
Using Tables in Frame Gallery
The following topics are covered below:

Using Tables
Creating Help for Table Data
Creating an Access Module for a Table
Creating a User Exit for Single-object Processing

Using Tables
Codes are frequently used in applications to shorten input and/or to guarantee the uniqueness of the texts or names
allocated to these codes. These codes are generally stored in tables. Tables can also be used, for example, to make
multiple-language texts available.

These tables are rarely modified, for example:

Status table:
1 = in development
2 = in test
3 = released
Country table:
D = Germany
CH = Switzerland

Even a currency table which is updated daily is considered a table in this context.

No special actions, for example, bookings or calculations, are carried out on table data. Only maintenance functions,
such as "add", "modify" and "delete", are necessary to update the content.

Otherwise, the table data are used only for display, for validation or as a basis for calculations when processing other
objects.

The following topics are covered below:

Criteria for Defining a Table
Maintenance Functions for Tables
Access to Table Data
Selection Help for Table Data

1Copyright Software AG 2001

Using Tables in Frame GalleryUsing Tables in Frame Gallery

Criteria for Defining a Table

To define an entity as an application shell table, the following criteria must be met:

There are at most 50 fields, including the table keys.
There are alphanumeric and numeric key fields.
There can be up to four keys.
The table key can consist of up to five components.
No numeric field is longer than 27 digits.
No alphanumeric field is longer than 240 characters.
The table key is not longer than 30 characters.
Processing is limited to the maintenance functions Add, Modify, Display and Delete.

Maintenance Functions for Tables

Tables of the kind described above can be defined and maintained with the help of the application shell table
administration system.

No file must be created, and the implementation of maintenance functions is also not necessary. All necessary
maintenance functions are available immediately after the definition of the table in the application shell.

If special validation is necessary for the processing of the table data, the user exit of the table-administration system
can be used to call specific processing for the table.

How to create tables is described in the Natural Application Shell Manual.

Access to Table Data

To access table data from your application functions, access modules are available, which are described in section
Creating an Access Module for a Table.

Selection Help for Table Data

A module for carrying out selection help through table keys, is available. This module is parameter driven and is
callable from any application dialog function.

Copyright Software AG 20012

Using Tables in Frame GalleryCriteria for Defining a Table

Creating Help for Table Data
Input for a function must often be validated against a table. Active help in the form of a selection table ensures that
the end user enters a valid value.

To link selection help for table data into a dialog, you have to code the call to the selection help and the receipt of the
selected value.

For integration of a selection help for table data in an individual dialog, you must code the call of the selection help
and the receipt of the selected value.

Define the following local variables:

 1 #REF_TAB_SEL_INFO (A65)
 1 REDEFINE # REF_TAB_SEL_INFO
 2 #REF_TAB_CLIENT_ID (A2)
 2 #REF_TAB_ID (A12)
 2 #REF_TAB_DESC_NUM (N1)
 2 #REF_TAB_VALUE (A30)

Invoke the selection help using the following suggested code:

 MOVE LZ_KEY_TYPE_FOREIGN TO LZ_KEY_TYPE
 *
 MOVE client ID TO #REF_TAB_CLIENT_ID
 MOVE table ID TO #REF_TAB_ID
 MOVE descriptor number TO #REF_TAB_DESC_NUM
 MOVE field value TO #REF_TAB_VALUE
 MOVE #REF_TAB_SEL_INFO TO PZ_LOCAL.PZ_SEL_KEY
 *
 OPEN DIALOG ’ZCAKDFD’ #DLG$WINDOW WITH PZ_LOCAL

Receive the selected value in customizable component Z_RECEIVE_KEY:

 MOVE PZ_RECEIVE.PZ_SEL_KEY TO #REF_TAB_SEL_INFO
 MOVE #REF_TAB_VALUE TO ...

3Copyright Software AG 2001

Creating Help for Table DataUsing Tables in Frame Gallery

Creating an Access Module for a Table
The interface of the general access module for table data is large and complex. It is therefore useful - in order to
access table data from a business function - to create an access module especially designed for a single table, which
returns the required fields, and is easy to use.

