
Arrays
Natural supports the processing of arrays.

The following topics are covered:

Defining Arrays
Initial Values for Arrays
Assigning Initial Values to One-Dimensional Arrays
Assigning Initial Values to Two-Dimensional Arrays
A Three-Dimensional Array
Arrays as Part of a Larger Data Structure
Database Arrays
Using Arithmetic Expressions in Index Notation
Arithmetic Support for Arrays

Defining Arrays
Arrays are multi-dimensional tables, that is, two or more logically related elements identified under a single name.
Arrays can consist of single data elements of multiple dimensions or hierarchical data structures which contain
repetitive structures or individual elements. In Natural, an array can be one-, two- or three-dimensional. It can be an
independent variable, part of a larger data structure or part of a database view.

To define an array variable, after the format and length you specify a slash followed by a so-called index notation,
that is, the number of occurrences of the array.

Important:
Dynamic variables are not allowed.

For example, the following array has three occurrences, each occurrence being of format/length A10:

 DEFINE DATA LOCAL
 1 #ARRAY (A10/1:3)
 END-DEFINE
 ...

To define a two-dimensional array, you specify an index notation for both dimensions:

 DEFINE DATA LOCAL
 1 #ARRAY (A10/1:3,1:4)
 END-DEFINE
 ...

A two-dimensional array can be visualized as a table. The array defined in the example above would be a table that
consists of 3 "rows" and 4 "columns":

1Copyright Software AG 2003

ArraysArrays

Initial Values for Arrays
To assign initial values to one or more occurrences of an array, you use an INIT specification, similar to that for
"ordinary" variables.

Assigning Initial Values to One-Dimensional Arrays
The following examples illustrate how initial values are assigned to a one-dimensional array.

To assign an initial value to one occurrence, you specify:

1 #ARRAY (A1/1:3) INIT (2) <’A’>

"A" is assigned to the second occurrence.

To assign the same initial value to all occurrences, you specify:

1 #ARRAY (A1/1:3) INIT ALL <’A’>

"A" is assigned to every occurrence. Alternatively, you could specify:

1 #ARRAY (A1/1:3) INIT (*) <’A’>

To assign the same initial value to a range of several occurrences, you specify:

1 #ARRAY (A1/1:3) INIT (2:3) <’A’>

"A" is assigned to the second to third occurrence.

To assign a different initial value to every occurrence, you specify:

1 #ARRAY (A1/1:3) INIT <’A’,’B’,’C’>

"A" is assigned to the first occurrence, "B" to the second, and "C" to the third.

To assign different initial values to some (but not all) occurrences, you specify:

1 #ARRAY (A1/1:3) INIT (1) <’A’> (3) <’C’>

"A" is assigned to the first occurrence, and "C" to the third; no value is assigned to the second occurrence.

Alternatively, you could specify:

1 #ARRAY (A1/1:3) INIT <’A’,,’C’>

If fewer initial values are specified than there are occurrences, the last occurrences remain empty:

1 #ARRAY (A1/1:3) INIT <’A’,’B’>

"A" is assigned to the first occurrence, and "B" to the second; no value is assigned to the third occurrence.

Assigning Initial Values to Two-Dimensional Arrays
The following examples illustrate how initial values are assigned to a two-dimensional array.

For the examples, let us assume a two-dimensional array with three occurrences in the first dimension ("rows") and
four occurrences in the second dimension ("columns"):

Copyright Software AG 20032

ArraysInitial Values for Arrays

1 #ARRAY (A1/1:3,1:4)

Vertical: First Dimension (1:3), Horizontal: Second Dimension (1:4):

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

The first set of examples illustrates how the same initial value is assigned to occurrences of a two-dimensional array;
the second set of examples illustrates how different initial values are assigned.

In the examples, please note in particular the usage of the notations "*" and "V". Both notations refer to all
occurrences of the dimension concerned: "*" indicates that all occurrences in that dimension are initialized with the
same value, while "V" indicates that all occurrences in that dimension are initialized with different values.

Assigning the Same Value
Assigning Different Values

Assigning the Same Value

To assign an initial value to one occurrence, you specify:

 A

To assign the same initial value to one occurrence in the second dimension - in all occurrences of the first
dimension - you specify:

 1 #ARRAY (A1/1:3,1:4) INIT (*,3) <’A’>

 A

 A

 A

To assign the same initial value to a range of occurrences in the first dimension - in all occurrences of the
second dimension - you specify:

 1 #ARRAY (A1/1:3,1:4) INIT (2:3,*) <’A’>

A A A A

A A A A

To assign the same initial value to a range of occurrences in each dimension, you specify:

 1 #ARRAY (A1/1:3,1:4) INIT (2:3,1:2) <’A’>

3Copyright Software AG 2003

Assigning the Same ValueArrays

A A

A A

To assign the same initial value to all occurrences (in both dimensions), you specify:

 1 #ARRAY (A1/1:3,1:4) INIT ALL <’A’>

A A A A

A A A A

A A A A

Alternatively, you could specify:

 1 #ARRAY (A1/1:3,1:4) INIT (*,*) <’A’>

Assigning Different Values
 1 #ARRAY (A1/1:3,1:4) INIT (V,2) <’A’,’B’,’C’>

 A

 B

 C

 1 #ARRAY (A1/1:3,1:4) INIT (V,2:3) <’A’,’B’,’C’>

 A A

 B B

 C C

 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,’B’,’C’>

A A A A

B B B B

C C C C

 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,,’C’>

A A A A

C C C C

 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,’B’>

Copyright Software AG 20034

ArraysAssigning Different Values

A A A A

B B B B

 1 #ARRAY (A1/1:3,1:4) INIT (V,1) <’A’,’B’,’C’>
 (V,3) <’D’,’E’,’F’>

A D

B E

C F

 1 #ARRAY (A1/1:3,1:4) INIT (3,V) <’A’,’B’,’C’,’D’>

A B C D

 1 #ARRAY (A1/1:3,1:4) INIT (*,V) <’A’,’B’,’C’,’D’>

A B C D

A B C D

A B C D

 1 #ARRAY (A1/1:3,1:4) INIT (2,1) <’A’> (*,2) <’B’>
 (3,3) <’C’> (3,4) <’D’>

 B

A B

 B C D

 1 #ARRAY (A1/1:3,1:4) INIT (2,1) <’A’> (V,2) <’B’,C’,D’>
 (3,3) <’E’> (3,4) <’F’>

 B

A C

 D E F

A Three-Dimensional Array
A three-dimensional array could be visualized as follows:

5Copyright Software AG 2003

A Three-Dimensional ArrayArrays

The array illustrated here would be defined as follows (at the same time assigning an initial value to the highlighted
field in row 1, column 2, plane 2):

 DEFINE DATA LOCAL
 1 #ARRAY2
 2 #ROW (1:4)
 3 #COLUMN (1:3)
 4 #PLANE (1:3)
 5 #FIELD2 (P3) INIT (1,2,2) <100>
 END-DEFINE
 ...

If defined as a local data area in the data area editor, the same array would look as follows:

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 1 #ARRAY2
 2 #ROW (1:4)
 3 #COLUMN (1:3)
 4 #PLANE (1:3)
 I 5 #FIELD2 P 3

Arrays as Part of a Larger Data Structure
The multiple dimensions of an array make it possible to define data structures analogous to COBOL or PL1
structures.

Example:

Copyright Software AG 20036

ArraysArrays as Part of a Larger Data Structure

 DEFINE DATA LOCAL
 1 #AREA
 2 #FIELD1 (A10)
 2 #GROUP1 (1:10)
 3 #FIELD2 (P2)
 3 #FIELD3 (N1/1:4)
 END-DEFINE
 ...

In this example, the data area #AREA has a total size of:

10 + (10 * (2 + (1 * 4))) bytes = 70 bytes.

#FIELD1 is alphanumeric and 10 bytes long. #GROUP1 is the name of a sub-area within #AREA which consists of
2 fields and has 10 occurrences. #FIELD2 is packed numeric, length 2. #FIELD3 is the second field of #GROUP1
with four occurrences, and is numeric, length 1.

To reference a particular occurrence of #FIELD3, two indices are required: first, the occurrence of #GROUP1 must
be specified, and second, the particular occurrence of #FIELD3 must also be specified. For example, in an ADD
statement later in the same program, #FIELD3 would be referenced as follows:

 ADD 2 TO #FIELD3 (3,2)

Database Arrays
Adabas supports array structures within the database in the form of multiple-value fields and periodic groups. These
are described under Database Arrays.

The following example shows a DEFINE DATA view containing a multiple-value field:

 DEFINE DATA LOCAL
 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 ADDRESS-LINE (1:10) /* <--- MULTIPLE-VALUE FIELD
 END-DEFINE
 ...

The same view in a local data area would look as follows:

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 V 1 EMPLOYEES-VIEW EMPLOYEES
 2 NAME A 20
 M 2 ADDRESS-LINE A 20 (1:10) /* MU-FIELD

Using Arithmetic Expressions in Index Notation
A simple arithmetic expression may also be used to express a range of occurrences in an array.

Examples:

MA (I:I+5) Values of the field MA are referenced, beginning with value I and ending with value I+5.

MA (I+2:J-3) Values of the field MA are referenced, beginning with value I+2 and ending with value J-3.

7Copyright Software AG 2003

Database ArraysArrays

Only the arithmetic operators "+" and "-" may be used in index expressions.

Arithmetic Support for Arrays
Arithmetic support for arrays include operations at array level, at row/column level, and at individual element level.
Only simple arithmetic expressions are permitted with array variables, with only one or two operands and an optional
third variable as the receiving field. Only the arithmetic operators "+" and "-" are allowed for expressions defining
index ranges.

Examples of Array Arithmetics

The following examples assume the following field definitions:

 DEFINE DATA LOCAL
 01 #A (N5/1:10,1:10)
 01 #B (N5/1:10,1:10)
 01 #C (N5)
 END-DEFINE
 ...

1. ADD #A(*,*) TO #B(*,*)
The result operand, array #B, contains the addition, element by element, of the array #A and the original value
of array #B.

2. ADD 4 TO #A(*,2)
The second column of the array #A is replaced by its original value plus 4.

3. ADD 2 TO #A(2,*)
The second row of the array #A is replaced by its original value plus 2.

4. ADD #A(2,*) TO #B(4,*)
The value of the second row of array #A is added to the fourth row of array #B.

5. ADD #A(2,*) TO #B(*,2)
This is an illegal operation and will result in a syntax error. Rows may only be added to rows and columns to
columns.

6. ADD #A(2,*) TO #C
All values in the second row of the array #A are added to the scalar value #C.

7. ADD #A(2,5:7) TO #C
The fifth, sixth, and seventh column values of the second row of array #A are added to the scalar value #C.

Copyright Software AG 20038

ArraysArithmetic Support for Arrays

	Arrays
	Defining Arrays
	Initial Values for Arrays
	Assigning Initial Values to One-Dimensional Arrays
	Assigning Initial Values to Two-Dimensional Arrays
	Assigning the Same Value
	Assigning Different Values

	A Three-Dimensional Array
	Arrays as Part of a Larger Data Structure
	Database Arrays
	Using Arithmetic Expressions in Index Notation
	Arithmetic Support for Arrays
	Examples of Array Arithmetics

