
Version 5.2.1 User Exits

This document applies to Entire Screen Builder Version 5.2.1 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

© Copyright Software AG 1999-2003
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered
trademarks of Software AG. Other company and product names mentioned herein may be trademarks of
their respective owners.

Table of Contents
.................... 1User Exits
................... 1User Exits
................. 2General Information
................. 2General Information
................... 2Server Side
.................. 3Viewer Side
.................. 4Server Functions
.................. 4Server Functions
.................. 4NSWBefore
................... 5NSWAfter
.................. 5Nswexp.h File
.............. 7Web Viewer Client Functions (API)
.............. 7Web Viewer Client Functions (API)
............... 8Screen Interface Methods
.................. 10AboutBox
.................. 11ComposeId
................... 12Connect
.................. 13Disconnect
................. 14EnableControl
................. 15GetActiveField
................. 16GetFieldContent
................. 17GetFieldCount
................ 18GetFieldIDFromIndex
................. 19GetTitleBarText
............... 20IsBS2000ToolbarVisible
.................. 21IsConnected
................. 22IsStatusbarVisible
................. 23IsTitlebarVisible
................. 24IsToolbarVisible
................ 25PrintCurrentScreen
............... 26PrintDirectCurrentScreen
................. 27RunJavascript
................... 28SendKey
.................. 29SendKeyID
................ 32SendKeyIDWithText
................ 33SendKeyWithText
................. 34SetFieldContent
................ 35SetReceiveTimeout
.............. 36SetUserNameAndPassword
................ 37Show3270Toolbar
................ 38ShowBS2000Toolbar
.................. 39ShowControl
................. 40ShowNextScreens
................. 41ShowProperties
................. 42ShowStatusBar
.................. 43ShowTitleBar
.................. 44ShowToolbar
................ 45Menu Interface Methods

i

User ExitsUser Exits

.................. 46GetMenuHandle

.................... 47MenuType

................... 48ShowMenu

..................... 49Events

.............. 50Sample: User-defined Event Handling

.............. 51Terminal Viewer Client Functions (API)

.............. 51Terminal Viewer Client Functions (API)

..................... 52Methods

................... 53CloseSession

................ 54DisconnectCurrentSession

................... 55GetCursorPos

................... 56GetScreenSize

.................... 57Initialise

................. 58OpenSessionByName

.................. 59PerformEditAction

.................. 60PrintCurrentScreen

................ 61PrintPreviewCurrentScreen

.................... 62PutData

.................. 63PutDataMapped

................... 64RunProcedure

................... 65SetCursorPos

................... 66ShowDialog

..................... 67Events

................ 68Common Viewer Functions (API)

................ 68Common Viewer Functions (API)

................. 68Screen Interface Methods

.................. 69GetScriptArgument

................. 70ResetScriptArguments

.................. 71SetScriptArgument

............... 72Overview of Client Control Properties

............... 72Overview of Client Control Properties

.................. 74AllowPopupMenu

.................. 75AnonymousLogon

................... 76AutoDisconnect

.................... 77Background

.................... 78Compressed

.................... 79Connection

.................... 80Embedded

..................... 81HttpPort

.................... 82HttpServer

.................... 83PollTimeout

...................... 84Port

.................... 85PortNumber

................... 86ReceiveTimeout

.................... 87Repository

.................... 88SecureHttp

..................... 89Server

.................... 90ServerName

.................... 91ShowSplash

................... 92SslConnection

.................... 93Tunneling

ii

User ExitsUser Exits

.................. 94TunnelingPollTime

................... 95TunnelingType

.................... 96UnixLogon

.................. 97UsePCLogonName

.................. 98UseHttpTunneling

.................. 99Natural UNIX User Exits

................. 99Natural UNIX User Exits

................. 99Using the Shared Library

.............. 99Sample for a Natural UNIX User Exit

............... 100nsw_CheckUsernameAndPassword

iii

User ExitsUser Exits

User Exits
There are two types of user exits: Entire Screen Builder user exits and Natural UNIX user exits.

With an Entire Screen Builder user exit, you can link your special processing logic to the Entire Screen
Builder Server and the Entire Screen Builder viewers. The functions that you provide will then be called
by the server and/or viewer when they have been created and defined. The following topics are provided:

General Information General information on the server-side and viewer-side user
exits.

Server Functions Detailed descriptions of the server functions NSWBefore and
NSWAfter , and the contents of the header file Nswexp.h
which is delivered with Entire Screen Builder. The server
functions are only available for the GUI viewers.

Web Viewer Client
Functions (API)

Applies to the COM interface of Entire Screen Builder’s Web
Viewer and provides detailed descriptions of screen interface
methods, menu interface methods and events.

Terminal Viewer Client
Functions (API)

Applies to the COM interface of Entire Screen Builder’s
Terminal Viewer and provides detailed descriptions of methods
and events.

Common Viewer
Functions (API)

Applies to the COM interfaces of Entire Screen Builder’s Web
Viewer and Terminal Viewer and provides detailed
descriptions of methods.

Overview of Client
Control Properties

Detailed descriptions of all configuration data for the viewers.

With a Natural UNIX user exit, you can check the user name and password sent from the Entire Screen
Builder viewers by yourself. The following topic is provided:

Natural UNIX User
Exits

How to use the shared library, a sample for a user exit and the
detailed description of the function
nsw_CheckUsernameAndPassword .

See also: Scripting, User Exits and APIs in Introducing Entire Screen Builder.

1

User ExitsUser Exits

General Information
This chapter applies to the Entire Screen Builder user exits. It provides general information on the
following:

Server Side

Viewer Side

Server Side
An Entire Screen Builder user exit is a Dynamic Link Library (DLL) with a set of user-written functions
that comply with the interface definition described below. You can specify a user exit DLL for global
scope, every application scope and every map scope.

When a User Exit rule has been defined for a given scope, the viewer dynamically loads the DLL when
this scope is entered and tries to find the user-exit functions NSWBefore and NSWAfter in the DLL.

For each new screen in this scope, the viewer calls the user-exit DLL two times: the first time before the
screen is shown, and the second time after the user has entered data into the screen - just before the data
are sent back to the host. The first call allows to influence the way a screen is displayed by the viewer.
The second call gives the chance to process and modify the data entered by the user before they are sent to
the host.

The DLL is unloaded when a given scope is left.

To create the DLL, use a development tool such as Microsoft Visual Studio.

The user-exit functions should be written in the C or C++ programming languages. They have to be
compiled and linked to a DLL. The following user-exit functions should be implemented and exported in
the DLL:

Function Usage

NSWBefore Called each time when a screen is received from the legacy application. This
allows to process the screen received before it is processed and displayed by the
viewer.

NSWAfter Called each time the viewer is about to send data to the legacy application. This
allows to process the data typed by the end-user before the viewer sends them to
the legacy application.

If one of the above functions is not exported in the DLL, the viewer will detect this and will never try to
call it. However, there will be no error message telling about this fact.

See Server Functions for further information.

