue the COMPOPT command without parameters, the Compilations Options screen appears.

KCHECK - Keyword Checking
PCHECK - Parameter Checking for CALLNAT Statements
DBSHORT - Interpretation of Database Short Field Names
PSIGNF - Internal Representation of Positive Sign of Packed Numbers
TSENABL - Applicability of TS Profile Parameter
GFID - Generation of Global Format IDs
LOWSRCE - Allow Lower-Case Source
TQMARK - Translate Quotation Mark

Version Compatibility Options:

FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements
MASKCME - MASK Compatible with MOVE EDITED
NMOVE22 - MOVE Assignment like NAT22
V31COMP - Disable New Version 4.1 Syntax

KCHECK - Keyword Checking

ON Programming objects will be checked for Natural statement keywords. Variable names which are reserved
Natural keywords are rejected. The section Keywords and Reserved Words in the Natural Programming
Guide contains a list of all Natural keywords and reserved words, in which the statement keywords affected
by this option are marked.

OFF No keyword check is performed. This is the default.

PCHECK - Parameter Checking for CALLNAT Statements

ON The compiler checks the number, format, length and array index bounds of the parameters that are specified
in a CALLNAT statement. Also, the OPTIONAL feature of the DEFINE DATA PARAMETER statement is
considered in the parameter check.

The parameter check is based on a comparison of the CALLNAT parameters with the DEFINE DATA
PARAMETER definitions in the subprogram to be invoked.

It requires that

the name of the subprogram to be invoked is defined as a numeric constant (not as an alphanumeric
variable),
the subprogram to be invoked is available as a cataloged object.

Otherwise, PCHECK=ON will have no effect.

OFF No parameter check is performed. This is the default.

Copyright Software AG 20032

COMPOPTOptions

DBSHORT - Interpretation of Database Short Field Names

ON Database field names in programming objects are considered long names (as defined in the corresponding
DDM) - except 2-character field names, which are considered short names (as used by the underlying
database system). This is the default.

Note: Even if DBSHORT=ON, the use of a short database field name is not allowed in the following cases:

if DEFINE DATA LOCAL is specified in a program,
in Natural for non-mainframe platforms,
when Natural Security is installed.

OFF All database field names in programming objects are considered long names, regardless of their length. This
avoids possible misinterpretations of database field names in programs.
You can use this setting to disallow the use of short names in general.

Background Information (DBSHORT=ON)

When the Natural compiler resolves a database field (that is, a field defined in a DDM) and DBSHORT=ON, the
length of the field name is used to decide if the identifier represents a "db-short-name" or a "db-long-name". When
the field name length is 2 characters a "db-short-name" reference is assumed, whereas all other identifiers are treated
as "db-long-names".

Natural Rules that Always Apply

According to the general Natural rules, you must not use "db-short-names" in your program if a DEFINE DATA
LOCAL was specified; not to create the field list in the view definition nor in a search expressions of a FIND
statement nor to specify a read sequence control field in a READ or HISTOGRAM statement. All these restrictions
are controlled by the Natural compiler, whether the option DBSHORT is ON or OFF.

Purpose of DBSHORT=OFF

The purpose of DBSHORT is to change the compiler’s behavior as follows:

if set to ON , everything works as described above under Background Information.

if set to OFF, every database field identifier is regarded as a "db-long-name", no matter of how many characters it
consist. In other words, only the long name column in the DDM (captioned as "Name" in a DDM
display) is considered to locate the referenced field and the DDM short names (captioned as "DB" in
a DDM display) are completely disregarded.

Purpose of DBSHORT=ON

The main reason for using DBSHORT=ON is when you have long names defined in a DDM with only 2-byte
identifier length. At DDM generation, you may only create 2-byte long-names if the underlying database you access
with this DDM is SQL (e.g. DB2). For all other database types, the attempt to define a long-field with 2-byte name
length results in the error SYSDDM4219 (SYSDDM utility).

However, when DBSHORT=OFF is set, the compiler does not check db-short-names in a DDM. This leads to the
syntax error NAT0981 if a db-short-field is used in a program.

3Copyright Software AG 2003

DBSHORT - Interpretation of Database Short Field NamesCOMPOPT

PSIGNF - Internal Representation of Positive Sign of Packed Numbers

ON The positive sign of a packed number is represented internally as H’F’. This is the default.

