
Entire System Server At Work - Examples
This section covers the following topics:

General Information
IEBCOPY Utility
Disc Maintenance
File Maintenance
Job Handling
Spool File Handling
Imagination Is the Limit

General Information
The principle of operation behind the Entire System Server is surprisingly simple.

Just as a Natural program would access conventional data, Entire System Server views can be called from a Natural
program using the Natural statements Process or Find, depending on the view involved. Just as a database identifier
is required for a standard call to a database, the call to the Entire System Server is identified by a node number.

The Entire System Server recognizes the node number and processes the call, returning the requested operating
system service or information to the program. Each operating system in the computer network is identified by the
node number, thus enabling access to any system from anywhere within the network.

This section illustrates the use of the Entire System Server with some example program coding. The examples
illustrate how simple, easy-to-write Natural programs can be used to display system information on the terminal
screen, requiring only a minimum of input from the user. However, this is not the only use of the Entire System
Server.

The examples should be seen as a starting point for more powerful applications that can process system information
automatically, invisible to the user.

IEBCOPY Utility
In OS/390 systems, the IEBCOPY utility can be invoked using only a few lines of code in a Natural program:

*
 * The INPUT statement is a standard Natural statement which
 * defines a map that is displayed on the terminal screen when the
 * program is run. The map prompts the user to specify the source * member to be
 copied and the destination member:
 *
 INPUT // ’ Input Dsname ...:’ IEBCOPY.IN-DSNAME
 / ’ Volser:’ IEBCOPY.IN-VOLSER
 // ’ Output Dsname ..:’ IEBCOPY.OUT-DSNAME
 / ’ Volser:’ IEBCOPY.OUT-VOLSER
 // ’ Member:’ IEBCOPY.IN-MEMBER
 / ’ New Name:’ IEBCOPY.OUT-MEMBER
 // ’ Replace:’ IEBCOPY.REPLACE ’(yes/no)’

1Copyright Software AG 2003

Entire System Server At Work - ExamplesEntire System Server At Work - Examples

*
 * The PROCESS statement calls the IEBCOPY utility via the
 * Entire System Server view IEBCOPY to perform the copy
 * operation.
 * The NODE variable is used if the destination member resides on
 * a different node:
 *

 PROCESS IEBCOPY USING IN-DSNAME = IEBCOPY.IN-DSNAME
 , OUT-DSNAME = IEBCOPY.OUT-DSNAME
 , IN-MEMBER = IEBCOPY.IN-MEMBER
 , OUT-MEMBER = IEBCOPY.OUT-MEMBER
 , REPLACE = IEBCOPY.REPLACE
 , NODE = ##NODE

 * In case of an error, the user can be reprompted with the input
 * map and an error message:

 IF ERROR-CODE > 0
 REINPUT ERROR-TEXT
 END-IF

Running such a simple Natural program results in the following online prompt:

 IEBCOPY utility

 Input Dsname ...: __
 Volser: ______

 Output Dsname ..: __
 Volser: ______

 Member: __________
 New Name: __________

 Replace: ___ (yes/no)

All the user has to do is fill in the required information and press Enter to perform the copy operation for example:

Copyright Software AG 20032

Entire System Server At Work - ExamplesIEBCOPY Utility

 IEBCOPY utility

 Input Dsname ...: MY.OLD.DATASET__
 Volser: ______

 Output Dsname ..: MY.NEW.DATASET___
 Volser: ______

 Member: OLDNAME____
 New Name: NEWNAME____

 Replace: ___ (yes/no)

By running such a simple Natural program, operating system utilities can be used without any special knowledge of
utility-specific syntax on the part of the user.