2

User ExitsGeneral Information

Viewer Side
Entire Screen Builder’s Web Viewer and Terminal Viewer are Microsoft ActiveX controls. Thus, COM
interfaces can be used to

access the defined methods and properties, and to

receive events.

Note:
A COM interface is not available for the Windows Viewer.

The COM interface for the Web Viewer is different from that used for the Terminal Viewer.

See the sections Web Viewer Client Functions (API) and Terminal Viewer Cient Functions (API) for
further information.

3

General InformationUser Exits

Server Functions
This chapter applies to the Entire Screen Builder user exits. The server functions are only available for the
GUI viewers. The user-exit functions are provided by the user and are called by the viewer.

The following topics are provided:

NSWBefore

NSWAfter

Nswexp.h File

NSWBefore
This function is called by the viewer before the screen received from the legacy application is processed
by the viewer.

All fields received from the legacy application are passed to this function which can process and modify
the contents of these fields. From this function, it is also possible to call external applications with the
fields received (for example, a print application or Microsoft Office).

This function can decide whether the received screen has to be shown or not by returning
NSWEXP_SHOW (1) or NSWEXP_NOSHOW (0). If NSWEXP_NOSHOW is returned, the viewer sends an
ENTER to the legacy application and waits to receive the next screen.

Format

WORD FAR PASCAL NSWBefore (WORD fields, SCREENFIELD FAR * field)

Input Parameters

WORD fields Number of received input and output fields.

SCREENFIELD FAR *
field

Array of structures containing the fields received from the legacy
application.

Return Values

NSWEXP_SHOW The screen will be shown.

NSWEXP_NOSHOW The screen will not be shown.

4

User ExitsServer Functions

NSWAfter
This function is called by the viewer before the fields are sent to the legacy application.

All fields are passed to this function which can process and modify the data strings typed by the end-user.
From this function, it is also possible to call external applications with the fields received (for example, a
print application or Microsoft Office).

Format

void FAR PASCAL NSWAfter (WORD fields, SCREENFIELD FAR * field)

Input Parameters

WORD fields Number of received input and output fields.

SCREENFIELD FAR *
field

Array of structures containing the input and output fields before
sending them to the legacy application.

Return Values

No return values.

Nswexp.h File
The Nswexp.h file (see below) is a header file that must be included in the C or C++ source code of the
user exit functions on the server side. It contains all defines and function prototypes that can be used in the
user exit functions.

This header file is delivered with Entire Screen Builder. You can find it in the program folder \Entire
Screen Builder 5\samples\sampleuserexit.

Note:
This folder also contains a C source file with a framework for the user-exit functions. You can use this file
to write your own program code. The file in this folder with the extension def can be used to build the
DLL.

5

Server FunctionsUser Exits

/***
** FILE: NSWEXP.H
**
** DESCRIPTION: Header file for Entire Screen Builder User-exit DLLs
**
** VERSION: 4.1.1.0
**
** (C) Copyright Software AG, 2000
**
*/

#ifndef _NSWEXP_INCLUDED
#define _NSWEXP_INCLUDED

/**
** This is the structure that defines screen fields
*/
#pragma pack(push) /* Save current structure alignment (Visual C++ 4.2) */
#pragma pack(4) /* Switch to 4-byte structure alignment (Visual C++ 4.2) */
typedef struct tagSCREENFIELD
{
 char szText[81]; /* screen field content */
 WORD nLong; /* screen field length */
 WORD nColumn; /* screen field column */
 WORD nRow; /* screen field row */
 WORD nType; /* screen field type (see below) */
} SCREENFIELD;
#pragma pack(pop) /* Restore previous structure alignment (Visual C++ 4.2) */

/**
** Values for SCREENFIELD.nType field
*/
#define TYPE_INPUT 0 /* Input screen field */
#define TYPE_OUTPUT 1 /* Output screen field */

/**
** These are the types for the exported user-exit DLL functions. There should
** be two functions
**
** WORD FAR PASCAL NSWBefore(WORD fields, SCREENFIELD FAR * field)
** void FAR PASCAL NSWtAfter(WORD fields, SCREENFIELD FAR * field)
**
*/
#ifdef _cplusplus
 extern "C" {
#endif

/* Pointers to functions types definitions */
typedef WORD (FAR PASCAL *NSWBEFOREPROC)(WORD fields, SCREENFIELD FAR * field);
typedef void (FAR PASCAL *NSWAFTERPROC)(WORD fields, SCREENFIELD FAR * field);

/* Function declarations */
WORD FAR PASCAL NSWBefore(WORD fields, SCREENFIELD FAR * field);
void FAR PASCAL NSWAfter(WORD fields, SCREENFIELD FAR * field);

#ifdef _cplusplus
 };
#endif

#endif /* #ifdef _NSWEXP_INCLUDED */

6

User ExitsServer Functions

Web Viewer Client Functions (API)
This section applies to the COM interface of Entire Screen Builder’s Web Viewer.

This section assumes that you are familiar with the use of ActiveX controls in applications. You can use
ActiveX controls from a wide variety of languages: C++, JavaScript, Visual Basic, Visual Basic for
Applications, etc.

The interface consists of a set of properties, methods and events. Properties are needed for the control to
know how to make the connection and its visual appearance on screen. The methods are used to handle
connection/disconnection and manipulate screen data. The events are used to notify the container about
changes in the control’s state (e.g. an event is fired when a new screen arrives).

This chapter covers the following topics:

Screen Interface Methods

Menu Interface Methods

Events

See also: Common Viewer Functions (API) and Overview of Client Control Properties

7

Web Viewer Client Functions (API)User Exits

Screen Interface Methods
The following methods are available:

AboutBox

ComposeId

Connect

Disconnect

EnableControl

GetActiveField

GetFieldContent

GetFieldCount

GetFieldIDFromIndex

GetTitleBarText

IsBS2000ToolbarVisible

IsConnected

IsStatusbarVisible

IsTitlebarVisible

IsToolbarVisible

PrintCurrentScreen

PrintDirectCurrentScreen

RunJavascript

SendKey

SendKeyID

SendKeyIDWithText

SendKeyWithText

SetFieldContent

SetReceiveTimeout

8

User ExitsWeb Viewer Client Functions (API)

SetUserNameAndPassword

Show3270Toolbar

ShowBS2000Toolbar

ShowControl

ShowNextScreens

ShowProperties

ShowStatusBar

ShowTitleBar

ShowToolbar

9

Web Viewer Client Functions (API)User Exits

AboutBox

This method shows the control’s About dialog box.

This dialog box shows the version number of the control and the copyright notice.

Format

void AboutBox()

Input Parameters

No input parameters.

Return Values

No return values.

10

User ExitsWeb Viewer Client Functions (API)

ComposeId

To find out the IDs of the automatically generated fields, you can use this method. For example, if you
know that there is an input field in the current screen in coordinates "12,7", you can call
ComposeId(12,7) to get the dialog ID of the edit control associated with this field.

Returns IDs for dialog controls when using basic rules. When basic rules are applied, the screen fields are
directly translated to dialog controls: output fields in the screen are mapped to static Windows controls,
and input fields in the screen are mapped to edit dialog controls.

