
External Objects in Predict
Version 4.3.1

This document applies to Predict Version 4.3.1 and to all subsequent releases. Specifications contained herein
are subject to change and these changes will be reported in subsequent release notes or new editions.

© June 2003, Software AG
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

Table of Contents
.............. 1External Objects in Predict - Overview
............... 1External Objects in Predict - Overview
............ 2Handling of External and Documentation Objects
............ 2Handling of External and Documentation Objects
................. 2What is an External Object
.............. 3External Objects Owned by Predict
............. 3External Objects Not Owned by Predict
........... 4Connection of External and Documentation Objects
................. 4Disconnecting Objects
......... 4Impact of Connecting External and Documentation Objects
................ 5Overview of External Objects
................ 7Generation of External Objects
................ 7Generation of External Objects
..................... 8Generation
..................... 8Generation
................. 8Concepts of Generation
......... 9Connecting External Objects and Documentation Objects
.............. 9Overview of Generation Functions
................ 11Calling Generation Functions
............ 11Calling Generation Functions with Commands
................ 11Generation Condition Codes
.................. 11Generation Defaults
.................. 12Preprocessor Force
............ 13Storage of External Objects Owned by Predict
............ 13Output / Storage Options for External Objects
............. 14Parameters Specifying the Form of Output
........... 16Storing External Objects with Entire System Server
.................. 20Common Parameters
.................. 21Adabas Version
................... 22Generate For Adabas
.................. 22Generate For Adabas
......... 23ADACMP, ADAWAN, ADAFDU and ADALOD Definitions
......... 23ADACMP, ADAWAN, ADAFDU and ADALOD Definitions
.................. 23Calling the Function
............... 27Additional ADALOD Parameters
............... 28Additional ADAFDU Parameters
.............. 28Additional Parameters For UES Support
.... 29Generate ADACMP, ADAWAN, ADAFDU or ADALOD Definitions in Batch Mode
................... 31Sample Output
..................... 35Adabas File
.................... 35Adabas File
.................. 35Calling the Function
.............. 38Generate Adabas File in Batch Mode
................... 40Sample Output
................ 41Sample Output - Continued
................... 42ADAINV Definitions
.................. 42ADAINV Definitions
.................. 43Calling the Function
............ 44Generate ADAINV Definitions in Batch Mode
................... 46Sample Output
................... 47ADASCR Definitions
.................. 47ADASCR Definitions
.................. 47Calling the Function

iCopyright © Software AG 2003

Table of ContentsExternal Objects in Predict - Overview

.............. 48Generate ADASCR Definitions in Batch Mode

..................... 49Sample Output

.................. 51Adabas Vista Translation Table

.................. 51Adabas Vista Translation Table

................... 51Calling the Function

................ 53Generate Vista Table in Batch Mode

............... 54Adabas VSAM Bridge Transparency Table

............... 54Adabas VSAM Bridge Transparency Table

..................... 54Prerequisites

............. 55Rules Applying to the Design of the Adabas Files

................... 55Calling the Function

.............. 56Generate Transparency Table in Batch Mode

...................... 57Examples

................... 57Sample File Definition

..................... 61Sample Output

................... 72Adabas Table/Cluster/View

.................. 72Adabas Table/Cluster/View

................... 73Calling the Function

.............. 75Recommendations when Using Adabas Vista

.............. 77Generate Adabas Table/View in Batch Mode

.................... 78Generate for Natural

.................... 78Generate for Natural

.................. 78IMS User-Defined Fields

............. 78Rules Applying to the Generation of IMS UDFs

................... 79Calling the Function

.................. 81Replace Verification Rule

................... 81Calling the Function

................... 83Data Definition Module

.............. 83Rules Applying to the Generation of DDMs

................... 84Calling the Function

............... 87Generating DDMs for Use with IMS

............... 87Generating DDMs for Use with SQL

............. 88Generating a DDM for Use with Adabas Vista

............. 88Recommendations when Using Adabas Vista

................. 89Generate DDM in Batch Mode

.................... 92Sample Output

..................... 94Generate for DB2

..................... 94Generate for DB2

............... 94Common Parameters for all DB2 Types

..................... 94DB2 Database

................... 95Calling the Function

............... 96Generate DB2 Database in Batch Mode

.................... 96Sample Output

.................. 97DB2 Procedure/Function

................... 97Calling the Function

............ 100Generate DB2 Procedures/Functions in Batch Mode

.................... 100DB2 Table/View

................... 101Calling the Function

.............. 103Generate DB2 Table/View in Batch Mode

.................. 103Sample File Definition

.................... 104Sample Output

.................... 105DB2 Storagegroup

................... 106Calling the Function

.............. 107Generate DB2 Storagegroup in Batch Mode

.................... 107Sample Output

.................... 108DB2 Tablespace

Copyright © Software AG 2003ii

External Objects in Predict - OverviewTable of Contents

................... 108Calling the Function

.............. 109Generate DB2 Tablespace in Batch Mode

.................... 110Sample Output

.................... 111Generating for SQL

.................... 111Generating for SQL

.................. 111SQL CREATE Statements

................... 111Calling the Function

........... 113Generating SQL CREATE Statements in Batch Mode

.................... 114Sample Output

.................... 116Generating for OS/400

................... 116Generating for OS/400

...................... 116Principles

..................... 116Components

.................... 117Mapping Rules

................. 120Defining an OS/400 File Object

................. 123Calling the Generate Function

.................. 128Field Check Messages

................ 129Changing an OS/400 Database File

............. 130Generate For Third Generation Languages - 3GL

.............. 130Generate For Third Generation Languages - 3GL

............. 130Additional Usage Information for Fields in a File

.................... 131Assembler Copy Code

.................... 131Assembler Copy Code

................... 131Calling the Function

................. 135Names in Assembler Copy Code

............ 136Assembler Names for Counter Fields - MC or PC

.............. 136Assembler Names for Logical Fields - L

.............. 136Assembler Names for Fields of Type AV

.......... 136Assembler Names for Additionally Generated Indicator Fields

............... 136Field Format and Assembler Copy Code

..................... 138Sample Output

..................... 140C Include Code

..................... 140C Include Code

................... 140Calling the Function

............... 144Generate C Include Code in Batch Mode

.................. 146Names in C Include Code

............... 146C Names for Redefinition Fields - RE

.............. 146C Names for Counter Fields (MC or PC)

............ 146C Names for Additionally Generated Indicator Fields

................. 147Field Format and C Include Code

..................... 151Sample Output

.................... 154COBOL Copy Code

.................... 154COBOL Copy Code

................... 154Calling the Function

.............. 159Generate COBOL Copy Code in Batch Mode

................. 160Names in COBOL Copy Code

............. 161COBOL Names for Counter Fields - MC or PC

...... 161COBOL Names for Multiple Fields - MU - Contained in Periodic Groups - PE

......... 161COBOL Names for Redefined Fields - RE in Periodic Groups - PE

............... 161COBOL Names for Logical Fields - L

........... 161COBOL Names for Record Buffer and Format Buffer

............. 161COBOL Names for Default Indexed by Name

.......... 161COBOL Names for Additionally Generated Indicator Fields

........... 162Examples for the Generation of COBOL Field Names

............... 162Field Format and COBOL Copy Code

.............. 166Automatically Generated Counter Fields

iiiCopyright © Software AG 2003

Table of ContentsExternal Objects in Predict - Overview

.............. 167COBOL Copy Code for DB2 Tables/Views

..................... 167Sample Output

.................... 169FORTRAN Copy Code

................... 169FORTRAN Copy Code

................... 169Calling the Function

............. 172Generate FORTRAN Copy Code in Batch Mode

................. 174Names in FORTRAN Copy Code

..... 174FORTRAN Names for Multiple Fields - MU - Contained in Periodic Groups - PE