OFF The positive sign of a packed number is represented internally as H’C’.

TSENABL - Applicability of TS Profile Parameter

This option determines whether the profile parameter TS (translate output for locations with non-standard lower-case
usage) is to apply only to Natural system libraries (that is, libraries whose names begin with "SYS", except
SYSTEM) or to all user libraries as well.

ON The TS parameter applies to all libraries.

OFF The TS parameter only applies to Natural system libraries. This is the default.

GFID - Generation of Global Format IDs

This option allows you to control Natural’s internal generation of global format IDs so as to influence Adabas’s
performance concerning the re-usability of format buffer translations.

ON Global format IDs are generated for all views. This is the default.

VID Global format IDs are generated only for views in local/global data areas, but not for views defined within
programs.

OFF No global format IDs are generated.

For details on global format IDs, see the Adabas documentation.

Rules for generating GLOBAL FORMAT-IDs in Natural Version 3.1.

Note: STOD is the return value of the store clock machine instruction (STCK).

For Natural nucleus internal system-file calls

GFID=abccddee

where equals

a x’F9’

b x’22’ or x’21’ depending on DB statement

cc physical database number (2 bytes)

dd physical file number (2 bytes)

ee number created by runtime (2 bytes)

For user programs or Natural utilities

Copyright Software AG 20034

COMPOPTPSIGNF - Internal Representation of Positive Sign of Packed Numbers

a) GFID=abbbbbbc for file number less than or equal to 255 and Adabas Version lower than 6.2 (see NTDB macro).

where equals

a x’F8’ or x’F7’ or x’F6’

bbbbbb Bytes 1-6 of STOD value

c physical file number

b) GFID=axbbbbbc for file number greater than 255 and Adabas Version lower than 6.2.

where equals

a x’F8’ or x’F7’ or x’F6’

x physical file number - high order byte

bbbbb Bytes 2-6 of STOD value

c physical file number - low order byte

c) GFID=abbbbbb for Adabas Version 6.2 or higher.

where equals

a x’F8’ or x’F7’ or x’F6’
where:
F6=UPDATE SAME
F7=HISTOGRAM
F8=all others

bbbbbbb Bytes 1-7 of STOD value

LOWSRCE - Allow Lower-Case Source

This option supports the use of lower or mixed-case program sources on mainframe platforms. It facilitates the
transfer of programs written in mixed/lower-case characters from other platforms to a mainframe environment.

ON Allows any kind of lower/upper-case characters in the program source.

OFF Allows upper-case mode only. This requires keywords, variable names and identifiers to be defined in upper
case. This is the default.

When you use lower-case characters with LOWSRCE=ON consider the following:

The syntax rules for variable names allow lower-case characters in subsequent positions. Therefore, you can
define two variables, one written with lower-case characters and the other with upper-case characters.
Example:

DEFINE DATA LOCAL
1 #Vari (A20)
1 #VARI (A20)

With LOWSRCE=OFF, these variables are treated as different variables.

5Copyright Software AG 2003

LOWSRCE - Allow Lower-Case SourceCOMPOPT

With LOWSRCE=ON, the compiler is not case sensitive and does not make a distinction between
lower/upper-case characters. This will lead to a syntax error because a duplicate definition of a variable is not
allowed.
Using the session parameter EM (Edit Mask) in an I/O statement or in a MOVE EDITED statement, there are
characters which influence the layout of the data setting assigned to a variable (EM control characters), and
characters which insert text fragments into the data setting.
Example:

#VARI :=’1234567890’
 WRITE #VARI (EM=XXXXXxxXXXXX)

With LOWSRCE=OFF, the output is 12345xx67890, because for alpha-format variables only upper-case X, H
and circumflex accent (ˆ) sign can be used.

With LOWSRCE=ON, the output is 1234567890, because an x character is treated like an upper-case X and,
therefore, interpreted as an EM control characters for that field format. To avoid this problem, enclose constant
text fragments in apostrophes (’).
Example:

WRITE #VARI(EM=XXXXX’xx’XXXXX)

The text fragment is not considered an EM control character, regardless of the LOWSRCE settings.