When using extended dialogs, there is no need to call this method, as the user already knows the IDs of
the controls. These IDs are set by the user from the resource editor used to generate the dialog.

Format

long ComposeId(long iRow, long iCol)

Input Parameters

long iRow Row number.

long iCol Column number.

Return Values

long The Windows control identification.

11

Web Viewer Client Functions (API)User Exits

Connect

This method connects the control to the server.

This method gets its parameters from the control properties and connects to the server with the appropriate
method. If an error occurs when connecting, the ActiveX shows it to the user.

After this method has been called, two exclusive events can be fired: Connected or ConnectFailed .
The first is fired if the control succeeds in connecting, the latter is fired if the connection fails.

Format

void Connect ()

Input Parameters

No input parameters.

Return Values

No return values.

12

User ExitsWeb Viewer Client Functions (API)

Disconnect

This method forces the control to disconnect.

If an error occurs, the ActiveX notifies the user with a message box. If the control has successfully been
disconnected, the Disconnected event is fired from the control.

Format

void Disconnect ()

Input Parameters

No input parameters.

Return Values

No return values.

13

Web Viewer Client Functions (API)User Exits

EnableControl

This method enables or disables a control. It allows individual controls on a dialog to be disabled
separately from the repository settings.

Format

EnableControl(long ControlID, long Enable)

Input Parameters

long ControlID The control ID is usually returned from
GetFieldIDFromIndex .

long Enable Can either be set to non-zero (enable) or zero (disable).

Return Values

Always true.

14

User ExitsWeb Viewer Client Functions (API)

GetActiveField

This method returns the control identification with the current focus.

Format

long GetActiveField()

Input Parameters

No input parameters.

Return Values

long Control identification.

15

Web Viewer Client Functions (API)User Exits

GetFieldContent

This method returns the window text of the control with ID iFieldId in the currently shown dialog.

This method can be used for extended and basic dialogs. To find the ID of a control in a basic dialog, use
the ComposeId method.

For example, to get the contents of the field in row 12 and column 7 in a basic dialog, call the following:

control.GetFieldContent(control.ComposeId(12, 7))

For example, to get the name of a button with ID 34572 in an extended dialog, call the following:

control.GetFieldContent(34572)

Format

BSTR GetFieldContent(long iFieldId)

Input Parameters

long iFieldId Control identification in the dialog.

Return Values

BSTR A string with the field content.

16

User ExitsWeb Viewer Client Functions (API)

GetFieldCount

This method returns the number of all fields in the current screen.

You can iterate all controls as follows:

int iTotal = m_cNWWClient.GetFieldCount();
for (int iLoop = 0; iLoop < iTotal; iLoop++)
{
 int iTestItem = m_cNWWClient.GetFieldIDFromIndex(iLoop);

 // Now iTestItem can be used in functions needing
 // a control ID

}/* End for : iLoop of available fields */

Format

GetFieldCount

Input Parameters

No input parameters.

Return Values

Total of fields.

17

Web Viewer Client Functions (API)User Exits

GetFieldIDFromIndex

This method returns the field ID of the nth field of the screen. See the GetFieldCount sample.

Format

GetFieldIDFromIndex(long FieldIndex)

Input Parameters

long FieldIndex The index of the field. For example, the 10th field on the screen.

Return Values

Field ID or 0 if not found.

18

User ExitsWeb Viewer Client Functions (API)

GetTitleBarText

This method returns the text that is defined for the title bar.

Format

GetTitleBarText

Input Parameters

No input parameters.

Return Values

String containing the current title.

19

Web Viewer Client Functions (API)User Exits

IsBS2000ToolbarVisible

This method returns true if the BS2000 toolbar is currently visible.

Format

BOOL IsBS2000ToolbarVisible()

Input Parameters

No input parameters.

Return Values

true The BS2000 toolbar is visible.

false The BS2000 toolbar is not visible.

20

User ExitsWeb Viewer Client Functions (API)

IsConnected

This method returns true if the control is connected.

Format

boolean IsConnected ()

Input Parameters

No input parameters.

Return Values

true The viewer is connected to the server.

false The viewer is not connected to the server.

21

Web Viewer Client Functions (API)User Exits

IsStatusbarVisible

This method returns true if the status bar is currently visible.

Format

BOOL IsStatusbarVisible()

Input Parameters

No input parameters.

Return Values

true The status bar is visible.

false The status bar is not visible.

22

User ExitsWeb Viewer Client Functions (API)

IsTitlebarVisible

This method returns true if the title bar is currently visible.

Format

BOOL IsTitlebarVisible()

Input Parameters

No input parameters.

Return Values

true The title bar is visible.

false The title bar is not visible.

23

Web Viewer Client Functions (API)User Exits

IsToolbarVisible

This method returns true if the toolbar is currently visible.

Format

BOOL IsToolbarVisible()

Input Parameters

No input parameters.

Return Values

true The toolbar is visible.

false The toolbar is not visible.

24

User ExitsWeb Viewer Client Functions (API)

PrintCurrentScreen

This method prints the contents of the current screen on a printer that is defined in Windows. The Print
dialog box appears in which you can select another printer and/or modify the print properties.

You can either print the GUI screen on which the transformation rules are applied or the character screen
(i.e. the actual screen as sent from the host).

Format

BOOL PrintCurrentScreen(long IPrintType);

Input Parameters

long IPrintType Can either be set to 0 (character screen) or 1 (GUI screen).

Return Values

True if printed.

25

Web Viewer Client Functions (API)User Exits

PrintDirectCurrentScreen

This method immediately prints the contents of the current screen on the default printer that is defined in
Windows. The Print dialog box does not appear.

You can either print the GUI screen on which the transformation rules are applied or the character screen
(i.e. the actual screen as sent from the host).

Format

BOOL PrintDirectCurrentScreen(long IPrintType);

Input Parameters

long IPrintType Can either be set to 0 (character screen) or 1 (GUI screen).

Return Values

True if printed.

26

User ExitsWeb Viewer Client Functions (API)

RunJavascript

This method executes any JavaScript procedure on the Entire Screen Builder Server.

The JavaScript routine must be specified in pcJavaScriptProcedure .

Format

void RunJavascript(BSTR pcJavaScriptProcedure)

Input Parameters

BSTR pcJavaScriptProcedure The JavaScript procedure name.

Return Values

No return values.

27

Web Viewer Client Functions (API)User Exits

SendKey

This method simulates a key stroke for the current dialog. You must specify the ID of the control to which
the cursor is to be positioned.

The key name must be a string from the following list:

Key Name Description

ATTN Send the "Attention" key to the server.

CLEAR Send the "Clear" key to the server.

PA1 through
PA3

Send the specified application key number to the server.

PF1 through
PF48

Send the specified function key number to the server.

RESET Send the "Reset" key to the server.

RETURN Send the "Enter" key to the server.

SYSREQ Send the "System Request" key to the server.