......... 174FORTRAN Names for Additionally Generated Indicator Fields

........... 174Examples for the Generation of FORTRAN Field Names

............... 175Field Format and FORTRAN Copy Code

..................... 176Sample Output

..................... 180PL/I Include Code

.................... 180PL/I Include Code

................... 180Calling the Function

.............. 185Generate PL/I Include Code in Batch Mode

.................. 186Names in PL/I Include Code

.............. 186PL/I Names for Counter Fields - MC or PC

........... 186PL/I Names for Additionally Generated Indicator Fields

................ 187Field Format and PL/I Include Code

.................... 189Additional Notes

..................... 190Sample Output

.................... 192Sample File Definition

................... 192Sample File Definition

.................... 197File Implementation

.................... 197File Implementation

................. 197How this section is Organized

................. 197Concepts of File Implementation

................ 197Benefits of Implementation Plans

.................. 198Overview of Activities

............ 198Executing Implementation Plans under Adabas Vista

.............. 199Generating a DDM under Natural Security

............... 199Calling File Implementation Functions

................ 199The File Implementation Menu

......... 200Executing and Displaying an Implementation Plan in Batch Mode

................. 200File Implementation Functions

................ 200Add Implementation Plan - Code A

............... 202Copy Implementation Plan - Code C

............... 202Modify Implementation Plan - Code M

............... 205Rename Implementation Plan - Code N

............... 205Purge Implementation Plan - Code P

............... 205Display Implementation Plan - Code D

............... 206Extend Implementation Plan - Code E

............. 206Select Implementation Plan from List - Code S

............... 207Execute Implementation Plan - Code X

.............. 208Reexecute Implementation Plan - Code R

.................. 209Error Handling - Online

...................... 210Incorporation

...................... 210Incorporation

................... 211Concepts of Incorporation

................... 211Concepts of Incorporation

................ 211Overview of Incorporation Options

.............. 211Overview of Incorporation Subfunctions

.............. 212Connecting External and Predict Objects

................. 213Calling Incorporation Functions

............ 213Incorporation Functions are Executed in Two Steps

Copyright © Software AG 2003iv

External Objects in Predict - OverviewTable of Contents

............. 213Step 1: Selecting the Objects to be Processed

........... 214Step 2: Processing Objects with Incorporation Functions

............. 215Overview of Function Codes and Commands

............. 216Using Incorporation Functions in Batch Mode

................. 217Incorporating Adabas Databases

................. 217Incorporating Adabas Databases

..................... 217Prerequisites

..................... 217Restrictions

.................. 217Selecting Adabas Databases

.............. 218Incorporation Functions for Adabas Databases

................... 218Compare - Code T

................... 219Connect - Code C

................... 219Incorporate - Code I

.............. 219Incorporate Adabas Database in Batch Mode

................... 221Incorporating Adabas Files

................... 221Incorporating Adabas Files

................. 221Prerequisites and Restrictions

................... 221Selecting Adabas Files

............... 223Incorporation Functions for Adabas Files

................... 223Compare - Code T

................... 223Connect - Code C

................... 223Incorporate - Code I

............... 224Incorporating Adabas Files in Batch Mode

................. 226Incorporating DB2 Storagegroups

................. 226Incorporating DB2 Storagegroups

..................... 226Prerequisites

................. 226Selecting DB2 Storagegroups

............. 227Incorporation Functions for DB2 Storagegroups

................... 227Compare - Code T

................... 227Connect - Code C

................... 227Incorporate - Code I

............. 227Incorporate DB2 Storagegroups in Batch Mode

.................. 229Incorporating DB2 Databases

.................. 229Incorporating DB2 Databases

..................... 229Prerequisites

.................. 229Selecting DB2 Databases

.............. 230Incorporation Functions for DB2 Databases

................... 230Compare - Code T

................... 230Connect - Code C

................... 230Incorporate - Code I

.............. 231Incorporate DB2 Databases in Batch Mode

............ 232Incorporating DB2 Tablespaces and SQL/DS DBspaces

............ 232Incorporating DB2 Tablespaces and SQL/DS DBspaces

..................... 232Prerequisites

................... 232Selecting Tablespaces

............... 233Incorporation Functions for Tablespaces

................... 233Compare - Code T

................... 233Connect - Code C

.................. 233Display Masters - Code M

................... 234Incorporate - Code I

.............. 234Incorporate DB2 Tablespaces in Batch Mode

.............. 235Incorporating DB2 and SQL/DS Tables/Views

.............. 235Incorporating DB2 and SQL/DS Tables/Views

..................... 235Prerequisites

............... 235Selecting DB2 and SQL/DS Tables/Views

............... 237Incorporation Functions for Tables/Views

vCopyright © Software AG 2003

Table of ContentsExternal Objects in Predict - Overview

................... 237Compare - Code T

................... 237Connect - Code C

.................. 238Display Masters - Code M

................... 238Incorporate - Code I

............ 239Incorporating DB2 Tables and Views in Batch Mode

............. 240Incorporating NDBs for IMS Databases/Segments

............. 240Incorporating NDBs for IMS Databases/Segments

........... 240Selecting Natural DBDs for IMS Databases and Segments

.......... 241Incorporating Natural DBDs for IMS Databases and Segments

................... 241Incorporate - Code I

.................... 242Replace - Code R

.............. 243Incorporating IMS Database in Batch Mode

................ 245Incorporating Adabas Tables and Views

................ 245Incorporating Adabas Tables and Views

..................... 245Prerequisites

................. 245Selecting Adabas Tables/Views

............... 246Incorporation Functions for Tables/Views

................... 246Compare - Code T

................... 247Connect - Code C

.................. 247Display Masters - Code M

................... 247Incorporate - Code I

............ 247Incorporating Adabas Tables and Views in Batch Mode

.................. 249Incorporating Natural DDMs

.................. 249Incorporating Natural DDMs

................. 249Prerequisites and Restrictions

.................... 249Selecting DDMs

................ 250Incorporation Functions for DDMs

................... 250Compare - Code T

................... 251Connect - Code C

................ 251Display Related DDMs - Code V

................... 251Incorporate - Code I

................. 252Incorporate DDM in Batch Mode

................. 254Incorporating COBOL Copy Code

................. 254Incorporating COBOL Copy Code

..................... 254Prerequisites

................... 254Calling the Function

............. 257Incorporating COBOL Copy Code in Batch Mode

............ 257Representation of COBOL Field Definitions in Predict

................. 259Incorporating Super Natural Users

................. 259Incorporating Super Natural Users

............. 259Incorporating Super Natural User in Batch Mode

................ 261Incorporating Natural Security Users

................ 261Incorporating Natural Security Users

................. 261Prerequisites and Restrictions

................ 261Selecting Natural Security Users

............ 262Incorporating Natural Security Users in Batch Mode

............ 263Incorporating Tables / Views of SQL Database Systems

............ 263Incorporating Tables / Views of SQL Database Systems

.................... 263Functional Scope

..................... 263Prerequisites

..................... 263Restrictions

................ 263Selecting SQL Tables and Views

............. 265Incorporation Functions for SQL Tables and Views

.................. 265Display Masters - Code M

................... 265Incorporate - Code I

............. 266Incorporate SQL Tables / Views in Batch Mode

Copyright © Software AG 2003vi

External Objects in Predict - OverviewTable of Contents

...................... 267Comparison

...................... 267Comparison

................... 268Concepts of Comparison

................... 268Concepts of Comparison

.................... 268Functional Scope

.............. 268Resetting the Modified after generation Flag

............ 269Format of Reports Created by Comparison Functions

................. 269Calling Comparison Functions

............. 269General Prerequisites for Comparison Functions

.............. 270Selecting Objects for Comparison Functions

............... 270Check, List, Update and Save Options

............ 270Saving the Result of Comparison Functions in Sets

............. 270Calling Comparison Functions with Commands

................ 272Comparing Different Types of Objects

................ 272Comparing Different Types of Objects

................. 272Comparing Adabas Databases

................... 272Calling the Function

............. 273Comparing Adabas Databases in Batch Mode

................... 275Comparing Adabas Files

................... 275Comparing Adabas Files

................. 275Prerequisites and Restrictions

................... 275Calling the Function

............... 278Comparing Adabas Files in Batch Mode

..................... 279Example

................ 280Comparing Vista Translation Tables

................ 280Comparing Vista Translation Tables

..................... 280Prerequisites

................... 280Calling the Function

............ 280Comparing Vista Translation Tables in Batch Mode

..................... 281Example

..................... 282Comparing DDMs

.................... 282Comparing DDMs

..................... 282Prerequisites

................... 282Calling the Function

................ 284Comparing DDMs in Batch Mode

..................... 284Example

................. 285Comparing Adabas Tables/Views

................. 285Comparing Adabas Tables/Views

..................... 285Prerequisites

................... 285Calling the Function

............ 287Comparing Adabas Tables and Views in Batch Mode

..................... 287Example

................... 289Comparing DB2 Databases

.................. 289Comparing DB2 Databases

..................... 289Prerequisites

................... 289Calling the Function

.............. 290Comparing DB2 Databases in Batch Mode

..................... 291Example

.................. 292Comparing DB2 Storagegroups

.................. 292Comparing DB2 Storagegroups

..................... 292Prerequisites

................... 292Calling the Function

.............. 293Comparing DB2 Storagegroups in Batch Mode

..................... 293Example

.................. 294Comparing DB2 Tablespaces

.................. 294Comparing DB2 Tablespaces

viiCopyright © Software AG 2003

Table of ContentsExternal Objects in Predict - Overview

..................... 294Prerequisites

................... 294Calling the Function

.............. 295Comparing DB2 Tablespaces in Batch Mode

..................... 296Example

................. 297Comparing DB2 Tables and Views

................. 297Comparing DB2 Tables and Views

................. 297Prerequisites and Restrictions

................... 297Calling the Function

............. 299Comparing DB2 Tables and Views in Batch Mode

..................... 300Example

................. 301Administration of External Objects

................. 301Administration of External Objects

................... 301Overview of Options

............... 301Overview of Administration Functions

.................... 302General Rules

..................... 302Commands

..................... 303Batch Mode

......... 303Administrating External Objects Stored with Entire System Server

............ 303External Object Types and Administration Functions

............. 305Administrating Different Types of External Objects

...................... 305Databases

..................... 306Functions

...................... 307Dataspaces

..................... 308Functions

....................... 309Files

..................... 310Functions

...................... 312Programs

..................... 314Functions

..................... 315Storagespaces

..................... 316Functions

...................... 317Preprocessor

...................... 317Preprocessor

...................... 317Overview

.................... 318Using the Preprocessor

................... 318Using the Preprocessor

.................. 318Calling the Preprocessor

.................. 319Prerequisites - Work Files

................... 319Reports - Print Files

................... 320Preprocessor Statements

................... 320Preprocessor Statements

................ 320Overview of Preprocessor Statements

........ 320Statements to Include Copy Code Generated from Predict file objects

...... 320Statements to Write XRef Data for 3GL Copy/Include Code or Function Calls

................ 320Format of Preprocessor Statements

............. 321Using Keyword and/or Positional Parameters

....................... 321CALL

....................... 321COPY

...................... 321Syntax

...................... 322ENTRY

................... 323FORMAT-BUFFER

..................... 324GENERATE

................ 325Generating Assembler Copy Code

................ 329Generating COBOL Copy Code

................. 333Generating PL/I Include Code

..................... 337PROGRAM

Copyright © Software AG 2003viii

External Objects in Predict - OverviewTable of Contents

.................... 338Creation of XRef Data

.................... 338Creation of XRef Data

........... 338What Types of Code Use are Documented in XRef Data

............ 338Documenting CALL Statements and Entry Points

............... 338Documenting the Use of Copy Code

............... 339Documenting EXEC CICS Statements

ixCopyright © Software AG 2003

Table of ContentsExternal Objects in Predict - Overview

External Objects in Predict - Overview
Many Predict functions process Predict documentation data as well as implemented code. This simplifies
creation and maintenance of documentation and external objects and guarantees consistency between
documentation and implementation.
This document describes in detail the functions which process both documentation and external objects. It covers
the following topics:

Handling of External and
Documentation Objects

An overview of the functions which process documentation and external
objects. The information provided in this section is essential for understanding
many functions described in later sections of this document.

Generation A wide variety of external objects can be generated from documentation objects
stored in Predict.

Working with File
Implementation Plans

Implementation plans are used to simplify the generation of external objects.

Incorporation Predict objects can be created by incorporating information from implemented
objects which are stored in an external environment.

Comparison Predict objects and external objects can be compared, and if any inconsistencies
are detected, either the documentation or external object can be updated.

Administration of
External Objects

Implemented objects that are connected to Predict objects can be administered
using Predict functions.

Preprocessor The Preprocessor inserts copy code generated from Predict file objects into third
generation language programs and writes XRef data which documents the use
of these definitions and the calls of external members.

1Copyright © Software AG 2003

External Objects in Predict - OverviewExternal Objects in Predict - Overview

Handling of External and Documentation
Objects
Information stored in Predict objects can be used to generate external objects, and documentation objects can be
incorporated from external objects. The concepts of handling external and documentation objects in Predict are
described in this section.

Information provided in this section is needed to understand many options of generation, incorporation and
comparison functions.

This section covers the following topics:

What is an External Object
Different types of external objects can be connected to Predict documentation objects. This section provides
an overview and describes the general characteristics of different external object types.
Connection of External and Documentation Objects
Predict ensures consistency of documentation and application by protecting external and/or documentation
objects that are connected from being deleted or modified arbitrarily.
The connection between external and documentation objects is established by information stored with
Predict objects.
Overview of External Objects
This table shows which external objects can be processed with which functions.

What is an External Object
In Predict, data definition objects for use in applications that can be connected to Predict documentation objects
are called external objects. There are basically two types of external objects:

external objects owned by Predict (usually stored in the FDIC file)
external objects not owned by Predict (usually stored in the external environment).

Note:
Special rules apply to DDMs and Natural processing rules. See the respective sections of section Generation
in this documentation for more information.

Copyright © Software AG 20032

Handling of External and Documentation ObjectsHandling of External and Documentation Objects

External Objects Owned by Predict

The following types of external objects are owned by Predict:

3GL copy/include code (C, COBOL, Assembler, FORTRAN, PL/I)
Adabas invert, compression and security definitions
(ADAINV, ADAWAN/ADACMP/ADAFDU, ADASCR)
Adabas/VSAM Bridge transparency table
SQL CREATE statements

General Rules

The following rules apply to external objects that are owned by Predict.

Administration

Objects of all the above types are generated from Predict file objects of the respective types.
Up to 30 external objects per file and per language can be generated.
The objects can be administered exclusively with Predict functions.
The objects are dependent on the Predict documentation objects from which they were generated: if the
documentation object is deleted, the generated objects are deleted as well.

Use

The external objects of the above types are used at compile time.
Copy code for use in 3GL programs must be copied (punched) to an operating system library before it can
be used. Copying can be performed by Entire System Server. Storage of generated data definition objects as
operating system members is possible in an OS/390 and VSE environment.
The preprocessor can be used to generate 3GL copy code and include copy code into 3GL programs.

External Objects Not Owned by Predict

The following types of external objects are not owned by Predict: they belong to an application (development)
environment.

Databases (Adabas, DB2, IMS/DL1)
Vista translation table
DB2 tablespaces and storagegroups
Files, tables and views (Adabas , DB2, SQL/DS, Adabas SQL Server)
IMS User Defined Fields (UDFs)
Natural DDMs (including Natural security definitions and/or Super Natural files)

General Rules

The following rules apply to external objects that are not owned by Predict.

Administration

External objects of all these types can be generated from Predict documentation or be processed with
Incorporate functions.
Each external object can be connected to a documentation object with a generation or incorporation
function.
For the impact of connecting external and documentation objects see Connection of External and
documentation Objects.
For external objects implemented with SQL (DB2, Adabas SQL Server, SQL/DS storagegroups, databases,
tablespaces, dbspaces, tables and views) Predict stores the SQL statements that have been generated in a

3Copyright © Software AG 2003

External Objects Owned by PredictHandling of External and Documentation Objects

generation protocol.
If several generation runs are executed, the protocol is extended for each generation.
The objects can be administered with utilities of the application environment (for example SYSDDM,
SYSAOS, SYSDB2, Natural map editor).

Use

Most of the object types are used at run time. Some of these objects are stored directly in the application
environment, others are stored in the Predict system file. For objects that are stored in the Predict system
file, Predict data must therefore be accessible at run time of the application which uses the external objects.

Connection of External and Documentation Objects
Predict connects external objects and documentation objects if an external object has been generated from a
documentation object or - vice versa - a documentation object has been incorporated from an external object.

Connecting external and documentation objects helps ensure the consistency of the documentation and an
application: documentation objects and - to a certain extent - external objects that are connected are protected
from being deleted or modified.

External objects owned by Predict need not be connected: because these types of objects can only be
administrated with Predict functions, the consistency with documentation objects is not endangered.

Disconnecting Objects

External objects and documentation objects can be disconnected with Administration functions Disconnect
Implementation and Purge Implementation. See the section Administration of External Objects in this
documentation.

Impact of Connecting External and Documentation Objects

The connection of external objects and documentation objects affects the following activities.

Administration of External Objects
The administration of external objects connected to documentation objects can be restricted with the Predict
parameters of the SYSDDM utility, AOS, SYSDB2 utility and Rule in map editor. See Protection in the
section Defaults in the Predict Administration documentation.
If these parameters are set to C (connected) the respective utilities cannot be used to administrate external
objects that are connected to a Predict object.
Modification of Predict Objects
Modification of Predict objects is affected as follows:

Predict file objects of type Adabas that are connected to an implemented file cannot be unlinked from
the Predict database object they belong to.
The type of a file connected to an external object cannot be changed.

Purging Predict Objects
Purging Predict objects is affected as follows:

Predict File and Verification objects connected to an external object cannot be deleted. To delete a
Predict object connected to an external object, the two objects must be disconnected.
A generation protocol created by a Generate DB2 ... function can only be purged by purging or
disconnecting the implemented DB2 object.

Incorporation of External Objects
As a general rule, only external objects not yet connected to a documentation object can be processed with
incorporation functions. However, for IMS and DL1 databases, a Replace option is available with which
connected documentation objects can be overwritten.
Comparison of External and documentation Objects

Copyright © Software AG 20034

Handling of External and Documentation ObjectsConnection of External and Documentation Objects

To compare an external object and a documentation object, both have to be connected.

Overview of External Objects
The table below provides a full list of all external object types supported by Predict.

5Copyright © Software AG 2003

Overview of External ObjectsHandling of External and Documentation Objects

Object Code Command Generate Incorporate Compare Administrate

Adabas Compression
Definition

AC WAN, CMP Y Y

Adabas Database AD ADABAS-DATABASE Y Y Y

Adabas File AF FDT Y Y Y Y

Adabas Invert Definitions AI ADAINV Y Y

Adabas Security
Definitions

AS SCR Y Y

Vista Table AT VISTATAB Y Y Y

Transp. Table for Adabas
VSAM Bridge

AV AVB | ADAVSAM Y Y

Assembler Copy Code BA BAL | ASSEMBLER Y Y

Adabas D Table / View BF ESD-TABLE Y

C Include Code CC LANG-C Y Y

COBOL Copy Code CO COBOL Y Y Y

SQL CREATE Statement CR SQL-CREATE Y Y

Data Definition Module DD DDM Y Y Y Y

DB2 Database D2 DB2-DATABASE Y Y Y Y

Adabas Table/View EQ ESQ Y Y Y Y

Fortran Copy Code FO FORTRAN Y Y

Ingres Table/View JF INGRES-TABLE Y

IMS Database ND NDB Y Y

Natural Security User NS Security Y

Oracle Table/View OF ORACLE-TABLE Y

PL/I Include Code PL PLI Y Y

Processing Rule RU RULE Y (Y) (Y) Y

DB2 Storagegroup SG STORAGEGROUP Y Y Y Y

Super Natural User SU SUPER Y

DB2 Table/View,
SQL/DS Table/View

T2 TABLE Y Y Y Y

DB2 Tablespace,
SQL/DS DBspace

TS TABLESPACE Y Y Y Y

User-defined Fields for
IMS

UD UDF Y Y

Informix Table/View XF INFORMIX-TABLE Y

Sybase Table/View YF SYBASE-TABLE Y

Note for items marked with (Y) for SQL objects only:
If a check expression exists in the SQL catalog, the check expression can be incorporated or compared.

Copyright © Software AG 20036

Handling of External and Documentation ObjectsOverview of External Objects

Generation of External Objects
This document covers the following topics:

Concepts of Generation

Calling Generation Functions

Generation Defaults

Storage of External Objects Owned by Predict

Common Parameters

Generate for Adabas

Generate for Natural

Generate for DB2

Generating for SQL

Generating for OS/400

Generate for Third Generation Languages - 3GL

Sample File Definition

7Copyright © Software AG 2003

Generation of External ObjectsGeneration of External Objects

Generation
External objects can be generated from Predict objects.

There are basically two types of external objects:

external objects owned by Predict (usually stored in the FDIC file)
external objects not owned by Predict (usually stored in the external environment).

Note:
Special rules apply to DDMs and Natural processing rules. See the respective sections of this section for
more information.

This section covers the following topics:

Concepts of Generation
Calling Generation Functions
Generation Defaults
Storage of External Objects Owned by Predict
Common Parameters

Concepts of Generation
Data definitions generated from Predict objects are called external objects.
Two types of external objects can be generated:

external objects owned by Predict
external objects not owned by Predict.