Disc Maintenance
Example 1
Example 2

Example 1:

The following example program allows the user to perform certain disk maintenance functions in any operating
system environment:

....
 * When this program is run, the user is presented with the map
 * defined by the following INPUT statement. Possible functions to * maintain a
 catalog entry are: RENAME, SCRATCH, PURGE:
 *
 INPUT // ’ Function ..:’ VTOC-UPDATE.FUNCTION
 // ’ Volume:’ VTOC-UPDATE.VOLSER
 / ’ Dsname:’ VTOC-UPDATE.DSNAME
 // ’ New Name ..:’ VTOC-UPDATE.NEWNAME

 *
 * The disc is accessed by addressing the corresponding fields on * the view
 VTOC-UPDATE using the PROCESS statement. Within a
 * multi-CPU environment, the NODE variable allows the program to * access the
 disc on another computer:
 *
 PROCESS VTOC-UPDATE USING NODE = ##NODE
 , DSNAME = VTOC-UPDATE.DSNAME
 , VOLSER = VTOC-UPDATE.VOLSER
 , FUNCTION = VTOC-UPDATE.FUNCTION
 , NEWNAME = VTOC-UPDATE.NEWNAME

3Copyright Software AG 2003

Disc MaintenanceEntire System Server At Work - Examples

Again, this example shows that no special knowledge of operating system structures is required to write and use such
a program; indeed, the same program can be used in different operating systems.

Example 2:

The following example shows how a Natural program can retrieve storage unit information and display it to the user.
This example is taken from an OS/390 environment:

...
 *
 * The FIND statement addresses the view UNIT-ATTRIBUTES to read
 * the desired device. The NODE parameter is used when reading the
 * information from a different machine within the computer
 * network:
 *
 FIND UNIT-ATTRIBUTES WITH CLASS = ’DASD’
 AND NODE = ##NODE

 *
 * Using the DISPLAY statement, the output is presented to the
 * user when the program is run:
 *
 DISPLAY (ZP=OFF)
 ’Unit/Adr’ UNIT-ATTRIBUTES.UNIT
 ’Unit/Type’ SERIES
 ’avail./Unit’ DEVICE-STATUS
 ’OPEN/DCB’’S’ DCB-COUNT
 5X
 ’mounted/Volume’ VOLSER
 ’mount/Attributes’ MOUNT-STATUS
 ’avail./of Volume’ VOLUME-STATUS
 ’FREE/CYL’ FREE-CYLINDERS
 ’FREE/TRACKS’ FREE-TRACKS
 ’FREE/EXTENTS’ FREE-EXTENTS
 ADD 1 TO #NUMBER
 END-FIND
 ...

Running the program with the above code produces output similar to the following:

Unit Unit avail. OPEN mounted mount avail. FREE FREE FREE
 Adr Type Unit DCB’S Volume Attributes of Volume CYL TRACKS EXTENTS
 ---- ------ ------- ----- ------- ---------- --------- ----- ------ -------
 300 3380 ONLINE 102 SYSF06 RESIDENT PRIVATE 367 50 20
 310 3380 ONLINE 9 NAT002 RESIDENT PRIVATE 70 138 48
 320 3380 ONLINE 5 NDM001 RESIDENT PRIVATE 96 13 16
 330 3380 ONLINE 65 XKGSD1 RESIDENT PRIVATE 293 280 58
 350 3380 ONLINE 21 USR8A6 RESIDENT STORAGE 140 1080 236
 360 3380 ONLINE 7 DCN002 RESIDENT PRIVATE 131 19
 370 3380 ONLINE 55 DBDC06 RESIDENT PRIVATE 1018 63 19
 380 3380 ONLINE 6 EUP003 RESIDENT PRIVATE 29 141 23

Copyright Software AG 20034

Entire System Server At Work - ExamplesDisc Maintenance

File Maintenance
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6

The file maintenance group of views allow users to allocate files, display file information, and rename, delete or
copy files using small Natural programs.

Example 1:

The following example works in an OS/390 and BS2000/OSD environment. The program prompts the user for the
name of a dataset to be compressed (in BS2000/OSD terms, unused space to be released).