To send PF keys in AS/400 style, the session has to be defined as an AS/400 session. See Communication
Properties for Telnet TN3270 in Entire Screen Builder’s System Management Hub documentation. Entire
Screen Builder provides a key scheme with a special layout for AS400 host systems. See Key Schemes in
Entire Screen Builder’s System Management Hub documentation.

If the key name is not found in this list, a "RETURN" will be sent.

Format

void SendKey(BSTR szKeyName, long iFieldId)

Input Parameters

BSTR szKeyName Key name to be sent to the server.

long iFieldId Field identification of the control to which the cursor is to be
positioned.

Return Values

No return values.

28

User ExitsWeb Viewer Client Functions (API)

SendKeyID

This method simulates a key stroke for the current dialog. You must specify the ID of the control to which
the cursor is to be positioned.

The key ID must be one from the following list:

Key Name Key ID

RETURN 0x7D

SYSREQ 0xF0

CLEAR 0x6D

ATTN 0x7E

RESET 0x03

PA1 0x6C

PA2 0x6E

PA3 0x6B

PF1 0xF1

PF2 0xF2

PF3 0xF3

PF4 0xF4

PF5 0xF5

PF6 0xF6

PF7 0xF7

PF8 0xF8

PF9 0xF9

PF10 0x7A

PF11 0x7B

PF12 0x7C

PF13 0xC1

PF14 0xC2

PF15 0xC3

PF16 0xC4

PF17 0xC5

PF18 0xC6

PF19 0xC7

PF20 0xC8

29

Web Viewer Client Functions (API)User Exits

Key Name Key ID

PF21 0xC9

PF22 0x4A

PF23 0x4B

PF24 0x4C

PF25 0x4D

PF26 0x4E

PF27 0x4F

PF28 0x50

PF29 0x51

PF30 0x52

PF31 0x53

PF32 0x54

PF33 0x55

PF34 0x56

PF35 0x57

PF36 0x58

PF37 0x59

PF38 0x5A

PF39 0x5B

PF40 0x5C

PF41 0x5D

PF42 0x5E

PF43 0x5F

PF44 0x60

PF45 0x61

PF46 0x62

PF47 0x63

PF48 0x64

If the key ID is not found in this list, a "RETURN" will be sent.

30

User ExitsWeb Viewer Client Functions (API)

Format

void SendKeyID(long KeyID, long iFieldId)

Input Parameters

long KeyID Key ID to be sent to the server.

long iFieldId Field identification of the control to which the cursor is to be
positioned.

Return Values

No return values.

31

Web Viewer Client Functions (API)User Exits

SendKeyIDWithText

This method simulates a key stroke for the current dialog. It also allows you to send text with the key
stroke, for example, a user ID or password. The text cannot be seen by the user.

Format

void SendKeyIDWithText(BSTR TextToSend, long FieldId, long KeyID, long KeyFieldId)

Input Parameters

BSTR TextToSend Text to be sent to the host.

long FieldId Field identification of the control to which the text is to written.

long KeyID Key ID to be sent to the host. See the SendKeyID method for
all valid key IDs.

long KeyFieldId Field identification of the control to which the cursor is to be
positioned.

Return Values

No return values.

32

User ExitsWeb Viewer Client Functions (API)

SendKeyWithText

This method simulates a key stroke for the current dialog. It also allows you to send text with the key
stroke, for example, a user ID or password. The text cannot be seen by the user.

Format

SendKeyWithText(BSTR TextToSend, long FieldId, BSTR KeyName, long KeyFieldId)

Input Parameters

BSTR TextToSend Text to be sent to the host.

long FieldId Field identification of the control to which the text is to written.

BSTR KeyName Key name to be sent to the host. See the SendKey method for all
valid key names.

long KeyFieldId Field identification of the control to which the cursor is to be
positioned.

Return Values

No return values.

33

Web Viewer Client Functions (API)User Exits

SetFieldContent

This method sets the text of a control. It is the complement of GetFieldContent .

The new text of the control must be specified in pcContent .

Format

void SetFieldContent(long iFieldId, BSTR pcContent)

Input Parameters

long iFieldId Field identification of the control in which data has to be replaced.

BSTR pcContent Data.

Return Values

No return values.

34

User ExitsWeb Viewer Client Functions (API)

SetReceiveTimeout

This method defines how long the ActiveX is to wait for data before a timeout occurs.

This method can be called once the ActiveX is connected. A good place for calling this method is in the
Connected() event which is fired when the connection with the server has been established.

When the ActiveX has not received any data after the defined number of seconds, the communication with
the server is closed and a message box is displayed indicating the error.

Format

void SetReceiveTimeout(long ITimeout)

Input Parameters

long ITimeout Number of seconds. When you specify 0, the ActiveX waits
infinitely; a timeout does not occur.

Return Values

No return values.

35

Web Viewer Client Functions (API)User Exits

SetUserNameAndPassword

This method lets the client connect to the Entire Screen Builder Server using the user name and password
passed in the first and second parameter.

This method must be called before the Connect method. When the SetUserNameAndPassword
method is called, the User Authentication dialog box is not shown.

Format

void SetUserNameAndPassword(BSTR pcUsername, BSTR pcPassword)

Input Parameters

BSTR pcUsername The user name used to connect to the Entire Screen Builder
Server.

BSTR pcPassword The password used to connect to the Entire Screen Builder Server.

Return Values

No return values.

36

User ExitsWeb Viewer Client Functions (API)

Show3270Toolbar

This method shows or hides the 3270 toolbar.

Format

Show3270Toolbar(long Show)

Input Parameters

long Show Can either be set to non-zero (show) or zero (hide).

Return Values

No return values.

37

Web Viewer Client Functions (API)User Exits

ShowBS2000Toolbar

This method shows or hides the BS2000 toolbar.

Format

ShowBS2000Toolbar(long Show)

Input Parameters

long Show Can either be set to non-zero (show) or zero (hide).

Return Values

No return values.

38

User ExitsWeb Viewer Client Functions (API)

ShowControl

This method shows or hides a control.

This is the same as EnableControl . It only hides instead of enabling.

Format

ShowControl(long ControlID, long Show)

Input Parameters

long ControlID The control ID is usually returned from
GetFieldIDFromIndex .

long Show Can either be set to non-zero (show) or zero (hide).

Return Values

Always true.

39

Web Viewer Client Functions (API)User Exits

ShowNextScreens

This method shows the next screens. If set to true, the next screens will be shown. If set to false, the next
screens will not be shown.

Format

void ShowNextScreens(bool bShow)

Input Parameters

bool bShow True or false.

Return Values

No return values.

40

User ExitsWeb Viewer Client Functions (API)

ShowProperties

This method shows the properties dialog of the ActiveX control. This dialog can be used to edit the
control properties from a graphical user interface.

This method does not return until the user chooses the OK or Cancel button in the properties’ dialog.

Format

void ShowProperties()

Input Parameters

No input parameters.

Return Values

No return values.

41

Web Viewer Client Functions (API)User Exits

ShowStatusBar

This method shows or hides the status bar.

Format

ShowStatusBar(long Show)

Input Parameters

long Show Can either be set to non-zero (show) or zero (hide).

