———
NATURAL

Natural

Programming Guide

Version 5.1.1 for Windows
Version 3.1.6 for Mainframes
Version 5.1.1 for UNIX and OpenVMS

f; softwARE ARG

This document applies to Natural Version 5.1.1 for Windows, Version 3.1.6 for Mainframes, Version 5.1.1 for
UNIX and OpenVMS, and to all subsequent releases. Specifications contained herein are subject to change and
these changes will be reported in subsequent release notes or new editions.

© June 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

Programming Guide - Overview

Table of Contents

Programming Guide - Overview
Programming Guide - Overview.
Defining Fields
Defining Fields .
DEFINE DATA Statement

Structure of a DEFINE DATA Statement Level Numbers .

Level Numbers in View Definitions .
Level Numbers in Field Groups.
Level Numbers in Redefinitions.
User-Defined Variables .
Names of User-Defined Varrables .
Format and Length of User-Defined Variables
User-Defined Constants .
Numeric Constants.
Alphanumeric Constants
Date and Time Constants .
Hexadecimal Constants
Logical Constants .
Floating Point Constants
Attribute Constants.
Defining Named Constants.
Initial Values.
Default Initial Values
The RESET Statement.
Redefining Fields.
Arrays
Defining Arrays
Initial Values for Arrays.
Assigning Initial Values to One- D|mens|onal Arrays
Assigning Initial Values to Two-Dimensional Arrays .
A Three-Dimensional Array. .
Arrays as Part of a Larger Data Structure
Database Arrays
Using Arithmetic Expressrons in Index Notatron
Arithmetic Support for Arrays
Data Blocks . .
Defining Data Blocks
Block Hierarchies .
Database Access.
Database Access
DDMs (Data Definition Modules)
Displaying a DDM .
Components of a DDM.
Database Arrays.
Multiple-Value Fields
Periodic Groups

Referencing Multiple-Value Frelds and Perrod|c Groups .

Multiple-Value Fields Within Periodic Groups

Referencing Multiple-Value Fields Within Periodic Groups

Referencing the Internal Count of a Database Array.
DEFINE DATA Views
Statements for Database Access
READ Statement.

Copyright © Software AG 2002

Table of Contents

O©C OO0V BAEANNDNEREPRE

Table of Contents

Programming Guide - Overview

Syntax . . 42
Limiting the Number of Records to be Read . 43
The STARTING/ENDING Clauses 44
The WHERE Clause. 44
FIND Statement 45
Syntax . . 46
Limiting the Number of Records to be Processed. 46
The WHERE Clause. . 46
IF NO RECORDS FOUND Condrtron 47
HISTOGRAM Statement 49
Syntax . 49
Limiting the Number of Values to be Read 49
The STARTING/ENDING Clauses 49
The WHERE Clause. 49
Database Processing Loops 50
Hierarchies of Processing Loops. 52
Database Update - Transaction Processing. 55
Logical Transaction . 55
Record Hold Logic 56
Backing Out a Transaction 57
Restarting a Transaction. 57
Statements ACCEPT and REJECT. 59
AT START/END OF DATA Statements. 62
Output of Data . 64
Output of Data 64
Layout of an Output Page Overvrew 64
Statements DISPLAY and WRITE . 65
DISPLAY Statement. 66
WRITE Statement 67
Column Spacing - The SF Parameter and the nX Notatron 68
Tab Setting - Tha@T Notation . 70
Line Advance - The / Notation 70
Index Notation f:n) for Multiple-Value Frelds and Perrodrc Groups 72
Page Titles and Page Breaks 74
Default Page Title . 74
Suppress Page Title - The NOTITLE Optron . . 74
Define Your Own Page Title - The WRITE TITLE Statement . 74
Logical Page and Physical Page. 75
Page Size - The PS Parameter 77
Page Advance - The EJ Parameter 77
Page Advance - The EJECT and NEWPAGE Statements 77
EJECT/NEWPAGE WHEN LESS THAN LINES LEFT 78
NEWPAGE WITH TITLE 79
Page Trailer - The WRITE TRAILER Statement 80
AT TOP OF PAGE Statement 80
AT END OF PAGE Statement 80
Column Headers 81
Default Column Headers 81
Suppress Default Column Headers - The NOHDR Optron 82
Define Your Own Column Headers e 82
Combining NOTITLE and NOHDR 83
Centering of Column Headers - The HC Parameter 83
Width of Column Headers - The HW Parameter . 83
Filler Characters for Headers - The Parameters FC and GC 83
Underlining Character for Titles and Headers - The UC Parameter 85
Suppressing Column Headers - The Notation.’/’ 86

Copyright © Software AG 2002

Programming Guide - Overview Table of Contents

Parameters to Influence the Output of Fieds 87
Leading Characters - The LC Parameter. 87
Insertion Characters - The IC Parameter. 87
Trailing Characters - The TC Parameter 88
Output Length - The AL and NL Parameters 88
Sign Position - The SG Parameter 89
Identical Suppress - The IS Parameter 9
Zero Printing - The ZP Parameter . . . 4
Empty Line Suppression - The ES Parameter . 4

Edit Masks - The EM Parameter 9%
Edit Masks for Numeric Fieds 9%
Edit Masks for Alphanumeric Fields 9%
Length of Fields. . . T |5
Edit Masks for Date and Trme Frelds e |
Examples of EditMasks. 9

Vertical Displays . . e 1<
Combining DISPLAY and WRITE e 1
Tab Notation Tfield 100
Positioning Notatioxty10
DISPLAY VERT Statement 102
DISPLAY VERT without AS Clause . . e 104
DISPLAY VERT AS CAPTIONED and HORIZ 103
DISPLAY VERT AStext . . e 0
DISPLAY VERT AStext CAPTIONED e 0
Tab Notation Pfield 106

Object Typeso
Object Types . . . K04

What Types of Programmrng Objects Are There’? . [0 1 4

Data Areas .o
Local Data Area. 108
Global Data Area109
Parameter Data Area . . e X0

Programs, Subprograms and Subroutrnes I A
A Modular Application Structure 113
Multiple Levels of Invoked Objects 114
Program. .15
Subroutine . 118
Subprogram. . S 2
Processing Flow when Invokrng a Routrne . 2

Maps L. .14

Helproutines . 124
InvokingHelp12
Specifying Helproutines125
Programming Considerations for Helproutrnes 126
Passing Parameters to Helproutines. 126
Equal Sign Optionz
Array Indices L. 12y
Help as a Window . . 22

Multiple Use of Source Code - Copycode e 24°]

Documenting Natural Objects - Text 129

Creating Event Driven Applications - Dialog. 130

Creating Component Based Applications-Class 130

Using Non-Natural Files - Resource 130
Shared Resources13
Private Resources13

Copyright © Software AG 2002 iii

Table of Contents Programming Guide - Overview

Further Programming Aspects .
Further Programming Aspects
End of Program - The END Statement
End of Application - The STOP Statement .
Conditional Processing - The IF Statement .
Nested IF Statements
Loop Processing .
Limiting Database Loops.
Limiting Non-Database Loops - The REPEAT Statement
Terminating a Processing Loop - The ESCAPE Statement
Loops Within Loops .
Referencing Statements wrthrn a Program
Control Breaks. .
AT BREAK Statement
Automatic Break Processing.
BEFORE BREAK PROCESSING Statement

User-Initiated Break Processing - The PERFORM BREAK PROCESSING Statement

Data Computation .
Format of Fields.
COMPUTE Statement
Statements MOVE and COMPUTE .
Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
COMPRESS Statement .
Mathematical Functions .
System Variables and System Functrons
System Variables
System Functions
Stack .
Stack Processrng
Placing Data in the Stack
Clearing the Stack .
Processing of Date Information.
Edit Masks for Date Fields and Date System Varrables
Default Edit Mask for Date - The DTFORM Parameter
Date Format for Alphanumeric Representation - The DF Parameter
Date Format for Output - The DFOUT Parameter.
Date Format for Stack - The DFSTACK Parameter
Year Sliding Window - The YSLW Parameter.
Combinations of DFSTACK and YSLW
Date Format for Default Page Title - The DFTITLE Parameter
Reporting Mode and Structured Mode
Reporting Mode and Structured Mode
General Information
Setting the Programming Mode
Functional Differences. .
Closing a Processing Loop in Reportrng Mode .
Closing a Processing Loop in Structured Mode .
Database Reference .
Portable Natural Generated Programs .
Portable Natural Generated Programs
Compatibility
Endian Mode Consrderatrons
ENDIAN Parameter .
Transferring Natural Generated Programs .

132
132
132
132
132
134
136
136
137
139
139
141
144
144
148
151
152
156
156
156
157
157
158
160
161
161
163
166
166
167
167
168
168
168
169
172
173
174
177
179
180
180
180
180
181
182
183
184
186
186
186
186
186
187

iv Copyright © Software AG 2002

Programming Guide - Overview Programming Guide - Overview

Programming Guide - Overview

This documentation applies to all platforms on which Natural can be used. It provides basic information on
various aspects of programming with Natural. You should be familiar with this information before you start to
write Natural applications.

@ Defining Fields Describes how you define the fields you wish to use in a program.

@ Database Access Describes various aspects of using Natural to access data in a database.

& Output of Data Discusses various aspects of how you can control the format of an output report
created with Natural, that is, the way in which the data are displayed.

& Object Types Within an application, you can use several types of programming objects to achieve

an efficient application structure. This section discusses the various types of
Natural programming objects: data areas, programs, subprograms, subroutines,
helproutines, maps, etc.

©

Further Programmin(Discusses various other aspects of programming with Natural.
Aspects

©

Reporting Mode and Describes the differences between the two Natural programming modes.
Structured Mode

& Portable Natural As of Natural 5, generated programs are portable across the platforms UNIX,
Generated Programs OpenVMS and Windows.

Example Programs

This documentation contains several examples of Natural programs, as well as references to further example
programs not shown in the documentation.

All these programs are also provided in source-code form in the Natural library "SYSEXPG". (The programs are
all written in structured mode.)

Further example programs of using Natural statements are provided in the Natural library "SYSEXRM".
Please ask your Natural administrator about the availability of these libraries at your site.

The example programs use data from the files "EMPLOYEES" and "VEHICLES", which are supplied by
Software AG for demonstration purposes.

Programming Modes

Natural offers two ways of programming: reporting mode and structured mode. Generally, it is recommended to
use structured mode exclusively, because it provides for more clearly structured applications. Therefore all
explanations and examples in this documentation refer to structured mode. Any peculiarities of reporting mode
will not be taken into consideration. (For differences between the two modes, pleaseRefavrtong Mode

and Structured Modg

Copyright © Software AG 2002 1

Defining Fields Defining Fields

Defining Fields

This section describes how you define the fields (database fields and user-defined) you wish to use in a program.
These fields can be database fields and user-defined fields. It contains information that applies to all fields in
general and to user-defined fields in particular. The particulars of database fields are desbalbelobice

Access

DEFINE DATA Statement

Structure of a DEFINE DATA Statement - Level Numbers
User-Defined Variables

User-Defined Constants

Initial Values (and the RESET Statement)

Redefining Fields

Arrays

Data Blocks

Please note that only the major options of the DEFINE DATA statement are discussed here. Further options are
described in th&latural Statementdocumentation.

DEFINE DATA Statement

The first statement in a Natural program must always be a DEFINE DATA statement. In this statement, you
define all the fields - database fields as well as user-defined variables - that are to be used in the program.

All fields to be usednust belefined in the DEFINE DATA statement.
There are two ways to define the fields:

® The fields can be defined within the DEFINE DATA statement itself.
® The fields can be defined outside the program in a local or global data area, with the DEFINE DATA
statement referencing that data area.

If fields are used by multiple programs/routines, they should be defined in a data area outside the programs.
For a clear application structure, it is usually better to define fields in data areas outside the programs.
Data areas are created and maintained with the data area editor, which is described in your Natural User’s Guide.

In the first example below, the fields are defined within the DEFINE DATA statement of the program. In the
second example, the same fields are defined in a local data area, and the DEFINE DATA statement only contains
a reference to that data area.

2 Copyright © Software AG 2002

Defining Fields

Example 1 - Fields Defined within a DEFINE DATA Statement:

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 PERSONNEL-ID

1 #VARI-A (A20)

1 #VARI-B (N3.2)

1 #VARI-C (14)

END-DEFINE

Example 2 - Fields Defined in a Separate Data Area:

Program:

DEFINE DATA LOCAL
USING LDA39
END-DEFINE

Local Data AreaLDA39":

DEFINE DATA Statement

I TL Name F Leng Index/Init/EM/Name/Comment
V 1 VIEWEMP EMPLOYEES
2 NAME A 20
2 FIRST-NAME A 20
2 PERSONNEL-ID A 8
1 #VARI-A A 20
1 #VARI-B N 3.2
1 #VARI-C I 4

Copyright © Software AG 2002

Structure of a DEFINE DATA Statement - Level Numbers Defining Fields

Structure of a DEFINE DATA Statement - Level Numbers

Level numbers are used within the DEFINE DATA statement to indicate the structure and grouping of the
definitions. This is relevant with:

® view definitions
e field groups
® redefinitions

Level numbers are 1- or 2-digit numbers in the range from 01 to 99 (the leading "0" is optional).
Generally, variable definitions are on level 1.

The level numbering in view definitions, redefinitions and groups must be sequential; no level numbers may be
skipped.

Level Numbers in View Definitions

If you define a view, the specification of the view name must be on level 1, and the fields the view is comprised
of must be on level 2. (For details on view definitions,Bambase Accegs

Example of Level Numbers in View Definition:
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 BIRTH

END-DEFINE

Level Numbers in Field Groups

The definition of groups provides a convenient way of referencing a series of consecutive fields. If you define
several fields under a common group name, you can reference the fields later in the program by specifying only
the group name instead of the names of the individual fields.

The group name must be specified on level 1, and the fields contained in the group must be one level lower.

For group names, the same naming conventions apply as for user-defined variables.

4 Copyright © Software AG 2002

Defining Fields Level Numbers in Redefinitions

Example of Level Numbers in Group:

DEFINE DATA LOCAL
1 #FIELDA (N2.2)
1 #FIELDB (14)
1 #GROUPA
2 #FIELDC (A20)
2 #FIELDD (A10)
2 #FIELDE (N3.2)
1 #FIELDF (A2)

END-DEFINE

In this example, the fields #FIELDC, #FIELDD and #FIELDE are defined under the common group name
#GROUPA. The other three fields are not part of the group. Note that #GROUPA only serves as a group name
and is not a field in its own right (and therefore does not have a format/length definition).

Level Numbers in Redefinitions

If you redefine a field, the REDEFINE option must be on the same level as the original field, and the fields
resulting from the redefinition must be one level lower. (For details on redefinitions, see theRed&ining
Fields)

Example of Level Numbers in Redefinition:

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF STAFFDDM
2 BIRTH
2 REDEFINE BIRTH
3 #YEAR-OF-BIRTH (N4)
3 #MONTH-OF-BIRTH (N2)
3 #DAY-OF-BIRTH (N2)
1 #FIELDA (A20)
1 REDEFINE #FIELDA
2 #SUBFIELD1 (N5)
2 #SUBFIELD2 (A10)
2 #SUBFIELD3 (N5)

END-DEFINE

In this example, the database field BIRTH is redefined as three user-defined variables, and the user-defined
variable #FIELDA is redefined as three other user-defined variables.

Copyright © Software AG 2002 5

User-Defined Variables Defining Fields

User-Defined Variables

User-defined variableare fields which you define yourself in a program. They are used to store values or
intermediate results obtained at some point in program processing for additional processing or display.

You define a user-defined variable by specifying its name and its format/length in the DEFINE DATA
statement.

Example:

In this example, a user-defined variable of alphanumeric format and a length of 10 positions is defined with the
name #FIELD1.

DEFINE DATA LOCAL
1 #FIELD1 (A10)

END-DEFINE
The following topics are covered below:

e Names of User-Defined Variables
e Format and Length of User-Defined Variables

Names of User-Defined Variables
The name of a user-defined variable can be 1 to 32 characters long.

Note:

You may use variable names of over 32 characters (for example, in complex applications where longer
meaningful variable names enhance the readability of programs); however, only the first 32 characters are
significant and must therefore be unique, the remaining characters will be ignored by Natural.

The name of a user-defined variable must not be a Natural reserved word.

Within one Natural program, you should not use the same name for a user-defined variable and a database field.

6 Copyright © Software AG 2002

Defining Fields

Names of User-Defined Variables

The name of a user-defined variable can consist of the following characters:

Character | Explanation

Atoz alphabetical characters
0to9 numeric characters

- hyphen

@ at sign

_ underline

/ slash

$ dollar sign

§ paragraph sign

& ampersand

hash / number sign

+ plus sign (only allowed as first charactpr)

The first character of the name must be one of the following:

® an upper-case alphabetical character

o #
® +
o &

Note:

In this section, the names of all user-defined variables begin with a hash sign (#); this avoids any naming
conflicts with database fields or Natural reserved words.

If the first character is a "#", "+", or "&", the name must consist of at least one additional character.

"+" as the first character of a name is only allowed for application-independent variables (AlVs) and variables in
a global data area. Names of AlNsist begin with a "+".

"&" as the first character of a name is used in conjunction with dynamic source program modification (see the
RUN statemenin the Natural Statements documentation) and when defining processing rules (see the map
editor description in your Natural User’s Guide).

Copyright © Software AG 2002

Format and Length of User-Defined Variables Defining Fields

Format and Length of User-Defined Variables
Format and length of a user-defined variable are specified in parentheses after the variable name.

A user-defined variable can have one of the following formats:

Alphanumeric

Binary

Attribute Control

Date

Mmoo 0O|®|>

Floating Point

Integer

Logical

Numeric unpackef

Packed numeric

- |0 |z

Time

Information on possible lengths of user-defined variables is provided Metioeal Referencdocumentation,

Examples of User-Defined Variables:

DEFINE DATA LOCAL
#A1 (A10) [* Alphanumeric, 10 positions.
#A2 (B4) [* Binary, 4 positions.
#A3 (P4) [* Packed numeric, 4 positions and 1 sign position.
#A4 (N7.2) /* Unpacked numeric,
[* 7 positions before and 2 after decimal point.
#A5 (N7.) /* Invalid definition!!!
#A6 (P7.2) /* Packed numeric, 7 positions before and 2 after decimal point
[* and 1 sign position.
#INT1 (11) /* Integer, 1 byte.
#INT2 (12) /* Integer, 2 bytes.
#INT3 (13) /* Invalid definition!!!
#INT4 (14) /* Integer, 4 bytes.
#INTS5 (I5) /* Invalid definition!!!
#FLT4 (F4) /* Floating point, 4 bytes.
#FLT8 (F8) /* Floating point, 8 bytes.
#FLT2 (F2) /* Invalid definition!!!
#DATE (D) [* Date (internal format/length P6).
#TIME (T) [* Time (internal format/length P12).
#SWITCH (L) /* Logical, 1 byte (TRUE or FALSE).

END-DEFINE

Note:
When a user-defined variable of format P is output with a DISPLAY, WRITE, or INPUT statement, Natural
internally converts the format to N for the output.

8 Copyright © Software AG 2002

Defining Fields User-Defined Constants

User-Defined Constants

Constants can be used throughout Natural programs. This section discusses the types of constants that are
supported and how they are used:

Numeric Constants
Alphanumeric Constants
Date and Time Constants
Hexadecimal Constants
Logical Constants

Floating Point Constants
Attribute Constants
Defining Named Constants

Numeric Constants
A numeric constant may contain 1 to 29 numeric digits.

A numeric constant used with a COMPUTE, MOVE, or arithmetic statement may contain a decimal point and
sign notation.

Examples:
MOVE 3 TO #XYZ
COMPUTE #PRICE = 23.34

COMPUTE #XYZ = -103
COMPUTE #A = #B * 6074

Alphanumeric Constants
An alphanumeric constant may contain 1 to 253 alphanumeric characters.

An alphanumeric constant must be enclosed in either apostrophes (°) or quotation marks (").

Examples:

MOVE "ABC’ TO #XYZ
MOVE "% INCREASE’ TO #TITLE
DISPLAY "LAST-NAME" NAME

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in apostrophes, you must write
this as two apostrophes or as a single quotation mark.

Copyright © Software AG 2002 9

Alphanumeric Constants

Defining Fields

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in quotation marks, you write

this as a single apostrophe.

Example:
If you want the following to be output:

HE SAID, 'HELLO’

you can use any of the following notatio

WRITE '"HE SAID, "HELLO™
WRITE '"HE SAID, "HELLO"™
WRITE "HE SAID, ""HELLO"™
WRITE "HE SAID, 'HELLO™

An alphanumeric constant that is used to assign a value to a user-defined variable must not be split between

statement lines.

Alphanumeric constants may be concatenated to form a single value by use of a hyphen.

Examples:

MOVE "XXXXXX' -
'YYYYYY' TO #FIELD

MOVE "ABC" - 'DEF’ TO #FIELD

In this way, alphanumeric constants can

10

also be concatenated with hexadecimal constants.

Copyright © Software AG 2002

Defining Fields Date and Time Constants

Date and Time Constants

A date constant may be used in conjunction with a format D variable. Date constants may have the following
formats:

D’yyyy-mm-dd| International date formalit
D’dd.mm.yyyy| German date format

D’dd/mml/yyyy| European date format
D’'mm/dd/yyyy| USA date format

wheredd represent the number of the daynthe number of the month agglyythe year.
Example:
DEFINE DATA LOCAL

1 #DATE (D)

END-DEFINE

MOVE D’1997-08-11' TO #DATE

The default date format is controlled by the profile parameter DTFORM as set by the Natural administrator.
A time constant may be used in conjunction with a format T variable. A time constant has the following format:
T’ hhii:ss
wherehh represents houisminutes andsseconds.
Example:
DEFINE DATA LOCAL
1 #TIME (T)

END-DEFINE

MOVE T'11:33:00' TO #TIME

Copyright © Software AG 2002 11

Hexadecimal Constants Defining Fields

Hexadecimal Constants
A hexadecimal constant may be used to enter a value which cannot be entered as a standard keyboard character.

A hexadecimal constant is prefixed with an "H". The constant itself must be enclosed in apostrophes and may
consist of the hexadecimal characters 0 - 9, A - F. Two hexadecimal characters are required to represent one byte
of data.

The hexadecimal representation of a character varies, depending on whether your computer uses an ASCII or
EBCDIC character set. Wenn you transfer hexadecimal constants to another computer, you may therefore have
to convert the characters.

ASCII Examples:

H'313233" (equivalent to the alphanumeric constant '123’)
H'414243' (equivalent to the alphanumeric constant 'ABC’)

EBCDIC Examples:

H'F1F2F3 (equivalent to the alphanumeric constant '123’)
H'C1C2C3’ (equivalent to the alphanumeric constant 'ABC’)

Hexadecimal constants may be concatenated by using a hyphen between the constants.

ASCIl Example:

H'414243' - H'444546’ (equivalent to '"ABCDEF’)

EBCDIC Example:

H'C1C2C3’ - H'C4C5C6’ (equivalent to '"ABCDEF’)

Logical Constants

The logical constants "TRUE" and "FALSE" may be used to assign a logical value to a field defined with format
L.

Example:
DEFINE DATA LOCAL
1 #FLAG (L)
END-DEFINE
MOVE TRUE TO #FLAG
IF #FLAG ...
statement ...

MOVE FALSE TO #FLAG
END-IF

Floating Point Constants
Floating point constants can be used with variables defined with format F.

Example:

12 Copyright © Software AG 2002

Defining Fields Attribute Constants

DEFINE DATA LOCAL
1 #FLT1 (F4)
END-DEFINE

COMPUTE #FLT1 = -5.34E+2

Attribute Constants

Attribute constants can be used with variables defined with format C (control variables). This type of constant
must be enclosed within parentheses.

The following attributes may be used:

AD=D | default CD=BL |blue
AD=B | blinking CD=GR |green
AD=I| |intensified CD=NE | neutral

AD=N | non-display CD=PI |pink
AD=V |reverse video |CD=RE |red
AD=U |underlined CD=TU |turquoise

AD=C | cursivelitalic CD=YE |yellow

AD=Y |dynamic attributg

AD=P | protected

Example:
DEFINE DATA LOCAL
1#ATTR (C)
1 #FIELD (A10)
END-DEFINE
MOVE (AD=I CD=BL) TO #ATTR

INPUT #FIELD (CV=#ATTR)

Copyright © Software AG 2002 13

Defining Named Constants Defining Fields

Defining Named Constants

If you need to use the same constant value several times in a program, you can reduce the maintenance effort by
defining a named constant: you define a field in the DEFINE DATA statement, assign a constant value to it, and
use the field name in the program instead of the constant value. Thus, when the value has to be changed, you
only have to change it once in the DEFINE DATA statement and not everywhere in the program where it occurs.

You specify the constant value in angle brackets with the keyword "CONSTANT" after the field definition in the
DEFINE DATA statement. If the value is alphanumeric, it must be enclosed in apostrophes.

Example:
DEFINE DATA LOCAL
1 #FIELDA (N3) CONSTANT <100>

1 #FIELDB (A5) CONSTANT <’ABCDE’">
END-DEFINE

During the execution of the program, the value of such a named constant cannot be modified.

14 Copyright © Software AG 2002

Defining Fields Initial Values

Initial Values

You can assign an initial value to a user-defined variable. You specify the initial value in angle brackets with the
keyword "INIT" after the variable definition in the DEFINE DATA statement. If the initial value is
alphanumeric, it must be enclosed in apostrophes.

Example:

DEFINE DATA LOCAL
1 #FIELDA (N3) INIT <100>
1 #FIELDB (A20) INIT <’ABC’>
END-DEFINE

The initial value for a field may also be the value of a Natural system variable.

Example of System Variable as Initial Value

DEFINE DATA LOCAL
1 #MYDATE (D) INIT <*DATX>
END-DEFINE

As initial value, a variable can also be filled, entirely or partially, with a specific single character or string of
characters (only possible for alphanumeric variables).

With the optionFULL LENGTH< character(s} the entire field is filled with the specifiedharacter(s)

With the optionLENGTH n <character(s¥ the first n positions of the field are filled with the specified
character(s)

Example of FULL LENGTH:
In this example, the entire field will be filled with asterisks.
DEFINE DATA LOCAL

1 #FIELD (A25) INIT FULL LENGTH <'*'>
END-DEFINE

Example of LENGTH n:

In this example, the first 4 positions of the field will be filled with exclamation marks.

DEFINE DATA LOCAL
1 #FIELD (A25) INIT LENGTH 4 <'I'>
END-DEFINE

Copyright © Software AG 2002 15

Default Initial Values Defining Fields

Default Initial Values

If you specify no initial value for a field, the field will be initialised with a default initial value (null value)
depending on its format:

Format Default Initial Value
B,F,I,N,P|O

A blank

L F(ALSE)

D D"’

T T'00:00:00’

C (AD=D)

The RESET Statement

The RESET statement is used to set the value of a field to a null value, or to a specific initial value.

® RESET (without INITIAL) sets the value of each specified field to a null value.
® RESET INITIAL sets each specified field to the initial value as defined for the field in the DEFINE DATA
statement.

Example:
DEFINE DATA LOCAL
1 #FIELDA (N3) INIT <100>
1 #FIELDB (A20) INIT <’ABC’>
1 #FIELDC (14) INIT <5>
END-DEFINE
RESET #FIELDA /* resets field value to null

RESET INITIAL #FIELDA #FIELDB #FIELDC /* resets field values to initial values

16 Copyright © Software AG 2002

Defining Fields Redefining Fields

Redefining Fields
Redefinition is used to change the format of a field, or to divide a single field into segments.

The REDEFINE option of the DEFINE DATA statement can be used to redefine a single field - either a
user-defined variable or a database field - as one or more new fields. A group can also be redefined.

Important:
Dynamic variables are not allowed.

The REDEFINE option redefines byte positions of a field from left to right, regardless of the format. Byte
positions must match between original field and redefined field(s).

The redefinition must be specified immediately after the definition of the original field.
In the following example, the database field BIRTH is redefined as three new user-defined variables:

DEFINE DATA LOCAL
01 EMPLOY-VIEW VIEW OF STAFFDDM
02 NAME
02 BIRTH
02 REDEFINE BIRTH
03 #BIRTH-YEAR (N4)
03 #BIRTH-MONTH (N2)
03 #BIRTH-DAY (N2)
END-DEFINE

In the following example, the group #VAR2, which consists of two user-defined variables of format N and P
respectively, is redefined as a variable of format A:

DEFINE DATA LOCAL
01 #VAR1 (A15)
01 #VAR2
02 #VAR2A (N4.1)
02 #VAR2B (P6.2)
01 REDEFINE #VAR2
02 #VAR2RD (A10)
END-DEFINE

With the notatiorFILLER nX you can defina filler bytes - that is, segments which are not to be used - in the
field that is being redefined. (The definition of trailing filler bytes is optional.)

Copyright © Software AG 2002 17

Redefining Fields Defining Fields

In the following example, the user-defined variable #FIELD is redefined as three new user-defined variables,
each of format/length A2. The FILLER notations indicate that the 3rd and 4th and 7th to 10th bytes of the
original field are not be used.

DEFINE DATA LOCAL
1 #FIELD (A12)
1 REDEFINE #FIELD
2 #RFIELD1 (A2)
2 FILLER 2X
2 #RFIELD2 (A2)
2 FILLER 4X
2 #RFIELD3 (A2)
END-DEFINE

The following program illustrates the use of a redefinition:

** Example Program 'DDATAXO01’
DEFINE DATA LOCAL
01 VIEWEMP VIEW OF EMPLOYEES
02 NAME
02 FIRST-NAME
02 SALARY (1:1)
01 #PAY (N9)
01 REDEFINE #PAY
02 FILLER 3X
02 #USD (N3)
02 #000 (N3)
END-DEFINE
*

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
MOVE SALARY (1) TO #PAY
DISPLAY NAME FIRST-NAME #PAY #USD #000
END-READ
END

Note how #PAY and the fields resulting from its definition are displayed:

Page 1 99-08-08 17:48:59
NAME FIRST-NAME #PAY #USD #000
JONES VIRGINIA 46000 46 O
JONES MARSHA 50000 50 O
JONES ROBERT 31000 31 O

18 Copyright © Software AG 2002

Defining Fields Arrays

Arrays

Natural supports the processinganfays Arrays are multi-dimensional tables, that is, two or more logically

related elements identified under a single name. Arrays can consist of single data elements of multiple
dimensions or hierarchical data structures which contain repetitive structures or individual elements. In Natural,
an array can be one-, two- or three-dimensional. It can be an independent variable, part of a larger data structure
or part of a database view.

The following topics are covered below:

Defining Arrays

Initial Values for Arrays

Assigning Initial Values to One-Dimensional Arrays
Assigning Initial Values to Two-Dimensional Arrays
A Three-Dimensional Array

Arrays as Part of a Larger Data Structure
Database Arrays

Using Arithmetic Expressions in Index Notation
Arithmetic Support for Arrays

Defining Arrays

To define an array variable, after the format and length you specify a slash followed by a sioaeted
notation that is, the number of occurrences of the array.

Important:
Dynamic variables are not allowed.