The following steps are recommended:

1. Use an existing module as basis.
2. Save it under a different name.

Do not modify the example module.

The following naming convention is used for access modules:

xxxAS00y

where xxx is the object code and y is the Natural object type.

Example Library Save as

ZXFCAS0A (PDA) SYSCOMP xxxAS00A (as parameter data area)

ZXFCAS0N (Text) SYSCOMP xxxAS00N (as subprogram)

ZXFCAS0D (Dialog) SYSCOMP xxxAS00D (as dialog)

Parameter Data Area

Enter the fields for the table using exact formats and lengths.

Warning:
You must not modify the field P_PTS nor the lengths of the key fields.

Subprogram

Complete the place holder for parameter data area, field names, table names, client ID and language code according
to the instructions in the subprogram.

Copyright Software AG 20014

Using Tables in Frame GalleryCreating an Access Module for a Table

Dialog

The dialog can be used to test the subprogram.

Include the parameter data area you have just created (see section Parameter Data Area) into the local data definition.

Adapt the user interface as follows:

include an input field for each table field
link the input field via linked variables to the corresponding variable from the parameter data area
specify a text constant for each input field.

Warning:
Do not modify any other fields on the mask, particularly the PTS field.

Complete the subroutine Z_ACCESS, i.e. include the name of your subprogram and the respective parameters.

Testing Further Database Operations

Copy an existing push button or modify the push button label.

Modify the operation code PZ_AS_OPERATION in the click event for the push button.

If necessary, you can rename the label of an existing push button.

5Copyright Software AG 2001

Testing Further Database OperationsUsing Tables in Frame Gallery

Creating a User Exit for Single-object Processing
The table administration system contains a number of standard validations. Individual validations can be executed
via this user exit.

It can also be used for data conversions.

Invoking the User Exit
Creating the User Exit

Invoking the User Exit

The user exit is invoked twice:

immediately before accessing the table data, and
immediately after invoking access to the table data.

Creating the User Exit

Use an existing module as a basis.

Save it under a different name.

Warning:
Do not modify the basis module.

The following naming convention is used for access modules:

xxxAS00y

where xxx is the object code and y is the Natural object type.

Basis Library Save as

ZXFCAS0A (PDA) SYSCOMP xxxAS00A (as parameter data area)

ZXFCAS1N (Text) SYSCOMP xxxAS00N (as subprogram)

Parameter Data Area

Enter the fields for the table using exact formats and lengths.

Warning:
Do not modify the field P_PTS or the length of the key ID fields.

Copyright Software AG 20016

Using Tables in Frame GalleryCreating a User Exit for Single-object Processing

Subprogram

Complete the place holder for the parameter data area, field names, table names, client ID and language code
according to the instructions in the subprogram.

Warning:
Do not modify variables beginning with PZ_AS, etc.

The following variables are exceptions and may be modified:

PZ_AS_RSP,
PZ_AS_MSG(*)
PZ_AS_FLD_POS must be set with P_XXX_<field-name>_POS in the case of an error.

The contents of your data fields are in the variables P_xxxx of the parameter data area xxxAS00A.

To control when a job is executed, use the variables LZ_AFTER_ACCESS and LZ_BEFORE_ACCESS.

LZ_BEFORE_ACCESS is used before the table data is accessed.

LZ_AFTER_ACCESS is used after the table data is accessed, immediately before data output.

The following operation codes can be used for job control:

LZ_XA_STORE
LZ_XA_UPDATE
#ZCA_DEL_DESC_i(i=1...4)
#ZCA_READ_BY_DESC_ i(i=1...4)

Note:
Transfer the contents of P_xxxx into the internal format only when you have modified data.

7Copyright Software AG 2001

Creating the User ExitUsing Tables in Frame Gallery

	Using Tables in Frame Gallery
	Using Tables
	Criteria for Defining a Table
	Maintenance Functions for Tables
	Access to Table Data
	Selection Help for Table Data

	Creating Help for Table Data
	Creating an Access Module for a Table
	Testing Further Database Operations

	Creating a User Exit for Single-object Processing
	Invoking the User Exit
	Creating the User Exit

