
Database Access with Natural for Tamino
This section describes the different aspects of accessing a Tamino database with the Natural data manipulation
language (DML).

Tamino stores structured data-oriented XML documents in containers called doctypes. The doctypes are grouped
logically together in so-called collections. Collections are stored in a Tamino database, which is the physical
container of data. The kind of data that can be stored in Tamino and that is to be accessed by Natural for Tamino
must be defined in a Tamino XML Schema.

The following topics are covered:

DDM and View-Definitions with Natural for Tamino
Natural Statements for Tamino Database Access
Natural for Tamino Restrictions

[WIN:For information about how to configure Natural to work with Tamino, see the section Natural and Tamino
Access in the Natural for Windows documentation.:WIN]

[UX:For information about how to configure Natural to work with Tamino, see the section Natural and Tamino
Access in the Natural for UNIX documentation.:UX]

DDM and View-Definitions with Natural for Tamino
This section describes the composition of DDMs and views, as well as their connection to the Tamino XML Schema
definition.

DDMs for Natural for Tamino

For Natural to be able to access a Tamino database, a logical connection between a Tamino doctype and the Natural
data structures must be provided. Such a logical connection is called a DDM (Data Definition Module). A DDM is
the Natural representation of a doctype in a Tamino database. The DDM contains information about the type of each
data field and all the necessary structural information as defined in the corresponding Tamino XML Schema.

You define DDMs with the Natural DDM Editor. For more information about Tamino XML Schema mapping, refer
to the section [WIN::WIN]Data Conversion for Tamino[WIN::WIN] in the DDM Editor documentation.

1Copyright Software AG 2003

Database Access with Natural for Tamino<Untitled>

Each DDM field holds the following information:

Column Explanation

T Field type:

blank (no
entry)

Elementary field. This type of field can hold data and does not contain any other
fields.

G
Group. A group is a collection of fields defined under one common group name.
Such fields cannot hold any data, but are only containers for other fields.

* Comment line.

L The level number assigned to the field. Levels are used to indicate the structure and grouping of the
field definitions. This is relevant with view definitions, redefinitions and field groups.

Name The 3 to 32 character external field name. This is the field name used in a Natural program to
reference the field. The field name is unique across the whole DDM. It is not necessarily the same
name as the TagName.

F The format of the field (A=alphanumeric, P=packed numeric, L=logical etc.). Only elementary
fields have a format.

Len The length of the field. For numeric fields, length is specified as "nn.m", where "nn" is the number
of digits before the decimal point and "m" is the number of digits after the decimal point.
Alphanumeric fields can have a length entry of DYNAMIC. Only elementary fields can have a
length.

Copyright Software AG 20032

<Untitled>DDMs for Natural for Tamino

Column Explanation

D The descriptor type of the field:

D Elementary descriptor.

blank (no entry)No descriptor.

Descriptors are needed for special clauses (search, sort etc.) in the READ or FIND statements. Only
elementary fields, which are not arrays, can be descriptors. For a Tamino XML Schema, an element
is marked as a descriptor in the DDM when it has an overall multiplicity of a maximum of 1, in
other words, if the maxOccurs values of the element and all of its predecessors in the schema are
never greater than 1.

Header Indicates a default column header to appear above the field when the field is output via a DISPLAY
statement. If no header is specified, the field name is used as column header.

Edit Mask Indicates a default edit mask to be used when the field is output via a DISPLAY statement.

Remarks This column can contain comments about the field.

TagName The name of the tag of the corresponding element in an XML document. This name is defined
inside the Tamino XML Schema. This name may be not unique within the whole XML document.
Some group fields might not have a TagName.

Xpath The complete XPATH in the XML document (as defined in the Tamino XML Schema) for this
field. Some group fields might not have an XPATH.

Occurrence The multiplicity of the field as extracted from the Tamino XML Schema. The multiplicity of a field
is expressed with the maxOccurs facet in the Tamino XML Schema.

3Copyright Software AG 2003

DDMs for Natural for Tamino<Untitled>

Column Explanation

Flags Flag field containing additional information for this field as extracted for the Tamino XML
Schema. The following flags might appear.

ARRAY
field is an array; i.e. maxOccurs of the corresponding Tamino
XML Schema definition is greater than 1

GROUP_ATTRIBUTES
field is a group that contains the attribute sub-fields of the
predecessor field

GROUP_ALTERNATIVES
field is a group that represents the choice constructor of Tamino
XML Schema; the choice elements are contained as sub-fields

GROUP_SEQUENCE
field is a group that represents the sequence constructor of Tamino
XML Schema; the sequence elements are contained as sub-fields

GROUP_ALL
field is a group that represents the all constructor of Tamino XML
Schema; all elements are contained as sub-fields

ATTR_REQUIRED field is an attribute marked as required

ATTR_OPTIONAL field is an attribute marked as optional

ATTR_PROHIBITED field is an attribute marked as prohibited

MULT_OPTIONAL field can occur in the XML document but does not need to

MULT_REQUIRED field must occur in the XML document

MULT_ONCE field must occur exactly once in the XML document

SIMPLE_CONTENT
field was defined as complexType with simpleContent in the
Tamino XML Schema

Combinations of the flags for one DDM field are possible.