For example, the following array has three occurrences, each occurrence being of format/length A10:
DEFINE DATA LOCAL

1 #ARRAY (A10/1:3)
END-DEFINE

To define a two-dimensional array, you specify an index notation for both dimensions:

DEFINE DATA LOCAL
1 #ARRAY (A10/1:3,1:4)
END-DEFINE

A two-dimensional array can be visualized as a table. The array defined in the example above would be a table
that consists of 3 "rows" and 4 "columns":

Copyright © Software AG 2002 19

Initial Values for Arrays Defining Fields

Initial Values for Arrays

To assign initial values to one or more occurrences of an array, you use an INIT specification, similar to that for
"ordinary" variables

Assigning Initial Values to One-Dimensional Arrays
The following examples illustrate how initial values are assigned to a one-dimensional array.

® To assign an initial value to one occurrence, you specify:

1 #ARRAY (A1/1:3) INIT (2) <A™>

"A" is assigned to the second occurrence.
® To assign the same initial value to all occurrences, you specify:

1 #ARRAY (A1/1:3) INIT ALL <A’>

"A" is assigned to every occurrence. Alternatively, you could specify:

1 #ARRAY (A1/1:3) INIT (*) <A™>

® To assign the same initial value to a range of several occurrences, you specify:

1 #ARRAY (A1/1:3) INIT (2:3) <A™>

"A" is assigned to the second to third occurrence.

® To assign a different initial value to every occurrence, you specify:

1 #ARRAY (Al1/1:3) INIT <A’/B’,C'>

"A" is assigned to the first occurrence, "B" to the second, and "C" to the third.

® To assign different initial values to some (but not all) occurrences, you specify:
1#ARRAY (A1/1:3) INIT (1) <A™> (3) <'C>

"A" is assigned to the first occurrence, and "C" to the third; no value is assigned to the second occurrence.
Alternatively, you could specify:

1 #ARRAY (Al1/1:3) INIT <A’,,'C'>

e |If fewer initial values are specified than there are occurrences, the last occurrences remain empty:
1 #ARRAY (A1/1:3) INIT <A’/B™>

"A" is assigned to the first occurrence, and "B" to the second; no value is assigned to the third occurrence.

20 Copyright © Software AG 2002

Defining Fields Assigning Initial Values to Two-Dimensional Arrays

Assigning Initial Values to Two-Dimensional Arrays
The following examples illustrate how initial values are assigned to a two-dimensional array.

For the examples, let us assume a two-dimensional array with three occurrences in the first dimension ("rows")
and four occurrences in the second dimension ("columns"):

1 #ARRAY (A1/1:3,1:4)

Vertical: First Dimension (1:3), Horizontal: Second Dimension (1:4):

(1,1) (1,2) 1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) 3,3) (3,4)

The first set of examples illustrates how fagneinitial value is assigned to occurrences of a two-dimensional
array; the second set of examples illustrates tifferentinitial values are assigned.

In the examples, please note in particular the usage of the notations "*" and "V". Both notationsatiefer to
occurrences of the dimension concerned: "*" indicates that all occurrences in that dimension are initialized with
thesamevalue, while "V" indicates that all occurrences in that dimension are initializedlifféghentvalues.

® Assigning the Same Value
® Assigning Different Values

Assigning the Same Value

® To assign an initial value to one occurrence, you specify:

To assign the same initial value to one occurrence in the second dimension - in all occurrences of the first
dimension - you specify:

1 #ARRAY (A1/1:3,1:4) INIT (*,3) <A>

Copyright © Software AG 2002 21

Assigning Initial Values to Two-Dimensional Arrays Defining Fields

® To assign the same initial value to a range of occurrences in the first dimension - in all occurrences of the
second dimension - you specify:

1 #ARRAY (A1/1:3,1:4) INIT (2:3,%) <A’>

A A A A
A A A A

® To assign the same initial value to a range of occurrences in each dimension, you specify:

1 #ARRAY (A1/1:3,1:4) INIT (2:3,1:2) <A’>

A

A

A

A

® To assign the same initial value to all occurrences (in both dimensions), you specify:

1 #ARRAY (A1/1:3,1:4) INIT ALL <’A’>
A A A A
A A A A
A A A A

Alternatively, you could specify:

1 #ARRAY (A1/1:3,1:4) INIT (*,*) <A>

22 Copyright © Software AG 2002

Defining Fields

Assigning Different Values

1 #ARRAY (A1/1:3,1:4)

INIT (V,2) <A'B','C>

1 #ARRAY (A1/1:3,1:4)

INIT (V,2:3) <'A’,B’,'C">

1 #ARRAY (A1/1:3,1:4)

INIT (V,*) <AB’,C’>

B

C

1 #ARRAY (A1/1:3,1:4)

INIT (V,*) <A’,)C'>

A

A

C

C

1 #ARRAY (A1/1:3,1:4)

INIT (V,*) <A''B’>

A

B

1 #ARRAY (A1/1:3,1:4)

INIT (V,1) <A,'B',C>

(V,3) <D'E'F>

Copyright © Software AG 2002

Assigning Initial Values to Two-Dimensional Arrays

Assigning Initial Values to Two-Dimensional Arrays

1 #ARRAY (A1/1:3,1:4)

INIT (3,V) <A','B’,'C','D’>

A B C
1 #ARRAY (A1/1:3,1:4) INIT (*V) <A'’B’,/C','D’>
A B C
A B C
A C
1 #ARRAY (A1/1:3,1:4) INIT (2,1) <A™> (*,2) <B’>
(3,3) <C'> (3,4) <D’>
B
A B
C
1 #ARRAY (A1/1:3,1:4) INIT (2,1) <A™> (V,2) <B',C',D’>
(3,3) <E’> (3,4) <F>
B
A
D E

24

Defining Fields

Copyright © Software AG 2002

Defining Fields A Three-Dimensional Array

A Three-Dimensional Array

A three-dimensional array could be visualized as follows:

The array illustrated here would be defined as follows (at the same time assigning an initial value to the
highlighted field in row 1, column 2, plane 2):

DEFINE DATA LOCAL
1 #ARRAY2
2 #ROW (1:4)
3 #COLUMN (1:3)
4 #PLANE (1:3)
5 #FIELD2 (P3) INIT (1,2,2) <100>
END-DEFINE

If defined as a local data area in the data area editor, the same array would look as follows:

I TL Name F Leng Index/Init/EM/Name/Comment
1 #ARRAY2
2 #ROW (2:4)
3 #COLUMN (1:3)
4 #PLANE (1:3)
| 5#FIELD2 P 3

Copyright © Software AG 2002 25

Arrays as Part of a Larger Data Structure Defining Fields

Arrays as Part of a Larger Data Structure

The multiple dimensions of an array make it possible to define data structures analogous to COBOL or PL1
structures.

Example:

DEFINE DATA LOCAL
1 #AREA
2 #FIELD1 (A10)
2 #GROUP1 (1:10)
3 #FIELD2 (P2)
3 #FIELD3 (N1/1:4)
END-DEFINE

In this example, the data area #AREA has a total size of:

10 + (10 * (2 + (1 * 4))) bytes = 70 bytes.

#FIELDL1 is alphanumeric and 10 bytes long. #GROUPL is the name of a sub-area within #AREA which consists
of 2 fields and has 10 occurrences. #FIELD?2 is packed numeric, length 2. #FIELD3 is the second field of
#GROUP1 with four occurrences, and is humeric, length 1.

To reference a particular occurrence of #FIELDS3, two indices are required: first, the occurrence of #tGROUP1
must be specified, and second, the particular occurrence of #FIELD3 must also be specified. For example, in an
ADD statement later in the same program, #FIELD3 would be referenced as follows:

ADD 2 TO #FIELD3 (3,2)

26 Copyright © Software AG 2002

Defining Fields Database Arrays

Database Arrays

Adabas supports array structures within the database in the fonuitgdle-value fieldandperiodic groups
These are described atabase Access

The following example shows a DEFINE DATA view containing a multiple-value field:

DEFINE DATA LOCAL
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE (1:10) /* <--- MULTIPLE-VALUE FIELD
END-DEFINE

The same view in a local data area would look as follows:

I TL Name F Leng Index/InitEM/Name/Comment
V 1 EMPLOYEES-VIEW EMPLOYEES
2 NAME A 20
M 2 ADDRESS-LINE A 20 (1:10) /* MU-FIELD

Using Arithmetic Expressions in Index Notation
A simple arithmetic expression may also be used to express a range of occurrences in an array.

Examples:

MA (l:1+5) Values of the field MA are referenced, beginning with value | and ending with value I+5.

MA (1+2:J-3) Values of the field MA are referenced, beginning with value 1+2 and ending with value J-3.
Only the arithmetic operators "+" and "-" may be used in index expressions.

Arithmetic Support for Arrays

Arithmetic support for arrays include operations at array level, at row/column level, and at individual element
level. Only simple arithmetic expressions are permitted with array variables, with only one or two operands and

an optional third variable as the receiving field. Only the arithmetic operators "+" and "-" are allowed for
expressions defining index ranges.

Copyright © Software AG 2002 27

Arithmetic Support for Arrays Defining Fields

Examples of Array Arithmetics:

The following examples assume the following field definitions:

DEFINE DATA LOCAL
01 #A (N5/1:10,1:10)
01 #B (N5/1:10,1:10)
01 #C (N5)
END-DEFINE

28

. ADD #A(**) TO #B(*,¥)

The result operand, array #B, contains the addition, element by element, of the array #A and the original
value of array #B.

. ADD 4 TO #A(*,2)

The second column of the array #A is replaced by its original value plus 4.

. ADD 2 TO #A(2,)

The second row of the array #A is replaced by its original value plus 2.

. ADD #A(2,*) TO #B(4,%)

The value of the second row of array #A is added to the fourth row of array #B.

. ADD #A(2,*) TO #B(*,2)

This is an illegal operation and will result in a syntax error. Rows may only be added to rows and columns
to columns.

. ADD #A(2,*) TO #C

All values in the second row of the array #A are added to the scalar value #C.

. ADD #A(2,5:7) TO #C

The fifth, sixth, and seventh column values of the second row of array #A are added to the scalar value #C.

Copyright © Software AG 2002

Defining Fields Data Blocks

Data Blocks

To save data storage space, you can create a global data area with data blocks. Data blocks can overlay each
other during program execution, thereby saving storage space.

For example, given the following hierarchy, blocks B and C would be assigned the same storage area. Thus it
would not be possible for blocks B and C to be in use at the same time. Modifying block B would result in
destroying the contents of block C.

Sub-Block B Sub-Block C

Sub-Block D

The following topics are covered below:

e Defining Data Blocks
® Block Hierarchies

Copyright © Software AG 2002 29

Defining Data Blocks Defining Fields

Defining Data Blocks

You define data blocks in the data area editor. You establish the block hierarchy by specifying which block is
subordinate to which: you do this by entering the name of the "parent" block in the comment field of the block
definition.

In the following example, SUB-BLOCKB and SUB-BLOCKC are subordinate to MASTER-BLOCKA,;
SUB-BLOCKD is subordinate to SUB-BLOCKB.

The maximum number of block levels is 8 (including the master block).
Example:

Global Data Areds-BLOCK:

I TL Name F Leng Index/Init/EM/Name/Comment
B MASTER-BLOCKA
1 MB-DATAO1 A 10
B SUB-BLOCKB MASTER-BLOCKA
1 SBB-DATAO1 A 20
B SUB-BLOCKC MASTER-BLOCKA
1 SBC-DATAO01 A 40
B SUB-BLOCKD SUB-BLOCKB
1 SBD-DATAO1 A 40

To make the specific blocks available to a program, you use the following syntax in the DEFINE DATA
statement:

Programi.:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA
END-DEFINE

Program?:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE

Program3:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKC
END-DEFINE

Programd:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKB.SUB-BLOCKD
END-DEFINE

With this structure, program 1 can share the data in MASTER-BLOCKA with program 2, program 3 or program
4. However, programs 2 and 3 cannot share the data areas of SUB-BLOCKB and SUB-BLOCKC because these
data blocks are defined at the same level of the structure and thus occupy the same storage area.

30 Copyright © Software AG 2002

Defining Fields Block Hierarchies

Block Hierarchies

Care needs to be taken when using data block hierarchies. Let us assume the following scenario with three
programs using a data block hierarchy:

Programi.:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE

*

MOVE 1234 TO SBB-DATAO1
FETCH 'PROGRAM2’
END

Program?:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA
END-DEFINE
*

FETCH 'PROGRAM3’
END

Program3:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE

*

WRITE SBB-DATAO01
END

Program 1 uses the global data area G-BLOCK with MASTER-BLOCKA and SUB-BLOCKB. The program
modifies a field in SUB-BLOCKB and FETCHes program 2 which specifies only MASTER-BLOCKA in its

data definition. Program 2 resets (deletes the contents of) SUB-BLOCKB. The reason is that a program on level
1 (for example, a program called with a FETCH statement) resets any data blocks that are subordinate to the
blocks it defines in its own data definition. Program 2 now FETCHes program 3 which is to display the field
modified in program 1, but it returns an empty screen. For details on program levElbjesgelypes

Copyright © Software AG 2002 31

Database Access Database Access

Database Access

This section describes various aspects of accessing data in a database with Natural. It covers the following
topics:

DDMs (Data Definition Modules)
Database Arrays

DEFINE DATA Views

Statements for Database Access
READ Statement

FIND Statement

HISTOGRAM Statement

Database Processing Loops

Database Update - Transaction Processing
Statements ACCEPT and REJECT

AT START/END OF DATA Statements

DDMs (Data Definition Modules)

For Natural to be able to access a database file, a logical definition of the physical database file is required. Such
a logical file definition is called a DDM (data definition module).

The DDM contains information about the individual fields of the file - information which is relevant for the use
of these fields in a Natural program. A DDM constitutes a logical view of a physical database file.

For each physical file of a database, one or more DDMs can be defined.

Physical File
in Datah ase

DDMs are defined by the Natural administrator with Predict (or, if Predict is not available, with the
corresponding Natural function, as described in your Natural User’'s Guide for Mainframes documentation).

For each database field, a DDM contains the database-internal field name as well as the "external” field name,
that is, the name of the field as used in a Natural program. Moreover, the formats and lengths of the fields are
defined in the DDM, as well as various specifications that are used when the fields are output with a DISPLAY
or WRITE statement (column headings, edit masks, etc.).

32 Copyright © Software AG 2002

Database Access Displaying a DDM

The following topics are covered below:

e Displaying a DDM
e Components of a DDM

Displaying a DDM

If you do not know the name of the DDM you want, you can use the system cori8andDM to get a list
of all existing DDMs that are available. From the list, you can then select a DDM for display.

To display a DDM whose name you know, you use the system conlfsihddDM ddm-name
For example:
LIST DDM EMPLOYEES

A list of all fields defined in the DDM will then be displayed, along with information about each field:

Components of a DDM

For each field, a DDM contains the following information:

Column | Explanation

T Thetypeof the field:

blank Elementary field. This type of field can have only one value within a record.
M Multiple-value field This type of field can have more than one value within a record.

P Periodic groupA periodic group is a group of fields that can have more than one
occurrence within a record.

G Group. A group is a number of fields defined under one common group name. This makes
it possible to reference several fields collectively by using the group name instead of the
names of all the individual fields.

* Comment line.

L Thelevelnumber assigned to the field.
Levels are used to indicate the structure and grouping of the field definitions. This is relevanf with
view definitions redefinitionsandfield groups

DB The two-character databasgernal field name

Name | The 3- to 32-charactexternal field nameThis is the field name used in a Natural program to
reference the field.

HD= indicates a default column header to appear above the field when the field is output ia a
DISPLAY statement. If no header is specified, the field name is used as column header.

EM= indicates a default edit mask to be used when the field is output via a DISPLAY statement.

F Theformatof the field (A=alphanumeric, N=numeric unpacked, P=packed numeric, etc.).

Len Thelengthof the field.
For numeric fields, length is specified am.m', where 'hn" is the number of digits before the
decimal point andY" is the number of digits after the decimal point.

Copyright © Software AG 2002 33

Database Arrays Database Access

Column | Explanation
S The type ofuppressiorassigned to the field:

N indicatesnull-value suppressigmwhich means that null values for the field will not be returned
when the field is used to construct a basic search criterion (WITH clause of a FIND statement),
in a HISTOGRAM statement, or in a READ LOGICAL statement.

F indicates that the field is defined with tfieed storageoption (that is, the field is not
compressed).

A blank indicatesiormal compressigrwhich means that trailing blanks in alphanumeric fields and
leading zeros in numeric fields are suppressed.
D Thedescriptortype of the field; for example:

D elementary descriptor,

N non-descriptor,

P phonetic descriptor.

U subdescriptor,

S superdescriptor,

A blank in this column indicates that the field is not a descriptor.
A descriptor can be used as the basis of a database search. A field which has a "D" or "S" in} this
column can be used in the BY clause of the READ statement. Once a record has been read|from the
database using the READ statement, a DISPLAY statement can reference any field which hps either
a "D" or a blank in the "D" column.

Remarks| This column can contaicommentsbout the field.

Above the list of fields, the following is displayed: the number of the file from the DDM is derived (DDM FNR),
the number of the database where that file is stored (DDM DBID), and the "Default Sequence” field, that is, the
name of the field used to control logical sequential reading of the file if no such field is specified in the READ
LOGICAL statement of a program.

Database Arrays

Adabas supports array structures within the database in the fonuitgfle-value field@ndperiodic groups

Multiple-Value Fields

Periodic Groups

Referencing Multiple-Value Fields and Periodic Groups
Multiple-Value Fields Within Periodic Groups

Referencing Multiple-Value Fields Within Periodic Groups
Referencing the Internal Count of a Database Array

Multiple-Value Fields

A multiple-

34

value field is a field which can have more than one value (up to 191) within a given record.

Copyright © Software AG 2002

Database Access Multiple-Value Fields

Example:
BARREDA SPANISH
Name Languages |
(elementary field) (multiple-value field)

Assuming that the above is a record in an employees file, the first field (Name) is an elementary field, which can
contain only one value, namely the name of the person; whereas the second field (Languages), which contains
the languages spoken by the person, is a multiple-value field, as a person can speak more than one language.

Copyright © Software AG 2002 35

Periodic Groups Database Access

Periodic Groups

A periodic group is a group of fields (which may be elementary fields and/or multiple-value fields) that may
have more than one occurrence (up to 191) within a given record.

The different values of an multiple-value field are usually callaxiirrencesthat is, the number of occurrences
is the number of values which the field contains, and a specific occurrence means a specific value. Similarly, in
the case of periodic groups, occurrences refer to a group of values.

Example:

o I I

| I I

[| |

RODRIGUEZ B-123ABC SEAT IBIZA
Hame Req. No. Make Model o
(elementary field)
R o -
Cars
(periodic group)

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which contains
the name of a person; Cars is a periodic group which contains the automobiles owned by that person. The
periodic group consists of three fields which contain the registration number, make and model of each
automobile. Each occurrence of Cars contains the values for one automobile.

36 Copyright © Software AG 2002

Database Access Referencing Multiple-Value Fields and Periodic Groups

Referencing Multiple-Value Fields and Periodic Groups

To reference one or more occurrences of a multiple-value field or a periodic group, you speciéxamtation
after the field name.

Examples:

The following examples use the multiple-value field LANGUAGES and the periodic group CARS from the
previous examples.

The various values of the multiple-value field LANGUAGES can be referenced as follows.

LANGUAGES (1) References the first value ("SPANISH").

LANGUAGES (X) The value of the variable X determines the value to be referenced.
LANGUAGES (1:3) |References the first three values ("SPANISH", "CATALAN" and "FRENCH").

LANGUAGES (6:10) | References the sixth to tenth values.
LANGUAGES (X:Y) | The values of the variables X and Y determine the values to be referenced.

The various occurrences of the periodic group CARS can be referenced in the same manner:

CARS (1) |References the first occurrence ("B-123ABC/SEAT/IBIZA").

CARS (X) | The value of the variable X determines the occurrence to be referenced.

CARS (1:2) |References the first two occurrences ("B-123ABC/ SEAT/IBIZA" and
"B-999XYZ/VW/GOLF").

CARS (4:7) | References the fourth to seventh occurrences.

CARS The values of the variables X and Y determine the occurrences to be referenced.
(xX:Y)

Copyright © Software AG 2002 37

Multiple-Value Fields Within Periodic Groups Database Access

Multiple-Value Fields Within Periodic Groups

An Adabas array can have up to two dimensions: a multiple-value field within a periodic group.

Example:
C_ -1
C T 1
________ S L
I | |
|
| __
RODRIGUEZS B-123ABC 310597 SEAT
NHame Heg. No. Servicing Make o
(elementary field) (multiple-
value field)
e e —
Cars
(periodic graup)

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which contains
the name of a person; Cars is a periodic group which contains the automobiles owned by that person. The
periodic group consists of three fields which contain the registration number, servicing dates and make of each
automobile. Within the periodic group Cars, the field Servicing is a multiple-value field, containing the different
servicing dates for each automobile.

38 Copyright © Software AG 2002

Database Access Referencing Multiple-Value Fields Within Periodic Groups

Referencing Multiple-Value Fields Within Periodic Groups

To reference one or more occurrences of a multiple-value field within a periodic group, you specify a
"two-dimensional“index notation after the field name.
Examples:

The following examples use the multiple-value field SERVICING within the periodic group CARS from the
example above. The various values of the multiple-value field can be referenced as follows:

SERVICING (1,1) References the first value of SERVICING in the first occurrence of CARS
("31-05-97")

SERVICING (1:5,1) References the first value of SERVICING in the first five occurrences of CARS

SERVICING References the first ten values of SERVICING in the first five occurrences of JARS.
(1:5,1:10)

Referencing the Internal Count of a Database Array

It is sometimes necessary to reference a multiple-value field or a periodic group without knowing how many
values/occurrences exist in a given record. Adabas maintains an internal count of the number of values in each
multiple-value field and the number of occurrences of each periodic group. This count may be read in a READ
statement by specifying "C*" immediately before the field name.

The count is returned in format/length N3. SeeNhtural Referencdocumentation for further details.

Examples:

C*LANGUAGES | Returns the number of values of the multiple-value field LANGUAGES.

C*CARS Returns the number of occurrences of the periodic group CARS.

C*SERVICING(1) | Returns the number of values of the multiple-value field SERVICING in the first
occurrence of a periodic group (assuming that SERVICING is a multiple-value field

within a periodic group.)

Copyright © Software AG 2002 39

DEFINE DATA Views Database Access

DEFINE DATA Views

To be able to use database fields in a Natural program, you must specify the fial@sin a

In the view, you specify the name of the DDM from which the fields are taken, and the names of the database
fields themselves (that is, their long names, not their database-internal short names).

You define such a database view either within the DEFINE DATA statement of the program, or in a local or
global data area outside the program with the DEFINE DATA statement referencing that data area (as described
in the sectiorbefining Fields

Physical File in DDM “X¥ZE™ View

Databas e

FIELDZ: FIELDZ: DEFINE DATA LOCALL
Lp Lp PERSONMEL-ID IZ 1 ABC WIEW OF EYVZ
EE . EE MNALME AZ0 > Z MAME

cC CC FIRRT-NLME AZ0 Z FIRST-MNAME
oD LD BEIRTH Na Z2 PERZCHNMNEL-ID
EE EE JOE-TITLE AZ G EMND-DEFINE

At level 1, you specify the view name as follows:
1 view-nameVIEW OF ddm-name

whereview-namds the name you choose for the view, dddh-names the name of the DDM from which the
fields specified in the view are taken. Below that, at level 2, you specify the names of the database fields from
the DDM.

In the illustration above, the name of the view is "ABC", and it comprises the fields NAME, FIRST-NAME and
PERSONNEL-ID from the DDM "XYZ".

The format and length of a database field need not be specified in the view, as these are already defined in the
underlying DDM.

The view may comprise an entire DDM or only a subset of it. The order of the fields in the view need not be the
same as in the underlying DDM.

As shown later in this section, the view name is used in database access statements to determine which database
is to be accessed.

40 Copyright © Software AG 2002

Database Access Statements for Database Access

Statements for Database Access

To read data from a database, the following statements are available:

e READ
This statement is used to select a range of records from a database in a specified sequence.
® FIND
This statement is used to select from a database those records which meet a specified search criterion.
e HISTOGRAM
This statement is used to read only the values of one database field, or determine the number of records
which meet a specified search criterion.

READ Statement

The READ statement is used to read records from a database. The records can be retrieved from the database:

® in the order in which they are physically stored in the database
(READ IN PHYSICAL SEQUENCE), or

® in the order of Adabas Internal Sequence Numbers
(READ BY ISN), or

® in the order of the values of a descriptor field
(READ IN LOGICAL SEQUENCE).

In this documentation, only READ IN LOGICAL SEQUENCE is discussed, as it is the most frequently used
form of the READ statement; for information on the other two options, please refer to the description of the
READ statemenin the Natural Statements documentation.

The following topics are covered below:

Syntax

Limiting the Number of Records to be Read
The STARTING/ENDING Clauses

The WHERE Clause

Copyright © Software AG 2002 41

Syntax Database Access

Syntax

The basic syntax of the READ statement is:

READ viewIN LOGICAL SEQUENCE BY descriptor

or shorter:

READ viewLOGICAL BY descriptor

viewis the name of a view defined in the DEFINE DATA statement (as explained earlier in this section).

descriptoris the name of a database field defined in that view. The values of this field determine the order in
which the records are read from the database.

If you specify a descriptor, you need not specify the keyword "LOGICAL":
READ viewBY descriptor

If you do not specify a descriptor, the records will be read in the order of values of the field defined as default
descriptor (under "Default Sequence") in the DDM. However, if you specify no descriptor, you must specify the
keyword "LOGICAL":

READ view LOGICAL
Example:

** Example Program 'READX01’

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 JOB-TITLE

END-DEFINE

READ (6) MYVIEW BY NAME
DISPLAY NAME PERSONNEL-ID JOB-TITLE

END-READ

END

With the READ statement in the above example, records from the EMPLOYEES file are read in alphabetical
order of their last names.

42 Copyright © Software AG 2002

Database Access Limiting the Number of Records to be Read

The above program will produce the following output, displaying the information of each employee in
alphabetical order of the employees’ last names:

Page 1 99-08-19 13:16:04
NAME PERSONNEL CURRENT
ID POSITION
ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 2001100

If you wanted to read the records to create a report with the employees listed in sequential order by date of birth,
the appropriate READ statement would be:

READ MYVIEW BY BIRTH

You can only specify a field which is defined as a "descriptor” in the underlying DDM (it can also be a
subdescriptor, superdescriptor or hyperdescriptor).

Limiting the Number of Records to be Read

As shown in the previous example program, you can limit the number of records to be read by specifying a
number in parentheses after the keyword READ:

READ (6) MYVIEW BY NAME
In that example, the READ statement would read no more than 6 records.

Without the limit notation, the above READ statement would edlagecords from the EMPLOYEES file in the
order of last names from A to Z.

Copyright © Software AG 2002 43

The STARTING/ENDING Clauses Database Access

The STARTING/ENDING Clauses

The READ statement also allows you to qualify the selection of records basedvatuthef a descriptor field.
With an EQUAL TO/STARTING from option in the BY or WITH clause, you can specify the value at which
reading should begin. By adding a THRU/ENDING AT option, you can also specify the value in the logical
sequence at which reading should end.

For example, if you wanted a list of those employees in the order of job titles starting with "TRAINEE" and
continuing on to "Z", you would use one of the following statements:

READ MYVIEW WITH JOB-TITLE = "TRAINEE’
READ MYVIEW WITH JOB-TITLE STARTING from 'TRAINEE’

READ MYVIEW BY JOB-TITLE = "TRAINEE’
READ MYVIEW BY JOB-TITLE STARTING from 'TRAINEE’

Note that the value to the right of the equal sign (=) or STARTING from option must be enclosed in apostrophes.
If the value is numeric, thigext notationis not required.

If a BY option is used, a WITH option cannot be used and vice versa.

The sequence of records to be read can be even more closely specified by adding an end limit with a THRU or
ENDING AT clause.

To read just the records with the job title "TRAINEE", you would specify:
READ MYVIEW BY JOB-TITLE STARTING from 'TRAINEE’ THRU 'TRAINEE’

READ MYVIEW WITH JOB-TITLE EQUAL TO 'TRAINEE’
ENDING AT 'TRAINEE’

To read just the records with job titles that begin with "A" or "B", you would specify:

READ MYVIEW BY JOB-TITLE ='A’ THRU 'C’
READ MYVIEW WITH JOB-TITLE STARTING from 'A’ ENDING AT 'C’

The values are read up to and including the value specified after THRU/ENDING AT. In the two examples
above, all records with job titles that begin with "A" or "B" are read; if there were a job title "C", this would also
be read, but not the next higher value "CA".

The WHERE Clause

The WHERE clause may be used to further qualify which records are to be read.

For instance, if you wanted only those employees with job titles starting from "TRAINEE" who are paid in US
currency, you would specify:

READ MYVIEW WITH JOB-TITLE = "TRAINEE’
WHERE CURR-CODE ="'USD’

The WHERE clause can also be used with the BY clause as follows:

READ MYVIEW BY NAME
WHERE SALARY = 20000

The WHERE clause differs from the WITH/BY clause in two respects:

e The field specified in the WHERE clause need not be a descriptor.
® The expression following the WHERE option is a logical condition. The following logical operators are
possible in a WHERE clause:

44 Copyright © Software AG 2002

Database Access FIND Statement

EQUAL EQ|=
NOT EQUAL TO NE| -=
LESS THAN LT |<
LESS THAN OR EQUAL TO LE | <=
GREATER THAN GT|>
GREATER THAN OR EQUAL TO |GE|>=

The following program illustrates the use of the STARTING from, ENDING AT and WHERE clauses:

** Example Program 'READX02’
DEFINE DATA LOCAL
1 MYEMP VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 INCOME (1:2)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE
*
READ (3) MYVIEW WITH JOB-TITLE = 'TRAINEE' THRU 'TRAINEE’
WHERE CURR-CODE (*) ='USD’
DISPLAY NOTITLE NAME / JOB-TITLE 5X INCOME (1:2)
SKIP 1
END-READ
END

It produces the following output:

NAME INCOME
CURRENT
POSITION CURRENCY ANNUAL BONUS

CODE SALARY

SENKO usD 23000 0
TRAINEE usD 21800 0
BANGART usD 25000 0
TRAINEE usD 23000 0
LINCOLN usD 24000 0
TRAINEE usD 22000 0

Further Example of READ Statement:

See program READXO03 in library SYSEXPG.

FIND Statement

The FIND statement is used to select from a database those records which meet a specified search criterion.

Copyright © Software AG 2002 45

Syntax Database Access

The following topics are covered below:

® Syntax

® Limiting the Number of Records to be Processed
® The WHERE Clause

® |F NO RECORDS FOUND Condition

Syntax

The basic syntax of the FIND statement is:

FIND RECORDS IN viewWITH field = value

or shorter:

FIND viewWITH field = value

viewis the name of a view defined in the DEFINE DATA statement (as explained earlier in this section).

field is the name of a database field defined in that view. You can only spéeify which is defined as a
"descriptor" in the underlying DDM (it can also be a subdescriptor, superdescriptor, hyperdescriptor or phonetic
descriptor).

Limiting the Number of Records to be Processed

In the same way as with the READ statement, you can limit the number of records to be processed by specifying
a number in parentheses after the keyword FIND:

FIND (6) RECORDS IN MYVIEW WITH NAME ='CLEGG’
In the above example, only the first 6 records that meet the search criterion would be processed.
Without the limit notation, all records that meet the search criterion would be processed.