External Objects Owned by Predict

3GL copy/include code (C, COBOL, Assembler, FORTRAN, PL/I)
Adabas invert, compression and security definitions
(ADAINV/ADAWAN/ADAFDU, ADACMP, ADASCR)
SQL CREATE statements
Adabas/VSAM transparency table

Copyright © Software AG 20038

GenerationGeneration

External objects owned by Predict are used at compile time and have to be copied (punched) to an operating
system library before they can be used in the implementation of an application. Copying can be performed by
Entire System Server or the Preprocessor.

A variety of parameters determine how these types of external objects are stored. See Parameters Specifying the
Form of Output.

External Objects not Owned by Predict

Databases (Adabas, DB2, IMS/DL1)
Vista translation table
DB2 tablespaces and storagegroups
Files, tables and views (Adabas, DB2)
IMS User-Defined Fields (UDFs)
Natural DDMs (including Natural security definitions and/or Super Natural files).

External objects not owned by Predict are used at run time. Some of these objects are stored directly in the
application environment, others are stored in the Predict system file. For objects that are stored in the Predict
system file, Predict data must be accessible when an application using the external objects is running.

Connecting External Objects and Documentation Objects

An external object that has been generated from a documentation object is regarded as connected to the
documentation object. The connection is established by adding an implementation pointer to the documentation
object. External objects and documentation objects that are connected are - to a certain extent - protected from
being modified independently from each other.

See also section Handling of External and documentation Objects in this documentation.

Overview of Generation Functions

The following table is sorted by the code used to call a generation function from the Predict main menu.

Object Code Command Description of External Object Predict
owned

Adabas compression
definition

AC WAN, CMP For use as input to the Adabas compression utility
ADACMP, ADAWAN or ADAFDU.

If generating for ADACMP, you can generate
additional input for ADALOD.

Y

Adabas File AF FDT Adabas files are loaded directly into an Adabas
database. If the file is already loaded, the
differences of the implemented file and the
documented file are determined and update
commands are generated in order to transform the
implemented Adabas file according to the
documented file.

Adabas invert
definitions

AI ADAINV For use as input to the Adabas invert utility
ADAINV.

Y

Adabas security
definitions

AS SCR For use as input to the Adabas security utility
ADASCR.

Y

9Copyright © Software AG 2003

Connecting External Objects and Documentation ObjectsGeneration

Vista table AT VISTATAB This function implements Vista elements of
Predict file and database objects of type A in the
translation tables of Vista.

Transparency table
for Adabas VSAM
bridge

AV AVB,
ADAVSAM

Supports conversion from VSAM files with
KSDS organization to Adabas files without the
need to change existing COBOL programs.

Y

Assembler Copy
Code

BA BAL,
ASSEMBLER

Copy code for use in a 370 Assembler program. Y

C Include Code CC LANG-C Include code for use in a C program. Y

COBOL Copy Code CO COBOL Copy code for use in a COBOL program. Y

SQL CREATE
statement

CR SQL-CREATE CREATE TABLE, CREATE VIEW or CREATE
CLUSTER statement. These SQL statements are
stored as Natural members.

Y

Data Definition
Module

DD DDM A collection of field definitions used by Natural
for accessing a database.

DB2 database D2 DB2-DATABASE A DB2 database is implemented directly as a
physical DB2 database.
Not applicable to SQL/DS.

Adabas table/view EQ ESQ Table descriptions or views in an Adabas SQL
Server catalog.

FORTRAN Copy
Code

FO FORTRAN Copy code for use in a FORTRAN program. Y

OS/400 file O4 GENOS4 OS/400 file definitions.

PL/I Include Code PL PLI Include code for use in a PL/I program. Y

DB2
procedure/function

P2 DB2-PROCEDUREThis function requires an object of type Program
as input, from which then either a procedure or a
function is generated.

Verification rule RU RULE A rule must already have been generated using
the Generate DDM function. Only the code of the
rule is changed.

The new rule will automatically be used by
Natural maps that are cataloged.

Not applicable to rules of status SQL or Natural
Construct.

DB2-Storagegroup SG STORAGEGROUP Storagegroups are implemented directly from
Predict storagespaces. If a storagegroup has
already been implemented from the storagespace,
the differences of the implemented DB2
storagegroup and the documented storagespace
are determined and update commands are
generated to adapt the implementation to the
documentation.

Copyright © Software AG 200310

GenerationOverview of Generation Functions

DB2 table/view T2 TABLE DB tables/views are implemented directly from
Predict file objects of type D or E.

If a table/view has already been implemented
from the Predict table/view definition, the
differences of the implemented DB2 table/view
and the Predict table/view definition are
determined and update commands are generated
in order to change the implementation according
to the documentation.

DB2 tablespace,
SQL/DS DBspace

TS TABLESPACE Tablespaces/dbspaces are implemented directly
from Predict dataspaces. If a tablespace/dbspace
has already been implemented from the
dataspace, the differences of the implemented
DB2 tablespace/ SQL/DS DBspace and the
documented dataspace are determined and update
commands are generated to transform the
implementation according to the documentation.

User-defined fields
for IMS

UD UDF Definitions used by Natural to access an IMS
database.

Calling Generation Functions
Generation functions are called with G in the field Function and the appropriate code in the field Object Type in
a Predict main menu or with a command. The following rules apply:

All generation functions can be executed both online and in batch mode.
If a system is not installed, the respective generation functions are not available. For example, if DB2 is not
installed at your site, no generation functions for DB2 objects are available.

Calling Generation Functions with Commands

Parameters are entered on the line following the command.
Parameters can be entered in positional and/or keyword form. See the section Predict Commands in the
Predict Reference documentation.
To use the default parameters defined for the function, enter the command and the <object-ID> on the same
line. This does not apply in batch mode.
Some generation functions can be called with two or three commands. It makes no difference which
command is used.

Generation Condition Codes

Condition codes are described in the section Predict in Batch Mode in the Predict Administration
documentation.

Generation Defaults
Default generation values are set at installation. Most default values are displayed in the input screen of the
respective generation function and can then be overwritten for temporary use. Changes to default values apply to
subsequent generation runs until another Predict function is executed. This does not apply in batch mode.

11Copyright © Software AG 2003

Calling Generation FunctionsGeneration

The following rules apply for the use of default values for generation parameters:

Default values of generation parameters can be changed with the function Generation Defaults in the
Modify Defaults Menu or the command DEFAULT object code. For example: DEFAULT COBOL displays
the Modify COBOL Defaults screen shown below.

 13:35:47 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Modify COBOL Defaults -
 Modified 2003-05-31 at 13:31
 by CHD
 Mark with ’X’ the options which may be modified by the user.

 X Save as member X Save in library COBLIB
 X Overwrite option Y (Y,N) X Op. system member ..
 X Punch / output* N X List offsets* N
 X List generated code Y (Y,N) X Adabas version* I7
 X Generate format buffer ..* N X Field name prefix ..
 X Check field names* Y X Field name suffix ..
 X Start level 1 (0-40) X Validate -
 X Level number increment.... 1 (1-40) X Truncation* R
 X Level shift increment 3 (0-9) X With Cond. names ... Y (Y,N)
 X Nr. of abstract lines 5 (0-16) X Indexed by* N
 X Generate initial value ..* N X Literal delimiter .* S
 X Synchronized* Y X Decimal character .* P
 X Depending on N (Y,N) X Redefinition name .* S
 X Record buffer name
 X Format buffer name
 Compiler* 7
 Preprocessor force N (Y,N) Library system 2

Generation defaults can be protected by blanking out the X preceding the parameter in Modify ... Defaults
screens. Protected default values cannot be changed when executing a generation function.
The input fields of protected parameters are locked in the input screen of the generation function. These
fields are skipped when positioning the cursor with the TAB key.
Some default values are not displayed in the input screen of a generation function and can therefore only be
changed using the Modify Generation Defaults function. These parameters are described under Presetting
in the descriptions of individual generation functions later in this section.
For Predict-owned external object types you can specify default values for storing generated code. See
Specifying Entire System Server and VSE Librarian Options.

For a description of the parameters shown in the previous screen, see the relevant generation functions later in
this documentation, the parameter Preprocessor force is described below.

Preprocessor Force

This parameter is used by the Predict Preprocessor and Adabas Native SQL. It can be specified for Assembler,
COBOL, FORTRAN, PL/I, and ADA. It can only be defined in the respective Modify Generation Defaults
screen.

Valid values:

Y
Both the Predict Preprocessor and Adabas Native SQL check that the program to be processed is documented. If
no Predict object documenting the program is found, the task is not executed and a message is returned.

N
No check is performed. Default setting when Predict is installed.

Copyright © Software AG 200312

GenerationPreprocessor Force

Storage of External Objects Owned by Predict
There are different options to output/store external objects owned by Predict. The following types of external
objects are owned by Predict:

3GL copy/include code (C, COBOL, Assembler, FORTRAN, PL/I)
Adabas invert, compression and security definitions
(ADAINV, ADAWAN/ADAFDU/ADACMP, ADASCR)
Adabas/VSAM transparency table
SQL CREATE statements.

Output / Storage Options for External Objects

Option 1 - Generating External Objects Temporarily

This option is used to have a first look at the results of a generation function.
To generate objects temporarily the parameter Save as member is left blank.
The parameter List generated code determines what is displayed.

Option 2 - Storing Generated External Objects as Members in a Natural Library of the
Predict System File

If the parameter Member name is specified, the generated external objects are stored in a Natural library in the
Predict system file (FDIC). The library must be specified.

For each file you can save up to 30 members per language.
For DB2 objects (these are not owned by Predict) a generation protocol can be created and stored in Predict by
specifying the parameters Protocol saved in member and Protocol saved in library.

Members in a Natural library that have been created with generation functions can be read by the Preprocessor or
written to workfile 1 using the command PUNCH or WRITE. See description of PUNCH/WRITE command in
the section Predict Commands in the Predict Reference documentation and section The Preprocessor in this
documentation.

Option 3 - Storing Generated External Objects Additionally in a Workfile or - with
Entire System Server - as an Operating System Member

External objects can additionally be stored by Entire System Server as operating system members. The following
rules apply:

Storage by Entire System Server can only be executed in addition to storage in the Predict system file (Save
as member parameter must be specified).
Storage of generated external objects as operating system members is only possible in an OS/390 or VSE
environment.
If Library system is set to 3, the external object is stored additionally in a VSE Librarian library.
One operating system member can be stored for each member in a Natural library that has been generated
by a generation function.
External objects are not processed by Entire System Server if errors occur during the generation.

Note:
See also Storing External Objects with Entire System Server.

13Copyright © Software AG 2003

Storage of External Objects Owned by PredictGeneration

Parameters Specifying the Form of Output

Parameters specifying the form of output of external objects owned by Predict are described below. Each
parameter applies to different data storage options.

Parameters

Save as
member(Option
2)

If this parameter is specified, the generated code is stored as a member with the given name
in a Natural library on the Predict system file (FDIC).
The first character of the member name must be alphabetic, all others must be
alphanumeric.
If you enter an asterisk, the name of the new member is determined by Predict as follows:

If a Predict File object is used for the first time to generate a member, the member
name is taken from the File ID (truncated if necessary).
If at least one member has been generated before, a selection window containing all
member names from previous generation runs is displayed. Select an existing member
name with X or enter X in the line *new* to specify a new member name to be
created.

In batch mode, a new member name is created in either case. If 30 members already exist,
the oldest is overwritten.

Save in library
(Option 2)

The generated definitions are saved in the specified Natural library on the Predict system
file. The library name must not start with SYS; its first character must be alphabetic and all
others must be alphanumeric.
This parameter must be specified if the generated external object is to be stored in a Natural
library.

Overwrite option
(Option 2)

Y
An existing member that has been generated from the same file object by Predict is
overwritten. Existing members that were not generated by Predict are not overwritten. If
the generated external object has additionally been stored as an operating system member,
this member is overwritten, too.

If an external member was created and the generation function is executed a second time
without entering an external member, the external member is deleted if Overwrite
option=Y.

Op. system
member (Option
3)

If the generated code is to be stored in an operating system member, a member name must
be specified with this parameter and the options Punch/Output, Save as member and Save
in library must be specified.

If an operating system member name is not specified explicitly, a name can be given with
one of the following methods:

if an asterisk is entered, the first 8 characters of the file ID are used as the member ID.
given that an external object has been stored both as a member of a Natural library and
as an operating system member in the same generation operation, and that Entire
System Server is used, the field Op. system member can be left blank. Predict will
insert the name of the existing operating system member into the input field. This
name can then be changed.

Copyright © Software AG 200314

GenerationParameters Specifying the Form of Output

Punch/Output
(Option 3)

Determines further use of the generated code.

N
The generated external object is neither processed by Entire System Server nor written to a
sequential file (workfile).

Y
The generated external object is punched to a sequential file (workfile 1): If Op. system
member (see above) is specified, operating system statements preceding the data definitions
are created in the external object depending on the type of operating system specified with
the parameter Library system further down this table.
Option Y is only valid in online environments where access to workfiles is possible, (for
example, BS2000, CMS, TSO), and when running in batch mode.

If Library system=3 the external object is additionally stored in a VSE Librarian library.
See Specifying Entire System Server and VSE Librarian Options.

P
Entire System Server stores the generated external object as an operating system member.
The parameter Op.system member and Entire System Server options specified in the
generation defaults determine where the object is stored.

S
As above, but where the object is stored can be specified in a subsequent screen. See
Specifying Entire System Server and VSE Librarian Options.

List generated
code (Option 1)

Determines the amount of information to be displayed.

Y
The generated code is displayed.

N
Only the messages and the summary of the messages is displayed.

15Copyright © Software AG 2003

Parameters Specifying the Form of OutputGeneration

Library system
(Option 3)

This parameter can only be specified in the generation defaults. Determines which type of
operating system statements preceding the data definitions in the external object are
created.

blank
Code is generated in IEBUPDTE format.

A-Z
CATALS and BKEND cards are generated for VSE and the member is added to the
sublibrary identified by the specified letter.
These cards will also be generated if the Predict command PUNCH is used in batch mode.

1
Cards for The Librarian are generated.

2
PANVALET cards are generated.

3
VSE SP2/SP3 cards for use with LIBRARIAN system are generated.
The ACCESS and CATALOG statements with the options Library name, Sublibrary name
and Member type are added.
If Punch/output is set to Y, the external object is stored additionally in a VSE Librarian
library.

The following table shows the statements generated for the various operating systems:

Operating System Statement

OS IEBUPDTE ADD

VSE CATALS, BKEND

OS Librarian ADD

Panvalet ADD

DOS Librarian (VSE SP2/SP3)ACCESS,CATALOG

Note:
This parameter is evaluated only if the Punch/Output option is set to Y and an Op.
system member is specified.
This parameter is not applicable when generating ADAFDU definitions with function
Generate ADACMP/ ADAWAN definitions with the following Adabas versions:

any version starting with U,
V3 and above or
P2 and above.