Return Values

No return values.

42

User ExitsWeb Viewer Client Functions (API)

ShowTitleBar

This method shows or hides the title bar.

Format

ShowTitleBar(long Show)

Input Parameters

long Show Can either be set to non-zero (show) or zero (hide).

Return Values

No return values.

43

Web Viewer Client Functions (API)User Exits

ShowToolbar

This method shows or hides the toolbar.

Format

ShowToolbar(long Show)

Input Parameters

long Show Can either be set to non-zero (show) or zero (hide).

Return Values

No return values.

44

User ExitsWeb Viewer Client Functions (API)

Menu Interface Methods
The menu interface methods can be only used when the AllowPopupMenu property is set to "true".

The following methods are available:

GetMenuHandle

MenuType

ShowMenu

45

Web Viewer Client Functions (API)User Exits

GetMenuHandle

Internal only.

46

User ExitsWeb Viewer Client Functions (API)

MenuType

This method returns the type of the popup menu before it is shown.

Menu types:

Value 1: Main popup

Value 2: Edit popup

Value 3: ListView popup

This method can be used together with the method ShowMenu to show or hide the popup menu,
depending of the menu type.

Format

short MenuType()

Input Parameters

No input parameters.

Return Values

short The menu type.

47

Web Viewer Client Functions (API)User Exits

ShowMenu

This methods shows or hides the popup menu, depending of the value passed in the first parameter. If the
value is 1, the popup menu will be shown. If the value is 0, the popup menu will not be shown.

Format

void ShowMenu(BOOL bShowMenu)

Input Parameters

BOOL bShowMenu 1 (show) or 0 (do not show).

Return Values

No return values.

48

User ExitsWeb Viewer Client Functions (API)

Events
Events are used to notify the container of changes in the state of the control. The following events are
available:

Event Description

void Connected() This event is fired when the control has
successfully been connected to the server. It
follows a call to Connect . It is not fired if the
connection fails.

void Disconnected() This event is fired when the control has been
disconnected from the server. It can be fired due to
a call to Disconnect , or because the server
disconnected, or because the user chose the
command Disconnect from the menu.

void NewScreenShown() This event is fired when a new screen is received
from the host. It is fired when the dialog is about to
appear in the user’s screen and not after the new
data arrives. At the moment this event is fired, the
control has a valid dialog to interact with.

void ScreenSent() This event is fired after a screen has been sent to
the host. When this event has been fired, there is no
valid dialog available until NewScreenShown is
received again.

void ConnectFailed() This event is fired when Connect has been called
but the connection has failed. A connect can fail if,
for example, the server is not accepting
connections.

void
ShowingPopupMenu(MenuInterface)

This event is fired when the right mouse button is
pressed. A pointer to the MenuInterface class is
passed in the first parameter, which can be used to
get the menu type and to show or hide the popup
menu. For example:

MenuInterface->ShowMenu(TRUE/FALSE)
MenuType = MenuInterface->MenuType)

where MenuType is:

Main popup Menu 0x01
Edit control Menu 0x02
Listview Menu 0x03

49

Web Viewer Client Functions (API)User Exits

Event Description

void UserDefinedEvent(szText) This event is fired when the user chooses a push
button or static text control for which a
user-defined event has been defined in the SDK.
szText contains the text defined in the SDK. For
further information, see Defining the Control
Properties (the description of the Action page) in
the documentation Defining the Rules Using the
SDK. When a user-defined event is fired, data is not
sent to the server (that is: there is no
communication with the server).

Sample: User-defined Event Handling

The user-defined event in this sample is used to check and filter the command that has been entered in the
dialog. A user-defined event has been defined for the OK button (with text "ok-button") and for a static
control (with text "other"). The used field IDs depend on the dialog that has been used and can be seen in
the SDK.

<script language="VBScript">
<!--
Sub cControl_UserDefinedEvent(szText)
if szText="ok-button" Then
 input = cControl.GetFieldContent(3004)
 i = 0
 if input="avs" Then i = i + 1
 if input="myp" Then i = i + 1
 id = 3005
 if i=0 Then call cControl.SetFieldContent(id, "Please enter a valid command")
 if i=1 Then call cControl.SendKey(Return, 3004)
end If

if szText="other" Then
 msgbox "other was chosen"
 end If
end sub
-->
</script>

50

User ExitsWeb Viewer Client Functions (API)

Terminal Viewer Client Functions (API)
This section applies to the COM interface of Entire Screen Builder’s Terminal Viewer.

This section assumes that you are familiar with the use of ActiveX controls in applications. You can use
ActiveX controls from a wide variety of languages: C++, JavaScript, Visual Basic, Visual Basic for
Applications, etc.

The interface consists of a set of properties, methods and events. Properties are needed for the control to
know how to make the connection and its visual appearance on screen. The methods are used to handle
connection/disconnection and manipulate screen data. The events are used to notify the container about
changes in the control’s state (e.g. an event is fired when a new screen arrives).

This chapter covers the following topics:

Methods

Events

See also: Common Viewer Functions (API) and Overview of Client Control Properties

51

Terminal Viewer Client Functions (API)User Exits

Methods
The following methods are available:

CloseSession

DisconnectCurrentSession

GetCursorPos

GetScreenSize

Initialise

OpenSessionByName

PerformEditAction

PrintCurrentScreen

PrintPreviewCurrentScreen

PutData

PutDataMapped

RunProcedure

SetCursorPos

ShowDialog

52

User ExitsTerminal Viewer Client Functions (API)

CloseSession

This method closes any open host session.

Format

boolean CloseSession();

Input Parameters

No input parameters.

Return Values

True if successful, false if not.

53

Terminal Viewer Client Functions (API)User Exits

DisconnectCurrentSession

This method disconnects the control from the server and also closes any host sessions.

Format

boolean DisconnectCurrentSession();

Input Parameters

No input parameters.

Return Values

True if successful, false if not.

54

User ExitsTerminal Viewer Client Functions (API)

GetCursorPos

This method gets the current cursor position.

Format

boolean GetCursorPos(short* Row, short* Column);

Input Parameters

short* Row The current row position of the cursor.

short* Column The current column position of the cursor.

Return Values

True if connected, false if not.

55

Terminal Viewer Client Functions (API)User Exits

GetScreenSize

This method gets the current screen size. It can be called in response to the ScreenSizeChanged
event.

Format

boolean GetScreenSize(short* NumRows, short* NumColumns);

Input Parameters

short* NumRows Current number of rows of the host screen.

short* NumColumns Current number of columns of the host screen.

Return Values

True if connected, false if not.

56

User ExitsTerminal Viewer Client Functions (API)

Initialise

This method connects the control to the defined server.

Format

boolean Initialise();

Input Parameters

No input parameters.

Return Values

True if successful, false if not.

57

Terminal Viewer Client Functions (API)User Exits

OpenSessionByName

This method opens the named host session which must be defined for the server.

Format

boolean OpenSessionByName(BSTR SessionName, BSTR SessionIPAddress, long PortNumber);

Input Parameters

BSTR SessionName Defines the host session to be opened.