Note:
If the FIND statement contains a WHERE clause (see below), records which are rejected as a result of the
WHERE clause armot counted against the limit.

The WHERE Clause

With the WHERE clause of the FIND statement, you can specify an additional selection criterion which is
evaluatedhfter a record (selected with the WITH clause) has been readedokany processing is performed
on the record.

Example of WHERE Clause:

** Example Program 'FINDXO01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 CITY
END-DEFINE

*

FIND MYVIEW WITH CITY ='PARIS’

46 Copyright © Software AG 2002

Database Access IF NO RECORDS FOUND Condition

WHERE JOB-TITLE = 'INGENIEUR COMMERCIAL’
DISPLAY NOTITLE CITY JOB-TITLE PERSONNEL-ID NAME
END-FIND
END

Note that in this example only those records which meet the criteria of the WITH ataltbe WHERE clause
are processed in the DISPLAY statement.

CITY CURRENT PERSONNEL NAME
POSITION ID
PARIS INGENIEUR COMMERCIAL 50007300 CAHN
PARIS INGENIEUR COMMERCIAL 50006500 MAZUY
PARIS INGENIEUR COMMERCIAL 50004400 VALLY
PARIS INGENIEUR COMMERCIAL 50002800 BRETON
PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX

IF NO RECORDS FOUND Condition

If no records are found that meet the search criteria specified in the WITH and WHERE clauses, the statements
within the FIND processing loop are not executed (for the previous example, this would mean that the DISPLAY
statement would not be executed and consequently no employee data would be displayed).

However, the FIND statement also provides an IF NO RECORDS FOUND clause, which allows you to specify
processing you wish to be performed in the case that no records meet the search criteria.

Example of IF NO RECORDS FOUND Clause:

** Example Program 'FINDX02’

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

END-DEFINE

*

FIND MYVIEW WITH NAME ="BLACKMORE’
IF NO RECORDS FOUND

WRITE 'NO PERSON FOUND.’

END-NOREC
DISPLAY NAME FIRST-NAME

END-FIND

END

The above program selects all records in which the field NAME contains the value "BLACKMORE". For each
selected record, the name and first name are displayed. If no record with NAME = 'BLACKMORE' is found on
the file, the WRITE statement within the IF NO RECORDS FOUND clause is executed:

Page 1 97-08-19 11:44:00

NAME FIRST-NAME

NO PERSON FOUND.

Further Examples of FIND Statement:

Copyright © Software AG 2002 47

IF NO RECORDS FOUND Condition Database Access

See programs FINDXO07, FINDX08, FINDX09, FINDX10 and FINDX11 in library SYSEXPG.

48 Copyright © Software AG 2002

Database Access HISTOGRAM Statement

HISTOGRAM Statement

The HISTOGRAM statement is used to either read only the values of one database field, or determine the
number of records which meet a specified search criterion.

The HISTOGRAM statement does not provide access to any database fields other than the one specified in the
HISTOGRAM statement.

The following topics are covered below:

Syntax

Limiting the Number of Values to be Read
The STARTING/ENDING Clauses

The WHERE Clause

Syntax

The basic syntax of the HISTOGRAM statement is:
HISTOGRAM VALUE IN viewFOR field

or shorter:

HISTOGRAM viewfield

viewis the name of a view defined in the DEFINE DATA statement (as explained earlier in this sielibis).
the name of the database field defined in that view.

Limiting the Number of Values to be Read

In the same way as with the READ statement, you can limit the number of values to be read by specifying a
number in parentheses after the keyword HISTOGRAM:

HISTOGRAM (6) MYVIEW FOR NAME
In the above example, only the first 6 values of the field NAME would be read.

Without the limit notation, all values would be read.

The STARTING/ENDING Clauses

Like the READ statement, the HISTOGRAM statement also provides a STARTING from clause and an
ENDING AT (or THRU) clause to narrow down the range of values to be read by specifying a starting value and
ending value.

Examples:
HISTOGRAM MYVIEW FOR NAME STARTING from 'BOUCHARD’

HISTOGRAM MYVIEW FOR NAME STARTING from 'BOUCHARD’ ENDING AT 'LANIER’
HISTOGRAM MYVIEW FOR NAME from 'BLOOM’ THRU 'ROESER’

The WHERE Clause

The HISTOGRAM statement also provides a WHERE clause which may be used to specify an additional
selection criterion that is evaluateffer a value has been read dweforeany processing is performed on the
value. The field specified in the WHERE clause must be the same as in the main clause of the HISTOGRAM
statement.

Copyright © Software AG 2002 49

Database Processing Loops Database Access

Example of HISTOGRAM Statement:

** Example Program 'HISTOX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 CITY
END-DEFINE
*
LIMIT 8
HISTOGRAM MYVIEW CITY STARTING from 'M’
DISPLAY NOTITLE CITY 'NUMBER OF/PERSONS’ *NUMBER *COUNTER
END-HISTOGRAM

END

CITY NUMBER OF CNT

PERSONS

MADISON 3 1
MADRID 41 2
MAILLY LE CAMP 1 3
MAMERS 1 4
MANSFIELD 4 5
MARSEILLE 2 6
MATLOCK 1 7
MELBOURNE 2 8

In the above program, the system variables *NUMBER and *COUNTER are also evaluated by the
HISTOGRAM statement, and output with the DISPLAY statement. *NUMBER contains the number of database
records that contain the last value read; *COUNTER contains the total number of values which have been read.

Database Processing Loops

Natural automatically creates the necessary processing loops which are required to process data that have been
selected from a database as a result of a FIND, READ or HISTOGRAM statement.

Example:

** Example Program 'FINDXO03'’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2CITY
END-DEFINE
*
FIND MYVIEW WITH NAME ="ADKINSON’
DISPLAY NAME FIRST-NAME CITY
END-FIND
END

The above FIND loop selects all records from the EMPLOYEES file in which the field NAME contains the
value "ADKINSON" and processes the selected records. In this example, the processing consists of displaying
certain fields from each record selected.

If the FIND statement contained a WHERE clause in addition to the WITH clause, only those records that were
selected as a result of the WITH claasel met the WHERE criteria would be processed.

50 Copyright © Software AG 2002

Database Access

Database Processing Loops

The following diagram illustrates the flow logic of a database processing loop:

select records

Y

read records

yes

process record

yes

Ezit Processing Loop

no

IPru[:essing
Loop

Copyright © Software AG 2002

51

Hierarchies of Processing Loops Database Access

Hierarchies of Processing Loops

The use of multiple FIND and/or READ statements creates a hierarchy of processing loops, as shown in the
following example:

Example of Processing Loop Hierarchy:

** Example Program 'FINDX04’

DEFINE DATA LOCAL
1 PERSONVIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID

2 NAME
1 AUTOVIEW VIEW OF VEHICLES

2 PERSONNEL-ID

2 MAKE

2 MODEL
END-DEFINE
*
EMP. FIND PERSONVIEW WITH NAME = 'ADKINSON’
VEH. FIND AUTOVIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)

DISPLAY NAME MAKE MODEL
END-FIND
END-FIND

END

The above program selects from the EMPLOYEES file all people with the name "ADKINSON". Each record
(person) selected is then processed as follows:

1. The second FIND statement is executed to select the automobiles from the VEHICLES file, using as
selection criterion the PERSONNEL-IDs from the records selected from the EMPLOYEES file with the
first FIND statement.

2. The NAME of each person selected is displayed; this information is obtained from the EMPLOYEES file.
The MAKE and MODEL of each automobile owned by that person is also displayed; this information is
obtained from the VEHICLES file.

The second FIND statement creates an inner processing loop within the outer processing loop of the first FIND
statement, as shown in the following diagram.

52 Copyright © Software AG 2002

Database Access Hierarchies of Processing Loops

The diagram illustrates the flow logic of the hierarchy of processing loops in the previous example program:

select records from
EMPLOYEES file

o |

exit

outer
loop read record

v

select records from
VEHICLES file

| ——

inner
loop

—p

read record

Y

display data

v -

Copyright © Software AG 2002 53

Hierarchies of Processing Loops Database Access

Example of Nested FIND Loops Accessing the Same File:

It is also possible to construct a processing loop hierarchy in which the same file is used at both levels of the
hierarchy:

** Example Program 'FINDXO05’

DEFINE DATA LOCAL

1 PERSONVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2CITY

1 #NAME (A40)

END-DEFINE

*

WRITE TITLE LEFT JUSTIFIED
'PEOPLE IN SAME CITY AS:" #NAME / 'CITY:" CITY SKIP 1

FIND PERSONVIEW WITH NAME ='JONES’

WHERE FIRST-NAME ="LAUREL’
compress NAME FIRST-NAME INTO #NAME
FIND PERSONVIEW WITH CITY = CITY
DISPLAY NAME FIRST-NAME CITY

END-FIND

END-FIND

END

The above program first selects all people with name"JONES" and first name "LAUREL" from the
EMPLOYEES file. Then all who live in the same city are selected from the EMPLOYEES file and a list of these
people is created. All fields values displayed by the DISPLAY statement are taken from the second FIND
statement.

PEOPLE IN SAME CITY AS: JONES LAUREL

CITY: BALTIMORE

NAME FIRST-NAME CITY
JENSEN MARTHA BALTIMORE
LAWLER EDDIE BALTIMORE
FORREST CLARA BALTIMORE
ALEXANDER GIL BALTIMORE
NEEDHAM SUNNY BALTIMORE
ZINN CARLOS BALTIMORE
JONES LAUREL BALTIMORE

Further Examples of Nested READ and FIND Statements:

See programs READX04 and LIMITXO01 in library SYSEXPG.

54 Copyright © Software AG 2002

Database Access Database Update - Transaction Processing

Database Update - Transaction Processing

® |ogical Transaction

e Record Hold Logic

® Backing Out a Transaction
® Restarting a Transaction

Logical Transaction

Natural performs database updating operations basgdr@actionswhich means that all database update
requests are processed in logical transaction units. A logical transaction is the smallest unit of work (as defined
by you) which must be performed in its entirety to ensure that the information contained in the database is
logically consistent.

A logical transaction may consist of one or more update statements (DELETE, STORE, UPDATE) involving
one or more database files. A logical transaction may also span multiple Natural programs.

A logical transaction begins when a record is put on "hold"; Natural does this automatically when the record is
read for updating, for example, if a FIND loop contains an UPDATE or DELETE statement.

The end of a logical transaction is determined by an END TRANSACTION statement in the program. This
statement ensures that all updates within the transaction have been successfully applied, and releases all records
that were put on "hold" during the transaction.

Example:

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 NAME

END-DEFINE

FIND MYVIEW WITH NAME ="'SMITH’
DELETE
END TRANSACTION

END-FIND

END

Each record selected would be put on "hold", deleted, and then - when the END TRANSACTION statement is
executed - released from "hold".

Note:
The OPRB parameter, as set by the Natural administrator, determines whether or not Natural will generate an
END TRANSACTION statement at the end of each Natural program. Ask your Natural administrator for details.

Example of STORE Statement:

See program STOREXO01 in library SYSEXPG.

Copyright © Software AG 2002 55

Record Hold Logic Database Access

Record Hold Logic

If Natural is used with Adabas, any record which is to be updated will be placed in "hold" status until an END
TRANSACTION or BACKOUT TRANSACTION statement is issued or the transaction time limit is exceeded.

When a record is placed in "hold" status for one user, the record is not available for update by another user.
Another user who wishes to update the same record will be placed in "wait" status until the record is released
from "hold" when the first user ends or backs out his/her transaction.

To prevent users from being placed in wait status, the session parameter WH (Wait Hold) can be used (see the
Natural Referencdocumentation).

When you use update logic in a program, you should consider the following:

e The maximum time that a record can be in hold status is determined by the Adabas transaction time limit
(Adabas parameter TT). If this time limit is exceeded, you will receive an error message and all database
modifications done since the last END TRANSACTION will be made undone.

® The number of records on hold and the transaction time limit are affected by the size of a transaction, that
is, by the placement of the END TRANSACTION statement in the program. Restart facilities should be
considered when deciding where to issue an END TRANSACTION. For example, if a majority of records
being processed ammtto be updated, the GET statement is an efficient way of controlling the "holding" of
records. This avoids issuing multiple END TRANSACTION statements and reduces the number of ISNs on
hold. When you process large files, you should bear in mind that the GET statement requires an additional
Adabas call. An example of a GET statement is shown below.

Example of GET Statement:

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 SALARY (1)
END-DEFINE
RD. READ EMPLOY-VIEW BY NAME
IF SALARY (1) > 30000
GE. GET EMPLOY-VIEW *ISN (RD.)
compute SALARY (1) = SALARY (1) * 1.15
UPDATE (GE.)
END TRANSACTION
END-IF
END-READ
END

On mainframe computers, the placing of records in "hold" status is also controlled by the profile parameter RI, as
set by the Natural administrator.

56 Copyright © Software AG 2002

Database Access Backing Out a Transaction

Backing Out a Transaction

During an active logical transaction, that is, before the END TRANSACTION statement is issued, you can

cancel the transaction by using a BACKOUT TRANSACTION statement. The execution of this statement
removes all updates that have been applied (including all records that have been added or deleted) and releases
all records held by the transaction.

Restarting a Transaction

With the END TRANSACTION statement, you can also store transaction-related information. If processing of
the transaction terminates abnormally, you can read this information with a GET TRANSACTION DATA
statement to ascertain where to resume processing when you restart the transaction.

Example of Using Transaction Data to Restart a Transaction:

The following program updates the EMPLOYEES and VEHICLES files. After a restart operation, the user is
informed of the last EMPLOYEES record successfully processed. The user can resume processing from that
EMPLOYEES record. It would also be possible to set up the restart transaction message to include the last
VEHICLES record successfully updated before the restart operation.

** Example Program 'GETTRXO01’
DEFINE DATA LOCAL
01 PERSON VIEW OF EMPLOYEES
02 PERSONNEL-ID (A8)

02 NAME (A20)

02 FIRST-NAME (A20)
02 MIDDLE-I (A1)

02 CITY (A20)

01 AUTO VIEW OF VEHICLES
02 PERSONNEL-ID (A8)

02 MAKE (A20)

02 MODEL (A20)
01 ET-DATA

02 #APPL-ID (A8) INIT <’ >

02 #USER-ID (A8)

02 #PROGRAM (AB)

02 #DATE (A10)

02 #TIME (AB)

02 #PERSONNEL-NUMBER (A8)
END-DEFINE

*

GET TRANSACTION DATA #APPL-ID #USER-ID #PROGRAM
#DATE #TIME #PERSONNEL-NUMBER
*
IF #APPL-ID NOT = 'NORMAL’ /* IF LAST EXECUTION ENDED ABNORMALLY
AND #APPL-ID NOT ="
INPUT (AD=OIL)
/1 20T "*** LAST SUCCESSFUL TRANSACTION *** ()

| 2QT ressmisb xR
/ll 25T 'APPLICATION:' #APPL-ID

/32T 'USER:’ #USER-ID

/29T 'PROGRAM:" #PROGRAM

/24T 'COMPLETED ON:' #DATE 'AT’ #TIME
/ 20T 'PERSONNEL NUMBER:’ #PERSONNEL-NUMBER
END-IF
REPEAT
INPUT (AD=MIL) // 20T 'ENTER PERSONNEL NUMBER:' #PERSONNEL-NUMBER
IF #PERSONNEL-NUMBER = 99999999
ESCAPE bottom
END-IF

Copyright © Software AG 2002 57

Restarting a Transaction

FIND1. FIND PERSON WITH PERSONNEL-ID = #PERSONNEL-NUMBER
IF NO RECORDS FOUND
REINPUT 'SPECIFIED NUMBER DOES NOT EXIST; ENTER ANOTHER ONE.’
END-NOREC
FIND2. FIND AUTO WITH PERSONNEL-ID = #PERSONNEL-NUMBER
IF NO RECORDS FOUND
WRITE 'PERSON DOES NOT OWN ANY CARS'
END-NOREC
IF *COUNTER (FIND1.) = 1 /* FIRST PASS THROUGH THE LOOP
INPUT (AD=M)
/ 20T 'EMPLOYEES/AUTOMOBILE DETAILS' (I)
/20T :
/Il 20T 'NUMBER: PERSONNEL-ID (AD=0)
/22T 'NAME: NAME '’ FIRST-NAME ’’ MIDDLE-I
/22T 'CITY? CITY
/22T 'MAKE: MAKE
/21T '"MODEL: MODEL
UPDATE (FIND1.) /* UPDATE THE EMPLOYEES FILE

ELSE /* SUBSEQUENT PASSES THROUGH THE LOOP
INPUT NO ERASE (AD=M) //llll// 20T MAKE / 20T MODEL
END-IF

UPDATE (FIND2.) /* UPDATE THE VEHICLES FILE

MOVE *APPLIC-ID TO #APPL-ID

MOVE *INIT-USER TO #USER-ID

MOVE *PROGRAM TO #PROGRAM

MOVE *DAT4E TO #DATE

MOVE *TIME TO #TIME

END TRANSACTION #APPL-ID #USER-ID #PROGRAM
#DATE #TIME #PERSONNEL-NUMBER

END-FIND /* FOR VEHICLES (FIND2.)
END-FIND /* FOR EMPLOYEES (FINDL1.)
END-REPEAT /* FOR REPEAT

STOP /* Simulate abnormal transaction end
END TRANSACTION 'NORMAL '’
END

Database Access

58 Copyright © Software AG 2002

Database Access Statements ACCEPT and REJECT

Statements ACCEPT and REJECT

The statements ACCEPT and REJECT are used to select records based on user-specified logical criteria.

The statements ACCEPT and REJECT can be used in conjunction with the database access statements READ,
FIND and HISTOGRAM.

Example of ACCEPT Statement:

** Example Program '"ACCEPX01’

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)

END-DEFINE

READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) ='USD’
ACCEPT IF SALARY (1) >= 40000
DISPLAY NAME JOB-TITLE SALARY (1)

END-READ

END

Page 1 97-08-13 17:26:33

NAME CURRENT ANNUAL
POSITION SALARY

ADKINSON DBA 46700
ADKINSON MANAGER 47000
ADKINSON MANAGER 47000
AFANASSIEV DBA 42800
ALEXANDER DIRECTOR 48000
ANDERSON MANAGER 50000
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000

ACCEPT/REJECT statements allow you to specify logical conditions in addition to those that were specified in

WITH and WHERE clauses of the READ statement. The logical condition criteria in the IF clause of an
ACCEPT/REJECT statement are evaluatdrthe record has been selected and read.

Copyright © Software AG 2002

59

Statements ACCEPT and REJECT Database Access

Logical condition operators include the following (seeNatural Referencdocumentation for more detailed
information):

EQUAL EQ|:=
NOT EQUAL TO |NE|-=
LESS THAN LT |<
LESS EQUAL LE | <=

GREATER THAN |GT|>
GREATER EQUAL |GE|>=

Logical condition criteria in ACCEPT/REJECT statements may also be connected with the Boolean operators
AND, OR, and NOT. Moreover, parentheses may be used to indicate logical grouping.

Example of ACCEPT Statement with AND Operator:
The following program illustrates the use of the Boolean operator AND in an ACCEPT statement.

** Example Program 'ACCEPX02’

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)

END-DEFINE

READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = 'USD’
ACCEPT IF SALARY (1) >= 40000

AND SALARY (1) <= 45000

DISPLAY NAME JOB-TITLE SALARY (1)

END-READ

END

Example of REJECT Statement with OR Operator:

The following program, which uses the Boolean operator OR in a REJECT statement, produces the same output
as the ACCEPT statement above, as the logical operators are reversed.

** Example Program 'ACCEPX03’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)
END-DEFINE
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = 'USD’
REJECT IF SALARY (1) < 40000
OR SALARY (1) > 45000
DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

60 Copyright © Software AG 2002

Database Access

Statements ACCEPT and REJECT

Page 1 97-08-18 12:21:09
NAME CURRENT ANNUAL
POSITION SALARY
AFANASSIEV DBA 42800
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000

Further Examples of ACCEPT and REJECT Statements:

See programs ACCEPX04, ACCEPXO05 and ACCEPXQO06 in library SYSEXPG.

Copyright © Software AG 2002

61

AT START/END OF DATA Statements Database Access

AT START/END OF DATA Statements
AT START OF DATA Statement

The AT START OF DATA statement is used to specify any processing that is to be performed after the first of a
set of records has been read in a database processing loop.

The AT START OF DATA statement must be placed within the processing loop.

If the AT START OF DATA processing produces any output, this will be olipiatre the first field valueBy
default, this output is displayed left-justified on the page.

AT END OF DATA Statement

The AT END OF DATA statement is used to specify processing that is to be performed after all records for a
database processing loop have been processed.

The AT END OF DATA statement must be placed within the processing loop.

If the AT END OF DATA processing produces any output, this will be owtfiat the last field valueBy
default, this output is displayed left-justified on the page.

Example of AT START OF DATA and AT END OF DATA Statements

The following example program illustrates the use of the statements AT START OF DATA and AT END OF
DATA. The system variable *TIME has been incorporated into the AT START OF DATA statement to display
the time of day. The system function OLD has been incorporated into the AT END OF DATA statement to
display the name of the last person selected.

** Example Program 'ATSTAX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2CITY
2 NAME
2 JOB-TITLE
2 INCOME (1:1)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE
WRITE TITLE 'XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT’ /
READ (3) MYVIEW BY CITY STARTING from 'E’
DISPLAY GIVE SYSTEM FUNCTIONS
NAME (AL=15) JOB-TITLE (AL=15) INCOME (1)
AT START OF DATA
WRITE 'RUN TIME:" *TIME /
END-START
AT END OF DATA
WRITE / 'LAST PERSON SELECTED:" OLD (NAME) /
END-ENDDATA
END-READ
AT END OF PAGE
WRITE /'"AVERAGE SALARY:’ AVER (SALARY(1))
END-ENDPAGE
END

The program produces the following output:

62 Copyright © Software AG 2002

Database Access AT START/END OF DATA Statements

XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT

NAME CURRENT INCOME
POSITION
CURRENCY ANNUAL BONUS
CODE SALARY

RUN TIME: 11:18:58.2

DUYVERMAN PROGRAMMER USD 34000 0
PRATT SALES PERSON USD 38000 9000
MARKUSH TRAINEE usD 22000 0

LAST PERSON SELECTED: MARKUSH

AVERAGE SALARY: 31333

Further Examples of AT START OF DATA and AT END OF DATA Statements:

See programs ATENDXO01, ATSTAX02 and WRITEXQ9 in library SYSEXPG.

Copyright © Software AG 2002

63

Output of Data Output of Data

Output of Data

This section discusses various aspects of how you can control the format of an output report created with
Natural, that is, the way in which the data are displayed.

It covers the following topics:

Layout of an Output Page - Overview

Statements DISPLAY and WRITE

Index Notation (n:n) for Multiple-Value Fields and Periodic Groups
Page Titles and Page Breaks

Column Headers

Parameters to Influence the Output of Fields

Edit Masks - The EM Parameter

Vertical Displays

Layout of an Output Page - Overview

The following program illustrates the general layout of an output page:

** Example Program 'OUTPUX01’
DEFINE DATA LOCAL
1 EMP-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 BIRTH
END-DEFINE
*
WRITE TlTLE Thkkkkkkkkk Page Tltle *kkkkkkkkk!
WRITE TRAILER "*****kkixx Page Trailer ****xxrxix
AT TOP OF PAGE
WRITE '===== Top of Page ====='
END-TOPPAGE
AT END OF PAGE
WRITE '===== End of Page ====="'
END-ENDPAGE
READ (10) EMP-VIEW BY NAME
DISPLAY NAME FIRST-NAME BIRTH (EM=YYY-MM-DD)
AT START OF DATA
WRITE '>>>>> Start of Data >>>>>
END-START
AT END OF DATA
WRITE '<<<<< End of Data <<<<<’
END-ENDDATA
END-READ
END

64 Copyright © Software AG 2002

Output of Data

Statements DISPLAY and WRITE

*kkkkkkkkk Page Tltle *kkkkkkkkk

=—==== Top of Page =====
NAME FIRST-NAME DATE
OF
BIRTH

>>>>> Start of Data >>>>>
ABELLAN KEPA 1961-04-08
ACHIESON ROBERT 1963-12-24
ADAM SIMONE 1952-01-30
ADKINSON JEFF 1951-06-15
ADKINSON PHYLLIS 1956-09-17
ADKINSON HAZEL 1954-03-19
ADKINSON DAVID 1946-10-12
ADKINSON CHARLIE 1950-03-02
ADKINSON MARTHA 1970-01-01
ADKINSON TIMMIE 1970-03-03
<<<<< End of Data <<<<<

*kkkkkkkkk Page Traller *kkkkkkkkk
===== End of Page =====

The following statements have an impact on the layout of the report:

Statement

Function

WRITE TITLE

page.

With this statement, you can specify a page title, that is, text to be output at the tg

p of a

WRITE TRAILER

With this statement, you can specify a page trailer, that is, text to be output at the
of a page.

bottom

AT TOP OF PAGE

the page title.

With this statement, you can specify any processing that is to be performed when
new page of the report is started. Any output from this processing will be output b

ever a
elow

AT END OF PAGE

With this statement, you can specify any processing that is to be performed when
end-of-page condition occurs. Any output from this processing will be output belo
page trailer (as specified with the WRITE TRAILER statement).

ever an
v any

AT START OF
DATA

has been read in a database processing loop. Any output from this processing wi
output before the first field value.

With this statement, you specify processing that is to be performed after the first fecord

| be

AT END OF DATA

processing loop have been processed. Any output from this processing will be ou
immediately after the last field value

With this statement, you specify processing that is to be performed after all recordls for a

tput

DISPLAY/WRITE

With these statements, you control the format in which the field values that have
read are to be output.

been

The statements AT START OF DATA and AT END OF DATA are described in the s&ximbase Access
The other statements listed above are described below.

Statements

DISPLAY and WRITE

With the statements DISPLAY and WRITE, you output data and control the format in which information is

output.

Copyright © Software AG 2002 65

DISPLAY Statement Output of Data

DISPLAY Statement

WRITE Statement

Column Spacing - The SF Parameter anchtéNotation
Tab Setting - The nT Notation

Line Advance - The / Notation

DISPLAY Statement

The DISPLAY statement produces output in column format; that is, the values for one field are output in a
column underneath one another. If multiple fields are output, that is, if multiple columns are produced, these
columns are output next to one another horizontally.

The order in which fields are displayed is determined by the sequence in which you specify the field names in
the DISPLAY statement.

The DISPLAY statement in the following program displays for each person first the personnel number, then the
name and then the job title:

** Example Program 'DISPLX01’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME JOB-TITLE

END-READ
END
Page 1 99-01-22 11:31:01
PERSONNEL NAME CURRENT
ID POSITION
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

To change the order of the columns that appear in the output report, simply reorder the field names in the
DISPLAY statement. For example, if you prefer to list employee names first, then job titles followed by
personnel numbers, the appropriate DISPLAY statement would be:

** Example Program 'DISPLX02’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
READ (3) VIEWEMP BY BIRTH
DISPLAY NAME JOB-TITLE PERSONNEL-ID
END-READ
END

66 Copyright © Software AG 2002

Output of Data WRITE Statement

Page 1 99-01-22 11:32:06
NAME CURRENT PERSONNEL
POSITION ID
GARRET TYPIST 30020013
TAILOR WAREHOUSEMAN 30016112
PIETSCH SECRETARY 20017600

A header is output above each column. Various ways to influence this header are described later in this section.

WRITE Statement

The WRITE statement is used to produce output in free format (that is, not in columns). In contrast to the
DISPLAY statement, the following applies to the WRITE statement:

® [f necessary, it automatically creates a line advance; that is, a field or text element that does not fit onto the
current output line, is automatically output in the next line.

e |t does not produce any headers.

® The values of a multiple-value field are output next to one another horizontally, and not underneath one
another.

The two example programs on the following page illustrate the basic differences between the DISPLAY
statement and the WRITE statement.

You can also use the two statements in combination with one another, as described later in this section.

Example of DISPLAY Statement:

** Example Program 'DISPLX03’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:3)

END-DEFINE

READ (2) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME SALARY (1:3)

END-READ
END
Page 1 97-08-14 11:44:00
NAME FIRST-NAME ANNUAL
SALARY
JONES VIRGINIA 46000
42300
39300
JONES MARSHA 50000
46000
42700

Example of WRITE Statement:

Copyright © Software AG 2002 67

Column Spacing - The SF Parameter and the nX Notation Output of Data

** Example Program '"WRITEX01’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:3)
END-DEFINE
READ (2) VIEWEMP BY NAME STARTING FROM 'JONES’
WRITE NAME FIRST-NAME SALARY (1:3)
END-READ
END

Page 1 97-08-14 11:45:00

JONES VIRGINIA 46000 42300
39300

JONES MARSHA 50000 46000
42700

Column Spacing - The SF Parameter and the nX Notation
By default, the columns output with a DISPLAY statement are separated from one anaherdpace.

With the session parameter SF, you can specify the default number of spaces to be inserted between columns
output with a DISPLAY statement. You can set the number of spaces to any value from 1 to 30.

The parameter can be specified with a FORMAT statement to apply to the whole report, or with a DISPLAY
statement at statement level, but not at field level.

With thenX notation, you can specify the number of spaneso(be inserted between two columns.

68 Copyright © Software AG 2002

Output of Data Column Spacing - The SF Parameter and the nX Notation

An nX notation overrides the specification made with the SF parameter.

** Example Program 'DISPLX04’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
FORMAT SF=3
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME 5X JOB-TITLE
END-READ
END

The above example program produces the following output, where the first two columns are separated by 3
spaces due to the SF parameter in the FORMAT statement, while the second and third columns are separated by
5 spaces due to the notation "5X" in the DISPLAY statement:

Page 1 99-01-22 11:33:40
PERSONNEL NAME CURRENT
ID POSITION
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

The nX notation is also available with the WRITE statement to insert spaces between individual output elements:

WRITE PERSONNEL-ID 5X NAME 3X JOB-TITLE

With the above statement, 5 spaces will be inserted between the fields PERSONNEL-ID and NAME, and 3
spaces between NAME and JOB-TITLE.

Copyright © Software AG 2002 69

Tab Setting - The nT Notation Output of Data

Tab Setting - ThenT Notation

With thenTnotation, which is available with the DISPLAY and the WRITE statement, you can specify the
position where an output element is to be output.

** Example Program 'DISPLX05’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

END-DEFINE

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY 5T NAME 30T FIRST-NAME

END-READ

END

The above program produces the following output, where the field NAME is output starting in the 5th position
(counted from the left margin of the page), and the field FIRST-NAME starting in the 30th position:

Page 1 97-08-21 11:46:01
NAME FIRST-NAME
JONES VIRGINIA
JONES MARSHA
JONES ROBERT

Line Advance - The / Notation
With a slash "/" in a DISPLAY or WRITE statement, you cause a line advance.

® |n a DISPLAY statement, a slash causes a line advaetveeen fieldandwithin text
® In a WRITE statement, a slash causes a line advance only when Ipdwvedn fieldswithin text, it is
treated like an ordinary text character.