A complete table of Adabas versions can be found at the end of this section.

Workfile name Only for Windows or UNIX platforms. Identifies the file for punch output. If punch is set
to Y, default is taken from Natural Parameter Module -> Workfile name 1.

Storing External Objects with Entire System Server

External Objects owned by Predict can be stored directly as a member in an operating system library (partitioned
data set) in an OS/390 and a VSE environment if Entire System Server is available.
This option is used by setting the parameter Punch/Output to P or S.
If Punch/Output is set to S additional parameters can be specified in a subsequent screen. See Specifying Entire

Copyright © Software AG 200316

GenerationStoring External Objects with Entire System Server

System Server and VSE Librarian Options.

Additional storage of generated code with Entire System Server is notified in the generation log of the Predict
file object from which the code was generated.
The following rules apply:

In a VSE environment
Members are identified by member name and member type. Members of different types can therefore have
the same name.
The code is stored as member in a VSE library.
The following prerequisites must be met:

Librarian utility must be installed (VSE/SP2 or higher)
library and sublibrary must be defined in VSE
member type must be specified.

In an OS/390 environment
Members are identified by name only.
The code is stored as a member in a partitioned data set.
The data set must be allocated. It is recommended that the data sets are cataloged. In this case, the
VOLUME name need not be specified.

Note:
Parameters that have to be specified when storing generated code with Entire System Server are
described in the section Specifying Entire System Server and VSE Librarian Options.

Using Entire System Server in Networks

Generated code can be stored in operating system libraries residing in remote environments. In this case Entire
System Server calls are distributed by Software AG’s Entire Net-Work facility.

Prerequisites for Using Entire System Server

Depending on the setup parameters specified during installation of Entire System Server a LOGON is
required.

Online, the LOGON is requested if necessary.
In batch mode, specify a logon command before the first Entire System Server command:

NPRLOGON <userid>,<password>,<Entire System Server database-id>

for example:

NPRLOGON AZ,XYZ,ENTIRE-SYSTEM-SERVER

To prevent the password being displayed in SYSOUT in batch mode, enter the terminal command %*
before NPRLOGON.

The database number 148 must be defined as Entire System Server in the Natural Parameter module by the
NTDB macro (NTDB PROCESS,148).
The Entire System Server node can have a number other than 148, because the node number is always
specified when an Entire System Server access is performed in Predict. In this case there must be an
additional PROCESS node definition in the Natural parameter module.
Predict supports multiple Entire System Server nodes. If the generated code is to be written by Entire
System Server, the Entire System Server database ID must always be defined and the node number is filled
with the logical database number.

17Copyright © Software AG 2003

Storing External Objects with Entire System ServerGeneration

Regenerating Code Handled by Entire System Server

When regenerating code that has been processed by Entire System Server, the members stored in a library or
partitioned data set must be updated to ensure consistency.

Code can be regenerated with either the same or with different Entire System Server options:

When regenerating code without changing the operating system member name, the Entire System Server
options used for the previous generation are inserted in the generation screen (under the prerequisite that the
options are valid according to the relevant defaults).
See Specifying Entire System Server and VSE Librarian Options.
To regenerate code with different Entire System Server options, set thePunch/Output option to S. The
options can then be changed in the second screen.

Example: A new Op. system member is specified. As the result the old operating system member is deleted
and a new member is created.

If code is regenerated for which an operating system member was generated in a previous generation, and the
Punch/Output option is set to N or Y, this will cause the operating system member to be deleted after a warning
has been issued. The contents of the member will not be compared.

If code is regenerated and the operating system member documented in the generation log of the Predict file
object is not found (this means that the member was deleted by an operating system utility) the code can be
written to a new member or the generation log of the file is deleted depending on the Punch/Output option.

If Entire System Server is deinstalled, the generated code can be regenerated and the link in the generation log of
the file is deleted.
If Entire System Server is temporarily not active (example: response code 5999), the generation function for this
member is rejected. If it is necessary under these circumstances to change this generated code (saved with the
current member and library name), it must be deleted with the Predict function Administration Implemented File.

The table below shows the effects of different generation settings when working with Entire System Server:

Copyright © Software AG 200318

GenerationStoring External Objects with Entire System Server

Member
exists
see 1)

Overwrite
Option

Code written
with Entire
System Server
see 2)

Opsys
Member
exists

Name of
Opsys
Member
changed

Entire
System
Server
available

Action

- - Y N - Y Write to new opsys
member

Y Y Y Y N Y Opsys member
replaced

Y Y Y Y Y Y Old opsys member
deleted; write to
new opsys member

Y Y N Y - Y Old opsys member
deleted

Y Y Y N (but
documented)

- Y Write to new opsys
member

Y Y N N (but
documented)

- Y Delete references in
generation log to
opsys member

Y Y N Y - N (not
installed)

Delete references in
generation log to
opsys member

Y Y N Y - N (not
active)

Generation
function rejected

1) Field Save as member filled with valid value
2) Parameter Punch/output = P or S

Specifying Entire System Server and VSE Librarian Options

Additional parameters must be specified if generated external objects are written to an operating system member
with Entire System Server (Punch/Output=S) or are written directly as members in an VSE librarian library
(Punch/Output=Y and Library system=3).

19Copyright © Software AG 2003

Storing External Objects with Entire System ServerGeneration

 13:59:30 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Punch / Output Default Options -
 Modified 2003-05-31 at 13:28
 by CHD
 Mark with ’X’ the options which may be modified by the user.

 X Entire System Server Database ID ..* PROCESS-148

 MVS Entire System Server Defaults
 X Data set
 X Volume

 VSE LIBRARIAN Defaults
 X Library
 X Sublibrary
 X Member type
 X VSAM catalog name .. (Required for Entire System Server)

 Previous entered default options
 Op. system member ..
 Library system 2
 Punch / output N

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Parameters

Entire System Server
Database ID

ID of the Predict database object documenting the Entire System Server node. The
logical database number specified in Predict is used as Entire System Server node
number.

Data Set Name of the PDS in an OS/390 environment used by Entire System Server.

Volume Name of the Volume where the PDS used by Entire System Server is allocated. Volume
must be specified if the data set is not cataloged in an OS/390 environment.

Library Library name of the Librarian system (VSE SP2/SP3) or used by Entire System Server.

Sublibrary Sublibrary name of the Librarian system (VSE SP2/SP3) or used by Entire System
Server.

Member type Member type of the Librarian system (VSE SP2/SP3) or used by Entire System Server.

VSAM catalog name VSAM catalog name used only by Entire System Server.

Op. system member The Op. system member name entered in the previous screen is displayed but cannot be
modified in this screen.

Specify library system Librarian (VSE SP2/SP3) by setting option Library system to 3. Generated code written
to workfile 1 is prepared for use as input of Librarian (VSE SP2/SP3) system: ACCESS and CATALOG
statements are inserted at the beginning of the generated code.

Common Parameters
The parameters Adabas version and Preprocessor force can be specified with many generation functions.
Preprocessor force can only be defined in the respective Modify Generation Defaults screen.

Copyright © Software AG 200320

GenerationCommon Parameters

Adabas Version

Note:
If a new Adabas version is released that does not have any effect on Predict Generation functions, this new
version will not appear in the selection menu. Use the code for the old version.

Code Version Remarks

I1 V 5.1 for
IBM/Siemens

Applicable to all external object types for which this parameter can be specified.

When generating copy/include code, sub/superdescriptors are not included in the
record buffer layout.

I3 V 5.3 for
IBM/Siemens

As above.

I6 V 6.1 for
IBM/Siemens

As above. This Adabas version supports larger database and file numbers.

I7 V 7.1 for
IBM/Siemens

As above.

O4 V 4.1 for
IBM/Siemens

U1 V 1.1 for UNIX

U2 V 1.2 for UNIX

U3 V 2.1 for UNIX

U4 V 2.2 for UNIX

U5 V 3.1 for UNIX/NT

U6 V 3.2 for UNIX/NT

V2 V 2.1 for VMS

V3 V 3.1 for VMS

V4 V 3.2 for VMS

V5 V 4.1 for VMS

P1 V 1.0 for OS/2.

P2 V 1.2 for OS/2.

R1 V 5.1 for
IBM/Siemens

Only applicable to generation of copy/include code.

Sub/superdescriptors are included physically in the record buffer layout.

Code generated with this Adabas version cannot be used for update statements.

Not applicable for files where parameter Adabas SQL usage =Y.

R3 V 5.3 for
IBM/Siemens

As above.

R7 V 7.1 for
IBM/Siemens

Similar to I7, sub/super and collation descriptors are included physically in the
record buffer layout.

21Copyright © Software AG 2003

Adabas VersionGeneration

Generate For Adabas
The following types of external objects can be generated for Adabas:

ADACMP, ADAWAN, ADAFDU and ADALOD Definitions
Adabas File
ADAINV Definitions
ADASCR Definitions
Vista Translation Table
Adabas VSAM Bridge Transparency Table
Adabas Table/Cluster/View

Copyright © Software AG 200322

Generate For AdabasGenerate For Adabas

ADACMP, ADAWAN, ADAFDU and
ADALOD Definitions
The function Generate ADACMP/ADAWAN Definitions generates input data for the Adabas compression / load
utilities from Predict file objects of type A (Adabas files). The definition generated depends on the parameters
Adabas version and Generate loader.

Note:
For more information see the section Compression or ADACMP in the Adabas Utilities documentation.

This section contains:

Calling the Function
Additional ADALOD Parameters
Additional ADAFDU Parameters
Additional Parameters For UES Support
Generate ADACMP, ADAWAN, ADAFDU or ADALOD Definitions in Batch Mode
Sample Output

Calling the Function
The Generate ADACMP/ADAWAN Definitions screen is displayed with function code G and object code AC in
a Predict main menu, or with one of the commands GENERATE ADACMP or GENERATE ADAWAN.

23Copyright © Software AG 2003

ADACMP, ADAWAN, ADAFDU and ADALOD DefinitionsADACMP, ADAWAN, ADAFDU and ADALOD Definitions

 13:04:49 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate ADACMP/ADAWAN Definitions -

 File ID*

 Phys. File number.......
 Contained in DA
 Phys. Database number ..

 Save as member Save in library WANLIB
 Overwrite option Y (Y,N) Op. system member ..
 Punch / output* N
 Generate loader N (Y,N) UES N (Y,N)
 List generated code Y (Y,N) Adabas version* I7
 List input file* Y
 Input file ID
 NUMREC (-1=zero) Cipher code
 Occurrences used* Y
 Record length (*,number) Record format*
 Device statistics Y (Y,N)

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults
The parameter below can be changed in the Modify ADAWAN/ADACMP Defaults screen.

Presetting

Library
system

Determines which type of operating system statements are generated in the external object before
the data definitions. This parameter only applies if you set the parameter Punch/Output to Y and
specify an operating system member under Op. system member.

The parameters Save as member, Save in library, Overwrite option, Op. system member, Punch/output, Workfile
name and List generated code are described in Parameters Specifying the Form of Output. The parameter
Punch/output has an additional value for this external object type and is described below.

Parameters

File ID, Phys. file
number, Contained
in DA, Phys.
database number

The ADACMP, ADAWAN, ADAFDU and ADALOD definitions can be generated for
one specific Adabas file in a database. This file is uniquely defined by the physical file
number and the physical database number. This file can be identified by these four
parameters. If the parameters are not unique, a selection screen appears.
It is also possible to generate the definitions for an Adabas file which is not linked to any
database. In this case the currently defined file attributes are taken.

Punch/Output In addition to the standard options you can also specify the value D for this external object
type:
Download to PC (Write to workfile 7).

For this setting, the following prerequisites must be met:

Workfile 7 must be defined in the session variables as a PC file.
Parameter Save as member must be specified

Copyright © Software AG 200324

ADACMP, ADAWAN, ADAFDU and ADALOD DefinitionsCalling the Function

Adabas version The version of Adabas for which the external object is to be generated. Enter an asterisk
for valid values or see Adabas Version for more information.

This parameter determines the utility for which cards are generated. See table below.

Code Version Generated
Card Format

Note

I1
V 5.1 for
IBM/
Siemens

ADACMP
If parameter Generate loader is set to Y ,
ADALOD definitions are generated as well. See
Additional ADALOD Parameters

I2
V 5.2 for
IBM
/Siemens

I3
V 5.3 for
IBM/
Siemens

I6
V 6 for IBM/
Siemens

I7
V 7.1 for
IBM/
Siemens

O4
V 4.1 for
IBM/
Siemens

ADAWAN

U1
V 1.1 for
UNIX

ADAFDU

If parameter Generate loader is set to N, only
field definitions are generated.

If Generate loader is set to Y, ADAFDU file
definitions are generated in addition to the field
definitions. See Additional ADAFDU Parameters

U2
V 1.2 for
UNIX

U3
V 2.1 for
UNIX

U4
V 2.2 for
UNIX

U5
V 3.1 for
UNIX/NT

V2
V 2.1 for
VMS

ADACMP Only field definitions are generated.

V3
V 3.1 for
VMS

ADAFDU

If parameter Generate loader is set to N, only
field definitions are generated.

If Generate loader is set to Y, ADAFDU file
definitions are generated in addition to the field
definitions. See Additional ADAFDU Parameters

V4
V 3.2 for
VMS

V5
V 4.1 for
VMS

P1
V 1.0 for
OS/2.

ADACMP

P2
V 1.2 for
OS/2.

ADAFDU

25Copyright © Software AG 2003

Calling the FunctionADACMP, ADAWAN, ADAFDU and ADALOD Definitions

Generate loader The system behavior depends on the card format to be generated. The card format in turn
depends on the parameter Adabas version. See table above and Additional ADALOD
Parameters and Additional ADAFDU Parameters.

You can only set this parameter to Y for the following Adabas versions: I1, I2, I3, I6, I7,
U1, U2, U3, U4, U5, V3, V4, V5.

UES If you set this parameter to Y a window appears in which you can specify additional
parameters concerning UES support. These parameters are described in detail in your
Adabas documentation.

You can only set this parameter to Y if the database for which the ADACMP cards are to
be generated has the Predict attribute UES set to Y or if the file doesn’t belong to any
database.

You can only set this parameter to Y for Adabas version I7. See Additional Parameters For
UES Support for details.

List input file This parameter is only evaluated if an input file is entered.

Y
The attributes of the fields of the input file and their corresponding Adabas fields are
listed.

N
Attributes are listed only for incompatible fields.

D
All differences between the attributes of the input file and of the Adabas file are listed.