Since all variable names are converted to upper-case characters with LOWSRCE=ON, the display of variable
names in I/O statements (INPUT, WRITE or DISPLAY) differs.
Example:

MOVE ’ABC’ to #Vari
 DISPLAY #Vari

With LOWSRCE=OFF, the output is:

 #Vari

 ABC

With LOWSRCE=ON, the output is:

 #VARI

 ABC

TQMARK - Translate Quotation Mark

ON Each double quotation mark within a text constant is output as a single apostrophe.
This is the default.

OFF Double quotation marks within a text constant are not translated; they are output as double quotation marks.

Example:

RESET A(A5)
A:= ’AB"CD’
WRITE ’12"34’ / A / A (EM=H(5))
END

Copyright Software AG 20036

COMPOPTTQMARK - Translate Quotation Mark

With TQMARK ON, the output is:

12’34
AB’CD
C1C27DC3C4

With TQMARK OFF, the output is:

12"34
AB"CD
C1C27FC3C4

FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements

With Natural Version 2.3, the comparison logic for multiple-setting fields in the WITH clause of the FIND statement
has been changed. This means that when Version 2.2 programs containing certain forms of FIND statements are
compiled under Version 3.1, they will return different results. This option can be used to search for FIND statements
whose WITH clauses use multiple-setting fields in a way that is no longer consistent with the enhanced Version 3.1
comparison logic.

ON Error NAT0998 will be returned for every FIND statement of such form detected at compilation.

OFF No search for such FIND statements will be performed. This is the default value.

The comparison logic for multiple-value fields in the WITH clause of the FIND statement has been changed with
Natural Version 2.3 so as to be in line with the comparison logic in other statements (e.g. IF).

Four different forms of the FIND statement can be distinguished (the field MU in the following examples is assumed
to be a multiple-value field):

1.

FIND XYZ-VIEW WITH MU = ’A’

With Version 2.2 and above, this statement returns records in which at least one occurrence of MU has the
value "A".

2.

FIND XYZ-VIEW WITH MU NOT EQUAL ’A’

With Version 2.2, this statement returns records in which no occurrence of MU has the value "A" (same as 4.).
With Version 2.3 and above, this statement returns records in which at least one occurrence of MU does not
have the value "A".

3.

FIND XYZ-VIEW WITH NOT MU NOT EQUAL ’A’

With Version 2.2, this statement returns records in which at least one occurrence of MU has the value "A"
(same as 1.).
With Version 2.3 and above, this statement returns records in which every occurrence of MU has the value
"A".

4.

FIND XYZ-VIEW WITH NOT MU = ’A’

7Copyright Software AG 2003

FINDMUN - Detect Inconsistent Comparison Logic in FIND StatementsCOMPOPT

With Version 2.2 and above, this statement returns records in which no occurrence of MU has the value "A".
This means that if you newly compile under Version 2.3 existing Version 2.2 programs containing FIND
statements of the forms 2. and 3., they will return different results.

If you specify FINDMUN=ON, error NAT0998 will be returned for every FIND statement of form 2. or 3. detected
at compilation.

Should you in these cases wish to continue to get the same results as with Version 2.2, you have to change the
statements as follows:

In Form 2:

FIND XYZ-VIEW WITH MU NOT EQUAL ’A’

into

FIND XYZ-VIEW WITH NOT MU = ’A’

In Form 3:

FIND XYZ-VIEW WITH NOT MU NOT EQUAL ’A’

into

FIND XYZ-VIEW WITH MU = ’A’

MASKCME - MASK Compatible with MOVE EDITED

MASKCME=ON The range of valid year values that match the YYYY mask characters is 1582 - 2699 to make
the MASK option compatible to MOVE EDITED.

MASKCME=OFF The range of valid year values that match the YYYY mask characters is 0000 - 2699. This is
the default value.

NMOVE22 - Assignment of Numeric Variables of Same Length and Precision

NMOVE22=ON Assignments of numeric variables where source and target have the same length and precision is
performed as with Natural Version 2.2.

NMOVE22=OFF Assignments of numeric variables where source and target have the same length and precision is
performed as with Natural Version 2.3 and above, that is they are processed as if source and
target would have different length or precision. This is the default value.

V31COMP - Disable New Version 4.1 Syntax

This compiler option will be available only with Natural Version 4.1 to allow a
smooth transition. It will be removed again with a subsequent release of Natural
after Version 4.1.