When placed between fields, the slash must have a blank on either side.
For multiple line advances, you specify multiple slashes.
Example of Line Advance in DISPLAY Statement:

** Example Program 'DISPLX06’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 DEPARTMENT
END-DEFINE
READ (3) VIEWEMP BY NAME STARTING FROM "JONES’
DISPLAY NAME / FIRST-NAME 'DEPART-/MENT' DEPARTMENT
END-READ
END

The above DISPLAY statement produces a line advance after each value of the field NAME and within the text
"DEPART-MENT":

70 Copyright © Software AG 2002

Output of Data Line Advance - The / Notation

Page 1 97-08-14 11:45:12

NAME DEPART-
FIRST-NAME MENT

JONES SALE
VIRGINIA

JONES MGMT
MARSHA

JONES TECH
ROBERT

Example of Line Advance in WRITE Statement:

** Example Program '"WRITEX02’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 DEPARTMENT
END-DEFINE
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
WRITE NAME / FIRST-NAME 'DEPART-/MENT' DEPARTMENT //
END-READ
END

The above WRITE statement produces a line advance after each value of the field NAME, and a double line
advance after each value of the field DEPARTMENT, but none within the text "DEPART-/MENT":

Page 1 97-08-14 11:45:12
JONES
VIRGINIA DEPART-/MENT SALE
JONES
MARSHA DEPART-/MENT MGMT
JONES
ROBERT DEPART-/MENT TECH

Further Examples of DISPLAY and WRITE Statements:

See programs DISPLX13, WRITEXO08, DISPLX14, WRITEX09 and DISPLX21 in library SYSEXPG.

Copyright © Software AG 2002 71

Index Notation (n:n) for Multiple-Value Fields and Periodic Groups Output of Data

Index Notation (n:n) for Multiple-Value Fields and
Periodic Groups

With the index notatioiin:n) you can specify how many values of a multiple-value field or how many
occurrences of a periodic group are to be output.

For example, the field INCOME in the DDM EMPLOYEES is a periodic group which keeps a record of the
annual incomes of an employee for each year he/she has been with the company. These annual incomes are
maintained in chronological order. The income of the most recent year is in occurrence "1". If you wanted to
have the annual incomes of an employee for the last three years displayed - that is, occurrences "1" to "3" - you
would specify the notation "(1:3)" after the field name in a DISPLAY or WRITE statement (as shown in the
following example program).

Example of Index Notation in DISPLAY Statement:

** Example Program 'DISPLX07’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 INCOME (1:3)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME INCOME (1:3)
SKIP 1
END-READ
END

Note that a DISPLAY statement outputs multiple values of a multiple-value field underneath one another:

Page 1 99-01-22 11:36:58
PERSONNEL NAME INCOME
ID

CURRENCY ANNUAL BONUS
CODE SALARY

30020013 GARRET UKL 4200 0

UKL 4150 0
0 0

30016112 TAILOR UKL 7450 0
UKL 7350 0
UKL 6700 0

20017600 PIETSCH uUsD 22000 0
usD 20200 0
usD 18700 0

As a WRITE statement displays multiple values horizontally instead of vertically, this may cause a line overflow
and a - possibly undesired - line advance.

72 Copyright © Software AG 2002

Output of Data Index Notation (n:n) for Multiple-Value Fields and Periodic Groups

If you use only a single field within a periodic group (for example, SALARY) instead of the entire periodic
group, and if you also insert a line advance "/" (as shown in the following example between NAME and
JOB-TITLE), the report format becomes manageable:

Example of Index Notation in WRITE Statement:

** Example Program 'WRITEX03'

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
2 SALARY (1:3)

END-DEFINE

READ (3) VIEWEMP BY BIRTH
WRITE PERSONNEL-ID NAME / JOB-TITLE SALARY (1:3)
SKIP 1

END-READ

END

Page 1 99-01-22 11:37:18

30020013 GARRET
TYPIST 4200 4150 0

30016112 TAILOR
WAREHOUSEMAN 7450 7350 6700

20017600 PIETSCH
SECRETARY 22000 20200 18700

Copyright © Software AG 2002 73

Page Titles and Page Breaks Output of Data

Page Titles and Page Breaks

This section describes various ways of controlling page breaks in a report and the output of page titles at the top
of each report page.

Default Page Title

Suppress Page Title - The NOTITLE Option

Define Your Own Page Title - The WRITE TITLE Statement
Logical Page and Physical Page

Page Size - The PS Parameter

Page Advance - The EJ Parameter

Page Advance - The EJECT and NEWPAGE Statements
Page Trailer - The WRITE TRAILER Statement

AT TOP OF PAGE Statement

AT END OF PAGE Statement

Default Page Title

For each page output via a DISPLAY or WRITE statement, Natural automatically generates a single default title
line. This title line contains the page number, the date and the time of day.

WRITE 'HELLO’
END

The above program produces the following output with default page title:

Page 1 97-08-14 18:27:35

HELLO

Suppress Page Title - The NOTITLE Option

If you wish your report to be output without page titles, you add the keyword "NOTITLE" to the DISPLAY or
WRITE statement.

WRITE NOTITLE "HELLO’
END

The above program produces the following output without page title:

HELLO

Define Your Own Page Title - The WRITE TITLE Statement

If you wish a page title of your own to be output instead of the Natural default page title, you use the statement
WRITE TITLE. With this statement, you specify the text for your title (in apostrophes).

WRITE TITLE 'THIS IS MY PAGE TITLE’
WRITE "HELLO’
END

THIS IS MY PAGE TITLE

HELLO

74 Copyright © Software AG 2002

Output of Data Logical Page and Physical Page

With the SKIP option of the WRITE TITLE statement, you can specify the number of empty lines to be output
immediately below the title line. After the keyword SKIP, you specify the number of empty lines to be inserted.

WRITE TITLE 'THIS IS MY PAGE TITLE' SKIP 2
WRITE "HELLO’
END

THIS IS MY PAGE TITLE

HELLO

SKIP is not only available as part of the WRITE TITLE statement, but also as a stand-alone statement.

By default, the page title is centered on the page and not underlined. However, the WRITE TITLE statement
provides the options LEFT JUSTIFIED and UNDERLINED to display the title left-justified and/or underlined.

WRITE TITLE LEFT JUSTIFIED UNDERLINED 'THIS IS MY PAGE TITLE’ SKIP 2
WRITE 'HELLO’
END

THIS IS MY PAGE TITLE

HELLO

By default, titles are underlined with a hyphen (-). However, with the UC parameter you can specify another
character to be used as underlining character (as described later in this section).

The WRITE TITLE statement is executed whenever a new page is initiated for the report.

Logical Page and Physical Page
A logical pageis the output produced by a Natural program.

A physical pagés your terminal screen on which the output is displayed; or it may be the piece of paper on
which the output is printed.

The size of the logical page is determined by the number of lines output by the Natural program.

If more lines are output than fit onto one screen, the logical page will exceed the physical screen, and the
remaining lines will be displayed on the next screen.

Copyright © Software AG 2002 75

Logical Page and Physical Page

Output of Data

Physical Page (Screen)

ALHAZRED
EEAR

BEROTWH
CARTER
DTN 2 O
HLRGREAVES
INMES
MORESEY
FEEEY

AR
WILDE
ZIMMERMARND

97-08-14

FIR3T-MAME

EDWARD
HOLLIS
FANDOLFH
THOMALS
ALICE
DAVID
KALTHERIMNE
AEBMWEER

CHARLES
IRENE
ROBERT

Logical Page

18:27:35

If information you wish to appear at the bottom of the screen (for example, output created by a WRITE

TRAILER or AT END OF PAGE statement) is output on the next screen instead, reduce the logical page size

accordingly (with the session parameter PS, which is described below).

76

Copyright © Software AG 2002

Output of Data Page Size - The PS Parameter

Page Size - The PS Parameter
With the parameter PS, you determine the maximum number of lines per (logical) page for a report.

When the number of lines specified with the PS parameter is reached, a page advance occurs (unless page
advance is controlled with a NEWPAGE or EJECT statement; see below).

The PS parameter can be set either at session level with the system command GLOBALS, or within a program
with the following statements:

® at report level:
FORMAT PS=n

® at statement level:
DISPLAY (PS= nn)
WRITE (PS= nn)
WRITE TITLE (PS= nn)
WRITE TRAILER (PS= nn)
INPUT (PS= nn)

Page Advance - The EJ Parameter

With the session parameter EJ, you determine whether page ejects are to be performed or not. By default,
EJ=ON applies, which means that page ejects will be performed as specified. If you specify EJ=OFF, page break
information will be ignored. This may be useful to save paper during test runs where page ejects are not needed.

The EJ parameter can be set at session level with the system command GLOBALS; for example:

GLOBALS EJ=OFF

Page Advance - The EJECT and NEWPAGE Statements

The EJECT statement overrides the EJ parameter setting. The EJECT statement causes a pagétaalutance
title or header line being generated on the next page. A new physical page isnsthogthny top-of-page or
end-of-page processing being performed (for example, no WRITE TRAILER or AT END OF PAGE , WRITE
TITLE, AT TOP OF PAGE or *PAGE-NUMBER processing).

The NEWPAGE statement causes a page adwaitic@ssociated end-of-page and top-of-page processing. A
trailer line will be displayed, if specified. A title line, either default or user-specified, will be displayed on the
new page (unless the NOTITLE option has been specified in a DISPLAY or WRITE statement).

If the NEWPAGE statement is not used, page advance is automatically controlled by the setting of the PS
parameter (see above).

Copyright © Software AG 2002 77

EJECT/NEWPAGE WHEN LESS THAN n LINES LEFT Output of Data

EJECT/NEWPAGE WHEN LESS THAN n LINES LEFT

Both the NEWPAGE statement and the EJECT statement provide a WHEN LESSAIHERS LEFT option.
With this option, you specify a number of linesThe NEWPAGE/EJECT statement will then be executed if - at
the time the statement is processed - lessaHares are available on the current page.

Example:
FORMAT PS=55

NEWPAGE WHEN LESS THAN 7 LINES LEFT

In this example, the page size is set to 55 lines.

If only 6 or less lines are left on the current page at the time when the NEWPAGE statement is processed, the
NEWPAGE statement is executed and a page advance occurs.

If 7 or more lines are left, the NEWPAGE statement is not executed and no page advance occurs; the page
advance then occurs depending on the PS parameter, that is, after 55 lines.

78 Copyright © Software AG 2002

Output of Data NEWPAGE WITH TITLE

NEWPAGE WITH TITLE

The NEWPAGE statement also provides a WITH TITLE option. If this option is not used, a default title will
appear at the top of the new page or a WRITE TITLE statement or NOTITLE clause will be executed. The
WITH TITLE option of the NEWPAGE statement allows you to override these with a title of your own choice.
The syntax of the WITH TITLE option is the same as foMHRITE TITLE statement.

Example:
NEWPAGE WITH TITLE LEFT JUSTIFIED 'PEOPLE LIVING IN BOSTON:’

The following program illustrates the use of the PS parameter and the NEWPAGE statement. Moreover, the
system variable *PAGE-NUMBER is used to display the current page number.

** Example Program '"NEWPAX01’

DEFINE DATA LOCAL

1 VIEWEMP OF EMPLOYEES
2 NAME
2CITY
2 DEPT

END-DEFINE

FORMAT PS=20

READ (5) VIEWEMP BY CITY STARTING FROM 'M’
DISPLAY NAME 'DEPT’ DEPT 'LOCATION’ CITY
AT BREAK OF CITY

NEWPAGE WITH TITLE LEFT JUSTIFIED
'EMPLOYEES BY CITY - PAGE:’ *PAGE-NUMBER

END-BREAK

END-READ

END

Note the position of the page breaks and the title line printed on the new page:

Page 1 97-08-19 18:27:35

NAME DEPT LOCATION

FICKEN TECH10 MADISON
KELLOGG TECH10 MADISON
ALEXANDER SALE20 MADISON

EMPLOYEES BY CITY - PAGE: 2
NAME DEPT LOCATION

DE JUAN SALEO3 MADRID
DE LA MADRID PRODO0O1 MADRID

Copyright © Software AG 2002 79

Page Trailer - The WRITE TRAILER Statement Output of Data

Page Trailer - The WRITE TRAILER Statement
The WRITE TRAILER statement is used to output text (in apostrophes) at the bottom of a page.
WRITE TRAILER 'THIS IS THE END OF THE PAGE’

The statement is executed when an end-of-page condition is detected, or as a result of a SKIP or NEWPAGE
statement.

As the end-of-page condition is checked aaftgr an entire DISPLAY or WRITE statement has been processed,

it may occur that the logical page size (that is, the number of lines output by a DISPLAY or WRITE statement)
causes the physical size of the output page to be exceeded before the WRITE TRAILER statement is executed.
To ensure that a page trailer actually appears at the bottom of a physical page, you should set the logical page
size (with the PS session parameter) to a value less than the physical page size.

By default, the page trailer is displayed centered on the page and not underlined. However, the WRITE
TRAILER statement provides the options LEFT JUSTIFIED and UNDERLINED to display the trailer
left-justified and/or underlined:

WRITE TRAILER LEFT JUSTIFIED UNDERLINED 'THIS IS THE END OF THE PAGFE’

AT TOP OF PAGE Statement

The AT TOP OF PAGE statement is used to specify any processing that is to be performed whenever a new page
of the report is started.

If the AT TOP OF PAGE processing produces any output, this will be output below the page title (with a
skipped line in between). By default, this output is displayed left-justified on the page.

AT END OF PAGE Statement

The AT END OF PAGE statement is used to specify any processing that is to be performed whenever an
end-of-page condition occurs.

If the AT END OF PAGE processing produces any output, this will be output after any page trailer (as specified
with the WRITE TRAILER statement). By default, this output is displayed left-justified on the page.

The same considerations described above for page trailers regarding physical and logical page sizes and the
number of lines output by a DISPLAY or WRITE statement also apply to AT END OF PAGE output.

Further Examples of WRITE TITLE, WRITE TRAILER, AT TOP OF PAGE, AT END OF PAGE and
SKIP Statements:

See programs WTITLX01, DISPLX21, ATENPX01, ATTOPXO01, SKIPX01 and SKIPX02 in library
SYSEXPG.

Further Example of NOTITLE Option:
See program DISPLX20 in library SYSEXPG.
Further Example of NEWPAGE and EJECT Statements:

See program NEWPAXO2 in library SYSEXPG.

80 Copyright © Software AG 2002

Output of Data Column Headers

Column Headers

This section describes various ways of controlling the display of column headers produced by a DISPLAY
statement.

Default Column Headers

Suppress Default Column Headers - The NOHDR Option

Define Your Own Column Headers

Combining NOTITLE and NOHDR

Centering of Columm Headers - The HC Parameter

Width of Columm Headers - The HW Parameter

Filler Characters for Headers - The Parameters FC and GC
Underlining Character for Titles and Headers - The UC Parameter
Suppressing Columm Headers - The Notation '/’

Default Column Headers

By default, each database field output with a DISPLAY statement is displayed with a default column header
(which is defined for the field in the DDM).

** Example Program 'DISPLX01’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME JOB-TITLE
END-READ
END

The above example program uses default headers and produces the following output:

Page 1 99-01-22 11:31:01
PERSONNEL NAME CURRENT

ID POSITION
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

Copyright © Software AG 2002 81

Suppress Default Column Headers - The NOHDR Option Output of Data

Suppress Default Column Headers - The NOHDR Option

If you wish your report to be output without column headers, add the keyword "NOHDR" to the DISPLAY
statement.

DISPLAY NOHDR PERSONNEL-ID NAME JOB-TITLE

Define Your Own Column Headers

If you wish column headers of your own to be output instead of the default headers, you tpddify '
apostrophes) immediately before a fitdadtbeing the header to be used for the field.

** Example Program 'DISPLX08’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID
'EMPLOYEE’ NAME
'POSITION’ JOB-TITLE
END-READ
END

The above program contains the header "EMPLOYEE" for the field NAME, and the header "POSITION" for the
field JOB-TITLE; for the field PERSONNEL-ID, the default header is used. The program produces the
following output:

Page 1 99-01-22 11:39:53
PERSONNEL EMPLOYEE POSITION

ID
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

82 Copyright © Software AG 2002

Output of Data Combining NOTITLE and NOHDR

Combining NOTITLE and NOHDR

To create a report that has neither page title nor column headers, you specify the NOTITLE and NOHDR options
together in the following order:

DISPLAY NOTITLE NOHDR PERSONNEL-ID NAME JOB-TITLE

Centering of Column Headers - The HC Parameter

By default, column headers are centered above the columns. With the HC parameter, you can influence the
placement of column headers:

® [f you specifyHC=L, headers will be left-justified.
e [f you specifyHC=R, headers will be right-justified.
e If you specifyHC=C, headers will be centered.

The HC parameter can be used in a FORMAT statement to apply to the whole report, or it can be used in a
DISPLAY statement at both statement level and field level.

DISPLAY (HC=L) PERSONNEL-ID NAME JOB-TITLE

Width of Column Headers - The HW Parameter

With the HW parameter, you determine the width of a column output with a DISPLAY statement.

e If you specify HW=0N, the width of a DISPLAY column is determined by either the length of the header
text or the length of the field, whichever is longer. This also applies by default.

e If you specify HW=0OFF, the width of a DISPLAY column is determined only by the length of the field.
However, HW=OFF only applies to DISPLAY statements whicinakxreate headers; that is, either a first
DISPLAY statement with NOHDR option or a subsequent DISPLAY statement (see alattnal
Referencalocumentation).

The HW parameter can be used in a FORMAT statement to apply to the entire report, or it can be used in a
DISPLAY statement at both statement level and field level.

Filler Characters for Headers - The Parameters FC and GC

With the FC parameter, you specify filker characterwhich will appear on either side ohaaderproduced by
a DISPLAY statement across the full column width if the column width is determined by the field length and not
by the header (see HW parameter above); otherwise FC will be ignored.

When a group of fields or a periodic group is output via a DISPLAY statemgritup headeis displayed

across all field columns that belong to that group above the headers for the individual fields within the group.
With the GC parameter, you can specify filer characterwhich will appear on either side of such a group
header.

While the FC parameter applies to the headers of individual fields, the GC parameter applies to the headers for
groups of fields.

The parameters FC and GC can be specified in a FORMAT statement to apply to the whole report, or they can be
specified in a DISPLAY statement at both statement level and field level.

** Example Program 'FORMAXO01’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 INCOME (1:1)
3 CURR-CODE

Copyright © Software AG 2002 83

Filler Characters for Headers - The Parameters FC and GC

3 SALARY
3 BONUS (1:1)

END-DEFINE

FORMAT FC=* GC=$

READ (3) VIEWEMP BY NAME
DISPLAY NAME (FC==) INCOME (1)

END-READ

END

The above program produces the following output:

Output of Data

Page 1 97-08-19 17:37:27

NAME $$$$355$$SSSINCOMESS$$SS$$555S$

CURRENCY **ANNUAL** *BONUS***
CODE SALARY

ABELLAN PTA 1450000 0
ACHIESON UKL 10500 0
ADAM FRA 159980 23000
84 Copyright © Software AG 2002

Output of Data Underlining Character for Titles and Headers - The UC Parameter

Underlining Character for Titles and Headers - The UC Parameter
By default, titles and headers are underlined with a hyphen (-).
With the UC parameter, you can specify another character to be used as underlining character.

The UC parameter can be specified in a FORMAT statement to apply to the whole report, or it can be specified
in a DISPLAY statement at both statement level and field level.

** Example Program 'FORMAX02’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
FORMAT UC==
WRITE TITLE LEFT JUSTIFIED UNDERLINED '"EMPLOYEES REPORT’ SKIP 1
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID (UC=*) NAME JOB-TITLE
END-READ
END

In the above program, the UC parameter is specified at program level and at field level: the underlining character
specified with the FORMAT statement (=) applies for the whole report - except for the field PERSONNEL-ID,
for which a different underlining character (*) is specified. The program produces the following output:

EMPLOYEES REPORT

PERSONNEL NAME CURRENT
ID POSITION

*kkkkkkkk

30020013 GARRET TYPIST

30016112 TAILOR WAREHOUSEMAN

20017600 PIETSCH SECRETARY

Copyright © Software AG 2002 85

Suppressing Column Headers - The Notation '/’ Output of Data

Suppressing Column Headers - The Notation '/’

With the notation apostrophe-slash-apostrophe ('), you can suppress default column headers for individual
fields displayed with a DISPLAY statement. While the NOHDR option suppresses the headers of all columns,
the notation '/’ can be used to suppress the header for an individual column.

The notation is specified in the DISPLAY statement immediately before the name of the field for which the
column header is to be suppressed.

Compare the following two examples:

DISPLAY NAME PERSONNEL-ID JOB-TITLE

In this case, the default column headers of all three fields will be displayed:

Page 1 97-04-19 17:37:27
NAME PERSONNEL CURRENT
ID POSITION
ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 20011000 SALES PERSON

DISPLAY '/ NAME PERSONNEL-ID JOB-TITLE

In this case, the notation '/’ causes the column header for the field NAME to be suppressed:

Page 1 97-04-19 17:38:45
PERSONNEL CURRENT
ID POSITION
ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 20011000 SALES PERSON

Further Examples of Column Headers:

See programs DISPLX15 and DISPLX16 in library SYSEXPG.

86 Copyright © Software AG 2002

Output of Data Parameters to Influence the Output of Fields

Parameters to Influence the Output of Fields

Natural provides several parameters you can use to control the format in which fields are output:

e \With the parameters LC, IC and TC, you can specify characters that are to be displayed before or after a
field or before a field value.

e \With the parameters AL and NL, you can increase or reduce the output length of fields.

e \With the parameter SG, you can determine whether negative values are to be displayed with or without a
minus sign.

e \With the parameter IS, you can suppress the display of subsequent identical field values.

e \With the parameter ZP, you can determine whether field values of "0" are to be displayed or not.

e \With the parameter ES, you can suppress the display of empty lines generated by a DISPLAY or WRITE
statement.

This is discussed in the following topics:

Leading Characters - The LC Parameter
Insertion Characters - The IC Parameter
Trailing Characters - The TC Parameter
Output Length - The AL and NL Parameters
Sign Position - The SG Parameter

Identical Suppress - The IS Parameter

Zero Printing - The ZP Parameter

Empty Line Suppression - The ES Parameter

Leading Characters - The LC Parameter

With the LC parameter, you can specify leading characters that are to be displayed imnissfmtely field
that is output with a DISPLAY statement. The width of the output column is enlarged accordingly. You can
specify 1 to 10 characters.

By default, values are displayed left-justified in alphanumeric fields and right-justified in numeric fields. (These
defaults can be changed with the AD parameter; seldaheal Referencdocumentation). When a leading

character is specified for an alphanumeric field, the character is therefore displayed immediately before the field
value; for a numeric field, a number of spaces may occur between the leading character and the field value.

The LC parameter can be used with the following statements: FORMAT and DISPLAY. It can be set at
statement level and at field level.

Insertion Characters - The IC Parameter

With the IC parameter, you specify the characters to be inserted in the column immedéteding the value
of a fieldthat is output with a DISPLAY statement. You can specify 1 to 10 characters.

For a numeric field, the insertion characters will be placed immediately before the first significant digit that is
output, with no intervening spaces between the specified character and the field value. For alphanumeric fields,
the effect of the IC parameter is the same as that of the LC parameter.

The parameters LC and IC cannot both be applied to one field.

The IC parameter can be used with the following statements: FORMAT and DISPLAY. It can be set at statement
level and at field level.

Copyright © Software AG 2002 87

Trailing Characters - The TC Parameter Output of Data

Trailing Characters - The TC Parameter

With the TC parameter, you can specify trailing characters that are to be displayed immigdihtehjght of a
field that is output with a DISPLAY statement. The width of the output column is enlarged accordingly. You can
specify 1 to 10 characters.

The TC parameter can be used with the following statements: FORMAT and DISPLAY. It can be set at
statement level and at field level.

Output Length - The AL and NL Parameters

With the AL parameter, you can specify thaput lengtHfor an alphanumeric field; with the NL parameter, you

can specify theutput lengthfor a numeric field. This determines the length of a field as it will be output, which
may be shorter or longer than the actual length of the field (as defined in the DDM for a database field, or in the
DEFINE DATA statement for a user-defined variable).

Both parameters can be used with the following statements: FORMAT, DISPLAY, WRITE, and INPUT. They
can be set at statement level and at field level.

Note:
If an edit mask is specified, it overrides an NL or AL specificatitmit masksare described later in this section.

88 Copyright © Software AG 2002

Output of Data Sign Position - The SG Parameter

Sign Position - The SG Parameter
With the SG parameter, you can determine whether or not a sign position is to be allocated for numeric fields.

® By default, SG=ON applies, which means that a sign position is allocated for numeric fields.
e If you specify SG=OFF, negative values in numeric fields will be output without a minus sign (-).

The SG parameter can be used with the following statements: FORMAT, DISPLAY, WRITE, and INPUT. It can
be set at both statement level and field level.

Note:
If an edit mask is specified, it overrides an SG specificakidit. masksare described later in this section.

Example Program without Parameters:

** Example Program 'FORMAX03’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 BONUS (1:1,1:1)
END-DEFINE
READ (5) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME
SALARY (1:1) BONUS (1:1,1:1)
END-READ
END

The above program contains no parameter settings and produces the following output:

Page 1 97-08-15 17:25:19
NAME FIRST-NAME ANNUAL BONUS
SALARY

JONES VIRGINIA 46000 9000
JONES MARSHA 50000 0
JONES ROBERT 31000 0
JONES LILLY 24000 0
JONES EDWARD 37600 0

Copyright © Software AG 2002 89

Sign Position - The SG Parameter Output of Data

Example Program with Parameters AL, NL, LC, IC and TC:

** Example Program 'FORMAX04’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 BONUS (1:1,1:1)
END-DEFINE
FORMAT AL=10 NL=6
READ (5) VIEWEMP BY NAME STARTING FROM "JONES’
DISPLAY NAME (LC=*) FIRST-NAME (TC=%)
SALARY (1:1)(IC=$) BONUS (1:1,1:1)(LC=>)
END-READ
END

The above program produces the following output. Compare the layout of this output with that of the previous
program to see the effect of the individual parameters:

Page 1 97-08-19 17:26:12

NAME FIRST-NAME ANNUAL BONUS
SALARY

*JONES VIRGINIA * $46000 > 9000
*JONES MARSHA * $50000> O
*JONES ROBERT * $31000> O
*JONES LILLY * $24000> O
*JONES EDWARD * $37600> O

As you can see in the above example, any output length you specify with the AL or NL parameter does not
include any characters specified with the LC, IC and TC parameters: the width of the NAME column, for
example, is 11 characters - 10 for the field value (AL=10) plus 1 leading character.

The width of the SALARY and BONUS columns is 8 characters - 6 for the field value (NL=6), plus 1
leading/inserted character, plus 1 sign position (because SG=0N applies).

920 Copyright © Software AG 2002

Output of Data Identical Suppress - The IS Parameter

Identical Suppress - The IS Parameter

With the IS parameter, you can suppress the display of identical information in successive lines created by a
WRITE or DISPLAY statement.

e By default, IS=OFF applies, which means that identical field values will be displayed.
e If IS=ON is specified, a value which is identical to the previous value of that field will not be displayed.

The IS parameter can be specified with a FORMAT statement to apply to the whole report, or it can be specified
in a DISPLAY or WRITE statement at both statement level and field level.

The effect of the parameter IS=ON can be suspended for one record by using the statement SUSPEND
IDENTICAL SUPPRESS; see thidatural Statementdocumentation for details.

Compare the output of the following two example programs to see the effect of the IS parameter. In the second
one, the display of identical values in the NAME field is suppressed.

Example Program without IS Parameter:

** Example Program 'FORMAXO05’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

END-DEFINE

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME

END-READ
END
Page 1 97-08-18 17:25:19
NAME FIRST-NAME
JONES VIRGINIA
JONES MARSHA
JONES ROBERT

Example Program with IS Parameter:

** Example Program 'FORMAXO06’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

END-DEFINE

FORMAT IS=ON

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME

END-READ

END

Copyright © Software AG 2002 91

Zero Printing - The ZP Parameter Output of Data

Page 1 97-08-18 17:26:02
NAME FIRST-NAME
JONES VIRGINIA
MARSHA
ROBERT

Zero Printing - The ZP Parameter
With the ZP parameter, you determine how a field value of zero is to be displayed.

e By default, ZP=ON applies, which means that one "0" (for numeric fields) or all zeros (for time fields) will
be displayed for each field value that is zero.
e If you specify ZP=OFF, the display of each field value which is zero will be suppressed.

The ZP parameter can be specified with a FORMAT statement to apply to the whole report, or it can be specified
in a DISPLAY or WRITE statement at both statement level and field level.

Empty Line Suppression - The ES Parameter
With the ES parameter, you can suppress the output of empty lines created by a DISPLAY or WRITE statement.

e By default, ES=OFF applies, which means that lines containing all blank values will be displayed.

e |[f ES=ON is specified, a line resulting from a DISPLAY or WRITE statement which contains all blank
values will not be displayed. This is particularly useful when displaying multiple-value fields or fields
which are part of a periodic group if a large number of empty lines are likely to be produced.

The ES parameter can be specified with a FORMAT statement to apply to the whole report, or it can be specified
in a DISPLAY or WRITE statement at statement level.

Note:
To achieve empty suppression for numeric values, in addition to ES=ON the parameter ZP=OFF must also be set
for the fields concerned in order to have null values turned into blanks and thus not output either.

Compare the output of the following two example programs to see the effect of the parameters ZP and ES.
Example Program without Parameters ZP and ES:

** Example Program 'FORMAXQ07’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 BONUS (1:2,1:1)
END-DEFINE
READ (4) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME BONUS (1:2,1:1)
END-READ
END

92 Copyright © Software AG 2002

Output of Data

Page 1
NAME FIRST-NAME
JONES VIRGINIA
6750

JONES MARSHA

0
JONES ROBERT

0
JONES LILLY

0

97-08-18 17:26:19

BONUS

9000

0

0

Example Program with Parameters ZP and ES:

** Example Program 'FORMAXO08’
DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES

2 NAME

2 FIRST-NAME

2 BONUS (1:2,1:1)
END-DEFINE
FORMAT ES=ON

READ (4) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY NAME FIRST-NAME BONUS (1:2,1:1)(ZP=0OFF)

END-READ
END
Page 1 97-08-18 17:27:12
NAME FIRST-NAME BONUS
JONES VIRGINIA 9000
6750
JONES MARSHA
JONES ROBERT
JONES LILLY

Further Examples of Parameters LC, IC, TC, AL, NL, IS, ZP and ES, and SUSPEND IDENTICAL

SUPPRESS Statement:

Empty Line Suppression - The ES Parameter

See programs DISPLX17, DISPLX18, DISPLX19 SUSPEXO01, SUSPEX02 and COMPRXO03 in library

SYSEXPG.

Copyright © Software AG 2002

93

Edit Masks - The EM Parameter Output of Data

Edit Masks - The EM Parameter

With the EM parameter you can specifyeatit maskor an alphanumeric or numeric field, that is, determine
character by character the format in which the field values are to be output.

Example:
DISPLAY NAME (EM=XAXAXAXAXAXAXAXAKNX)

In this example, each "X" represents one character of an alphanumeric field value to be displayed, and each ""
represents a blank. If displayed via the above DISPLAY statement, the name "JOHNSON" would appgar as
follows:

JOHNSON

You can specify the EM parameter at report level (in a FORMAT statement), at statement level (in a DISPLAY,
WRITE, INPUT, MOVE EDITED or PRINT statement) or at field level (in a DISPLAY, WRITE or INPUT
statement).

