
Programs, Subprograms and Subroutines
This document discusses those object types which can be invoked as routines; that is, as subordinate programs.

Helproutines and maps, although they are also invoked from other objects, are strictly speaking not routines as such,
and are therefore discussed in separate documents; see Helproutines and Maps.

The following topics are covered:

A Modular Application Structure
Multiple Levels of Invoked Objects
Program
Subroutine
Subprogram
Processing Flow when Invoking a Routine

A Modular Application Structure
Typically, a Natural application does not consist of a single huge program, but is split into several modules. Each of
these modules will be a functional unit of manageable size, and each module is connected to the other modules of the
application in a clearly defined way. This provides for a well structured application, which makes its development
and subsequent maintenance a lot easier and faster.

During the execution of a main program, other programs, subprograms, subroutines, helproutines and maps can be
invoked. These objects can in turn invoke other objects (for example, a subroutine can itself invoke another
subroutine). Thus, the modular structure of an application can become quite complex and extend over several levels.

Multiple Levels of Invoked Objects
Each invoked object is one level below the level of the object from which it was invoked; that is, with each
invocation of a subordinate object, the level number is incremented by 1.

Any program that is directly executed is at Level 1; any subprogram, subroutine, map or helproutine directly invoked
by the main program is at Level 2; when such a subroutine in turn invokes another subroutine, the latter is at Level 3.

A program invoked with a FETCH statement from within another object is classified as a main program, operating
from Level 1. A program that is invoked with FETCH RETURN, however, is classified as a subordinate program
and is assigned a level one below that of the invoking object.

The following illustration is an example of multiple levels of invoked objects and also shows how these levels are
counted:

1Copyright Software AG 2003

Programs, Subprograms and SubroutinesPrograms, Subprograms and Subroutines

If you wish to ascertain the level number of the object that is currently being executed, you can use the system
variable *LEVEL (which is described in the System Variables documentation).

This document discusses the following Natural object types, which can be invoked as routines (that is, subordinate
programs):

program
subroutine
subprogram

Helproutines and maps, although they are also invoked from other objects, are strictly speaking not routines as such,
and are therefore discussed in separate documents; see Helproutines and Maps.

Basically, programs, subprograms and subroutines differ from one another in the way data can be passed between
them and in their possibilities of sharing each other’s data areas. Therefore the decision which object type to use for
which purpose depends very much on the data structure of your application.

Program
A program can be executed - and thus tested - by itself.

To compile and execute a source program, you use the system command RUN.
To execute a program that already exists in compiled form, you use the system command EXECUTE.

A program can also be invoked from another object with a FETCH or FETCH RETURN statement. The invoking
object can be another program, a subprogram, subroutine or helproutine.

Copyright Software AG 20032

Programs, Subprograms and SubroutinesProgram

When a program is invoked with FETCH RETURN, the execution of the invoking object will be suspended -
not terminated - and the FETCHed program will be activated as a subordinate program. When the execution
of the FETCHed program is terminated, the invoking object will be re-activated and its execution continued
with the statement following the FETCH RETURN statement.
When a program is invoked with FETCH, the execution of the invoking object will be terminated and the
FETCHed program will be activated as a main program. The invoking object will not be re-activated upon
termination of the FETCHed program.

Program Invoked with FETCH RETURN

A program invoked with FETCH RETURN can access the global data area used by the invoking object.

In addition, every program can have its own local data area, in which the fields that are to be used only within the
program are defined.

3Copyright Software AG 2003

Program Invoked with FETCH RETURNPrograms, Subprograms and Subroutines

However, a program invoked with FETCH RETURN cannot have its own global data area.

Program Invoked with FETCH

A program invoked with FETCH as a main program usually establishes its own global data area (as shown in the
illustration above). However, it could also use the same global data area as established by the invoking object.

Note:
A source program can also be invoked with a RUN statement; see the RUN statement in the Natural Statements
documentation.

Subroutine
The statements that make up a subroutine must be defined within a DEFINE SUBROUTINE ...
END-SUBROUTINE statement block.