 *
 * The prompt is defined using the INPUT statement, allowing the
 * user to specify the dataset to be compressed:
 *
 INPUT // ’ Dataset ...:’ FILE-MAINTENANCE.DSNAME
 / ’ Volume:’ FILE-MAINTENANCE.VOLSER
 *
 * Compression is performed by addressing the FILE-MAINTENANCE
 * view using the PROCESS statement.
 * The NODE parameter must be used
 * when compressing a dataset that resides on a different node within
 * the computer network:
 *
 PROCESS FILE-MAINTENANCE USING FUNCTION=’COMPRESS’
 , DSNAME = FILE-MAINTENANCE.DSNAME
 , VOLSER = FILE-MAINTENANCE.VOLSER
 , NODE = ##NODE

Libraries can thus be maintained easily using only a few lines of Natural code.

Example 2:

The following example shows how a simple Natural program can perform a file transfer operation from one
VSE/ESA system to another in a network. Note that in this example, up to three Entire System Server nodes are
involved: the program runs on one machine, but can copy a file residing on a second machine to a third machine
within the computer network.

5Copyright Software AG 2003

File MaintenanceEntire System Server At Work - Examples

*
 * The INPUT statement defines an input mask to be displayed
 * when the program is run, in which the user can specify the
 * source and target datasets.
 * The NODE parameter specifies the node, if
 * different from the node on which the program runs.
 *
 INPUT // ’ Dataset...:’ COPY-FILE.FROM-DSNAME
 / ’ Sublib....:’ COPY-FILE.FROM-SUB-LIBRARY
 / ’ Member typ:’ COPY-FILE.FROM-MEMBER-TYPE
 / ’ Member....:’ COPY-FILE.FROM-MEMBER
 / ’ Volser....:’ COPY-FILE.FROM-VOLSER
 / ’ Node......:’ COPY-FILE.FROM-NODE
 // ’ to’ (I)
 // ’ Dataset...:’ COPY-FILE.TO-DSNAME
 / ’ Sublib....:’ COPY-FILE.TO-SUB-LIBRARY
 / ’ Member typ:’ COPY-FILE.TO-MEMBER-TYPE
 / ’ Member....:’ COPY-FILE.TO-MEMBER
 / ’ Volser....:’ COPY-FILE.TO-VOLSER
 / ’ Node......:’ COPY-FILE.TO-NODE
 / ’ Replace...:’ #REPLACE

 *
 * The copy operation is performed by the PROCESS call to the
 * COPY-FILE view, specifying the source and target dataset
 * characteristics:
 *
 PROCESS COPY-FILE USING FROM-DSNAME = COPY-FILE.FROM-DSNAME
 , FROM-SUB-LIBRARY = COPY-FILE.FROM-SUB-LIBRARY
 , FROM-MEMBER-TYPE = COPY-FILE.FROM-MEMBER-TYPE
 , FROM-MEMBER = COPY-FILE.FROM-MEMBER
 , FROM-VOLSER = COPY-FILE.FROM-VOLSER
 , FROM-NODE = COPY-FILE.FROM-NODE
 , TO-DSNAME = COPY-FILE.TO-DSNAME
 , TO-SUB-LIBRARY = COPY-FILE.TO-SUB-LIBRARY
 , TO-MEMBER-TYPE = COPY-FILE.TO-MEMBER-TYPE
 , TO-MEMBER = COPY-FILE.TO-MEMBER
 , TO-VOLSER = COPY-FILE.TO-VOLSER
 , TO-NODE = COPY-FILE.TO-NODE
 , NODE = ##NODE
 , REPLACE = #REPLACE ’(Yes/No)’

Example 3:

The following example shows how a simple Natural program can be used to perform a file transfer operation from an
OS/390 to a VSE/ESA node in a network:

Copyright Software AG 20036

Entire System Server At Work - ExamplesFile Maintenance

...
 *
 * The INPUT statement defines an input mask to be displayed
 * when the program is run, in which the user can specify the
 * source and target datasets.
 *
 INPUT // ##TITLE (AD=OI IP = OFF)
 // ’ Dataset...:’ COPY-FILE.IN-DSNAME
 / ’ Member....:’ COPY-FILE.IN-MEMBER
 / ’ Volser....:’ COPY-FILE.IN-VOLSER
 / ’ Node......:’ COPY-FILE.IN-NODE
 // ’ to’ (I)
 // ’ Dataset...:’ COPY-FILE.OUT-DSNAME
 / ’ Sublib....:’ COPY-FILE.OUT-SUB-LIBRARY
 / ’ Member typ:’ COPY-FILE.OUT-MEMBER-TYPE
 / ’ Member....:’ COPY-FILE.OUT-MEMBER
 / ’ Volser....:’ COPY-FILE.OUT-VOLSER
 / ’ Node......:’ COPY-FILE.OUT-NODE
 // ’ Replace...:’ #REPLACE

 *
 * The copy operation is performed by the PROCESS call to the
 * COPY-FILE view, specifying the source and target dataset
 * characteristics. The different operating systems involved in
 * the copy operation are identified by the node number:
 *
 PROCESS COPY-FILE USING IN-DSNAME = COPY-FILE.IN-DSNAME
 , IN-MEMBER = COPY-FILE.IN-MEMBER
 , IN-VOLSER = COPY-FILE.IN-VOLSER
 , IN-NODE = COPY-FILE.IN-NODE
 , OUT-DSNAME = COPY-FILE.OUT-DSNAME
 , OUT-SUB-LIBRARY = COPY-FILE.OUT-SUB-LIBRARY
 , OUT-MEMBER-TYPE = COPY-FILE.OUT-MEMBER-TYPE
 , OUT-MEMBER = COPY-FILE.OUT-MEMBER
 , OUT-VOLSER = COPY-FILE
 , OUT-NODE = COPY-FILE.OUT-NODE
 , REPLACE = #REPLACE
 , NODE = ##NODE

Comparing this example with the previous one, note how similar the syntax to perform the file transfer is, even
though the second example involves a different operating system. No special system-specific knowledge is required
on the part of the programmer. All required information is provided by the Entire System Server’s logical view of the
operating systems involved, and standard sample programs are easily and quickly modified to access specific system
information and services in heterogeneous networks.

Example 4:

The following example program displays a library directory according to specified characteristics:

7Copyright Software AG 2003

File MaintenanceEntire System Server At Work - Examples

 ...
 *
 * The INPUT statement defines an input mask in which the user can
 * specify member characteristics according to which the directory * is to be
 composed:
 *
 INPUT // ’ Dataset...........:’ LIB-DIRECTORY.DSNAME
 / ’ Element...........:’ LIB-DIRECTORY.ELEMENT
 / ’ -type.............:’ LIB-DIRECTORY.ELEMENT-TYPE
 / ’ -version..........:’ LIB-DIRECTORY.ELEMENT-VERSION

 *
 * The requested information is provided by the
 * view LIB-DIRECTORY, called with the FIND statement.
 * The node number specifies the operating system in the computer * network from
 which the information is to be read:
 *
 FIND LIB-DIRECTORY WITH NODE = 31
 AND DSNAME = LIB-DIRECTORY.DSNAME
 AND ELEMENT = LIB-DIRECTORY.ELEMENT
 AND ELEMENT-TYPE = LIB-DIRECTORY.ELEMENT-TYPE
 AND ELEMENT-VERSION = LIB-DIRECTORY.ELEMENT-VERSION

 *
 * The DISPLAY statement is used to present the desired
 * information to the user at his terminal:
 *
 *
 DISPLAY LIB-DIRECTORY.ELEMENT-TYPE (AL=1)
 LIB-DIRECTORY.ELEMENT (AL=40)
 LIB-DIRECTORY.ELEMENT-VERSION (AL=10)
 END-FIND