An edit mask specified with the EM parameter will override a default edit mask specified for a field in the DDM.
If EM=OFF is specified, no edit mask at all will be used. An edit mask specified at statement level will override
an edit mask specified at report level. An edit mask specified at field level will override an edit mask specified at
statement level.

The following topics are covered below:

Edit Masks for Numeric Fields

Edit Masks for Alphanumeric Fields
Length of Fields

Edit Masks for Date and Time Fields
Examples of Edit Masks

Edit Masks for Numeric Fields

Edit masks for numeric fields (formats N, I, P, F) must include a "9" for each output position you want filled
with a number (even if it is zero). A "Z" is used to indicate that the output position will be filled only if the
available number is not zero. A decimal point is indicated with a period "." To the right of the decimal point, a
"Z" must not be specified. Leading, trailing, and insertion characters - for example, sign indicators - can be
added.

Edit Masks for Alphanumeric Fields

Edit masks for alphanumeric fields must include an "X" for each alphanumeric character that is to be output.
With a few exceptions, you may add leading, trailing and insertion characters (with or without enclosing them in
apostrophes).

The character " is used to insert blanks in edit mask for both numeric and alphanumeric fields.

94 Copyright © Software AG 2002

Output of Data Length of Fields

Length of Fields

It is important to be aware of the length of the field to which you assign an edit mask. If the edit mask is longer
than the field, this will yield unexpected results. If the edit mask is shorter than the field, the field output will be
truncated to just those positions specified in the edit mask.

Examples:

Assuming an alphanumeric field that is 12 characters long and the field value to be output is "JOHNSON", the
following edit masks will yield the following results:

EM=X.X.X.X.X Output: J.O.H.N.S

EM=r=XXXKKXP Output: ****JOHNSO**

Edit Masks for Date and Time Fields

Edit masks for date fields can include the characters "D" (day), "M" (month) and "Y" (year) in various
combinations. Edit masks for time fields can include the characters "H" (hour), "I" (minute), "S" (second) and
"T" (tenth of a second) in various combinations.

In conjunction with edit masks for date and time fields, see alstatieeand time system variahles

Examples of Edit Masks

Some examples of edit masks, along with possible output they produce, are provided below. In addition, the
abbreviated notation for each edit mask is given. You can use either the abbreviated or the long notation.

Edit Mask Abbreviation | Output A | Output B
EM=999.99 EM=9(3).9(2) |367.32 |005.40
EM=2zzZ79 |EM=2(5)9(1) |0 579
EM=XAXXXXX |EM=X(1)"X(5) |BLUE |A 19379
EM=XXX..XX |EM=X(3)..X(2)|BLU...E |AAB...01
EM=MM.DD.YY |* 01.05.87 |12.22.86
EM=HH.ILLSS.T |** 08.54.12.7114.32.54.3

* Use a date system variable.

** Use a time system variable.

For further information about edit masks, see the session parameter ENNaituh&! Referencdocumentation.

Copyright © Software AG 2002

95

Examples of Edit Masks Output of Data

Example Program without EM Parameters:

** Example Program 'EDITMX01’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 SALARY (1:3)
2 CITY
END-DEFINE
READ (3) VIEWEMP BY NAME STARTING FROM "JONES’
DISPLAY 'N A M E' NAME /
'OCCUPATION’ JOB-TITLE
'SALARY’ SALARY (1:3)
'LOCATION'’ CITY
SKIP 1
END-READ
END

The above program produces the following output which shows the default edit masks available:

Page 1 97-08-19 17:26:19
NAME SALARY LOCATION
OCCUPATION
JONES 46000 TULSA
MANAGER 42300
39300
JONES 50000 MOBILE
DIRECTOR 46000
42700
JONES 31000 MILWAUKEE
PROGRAMMER 29400
27600>

Example Program with EM Parameters:

** Example Program 'EDITMX02’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 JOB-TITLE
2 SALARY (1:3)

END-DEFINE

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES’
DISPLAY 'N A M E' NAME (EM=XAXAXAXAXAXNAXAXAXNXAKNXNXNKNXK) |

FIRST-NAME (EM=...X(10)...)

'OCCUPATION’ JOB-TITLE (EM='___ 'X(12))
'SALARY’ SALARY (1:3) (EM="USD 'ZZZ,999)
SKIP 1
END-READ

END

The above program produces the following output. Compare the output with that of the previous program to see
how the EM specifications affect the way the fields are displayed.

96 Copyright © Software AG 2002

Output of Data

Examples of Edit Masks

Page 1 97-08-19 17:26:29
NAME OCCUPATION SALARY
FIRST-NAME
JONES ____MANAGER USD 46,000
.VIRGINIA ... USD 42,300
USD 39,300
JONES ___DIRECTOR USD 50,000
.MARSHA USD 46,000
USD 42,700
JONES ___ PROGRAMMER USD 31,000
..ROBERT USD 29,400
USD 27,600

Further Examples of Edit Masks:

See programs EDITMX03, EDITMX04 and EDITMXO05 in library SYSEXPG.

Copyright © Software AG 2002

97

Vertical Displays Output of Data

Vertical Displays

There are two ways of creating vertical displays:

® You can use a combination of the statements DISPLAY and WRITE.
® You can use the VERT option of the DISPLAY statement.

The following topics are covered below:

e Combining DISPLAY and WRITE
® The Tab Notation T*-field

® The Positioning Notation x/y

® The DISPLAY VERT Statement
® The Tab Notation P*-field

Combining DISPLAY and WRITE

As described earlier in this section, the DISPLAY statement normally presents the data in columns with default
headers, while the WRITE statement presents data horizontally without headers.

You can combine the features of the two statements to produce vertical displays of field values.

The DISPLAY statement produces the values of different fields for the same record across the page with a
column for each field. The field values for each record are displayed below the values for the previous record.

By using a WRITE statement after a DISPLAY statement, you can insert textand/or field values specified in the
WRITE statement between records displayed via the DISPLAY statement.

The following program illustrates the combination of DISPLAY and WRITE:

** Example Program '"WRITEX04’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2CITY
2 DEPT

END-DEFINE

READ (3) VIEWEMP BY CITY STARTING FROM 'SAN FRANCISCO’
DISPLAY NAME JOB-TITLE
WRITE 20T 'DEPT:’ DEPT
SKIP 1

END-READ

END

98 Copyright © Software AG 2002

Output of Data Combining DISPLAY and WRITE

It produces the following output:

Page 1 97-08-19 17:52:19
NAME CURRENT
POSITION
KOLENCE MANAGER
DEPT: TECHOS
GOSDEN ANALYST
DEPT: TECH10
WALLACE SALES PERSON
DEPT: SALE20

Copyright © Software AG 2002

99

Tab Notation T*field

Tab Notation T*field

Output of Data

In the previous example, the position of the field DEPT is determined by the tab nofafiarthis case "20T",

which means that the display begins in column 20 on the screen).

Field values specified in a WRITE statement can be lined up automatically with field values specified in the first

DISPLAY statement of the program by using the tab not&tidield (wherefield is the name of the field to

which the field is to be aligned).

In the following program, the output produced by the WRITE statement is aligned to the field JOB-TITLE by

using the notation "T*JOB-TITLE™:

** Example Program "WRITEX05’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 DEPT
2 CITY
END-DEFINE

READ (3) VIEWEMP BY CITY STARTING FROM 'SAN FRANCISCO’

DISPLAY NAME JOB-TITLE
WRITE T*JOB-TITLE 'DEPT:’ DEPT
SKIP 1

END-READ
END
Page 1 97-08-19 17:52:19
NAME CURRENT
POSITION
KOLENCE MANAGER
DEPT: TECHO5
GOSDEN ANALYST
DEPT: TECH10
WALLACE SALES PERSON
DEPT: SALE20
100 Copyright © Software AG 2002

Output of Data Positioning Notation x/y

Positioning Notationx/y

When you use the DISPLAY and WRITE statements in sequence and multiple lines are to be produced by the
WRITE statement, you can use the notatign(number-slash-number) to determine in which row/column
something is to be displayed. The positioning notation causes the next element in the DISPLAY or WRITE
statement to be placedines below the last output, beginning in coluyaf the output.

The following program illustrates the use of this notation:

** Example Program '"WRITEX06’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 MIDDLE-I
2 ADDRESS-LINE (1:1)
2CITY
2ZIP
END-DEFINE
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
DISPLAY 'NAME AND ADDRESS’ NAME
WRITE 1/5 FIRST-NAME 1/30 MIDDLE-I
2/5 ADDRESS-LINE (1:1)
3/5 CITY 3/30 ZIP /
END-READ
END

Page 1 97-08-19 17:55:47

NAME AND ADDRESS

RUBIN
SYLVIA L
2003 SARAZEN PLACE
NEW YORK 10036

WALLACE
MARY P
12248 LAUREL GLADE C
NEW YORK 10036

KELLOGG
HENRIETTA S
1001 JEFF RYAN DR.
NEWARK 19711

Copyright © Software AG 2002 101

DISPLAY VERT Statement Output of Data

DISPLAY VERT Statement

The standard display mode in Natural is horizontal. With the VERT clause option of the DISPLAY statement,
you can override the standard display and produce a vertical field display. The HORIZ clause option, which can
be used in the same DISPLAY statement, re-activates the standard horizontal display mode.

Column headings in vertical mode are controlled with various forms of the AS clause:

e Without AS clause, no column headings will be output.

® AS CAPTIONED causes default headings to be displayed.

® AStextcauses the specifigextto be displayed as column heading. Note that a slash (/) withiexhe
element in a DISPLAY statement causes a line advance.

o AStextCAPTIONED causes the specifitgktto be displayed as column heading, and the default column
headings to be displayed immediately before the field value in each line that is output.

The following example programs illustrate the use of the DISPLAY VERT statement.

DISPLAY VERT without AS Clause

The following program has no AS clause, which means that no column headings are output.

** Example Program 'DISPLX09’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2CITY

END-DEFINE

READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
DISPLAY VERT NAME FIRST-NAME / CITY
SKIP 2

END-READ

END

Note that all field values are displayed vertically underneath one another:

Page 1 97-08-19 17:55:47

RUBIN
SYLVIA

NEW YORK
WALLACE
MARY

NEW YORK
KELLOGG
HENRIETTA

NEWARK

102 Copyright © Software AG 2002

Output of Data DISPLAY VERT AS CAPTIONED and HORIZ

DISPLAY VERT AS CAPTIONED and HORIZ

The following program contains a VERT and a HORIZ clause, which causes some column values to be output
vertically and others horizontally; moreover AS CAPTIONED causes the default column headers to be
displayed.

** Example Program 'DISPLX10’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2CITY
2 JOB-TITLE
2 SALARY (1:1)

END-DEFINE

READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
DISPLAY VERT AS CAPTIONED NAME FIRST-NAME

HORIZ JOB-TITLE SALARY (1:1)

SKIP 1

END-READ

END

Page 1 97-08-19 17:55:47

NAME CURRENT ANNUAL
FIRST-NAME POSITION SALARY

RUBIN SECRETARY 17000
SYLVIA
WALLACE ANALYST 38000
MARY
KELLOGG DIRECTOR 52000
HENRIETTA

Copyright © Software AG 2002 103

DISPLAY VERT AS text Output of Data

DISPLAY VERT AS text

The following program contains an A&xtclause, which displays the specifiesttas column header.

** Example Program 'DISPLX11’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2CITY
2 JOB-TITLE
2 SALARY (1:1)

END-DEFINE

READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
DISPLAY VERT AS 'EMPLOYEES’ NAME FIRST-NAME

HORIZ JOB-TITLE SALARY (1:1)

SKIP 1

END-READ

END

Page 1 97-08-19 7:55:47

EMPLOYEES CURRENT ANNUAL
POSITION SALARY

RUBIN SECRETARY 17000
SYLVIA

WALLACE ANALYST 38000
MARY
KELLOGG DIRECTOR 52000
HENRIETTA

104 Copyright © Software AG 2002

Output of Data DISPLAY VERT AS text CAPTIONED

DISPLAY VERT AS text CAPTIONED

The following program contains an A&tCAPTIONED clause.

** Example Program 'DISPLX12’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2CITY
2 JOB-TITLE
2 SALARY (1:1)

END-DEFINE

READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
DISPLAY VERT AS 'EMPLOYEES’ CAPTIONED NAME FIRST-NAME

HORIZ JOB-TITLE SALARY (1:1)

SKIP 1

END-READ

END

This clause causes the default column headers (NAME and FIRST-NAME) to be placed before the field values:

Page 1 97-04-19 17:55:47
EMPLOYEES CURRENT ANNUAL
POSITION SALARY
NAME RUBIN SECRETARY 17000

FIRST-NAME SYLVIA

NAME WALLACE ANALYST 38000
FIRST-NAME MARY

NAME KELLOGG DIRECTOR 52000
FIRST-NAME HENRIETTA

Copyright © Software AG 2002 105

Tab Notation P*field Output of Data

Tab Notation P*field

If you use a combination of DISPLAY VERT statement and subsequent WRITE statement, you can use the tab
notationP*field in the WRITE statement to align the position of a field to the colantHine position of a
particular field specified in the DISPLAY VERT statement.

In the following program, the fields SALARY and BONUS are displayed in the same column, SALARY in
every first line, BONUS in every second line.

The text "**SALARY PLUS BONUS***" is aligned to SALARY, which means that it is displayed in the same
column as SALARY and in the first line, whereas the text "(IN US DOLLARS)" is aligned to BONUS and
therefore displayed in the same column as BONUS and in the second line.

** Example Program '"WRITEXO07’

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2CITY
2 NAME
2 JOB-TITLE
2 SALARY (1:1)
2 BONUS (1:1,1:1)

END-DEFINE

READ (3) VIEWEMP BY CITY STARTING FROM 'LOS ANGELES’
DISPLAY NAME JOB-TITLE VERT AS 'INCOME’ SALARY (1) BONUS (1,1)
WRITE P*SALARY "**SALARY PLUS BONUS***

P*BONUS ’'(IN US DOLLARS)’

SKIP 1
END-READ
END
Page 1 97-08-19 18:14:11
NAME CURRENT INCOME
POSITION
POORE JR SECRETARY 25000
0
#*SALARY PLUS BONUS***
(IN US DOLLARS)
PREPARATA MANAGER 46000
9000
#*SALARY PLUS BONUS**
(IN US DOLLARS)
MARKUSH TRAINEE 22000
0
#*SALARY PLUS BONUS**
(IN US DOLLARS)

Further Example of DISPLAY VERT with WRITE Statement:

See program WRITEX10 in library SYSEXPG.

106 Copyright © Software AG 2002

Object Types Object Types

Object Types

This section covers the following topics:

What Types of Programming Objects Are There?
Data Areas

Programs, Subprograms and Subroutines

Maps

Helproutines

Multiple Use of Source Code - Copycode
Documenting Natural Objects - Text

Creating Event Driven Applications - Dialog
Creating Component Based Applications - Class
Using Non-Natural Files - Resource

What Types of Programming Objects Are There?

Within a Natural application, several types of programming objects can be used to achieve an efficient
application structure.

There are the following types of Natural programming objects:

Local Data Area
Global Data Area
Parameter Data Area
Program
Subprogram
Subroutine
Helproutine

Map

Copycode

Text

Dialog

Class

To create and maintain all these objects, you use the Natural editors:

® |ocal data areas, global data areas and parameter data areas are created/maintainetaitreae
editor.

Maps are created/maintained with thap editor

Dialogs are created/maintained with thielog editor

Classes are created/maintained with@leess Builder

All other types of objects listed above are created/maintained wipirdigeam editor

The editors are described in your Natural User’s Guide.

Data Areas

As explained in the sectiddefining Fields all fields that are to be used in a program have to be defined in a
DEFINE DATA statement.

Copyright © Software AG 2002 107

Local Data Area Object Types

The fields can be defined within the DEFINE DATA statement itself; or they can be defined outside the program
in a separate data area, with the DEFINE DATA statement referencing that data area.

Natural supports three types of data areas:

® | ocal Data Area
In a local data area, you define the data elements that are to be used by a single Natural module in an

application.

® Global Data Area
In a global data area, you define the data elements that are to be used by more than one Natural program,

routine, etc. in an application.

® Parameter Data Area
In a parameter data area, you define the fields that are passed as parameters to a subprogram, external

subroutine or helproutine.

Local Data Area

Variables defined as local are used only within a single Natural module. There are two options for defining local
data:

® You can define the data within the program.
® You can define the data in a local data area outside the program.

In the first example, the fields are defined within the DEFINE DATA statement of the program. In the second
example, the same fields are defined in a local data area, and the DEFINE DATA statement only contains a
reference to that data area.

Example 1 - Fields Defined within a DEFINE DATA Statement:

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 PERSONNEL-ID

1 #VARI-A (A20)

1 #VARI-B (N3.2)

1 #VARI-C (14)

END-DEFINE

Example 2 - Fields Defined in a Separate Data Area:

Program:

DEFINE DATA LOCAL
USING LDA39
END-DEFINE

Local Data AreadLDA39":

108 Copyright © Software AG 2002

Object Types Global Data Area

I TL Name F Leng Index/InittEM/Name/Comment
V 1 VIEWEMP EMPLOYEES
2 NAME A 20
2 FIRST-NAME A 20
2 PERSONNEL-ID A 8
1 #VARI-A A 20
1 #VARI-B N 3.2
1 #VARI-C I 4

For a clear application structure, it is usually better to define fields in data areas outside the programs.

Global Data Area

In a global data area, you define the data elements that are to be used by more than one program, routine, etc. in
an application.

Variables defined in a global data area may be referenced by several objects in an application.

Program A Global Data Area GDA1

DEFINE DATAE GLOBAL
T3INE GDAL

END-DEF INE

Program B

DEFINE DATA GLOBAL
T3ING GDAL
END-DEF INE

The global data area and the objects which reference it must be in the same library (or a steplib).

Global data areas must be defined with the data area editor, and a program using that data area must reference it
in the DEFINE DATA statement. Any number of main programs, external subroutines and helproutines can
share the same global data area.

Each object can reference only one global data area; that is, a DEFINE DATA statement must not contain more
than one GLOBAL clause.

Note:

When you build an application where multiple objects share a global data area, remember that modifications to a
global data area affect all programs or routines that reference that data area. Therefore these objects must be
STOWed again after the global data area has been modified.

Copyright © Software AG 2002 109

Parameter Data Area Object Types

When are Global Data Areas Initialized?

A global data area is initialized when it is used for the first time. It remains active in the current Natural session
(that is, the variables in the global data area retain their contents) until:

® the next LOGON, or

e another global data area is used on the same level (levels are described later in this section), or

e a RELEASE VARIABLES statement is executed. In this case, the variables in the global data area are reset
when either the execution of the level 1 program is finished, or the program invokes another program via a
FETCH or RUN statement.

Note:
If a GDA named "COMMON" exists in a library, the program named ACOMMON is invoked automatically
when you LOGON to that library.

Parameter Data Area
Parameter data areas are used by subprograms and external subroutines.

A subprogram is invoked with a CALLNAT statement. With the CALLNAT statement, parameters can be
passed from the invoking object to the subprogram. These parameters must be defined with a DEFINE DATA
PARAMETER statement in the subprogram: they can be defined in the PARAMETER clause of the DEFINE
DATA statement itself; or they can be defined in a separate parameter data area, with the DEFINE DATA
PARAMETER statement referencing that parameter data area.

Parameter Defined Within DEFINE DATA PARAMETER Statement:

110 Copyright © Software AG 2002

Object Types

Parameter Data Area

Local Data Area LDA1

1 #PALEM1 AZ0O

1 #PALEMZ N2

Invoking Object

DEFINE DALTR
GLOBAL TAING
LoCAL TSTING LDAL
END-DEF INE

CALLMAT SUEP1 #PARM1 #PARM:Z

END

iy Subprogram SUBP1

Parameter Defined in Parameter Data Area:

Copyright © Software AG 2002

111

Parameter Data Area Object Types

Local Data Area LDA1 Parameter Data Area PDA1
1 #FAEM1 AZO

1 #FPALARMZ Nz

Invoking Object —f Subprogram SUBP1
DEFIME DATA

GLOBAL TSING ...
LOCAL T3ING LDA1 —
END-DEF INE

CALLWAT 3IUBP1 #PAEM1 #PARME

END

In the same way, parameters that are passed to an external subroutine via a PERFORM statement must be
defined with a DEFINE DATA PARAMETER statement in the external subroutine.

In the invoking object, the parameter variables passed to the subprogram/ subroutine need not be defined in a
parameter data area; in the illustrations above, they are defined in the local data area used by the invoking object
(but they could also be defined in a global data area).

The sequence, format and length of the parameters specified with the CALLNAT/ PERFORM statement in the
invoking object must exactly match the sequence, format and length of the fields specified in the DEFINE
DATA PARAMETER statement of the invoked subprogram/subroutine. However, the names of the variables in
the invoking object and the invoked subprogram/subroutine need not be the same (as the parameter data are
transferred by address, not by name).

112 Copyright © Software AG 2002

Object Types Programs, Subprograms and Subroutines

Programs, Subprograms and Subroutines

The following topics are covered below:

A Modular Application Structure

Multiple Levels of Invoked Objects
Program

Subroutine

Subprogram

Processing Flow when Invoking a Routine

A Modular Application Structure

Typically, a Natural application does not consist of a single huge program, but is split into several modules. Each
of these modules will be a functional unit of manageable size, and each module is connected to the other
modules of the application in a clearly defined way. This provides for a well structured application, which makes
its development and subsequent maintenance a lot easier and faster.

During the execution of a main program, other programs, subprograms, subroutines, helproutines and maps can
be invoked. These objects can in turn invoke other objects (for example, a subroutine can itself invoke another

subroutine). Thus, the modular structure of an application can become quite complex and extend over several
levels.

Copyright © Software AG 2002 113

Multiple Levels of Invoked Objects Object Types

Multiple Levels of Invoked Objects

Each invoked object is one level below the level of the object from which it was invoked; that is, with each
invocation of a subordinate object, the level number is incremented by 1.

Any program that is directly executed is at level 1; any subprogram, subroutine, map or helproutine directly
invoked by the main program is at level 2; when such a subroutine in turn invokes another subroutine, the latter
is at level 3.

A program invoked with a FETCH statement from within another object is classified as a main program,
operating from level 1. A program that is invoked with FETCH RETURN, however, is classified as a
subordinate program and is assigned a level one below that of the invoking object.

The following illustration is an example of multiple levels of invoked objects and also shows how these levels
are counted:

Level 2 | Subprogram Subroutine
Level 3 | Subprogram Subroutine Map
Level 4 | Subprogram Subroutine Helproutine

114 Copyright © Software AG 2002

Object Types Program

If you wish to ascertain the level number of the object that is currently being executed, you can use the system
variable *LEVEL (which is described in thdatural Reference documentatjon

This section discusses the following Natural object types, which can be invoked as routines (that is, subordinate
programs):

® program
® subroutine
® subprogram

Helproutines and maps, although they are also invoked from other objects, are strictly speaking not routines as
such, and are therefore discussed in later sections of this section.

Basically, programs, subprograms and subroutines differ from one another in the way data can be passed
between them and in their possibilities of sharing each other’s data areas. Therefore the decision which object
type to use for which purpose depends very much on the data structure of your application.

Program

A program can be executed - and thus tested - by itself. To compile and execute a source program, you use the
system command RUN. To execute a program that already exists in compiled form, you use the system
command EXECUTE.

A program can also be invoked from another object with a FETCH or FETCH RETURN statement. The
invoking object can be a program, subprogram, subroutine or helproutine.

e \When a program is invoked with FETCH RETURN, the execution of the invoking object will be suspended
- not terminated - and the FETCHed program will be activatecsabadinate programWhen the
execution of the FETCHed program is terminated, the invoking object will be re-activated and its execution
continued with the statement following the FETCH RETURN statement.

e When a program is invoked with FETCH, the execution of the invoking object will be terminated and the
FETCHed program will be activated amain program The invoking object will not be re-activated upon
termination of the FETCHed program.

Copyright © Software AG 2002 115

Program Object Types

Program Invoked with FETCH RETURN:

Local Data Area LDAT Local Data Area LDAZ2

Glohal Data Area GDA

Invoking Ohject e Program PROG?Z

DEFINE DATA
GLOBAL T3IING GDAL
LoCAL U3ING LDA]
END-DEF INE

FETCH RETURIN FPROGE

ENT

A program invoked with FETCH RETURN can access the global data area used by the invoking object.

In addition, every program can have its own local data area, in which the fields that are to be used only within
the program are defined.

However, a program invoked with FETCH RETURN cannot have its own global data area.

116 Copyright © Software AG 2002

Object Types Program

Program Invoked with FETCH:

Local Data Area LDAT Local Data Area LDAZ

Global Data Area GDA1 Global Data Area GDA2?

Invoking Object = Program PROG2

DEFINE DATR
GLOBAL T3ING GDAl
LOZCAL USING LDA1
END-DEF INE

FETCH PROGE

ENT

A program invoked with FETCH as a main program usually establishes its own global data area (as shown in the
illustration above). However, it could also use the same global data area as established by the invoking object.

Note:
A source program can also be invoked with a RUN statement; sB&Jetatemenin the Natural Statements
documentation.

Copyright © Software AG 2002 117

Subroutine Object Types

Subroutine

The statements that make up a subroutine must be defined within a DEFINE SUBROUTINE ...
END-SUBROUTINE statement block.

A subroutine is invoked with a PERFORM statement.
A subroutine may be anline subroutineor anexternal subroutine

e Aninline subroutindgs defined within the object which contains the PERFORM statement that invokes it.
® An external subroutiné defined in a separate object - of type subroutine - outside the object which
invokes it.

If you have a block of code which is to be executed several times within an object, it is useful to use an inline
subroutine. You then only have to code this block once within a DEFINE SUBROUTINE statement block and
invoke it with several PERFORM statements.

118 Copyright © Software AG 2002

Object Types Subroutine

Inline Subroutine:

Local Oata Area LOAT

Global Data Area GDA1

Invoking Object

DEFINE 3UBROUTIMNE 3UER1

END-SUBRCOUTINE

An inline subroutine can be contained within a programming object of type program, subprogram, subroutine or
helproutine.

If an inline subroutine is so large that it impairs the readability of the object in which it is contained, you may
consider putting it into an external subroutine, so as to enhance the readability of your application.

Copyright © Software AG 2002 119

Subroutine Object Types

External Subroutine:

Local Data Area LDAT Local Data Area LDAZ

Global Data Area GDA1

Invoking Object —J Subroutine

DEFINE DATR
GLOBAL T3ING GDAl
LOZCAL USING LDA1
END-DEF INE

FEREFCORM ZUEBR1 #PAEM1 HPARMZ

ENT

An external subroutine - that is, an object of type subroutine - cannot be executed by itself. It must be invoked
from another object. The invoking object can be a program, subprogram, subroutine or helproutine.

120 Copyright © Software AG 2002

Object Types Subprogram

Data Available to an Inline Subroutine

An inline subroutine has access to the local data area and the global data area used by the object in which it is
contained.

Data Available to an External Subroutine
An external subroutine can access the global data area used by the invoking object.

Moreover, parameters can be passed with the PERFORM statement from the invoking object to the external
subroutine. These parameters must be defined either in the DEFINE DATA PARAMETER statement of the
subroutine, or in a parameter data area used by the subroutine.

In addition, an external subroutine can have its own local data area, in which the fields that are to be used only
within the subroutine are defined.

However, an external subroutine cannot have its own global data area.

Subprogram

Typically, a subprogram would contain a generally available standard function that is used by various objects in
an application.

A subprogram cannot be executed by itself. It must be invoked from another object. The invoking object can be a
program, subprogram, subroutine or helproutine.

A subprogram is invoked with a CALLNAT statement.

When the CALLNAT statement is executed, the execution of the invoking object will be suspended and the
subprogram executed. After the subprogram has been executed, the execution of the invoking object will be
continued with the statement following the CALLNAT statement.

Copyright © Software AG 2002 121

Subprogram Object Types

Data Available to a Subprogram

With the CALLNAT statement, parameters can be passed from the invoking object to the subprogram. These
parameters are the only data available to the subprogram from the invoking object. They must be defined either
in the DEFINE DATA PARAMETER statement of the subprogram, or in a parameter data area used by the
subprogram.

Local Data Area LD AT Local Data Area LDAZ

Global Data Area GDA1

Invoking Ohject = Subroutine

DEFINE DATA
GLOELL T3ING GDAl
LOCAL U3ING LDAl
END-DEF INE

CALLMAT ZIUEF1 #PAEM1 HPARMZ

END

In addition, a subprogram can have its own local data area, in which the fields to be used within the subprogram
are defined.

If a subprogram in turn invokes a subroutine or helproutine, it can also establish its own global data area to be
shared with the subroutine/helproutine.

122 Copyright © Software AG 2002

Object Types Processing Flow when Invoking a Routine

Processing Flow when Invoking a Routine

When the CALLNAT, PERFORM or FETCH RETURN statement that invokes a routine - a subprogram, an
external subroutine, or a program respectively - is executed, the execution of the invoking object is suspended
and the execution of the routine begins.

The execution of the routine continues until either its END statement is reached or processing of the routine is
stopped by an ESCAPE ROUTINE statement being executed.

In either case, processing of the invoking object will then continue with the statement following the CALLNAT,
PERFORM or FETCH RETURN statement used to invoke the routine.

Example:

Invoking Ohject Invoked Object

DEFINE DATR
GLOBAL T3ING ...
LoZAL T3ING LDAD
END-DEF INE

FERFORM SUBR1
. 4
4

END

Copyright © Software AG 2002 123

Maps Object Types

Maps
Maps are those parts of an application which the users see on their screens.

The dialogue with the user is done via input mapsinfiot mapis invoked with an INPUT USING MAP
statement.

If an application produces any output report, this report can be displayed on the screen byaigimgt amap
An output map is invoked with a WRITE USING MAP statement.

Maps are created with the map editor, which is described in your Natural User’'s Guide.
Processing of a map can be stopped with an ESCAPE ROUTINE statement in a processing rule.

Help maps are, in principle, like any other maps, but when they are assigned as help, additional checks are
performed to ensure their usability for help purpose. Help maps are created with the map editor.

Helproutines
Helproutines have specific characteristics to facilitate the processing of help requests.

Helproutinesare created with the program editor. They may be used to implement complex and interactive help
systems.

The following topics are covered below:

Invoking Help

Specifying Helproutines

Programming Considerations for Helproutines
Passing Parameters to Helproutines

Help as a Window

124 Copyright © Software AG 2002

Object Types Invoking Help

Invoking Help

A Natural user can invoke a Natural helproutine either by entering the help character (the default character is
"?") in a field, or by pressing the help key (usually PF1).

Note 1:

® The help character must be entered only once.
® The help character must be the only character modified in the input string.
® The help character must be the first character in the input string.

Note 2:

If a helproutine is specified for a numeric field, Natural will allow a question mark to be entered for the purpose
of invoking the helproutine for that field. Natural will still check that valid numeric data are provided as field
input.

If not already specified, the help key may be specified with the SET KEY statement:
SET KEY PF1=HELP

A helproutine can only be invoked by a user if it has been specified in the program or map from which it is to be
invoked.

Specifying Helproutines
A helproutine may be specified:

® in a program: at statement level and at field level;
® in a map: at map level and at field level.