DefaultValue default value of the field as extracted from Tamino XML Schema; this is not yet used

FixedValue fixed value of the field as extracted from Tamino XML Schema; this is not yet used

Note:
Some of the field information data is read-only and cannot be changed by the user.

The following values can be changed by the user:

Name
Format
Length
Header
EditMask

The following values can be adapted when defining a view from a DDM:

Name
Format
Length
Occurrence

Copyright Software AG 20034

<Untitled>DDMs for Natural for Tamino

XPATH Information in a DDM Field

The XPATH information stored in a Natural for Tamino DDM is used during application runtime to uniquely
identify a data element in a given XML document. Therefore, it is not possible to change the XPATH information.

Flags in a DDM Field

The flags of a field in a Natural DDM are used internally to help in correctly recognizing special group structures
(i.e. the attributes of an element tag) or multiple occurrences. Additionally, the user can identify DDM fields which
are either mandatory or optional in XML documents.

Arrays in Natural for Tamino DDMs

If you define an XML element with a maxOccurs value greater than one in the Tamino XML Schema, then this
element can occur as often as this value indicates. Such a construction is mapped either on a Natural static array
definition or on a Natural X-Array definition. Depending on the type of the XML element you are dealing with, the
following situations may occur:

If the XML element is a complexType with complexContent (i.e. it is an element containing other elements)
then the generated corresponding Natural group will be an indexed group.
If the XML element is a simpleType (i.e. the element is holding data only) or a complexType with
simpleContent (i.e. the element has only data and attributes but no other elements) then the generated Natural
data field will be an array.

For further information about mapping maxOccurs definitions onto Natural arrays, see the section [WIN::WIN]Data
Conversion for Tamino[WIN::WIN] in the DDM Editor documentation. The array boundaries or the kind of the
array (static array or X-Array) can be adapted in a corresponding view definition as usual.

Example

This is an example of an EMPLOYEES DDM generated from a Tamino XML Schema definition.

The schema can, for example, be defined with the Natural demo application SYSEXINS:

5Copyright Software AG 2003

XPATH Information in a DDM Field<Untitled>

DB: 00250 FILE: 00001 - EMPLOYEES-XML
TYPE: XML
COLLECTION: NATDemoData
SCHEMA: Employee
DOCTYPE: Employee
NAMESPACE-PREFIX: xs
NAMESPACE-URI: http://www.w3.org/2001/XMLSchema
T L Name F Leng D Remark
- -- -------------------------------- - ---------- - -----------
G 1 EMPLOYEE
 FLAGS=MULT_REQUIRED,MULT_ONCE
 TAG=Employee
 XPATH=/Employee
G 2 GROUP$1
 FLAGS=GROUP_ATTRIBUTES
 3 PERSONNEL-ID A 8 D xs:string
 FLAGS=ATTR_REQUIRED
 TAG=@Personnel-ID
 XPATH=/Employee/@Personnel-ID
G 2 GROUP$2
 FLAGS=GROUP_SEQUENCE,MULT_REQUIRED,MULT_ONCE
G 3 FULL-NAME
 FLAGS=MULT_OPTIONAL
 TAG=Full-Name
 XPATH=/Employee/Full-Name
G 4 GROUP$3
 FLAGS=GROUP_SEQUENCE,MULT_REQUIRED,MULT_ONCE
 5 FIRST-NAME A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=First-Name
 XPATH=/Employee/Full-Name/First-Name
 5 MIDDLE-NAME A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=Middle-Name
 XPATH=/Employee/Full-Name/Middle-Name
 5 MIDDLE-I A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=Middle-I
 XPATH=/Employee/Full-Name/Middle-I
 5 NAME A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=Name
 XPATH=/Employee/Full-Name/Name
 . . .
 3 LANG A 3 xs:string
 FLAGS=ARRAY,MULT_OPTIONAL
 OCC=1:4
 TAG=Lang
 XPATH=/Employee/Lang

Definition of VIEWs

In order to work with Tamino database fields in a Natural program, you must specify the required fields of the DDM
in a Natural view-definition (see the DEFINE DATA statement). Normally, a view is a special subset of the complete
data structure as defined in the DDM.