Example 5:

The following example illustrates the use of a Natural program to copy all files with a certain prefix and suffix as list
elements (type P) to an LMS library in a BS2000/OSD system:

Copyright Software AG 20038

Entire System Server At Work - ExamplesFile Maintenance

....
 *
 * An INPUT statement defines the input mask in which the user
 * specifies the target LMS library, as well as the search
 * criteria prefix and suffix. The replace option is used to
 * specify whether datasets of the same name in the target
 * library are to be overwritten.
 *
 INPUT (AD=MI’_’) ’NAME OF LMS LIBRARY:’ #LMS-LIB
 ’PREFIX...................:’ #PREFIX
 ’SUFFIX...................:’ #SUFFIX
 ’REPLACE..................:’ #REPLACE

 *
 * The names of the datasets to be searched consist of three
 * parts: the prefix, element, and suffix. For the search
 * operation, they can be compressed into one string, where the
 * wildcard symbol asterisk (*) selects any element:....
 *
 COMPRESS #PREFIX ’*’ #SUFFIX INTO #DSNAME LEAVING NO SPACE

 *
 * All the datasets matching the search criteria are selected using
 * the CATALOG view:
 *
 FIND CATALOG WITH NODE = #NODE
 AND DSNAME = #DSNAME

 *
 * The parts of the dataset name, compressed into DSNAME, are now
 * separated:
 *
 MOVE CATALOG.DSNAME TO #DSNAME
 EXAMINE #DSNAME FOR #PREFIX AND REPLACE WITH ’*’/* NOT IN DSNAME
 EXAMINE #DSNAME FOR #SUFFIX AND REPLACE WITH ’*’
 SEPARATE #DSNAME INTO #DSNAME-PARTS(*) WITH DELIMITER ’*’
 MOVE #DSNAME-PARTS(2) TO #ELEMENT
 MOVE CATALOG.DSNAME TO #DSNAME

*
 * The datasets can now be copied using the COPY-FILE view:
 *
 PROCESS COPY-FILE USING NODE = #NODE
 , FROM-DSNAME = #DSNAME
 , TO-DSNAME = #LMS-LIB
 , TO-PRODUCT = ’M’
 , TO-ELEMENT = #ELEMENT
 , TO-ELEMENT-TYPE = ’P’
 , REPLACE = #REPLACE
 END-FIND

Example 6:

The following example is taken from a simple Natural program to print a file.

9Copyright Software AG 2003

File MaintenanceEntire System Server At Work - Examples

....
 *
 * When the program is run, the user is prompted for details of
 * the dataset to be printed by the input mask defined by the INPUT
 * statement:
 *
 INPUT /’NAME OF FILE TO PRINT......: ’ #FILENAME
 /’SPACE-PARAMETER............: ’ #CONTROL ’(E OR BLANK)’
 / ’JOB-NAME.................: ’ #JOB-NAME
 / ’DEVICE...................: ’ #DEVICE
 / ’STARTNO..................: ’ #STARTNO
 / ’ENDNO....................: ’ #ENDNO

 *
 * Printing is performed by the call to the WRITE-SPOOL view:
 *
 PROCESS WRITE-SPOOL USING NODE = #NODE
 , DSNAME = #FILENAME
 , JOB-NAME = #JOB-NAME
 , CONTROL = #CONTROL
 , DEVICE = #DEVICE
 , STARTNO = #STARTNO
 , ENDNO = #ENDNO

Job Handling
Example 1
Example 2

The Entire System Server provides a number of views that allow users to retrieve system information from a Natural
program. Views are available for display of address space, main storage, as well as active tasks.

Example 1:

The following lines of Natural code call the ACTIVE-JOBS view and specify the information items required for
display. The example can be used in an OS/390, FACOM, VSE/ESA and BS2000/OSD system. The NODE
parameter is used to access a different machine in the computer network.