If a user requests help for a field for which no help has been specified, or if a user requests help without a field
being referenced, the helproutine specified at the statement or map level is invoked.

A helproutine may also be invoked by using a REINPUT USING HELP statement (either in the program itself or
in a processing rule). If the REINPUT USING HELP statement contains a MARK option, the helproutine
assigned to the MARKed field is invoked. If no field-specific helproutine is assigned, the map helproutine is
invoked.

A REINPUT statement in a helproutine may only apply to INPUT statements within the same helproutine.
The name of a helproutine may be specified either with the session parameter HE of an INPUT statement:
INPUT (HE='"HELP2112")

or using the extending field editing facility of the map editor (as described in your Natural User’'s Guide).

The name of a helproutine may be specified as an alphanumeric constant or as an alphanumeric variable
containing the name. If it is a constant, the name of the helproutine must be specified within apostrophes.

Copyright © Software AG 2002 125

Programming Considerations for Helproutines Object Types

Programming Considerations for Helproutines
Processing of a helproutine can be stopped with an ESCAPE ROUTINE statement.

Be careful when using END OF TRANSACTION or BACKOUT TRANSACTION statements in a helproutine,
because this will affect the transaction logic of the main program.

Passing Parameters to Helproutines

A helproutine can access the currently active global data area (but it cannot have its own global data area). In
addition, it can have its own local data area.

Data may also be passed from/to a helproutine via parameters. A helproutine may have up to 20 explicit
parameters and one implicit parameter. The explicit parameters are specified with the "HE" operand after the
helproutine name:

HE="MYHELP’,’001’

The implicit parameter is the field for which the helproutine was invoked:

INPUT #A (A5) (HE="YOURHELP’,’001")

where "001" is an explicit parameter and "#A" is the implicit parameter/the field.

This is specified within the DEFINE DATA PARAMETER statement of the helproutine as:

DEFINE DATA PARAMETER

1 #PARML1 (A3) [* explicit parameter
1 #PARM2 (A5) [* implicit parameter
END-DEFINE

Please note that the implicit parameter (#PARM2 in the above example) may be omitted. The implicit parameter
is used to access the field for which help was requested, and to return data from the helproutine to the field. For
example, you might implement a calculator program as a helproutine and have the result of the calculations
returned to the field.

Note:
When help is called, the helproutine is called before the data are passed from the screen to the program data
areas. This means that helproutines cannot access data entered within the same screen transaction.

Once help processing is completed, the screen data will be refreshed: any fields which have been modified by the
helproutine will be updated - excluding fields which had been modified by the user before the helproutine was
invoked, but including the field for which help was requested.

(Exception: If the field for which help was requested is split into several parts by dynamic attributes (DY
parameter), and the part in which the question mark is enteaéiéria part modified by the user, the field

content will not be modified by the helproutine.)

Note:
Control variables are not evaluated again after the processing of the helproutine, even if they have been modified
within the helproutine.

126 Copyright © Software AG 2002

Object Types Equal Sign Option

Equal Sign Option
The equal sign (=) may be specified as an explicit parameter:
INPUT PERSONNEL-NUMBER (HE='HELPROUT’,=)

This parameter is processed as an internal field (A65) which contains the field name (or map name if specified at
map level). The corresponding helproutine starts with:

DEFINE DATA PARAMETER

1 FNAME (A65) /* contains 'PERSONNEL-NUMBER’
1 FVALUE (N8) /* value of field (optional)
END-DEFINE

This option may be used to access one common helproutine which reads the field name and provides
field-specific help by accessing the application online documentation or the Predict data dictionary.

Array Indices

If the field selected by the help character or the help key is an array element, its indices are supplied as implicit
parameters (1 - 3 depending on rank, regardless of the explicit parameters). The format/length of these
parameters is 12.

INPUT A(**) (HE="HELPROUT’,=)
The corresponding helproutine starts with:

DEFINE DATA PARAMETER

1 FNAME (A65) [* contains 'A’

1 FVALUE (N8) [* value of selected element
1 FINDEX1 (12) /* 1st dimension index

1 FINDEX2 (12) /* 2nd dimension index
END-DEFINE

Copyright © Software AG 2002 127

Help as a Window Object Types

Help as a Window

The size of a help to be displayed may be smaller than the screen size. In this case, the help appears on the screen
as a window, enclosed by a frame:

EERR KRR AR RRAR AR R AR R AR AR AR AR AR R R AR AR R AR R AR AR R AR R AR RRARRA AR AR KRR KRR RARRRRKARKRAR
PERSONNEL INEORMSTION

FLEASE ENTER NAMEZ 2
FLEASE ENTER CITY:

TYFE INM . TO STOP
Type in the name of an
enploges in the £irst
field and press ENTER.
Yor will then recedive

a list of all enployees
of that name.

Tor a 1ist of enployees
of @ Certain name Who
live in a certain city,
type in a name in the
£irst f£ield and a city
in the fecond £ield

! and press EMTER.

ik ki rkikeiikikes |

LSRR S T

Within a helproutine, the size of the window may be specified as follows:

® by a FORMAT statement (for example, FORMAT PS=15 LS=30);

® by an INPUT USING MAP statement; in this case, the size defined for the map (in its map settings) is used,;

e by a DEFINE WINDOW statement; this statement allows you to either explicitly define a window size or
leave it to Natural to automatically determine the size of the window depending on its contents.

The position of a help window is computed automatically from the position of the field for which help was
requested. Natural places the window as close as possible to the corresponding field without overlaying the field.
With the DEFINE WINDOW statement, you may bypass the automatic positioning and determine the window
position yourself.

For further information on window processing, please refer tDERINE WINDOW statement in the Natural
Statements documentation and the terminal comr#@ndn the Natural Reference documentation.

128 Copyright © Software AG 2002

Object Types Multiple Use of Source Code - Copycode

Multiple Use of Source Code - Copycode
Copycode is a portion of source code which can be included in another object via an INCLUDE statement.

So, if you have a statement block which is to appear in identical form in several objects, you may use copycode
instead of coding the statement block several times. This reduces the coding effort and also ensures that the
blocks are really identical.

The copycode is included at compilation; that is, the source-code lines from the copycode are not physically
inserted into the object that contains the INCLUDE statement, but they will be included in the compilation
process and are thus part of the resulting object module.

Consequently, when you modify the source code of copycode, you also have to newly compile (STOW) all
objects which use that copycode.

Copycode cannot be executed on its own. It cannot be STOWed, but only SAVEd.

For further information on copycode, please refer to the description M@idJDE statemenin the Natural
Statements documentation.

Documenting Natural Objects - Text

The Natural object type "text" is used to write text rather than programs. You can write any text you wish (there
is no syntax check). You can use this type of object to document Natural objects in more detail than you can, for
example, within the source code of a program. "Text" objects may also be useful at sites where Predict is not
available for program documentation purposes.

You write the text using the Natural program editor. The only difference in handling as opposed to writing
programs, is that the text you write stays as it is, that is, there is no lower to upper case translation or empty line
suppression (provided in your editor profile Empty Line Suppression is set to "N" and Editing in Lower Case is
set to "Y", see your Natural User’'s Guide for Windows for more details).

"Text" objects can only be SAVEd, they cannot be STOWed. They cannot be RUN, only displayed in the editor.

Copyright © Software AG 2002 129

Creating Event Driven Applications - Dialog Object Types

Creating Event Driven Applications - Dialog

Dialogs are used in conjunction with event-driven programming when creating Natural applications for graphical
user interfaces (GUIs).

For information on dialogs and event-driven programming, please referXatheal User's Guide for
Windows

Creating Component Based Applications - Class

Classes are used in conjunction with NaturalX when creating component based applications to be used in a
client/server environment.

For information on classes, please refer toNbh&uralX documentation.

Using Non-Natural Files - Resource

Resources are only available with Natural under Windows 98 and Windows NT/2000.
Natural distinguishes two kinds of resources:

® Shared Resources
A shared resource is any non-Natural file that is used in a Natural application and is maintained in the
Natural library system.

® Private Resources
A private resource is a file that is assigned to one and only one Natural object and is considered to be part of
that object. An object can have at most one private resource file. At the moment, only Natural dialogs have
private resources.

Both shared and private resources belonging to a Natural library are maintained in a subdirectory named .\RES
in the directory that represents the Natural library in the file system.

130 Copyright © Software AG 2002

Object Types Shared Resources

Shared Resources

A shared resource is any non-Natural file that is used in a Natural application and is maintained in the Natural
library system. A non-Natural file that is to be used as a shared resource must be contained in the subdirectory
named ..\RES of a Natural library.

Example - Using a shared resource:

The bitmap MYPICTURE.BMP is to be displayed in a Bitmap control in a dialog MYDLG, contained in a
library MYLIB. First the bitmap is put into the Natural library MYLIB by moving it into the directory
.\MYLIB\RES. The following code snippet from the dialog MYDLG shows how it is then assigned to the
Bitmap control:

DEFINE DATA LOCAL
01 #BM-1 HANDLE OF BITMAP

END-DEFINE
* (Creation of the Bitmap control omitted.)

#BM-1.BITMAP-FILE-NAME = "MYPICTURE.BMP" ...
The advantages of using the bitmap as a shared resource are:

® The file name can be specified in the Natural dialog without a path name.
® The file can be kept in a Natural library together with the Natural object that uses it.

Note:

In previous Natural versions non-Natural files were usually kept in a directory that was defined with the
environment variable NATGUI_BMP. Existing applications that use this approach will work in the same way as
before, because Natural always searches for a shared resource file in this directory, if it was not found in the
current library.

Private Resources

Private resources are used internally by Natural to store binary data that is part of Natural objects. These files are
recognized by the file name extension NR*, where * is a character that depends on the type of the Natural object.
Natural maintains private resource files and their contents automatically. A Natural object can have a maximum
of one private resource file. Currently, only Natural dialogs have a private resource file. This file is used to store
the configuration of ActiveX controls that are defined in a dialog and are configured with their own property
pages. See ActiveX Control Property Pages on how to configure an ActiveX control.

Example - Private resources:

The name of the private resource file of the dialog MYDLG is MYDLG.NRS3. Natural creates, modifies and
deletes this file automatically as needed, when the dialog is created, modified, deleted etc. The private resource
file is used to store binary data related to the dialog MYDLG.

Copyright © Software AG 2002 131

Further Programming Aspects Further Programming Aspects

Further Programming Aspects

This section covers the following topics:

End of Program - The END Statement
End of Application - The STOP Statement
Conditional Processing - The IF Statement
Loop Processing

Control Breaks

Data Computation

System Variables and System Functions
Stack

Processing of Date Information

End of Program - The END Statement

The END statement is used to mark the end of a Natural program, subprogram, external subroutine or
helproutine.

Every one of these objects must contain an END statement as the last statement.

Every object may contain only one END statement.

End of Application - The STOP Statement

The STOP statement is used to terminate the execution of a Natural application. A STOP statement executed
anywhere within an application immediately stops the execution of the entire application.

Conditional Processing - The IF Statement

With the IF statement, you define a logical condition, and the execution of the statement attached to the IF
statement then depends on that condition.

The IF statement contains three components: IF, THEN, and ELSE.

e In the IF clause, you specify the logical condition which is to be met.
e In the THEN clause you specify the statement(s) to be executed if this condition is met.
e In the (optional) ELSE clause, you can specify the statement(s) to be executed if this conulitiomets

So, an IF statement takes the following general form:
IF condition
THEN execute statement(s)
ELSE execute other statement(s)
END-IF

If you wish a certain processing to be performed only if the IF conditiootimet, you can specify the clause
THEN IGNORE, which means that the IF condition will be ignored if it is met.

For more information on logical conditions, $general Informatiomf the Natural Reference documentation.

132 Copyright © Software AG 2002

Further Programming Aspects Conditional Processing - The IF Statement

Example of IF Statement:

** Example Program 'IFX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 BIRTH
2 CITY
2 SALARY (1:1)
END-DEFINE
*
LIMIT 7
READ MYVIEW BY CITY STARTING FROM 'C’
IF SALARY (1) LT 40000 THEN
WRITE NOTITLE "***** NAME 30X 'SALARY LT 40000’
ELSE
DISPLAY NAME BIRTH (EM=YYYY-MM-DD) SALARY (1)
END-IF
END-READ
END

The IF statement block in the above program causes the following conditional processing to be performed:

® |F the salary is less than 40000, THEN the WRITE statement is to be executed,;
e otherwise (ELSE), that is, if the salary is 40000 or more, the DISPLAY statement is to be executed.

The program produces the following output:

NAME DATE ANNUAL
OF SALARY
BIRTH

wxx KEEN SALARY LT 40000
*rx FEORRESTER SALARY LT 40000
*rxk JONES SALARY LT 40000
rrxx MELKANOFF SALARY LT 40000
DAVENPORT 1948-12-25 42000

GEORGES 1949-10-26 182800

*x+x FEULLERTON SALARY LT 40000

Copyright © Software AG 2002 133

Nested IF Statements Further Programming Aspects

Nested IF Statements

It is possible to use various nested IF statements; for example, you can make the execution of a THEN clause
dependent on another IF statement which you specify in the THEN clause.

Example of Nested IF Statements:

** Example Program 'IFX02’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 SALARY (1:1)
2 BIRTH
2 PERSONNEL-ID
1 MYVIEW2 VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE
1 #BIRTH (D)
END-DEFINE

*

MOVE EDITED 19450101’ TO #BIRTH (EN=YYYYMMDD)
*
LIMIT 20
FND1. FIND MYVIEW WITH CITY = 'BOSTON’
SORTED BY NAME
IF SALARY (1) LESS THAN 20000
THEN WRITE NOTITLE ***** NAME 30X 'SALARY LT 20000’
ELSE
IF BIRTH GT #BIRTH
FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)
DISPLAY (IS=ON) NAME BIRTH (EM=YYYY-MM-DD)
SALARY (1) MAKE (AL=8 IS=OFF)
END-FIND
END-IF
END-IF
SKIP 1
END-FIND
END

The above program with nested IF statements produces the following output:

NAME DATE ANNUAL MAKE
OF SALARY
BIRTH
*xk COHEN SALARY LT 20000
CREMER 1972-12-14 20000 FORD
*k ELEMING SALARY LT 20000
¥k GREENACRE SALARY LT 20000
PERREAULT 1950-05-12 30500 CHRYSLER
*rrk SHAW SALARY LT 20000
STANWOOD 1946-09-08 31000 CHRYSLER
FORD

134 Copyright © Software AG 2002

Further Programming Aspects Nested IF Statements

Further Example of IF Statement:

See program IFX03 in library SYSEXPG.

Copyright © Software AG 2002 135

Loop Processing Further Programming Aspects

Loop Processing

A processing loop is a group of statements which are executed repeatedly until a stated condition has been
satisfied, or as long as a certain condition prevails.

Processing loops can be subdivided into database loops and non-database loops:

® Database processing loopse those created automatically by Natural to process data selected from a
database as a result of a READ, FIND or HISTOGRAM statement. These statements are described in the
sectionDatabase Access

® Non-database processing looa initiated by the statements REPEAT, FOR, CALL FILE, CALL LOOP,
SORT, and READ WORK FILE.

More than one processing loop may be active at the same time. Loops may be embedded or nested within other
loops which remain active (open).

A processing loop must be explicitly closed with a corresponding END-... statement (for example,
END-REPEAT, END-FOR, etc.)

The SORT statement, which invokes the sort program of the operating system, closes all active processing loops
and initiates a new processing loop.

The following topics are covered below:

Limiting Database Loops

Limiting Non-Database Loops - The REPEAT Statement
Terminating a Processing Loop - The ESCAPE Statement
Loops Within Loops

Referencing Statements within a Program

Limiting Database Loops

With the statements READ, FIND, or HISTOGRAM, you have three ways of limiting the number of repetitions
of the processing loops initiated with these statements:

e with the session parameter LT,
e with a LIMIT statement,
e or with a limit notation in a READ/FIND/HISTOGRAM statement itself.

LT Session Parameter

With the system command GLOBALS, you can specify the session parameter LT, which limits the number of
records which may be read in a database processing loop.

Example:
GLOBALS LT=100

This limit applies to all READ, FIND and HISTOGRAM statements in the entire session.

136 Copyright © Software AG 2002

Further Programming Aspects Limiting Non-Database Loops - The REPEAT Statement

LIMIT Statement

In a program, you can use the LIMIT statement to limit the number of records which may be read in a database
processing loop.

Example:
LIMIT 100

The LIMIT statement applies to the remainder of the program unless it is overridden by another LIMIT
statement or limit notation.

Limit Notation

With a READ, FIND or HISTOGRAM statement itself, you can specify the number of records to be read in
parentheses immediately after the statement name.

Example:
READ (10) VIEWXYZ BY NAME
This limit notation overrides any other limit in effect, but applies only for the statement in which it is specified.

If the limit set with the LT parameter is smaller than a limit specified with a LIMIT statement or a limit notation,
the LT limit has priority over any of these other limits.

Limiting Non-Database Loops - The REPEAT Statement

Non-database processing loops begin and end based on logical condition criteria or some other specified limiting
condition.

The REPEAT statement is discussed here as representative of a non-database loop statement.

With the REPEAT statement, you specify one or more statements which are to be executed repeatedly.
Moreover, you can specify a logical condition, so that the statements are only executed either until or as long as
that condition is met. For this purpose you use an UNTIL or WHILE clause:

e If you specify the logical condition in an UNTIL clause, the REPEAT loop will contimtié the logical
condition is met.

e [f you specify the logical condition in a WHILE clause, the REPEAT loop will contasuieng ashe
logical condition remains true.

If you specify no logical condition, the REPEAT loop must be exited with an ESCAPE, STOP or TERMINATE
statement:

® An ESCAPE statement (see next section) terminates the execution of the processing loop and continues
processing outside the loop.

® A STOP statement stops the execution of the entire Natural application.

e A TERMINATE statement stops the execution of the Natural application and also ends the Natural session.

Copyright © Software AG 2002 137

Limiting Non-Database Loops - The REPEAT Statement

Example of REPEAT Statement:

** Example Program 'REPEAXOQ1’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 SALARY (1:1)
1 #PAY1 (N8)
END-DEFINE
*
READ (5) MYVIEW BY NAME WHERE SALARY (1) = 30000 THRU 39999
MOVE SALARY (1) TO #PAY1
REPEAT WHILE #PAY1 LT 40000
MULTIPLY #PAY1 BY 1.1
DISPLAY NAME (IS=ON) SALARY (1)(IS=ON) #PAY1
END-REPEAT
SKIP 1
END-READ
END

The above program produces the following output:

Further Programming Aspects

Page 1 97-08-19 18:42:53
NAME ANNUAL #PAY1
SALARY
ADKINSON 34500 37950
41745
33500 36850
40535
36000 39600
43560
AFANASSIEV 37000 40700
ALEXANDER 34500 37950
41745

138

Copyright © Software AG 2002

Further Programming Aspects Terminating a Processing Loop - The ESCAPE Statement

Terminating a Processing Loop - The ESCAPE Statement
The ESCAPE statement is used to terminate the execution of a processing loop based on a logical condition.

You can place an ESCAPE statement within loops in conditional IF statement groups, in break processing
statement groups (AT END OF DATA, AT END OF PAGE, AT BREAK), or as a stand-alone statement
implementing the basic logical conditions of a non-database loop.

The ESCAPE statement offers the options TOP and bottom, which determine where processing is to continue
after the processing loop has been left via the ESCAPE statement:

e ESCAPE TOP is used to continue processing at the top of the processing loop.
e ESCAPE bottom is used to continue processing with the first statement following the processing loop.

You can specify several ESCAPE statements within the same processing loop.

For further details and examples of B8CAPE statemensee the Natural Statements documentation.

Loops Within Loops

A database statement can be placed within a database processing loop initiated by another database statement.
When database loop-initiating statements are embedded in this way, a "hierarchy" of loops is created, each of
which is processed for each record which meets the selection criteria.

Multiple levels of loops can be embedded. For example, non-database loops can be nested one inside the other.
Database loops can be nested inside non-database loops. Database and non-database loops can be nested within
conditional statement groups.

Example of Nested FIND Statements:

The following program illustrates a hierarchy of two loops, with one FIND loop nested or embedded within
another FIND loop.

** Example Program 'FINDXO06’
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2CITY
2 NAME
2 PERSONNEL-ID
1 VEH-VIEW VIEW OF VEHICLES
2 MAKE
2 PERSONNEL-ID
END-DEFINE
*
FND1. FIND EMPLOY-VIEW WITH CITY = 'NEW YORK’ OR ='BEVERLEY HILLS’
FIND (1) VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)
DISPLAY NOTITLE NAME CITY MAKE
END-FIND
END-FIND
END

The above program selects data from multiple files. The outer FIND loop selects from the EMPLOYEES file all
persons who live in New York or Beverley Hills. For each record selected in the outer loop, the inner FIND loop
is entered, selecting the car data of those persons from the VEHICLES file. The program produces the following
output:

Copyright © Software AG 2002 139

Loops Within Loops Further Programming Aspects

NAME CITY MAKE
RUBIN NEW YORK FORD
OLLE BEVERLEY HILLS GENERAL MOTORS
ADKINSON BEVERLEY HILLS FORD
WALLACE NEW YORK MAZDA
SPEISER BEVERLEY HILLS FORD

140 Copyright © Software AG 2002

Further Programming Aspects Referencing Statements within a Program

Referencing Statements within a Program

Statement reference notation is used to refer to previous statements in a program in order to specify processing
over a particular range of data, to override Natural's default referencing (as described for each statement in the
Natural Statements documentatiorhere applicable), or for documentation purposes.

Any Natural statement which causes a processing loop to be initiated and/or causes data elements in a database
to be accessed (for example, READ, FIND, HISTOGRAM, SORT, REPEAT, FOR) can be referenced.

When multiple processing loops are used in a program, reference notation is used to uniquely identify the
particular database field to be processed by referring back to the statement that originally accessed that field in
the database. (If a field can be referenced in such a way, this is indicated in the "Reference Permitted" column of
the "Operand Definition Table" in the statement description ilN#taral Statements documentatjon

In addition, reference notation can be specified in some statements; for example, AT START OF DATA, AT
END OF DATA, AT BREAK and ESCAPE bottom. Without reference notation, an AT START OF DATA, AT
END OF DATA or AT BREAK statement will be related to thetermostactive READ, FIND, HISTOGRAM,

SORT or READ WORK FILE loop. With reference notation, you can relate it to another active processing loop.

If reference notation is specified with an ESCAPE bottom statement, processing will continue with the first
statement following the processing loop identified by the reference notation.

Statement reference notation may be specified in the fornstatement lababr asource-code line numhber

A statement label consists of several characters, the last of which must be a period (.). The period serves to
identify the entry as a label.

A statement that is to be referenced is marked with a label by placing the label at the beginning of the line that
contains the statement. For example:

0030 ...

0040 READ1. READ VIEWXYZ BY NAME
0050 ...

In the statement that references the marked statement, the label is placed in parentheses at the location indicated
in the statement’s syntax diagram (as described iN#teral Statements documentadiofor example:

AT BREAK (READ1.) OF NAME

If source-code line numbers are used for referencing, they must be specified as 4-digit numbers (leading zeros
must not be omitted) and in parentheses. For example:

AT BREAK (0040) OF NAME

Copyright © Software AG 2002 141

Referencing Statements within a Program Further Programming Aspects

In a statement where the label/line number relates a particular field to a previous statement, the label/line number
is placed in parentheses after the field name. For example:

DISPLAY NAME (READ1.) JOB-TITLE (READ1.) MAKE MODEL
Line numbers and labels can be used interchangeably.
Example with Line Numbers:

The following program uses line numbers for referencing. In this particular example, the line numbers refer to
the statements that would be referenced in any case by default.

0010 ** Example Program 'LABELXO0Z1’
0020 DEFINE DATA LOCAL
0030 1 MYVIEW1 VIEW OF EMPLOYEES
0040 2 NAME
0050 2 FIRST-NAME
0060 2 PERSONNEL-ID
0070 1 MYVIEW2 VIEW OF VEHICLES
0080 2 PERSONNEL-ID
0090 2 MAKE
0100 END-DEFINE
0110 *
0120 LIMIT 15
0130 READ MYVIEW1 BY NAME STARTING FROM "JONES’
0140 FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (0130)
0150 IF NO RECORDS FOUND
0160 MOVE "***NO CAR**' TO MAKE
0170 END-NOREC
0180 DISPLAY NOTITLE NAME (0130) (IS=ON) FIRST-NAME (0130) (IS=ON)
0190 MAKE (0140)
0200 END-FIND /* (0140)
0210 END-READ /* (0130)
0220 END

Example with Labels:

The following example illustrates the use of statement reference labels. It is identical to the previous program,
except that labels are used for referencing instead of line numbers.

0010 ** Example Program 'LABELX02’
0020 DEFINE DATA LOCAL
0030 1 MYVIEW1 VIEW OF EMPLOYEES
0040 2 NAME
0050 2 FIRST-NAME
0060 2 PERSONNEL-ID
0070 1 MYVIEW2 VIEW OF VEHICLES
0080 2 PERSONNEL-ID
0090 2 MAKE
0100 END-DEFINE
0110 *
0120 LIMIT 15
0130 RD. READ MYVIEW1 BY NAME STARTING FROM 'JONES’
0140 FD. FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (FD.)
0150 IF NO RECORDS FOUND
0160 MOVE "***NO CAR**' TO MAKE
0170 END-NOREC
0180 DISPLAY NOTITLE NAME (RD.) (IS=ON) FIRST-NAME (RD.) (IS=ON)
0190 MAKE (FD.)
0200 END-FIND /* (FD.)
0210 END-READ /* (RD.)
0220 END

142 Copyright © Software AG 2002

Further Programming Aspects

Both programs produce the following output:

Referencing Statements within a Program

NAME FIRST-NAME MAKE
JONES VIRGINIA ***NO CAR***
MARSHA CHRYSLER
CHRYSLER
ROBERT GENERAL MOTORS
LILLY *NO CAR**
EDWARD GENERAL MOTORS
MARTHA *NO CAR**
LAUREL GENERAL MOTORS
KEVIN DATSUN
GREGORY FORD
JOPER MANFRED **NO CAR**
JOUSSELIN DANIEL RENAULT
JUBE GABRIEL **NO CAR**
JUNG ERNST **NO CAR**
JUNKIN JEREMY *NO CAR**
KAISER REINER ***NO CAR***

Copyright © Software AG 2002

143

Control Breaks Further Programming Aspects

Control Breaks

A control break occurs when the value of a control field changes.

The execution of statements can be made dependent on a control break. A control break can also be used for the
evaluation of Natural system functions. System functions are discussed later in this section.

AT BREAK Statement

Automatic Break Processing

BEFORE BREAK PROCESSING Statement

User-Initiated Break Processing - The PERFORM BREAK PROCESSING Statement

AT BREAK Statement

With the statement AT BREAK, you specify the processing which is to be performed whenever a control break
occurs, that is, whenever the value of a control field which you specify with the AT BREAK statement changes.
As a control field, you can use a database field or a user-defined variable.

Control Break Based on a Database Field
The field specified as control field in an AT BREAK statement is usually a database field.

Example:

AT BREAK OF DEPT
statements
END-BREAK

In this example, the control field is the database field DEPT,; if the value of the field changes, for example,
FROM "SALEOQO1" to "SALEOQ2", thestatementspecified in the AT BREAK statement would be executed.

Instead of an entire field, you can also use only part of a field as a control field. With the nététipou’can
determine that only the first positions of a field are to be checked for a change in value.

Example:

AT BREAK OF DEPT /4/
statements
END-BREAK

In this example, the specifietiatementsvould only be executed if the value of the first 4 positions of the field
DEPT changes, for example, FROM "SALE" to "TECH"; if, however, the field value changes from "SALEQ1"
to "SALEO02", this would be ignored and no AT BREAK processing performed.

Example of AT BREAK Statement using a Database Field:

** Example Program 'ATBREX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2CITY
2 COUNTRY
2 JOB-TITLE
2 SALARY (1:1)
END-DEFINE

144 Copyright © Software AG 2002

Further Programming Aspects AT BREAK Statement

*

READ (5) MYVIEW BY CITY WHERE COUNTRY = "USA’
DISPLAY CITY (AL=9) NAME 'POSITION’ JOB-TITLE 'SALARY’ SALARY (1)
AT BREAK OF CITY

WRITE / OLD(CITY) (EM=XAXAXAXAXAXAXAXAXAXAX)
5X 'AVERAGE:’ T*SALARY AVER(SALARY(1)) //
COUNT(SALARY(1)) 'RECORDS FOUND’ /
END-BREAK
AT END OF DATA
WRITE 'TOTAL (ALL RECORDS):’ T*SALARY(1) TOTAL(SALARY(1))
END-ENDDATA
END-READ
END

In the above program, the first WRITE statement is executed whenever the value of the field CITY changes. In
the AT BREAK statement, the system functions OLD, AVER and COUNT are evaluated (and output in the
WRITE statement). In the AT END OF DATA statement, the system function TOTAL is evaluated. The
program produces the following output:

Page 1 97-08-19 18:17:27
CITY NAME POSITION SALARY
AIKEN SENKO PROGRAMMER 31500
AIKEN AVERAGE: 31500

1 RECORDS FOUND

ALBUQUERQ HAMMOND SECRETARY 22000
ALBUQUERQ ROLLING MANAGER 34000
ALBUQUERQ FREEMAN MANAGER 34000
ALBUQUERQ LINCOLN ANALYST 41000
ALBUQUERQUE AVERAGE: 32750

4 RECORDS FOUND

TOTAL (ALL RECORDS): 162500

Copyright © Software AG 2002 145

AT BREAK Statement Further Programming Aspects

Control Break Based on a User-Defined Variable
A user-defined variable can also be used as control field in an AT BREAK statement.

In the following program, the user-defined variable #LOCATION is used as control field.

** Example Program 'ATBREX02’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2CITY
2 COUNTRY
2 JOB-TITLE
2 SALARY (1:1)
1 #LOCATION (A20)
END-DEFINE
*
READ (5) MYVIEW BY CITY WHERE COUNTRY ='USA’
BEFORE BREAK PROCESSING
COMPRESS CITY 'USA’ INTO #LOCATION
END-BEFORE
DISPLAY #LOCATION 'POSITION’ JOB-TITLE 'SALARY’ SALARY (1)
AT BREAK OF #LOCATION
SKIP 1
END-BREAK
END-READ
END

The above program produces the following output:

Page 1 97-08-19 18:21:23
#LOCATION POSITION SALARY
AIKEN USA PROGRAMMER 31500
ALBUQUERQUE USA SECRETARY 22000
ALBUQUERQUE USA MANAGER 34000
ALBUQUERQUE USA MANAGER 34000
ALBUQUERQUE USA ANALYST 41000

146 Copyright © Software AG 2002

Further Programming Aspects AT BREAK Statement

Multiple Control Break Levels

As explained above, the notatiaim™ allows some portion of a field to be checked for a control break. It is

possible to combine several AT BREAK statements, using an entire field as control field for one break and part
of the same field as control field for another break. In such a case, the break at the lower level (entire field) must
be specified before the break at the higher level (part of field); that is, in the first AT BREAK statement the

entire field must be specified as control field, and in the second one part of the field.

The following example program illustrates this, using the field DEPT as well as the first 4 positions of that field
(DEPT /4/).