Copyright Software AG 20036

<Untitled>Definition of VIEWs

Tamino XML Schema->Natural for Tamino DDM->Natural view-definition

A view for the EMPLOYESS-XML DDM, where one of the view fields is a static array, might look like this:

DEFINE DATA LOCAL
01 VW VIEW OF EMPLOYEES-XML
02 NAME
02 CITY
02 LANG (1:4)
END-DEFINE

Natural Statements for Tamino Database Access
The Natural DML statements which are provided for Tamino access can be subdivided into two categories:

pure retrieval statements;
database modification statements.

The Natural system variable *ISN is mapped on the Tamino ino:id.

Natural for Tamino Retrieval Statements

The following Natural statements can be used for database retrieval:

FIND
This statement is used to select those records from a database which meet a specified search criterion.
GET
This statement is used to select one special record with its unique id from the database.
READ
This statement is used to select a range of records from a database in a specified sequence.

Not all of the possible options and all of the possible clauses of the retrieval statements can be used for Tamino
access. Please read the appropriate section in the Statements documentation for a detailed description.

All statements are internally realized with the Tamino _xquery command verb. Statement clauses are mapped to
corresponding Tamino XQuery expressions, e.g. search criteria are mapped to Tamino XQuery comparison
expressions, sequence specifications are mapped to Tamino XQuery ordering expressions with sort direction.

The result set for the FIND and READ statements is determined at start of the loop and remains unchanged
throughout the loop.

The following is an example of reading a set of employee records from a Tamino database where one view field is an
array:

7Copyright Software AG 2003

Natural Statements for Tamino Database Access<Untitled>

* READ 5 RECORDS DESCENDING CONTAINING A
* STATIC ARRAY IN THE VIEW DEFINE DATA LOCAL
01 VW VIEW OF EMPLOYEES-TAMINO
02 NAME
02 CITY
02 LANG (1:4)
END-DEFINE
*
READ(5) VW DESCENDING BY NAME = ’MAYER’
 DISPLAY NAME CITY LANG(*)
END-READ
*
END

Natural for Tamino Database Modification Statements

The following database modification statements are provided for use with Natural for Tamino:

STORE
This statement is used for inserting a new XML document into the database.
DELETE
This statement is used for deleting a document from the database. The DELETE statement implements a
positioned delete.

For a detailed description of the statements, see the appropriate sections of the Natural Statements documentation.

The DELETE statement is internally realized with the Tamino _delete command verb using the current ino:id, and
the STORE statement is implemented with the _process command verb.

The following example program stores a new employee record with some data in the database:

* STORE NEW EMPLOYEE
DEFINE DATA LOCAL
01 VW VIEW OF EMPLOYEES-TAMINO
02 PERSONNEL-ID
02 NAME
02 CITY
02 LANG (1:3)
END-DEFINE
*
* FILL VIEW
PERSONNEL-ID := ’1230815’
NAME := ’KENT’
CITY := ’ROME’
LANG(1) := ’ENG’
LANG(2) := ’GER’
LANG(3) := ’SPA’
*
* STORE VIEW
STORE RECORD IN VW
*
COMMIT
*
END

Copyright Software AG 20038

<Untitled>Natural for Tamino Database Modification Statements

If the Tamino XML Schema defines data structures for a doctype as being mandatory, then these data structures must
also be filled in the view before a STORE statement is issued, otherwise this will result in a Tamino error.

Natural for Tamino Logical Transaction Handling

Natural performs database modification operations based on transactions, which means that all database modification
requests are processed in logical transaction units. A logical transaction is the smallest unit of work (as defined by
you) which must be performed in its entirety to ensure that the information contained in the database is logically
consistent.

A logical transaction may consist of one or more modification statements (DELETE, STORE) involving one or more
doctypes in the database. A logical transaction may also span multiple Natural programs.

A logical transaction begins when a database modification statement is issued. Natural does this automatically. For
example, if a FIND loop contains a DELETE statement. The end of a logical transaction is determined by an END
TRANSACTION statement in the program. This statement ensures that all modifications within the transaction have
been successfully applied.

Natural for Tamino Error Handling

In addition to Natural’s standard error messages there are two special error codes which provide additional
information via a sub-error code.

NAT8400 "Tamino error occurred" :
For this special error an additional sub-code number is shown. This number refers to a Tamino error message.
Please see the Tamino Messages and Codes documentation.
NAT8411 "HTTP request failed with response code" : The error code from the http server is delivered as
additional information. Please see the REQUEST DOCUMENT documentation, section operand13, for an
overview of the response codes for HTTP/HTTPs requests.