Input file ID ID of the Predict file object from which the format buffer of the input file for the
ADACMP utility is to be generated. In Adabas Version 5 and above, the compression
utility need not use the standard format buffer layout based on the FDT: the order and
format of the fields can be defined in a file specified by this parameter. This file must
either be sequential (file type S) or a userview (File type U) of the Adabas file. A
sequential file specifies fields using their field IDs; a userview specifies them using their
field short names.

Note:
Only applies to Adabas Version 5 and above for IBM/Siemens.

NUMREC A NUMREC parameter with the value provided is generated in the ADACMP control
statement.
If the value in this field is zero, it is ignored.
If NUMREC = -1 the option NUMREC = 0 is inserted.

Note:
Only applies to Adabas Version 5 and above for IBM/Siemens.

Cipher code Applies only to files marked as ciphered. The value of the cipher code parameter to be
generated in the ADACMP control statement.

Note:
Only applies to Adabas Version 5 and above for IBM/Siemens.

Copyright © Software AG 200326

ADACMP, ADAWAN, ADAFDU and ADALOD DefinitionsCalling the Function

Occurrences used This parameter determines how many occurrences of periodic groups and multiple value
fields are taken from the input record and used by the Adabas compression utility.

Valid values:

Y
The number of occurrences defined in Predict is taken.

M
The maximum number of occurrences is always taken:
for multiple value fields: 191
for periodic groups: 99 or 191 depending on the Adabas version.

N
No occurrences.

Note:
If you are generating for V 1.0 for OS/2 (Adabas Version=P1), this parameter must be
set to Y.
For Adabas on UNIX systems Occurrences used must be set to N.

Record length A LRECL parameter with the value provided is generated in the ADACMP control
statement.

0, blank
Field is ignored.

*
If an asterisk is entered, the record length of the input file is calculated for the LRECL
parameter. This is only possible if the input record contains neither periodic groups with
variable occurrences nor multiple value fields with variable occurrences.

Note:
Only applies to Adabas Version 5 and above for IBM/Siemens.

Record format A RECFM parameter with the value provided is generated in the ADACMP/ADAWAN
control statement.

Valid values: F, FB, V, VB, U or blank.

Note:
Only applies to Adabas Version 5 and above for IBM/Siemens.

Device statistics Y
The device option is generated for the default data device type or for all data device types
of the linked database.

Additional ADALOD Parameters
If you set the parameter Generate loader to Y for Adabas Version I1, I2, I3, I6 or I7, a window appears in which
you can specify additional parameters for the ADALOD utility. See your Adabas documentation for a detailed
description of these parameters.

27Copyright © Software AG 2003

Additional ADALOD ParametersADACMP, ADAWAN, ADAFDU and ADALOD Definitions

+-- Additional parameters for ADALOD ------+
! !
! Format DS/index .. Y (Y,N) !
! SORTDEV* 3380 !
! TEMPDEV* 3380 !
! SORTSIZE 25 C/B ... C !
! TEMPSIZE 30 C/B ... C !
! ISN pool size KB/B .. KB !
! Work pool size ... KB/B .. KB !
! SKIPREC !
! ETID !
! Force allocation . Y (Y,N) !
+--+

You can modify the default values in the window Additional parameters for Loader of the function Modify
ADAWAN/ADACMP Defaults.

ADACMP definitions are generated first, followed by ADALOD definitions. See example below.

\\
ADALOD LOAD
ADALOD FILE=77
ADALOD NAME=CHD-A-FILE
ADALOD ACRABN=1
ADALOD ASSOPFAC=10
ADALOD DATAFRM=YES
:
:

The ADALOD utility must be called explicitly using the ADALOD definitions generated with this function.

Additional ADAFDU Parameters
If you set the parameter Generate loader to Y for Adabas version U1, U2, U3, U4, U5, V3, V4 or V5, a window
appears in which you can specify additional parameters for the ADAFDU utility. These parameters are described
in detail in your Adabas documentation.

+-- Additional parameters for ADAFDU ------+
! !
! Format DS/Index .. Y (Y,N) !
! Contiguous AC Y (Y,N) !
! Contiguous DS Y (Y,N) !
! Contiguous NI N (Y,N) !
! Contiguous UI N (Y,N) !
+--+

You can modify the default values in the window Additional parameters for Loader of function Modify
ADAWAN/ADACMP Defaults.

Additional Parameters For UES Support
If you set the parameter UES to Y for Adabas Version I7 or above, a window appears in which you can specify
additional parameters for the ADACMP utility.

Copyright © Software AG 200328

ADACMP, ADAWAN, ADAFDU and ADALOD DefinitionsAdditional ADAFDU Parameters

+------- Additional parameters for -------+
! Universal encoding Support !
! !
!UARC !
! Byte order* !
! Encoding family* !
! Floating point format ..* !
!Code pages !
! UACODE* 273 !
! UWCODE* 285 !
! !
+--+

See your Adabas documentation for a detailed description of these parameters.

You can modify the default values in the window Additional parameters for Universal encoding Support of the
function Modify ADAWAN/ADACMP Defaults.

Generate ADACMP, ADAWAN, ADAFDU or ADALOD
Definitions in Batch Mode
Commands: GENERATE ADAWAN or GENERATE ADACMP

Parameters can be entered in positional or keyword form. File ID is obligatory, all other parameters are optional.
If a parameter is not specified, the default value is taken.

29Copyright © Software AG 2003

Generate ADACMP, ADAWAN, ADAFDU or ADALOD Definitions in Batch ModeADACMP, ADAWAN, ADAFDU and ADALOD Definitions

Field Keyword Position

File ID FILE-ID 1

Save as member MEM 2

Save in library LIB 3

Overwrite option REPLACE 4

Op. system member OS-MEMBER 5

NUMREC NUMREC 6

Record length LRECL 7

Record format RECFM 8

List generated code LIST 9

Punch / output PUNCH 10

Occurrences used USE-OCC 11

Input file ID INFILE-ID 12

List input file LIST-IN 13

Cipher code CIPHER 14

Adabas version ADA-VER 15

Device statistics DEVICE 16

Phys. file number FNR 17

Database ID DB 18

Phys. database number DBNR 19

Workfile name (see note below) WORKFILE-NAME 20

If Entire System Server is used

- DB-ID NP-DBID 21

- Dataset NP-DSNAME 22

- Volume NP-VOLSER 23

- Library NP-LIB 24

- Sublibrary NP-SUBLIB 25

- Member type NP-MEMTYPE 26

- VSAM catalog NP-VSAMCAT 27

Note:
You can not specify a value other than blank (’ ’) for WORKFILE-NAME on mainframes.

Parameters NP-LIB, NP-SUBLIB and NP-MEMTYPE must be specified if the generated code is written to
workfile 1 (Punch/output=Y) and Library system=3.

Copyright © Software AG 200330

ADACMP, ADAWAN, ADAFDU and ADALOD DefinitionsGenerate ADACMP, ADAWAN, ADAFDU or ADALOD Definitions in Batch Mode

Field Keyword Position

Generate Loader FILE-ATTRIBUTES 28

Additional ADAFDU parameters

Format DS/Index FORMAT-DS-IND 29*

Contiguous AC CONTIG-AC 30

Contiguous DS CONTIG-DS 31

Contiguous NI CONTIG-NI 32

Contiguous UI CONTIG-UI 33

Additional ADALOD parameters

Format DS/index FORMAT-DS-IND 29*

SORTDEV SORTDEV 34

TEMPDEV TEMPDEV 35

SORTSIZE SORTSIZE 36

SORTSIZE C/B SORTSIZE-T 37

TEMPSIZE TEMPSIZE 38

TEMPSIZE C/B TEMPSIZE-T 39

ISN pool size LIP 40

ISN pool size KB/B LIP-T 41

Work pool size LWP 42

Work pool size KB/B LWP-T 43

SKIPREC SKIPREC 44

ETID ETID 45

* Parameter FORMAT-DS-IND may be used for ADAFDU as well as ADALOD.

Field Keyword Position

Additional UES parameters

UES GEN-UES 46

Byte order BYTE-ORDER 47

Encoding family ENC-FAMILY 48

Floating point formatFLOATING 49

UA code UACODE 50

UW code UWCODE 51

Sample Output

31Copyright © Software AG 2003

Sample OutputADACMP, ADAWAN, ADAFDU and ADALOD Definitions

 13:13:44 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate ADACMP Definitions - Page: 1
 Input file: GEN-EXAM-ADACMP-INPUT
 File type : Sequential file

 Cnt Ty L Field name F Length D U DB S Occ Adabas
 Corresponding Adabas Field F Leng.
 ----- -- - -------------------------------- -- -------- - - -- - ----- - -----
 1 1 ELE-N-9V5 N 7.05 N U 12
 2 ELE-N-9V5 N 9.05 AB N U 14
 >>> FIELD LENGTH DEFINITION IS DIFFERENT <<<
 >>> ADABAS FIELD LENGTH IS DIFFERENT <<<
 3 1 ELE-PS-5V2 PS 5.00 N P 3
 3 ELE-PS-5V2 PS 5.02 AE N P 4
 >>> FIELD LENGTH DEFINITION IS DIFFERENT <<<
 >>> ADABAS FIELD LENGTH IS DIFFERENT <<<
 8 1 SB-ELE-A-5 A 5.00 A 5
 SB 1 SB-ELE-A-5 A 5.00 AJ N A 5
 >>> FIELD TYPE IS DIFFERENT <<<
 9 PE 1 PC-OCC-7 2
 PC 1 PC-OCC-7 AL 7
 >>> NUMBER OF OCCURRENCES IS DIFFERENT <<<

Copyright © Software AG 200332

ADACMP, ADAWAN, ADAFDU and ADALOD DefinitionsSample Output

 13:18:34 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate ADACMP Definitions - Page: 2

 File ID .. GENERATION-EXAMPLE

 ADACMP COMPRESS
 ADACMP FILE=171
 ADACMP FORMAT=’AB,12,AD,AE,3,AF1-5,AG,AH,AI,AJ,AM1,AN1(1-11),AP1,AQ1’
 ADACMP FORMAT=’,AM2,AN2(1-11),AP2,AQ2,AS,AU.’
 ADACMP LRECL=242
 ADACMP NUMREC=0
 ADACMP MINISN=1
 ADACMP DEVICE=3390
 ADACMP FNDEF=’01,AA’ GROUP-1 **********
 ADACMP FNDEF=’02,AB,14,U,NU’ ELE-N-9V5 2003-05-31
 ADACMP FNDEF=’02,AC’ GR-IN-GROUP 13:18:34
 ADACMP FNDEF=’03,AD,4,B,DE,FI’ ELE-B-4 **********
 ADACMP FNDEF=’03,AE,4,P,NU’ ELE-PS-5V2
 ADACMP FNDEF=’03,AF,4,B,NU,MU’ MU-B-4
 ADACMP FNDEF=’02,AG,42,A,NU’ ELE-A-42
 ADACMP FNDEF=’02,AH,8,G,FI’ ELE-F-8
 ADACMP FNDEF=’02,AI,3,B,NU’ ELE-B-3
 ADACMP SUBFN=’AJ=AG(10,14)’ SB-ELE-A-5
 ADACMP SUPDE=’S1=AI(1,3),AG(20,36),-’ SP-DE-A-24
 ADACMP ’AE(1,4)’
 ADACMP FNDEF=’01,AL,PE’ PC-OCC-7
 ADACMP FNDEF=’02,AM,10,U,DE,NU’ PC-ELE-DE-NS-7V3
 ADACMP FNDEF=’02,AN,4,P,DE,NU,MU’ PC-MC-PS-6V1
 ADACMP FNDEF=’02,AO’ PC-GR
 ADACMP FNDEF=’03,AP,2,B,FI’ PC-ELE-I-2
 >>> CHANGE: FORMAT NOT SUPPORTED BY GIVEN ADABAS VERSION. <<<
 ADACMP FNDEF=’03,AQ,14,P,NU’ PC-PS-20V7
 ADACMP FNDEF=’02,AR,4,G,FI’ PC-ELE-F-4
 >>> WARNING: FIELD NOT FILLED BY INPUT FILE. <<<
 ADACMP FNDEF=’01,AS,4,P,NU’ ELE-D
 >>> CHANGE: FORMAT ’D’/’T’ CHANGED TO ’P’. <<<
 ADACMP FNDEF=’01,AT,7,P,NU’ ELE-T
 >>> WARNING: FIELD NOT FILLED BY INPUT FILE. <<<
 >>> CHANGE: FORMAT ’D’/’T’ CHANGED TO ’P’. <<<
 ADACMP FNDEF=’01,AU,1,B,NU’ ELE-L
 ADACMP HYPDE=’04,S2,4,F,FI,MU,PE=AP,AF’ HQ-DE-I-4
 >>> CHANGE: OPTION FI REQUIRED BY ADABAS. <<<

33Copyright © Software AG 2003

Sample OutputADACMP, ADAWAN, ADAFDU and ADALOD Definitions

 //
 ADALOD LOAD
 ADALOD FILE=171
 ADALOD NAME=GENERATION-EXAMP
 ADALOD ASSOPFAC=10
 ADALOD DATAFRM=YES
 ADALOD DATAPFAC=10
 ADALOD DSDEV=3390
 ADALOD DSREUSE=YES
 ADALOD DSSIZE=233B
 ADALOD ISNREUSE=NO
 ADALOD MAXISN=3391
 ADALOD MINISN=1
 ADALOD NISIZE=80B
 ADALOD NUMREC=0
 ADALOD SORTDEV=3380
 ADALOD SORTSIZE=25
 ADALOD TEMPDEV=3380
 ADALOD TEMPSIZE=30
 ADALOD UISIZE=41B

 DIC1800 SUMMARY: 27 FIELD(S) PROCESSED
 DIC1825 WARNING: 2 WARNING(S) IN GENERATION FUNCTION ISSUED
 DIC1815 WARNING: 4 CHANGE(S) IN FIELD DEFINITIONS MADE

Copyright © Software AG 200334

ADACMP, ADAWAN, ADAFDU and ADALOD DefinitionsSample Output

Adabas File
The function generates an Adabas FDT from a Predict file object of type A (Adabas).

Note:
If Natural Security and Adabas Online Services are installed and function protection for Predict is activated,
permission is required to generate an Adabas file.

Note for UNIX, Windows NT and VMS Users:
With this function you can generate input for the ADAFDU utility to create a new file in your Adabas
database. For existing files the FDT and the documentation of the file are compared and the input, necessary
to adapt the existing FDT for the utilities ADAINV and ADADBM, is generated. The utilities are started
immediately. This method automatically creates a connection between external and documentation object.
Before you can delete the documentation object, you must either delete the external object (with the
administration function Purge) or disconnect the external and documentation object (with function
Disconnect). See also section Handling of External and documentation Objects in this documentation.