** Example Program 'ATBREX03’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 DEPT
2 SALARY (1:1)
2 CURR-CODE (1:1)
END-DEFINE
READ MYVIEW BY DEPT STARTING FROM 'SALE40’ ENDING AT 'TECH10’
WHERE SALARY(1) GT 47000 AND CURR-CODE(1) ='USD’
AT BREAK OF DEPT
WRITE *** LOWEST BREAK LEVEL ***' /
END-BREAK
AT BREAK OF DEPT /4/
WRITE *** HIGHEST BREAK LEVEL ***'

END-BREAK
DISPLAY DEPT NAME 'POSITION’ JOB-TITLE
END-READ
END
Page 1 97-08-19 18:24:16
DEPARTMENT NAME POSITION
CODE
TECHO05 HERZOG MANAGER
TECHO5 LAWLER MANAGER
TECHO5 MEYER MANAGER

*»** LOWEST BREAK LEVEL ***

TECH10 DEKKER DBA
*»** LOWEST BREAK LEVEL ***

*»** HIGHEST BREAK LEVEL ***

In the following program, one blank line is output whenever the value of the field DEPT changes; and whenever
the value in the first 4 positions of DEPT changes, a record count is carried out by evaluating the system function
COUNT.

** Example Program 'ATBREX04’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 DEPT
2 REDEFINE DEPT
3 #GENDEP (A4)
2 NAME
2 SALARY (1)

Copyright © Software AG 2002 147

Automatic Break Processing Further Programming Aspects

END-DEFINE
WRITE TITLE ™** PERSONS WITH SALARY > 30000, SORTED BY DEPARTMENT **" /
LIMIT 9
READ MYVIEW BY DEPT FROM 'A’ WHERE SALARY(1) > 30000
DISPLAY 'DEPT DEPT NAME 'SALARY’ SALARY (1)
AT BREAK OF DEPT
SKIP 1
END-BREAK
AT BREAK OF DEPT /4/
WRITE COUNT(SALARY(1)) 'RECORDS FOUND IN:" OLD(#GENDEP) /
END-BREAK
END-READ
END

* PERSONS WITH SALARY > 30000, SORTED BY DEPARTMENT **

DEPT NAME SALARY
ADMAO1 JENSEN 180000
ADMAO1 PETERSEN 105000
ADMAO1 MORTENSEN 320000
ADMAO1 MADSEN 149000
ADMAO1 BUHL 642000
ADMAO2 HERMANSEN 391500
ADMAO2 PLOUG 162900
ADMAO02 HANSEN 234000

8 RECORDS FOUND IN: ADMA

COMPO1 HEURTEBISE 168800

1 RECORDS FOUND IN: COMP

Automatic Break Processing

Automatic break processing is in effect for a FIND, READ, HISTOGRAM, SORT or READ WORK FILE
processing loop which contains an AT BREAK statement.

The value of the control field specified with the AT BREAK statement is checked only for records which satisfy
the selection criteria of both the WITH clause and the WHERE clause.

Natural system functions (AVER, MAX, MIN, etc.) are evaluated for each record after all statements within the

processing loop have been executed. System functions are not evaluated for any record which is rejected by
WHERE criteria.

148 Copyright © Software AG 2002

Further Programming Aspects

The figure below illustrates the flow logic of automatic break processing.

Automatic Break Processing

enter processing loop

leave processing loop

yes yes
execute
read record NO RECORDS FOUND
statements

Y

execute
AT START OF DATA
statements

no
<l
-

execute
BEFORE BREAK
statements

enter processing for current
record and execute all statements
within processing loop

:

evaluate all system functions (MAX,
MIN, etc.) used within automatic AT
BREAK or AT END OF DATA (if used)

execute
ATBREAK
statements

execute
ATEND OF DATA
statements

yes

Copyright © Software AG 2002

149

Automatic Break Processing Further Programming Aspects

Example of System Functions with AT BREAK Statement:

The following example shows the use of the system functions OLD, MIN, AVER, MAX, SUM and COUNT in
an AT BREAK statement (and of the system function TOTAL in an AT END OF DATA statement).

** Example Program 'ATBREXO05’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2CITY
2 SALARY (1:1)
2 CURR-CODE (1:1)
END-DEFINE
*
LIMIT 3
READ MYVIEW BY CITY ='SALT LAKE CITY’
DISPLAY NOTITLE CITY NAME 'SALARY’ SALARY(1) 'CURRENCY’ CURR-CODE(1)
AT BREAK OF CITY
WRITE / OLD(CITY) (EM=XAXAXAXAXAXAXAXAXAXAXAKNXAXNX)
31T’ - MINIMUM:" MIN(SALARY(1)) CURR-CODE(1) /
31T’ - AVERAGE: AVER(SALARY (1)) CURR-CODE(1) /
31T ' - MAXIMUM:” MAX(SALARY(1)) CURR-CODE(1) /
31T’- SUM: SUM(SALARY(1)) CURR-CODE(1)/
33T COUNT(SALARY(1)) 'RECORDS FOUND’ /
END-BREAK
AT END OF DATA
WRITE 22T 'TOTAL (ALL RECORDS):’ T*SALARY
TOTAL(SALARY(1)) CURR-CODE(1)
END-ENDDATA

END-READ
END

CITY NAME SALARY CURRENCY
SALT LAKE CITY ANDERSON 50000 USD
SALT LAKE CITY SAMUELSON 24000 USD

SALT LAKE CITY -MINIMUM: 24000 USD
- AVERAGE: 37000 USD
- MAXIMUM: 50000 USD
- SUM: 74000 USD
2 RECORDS FOUND

SAN DIEGO GEE 60000 USD

SAN DIEGO - MINIMUM: 60000 USD
- AVERAGE: 60000 USD
- MAXIMUM: 60000 USD
- SUM: 60000 USD
1 RECORDS FOUND

TOTAL (ALL RECORDS): 134000 USD

150 Copyright © Software AG 2002

Further Programming Aspects BEFORE BREAK PROCESSING Statement

BEFORE BREAK PROCESSING Statement

With the BEFORE BREAK PROCESSING statement, you can specify statements that are to be executed
immediately before a control break; that is, before the value of the control field is checked, before the statements
specified in the AT BREAK block are executed, and before any Natural system functions are evaluated.

Example of BEFORE BREAK PROCESSING Statement:

** Example Program 'BEFORX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 BONUS (1:1,1:1)
1 #INCOME (P11)
END-DEFINE
*
LIMIT 5
READ MYVIEW BY NAME FROM 'B’
BEFORE BREAK PROCESSING
COMPUTE #INCOME = SALARY(1) + BONUS(1,1)
END-BEFORE
DISPLAY NOTITLE NAME FIRST-NAME (AL=10)
"ANNUAL/INCOME’ #INCOME
'SALARY’ SALARY(1) (LC==)/'+ BONUS' BONUS(1,1) (IC=+)
AT BREAK OF #INCOME
WRITE T*#INCOME ’-'(24)

END-BREAK

END-READ

END

NAME FIRST-NAME ANNUAL SALARY
INCOME + BONUS

BACHMANN HANS 297546 = 293546
+4000

BAECKER JOHANNES 420244 = 413644
+6600

BAECKER KARL 52650 = 48600
+4050

BAGAZJA MARJAN 152700 = 129700
+23000

BAILLET PATRICK 198500 = 188000
+10500

Copyright © Software AG 2002 151

User-Initiated Break Processing - The PERFORM BREAK PROCESSING Statement Further Programming Aspects

User-Initiated Break Processing - The PERFORM BREAK PROCESSING
Statement

With automatic break processing, the statements specified in an AT BREAK block are executed whenever the
value of the specified control field changes - regardless of the position of the AT BREAK statement in the
processing loop.

With a PERFORM BREAK PROCESSING statement, you can perform break processing at a specified position
in a processing loop: the PERFORM BREAK PROCESSING statement is executed when it is encountered in the
processing flow of the program.

Immediately after the PERFORM BREAK PROCESSING, you specify one or more AT BREAK statement
blocks:

PERFORM BREAK PROCESSING
AT BREAK OF field1
statements
END-BREAK
AT BREAK OF field2
statements
END-BREAK

When a PERFORM BREAK PROCESSING is executed, Natural checks if a break has occurred; that is, if the
value of the specified control field has changed; and if it has, the specified statements are executed.

With PERFORM BREAK PROCESSING, system functions are evallmideNatural checks if a break has
occurred.

152 Copyright © Software AG 2002

Further Programming Aspects

The following figure illustrates the flow logic of user-initiated break processing:

'

PERFORM BREAK
PROCESSING
is encountered

!

System functions
are evaluated

Execute AT BREAK
statements in
hierarchial order

Copyright © Software AG 2002

User-Initiated Break Processing - The PERFORM BREAK PROCESSING Statement

153

User-Initiated Break Processing - The PERFORM BREAK PROCESSING Statement Further Programming Aspects

Example of PERFORM BREAK PROCESSING Statement:

** Example Program 'PERFBX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 DEPT
2 SALARY (1:1)
1#CNTL (N2)
END-DEFINE
*
LIMIT 7
READ MYVIEW BY DEPT
AT BREAK OF DEPT [* <- automatic break processing
SKIP 1
WRITE 'SUMMARY FOR ALL SALARIES ’
'SUM:" SUM(SALARY (1))
"TOTAL: TOTAL(SALARY(1))
ADD 1 TO #CNTL
END-BREAK
IF SALARY (1) GREATER THAN 100000 OR BREAK #CNTL
PERFORM BREAK PROCESSING /* <- user-initiated break processing
AT BREAK OF #CNTL
WRITE 'SUMMARY FOR SALARY GREATER 100000’
'SUM: SUM(SALARY(1))
"TOTAL: TOTAL(SALARY (1))
END-BREAK
END-IF
IF SALARY (1) GREATER THAN 150000 OR BREAK #CNTL
PERFORM BREAK PROCESSING /* <- user-initiated break processing
AT BREAK OF #CNTL
WRITE 'SUMMARY FOR SALARY GREATER 150000’
'SUM: SUM(SALARY(1))
"TOTAL: TOTAL(SALARY (1))
END-BREAK
END-IF
DISPLAY NAME DEPT SALARY(1)
END-READ
END

Page 1 97-08-18 17:11:11

NAME DEPARTMENT ANNUAL
CODE SALARY

JENSEN ADMAO1 180000

PETERSEN ADMAO1 105000

MORTENSEN ADMAO1 320000

MADSEN ADMAO1 149000

BUHL ADMAO1 642000

SUMMARY FOR ALL SALARIES SUM: 1396000 TOTAL: 1396000

SUMMARY FOR SALARY GREATER 100000 SUM: 1396000 TOTAL: 1396000
SUMMARY FOR SALARY GREATER 150000 SUM: 1142000 TOTAL: 1142000

HERMANSEN ADMAOQ2 391500
PLOUG ADMAO02 162900
SUMMARY FOR ALL SALARIES SUM: 554400 TOTAL: 1950400

SUMMARY FOR SALARY GREATER 100000 SUM: 554400 TOTAL: 1950400
SUMMARY FOR SALARY GREATER 150000 SUM: 554400 TOTAL: 1696400

154 Copyright © Software AG 2002

Further Programming Aspects User-Initiated Break Processing - The PERFORM BREAK PROCESSING Statement

Further Example of AT BREAK Statement:

See program ATBREXO06 in library SYSEXPG.

Copyright © Software AG 2002 155

Data Computation Further Programming Aspects

Data Computation

This section discusses the arithmetic statements COMPUTE, ADD, SUBTRACT, MULTIPLY and DIVIDE; as
well as the statements MOVE and COMPRESS, which are used to transfer values from one field to another.

Format of Fields

COMPUTE Statement

Statements MOVE and COMPUTE

Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
COMPRESS Statement

Mathematical Functions

Format of Fields

For optimum processing, user-defined variables used in arithmetic statements should be defined with format P
(packed numeric).

COMPUTE Statement

The COMPUTE statement is used to perform arithmetic operations. The following connecting operators are
available:

Exponentiatior] **

Multiplication |*

Division /
Addition +
Subtraction -

Parentheses may be used to indicate logical grouping.
Example 1:
COMPUTE LEAVE-DUE = LEAVE-DUE * 1.1

In this example, the value of the field LEAVE-DUE is multiplied by 1.1, and the result is placed in the field
LEAVE-DUE.

Example 2:
COMPUTE #A = SQRT (#B)

In this example, the square root of the value of the field #B is evaluated, and the result is assigned to the field
#A. "SQRT" is a mathematical function supported in the arithmetic statements COMPUTE, ADD, SUBTRACT,
MULTIPLY, and DIVIDE. An overview of mathematical functions is provided later in this section.

Example 3:
COMPUTE #INCOME = BONUS (1,1) + SALARY (1)

In this example, the first bonus of the current year and the current salary amount are added and assigned to the
field #INCOME.

156 Copyright © Software AG 2002

Further Programming Aspects Statements MOVE and COMPUTE

Statements MOVE and COMPUTE

The statements MOVE and COMPUTE can be used to transfer the value of an operand into one or more fields.
The operand may be a constant such as a text item or a number, a database field, a user-defined variable, a
system variable, or, in certain cases, a system function.

The difference between the two statements is that in the MOVE statement the value to be moved is specified on
the left; in the COMPUTE statement the value to be assigned is specified on the right, as shown in the following
examples.

Examples:

MOVE NAME TO #LAST-NAME
COMPUTE #LAST-NAME = NAME

Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
The ADD, SUBTRACT, MULTIPLY and DIVIDE statements are used to perform arithmetic operations.

Examples:

ADD +5 -2 -1 GIVING #A
SUBTRACT 6 FROM 11 GIVING #B
MULTIPLY 3 BY 4 GIVING #C
DIVIDE 3 INTO #D GIVING #E

All four statements have a ROUNDED option, which you can use if you wish the result of the operation to be
rounded.

TheNatural Statements documentatfmovides more detailed information on these statements.
Example of MOVE, SUBTRACT and COMPUTE Statements:

The following program demonstrates the use of user-defined variables in arithmetic statements. It calculates the
ages and wages of three employees and outputs these.

** Example Program 'COMPUX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 BIRTH
2 JOB-TITLE
2 SALARY (1:1)
2 BONUS (1:1,1:1)
1 #DATE (N8)
1 REDEFINE #DATE
2 #YEAR (N4)
2 #MONTH (N2)
2 #DAY (N2)
1 #BIRTH-YEAR (A4)
1 REDEFINE #BIRTH-YEAR
2 #BIRTH-YEAR-N (N4)

1 #AGE (N3)
1 #INCOME (P9)
END-DEFINE

*

MOVE *DATN TO #DATE

*

READ (3) MYVIEW BY NAME STARTING FROM 'JONES’
MOVE EDITED BIRTH (EM=YYYY) TO #BIRTH-YEAR

Copyright © Software AG 2002 157

COMPRESS Statement Further Programming Aspects

SUBTRACT #BIRTH-YEAR-N FROM #YEAR GIVING #AGE
COMPUTE #INCOME = BONUS (1:1,1:1) + SALARY (1:1)
DISPLAY NAME 'POSITION’ JOB-TITLE #AGE #INCOME

END-READ
END
Page 1 99-01-22 12:42:50
NAME POSITION #AGE #INCOME
JONES MANAGER 58 55000
JONES DIRECTOR 53 50000
JONES PROGRAMMER 43 31000

COMPRESS Statement

The COMPRESS statement is used to transfer (combine) the contents of two or more operands into a single
alphanumeric field.

Leading zeros in a numeric field and trailing blanks in an alphanumeric field are suppressed before the field
value is moved to the receiving field.

By default, the transferred values are separated from one another by a single blank in the receiving field. Other
separating possibilities are described inNfagural Statements documentation

Example:
COMPRESS 'NAME:’ FIRST-NAME #LAST-NAME INTO #FULLNAME

In this example, a text constant (NAME:"), a database field (FIRST-NAME) and a user-defined variable
(#LAST-NAME) are combined into one user-defined variable (#FULLNAME) using a COMPRESS statement.

For further information on the COMPRESS statement, please referathel Statements documentation
Example of COMPRESS and MOVE Statements:

** Example Program 'ComPRX01’
DEFINE DATA LOCAL
1 MYVIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 MIDDLE-I
1 #LAST-NAME (A15)
1 #FULL-NAME (A30)
END-DEFINE
*
READ (3) MYVIEW BY NAME STARTING FROM 'JONES’
MOVE NAME TO #LAST-NAME
COMPRESS 'NAME:’ FIRST-NAME MIDDLE-I #LAST-NAME INTO #FULL-NAME
DISPLAY #FULL-NAME (UC==) FIRST-NAME 'I' MIDDLE-I (AL=1) NAME
END-READ
END

The above program illustrates the use of the statements MOVE and COMPRESS. Notice the output format of the
compressed field:

158 Copyright © Software AG 2002

Further Programming Aspects COMPRESS Statement

Page 1 97-08-18 17:47:03
#FULL-NAME FIRST-NAME | NAME
NAME: VIRGINIA J JONES VIRGINIA J JONES
NAME: MARSHA JONES MARSHA JONES
NAME: ROBERT B JONES ROBERT B JONES

In multiple-line displays, it may be useful to combine fields/text in a user-defined variable by using a
COMPRESS statement.

Example of COMPRESS Statement:

In the following program, three user-defined variables are used: #FULLSAL, #FULLNAME, and #FULLCITY.
#FULLSAL, for example, contains the text 'SALARY:’ and the database fields SALARY and CURR-CODE.
The WRITE statement then references only the compressed variables.

** Example Program 'COMPRX02’
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 CURR-CODE (1:1)
2CITY
2 ADDRESS-LINE (1:1)
2ZIP
1 #FULLSAL (A25)
1 #FULLNAME (A25)
1 #FULLCITY (A25)
END-DEFINE
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK’
COMPRESS 'SALARY:’ CURR-CODE(1) SALARY(1) INTO #FULLSAL
COMPRESS FIRST-NAME NAME INTO #FULLNAME
COMPRESS ZIP CITY INTO #FULLCITY
DISPLAY 'NAME AND ADDRESS’ NAME (EM=XAXAXAXAXAXAXAXAXAXNXAX)
WRITE 1/5 #FULLNAME 1/37 #FULLSAL
2/5 ADDRESS-LINE (1)
3/5 #FULLCITY
SKIP 1
END-READ
END

Copyright © Software AG 2002 159

Mathematical Functions Further Programming Aspects

Page 1 97-08-19 18:01:17
NAME AND ADDRESS
RUBIN
SYLVIA RUBIN SALARY: USD 17000

2003 SARAZEN PLACE
10036 NEW YORK

WALLACE
MARY WALLACE
12248 LAUREL GLADE C
10036 NEW YORK

SALARY: USD 38000

KELLOGG
HENRIETTA KELLOGG
1001 JEFF RYAN DR.
19711 NEWARK

SALARY: USD 52000

Mathematical Functions

The following Natural mathematical functions are supported in arithmetic processing statements (ADD,
COMPUTE, DIVIDE, MULTIPLY, SUBTRACT).

Function Meaning

ABS(field) | Absolute value ofield.
ATN ((field) |Arc tangent ofield.
COg(field) | Cosine offield.
EXP(field) |Exponential ofield.
FRAC (field) | Fractional part ofield.
INT (field) | Integer part ofield.

LOG (field) | Natural logarithm ofield.
SGN(field) | Sign offield.

SIN(field) | Sine offield.
SQRT(field) | Square root ofield.

TAN (field) | Tangent ofield.

VAL (field) | Numeric value of an alphanumefield.

See theNatural Reference documentatifum a detailed explanation of each mathematical function.

FurtherExamples of COMPUTE, MOVE and COMPRESS Statements:

See programs WRITEX11, IFX03 and COMPRXO03 in library SYSEXPG.

160 Copyright © Software AG 2002

Further Programming Aspects System Variables and System Functions

System Variables and System Functions

The following topics are covered below:

® System Variables
® System Functions

System Variables

Natural system variables contain information about the current Natural session, such as: the current library, the
user and terminal identification; the current status of a loop processing; the current report processing status; the
current date and time.

This information may be used in Natural programs by specifying the appropriate system variables. For example:

System Variable | Content

*INIT-USER The user ID of the terminal user.

*LANGUAGE The language in effect.

*LIBRARY-ID The current library ID.

*INIT-ID The terminal ID.

*ERROR-NR The Natural error number.
*PAGE-NUMBER | The current value for page number.

*COUNTER The number of times a processing loop has been entered.

*NUMBER The number of records selected.

Copyright © Software AG 2002 161

System Variables

Some date and time system variables include the following:

System Variable

Content

*DATU

Current date in format MM/DD/YY

*DAT4U Current date in format MM/DD/YYYY|
*DATE Current date in format DD/MM/YY
*DAT4E Current date in format DD/MM/YYY'Y
*DATI Current date in format YY-MM-DD
*DATA4I Current date in format YYYY-MM-DLC
*DATD Current date in format DD.MM.YY
*DAT4D Current date in format DD.MM.YYYY|
*TIME Time of day in format HH:MM:SS.T
*TIMN Time of day in format HHMMSST

The names of all system variables begin with an asterisk (*).

Further Programming Aspects

Date and time system variables may be specified in a DISPLAY, WRITE, PRINT, MOVE or COMPUTE

statement.

For further information on system variables, Sgstem Variables theNatural Reference documentation

162

Copyright © Software AG 2002

Further Programming Aspects

System Functions

Natural system functions are a set of statistical and mathematical functions that can be applied to the data after a

System Functions

record has been processed but before break processing occurs.

System functions may be specified in a WRITE, DISPLAY, PRINT, COMPUTE or MOVE statement that is
used in conjunction with an AT END OF PAGE, AT END OF DATA or AT BREAK statement.

In the case of an AT END OF PAGE statement, the corresponding DISPLAY statement must include the GIVE
SYSTEM FUNCTIONS clause (as shown in the example below).

The following system functions are available:

System Function

Information Returned

AVER (field)

Average of all values fdield.

NAVER (field)

Average of all values fdield, not counting null values.

MAX (field) Maximum value ofield.

MIN (field) Minimum value offield.

NMIN (field) Minimum value offield, not counting null values.

OLD (field) Value offield value prior to change in control value (AT BREAK condition).
SUM (field) Sum of allfield values

(reset when control value in AT BREAK changes).

TOTAL (field)

Total of allfield values
(not reset when control value in AT BREAK changes).

COUNT (field)

Number of passes through a processing loop.

NCOUNT (field)

Number of passes through a processing loop, not counting passes where the

field contains a null value.

For further information on system functions, dsural System Functioris theNatural Reference

documentation

Copyright © Software AG 2002 163

control

System Functions Further Programming Aspects

Example of System Variables and System Functions:

** Example Program 'SYSVAX01’
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 JOB-TITLE
2 INCOME (1:1)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE
*
WRITE TITLE 'EMPLOYEE SALARY REPORT AS OF *DAT4E /
READ (3) MYVIEW BY CITY STARTING FROM 'E’
DISPLAY GIVE SYSTEM FUNCTIONS
NAME (AL=15) JOB-TITLE (AL=15) INCOME (1:1)
AT START OF DATA
WRITE 'REPORT CREATED AT: *TIME 'HOURS’ /
END-START
AT END OF DATA
WRITE / 'LAST PERSON SELECTED:’ OLD (NAME) /
END-ENDDATA
END-READ
AT END OF PAGE
WRITE 'AVERAGE SALARY:" AVER(SALARY(1))
END-ENDPAGE
END

The above program illustrates the use of system variables and system functions:

The system variable *DATE is output with the WRITE TITLE statement; the system variable *TIME is output
with the AT START OF DATA statement.

The system function OLD is used in the AT END OF DATA statement; the system function AVER is used in the
AT END OF PAGE statement.

Note how the system variables and system function are displayed:

EMPLOYEE SALARY REPORT AS OF 18/01/1999

NAME CURRENT INCOME
POSITION
CURRENCY ANNUAL BONUS
CODE SALARY

REPORT CREATED AT: 11:51:29.3 HOURS

DUYVERMAN PROGRAMMER USD 34000 0
PRATT SALES PERSON USD 38000 9000
MARKUSH TRAINEE usD 22000 0

LAST PERSON SELECTED: MARKUSH

AVERAGE SALARY: 31333

164 Copyright © Software AG 2002

Further Programming Aspects System Functions

Further Examples of System Variables:
See programs EDITMX05, READX04 and WTITLXO0L1 in library SYSEXPG.
Further Examples of System Functions:

See programs ATBREX06 and ATENPXOL1 in library SYSEXPG.

Copyright © Software AG 2002 165

Stack Further Programming Aspects

Stack

The Natural stack is a kind of "intermediate storage" in which you can store Natural commands, user-defined
commands, and input data to be used by an INPUT statement. In the stack you can store a series of functions
which are frequently executed one after the other, such as a series of logon commands.

The data/commands stored in the stack are "stacked" on top of one another. You can decide whether to put them
on top or at the bottom of the stack. The data/command in the stack can only be processed in the order in which
they are stacked, beginning from the top of the stack.

In a program, you may reference the system variable *DATA to determine the content of the stack (see the
Natural Reference documentatifam further information).

The total size of the stack is defined by the remaining portion in the ESIZE buffer after allocation for the global
data area and the program source area.

The following topics are covered below:

® Stack Processing
® Placing Data in the Stack
® Clearing the Stack

Stack Processing
The processing of the commands/data stored in the stack differs depending on the function being performed.

If a command is expected, that is, the NEXT prompt is about to be displayed, Natural first checks if a command
is on the top of the stack. If there is, the NEXT prompt is suppressed and the command is read and deleted from
the stack; the command is then executed as if it had been entered manually in response to the NEXT prompt.

If an INPUT statement containing input fields is being executed, Natural first checks if there are any input data
on the top of the stack. If there are, these data are passed to the INPUT statement (in delimiter mode); the data
read from the stack must be format-compatible with the variables in the INPUT statement; the data are then
deleted from the stack.

If an INPUT statement was executed using data from the stack, and this INPUT statement is re-executed via a
REINPUT statement, the INPUT statement screen will be re-executed displaying the same data from the stack as
when it was executed originally. With the REINPUT statement, no further data are read from the stack.

When a Natural program terminates normally, the stack is flushed beginning from the top until either a command
is on the top of the stack or the stack is cleared. When a Natural program is terminated via the terminal command
"%%" or with an error, the stack is cleared entirely.

166 Copyright © Software AG 2002

Further Programming Aspects Placing Data in the Stack

Placing Data in the Stack

The following methods can be used to place data/commands on the stack:

STACK Parameter

The Natural profile parameter STACK may be used to place data/commands on the stack. The STACK
parameter, which is described in the Natural Operations documentation, can be specified by the Natural
administrator in the Natural parameter module at the installation of Natural; or you can specify it as a dynamic
parameter when you invoke Natural.

When data/commands are to be placed on the stack via the STACK parameter, multiple commands must be
separated from one another by a semicolon (;). If a command is to be passed within a sequence of data or
command elements, it must be preceded by a semicolon.

Data for multiple INPUT statements must be separated from one another by a colon (). Data that are to be read
by a separate INPUT statement must be preceded by a colon. If a command is to be stacked which requires
parameters, no colon is to be placed between the command and the parameters.

Semicolon and colon must not be used within the input data themselves as they will be interpreted as separation
characters.

STACK Statement

The STACK statement can be used within a program to place data/commands in the stack. The data elements
specified in one STACK statement will be used for one INPUT statement, which means that if data for multiple
INPUT statements are to be placed on the stack, multiple STACK statements must be used.

Data may be placed on the stack either unformatted or formatted:

e If unformatted data are read from the stack, the data string is interpreted in delimiter mode and the
characters specified with the session parameters IA (Input Assignment character) and ID (Input Delimiter
character) are processed as control characters for keyword assignment and data separation.

e |f formatted data are placed on the stack, each content of a field will be separated and passed to one input
field in the corresponding INPUT statement.

See the Natural Statements documentation for further information @T&EK statement
FETCH and RUN Statements

The execution of a FETCH or RUN statement that contains parameters to be passed to the invoked program will
result in these parameters being placed on top of the stack.

Clearing the Stack

The contents of the stack can be deleted with the RELEASE statement. See the Natural Statements
documentation for details on tRELEASE statement

Copyright © Software AG 2002 167

Processing of Date Information Further Programming Aspects

Processing of Date Information

This section covers various aspects concerning the handling of dates in your Natural applications:

Edit Masks for Date Fields and Date System Variables

Default Edit Mask for Date - The DTFORM Parameter

Date Format for Alphanumeric Representation - The DF Parameter
Date Format for Output - The DFOUT Parameter

Date Format for Stack - The DFSTACK Parameter

Year Sliding Window - The YSLW Parameter

Combinations of DFSTACK and YSLW

Date Format for Default Page Title - The DFTITLE Parameter

Edit Masks for Date Fields and Date System Variables

If you wish the value of a date field to be output in a specific representation, you usually spedifynaaskfor
the field. With an edit mask, you determine character by character what the output is to look like.

If you wish to use the current date in a specific representation, you need not define a date field and specify an
edit mask for it; instead you can simply usgate system variabléatural provides various date system

variables, which contain the current date in different representations. Some of these representations contain a
2-digit year component, some a 4-digit year component.

For more information see tlexamples of date system variablEer more information and a list of all date
system variables, see tNatural Reference documentation

Default Edit Mask for Date - The DTFORM Parameter

The profile parameter DTFORM determines the default format used for dates as part of the default title on
Natural reports, for date constants and for date input.

This date format determines the sequence of the day, month and year components of a date, as well as the
delimiter characters to be used between these components.

Possible DTFORM settings are:

Setting Date Format* | Example

DTFORM=I |yyyy-mm-dd |1997-12-31
DTFORM=G |dd.mm.yyyy |31.12.1997
DTFORM=E |dd/mm/yyyy |31/12/1997
DTFORM=U | mm/dd/yyyy |12/31/1997

* dd = day,mm= month,yyyy= year.

The DTFORM parameter can be set in the Natural parameter module/file or dynamically when Natural is

invoked. By default, DTFORM=I applies.

168

Copyright © Software AG 2002

Further Programming Aspects Date Format for Alphanumeric Representation - The DF Parameter

Date Format for Alphanumeric Representation - The DF Parameter
The session parameter DF only applies to date fields for which no edit mask is specified.

If an edit mask is specified, the representation of the field value is determined by the edit mask. If no edit mask is
specified, the representation of the field value is determined by the session parameter DF in combination with the
DTFORM profile parameter.

With the DF parameter, you can choose one of the following date representations:

DF=S | 8-byte representation with 2-digit year component and delimiggrsn-dJl.

DF=I | 8-byte representation with 4-digit year component without delimiygms/tnmdyl

DF=L | 10-byte representation with 4-digit year component and delimitgyy-mm-djl

For each representation, the sequence of the day, month and year components, and the delimiter characters used,
are determined by the DTFORM parameter.

By default, DF=S applies (except for INPUT statements; see below).

The DF parameter is evaluated at compilation. It can be specified with the FORMAT statement, the statements
INPUT, DISPLAY, WRITE and PRINT (at statement and field level), and the statements MOVE, COMPRESS,
STACK, RUN and FETCH (at field level).

The DF parameter applies to the following:

e DISPLAY, WRITE and PRINT: When the value of a date variable is output with one of these statements,
the value is converted to an alphanumeric representation before it is output. The DF parameter determines
which representation is used.

e MOVE and COMPRESS: When the value of a date variable is transferred to an alphanumeric field with a
MOVE or COMPRESS statement, the value is converted to an alphanumeric representation before it is
transferred. The DF parameter determines which representation is used.