BSTR SessionIPAddress The IP address for the host session.

long PortNumber The port number for the host session.

If SessionIPAddress and PortNumber are set, they will be used instead of the values defined in
the server configuration.

It is not required to set these parameters. If SessionIPAddress is "" and PortNumber is 0, the
defined server values will be used.

Return Values

True if successful, false if not.

58

User ExitsTerminal Viewer Client Functions (API)

PerformEditAction

This method automates the edit actions for the control.

Format

boolean PerformEditAction(long lEditID);

Input Parameters

long lEditID Specify one of the following numbers:

0 = Cut
1 = Copy
2 = Paste
3 = Append Copy
4 = Clear
5 = Select All

Return Values

True if successful, false if not.

59

Terminal Viewer Client Functions (API)User Exits

PrintCurrentScreen

This method automates printing the current screen.

Format

boolean PrintCurrentScreen(short bDirect);

Input Parameters

short bDirect If true, the print dialog will not be shown. If false, the print dialog
will be shown before the screen is printed.

Return Values

True if successful, false if not.

60

User ExitsTerminal Viewer Client Functions (API)

PrintPreviewCurrentScreen

This method displays the current screen in print preview mode.

Format

boolean PrintPreviewCurrentScreen();

Input Parameters

No input parameters.

Return Values

True if successful, false if not.

61

Terminal Viewer Client Functions (API)User Exits

PutData

This method sends data to the current cursor position. In addition, a function key code can be passed to the
server. The keycode will not use the mapping defined in the key table for the open session.

The key codes for this method can be found in the Samples\Definitions folder of the Entire Screen Builder
CD-ROM. The file name is TerminalViewerKeycodes.h.

Format

boolean PutData(BSTR TextToPut, short KeyCode);

Input Parameters

BSTR TextToPut Text to be copied to the current screen position.

short KeyCode The function key code to be passed to the server.

Return Values

True if successful, false if not.

62

User ExitsTerminal Viewer Client Functions (API)

PutDataMapped

This method sends data to the current cursor position. In addition, a function key code can be passed to the
server. The keycode will use the mapping defined in the key table for the open session.

The key codes for this method can be found in the Samples\Definitions folder of the Entire Screen Builder
CD-ROM. The file name is TerminalViewerKeycodes.h.

Format

boolean PutDataMapped(BSTR TextToPut, short MappedKeyCode);

Input Parameters

BSTR TextToPut Text to be copied to the current screen position.

short MappedKeyCode The function key code to be passed to the server.

Return Values

True if successful, false if not.

63

Terminal Viewer Client Functions (API)User Exits

RunProcedure

This method attempts to start the named script on the server.

Format

boolean RunProcedure(BSTR sProcedureName);

Input Parameters

BSTR sProcedureName Must contain the name of the script on the server.

Return Values

True if successful, false if not.

64

User ExitsTerminal Viewer Client Functions (API)

SetCursorPos

This method changes the current cursor position.

Format

boolean SetCursorPos(short Row, short Column);

Input Parameters

short Row Row to which the cursor is to be set.

short Column Column to which the cursor is to be set.

Return Values

True if connected, false if not.

65

Terminal Viewer Client Functions (API)User Exits

ShowDialog

This method is used to automatically show the control’s configuration dialogs.

Format

boolean ShowDialog(long lDialogID);

Input Parameters

long lDialogID Specify one of the following numbers:

0 = Open session dialog
1 = Task list dialog
2 = Color dialog
3 = Font dialog

Return Values

True if successful, false if not.

66

User ExitsTerminal Viewer Client Functions (API)

Events
Events are used to notify the container of changes in the state of the control. The following events are
available:

Event Description

void Connected() This event is fired when the control is connected to the server.

void Disconnected() This event is fired when the control is disconnected from the
server.

void ScreenSizeChanged() This event is fired when the screen size in the open session
has changed (e.g. when the connected session changes from
mode 3 to mode 4).

void SessionClosed() This event is fired when an active host session has been
closed.

void SessionOpened() This event is fired when an active host session has been
opened.

67

Terminal Viewer Client Functions (API)User Exits

Common Viewer Functions (API)
This section applies to the COM interfaces of Entire Screen Builder’s Web Viewer and Terminal Viewer.

This section assumes that you are familiar with the use of ActiveX controls in applications. You can use
ActiveX controls from a wide variety of languages: C++, JavaScript, Visual Basic, Visual Basic for
Applications, etc.

This chapter covers the following topics:

Screen Interface Methods

See also: Web Viewer Client Functions (API) and Terminal Viewer Client Functions (API)

Screen Interface Methods
The following methods are available:

GetScriptArgument

ResetScriptArguments

SetScriptArgument

68

User ExitsCommon Viewer Functions (API)

GetScriptArgument

This method returns values that are defined in the list of script arguments.

Format

BSTR SetScriptArgument(BSTR ArgName);

Input Parameters

BSTR ArgName Name for the argument.

Return Values

BSTR The value of the defined argument. Blank, if the argument is not
found.

69

Common Viewer Functions (API)User Exits

ResetScriptArguments

This method allows the removal of all script arguments in one call.

Format

boolean ResetScriptArguments()

Input Parameters

No input parameters.

Return Values

True if successful.

70

User ExitsCommon Viewer Functions (API)

SetScriptArgument

This method allows script arguments to be defined that can be passed to and from the server JavaScript
engine.

Format

boolean SetScriptArgument(BSTR ArgName, BSTR ArgValue);

Input Parameters

BSTR ArgName Name for the argument.

BSTR ArgValue Value for the argument. If blank, the argument is removed from the
list of script arguments.

Return Values

True if set correctly, false if not.

71

Common Viewer Functions (API)User Exits

Overview of Client Control Properties
Properties are configuration data for the viewers. They define the behavior and appearance of the viewers
and also tell them what to do at startup time.

You must set the properties before the viewer is activated by the Connect method for the GUI viewers
or the Initialise method for the Terminal Viewer. Once this method has been called, changing
properties has no effect, i.e. these properties are only read before Connect or Initialise is called
and never read again unless the control is disconnected and Connect or Initialise is called again.

For most properties, there are default values which are used by the viewers if the property is not explicitly
set.

The way you set the properties and the exact syntax depends on the viewer, but more on the language you
use. The sample HTML files you find after installation in the Entire Screen Builder folders web viewer
and terminal viewer show you how to preset the properties in HTML (param tag in the object tag; for
example, <param name="BACKGROUND" value="192,192,192">), and how to set the
properties with Visual Basic Script which is embedded in the HTML code (see the onclick handling for
the Connect button).

For the Windows Viewer, the properties can be set when you invoke the Windows Viewer or in the
SDK’s Client Control Properties dialog box.

The following properties are available:

AllowPopupMenu

AnonymousLogon

AutoDisconnect

Background

Compressed

Connection

Embedded

HttpPort

HttpServer

PollTimeout

Port

PortNumber

ReceiveTimeout

72

User ExitsOverview of Client Control Properties

Repository

SecureHttp

Server

ServerName

ShowSplash

SslConnection

Tunneling

TunnelingPollTime

TunnelingType

UnixLogon

UsePCLogonName

UseHttpTunneling

Note:
The property names are case-insensitive. The upper-lower case spelling for the above property names is
only used for better readability.