A file generated with this method is handled like a file created with Adabas Online Services.

This section covers the following topics:

Calling the Function
Generate Adabas File in Batch Mode
Sample Output
Sample Output - Continued

Calling the Function
The Generate Adabas file screen is displayed with function G and code AF in a Predict main menu, or with the
command GENERATE FDT.

On mainframes, the following screen is displayed:

35Copyright © Software AG 2003

Adabas FileAdabas File

 13:21:46 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate Adabas file -

 Current VM HOME

 File ID*
 Phys. file number
 Contained in DA
 Phys. database number 36

 Load file into database ... Y (Y/N) Replace if only FDT exists N (Y/N)
 Update/add fields (FDT) ... N (Y/N)
 Update file parameters N (Y/N) Replace if no records loaded .. N (Y/N)

 Change file number N (Y/N)
 Format DS/Index Y (Y/N)
 Adabas password

 List actions Y (Y/N)

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

On Windows and UNIX platforms, the following screen is displayed:

 13:28:33 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate Adabas file -

 Current VM HOME

 File ID*
 Phys. file number
 Contained in DA
 Phys. database number

 Load file into database ... Y (Y/N) Replace if only FDT exists N (Y/N)
 Update/add fields (FDT) ... N (Y/N)
 Update file parameters N (Y/N) Replace if no records loaded .. N (Y/N)

 Change file number N (Y/N) Adabas version* U1
 Format DS/Index Y (Y/N) Contiguous AC N (Y/N)
 Adabas password Contiguous DS N (Y/N)
 Contiguous NI N (Y/N)
 List actions Y (Y/N) Contiguous UI N (Y/N)

 Command ===>

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

The following parameters can only be set with the function Defaults > Generation Defaults for object type AF.

Default Parameters

Copyright © Software AG 200336

Adabas FileCalling the Function

Delay after stop users Enter a value of up to 99 seconds. This is the time the system waits before actually
performing the generation if parameter Stop users using file is set to Y. See below.

Due to Adabas load or too much network traffic, it is possible that not all users have
been stopped before the function Generate Adabas file is executed. This delay makes
certain that all users really have been stopped before an Adabas file is generated.

Execute online invert Y
If set to N, no online invert function is executed.

Note:
This parameter applies only when generating for Adabas databases of version 7 or
above.

Only if TOPISN less
than

This function is only available if Execute online invert is set to Y. You can specify a
value for TOPISN. The default value is 9999999999.

Note:
This parameter applies only when generating for Adabas databases of version 7 or
above.

Delay after online
invert

The online invert function of Adabas version 7 is executed as an asynchronous task.
Only one online invert task may be active at a given time.

Enter a value of up to 99 seconds. This is the time the system waits after one online
invert before performing the next.

Note:
This parameter applies only when generating for Adabas databases of version 7 or
above.

Stop users using file Y
All current use of the Adabas file is stopped before a generation run is executed. This
parameter must be set to Y on a separate terminal if a file currently used by other users
is to be regenerated.

N
The function is terminated if other users are accessing the file.

Note:
If Natural Security and Adabas Online Services are installed and function
protection for Predict is activated, permission is required to stop users using an
Adabas file.

Current VM Adabas files can only be generated from Predict file objects contained in databases
accessible from the current virtual machine.

Parameters

File ID, Phys. file
number, Contained in
DA, Phys. database
number

The Adabas file definitions can be generated for one specific Adabas file in a database.
This file can be identified by the fields File ID, Phys. file number, Database ID or
Phys. database number. If parameters do not uniquely identify a file, a selection screen
appears.

Load file into databaseY
If no file already exists with given file number, a new file is created in the Adabas
database.

37Copyright © Software AG 2003

Calling the FunctionAdabas File

Update/add fields
(FDT)

Y
Fields documented in Predict and missing in the FDT are added to the Adabas file.
The field length in the FDT is adapted to the value in the Predict object, and fields
defined as descriptors in the FDT but not in the Predict documentation are released
from descriptor status.

Update file parametersY
File parameters, including the file space allocation, are adapted to the documentation.
If the Adabas file is physically coupled to other files and these relationships are not
documented, the files are uncoupled.

Change file number Y
If the Predict file object was renumbered, the Adabas file is renumbered.

Format DS/Index DATA storage is to be physically formatted.

Adabas password Must be provided if the Adabas file (or only an FDT) already exists in the Adabas
database and is protected by an Adabas security definition.

List actions Y
Actions which are to be performed to adapt the Adabas file to the Predict specification
are listed. Some of the actions may not yet be performed by this generation function:
they must be run as batch utilities. The list shows all parameters which are used for
generation. Parameters which are invalid or currently not able to be implemented are
marked accordingly.

Replace if only FDT
exists

Y
If a file with this file number once existed in the database and was deleted with the
KEEPFDT option, the remaining FDT is overwritten.

Note:
The FDT of the file will not be deleted if the generation terminates abnormally,
for example if the field list in Predict contains invalid field definitions.

Replace if no records
loaded

Y
The Adabas file parameters are replaced, because it is not possible to modify all
parameters of an existing file. Replacement is only possible if the Adabas file is empty
and is not physically coupled to other Adabas files. The current FDT is kept.

Additional Parameters for UNIX

Adabas version The version of Adabas for which the external object is to be generated. Enter an
asterisk for valid values or see Adabas Version for more information.

Contiguous AC, DS,
NI, UI

Setting of space allocations in Adabas utility ADAFDU for Address Converter, Data
Storage, Normal Index and Upper Index. See your Adabas Utilities documentation for
more information.

Generate Adabas File in Batch Mode
Command: GENERATE FDT

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Copyright © Software AG 200338

Adabas FileGenerate Adabas File in Batch Mode

Field Keyword Position

File ID FILE-ID 1

Phys. file number FNR 2

Database ID DB 3

Phys. database number DBNR 4

Load file into database LOAD 5

Replace if only FDT exists REPLACE-FDT 6

Update/add fields (FDT) UPD-FDT 7

Update file parameters UPD-PARM 8

Replace if no records loaded REPLACE-EMPTY 9

Note: Value exists for compatibilty reasons onlyREPLACE-CRIT 10

Change file number RENUMBER 11

Format DATA storage DATAFRM 12

Adabas password PSW 13

List actions LIST 14

Stop users using file STOPF 15

39Copyright © Software AG 2003

Generate Adabas File in Batch ModeAdabas File

Sample Output

 13:07:37 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Adabas file -

 File ID GENERATION-EXAMPLE PFnr ... 171
 Database ID .. DEMO-DB PDBnr .. 180

 Action Parameter Remark

 DEFFDT FILE=171
 FNDEF=’01,AA’
 Field: GROUP-1
 FNDEF=’02,AB,14,U,NU’
 Field: ELE-N-9V5
 FNDEF=’02,AC’
 Field: GR-IN-GROUP
 FNDEF=’03,AD,4,B,DE,FI’
 Field: ELE-B-4
 FNDEF=’03,AE,4,P,NU’
 Field: ELE-PS-5V2
 FNDEF=’03,AF,4,B,NU,MU’
 Field: MU-B-4
 FNDEF=’02,AG,42,A,NU’
 Field: ELE-A-42
 FNDEF=’02,AH,8,G,FI’
 Field: ELE-F-8
 FNDEF=’02,AI,3,B,NU’
 Field: ELE-B-3
 FNDEF=’01,AL,PE’
 Field: PC-OCC-7
 FNDEF=’02,AM,10,U,DE,NU’
 Field: PC-ELE-DE-NS-7V3
 FNDEF=’02,AN,4,P,DE,NU,MU’
 Field: PC-MC-PS-6V1
 FNDEF=’02,AO’
 Field: PC-GR
 FNDEF=’03,AP,2,B,FI’
 Field: PC-ELE-I-2
 FNDEF=’03,AQ,14,P,NU’
 Field: PC-PS-20V7
 FNDEF=’02,AR,4,G,FI’
 Field: PC-ELE-F-4
 FNDEF=’01,AS,4,P,NU’
 Field: ELE-D
 FNDEF=’01,AT,7,P,NU’
 Field: ELE-T
 FNDEF=’01,AU,1,B,NU’
 Field: ELE-L
 SUBFN=’AJ=AG(10,14)’
 Field: SB-ELE-A-5
 SUPDE=’S1=AI(1,3),AG(20,36),-’
 ’AE(1,4)’
 Field: SP-DE-A-24
 HYPDE=’04,S2,4,F,MU,PE=AP,AF’
 Field: HQ-DE-I-4

Copyright © Software AG 200340

Adabas FileSample Output

Sample Output - Continued

 13:07:37 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Adabas file -

 File ID GENERATION-EXAMPLE PFnr ... 171
 Database ID .. DEMO-DB PDBnr .. 180

 Action Parameter Remark

 LOADFILE NOACEXTENSION=NO
 MIXDSDEV=NO
 DATAFRM=YES
 MAXISN=3391
 NAME=GENERATION-EXAMPLE
 MINISN=1
 ASSOPFAC=10
 DATAPFAC=10
 PGMREFRESH=NO
 ISNREUSE=NO
 LOADFILE DSREUSE=YES
 MAXDS=0
 MAXNI=0
 MAXUI=0
 CIPHER=NO
 MAXRECL=5060
 UISIZE=41B
 NISIZE=80B
 DSSIZE=233B
 DSDEV=3390

41Copyright © Software AG 2003

Sample Output - ContinuedAdabas File

ADAINV Definitions
The function Generate ADAINV Definitions generates input data for the Adabas utility ADAINV from Predict
file objects of type A.

The function applies to the following Adabas versions:

IBM/Siemens Version 5.1 or above
UNIX Version 2.1 or above
VMS Version 2.1 or above

Predict checks against the implemented Adabas file which descriptors are already defined and generates the
ADAINV definition only for the additional descriptors in Predict.

If Adabas Online Services are installed, ADAINV couple cards are generated additionally if file relations of type
C (physically coupled) are documented but not implemented for the file.

When using Adabas version 7 or above on mainframes with Adabas Online Services installed or Adabas on a
Windows or UNIX platform, the invert function can be executed as part of the Generate Adabas file function. In
this case it is not necessary to adapt the FDT in a three step process (i.e. generate Adabas file, generate ADAINV
and execute ADAINV).

In all other configurations, before using the ADAINV utility with Predict, it is recommended to first generate the
Adabas FDT, then the ADAINV definitions.

The output generated from this function is used as input for the ADAINV functions INVERT and COUPLE in
one member. The output must be punched and edited as necessary. See Sample Output.

This section contains:

Calling the Function
Generate ADAINV Definitions in Batch Mode
Sample Output

Copyright © Software AG 200342

ADAINV DefinitionsADAINV Definitions

Calling the Function
The Generate ADAINV Definitions screen is displayed with function code G and object code AI in a Predict
main menu, or with the command GENERATE ADAINV.

 09:13:47 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate ADAINV Definitions -

 Current VM HOME
 File ID*
 Phys. File number
 Contained in DA
 Phys. Database number

 Save as member Save in library INVLIB
 Overwrite option Y (Y,N) Op. system member ..
 Punch / output* N

 List generated code Y (Y,N) Adabas version* I7
 SORTSIZE C/B ... C SORTDEV*
 TEMPSIZE C/B ... C TEMPDEV*
 Work pool size KB/B .. KB Cipher code
 Prefetch buffer size KB/B .. KB Adabas password
 Handle UQ conflict* A

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

The parameter below can be changed in the Modify ADAINV Defaults screen. See Generation Defaults.

43Copyright © Software AG 2003

Calling the FunctionADAINV Definitions

Presetting

Library system Library system for which the generated code is punched. Determines which additional
cards need to be punched. An operating system member must be entered for the
additional cards to be generated. See Parameters Specifying the Form of Output for more
information.

Parameters

The parameters Save as member, Save in library, Overwrite option, Op. system member, Punch/output,
Workfile name and List generated code are described in the section Parameters Specifying the Form of Output.

Current VM Read-only field. ADAINV definitions can only be generated from Predict file objects
contained in databases accessible from the current virtual machine.

File ID, Phys. file
number, Contained
in DA, Phys.
database number

ADAINV definitions are generated for an Adabas file. The file must not be marked as
Adabas system file. The file is identified either by file ID or physical file number in the
database. The database can be identified either by database ID or physical database
number. If one physical file number and one physical database number are not identified
uniquely, a selection screen appears. The identified Adabas file must be implemented,
because Predict performs the Adabas LF commands to check which descriptors are
already defined.

SORTSIZE,
TEMPSIZE

Both values must be entered (cylinders or blocks).

SORTDEV,
TEMPDEV

Only required if the value is different from that specified with the ADARUN DEVICE
parameter.

Work pool size Both values can be specified in bytes or in kilobytes.

Prefetch buffer size If no value is specified, the default size is taken.

Cipher code Applies only to files marked in Predict as ciphered. Specifies the value of the cipher code
parameter to be generated in the ADAINV control statement.

Adabas password If the file specified is security protected, an appropriate Adabas password must be
supplied.

Handle UQ conflict Determines system response if descriptor is not unique. This parameter only applies to
Adabas versions VMS 2.1 or above and UNIX 1.2 or above.

A
Abort

R
Reset

Generate ADAINV Definitions in Batch Mode
Command: GENERATE ADAINV

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Copyright © Software AG 200344

ADAINV DefinitionsGenerate ADAINV Definitions in Batch Mode

Field Keyword Position

File ID FILE-ID 1

Phys. file number FNR 2

Database ID DB 3

Phys. database number DBNR 4

Save as member MEM 5

Save in library LIB 6

Overwrite option REPLACE 7

Op. system member OS-MEMBER 8

Punch / output PUNCH 9

List generated code LIST 10

Adabas version ADA-VER 11

SORTSIZE SORTSIZE 12

C/B SORTSIZE-TYPE 13

SORTDEV SORTDEV 14

TEMPSIZE TEMPSIZE 15

C/B TEMPSIZE-TYPE 16

TEMPDEV TEMPDEV 17

Work pool size LWP 18

KB/B LWP-TYPE 19

Cipher code CIPHER 20

Prefetch buffer size LPB 21

KB/B LPB-TYPE 22

Adabas password PSW 23

Handle UQ conflict UQ-CONFLICT 24

Workfile name (see note below) WORKFILE-NAME 25

If Entire System Server is used

- DB-ID NP-DBID 26

- Dataset NP-DSNAME 27

- Volume NP-VOLSER 28

- Library NP-LIB 29

- Sublibrary NP-SUBLIB 30

- Member type NP-MEMTYPE 31

- VSAM catalog NP-VSAMCAT 32

Note:
You can not specify a value other than blank (’ ’) for WORKFILE-NAME on mainframes.