® STACK, FETCH and RUN: When the value of a date variable is placed on the stack, it is converted to
alphanumeric representation before it is placed on the stack. The DF parameter determines which
representation is used.

The same applies when a date variable is specified as a parameter in a FETCH or RUN statement (as these
parameters are also passed via the stack).

® INPUT: When a data variable is used in an INPUT statement, the DF parameter determines how a value
must be entered in the field.

However, when a date variable for whiohDF parameter is specified is used in an INPUT statement, the

date can be entered either with a 2-digit year component and delimiters or with a 4-digit year component
and no delimiters. In this case, too, the sequence of the day, month and year components, and the delimiter
characters to be used, are determined by the DTFORM parameter.

With DF=S, only 2 digits are provided for the year information; this means that if a date value contained the
century, this information would be lost during the conversion. To retain the century information, you set DF=I or
DF=L.

Copyright © Software AG 2002 169

Date Format for Alphanumeric Representation - The DF Parameter Further Programming Aspects

Examples of DF Parameter with WRITE Statements:

/* DF=S(default)
WRITE *DATX /* Output has this format: dd.mm.yy
END

FORMAT DF=I
WRITE *DATX /* Output has this format: ddmmyyyy
END

FORMAT DF=L

WRITE *DATX /* Output has this format: dd.mm.yyyy
END

These examples assume that DTFORM=G applies.

Example of DF Parameter with MOVE Statement:

DEFINE DATA LOCAL
1 #DATE (D) INIT <D’31/12/1997">

1 #ALPHA (A10)
END-DEFINE
MOVE #DATE TO #ALPHA /* Result: #ALPHA contains 31/12/97
MOVE #DATE (DF=I) TO #ALPHA /* Result: #ALPHA contains 31121997

MOVE #DATE (DF=L) TO #ALPHA /* Result: #ALPHA contains 31/12/1997

This example assumes that DTFORM=E applies.
Example of DF Parameter with STACK Statement:
DEFINE DATA LOCAL
1 #DATE (D) INIT <D'1997-12-31">
1 #ALPHA1(A10)
1 #ALPHA2(A10)
1 #ALPHA3(A10)
END-DEFINE
STACK TOP DATA #DATE (DF=S) #DATE (DF=l) #DATE (DF=L)
INPUT #ALPHAL #ALPHA2 #ALPHA3

/* Result: #ALPHAL contains 97-12-31

* #ALPHAZ2 contains 19971231
* #ALPHAS contains 1997-12-31

This example assumes that DTFORM=I applies.

170 Copyright © Software AG 2002

Further Programming Aspects Date Format for Alphanumeric Representation - The DF Parameter

Example of DF Parameter with INPUT Statement:

DEFINE DATA LOCAL
1 #DATEL1 (D)
1 #DATE2 (D)
1 #DATE3 (D)
1 #DATE4 (D)
END-DEFINE

INPUT #DATEL (DF=S) /* Input must have this format:

#DATE?2 (DF=I) /* Input must have this format:
#DATE3 (DF=L) /* Input must have this format:
#DATE4 /* Input must have this format:

This example assumes that DTFORM=I applies.

Copyright © Software AG 2002

yy-mm-dd

yyyymmdd

yyyy-mm-dd

yy-mm-dd or yyyymmdd

171

Date Format for Output - The DFOUT Parameter Further Programming Aspects

Date Format for Output - The DFOUT Parameter

The session/profile parameter DFOUT only applies to date fields in INPUT, DISPLAY, PRINT and WRITE
statements for which no edit mask is specified, and for which no DF parameter applies.

For date fields which are displayed by INPUT, DISPLAY, PRINT and WRITE statements and for which neither
an edit mask is specified nor a DF parameter applies, the profile/session parameter DFOUT determines the
format in which the field values are displayed.

Possible DFOUT settings are:

DFOUT=S | Date variables are displayed with a 2-digit year component, and delimiters as determined by the
DTFORM parameteryf/-mm-dgl.

DFOUT=I | Date variables are displayed with a 4-digit year component and no delimitgysndjl

By default, DFOUT=S applies. For either DFOUT setting, the sequence of the day, month and year components
in the date values is determined by the DTFORM parameter.

The lengths of the date fields are not affected by the DFOUT setting, as either date value representation fits into
an 8-byte field.

The DFOUT parameter can be set in the Natural parameter moduleffile, dynamically when Natural is invoked, or
with the system command GLOBALS. It is evaluated at runtime.

Example:

DEFINE DATA LOCAL
1 #DATE (D) INIT <D’1997-12-31">

END-DEFINE
WRITE #DATE [* Output if DFOUT=S is set ...: 97-12-31
/* Output if DFOUT=l is set ... 19971231

WRITE #DATE (DF=L) /* Output (regardless of DFOUT): 1997-12-31

This example assumes that DTFORM=I applies.

172 Copyright © Software AG 2002

Further Programming Aspects Date Format for Stack - The DFSTACK Parameter

Date Format for Stack - The DFSTACK Parameter

The session/profile parameter DFSTACK only applies to date fields used in STACK, FETCH and RUN
statements for which no DF parameter has been specified.

The DFSTACK parameter determines the format in which the values of date variables are placed on the stack via
a STACK, RUN or FETCH statement.

Possible DFSTACK settings are:

DFSTACK=S | Date variables are placed on the stack with a 2-digit year component, and delimiters ag
determined by the profile DTFORM parametgy-(m-dd.

DFSTACK=C | Same as DFSTACK=S. However, a change in the century will be intercepted at runtimag.

DFSTACK=Il |Date variables are placed on the stack with a 4-digit year component and no delimiters
(yyyymmdyl

By default, DFSTACK=S applies. DFSTACK=S means that when a date value is placed on the stack, it is placed
there without the century information (which is lost). When the value is then read from the stack and placed into
another date variable, the century is either assumed to be the current one or determined by the setting of the
YSLW parameter (see below). This might lead to the century being different from that of the original date value;
however, Natural would not issue any error in this case.

DFSTACK=C works the same as DFSTACK=S in that a date value is placed on the stack without the century
information. However, if the value is read from the stack and the resulting century is different from that of the
original date value (either because of the YSLW parameter, or the original century not being the current one),
Natural issues a runtime error.

Note:
This runtime error is already issued at the time when the value is placed on the stack.

DFSTACK-=I allows you to place a date value on the stack in a length of 8 bytes without losing the century
information.

The DFSTACK parameter can be set in the Natural parameter module/file, dynamically when Natural is
invoked, or with the system command GLOBALS. It is evaluated at runtime.

Example:

DEFINE DATA LOCAL
1 #DATE (D) INIT <D'1997-12-31">
1 #ALPHAL(A8)
1 #ALPHA2(A10)
END-DEFINE

STACK TOP DATA #DATE #DATE (DF=L)

INPUT #ALPHAL #ALPHA?2

/* Result if DFSTACK=S or =C is set: #ALPHA1 contains 97-12-31
/* Result if DFSTACK=l is set #ALPHAL contains 19971231

/* Result (regardless of DFSTACK) .: #ALPHAZ2 contains 1997-12-31

This example assumes that DTFORM=I and YSLW=0 apply.

Copyright © Software AG 2002 173

Year Sliding Window - The YSLW Parameter Further Programming Aspects

Year Sliding Window - The YSLW Parameter

The profile parameter YSLW allows you determine the century of a 2-digit year value.

The YSLW parameter can be set in the Natural parameter module/file or dynamically when Natural is invoked. It
is evaluated at runtime when an alphanumeric date value with a 2-digit year component is moved into a date
variable. This applies to data values which are:

used with the mathematical function VAL,

used with the IS(D) option in a logical condition,
read from the stack as input data, or

entered in an input field as input data.

The YSLW parameter determines the range of years covered by a so-called "year sliding window". The
sliding-window mechanism assumes a date with a 2-digit year to be within a "window" of 100 years. Within
these 100 years, every 2-digit year value can be uniquely related to a specific century.

With the YSLW parameter, you determine how many years in the past that 100-year range is to begin: The
YSLW value is subtracted from the current year to determine the first year of the window range.

Possible values of the YSLW parameter are 0 to 99. The default value is YSLW=0, which means that no
sliding-window mechanism is used; that is, a date with a 2-digit year is assumed to be in the current century.

174 Copyright © Software AG 2002

Further Programming Aspects Year Sliding Window - The YSLW Parameter

Example 1:

If the current year is 1997 and you specify YSLW=40, the sliding window will cover the years 1957 to 2056. A
2-digit year valuenn from 57 to 99 is interpreted accordingly asid9vhile a 2-digit year valuen from 00 to
56 is interpreted as 20.

DTFORM=G (date format is: day.manth ear)
YSLW=40 (100-year range of window begins 40 years before current year)
Date value: 18.01.76 Date value: 24.12.19
interpreted interpreted
as as
1976 2019
1957 1997 2056
current
year

Copyright © Software AG 2002 175

Year Sliding Window - The YSLW Parameter Further Programming Aspects

Example 2:

If the current year is 1997 and you specify YSLW=20, the sliding window will cover the years 1977 to 2076. A
2-digit year valuenn from 77 to 99 is interpreted accordingly asid9vhile a 2-digit year valuen from 00 to
76 is interpreted as 20.

DTFORM=G (date format is: day. month year)
YSLW=20 (100-year range of window begins 20 years before current year)
Date value: 24.12.19 Date value: 18.01.76
interpreted interpreted
as as
2019 2076
1977 1997 2076
current
year

176 Copyright © Software AG 2002

Further Programming Aspects Combinations of DFSTACK and YSLW

Combinations of DFSTACK and YSLW

The following examples illustrate the effects of using various combinations of the parameters DFSTACK and
YSLW.

All these examples assume that DTFORM=I applies.
Example 1:
This example assumes the current year to be 1997, and the following parameter settings:

DFSTACK=S (default)
YSLW=20

DEFINE DATA LOCAL
1 #DATE1L (D) INIT <D’ 1956-12-31 ">
1 #DATE2 (D)
END-DEFINE
STACK TOP DATA #DATEL /* century information is lost (year 56 is stacked)
INPUT #DATE2 /* year sliding window determines 56 to be 2056
/* Result: #DATE2 contains 2056-12-31

In this case, the year sliding window is not set appropriately, so that the century information is (inadvertently)
changed.

Example 2:
This example assumes the current year to be 1997, and the following parameter settings:

DFSTACK=S (default)
YSLW=50

DEFINE DATA LOCAL
1 #DATE1 (D) INIT <D’ 1956-12-31 >
1 #DATE2 (D)
END-DEFINE
STACK TOP DATA #DATEL1 /* century information is lost (year 56 is stacked)
INPUT #DATE2 [* year sliding window determines 56 to be 1956
/* Result: #DATE2 contains 1956-12-31

In this case, the year sliding window is set appropriately, so that the original century information is correctly
restored.

Example 3:
This example assumes the current year to be 1997, and the following parameter settings:

DFSTACK=C
YSLW=0 (default)

Copyright © Software AG 2002 177

Combinations of DFSTACK and YSLW Further Programming Aspects

DEFINE DATA LOCAL
1 #DATE1L (D) INIT <D’ 2056-12-31 >
1 #DATE2 (D)
END-DEFINE
STACK TOP DATA #DATEL /* century information is lost (year 56 is stacked)
INPUT #DATE2 /* 56 is assumed to be in current century -> 1956
/* Result: RUNTIME ERRORUNINTENDED CENTURY CHANGE)

In this case, the century information is (inadvertently) changed. However, this change is intercepted by the
DFSTACK=C setting.

Example 4:

This example assumes the current year to be 1997, and the following parameter settings:

DFSTACK=C
YSLW=20

DEFINE DATA LOCAL
1 #DATE1 (D) INIT <D’ 1956-12-31 >
1 #DATE2 (D)
END-DEFINE
STACK TOP DATA #DATEL /* century information is lost (year 56 is stacked)
INPUT #DATE2 [* year sliding window determines 56 to be 2056
/* Result: RUNTIME ERRORUNINTENDED CENTURY CHANGE)

In this case, the century information is changed due to the year sliding window. However, this change is
intercepted by the DFSTACK=C setting.

178 Copyright © Software AG 2002

Further Programming Aspects Date Format for Default Page Title - The DFTITLE Parameter

Date Format for Default Page Title - The DFTITLE Parameter

The session/profile parameter DFTITLE determines the format of the date in a pafputitie(as output with a
DISPLAY, WRITE or PRINT statement).

DFTITLE=S |The date is output with a 2-digit year component and delimigrsm-dJl.

DFTITLE=L |The date is output with a 4-digit year component and delimiygysy{mm-di

DFTITLE=Il |The date is output with a 4-digit year component and no delimytgygromdy

For each of these output formats, the sequence of the day, month and year components, and the delimiter
characters used, are determined by the DTFORM parameter.

The DFTITLE parameter can be set in the Natural parameter module/file, dynamically when Natural is invoked,
or with the system command GLOBALS. It is evaluated at runtime.

Example:
WRITE 'HELLO’
END
/*
/* Date in page title if DFTITLE=S is set ... 98-10-31
/* Date in page title if DFTITLE=L is set ... 1998-10-31
/* Date in page title if DFTITLE=I is set ...: 19981031

This example assumes that DTFORM=I applies.

Note:
The DFTITLE parameter has no effect on a user-defined page title as specifiedWRITE TITLE statement.

Copyright © Software AG 2002 179

Reporting Mode and Structured Mode Reporting Mode and Structured Mode

Reporting Mode and Structured Mode

The following topics are covered below:

General Information

Setting the Programming Mode

Functional Differences

Closing a Processing Loop in Reporting Mode
Closing a Processing Loop in Structured Mode
Database Reference

General Information

Natural offers two ways of programmingporting modeandstructured mode

Generally,it is recommended to use structured megelusively, because it provides for more clearly structured
applications.

Reporting modés only useful for the creation of adhoc reports and small programs which do not involve
complex data and/or programming constructs. (If you decide to write a program in reporting mode, be aware that
small programs may easily become larger and more complex.)

Structured modés intended for the implementation of complex applications with a clear and well-defined
program structure. The major benefits of structured mode are:

® The programs have to be written in a more structured way and are therefore easier to read and consequently
easier to maintain.

e As all fields to be used in a program have to be defined in one central location (instead of being scattered all
over the program, as is possible in reporting mode), overall control of the data used is much easier.

With structured mode, you also have to make more detail planning before the actual programs can be coded,
thereby avoiding many programming errors and inefficiencies.

Setting the Programming Mode

The default programming mode is set by the Natural administrator. You can change the mode by using the
system command GLOBALS:

® GLOBALS SM=ON - Structured Mode.
® GLOBALS SM=0OFF - Reporting Mode.

180 Copyright © Software AG 2002

Reporting Mode and Structured Mode Functional Differences

Functional Differences

The major functional differences between reporting mode and structured mode are summarized below:

® The syntax related to closing loops and functional blocks differs in the two modes.
In structured mode, every loop or logical construct must be explicitly closed with a corresponding END-...
statement. Thus, it becomes immediately clear, which loop/logical constructs ends where.
Reporting mode uses (CLOSE) LOOP and DO ... DOEND statements for this purpose.
END-... statements (except END-DEFINE, END-DECIDE and END-SUBROUTINE) cannot be used in
reporting mode, while LOOP and DO/DOEND statements cannot be used in structured mode.

® In reporting mode, you can use database fields without having to define them in a DEFINE DATA
statement; also, you can define user-defined variables anywhere in a program, which means that they can be
scattered all over the program.
In structured modeall data elements to be used have to be defined in one central location (either in the
DEFINE DATA statement at the beginning of the program, or in a data area outside the program).

TheNatural Statements documentatfmovides separate syntax diagrams for each mode-sensitive statement.

The two examples below illustrate the differences between the two modes in constructing processing loops and
logical conditions.

Reporting Mode Example:

The reporting mode example uses the statements DO and DOEND to mark the beginning and end of the
statement block that is based on the AT END OF DATA condition. The END statement closes all active
processing loops.

READ EMPLOYEES BY PERSONNEL-ID
DISPLAY NAME BIRTH POSITION
AT END OF DATA
DO
SKIP 2
WRITE / 'LAST SELECTED:’” OLD(NAME)
DOEND
END

Structured Mode Example:

The structured mode example uses an END-ENDDATA statement to close the AT END OF DATA condition,
and an END-READ statement to close the READ loop. The result is a more clearly structured program in which
you can see immediately where each construct begins and ends:

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 POSITION
END-DEFINE
READ MYVIEW BY PERSONNEL-ID
DISPLAY NAME BIRTH POSITION
AT END OF DATA
SKIP 2
WRITE / 'LAST SELECTED:’ OLD(NAME)
END-ENDDATA
END-READ
END

Copyright © Software AG 2002 181

Closing a Processing Loop in Reporting Mode

Reporting Mode and Structured Mode

Closing a Processing Loop in Reporting Mode

The statements END, LOOP (or CLOSE LOOP) or SORT may be used to close a processing loop.

The LOOP statement can be used to close more than one loop, and the END statement can be used to close all
active loops. These possibilities of closing several loops with a single statement constitute a basic difference to

structured mode.

A SORT statement closes all processing loops and initiates another processing loop.

Example 1 - LOOP:
FIND ...
FIND ...

LOORP (closes inner FIND loop)
LOOP (closes outer FIND loop)

Example 2 - END:
FIND ...
FIND ...
END (closes all loops and ends processing)

Example 3 - SORT:

FIND ...
FIND ...

SORT ... (closes all loops,initiates loop)

END (closes SORT loop and ends processing)

182

Copyright © Software AG 2002

Reporting Mode and Structured Mode Closing a Processing Loop in Structured Mode

Closing a Processing Loop in Structured Mode

Structured mode uses a specific loop-closing statement for each processing loop. Also, the END statement does
not close any processing loop. The SORT statement must be preceded by an END-ALL statement, and the SORT
loop must be closed with an END-SORT statement.

Example 1 - FIND:
FIND ...
FIND ...

END-FIND (closes inner FIND loop)
END-FIND (closes outer FIND loop)
Example 2 - READ:

READ ...
AT END OF DATA

END-ENDDATA
END-READ (closes READ loop)
END
Example 3 - SORT:
READ ...

FIND ...

END-ALL (closes all loops)
SORT (opens loop)

END-SORT (closes SORT loop)
END

Copyright © Software AG 2002 183

Database Reference Reporting Mode and Structured Mode

Database Reference

In reporting mode, database fields and DDMs may be referenced without having been defined in a data area.

Reporting Mode:

DDM Program

In structured mode, however, each database field to be used must be specified in a DEFINE DATA statement (as
described in the sectiomefining FieldsandDatabase Acceps

184 Copyright © Software AG 2002

Reporting Mode and Structured Mode Database Reference

Structured Mode:

DDM Program

Copyright © Software AG 2002 185

Portable Natural Generated Programs Portable Natural Generated Programs

Portable Natural Generated Programs

As of Natural Version 5, Natural generated programs (GPs) are portable across the platforms UNIX, OpenVMS
and Windows.

This document covers the following topics:

Compatibility
Endian Mode Considerations
ENDIAN Parameter

[J
[J
[J
e Transferring Natural Generated Programs

Compatibility

A GP which is cataloged with Natural Version 5 on any Natural-supported UNIX, OpenVMS and Windows
platform is then executable with Natural Version 5 on these platforms without recompilation. This feature
simplifies the deployment of applications across open systems platforms.

Natural applications generated with Natural Version 4 or Natural Version 3 can be executed with Natural
Version 5 without cataloging the applications again (upward compatibility). In this case, the portable GP
functionality is not available. To make use of the portable GP and other improvements, cataloging with Natural
Version 5 is required.

Command processor GPs and Natural Expert GPs are not portable. The portable GP feature is not available for
mainframe platforms. This means that Natural GPs which are generated on mainframe computers are not
executable on UNIX, OpenVMS and Windows platforms without recompilation and vice versa.

Endian Mode Considerations

Depending on which UNIX, OpenVMS or Windows platform Natural Version 5 is running, Natural Version 5
will consider the byte order in which multi-byte numbers are stored in the GP. The two byte order modes are
called "Little Endian" and "Big Endian".

e "Little Endian" means that the low-order byte of the number is stored in memory at the lowest address, and
the high-order byte at the highest address (the little end comes first).

® "Big Endian" means that the high-order byte of the number is stored in memory at the lowest address, and
the low-order byte at the highest address (the big end comes first).

The UNIX, OpenVMS and Windows platforms use both endian modes: Intel processors and AXP computers
(Natural on Windows or OpenVMS) have "Little Endian" byte order and HP machines have "Big Endian" mode.

Natural Version 5 converts a portable GP automatically into the Endian mode of the execution platform if
necessary. This endian conversion is not performed if the GP is already generated in the endian mode of the
platform.

ENDIAN Parameter

In order to increase execution performance of portable GPs, the profile paraMBt&N has been introduced.
ENDIAN determines the Endian mode in which a GP is generated during compilation:

186 Copyright © Software AG 2002

Portable Natural Generated Programs Transferring Natural Generated Programs

DEFAULT | The endian mode of the machine on which the GP is genegrated.

BIG Big endian mode (high order byte first).

LITTLE Little endian mode (low order byte first).

The values DEFAULT, BIG and LITTLE are alternatives whereby the default value is DEFAULT.
The ENDIAN mode parameter may be set

® as a profile parameter with the Natural Configuration Utility,
® as a start-up parameter,
® as a session parameter or with the GLOBALS command.

Transferring Natural Generated Programs

To make use of the portable GP on different platforms (UNIX, OpenVMS, Windows), the generated Natural
objects must be transferred to the target platform or must be accessible from the target platform, for example, via
NFS.

Using the Object Handl&8YSOBJHSYSOBJH is the recommended way to distribute Natural generated objects
or even entire Natural applications. This is done by unloading the objects in the source environment into a work
file, transferring the work file to the target environment and loading the objects from the work file.

» To deploy your Natural generated objects across open systems platforms

1. Start the Natural Object Handler.
Unload all necessary cataloged objects into a work file of type "portable”.
Error messages, if needed, can also be unloaded to the work file.
Important:
The specified work file type must be portable. PORTABLE performs an automatic Endian conversion of a
work file when it is transferred to a different machine.
See alsWork File Typein the section Define Work File in the Natural Statements documentation.

2. Transfer the work file to the target environment.
Depending on the transfer mechanism (network, CD, diskette, tape, email, download, etc.), the use of a
compressed archive such as a ZIP file or encoding with UUENCODE/UUDECODE or similar may make
sense. Copying via FTP requires binary transfer type.
Note:
According to the transfer method used, it may be necessary to adjust the record format and attributes or
block size of the transferred work file depending on the specific target platform, before continuing with the
load function. The work file should have the same format and attributes on the target platform as a work file
of the same type that was generated on the target platform itself. Use operating system tools if an adaptation
is necessary.

3. Start the Natural Object Handler in the target environment.
Select portable as work file type.
Load the Natural Objects and error messages from the work file.

For more details on how to use the Natural Object Handler, refer 8®¥tB®BJHSYSOBJH utility
documentation.

Beside the aforementioned preferred method, there are various other ways of "moving" or copying single Natural
generated objects or even entire libraries or parts thereof, using operating system tools and different transfer
methods. In all of these cases, to make the objects executable by Natural, they have to be imported into the
Natural system fil&EUSERso that the FILEDIR.SAG structure is adapted.

Copyright © Software AG 2002 187

Transferring Natural Generated Programs Portable Natural Generated Programs

This can be done with either of the following methods:

® Using the Import function of th8YSMAIN utility.
® Using theFTOUCH utility.
This utility can be used without entering Natural.

The same applies when direct access is possible from a target platform to the generated objects in the source
environment, for example, via NSF, network file server, etc. In this case, the objects have to be imported, too.

Note:
With Natural Version 5.1, it is not yet supported to share a common FNAT or FUSER system file among
different open system platforms. The FILEDIR.SAG file is not yet platform-independent.

188 Copyright © Software AG 2002

	Cover Page
	page 2

	Table of Contents
	Programming Guide - Overview
	Defining Fields
	DEFINE DATA Statement
	Structure of a DEFINE DATA Statement - Level Numbers
	Level Numbers in View Definitions
	Level Numbers in Field Groups
	Level Numbers in Redefinitions

	User-Defined Variables
	Names of User-Defined Variables
	Format and Length of User-Defined Variables

	User-Defined Constants
	Numeric Constants
	Alphanumeric Constants
	Date and Time Constants
	Hexadecimal Constants
	Logical Constants
	Floating Point Constants
	Attribute Constants
	Defining Named Constants

	Initial Values
	Default Initial Values
	The RESET Statement

	Redefining Fields
	Arrays
	Defining Arrays
	Initial Values for Arrays
	Assigning Initial Values to One-Dimensional Arrays
	Assigning Initial Values to Two-Dimensional Arrays
	Assigning the Same Value
	Assigning Different Values

	A Three-Dimensional Array
	Arrays as Part of a Larger Data Structure
	Database Arrays
	Using Arithmetic Expressions in Index Notation
	Arithmetic Support for Arrays

	Data Blocks
	Defining Data Blocks
	Block Hierarchies

	Database Access
	DDMs †Data Definition Modules‡
	Displaying a DDM
	Components of a DDM

	Database Arrays
	Multiple-Value Fields
	Periodic Groups
	Referencing Multiple-Value Fields and Periodic Groups
	Multiple-Value Fields Within Periodic Groups
	Referencing Multiple-Value Fields Within Periodic Groups
	Referencing the Internal Count of a Database Array

	DEFINE DATA Views
	Statements for Database Access
	READ Statement
	Syntax
	Limiting the Number of Records to be Read
	The STARTING/ENDING Clauses
	The WHERE Clause

	FIND Statement
	Syntax
	Limiting the Number of Records to be Processed
	The WHERE Clause
	IF NO RECORDS FOUND Condition

	HISTOGRAM Statement
	Syntax
	Limiting the Number of Values to be Read
	The STARTING/ENDING Clauses
	The WHERE Clause

	Database Processing Loops
	Hierarchies of Processing Loops

	Database Update - Transaction Processing
	Logical Transaction
	Record Hold Logic
	Backing Out a Transaction
	Restarting a Transaction

	Statements ACCEPT and REJECT
	AT START/END OF DATA Statements

	Output of Data
	Layout of an Output Page - Overview
	Statements DISPLAY and WRITE
	DISPLAY Statement
	WRITE Statement
	Column Spacing - The SF Parameter and the nX Notation
	Tab Setting - The nT Notation
	Line Advance - The / Notation

	Index Notation †n:n‡ for Multiple-Value Fields and Periodic Groups
	Page Titles and Page Breaks
	Default Page Title
	Suppress Page Title - The NOTITLE Option
	Define Your Own Page Title - The WRITE TITLE Statement
	Logical Page and Physical Page
	Page Size - The PS Parameter
	Page Advance - The EJ Parameter
	Page Advance - The EJECT and NEWPAGE Statements
	EJECT/NEWPAGE WHEN LESS THAN n LINES LEFT
	NEWPAGE WITH TITLE
	Page Trailer - The WRITE TRAILER Statement
	AT TOP OF PAGE Statement
	AT END OF PAGE Statement

	Column Headers
	Default Column Headers
	Suppress Default Column Headers - The NOHDR Option
	Define Your Own Column Headers
	Combining NOTITLE and NOHDR
	Centering of Column Headers - The HC Parameter
	Width of Column Headers - The HW Parameter
	Filler Characters for Headers - The Parameters FC and GC
	Underlining Character for Titles and Headers - The UC Parameter
	Suppressing Column Headers - The Notation '/'

	Parameters to Influence the Output of Fields
	Leading Characters - The LC Parameter
	Insertion Characters - The IC Parameter
	Trailing Characters - The TC Parameter
	Output Length - The AL and NL Parameters
	Sign Position - The SG Parameter
	Identical Suppress - The IS Parameter
	Zero Printing - The ZP Parameter
	Empty Line Suppression - The ES Parameter

	Edit Masks - The EM Parameter
	Edit Masks for Numeric Fields
	Edit Masks for Alphanumeric Fields
	Length of Fields
	Edit Masks for Date and Time Fields
	Examples of Edit Masks

	Vertical Displays
	Combining DISPLAY and WRITE
	Tab Notation T*field
	Positioning Notation x/y
	DISPLAY VERT Statement
	DISPLAY VERT without AS Clause
	DISPLAY VERT AS CAPTIONED and HORIZ
	DISPLAY VERT AS text
	DISPLAY VERT AS text CAPTIONED
	Tab Notation P*field

	Object Types
	What Types of Programming Objects Are There?
	Data Areas
	Local Data Area
	Global Data Area
	When are Global Data Areas Initialized?

	Parameter Data Area

	Programs, Subprograms and Subroutines
	A Modular Application Structure
	Multiple Levels of Invoked Objects
	Program
	Subroutine
	Data Available to an Inline Subroutine
	Data Available to an External Subroutine

	Subprogram
	Data Available to a Subprogram

	Processing Flow when Invoking a Routine

	Maps
	Helproutines
	Invoking Help
	Specifying Helproutines
	Programming Considerations for Helproutines
	Passing Parameters to Helproutines
	Equal Sign Option
	Array Indices
	Help as a Window

	Multiple Use of Source Code - Copycode
	Documenting Natural Objects - Text
	Creating Event Driven Applications - Dialog
	Creating Component Based Applications - Class
	Using Non-Natural Files - Resource
	Shared Resources
	Example - Using a shared resource:

	Private Resources
	Example - Private resources:

	Further Programming Aspects
	End of Program - The END Statement
	End of Application - The STOP Statement
	Conditional Processing - The IF Statement
	Nested IF Statements

	Loop Processing
	Limiting Database Loops
	LT Session Parameter
	LIMIT Statement
	Limit Notation

	Limiting Non-Database Loops - The REPEAT Statement
	Terminating a Processing Loop - The ESCAPE Statement
	Loops Within Loops
	Referencing Statements within a Program

	Control Breaks
	AT BREAK Statement
	Control Break Based on a Database Field
	Control Break Based on a User-Defined Variable
	Multiple Control Break Levels

	Automatic Break Processing
	BEFORE BREAK PROCESSING Statement
	User-Initiated Break Processing - The PERFORM BREAK PROCESSING Statement

	Data Computation
	Format of Fields
	COMPUTE Statement
	Statements MOVE and COMPUTE
	Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
	COMPRESS Statement
	Mathematical Functions

	System Variables and System Functions
	System Variables
	System Functions

	Stack
	Stack Processing
	Placing Data in the Stack
	STACK Parameter
	STACK Statement
	FETCH and RUN Statements

	Clearing the Stack

	Processing of Date Information
	Edit Masks for Date Fields and Date System Variables
	Default Edit Mask for Date - The DTFORM Parameter
	Date Format for Alphanumeric Representation - The DF Parameter
	Date Format for Output - The DFOUT Parameter
	Date Format for Stack - The DFSTACK Parameter
	Year Sliding Window - The YSLW Parameter
	Combinations of DFSTACK and YSLW
	Date Format for Default Page Title - The DFTITLE Parameter

	Reporting Mode and Structured Mode
	General Information
	Setting the Programming Mode
	Functional Differences
	Closing a Processing Loop in Reporting Mode
	Closing a Processing Loop in Structured Mode
	Database Reference

	Portable Natural Generated Programs
	Compatibility
	Endian Mode Considerations
	ENDIAN Parameter
	Transferring Natural Generated Programs