73

Overview of Client Control PropertiesUser Exits

AllowPopupMenu
Determines whether a context menu is shown when the user clicks the right mouse button (true) in a
viewer or not (false).

Type

boolean

Default Value

true

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: No

74

User ExitsOverview of Client Control Properties

AnonymousLogon
If set to true, an anonymous logon is made to the Entire Screen Builder Server.

If set to false, the User Authentication dialog box appears and the user has to specify user name and
password as defined with the System Management Hub. The user is then logged on to his user profile in
the Entire Screen Builder Server. See Users in Entire Screen Builder’s System Management Hub
documentation for further information.

Type

boolean

Default Value

true

Usage

Terminal Viewer: Yes

Web Viewer: Yes

Windows Viewer: Yes

75

Overview of Client Control PropertiesUser Exits

AutoDisconnect
If set to true, the session is disconnected automatically when a multi screen rule fails (for example, when
the extended dialog cannot be loaded or when the detection of a green screen fails).

If set to false, the session is not disconnected when a multi screen rule fails. In this case, the screen will be
displayed with the rules defined for this screen (normal rules processing).

Type

boolean

Default Value

false

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

76

User ExitsOverview of Client Control Properties

Background
The color for the area outside the defined dialog.

Type

COLORREF

Default Value

192,192,192

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

77

Overview of Client Control PropertiesUser Exits

Compressed
Enable or disable the compression mechanism between the Entire Screen Builder Server and the viewer.

Type

boolean

Default Value

true

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

78

User ExitsOverview of Client Control Properties

Connection
Corresponds to the Session ID property defined with the System Management Hub. See Host Sessions in
Entire Screen Builder’s System Management Hub documentation for further information.

The connection number 0 has a special meaning. See Startup Scripts in the Script Files documentation.

Type

long

Default Value

1

Usage

Terminal Viewer: Yes

Web Viewer: Yes

Windows Viewer: Yes

79

Overview of Client Control PropertiesUser Exits

Embedded
If set to true, a screen or dialog is shown inside the HTML page (embedded). All controls are then created
inside the HTML page.

If set to false, an additional window is created outside the HTML page. You can then, for example, move
or minimize this window independently of the browser window.

Type

boolean

Default Value

true for the GUI Viewers

false for the Terminal Viewer

Usage

Terminal Viewer: Yes

Web Viewer: Yes

Windows Viewer: No

80

User ExitsOverview of Client Control Properties

HttpPort
This property applies to the GUI viewers. Its behavior depends on the setting of the Tunneling property
(i.e. whether tunneling is enabled or disabled).

If tunneling is disabled, this is the number of the port where the internal image server listens.

If tunneling is enabled, this is the number of the port where the HTTP server used for tunneling listens.

Type

short

Default Value

30000

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

81

Overview of Client Control PropertiesUser Exits

HttpServer
This property applies to the GUI viewers. Its behavior depends on the setting of the Tunneling property
(i.e. whether tunneling is enabled or disabled).

If tunneling is disabled, this is the IP address or host name of the machine on which the Entire Screen
Builder Server is running.

If tunneling is enabled, this is the IP address or host name of the machine on which the HTTP server used
for tunneling is running.

Type

BSTR

Default Value

localhost

Enter the name of the PC, if you encounter problems with images that are not displayed.

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

82

User ExitsOverview of Client Control Properties

PollTimeout
Applies only when UseHttpTunneling has been enabled for the Terminal Viewer.

The time in seconds the terminal viewer polls the tunneling server for new data (asynchronous messages
and screens).

Note:
The GUI viewers use the TunnelingPollTime property.

Type

long

Default Value

20 seconds

Usage

Terminal Viewer: Yes

Web Viewer: No

Windows Viewer: No

83

Overview of Client Control PropertiesUser Exits

Port
The number of the port where the Entire Screen Builder Server listens for the GUI viewers.

This property is not used when tunneling has been enabled with Tunneling . See also HttpPort .

Note:
The Terminal Viewer uses the PortNumber property.

Type

short

Default Value

22367

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

84

User ExitsOverview of Client Control Properties

PortNumber
This property applies to the Terminal Viewer. Its behavior depends on the setting of the
UseHttpTunneling property (i.e. whether tunneling is enabled or disabled).

If tunneling is disabled, this is the number of the port where the Entire Screen Builder Server listens for
the Terminal Viewers.

If tunneling is enabled, this is the number of the port where the HTTP server that is used for tunneling
listens.

Note:
The GUI viewers use the Port property.

Type

short

Default Value

22340

Usage

Terminal Viewer: Yes

Web Viewer: No

Windows Viewer: No

85

Overview of Client Control PropertiesUser Exits

ReceiveTimeout
This timeout is used to stop the viewer hanging in the highly unlikely event of network disruption causing
a TCP packet to be dropped during transmission. The viewer will wait the defined number of seconds. If
there is no response from the server, the connection will be terminated.

If this timeout is set to zero, it will not be used.

It is recommended that this timeout be set only in the case where you experience this specific problem.

Type

long

Default Value

0 seconds

Usage

Terminal Viewer: Yes

Web Viewer: Yes

Windows Viewer: No

86

User ExitsOverview of Client Control Properties

Repository
An alias name defined in the system in which the internal image server or the Web server is running. This
alias points to a folder which contains the images that are used in your applications.

For the internal image server, this alias is defined with the System Management Hub. See Alias List in
Entire Screen Builder’s System Management Hub documentation.

Type

BSTR

Default Value

ESB_Repository

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

87

Overview of Client Control PropertiesUser Exits

SecureHttp
Applies only when Tunneling has been enabled for the GUI viewers. Can only be used for an external
Web server.

If set to true, the SSL (Secure Socket Layer) protocol is enabled for all HTTP communication, thus
providing secure communication. HTTP is used for downloading images.

You must also enable SSL on your HTTP server.

Note:
The Terminal Viewer uses the SslConnection property.

Type

boolean

Default Value

false

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

88

User ExitsOverview of Client Control Properties

Server
This property applies to the GUI viewers. It defines the IP address or host name of the machine on which
the Entire Screen Builder Server is running.

If the Entire Screen Builder Server and the SDK are on the same machine, you may use "localhost" for the
local machine.

This property is not used when tunneling has been enabled with Tunneling . See also HttpServer .

Note:
The Terminal Viewer uses the ServerName property.

Type

BSTR

Default Value

localhost

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

89

Overview of Client Control PropertiesUser Exits

ServerName
This property applies to the Terminal Viewer. Its behavior depends on the setting of the
UseHttpTunneling property (i.e. whether tunneling is enabled or disabled).

If tunneling is disabled, this is the IP address or host name of the machine on which the Entire Screen
Builder Server is running.

If tunneling is enabled, this is the IP address or host name of the machine on which the HTTP server used
for tunneling is running.