A number of functions and programming features introduced with Natural Version 4.1 for Mainframes would give
rise to problems when a program developed and compiled with Version 4.1 is to be recompiled for putting into
operation in a Version 3.1 environment. The relevant functions or features are listed below.

Copyright Software AG 20038

COMPOPTMASKCME - MASK Compatible with MOVE EDITED

The V31COMP option has been provided to detect such incompatibilities and trigger an error message that supplies
a reason code for why the recompilation failed. The following values are possible:

V31COMP=ON When a program is compiled under Version 4.1, every attempt to use a syntax construction that
is supported by Version 4.1, but not by Version 3.1, is rejected and a NAT0647 syntax error and
a corresponding reason code (see below) will be output.

V31COMP=OFF The Version 3.1 compatibility option is disabled. This is the default.

Compilation Relevant Differences between Version 4.1 and 3.1

The following table gives an overview of the compilation relevant differences between Version 4.1 and 3.1 and
indicates the number of the reason code that will be supplied when incompatible syntax is detected:

9Copyright Software AG 2003

V31COMP - Disable New Version 4.1 SyntaxCOMPOPT

Function or Feature Version 4.1 Version 3.1 Reason Code
(see below)

Possible length for ALPHA field 1 byte - 1 GB 1 - 253 bytes 001

Possible length for BINARY field 1 byte - 1 GB 1 - 126 bytes

Possible index range for array -1 GB : +1 GB -32 KB : +32 KB 002

Possible length of data group 1 byte - 1 GB 1 byte - 32 KB 003

Dynamic fields possible unknown 004

New Statements
EXPAND / REDUCE / RESIZE
ESCAPE MODULE [IMMEDIATE]
ESCAPE TOP REPOSITION
CALL .. INTERFACE4
DEFINE WORK FILE TYPE ’ ’

possible unknown 005

New Adabas Features
- FIND / READ / HISTO with MULTI-FETCH
- New READ / HISTO comparators GT, GE, LT, LE
- Ending-at check with keyword TO in READ / HISTO
- New READ .. IN DYNAMIC SEQUENCE clause

possible unknown 006

New System Variables
*CPU-TIME, *DATV, *DATVS, *HOSTNAME, *LINE,
*NATVERS, *PARM-USER, *PATCH-LEVEL, *PID,
*LENGTH(..)

possible unknown 007

IF BREAK with break variable of type B, F, I, D, T, L, H
IF/AT BREAK .. with /n/ clause for type Binary

possible
possible

NAT0623 error
NAT0001 error

008

Max length of SORT record 10 KB 4KB
(NAT0328 error)

009

SUBSTR for Binary fields
MOVE ALL for Binary fields

possible
possible

NAT0471 error
NAT0101 error

010

New logical condition predicate
IF SPECIFIED .. THEN

possible unknown 011

Advanced arithmetic with Date / Time
allow Multiply / Divide

possible NAT0392 012

OPTIONAL parameter
Definition: #P1 (A10) OPTIONAL
Usage: CALLNAT 1X
PERFORM .. 1X

possible unknown 013

New COMPOPT parameter
TQMARK, NMOVE22, MASKCME, (V31COMP)

possible unknown 014

Reason Codes Supplied with Syntax Error NAT0647

With the compiler parameter V31COMP=ON set, the Version 4.1 features or functions listed above will result in the
following syntax error:
NAT0647 - Program code not V31 compatible due to reason :1:

Copyright Software AG 200310

COMPOPTV31COMP - Disable New Version 4.1 Syntax

Reason
Code
Supplied
under
Version 3.1

Cause

001 Length for alpha/binary fields may not exceed 253/126 bytes.

002 Index range for array field must not exceed 32KB.

003 Length of data group must not exceed 32KB.

004 Field of type Dynamic is unknown.

005 ESCAPE TOP REPOSITION is unknown;
ESCAPE MODULE is unknown;
CALL .. INTERFACE4 is unknown;
DEFINE WORK .. TYPE=.. clause is unknown.

006 FIND/READ/HISTOGRAM .. MULTI-FETCH clause is unknown;
READ/HISTOGRAM comparator NE, LT, LE, GT, GE are unknown;
READ/HISTOGRAM in DYNAMIC sequence is unknown.

007 System variables *CPU-TIME, *DATV, *DATVS, *HOSTNAME, *LINE, *NATVERS,
*PARM-USER, *PATCH-LEVEL, *PID, *LENGTH(..) are unknown.