Copyright Software AG 20034

Programs, Subprograms and SubroutinesSubroutine

A subroutine is invoked with a PERFORM statement.

A subroutine may be an inline subroutine or an external subroutine:

An inline subroutine is defined within the object which contains the PERFORM statement that invokes it.
An external subroutine is defined in a separate object - of type subroutine - outside the object which invokes
it.

If you have a block of code which is to be executed several times within an object, it is useful to use an inline
subroutine. You then only have to code this block once within a DEFINE SUBROUTINE statement block and
invoke it with several PERFORM statements.

Inline Subroutine

5Copyright Software AG 2003

Inline SubroutinePrograms, Subprograms and Subroutines

An inline subroutine can be contained within a programming object of type program, subprogram, subroutine or
helproutine.

If an inline subroutine is so large that it impairs the readability of the object in which it is contained, you may
consider putting it into an external subroutine, so as to enhance the readability of your application.

External Subroutine

An external subroutine - that is, an object of type subroutine - cannot be executed by itself. It must be invoked from
another object. The invoking object can be a program, subprogram, subroutine or helproutine.

Data Available to an Inline Subroutine

An inline subroutine has access to the local data area and the global data area used by the object in which it is
contained.

Copyright Software AG 20036

Programs, Subprograms and SubroutinesExternal Subroutine

Data Available to an External Subroutine

An external subroutine can access the global data area used by the invoking object.

Moreover, parameters can be passed with the PERFORM statement from the invoking object to the external
subroutine. These parameters must be defined either in the DEFINE DATA PARAMETER statement of the
subroutine, or in a parameter data area used by the subroutine.

In addition, an external subroutine can have its local data area, in which the fields that are to be used only within the
subroutine are defined.

However, an external subroutine cannot have its own global data area.

Subprogram
Typically, a subprogram would contain a generally available standard function that is used by various objects in an
application.

A subprogram cannot be executed by itself. It must be invoked from another object. The invoking object can be a
program, subprogram, subroutine or helproutine.

A subprogram is invoked with a CALLNAT statement.

When the CALLNAT statement is executed, the execution of the invoking object will be suspended and the
subprogram executed. After the subprogram has been executed, the execution of the invoking object will be
continued with the statement following the CALLNAT statement.

Data Available to a Subprogram

With the CALLNAT statement, parameters can be passed from the invoking object to the subprogram. These
parameters are the only data available to the subprogram from the invoking object. They must be defined either in
the DEFINE DATA PARAMETER statement of the subprogram, or in a parameter data area used by the
subprogram.

7Copyright Software AG 2003

SubprogramPrograms, Subprograms and Subroutines

In addition, a subprogram can have its own local data area, in which the fields to be used within the subprogram are
defined.

If a subprogram in turn invokes a subroutine or helproutine, it can also establish its own global data area to be shared
with the subroutine/helproutine.

Processing Flow when Invoking a Routine
When the CALLNAT , PERFORM or FETCH RETURN statement that invokes a routine - a subprogram, an external
subroutine, or a program respectively - is executed, the execution of the invoking object is suspended and the
execution of the routine begins.

The execution of the routine continues until either its END statement is reached or processing of the routine is
stopped by an ESCAPE ROUTINE statement being executed.

In either case, processing of the invoking object will then continue with the statement following the CALLNAT,
PERFORM or FETCH RETURN statement used to invoke the routine.

Copyright Software AG 20038

Programs, Subprograms and SubroutinesProcessing Flow when Invoking a Routine

Example:

9Copyright Software AG 2003

Processing Flow when Invoking a RoutinePrograms, Subprograms and Subroutines

	Programs, Subprograms and Subroutines
	A Modular Application Structure
	Multiple Levels of Invoked Objects
	Program
	Program Invoked with FETCH RETURN
	Program Invoked with FETCH

	Subroutine
	Inline Subroutine
	External Subroutine
	Data Available to an Inline Subroutine
	Data Available to an External Subroutine

	Subprogram
	Data Available to a Subprogram

	Processing Flow when Invoking a Routine