45Copyright © Software AG 2003

Generate ADAINV Definitions in Batch ModeADAINV Definitions

Parameters NP-LIB, NP-SUBLIB and NP-MEMTYPE must be specified if the generated code is written to
workfile 1 (Punch/output=Y) and Library system=3.

Sample Output

 13:50:56 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate ADAINV Definitions - Page: 1
 ADAINV INVERT FILE=171
 ADAINV TEMPSIZE=60
 ADAINV SORTSIZE=40,SORTDEV=3380
 ADAINV FIELD=’AD’
 ADAINV HYPDE=’04,S2,4,F,FI,MU,PE=AP,AF’
 /*
 ADAINV COUPLE
 ADAINV TEMPSIZE=60
 ADAINV SORTSIZE=40,SORTDEV=3380
 ADAINV FILES=171,172,DESCRIPTOR=’AD,AA’

 DIC1800 SUMMARY: 27 FIELD(S) PROCESSED

Copyright © Software AG 200346

ADAINV DefinitionsSample Output

ADASCR Definitions
This function generates definitions for the ADASCR security utility from Predict file objects of type A.

This section contains:

Calling the Function
Generate ADASCR Definitions in Batch Mode
Sample Output

Calling the Function
The Generate ADASCR Definitions screen is displayed with function code G and object code AS in a Predict
main menu, or with the command GENERATE ADASCR.

47Copyright © Software AG 2003

ADASCR DefinitionsADASCR Definitions

 09:19:13 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate ADASCR Definitions -

 File ID*
 Phys. File number
 Contained in DA
 Phys. Database number ..

 Save as member Save in library SCRLIB
 Overwrite option Y (Y,N) Op. system member ..
 Punch / output* N

 List generated code Y (Y,N) Adabas version* I1

 Code

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

The parameter below can be changed in the Modify ADASCR Defaults screen. See Generation Defaults.

Presetting

Library system Library system for which the generated code is punched. Determines which additional
cards need to be punched. An operating system member must be entered for the
additional cards to be generated. See Parameters Specifying the Form of Output for
more information.

Parameters

The parameters Save as member, Save in library, Overwrite option, Op. system member, Punch/output,
Workfile name and List generated code are described in Parameters Specifying the Form of Output.

File ID, Phys. file
number, Contained
in DA, Phys.
database number

The Adabas Security definitions can be generated for one specific Adabas file in a
database. This file is uniquely defined by the physical file number and the physical
database number. If the parameters entered are not unique, a selection screen appears. It
is also possible to generate the definitions for an Adabas file which is not linked to any
database. In this case the currently defined file attributes are taken.

Adabas version The version of Adabas for which the external object is to be generated. Enter an asterisk
for valid values or see Adabas Version for more information.

Code If a code is entered, the parameter CODE=code is generated.

Generate ADASCR Definitions in Batch Mode
Command: GENERATE ADASCR

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other taken.

Copyright © Software AG 200348

ADASCR DefinitionsGenerate ADASCR Definitions in Batch Mode

Field Keyword Position

File ID FILE-ID 1

Save as member MEM 2

Save in library LIB 3

Overwrite option REPLACE 4

Op. system member OS-MEMBER 5

List generated code LIST 6

Punch / output PUNCH 7

Adabas version ADA-VER 8

Code PSW 9

phys. File-Nr. FNR 10

Database ID DB 11

phys. Database-Nr. DBNR 12

Workfile name (see note below) WORKFILE-NAME 13

If Entire System Server is used

- DB-ID NP-DBID 14

- Dataset NP-DSNAME 15

- Volume NP-VOLSER 16

- Library NP-LIB 17

- Sublibrary NP-SUBLIB 18

- Member type NP-MEMTYPE 19

- VSAM catalog NP-VSAMCAT 20

Note:
You can not specify a value other than blank (’ ’) for WORKFILE-NAME on mainframes.

Parameters NP-LIB, NP-SUBLIB and NP-MEMTYPE must be specified if the generated code is written to
workfile 1 (Punch/output=Y) and Library system=3.

Sample Output

49Copyright © Software AG 2003

Sample OutputADASCR Definitions

 13:25:14 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate ADASCR Definitions - Page: 1

 File ID .. GENERATION-EXAMPLE

 ADASCR PROTECT FILE=171,ACC=2,UPD=3
 ADASCR PROTECT FILE=171,NAME=AB,ACC=4,UPD=15
 ADASCR PROTECT FILE=171,NAME=AD,ACC=6,UPD=12
 ADASCR PROTECT FILE=171,NAME=AE,ACC=3,UPD=13
 ADASCR PROTECT FILE=171,NAME=AF,ACC=3,UPD=12
 ADASCR PROTECT FILE=171,NAME=AP,ACC=5,UPD=7
 ADASCR PROTECT FILE=171,NAME=AR,ACC=2,UPD=14
 >>> File access level inserted. <<<
 for field: PC-ELE-F-4

 DIC1800 SUMMARY: 27 FIELD(S) PROCESSED

Copyright © Software AG 200350

ADASCR DefinitionsSample Output

Adabas Vista Translation Table
The function implements Vista elements of Predict file objects of type A (Adabas) in the translation tables of
Adabas Vista.
The Generate Vista table function has to be executed for each Adabas file that is to be implemented.

The Generate Vista table function can either be executed for a specific Adabas file or for all Adabas files located
in databases in a virtual machine belonging to the current network. The translation elements on database level are
also generated.

Note:
See the section Adabas Vista in the Predict and Other Systems documentation for a detailed description of
using Predict for distributed data storage.

This section contains:

Calling the Function
Generate Vista Table in Batch Mode

Calling the Function
The Generate Vista table screen is displayed with function G and code AT in a Predict main menu, or with the
command GENERATE VISTATAB.

The actions necessary to implement the Vista elements can be listed by setting the parameter List action to Y.
Additional confirmation is requested before the Vista elements are actually implemented.

51Copyright © Software AG 2003

Adabas Vista Translation TableAdabas Vista Translation Table

 13:32:12 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate Vista table -

 Current VM HOME

 File ID*

 Add Vista elements Y (Y/N)
 Update Vista elements Y (Y/N)

 Check FDT N (Y,N)
 Adabas password

 Purge all Vista elements not documented .. N (Y/N)

 List actions Y (Y/N)

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Parameters

Current VM Determines which Vista elements are processed.
A read only field. The current virtual machine is set in the Maintenance options of the
Modify User Defaults function. See the appropriate document of section General
Information in the Introduction to Predict documentation.

File ID File to be processed.

If file ID is specified, all Vista elements of this file and all Vista elements of databases
in the current virtual machine the file is contained in, are processed.

If no file ID is specified, all Vista elements of all files and all Vista elements of all
databases of the current virtual machine, are processed.

Add Vista elements Y
Entries for Vista elements that are not yet contained in the translation table are
generated.

Update Vista
elements

Y
Existing entries for Vista elements are updated if different.

Check FDT Y
Checks if the physical files that form the logical partitioned file all have the same FDT.

Purge all Vista
elements not
documented

Entries in the translator table without corresponding Vista elements in Predict file
objects are purged.

Adabas password Must be provided if Check FDT is set to Y or if an Adabas file is protected by an
Adabas security definition.

List actions Y
Actions which are to be performed to (re)generate an existing Vista table.

Copyright © Software AG 200352

Adabas Vista Translation TableCalling the Function

Generate Vista Table in Batch Mode
Command: GENERATE VISTATAB

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Field Keyword Position

File ID FILE-ID 1

Add Vista elements ADD-STARTAB 2

Update Vista elements UPD-STARTAB 3

Check FDT CHECK-FDT 4

Adabas password PSW 5

Purge all Vista elements not documentedPUR-STARTAB 6

List actions LIST 7

This function is not yet implemented.

53Copyright © Software AG 2003

Generate Vista Table in Batch ModeAdabas Vista Translation Table

Adabas VSAM Bridge Transparency Table
The Adabas VSAM Bridge supports conversion from VSAM files of type KSDS (key sequenced data set)
organization to Adabas files without the need to change existing COBOL programs. Both single-record and
multi-record files are supported. The conversion of the VSAM record structures into an Adabas file is described
by a transparency table which can be generated with Predict.

For details of the application of Adabas VSAM Bridge transparency tables, see the Adabas VSAM Bridge
Installation and Operations documentation.

Note:
The optional parameters KEYB, PCKKEY, PFOFF1, PKOFF2, PREFSZE and RESET are not supported.

This section contains:

Prerequisites
Rules Applying to the Design of the Adabas Files
Calling the Function
Generate Transparency Table in Batch Mode
Examples
Sample File Definition
Sample Output

Prerequisites
Before Predict can be used to generate a transparency table for a VSAM file and an Adabas file, both files must
be defined in Predict file and field objects.

A single-record VSAM file must be completely defined in a file of type V and corresponding fields.
A multi-record VSAM file must have a file of type V with field objects at least for the primary key,
alternate keys and indicator field. The records are identified by the indicator field: its field short name must
always be II.
The different record structures must be defined as separate logical VSAM files in separate files of type L
and respective fields.

Copyright © Software AG 200354

Adabas VSAM Bridge Transparency TableAdabas VSAM Bridge Transparency Table

The indicator value of the records must be entered as V-PREFIX to the logical VSAM file objects.
The primary key, alternate keys and indicator field must be defined with the same format and length in all
files.
The offset must be the same in all records.

A VSAM file, single-record or multi-record, is always converted into one Adabas file. Corresponding fields in
an Adabas file, a VSAM file and logical VSAM files are connected using the field short name.

Rules Applying to the Design of the Adabas Files
The following points should be considered when designing an Adabas file:

The format buffer definition in the transparency table is generated only for Adabas fields on level 1 so
MU-fields must always be defined on level 1;
The group structure in the VSAM file(s) and the Adabas file are independent but it must be possible to
generate a format buffer for all VSAM record structures from the Adabas fields or groups on level 1;
PE groups with more than 99 occurrences and MU fields with more than 191 occurrences must be split up
in the Adabas file into several contiguous segments. The first segment must have the same field short name
as that PE group or MU field has in the VSAM file; later segments must have field short names that do not
exist in the VSAM file. All segments except the last must have 64 occurrences.
The maximum length of the indicator field is 20 bytes and the indicator values must not contain blanks.

Calling the Function
The Generate Transparency Table screen is displayed with function code G and object code AV in a Predict
main menu, or with the command GENERATE ADAVSAM.

 09:28:23 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate Transparency Table -

 VSAM file ID*

 Related Adabas file ID ...

 Save as member Save in library AVBLIB
 Overwrite option Y (Y,N) Op. system member
 Punch / output* N Save incorrect code .. N (Y,N)

 List generated code Y (Y,N) Adabas version* I1
 List key table Y (Y,N)
 List Adabas relations Y (Y,N)
 List VSAM relations Y (Y,N)
 Change Adabas file N (Y,N)

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

55Copyright © Software AG 2003

Rules Applying to the Design of the Adabas FilesAdabas VSAM Bridge Transparency Table

The parameter below can be changed in the Modify Adabas/VSAM Bridge Defaults screen. See Generation
Defaults.

Presetting

Library
system

Library system for which the generated code is punched. Determines which additional cards
need to be punched. An operating system member must be entered for the additional cards to be
generated.

Parameters

The parameters Save as member, Save in library, Overwrite option, Op. system member, Punch/output and List
generated code are described in Parameters Specifying the Form of Output.

VSAM file
ID

ID of the Predict VSAM file object from which the definitions are to be generated. The file
must be of type V (VSAM).

Related
Adabas file
ID

ID of the Predict file object from which the definitions are to be generated. The file must be of
type A (Adabas). This parameter can be omitted if generation of a transparency table for the
same two files has been started before.

Save
incorrect code

Y
A punch or save is performed even if errors are found.

Adabas
version

Version of Adabas for which the transparency table is to be generated. Enter an asterisk for
valid values or see Adabas Version for more information.

List key table Y
Summary of all VSAM keys is to be listed. In the case of a multi-record type file, the
definitions of the indicator and the logical VSAM file with the indicator value are listed.

List Adabas
relations

Y
Attributes of the fields of the Adabas file and their corresponding VSAM fields are to be listed.

List VSAM
relations

Y
The fields of the different VSAM record types and corresponding VSAM fields are to be listed.

Change
Adabas file

Y
A transparency table is generated even if one has already been generated for the same VSAM
file and a different Adabas file, provided that the newly specified Adabas file is not related to
any other VSAM file.

Generate Transparency Table in Batch Mode
Command: GENERATE ADAVSAM.

Enter parameters on next line in positional or keyword form. VSAM File ID is obligatory, all other parameters
are optional. If a parameter is not specified, the default value is taken.

Copyright © Software AG 200356

Adabas VSAM Bridge Transparency TableGenerate Transparency Table in Batch Mode

Field Keyword Position

VSAM file ID VSAM-FILE-ID 1

Related Adabas file ID Adabas-FILE-ID 2

Save as member MEM 3

Save in library LIB 4

Overwrite option REP-OPT 5

Op. system member OS-MEMBER 6

List key table LIST-KEY 7

List Adabas relations LIST-Adabas 8

List VSAM relations LIST-VSAM 9

List generated code LIST-TT 10

Change Adabas file REPLACE-ADA 11

Punch / output PUNCH 12

Save incorrect code SAVE-CODE 13

Adabas version ADA-VER 14

If Entire System Server is used

- DB-ID NP-DBID 15

- Dataset NP-DSNAME 16

- Volume NP-VOLSER 17

- Library NP-LIB 18

- Sublibrary NP-SUBLIB 19

- Member type NP-MEMTYPE 20

- VSAM catalog NP-VSAMCAT 21

Parameters NP-LIB, NP-SUBLIB and NP-MEMTYPE must be specified if the generated code is written to
workfile 1 (Punch/output=Y) and Library system=3.

Examples
Layout lists of the four files we have used as examples (one Adabas file, one physical VSAM file and two
logical VSAM files) are given below. They are followed by part of the output produced when generating a
transparency table for these files: the key table; the beginning of the description of the Adabas file; the beginning
of the description of one logical VSAM file; and, finally, the transparency table. In the description of the logical
VSAM file, the column headed FB DB gives the field short name used for the format buffer and the column
headed OFF FB gives the offset of the field in the group used for the format buffer.

Sample File Definition
This sample file definition was used to create the sample output on.