 FIND ACTIVE-JOBS WITH NODE = ##NODE
 AND JOB-NAME = #JOB-NAME
 AND TYPE = #TYPE
 AND CPU-USED = #CPU-USED
 AND STATUS = #STATUS

 END-FIND

The resulting output from this program is presented in the following format in an OS/390 system:

Copyright Software AG 200310

Entire System Server At Work - ExamplesJob Handling

 Job-Name Type Status Cpu used Region JobNr. ProcName StepName
 *_______ *_____ *_______ __________ ______ ______ ________ ________
 MASTER STC NON-SWAP 2226.21 268 3513
 PCAUTH STC NON-SWAP 0.01 164 PCAUTH
 TRACE STC NON-SWAP 0.01 104 TRACE
 GRS STC NON-SWAP 0.03 1016 GRS
 DUMPSRV STC NON-SWAP 2.66 92 DUMPSRV DUMPSRV
 CONSOLE STC NON-SWAP 305.78 204 CONSOLE
 ALLOCAS STC NON-SWAP 0.01 148 ALLOCAS
 SMF STC NON-SWAP 6.57 152 IEFPROC SMF
 LLA STC NON-SWAP 1.69 332 LLA LLA
 ACF2 STC NON-SWAP 1.61 172 IEFPROC ACF2
 JES2 STC NON-SWAP 1607.18 936 JES2 JES2
 RMF STC NON-SWAP 10.72 76 3525 IEFPROC FRMF
 TMON8DLS STC NON-SWAP 281.03 568 3202 TMON8DLS TMON8DLS
 TMDBDLS STC NON-SWAP 33.66 248 3122 TMDBDLS TMDBDLS
 TMONMVS STC NON-SWAP 79.22 152 4013 TMONMVS TMONMVS

The same program produces the output in the following format in a BS2000/OSD system (all jobs beginning with
"N" are displayed):

 Job-Name Type JobNr. Cpu used Accnt-Nr Cpu-max Sta-Typ
 N*______ *_____ _______ __________ ________ __________ _______
 NATV21 BATCH 0.68 E 32767.00 2
 NATV21 BATCH 0.67 E 32767.00 2
 NATISPF BATCH 0.85 1 32767.00 2
 NAT220 BATCH 0.78 1 32767.00 2
 NETWORK TP 451.26 1 32767.00 2
 NCL BATCH 203.40 1 NTL 2

Example 2:

The following example illustrates the use of a Natural program to handle job variables in a BS2000/OSD
environment.

11Copyright Software AG 2003

Job HandlingEntire System Server At Work - Examples

....
 *
 * The INPUT statement defines an input mask which is displayed on * the
 terminal screen at run time, together with the options for * the FUNCTION
 field:
 *
 INPUT
 /’Name of Job-Variable: ’ #JV-NAME
 /’Node : ’ #NODE
 / ’Function (READ / WRITE / ALLOC / ERASE / END): ’ #FUNCTION
 // ’ only for function WRITE:’
 / ’Date: ’ #DATA (AL=20)
 / ’Substring-start: ’ #SUBSTR-START (NL=3 SG=OFF)
 / ’(Substring-)length: ’ #SUBSTR-LENGTH (NL=3 SG=OFF)
 / ’Value-length: ’ #VALUE-LENGTH (NL=3 SG=OFF)
 / ’Password, if required: ’ #PASSWORD

 *
 * The view JOB-VARIABLES can then be addressed by the program,
 * the fields used depending on the specified function.
 * Below are examples for READ and WRITE:
 *
 VALUE ’READ’
 * -----------
 RJV. FIND JOB-VARIABLES WITH NAME = #JV-NAME
 AND NODE = #NODE
 AND FUNCTION = #FUNCTION
 AND READ-PASSWORD = #PASSWORD

 VALUE ’WRITE’
 * ------------
 WJV. FIND JOB-VARIABLES WITH NAME = #JV-NAME
 AND NODE = #NODE
 AND FUNCTION = #FUNCTION
 AND DATA = #DATA
 AND WRITE-PASSWORD = #PASSWORD
 AND LENGTH = #VALUE-LENGTH
 AND SUBSTRING-START = #SUBSTR-START
 AND SUBSTRING-LENGTH = #SUBSTR-LENGTH

Spool File Handling
The following example illustrates how job output can be read from the spool in a VSE/ESA system and written to a
file.