If the Entire Screen Builder Server and the SDK are on the same machine, you may use "localhost" for the
local machine.

Note:
The GUI viewers use the Server property.

Type

BSTR

Default Value

localhost

Usage

Terminal Viewer: Yes

Web Viewer: No

Windows Viewer: No

90

User ExitsOverview of Client Control Properties

ShowSplash
If set to true, the splash screen for the Entire Screen Builder viewer is shown when not connected to the
Entire Screen Builder Server.

If set to false, the client screen is blank.

Type

boolean

Default Value

true

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: No

91

Overview of Client Control PropertiesUser Exits

SslConnection
Applies only when UseHttpTunneling has been enabled for the Terminal Viewer. Can only be used
for an external Web server.

If set to true, the SSL (Secure Socket Layer) protocol is enabled for all HTTP communication, thus
providing secure communication. HTTP is used for downloading images.

You must also enable SSL on your HTTP server.

Note:
The GUI viewers use the SecureHttp property.

Type

boolean

Default Value

false

Usage

Terminal Viewer: Yes

Web Viewer: No

Windows Viewer: No

92

User ExitsOverview of Client Control Properties

Tunneling
This property applies to the GUI viewers.

Enable or disable the tunneling mechanism for sending and receiving the packets through the Web server
(to traverse firewalls and/or proxies).

This property should only be set to true when connected from the Internet and when the Entire Screen
Builder extension modules have been installed on the machine on which the Web server is running. See
HTTP Tunneling in the Installation and Configuration documentation for further information.

Note:
The Terminal Viewer uses the UseHttpTunneling property.

Type

boolean

Default Value

false

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

93

Overview of Client Control PropertiesUser Exits

TunnelingPollTime
Applies only when Tunneling has been enabled for the GUI viewers.

The time in seconds the GUI viewers poll the tunneling server for new data (asynchronous messages and
screens).

Note:
The Terminal Viewer uses the PollTimeout property.

Type

long

Default Value

20 seconds

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

94

User ExitsOverview of Client Control Properties

TunnelingType
This property is used when tunneling has been enabled with Tunneling for the GUI Viewers, or with
UseHttpTunneling for the Terminal Viewer.

In this case, you must also define the type of external Web server that is installed in your environment
(including the production environment).

Use either "M" (Microsoft Internet Information Server) or "A" (Apache Web Server).

Type

BSTR

Default Value

M

Usage

Terminal Viewer: Yes

Web Viewer: Yes

Windows Viewer: Yes

95

Overview of Client Control PropertiesUser Exits

UnixLogon
Used to connect to a Natural UNIX or Natural OpenVMS application.

For Natural UNIX, this only applies when security has been enabled in
$NATDIR/$NSWNODE/services.dat on the Natural UNIX host; see Installing Entire Screen Builder on
Natural UNIX Hosts in the Installation and Configuration documentation.

Under OpenVMS, user name and password are always checked; if this property is set to false, login will
fail.

If set to true, a dialog box is shown to get the logon information for a UNIX or OpenVMS system. See
also: Using the GUI Viewers with Natural on UNIX and OpenVMS Hosts in the Installation and
Configuration documentation.

Type

boolean

Default Value

false

Usage

Terminal Viewer: No

Web Viewer: Yes

Windows Viewer: Yes

96

User ExitsOverview of Client Control Properties

UsePCLogonName
If set to true, the client attempts to connect to the Entire Screen Builder Server using the name of the PC
user that is currently logged on.

Type

boolean

Default Value

false

Usage

Terminal Viewer: Yes

Web Viewer: Yes

Windows Viewer: Yes

97

Overview of Client Control PropertiesUser Exits

UseHttpTunneling
This property applies to the Terminal Viewer.

Enable or disable the tunneling mechanism for sending and receiving the packets through the Web server
(to traverse firewalls and/or proxies).

This property should only be set to true when connected from the Internet and when the Entire Screen
Builder extension modules have been installed on the machine on which the Web server is running. See
HTTP Tunneling in the Installation and Configuration documentation for further information.

Note:
The GUI viewers use the Tunneling property.

Type

boolean

Default Value

false

Usage

Terminal Viewer: Yes

Web Viewer: No

Windows Viewer: No

98

User ExitsOverview of Client Control Properties

Natural UNIX User Exits
The Natural UNIX user exits are external libraries built on the UNIX machine to be called by the different
Entire Screen Builder components running on the UNIX machine. They are only called by the Entire
Screen Builder components in Natural UNIX, this means: the Natural UNIX user exits are never called by
the Entire Screen Builder Server.

The Natural UNIX user exits are available for all types of viewers (GUI viewers and Terminal Viewer).

This chapter assumes that you are familiar with programming in C, makefiles and the shared library
concept of UNIX.

The following topics are covered below:

Using the Shared Library

Sample for a Natural UNIX User Exit

nsw_CheckUsernameAndPassword

Using the Shared Library
A shared library is a set of user-written functions that can be loaded dynamically by any program that
needs to execute any function defined in the library. It is the same as a DLL in Windows.

To use the shared library, you must set the environment variable NSWUSEREXIT1 before starting the
nswsrvd daemon. The variable must point to the library as follows:

NSWUSEREXIT1=$NSWDIR/samples/userexit/libnswuserexi1.sl ; export NSWUSEREXIT1.

The extension depends on the UNIX operating system. For example, sl applies to HP and so applies to
Solaris.

Sample for a Natural UNIX User Exit
A sample for the Natural UNIX user exit can be found in the directory $NSWDIR/samples/userexit. There
are two files in this directory:

Makefile

Create the shared library using the following UNIX command:

make lib

nswuserexit1.c

An example of the user exit.

99

Natural UNIX User ExitsUser Exits

nsw_CheckUsernameAndPassword
This function checks whether user name and password that have been sent from the PC are correct.

Important:
The user exit is responsible for security. The nswusr program does not perform any security checks.

When the security option C is used in the services.dat file, the function
nsw_CheckUsernameAndPassword is called from the nswusr program. The user name and
password sent from the PC are then passed to this function which checks these values.

pUserMessage can be used to display a user message in the viewer instead of the standard message. If
pUserMessage is empty, the standard message is displayed. If pUserMessage is not empty, its
content (i.e. the user message) is displayed.

When this function returns 0, the nswusr program sends either the standard message ("Invalid user name
or password") or the user message (for example, "Invalid credentials") to the PC and then waits for a new
user name and password.

When this function returns 1, the nswusr program starts the shell script defined in the services.dat file to
run the Natural application. A standard message is not displayed. However, if a user message has been
defined (for example, "Congratulations"), it is displayed.

Syntax

int nsw_CheckUsernameAndPassword
 (const char *username, const char *password, char *pUserMessage)

Input Parameters

const char *username The user name sent from the PC.

const char *password The password sent from the PC.

char *pUserMessage User message to be displayed in the viewer. Maximum size:
512 bytes.

Return Values

0 Standard message "Invalid user name or password" or user message.

1 Valid user name and password.

100

User ExitsNatural UNIX User Exits