Example of Natural for Tamino Interacting with a SQL Database

This is a more sophisticated example of Natural for Tamino interacting with an SQL database; it retrieves data from
a Tamino database and inserts or updates the corresponding row in an appropriate table in a SQL database.

9Copyright Software AG 2003

Natural for Tamino Logical Transaction Handling<Untitled>

*
* TAMINO DB --> SQL RDBMS EXAMPLE
*
DEFINE DATA LOCAL
* DEFINE VIEW FOR TAMINO
01 VW-TAMINO VIEW OF EMPLOYEES-TAMINO
02 PERSONNEL-ID
02 NAME
02 CITY
* DEFINE VIEW FOR SQL DATABASE
01 VW-SQL VIEW OF EMPLOYEES-SQL
02 PERSONNEL_ID
02 NAME
02 CITY
END-DEFINE
*
* OPEN A TAMINO LOGICAL READ LOOP
*
TAMINO. READ VW-TAMINO BY NAME
*
* SEARCH RECORD IN SQL DATABASE AND
* INSERT A NEW RECORD IF NOT FOUND OR
* UPDATE THE EXISTING ONE WITH THE DATA
* FROM TAMINO DB
SQL. FIND(1) VW-SQL WITH PERSONNEL_ID = PERSONNEL-ID (TAMINO.)
 IF NO RECORDS FOUND
 PERSONNEL_ID := PERSONNEL-ID (TAMINO.)
 NAME := NAME (TAMINO.)
 CITY := CITY (TAMINO.)
 STORE VW-SQL
 ESCAPE BOTTOM
 END-NOREC
 PERSONNEL_ID := PERSONNEL-ID (TAMINO.)
 NAME := NAME (TAMINO.)
 CITY := CITY (TAMINO.)
 UPDATE
 END-FIND
*
END-READ
*
END TRANSACTION
*
END

Natural for Tamino Restrictions
There are restrictions concerning the scope of the Tamino XML Schema language that can be used for creating
schemas for Natural for Tamino DDM generation:

Only Tamino XML Schema language constructors and attributes (as mentioned in the [WIN::WIN]DDM
Editor[WIN::WIN] documentation) are supported by Natural for Tamino. Other constructors like xs:any,
xs:anyAttribute, etc. cannot be applied in Tamino XML Schemas if you wish to use them together with Natural
for Tamino.
The functionality of xs:import is not supported by Natural for Tamino. This means that external schema
components must not be referenced in a Tamino XML Schema suitable for usage together with Natural. In other
words, a doctype definition in a Tamino XML Schema must resolve all references within this Tamino XML
Schema itself if you are planning to use it together with Natural for Tamino.

Copyright Software AG 200310

<Untitled>Natural for Tamino Restrictions

The attribute mixed of the constructor xs:complexType is only supported with its default value "false". Natural
for Tamino does not support mixed-content document definitions (as set with the specification mixed="true"). Using
mixed="true" will result in an error during DDM generation.
The level of nested structures in a Natural for Tamino DDM is limited to 99. A new DDM level is generated
whenever one of the following constructors occurs in the Tamino XML Schema:
xs:element,
xs:attribute,
xs:choice,
xs:all,
xs:sequence.
Recursively defined structures in a Tamino XML Schema cannot be used together with Natural for Tamino.
The Tamino XML Schema language constructor xs:choice is mapped on a Natural group containing all
alternatives of the choice. To restrict processing to one particular choice, an appropriate view with the required
choice has to be created.
Natural for Tamino only supports "closed content validation mode". Tamino XML Schemas with "open content
validation mode" cannot be used together with Natural for Tamino.
For the Tamino XML Schema language constructors xs:choice, xs:sequence and xs:all, a value greater than 1 of
the attribute maxOccurs can not be handled in the Natural data structures. Hence a value greater than 1 will always
lead to an error during DDM generation.
Natural for Tamino can handle only Tamino objects that are defined with a Tamino XML Schema as a subset of
the W3C schema. Especially Natural for Tamino does not support nonXML (tsd:nonXML) data or instances without
a defined schema (ino:etc).

11Copyright Software AG 2003

Natural for Tamino Restrictions<Untitled>

	Database Access with Natural for Tamino
	DDM and View-Definitions with Natural for Tamino
	DDMs for Natural for Tamino
	XPATH Information in a DDM Field
	Flags in a DDM Field
	Arrays in Natural for Tamino DDMs
	Example
	Definition of VIEWs

	Natural Statements for Tamino Database Access
	Natural for Tamino Retrieval Statements
	Natural for Tamino Database Modification Statements
	Natural for Tamino Logical Transaction Handling
	Natural for Tamino Error Handling
	Example of Natural for Tamino Interacting with a SQL Database

	Natural for Tamino Restrictions