Copyright Software AG 200312

Entire System Server At Work - ExamplesSpool File Handling

....
 *
 * An input mask is defined with the INPUT statement:
 *
 INPUT
 / ’ Job name.........:’ #JOB
 / ’ Job number.......:’ #JOBN
 // ’ Mark spool type..:’ #SEL(1) ’CC’ (I) ’completion codes’
 / 21X #SEL(2) ’RD’ (I) ’ reader queue’
 / 21X #SEL(3) ’LS’ (I) ’ list queue’
 / 21X #SEL(4) ’PU’ (I) ’ punch queue’
 / 21X #SEL(5) ’XM’ (I) ’ transmit queue’
 / ’ Dataset number...:’ #DS
 // ’to’ (I)
 / ’ Library........:’ WRITE-FILE.LIBRARY
 / ’ Sub library....:’ WRITE-FILE.SUBLIB
 / ’ Member.........:’ WRITE-FILE.MEMBER
 / ’ Member type....:’ WRITE-FILE.MEMBER-TYPE
 / ’ VSAM catalog...:’ WRITE-FILE.VSAM-CAT
 ...
 *
 * To read the job output, the READ-SPOOL view is called,
 * identifying the job and output file required:
 *
 FIND READ-SPOOL WITH JOB-NAME = #JOB
 AND JOB-NUMBER = #JOBN
 AND TYPE = #TYPE
 AND DATA-SET = #DS
 AND NODE = ##NODE

 *
 * To write the output file to a file, the WRITE-FILE view is
 * called, specifying the destination member:
 *

 PROCESS WRITE-FILE USING LIBRARY = WRITE-FILE.LIBRARY
 , SUBLIB = WRITE-FILE.SUBLIB
 , VSAM-CAT = WRITE-FILE.VSAM-CAT
 , MEMBER = WRITE-FILE.MEMBER
 , MEMBER-TYPE = WRITE-FILE.MEMBER-TYPE
 , RECORD = READ-SPOOL.RECORD
 , NODE = ##NODE
 END-FIND

With the Entire System Server, different types of system data can thus be accessed and stored as conventional files
using easy Natural programs. If such programs are implemented in applications, even users with no special computer
training can use this advanced technology.

Imagination Is the Limit
The above examples illustrate the kind of tasks the Entire System Server can be used for, but they are not exhaustive.
Small programs can be written for specific tasks, but more elaborate site-specific applications can be built to
automize whole areas of data center tasks. As already mentioned, Software AG provides ready applications based on
the Entire System Server in the area of operations scheduling, event management, and output handling (see the
section What is Entire System Server).

13Copyright Software AG 2003

Imagination Is the LimitEntire System Server At Work - Examples

Additionally, the Entire System Server installation tape provides a comprehensive online tutorial consisting of
sample programs for every Entire System Server view. These programs not only serve as a useful online training
guide, but can also be customized to meet the requirements of the installation, and can be used as a starting point for
the development of more complex applications.

Experienced application developers and system programmers will readily recognize the potential of using the Entire
System Server as a powerful aid to build tools for their work. If we can say that the Entire System Server provides
the brush and the colors, then the application developers and system programmers paint the picture. As with all
creative artists, their ingenuity is the limit.

Copyright Software AG 200314

Entire System Server At Work - ExamplesImagination Is the Limit

	Entire System Server At Work - Examples
	General Information
	IEBCOPY Utility
	Disc Maintenance
	File Maintenance
	Job Handling
	Spool File Handling
	Imagination Is the Limit