008 IF BREAK only allowed for field types A, N, P.
IF/AT BREAK .. with /n/ option only allowed for field types A, N, P.

009 Length of a SORT record must not exceed 4 KB.

010 MOVE ALL for binary field is not allowed.

011 Logical condition ’IF .. SPECIFIED..’ is unknown.

012 Operation Divide or Multiply not allowed for date/time fields.

013 Definition of OPTIONAL parameters is unknown.

014 OPTIONS parameters TQMARK, NMOVE22 and MASKCME are unknown.

Notes Concerning the Data Area Editor

No error will be reported if V31COMP=ON and the system commands READ and SAVE are executed from the
NEXT prompt for a data area containing one of the above mentioned new features.

For the SAVE command in the data area editor, only those features that cannot be stored using the old Version 3.1
compatible data structure are checked and are not allowed. The following features are rejected when an attempt is
made to save them in the old format:

The first position of the L (level number) field contains values other than blank or 0.
The length definition of the Length field contains more than 4 bytes. This includes the definition of dynamic
variables.
Array bounds that are defined by using the Array Index Definition function of the Extended Field Definition
Editing.
Definition of optional parameters.

The following error messages may be output:

11Copyright Software AG 2003

V31COMP - Disable New Version 4.1 SyntaxCOMPOPT

NAT4483 V31 source format error, LEVEL greater than 9
NAT4483 V31 source format error, LENGTH field greater than 4 digits
NAT4483 V31 source format error, ARRAY INDEX defined via ’.e’ command
NAT4483 V31 source format error, OPTIONAL parameter definition

COMPOPT for Windows and UNIX

COMPOPT [option=value]

This command is used to set various compilation options. The options are evaluated when a Natural programming
object is compiled.

option=value

When you issue the COMPOPT command without parameters, a screen is displayed on which you can set the
options described below.

Instead of changing an option on the screen, you can also specify it directly with the COMPOPT command. The
keywords for the individual options are shown (in parentheses on the COMPOPT screen) and in the above
description.

Example:

COMPOPT DBSHORT=ON

Note:
The default settings of the individual options are set with the corresponding profile parameters in the Natural
parameter module.

DBSHORT - Interpretation of Database Short Field Names

ON Database field names in programming objects are considered long names (as defined in the corresponding
DDM) - except 2-character field names, which are considered short names (as used by the underlying
database system).

OFF All database field names in programming objects are considered long names, regardless of their length. This
avoids possible misinterpretations of database field names in programs.

GFID - Generation of Global Format IDs

This option allows you to control Natural’s internal generation of global format IDs so as to influence Adabas’s
performance concerning the re-usability of format buffer translations.

ON Global format IDs are generated for all views.

VID Global format IDs are generated only for views in local/global data areas, but not for views defined within
programs.

OFF No global format IDs are generated.

Copyright Software AG 200312

COMPOPTCOMPOPT for Windows and UNIX

For details on global format IDs, see the Adabas documentation.

13Copyright Software AG 2003

GFID - Generation of Global Format IDsCOMPOPT

	COMPOPT
	COMPOPT for Mainframes
	
	option=value

	General Information on Compiler Options
	Options
	KCHECK - Keyword Checking
	PCHECK - Parameter Checking for CALLNAT Statements
	DBSHORT - Interpretation of Database Short Field Names
	Background Information †DBSHORT=ON‡
	Natural Rules that Always Apply
	Purpose of DBSHORT=OFF
	Purpose of DBSHORT=ON

	PSIGNF - Internal Representation of Positive Sign of Packed Numbers
	TSENABL - Applicability of TS Profile Parameter
	GFID - Generation of Global Format IDs
	Rules for generating GLOBAL FORMAT-IDs in Natural Version 3.1.

	LOWSRCE - Allow Lower-Case Source
	TQMARK - Translate Quotation Mark
	FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements
	MASKCME - MASK Compatible with MOVE EDITED
	NMOVE22 - Assignment of Numeric Variables of Same Length and Precision
	V31COMP - Disable New Version 4.1 Syntax

	COMPOPT for Windows and UNIX
	
	option=value

	DBSHORT - Interpretation of Database Short Field Names
	GFID - Generation of Global Format IDs