57Copyright © Software AG 2003

ExamplesAdabas VSAM Bridge Transparency Table

 13:26:11 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - List File with Children -

 File ID AZ-QA-AVB-A-ART

 ADABAS test file ARTICLE
 for ADABAS VSAM BRIDGE (AVB)

 Off Off
 Cnt Ty L Field ID F Length Occ D DB S Dec Hex

 ** *** FIX PART OF VSAM RECORDS ***
 1 GR 1 ART-FIX AA 0 0
 2 2 ART-DESC A 32.0 D AB N 0 0
 3 2 DATE-ADD N 6.0 AC N 32 20
 4 2 DATE-MODIFIED N 6.0 AD N 38 26
 5 GR 2 ART-NR AE 44 2C
 6 3 ART-REC-KEY A 5.0 II N 44 2C
 7 3 ART-GROUP A 4.0 D AF N 49 31
 8 3 DEPARTMENT N 3.0 AG 53 35
 9 3 SEQ-NR N 2.0 AH N 56 38
 10 3 CHECKDIGIT N 2.0 AI N 58 3A
 11 2 SPECIALIST A 30.0 D AJ N 60 3C
 12 2 REC-TYPE N 2.0 D MI N 90 5A
 13 SP 1 ART-KEY A 16.0 D SK N
 >>> FIELD(S) SKIPPED FOR RECORDBUFFER STRUCTURE <<<
 ** *** SALES INFORMATION ***
 17 1 PRICE N 5.2 AM N 92 5C
 18 MU 1 DISCOUNT N 5.2 6 AN N 99 63
 19 1 STOCKS-NR-DELIVERY-CNT N 2.0 B1 N 141 8D
 20 MU 1 STOCKS-NR-DELIVERY A 12.0 20 D AO N 143 8F
 21 PE 1 STATISTICS-MONTH 12 AP 383 17F
 22 2 TURNOVER N 5.0 AQ N 383 17F
 23 2 QUANTITY N 5.0 AR N 388 184
 ** *** COMPONENTS OF ARTICLE *** A
 24 1 COMPONENTS-NR N 2.0 AS N 503 1F7
 25 PE 1 COMPONENTS 64 AT 505 1F9
 26 2 COMPONENT-ART-NR A 12.0 AU N 505 1F9
 27 2 COMPONENT-QUANTITY P 5.0 AV 517 205
 28 PE 1 COMPONENTS-C 35 AW 1465 5B9
 29 2 COMPONENT-ART-NR-C A 12.0 AX N 1465 5B9
 30 2 COMPONENT-QUANTITY-C P 5.0 AY N 1477 5C5
 31 1 STOCKS-CNT N 2.0 B2 N 1990 7C6
 32 PE 1 STOCKS 30 AZ 1992 7C8
 33 2 STOCK-NR A 12.0 A0 N 1992 7C8
 34 2 STOCK-QUANTITY I 4.0 A1 F 2004 7D4

 *** TOTAL LENGTH *** 2472 9A8

 *** End of report ***

Copyright © Software AG 200358

Adabas VSAM Bridge Transparency TableSample File Definition

 13:41:46 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - List File with Children -

 File ID AZ-QA-AVB-V-ART
 Type VSAM file

 Abstract
 VSAM test file article
 FOR ADABAS VSAM BRIDGE (AVB)

 Off Off
 Cnt Ty L Field ID F Length Occ D DB S Dec Hex

 1 GR 1 ART-FIX AA 0 0
 2 2 ART-DESC A 32.0 A AB N 0 0
 3 2 DATE-ADD N 6.0 AC N 32 20
 4 2 DATE-MODIFIED N 6.0 AD N 38 26
 5 GR 2 ART-NR AE 44 2C
 6 3 ART-REC-KEY A 5.0 II N 44 2C
 7 3 ART-GROUP A 4.0 AF N 49 31
 8 3 DEPARTMENT N 3.0 AG 53 35
 9 3 SEQ-NR N 2.0 AH N 56 38
 10 3 CHECKDIGIT N 2.0 AI N 58 3A
 11 2 SPECIALIST A 30.0 A AJ N 60 3C
 12 2 REC-TYPE N 2.0 MI N 90 5A
 13 SP 1 REC-ART-KEY A 16.0 P SK 44 2C

 *** TOTAL LENGTH *** 92 5C

 *** End of report ***

59Copyright © Software AG 2003

Sample File DefinitionAdabas VSAM Bridge Transparency Table

 13:43:40 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - List File with Children -

 File ID AZ-QA-AVB-L-ART-COMP
 Type Logical VSAM

 Off Off
 Cnt Ty L Field ID F Length Occ D DB S Dec Hex

 ** *** FIXED PART ***
 1 GR 1 ART-FIX AA 0 0
 2 2 ART-DESC A 32.0 A AB N 0 0
 3 2 DATE-ADD N 6.0 AC N 32 20
 4 2 DATE-MODIFIED N 6.0 AD N 38 26
 5 GR 2 ART-NR AE 44 2C
 6 3 ART-REC-KEY A 5.0 II N 44 2C
 7 3 ART-GROUP A 4.0 AF N 49 31
 8 3 DEPARTMENT N 3.0 AG 53 35
 9 3 SEQ-NR N 2.0 AH N 56 38
 10 3 CHECKDIGIT N 2.0 AI N 58 3A
 11 2 SPECIALIST A 30.0 A AJ N 60 3C
 12 2 REC-TYPE N 2.0 MI N 90 5A
 13 SP 1 ART-KEY A 16.0 P SK 44 2C
 ** *** VARIABLE PART *** A
 14 1 COMPONENTS-NR N 2.0 AS N 92 5C
 15 PE 1 COMPONENTS 99 AT 94 5E
 16 2 COMPONENT-ART-NR A 12.0 AU N 94 5E
 17 2 COMPONENT-QUANTITY P 5.0 AV 106 6A
 18 1 STOCKS-CNT N 2.0 B2 N 1579 62B
 19 PE 1 STOCKS 30 AZ 1581 62D
 20 2 STOCK-NR A 12.0 A0 N 1581 62D
 21 2 STOCK-QUANTITY I 4.0 A1 F 1593 639

 *** TOTAL LENGTH *** 2061 80D

 *** End of report ***

Copyright © Software AG 200360

Adabas VSAM Bridge Transparency TableSample File Definition

 13:45:17 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - List File with Children -

 File ID AZ-QA-AVB-L-ART-SALE
 Type Logical VSAM

 Off Off
 Cnt Ty L Field ID F Length Occ D DB S Dec Hex

 ** *** FIXED PART ***
 1 GR 1 ART-FIX AA 0 0
 2 2 ART-DESC A 32.0 A AB N 0 0
 3 2 DATE-ADD N 6.0 AC N 32 20
 4 2 DATE-MODIFIED N 6.0 AD N 38 26
 5 GR 2 ART-NR AE 44 2C
 6 3 ART-REC-GROUP A 5.0 II N 44 2C
 7 3 ART-GROUP A 4.0 AF N 49 31
 8 3 DEPARTMENT N 3.0 AG 53 35
 9 3 SEQ-NR N 2.0 AH N 56 38
 10 3 CHECKDIGIT N 2.0 AI N 58 3A
 11 2 SPECIALIST A 30.0 A AJ N 60 3C
 12 2 REC-TYPE N 2.0 MI N 90 5A
 13 RE 1 ART-FIX 0 0
 14 2 DEMO1 A 22.0 0 0
 15 PE 2 DEMO-PE 1 22 16
 16 3 DEMO2 A 22.0 22 16
 17 RE 1 ART-FIX 0 0
 18 PE 2 DEMO-PE2 1 0 0
 19 3 DEMO3 A 44.0 0 0
 20 SP 1 ART-KEY A 16.0 P SK 44 2C
 >>> WARNING: VSAM SP-FIELD DEFINED BEFORE SOURCE-FIELD. <<<
 21 1 PRICE N 5.2 AM N 92 5C
 */ *** VARIABLE PART ***
 22 MU 1 DISCOUNT N 5.2 6 AN N 99 63
 23 PE 1 STATISTICS-MONTH 12 AP 141 8D
 24 2 TURNOVER N 5.0 AQ N 141 8D
 25 2 QUANTITY N 5.0 AR N 146 92
 26 1 STOCKS-NR-DELIVERY-CNT N 2.0 B1 N 261 105
 27 MU 1 STOCKS-NR-DELIVERY A 12.0 20 AO N 263 107

 *** TOTAL LENGTH *** 503 1F7

 *** End of report ***

Sample Output

61Copyright © Software AG 2003

Sample OutputAdabas VSAM Bridge Transparency Table

 13:40:20 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Transparency Table - Page: 1
 File: AZ-QA-AVB-V-ART Fnr:
 126

 *** Table of Keys ***

 Type Offset Length DD name Unique

 P 44 16 AVBVART Y

 A 0 32 ARTDESC
 A 60 30 ARTSPEC

 *** Sorted table of logical VSAM files ***

 Indicator - Offset: 44 Length: 5 Number of logical VSAM files: 2

 156 AZ-QA-AVB-L-ART-COMP IND-V: 5x3b1
 155 AZ-QA-AVB-L-ART-SALE IND-V: 12345

 13:40:44 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Transparency Table - Page: 2
 File: AZ-QA-AVB-A-ART Fnr: 76
 T L Adabas Field F Length D DB Occ File name
 Corresponding VSAM Field(s)
 -- - -------------------------------- -- -------- - -- --- --------------------

 GR 1 ART-FIX AA
 GR 1 ART-FIX AZ-QA-AVB-L-ART-COMP
 GR 1 ART-FIX AZ-QA-AVB-L-ART-SALE

 2 ART-DESC A 32.0 D AB
 2 ART-DESC A 32.0 A AZ-QA-AVB-L-ART-COMP
 2 ART-DESC A 32.0 A AZ-QA-AVB-L-ART-SALE

 2 DATE-ADD N 6.0 AC
 2 DATE-ADD N 6.0 AZ-QA-AVB-L-ART-COMP
 2 DATE-ADD N 6.0 AZ-QA-AVB-L-ART-SALE

 2 DATE-MODIFIED N 6.0 AD
 2 DATE-MODIFIED N 6.0 AZ-QA-AVB-L-ART-COMP
 2 DATE-MODIFIED N 6.0 AZ-QA-AVB-L-ART-SALE
 GR 2 ART-NR AE
 GR 2 ART-NR AZ-QA-AVB-L-ART-COMP
 GR 2 ART-NR AZ-QA-AVB-L-ART-SALE

 3 ART-REC-KEY A 5.0 II
 3 ART-REC-KEY A 5.0 AZ-QA-AVB-L-ART-COMP
 3 ART-REC-GROUP A 5.0 AZ-QA-AVB-L-ART-SALE

Copyright © Software AG 200362

Adabas VSAM Bridge Transparency TableSample Output

 13:40:44 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Transparency Table - Page: 3
 File: AZ-QA-AVB-A-ART Fnr: 76
 T L Adabas Field F Length D DB Occ File name
 Corresponding VSAM Field(s)
 -- - -------------------------------- -- -------- - -- --- --------------------

 3 ART-GROUP A 4.0 D AF
 3 ART-GROUP A 4.0 AZ-QA-AVB-L-ART-COMP
 3 ART-GROUP A 4.0 AZ-QA-AVB-L-ART-SALE

 3 DEPARTMENT N 3.0 AG
 3 DEPARTMENT N 3.0 AZ-QA-AVB-L-ART-COMP
 3 DEPARTMENT N 3.0 AZ-QA-AVB-L-ART-SALE

 3 SEQ-NR N 2.0 AH
 3 SEQ-NR N 2.0 AZ-QA-AVB-L-ART-COMP
 3 SEQ-NR N 2.0 AZ-QA-AVB-L-ART-SALE

 3 CHECKDIGIT N 2.0 AI
 3 CHECKDIGIT N 2.0 AZ-QA-AVB-L-ART-COMP
 3 CHECKDIGIT N 2.0 AZ-QA-AVB-L-ART-SALE
 3 DEPARTMENT N 3.0 AG
 3 DEPARTMENT N 3.0 AZ-QA-AVB-L-ART-COMP
 3 DEPARTMENT N 3.0 AZ-QA-AVB-L-ART-SALE

 3 SEQ-NR N 2.0 AH
 3 SEQ-NR N 2.0 AZ-QA-AVB-L-ART-COMP
 3 SEQ-NR N 2.0 AZ-QA-AVB-L-ART-SALE

 3 CHECKDIGIT N 2.0 AI
 3 CHECKDIGIT N 2.0 AZ-QA-AVB-L-ART-COMP
 3 CHECKDIGIT N 2.0 AZ-QA-AVB-L-ART-SALE

 2 SPECIALIST A 30.0 D AJ
 2 SPECIALIST A 30.0 A AZ-QA-AVB-L-ART-COMP
 2 SPECIALIST A 30.0 A AZ-QA-AVB-L-ART-SALE

 2 REC-TYPE N 2.0 D MI
 2 REC-TYPE N 2.0 AZ-QA-AVB-L-ART-COMP
 2 REC-TYPE N 2.0 AZ-QA-AVB-L-ART-SALE

 SP 1 ART-KEY A 16.0 D SK
 SP 1 ART-KEY A 16.0 P AZ-QA-AVB-L-ART-COMP
 SP 1 ART-KEY A 16.0 P AZ-QA-AVB-L-ART-SALE

63Copyright © Software AG 2003

Sample OutputAdabas VSAM Bridge Transparency Table

 13:40:44 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Transparency Table - Page: 4
 File: AZ-QA-AVB-A-ART Fnr: 76
 T L Adabas Field F Length D DB Occ File name
 Corresponding VSAM Field(s)
 -- - -------------------------------- -- -------- - -- --- --------------------

 1 PRICE N 5.2 AM
 1 PRICE N 5.2 AZ-QA-AVB-L-ART-SALE

 MU 1 DISCOUNT N 5.2 AN 6
 MU 1 DISCOUNT N 5.2 6 AZ-QA-AVB-L-ART-SALE

 1 STOCKS-NR-DELIVERY-CNT N 2.0 B1
 1 STOCKS-NR-DELIVERY-CNT N 2.0 AZ-QA-AVB-L-ART-SALE

 MU 1 STOCKS-NR-DELIVERY A 12.0 D AO 20
 MU 1 STOCKS-NR-DELIVERY A 12.0 20 AZ-QA-AVB-L-ART-SALE

 PE 1 STATISTICS-MONTH AP 12
 PE 1 STATISTICS-MONTH 12 AZ-QA-AVB-L-ART-SALE

 2 TURNOVER N 5.0 AQ
 2 TURNOVER N 5.0 AZ-QA-AVB-L-ART-SALE

 2 QUANTITY N 5.0 AR
 2 QUANTITY N 5.0 AZ-QA-AVB-L-ART-SALE

 1 COMPONENTS-NR N 2.0 AS
 1 COMPONENTS-NR N 2.0 AZ-QA-AVB-L-ART-COMP

Copyright © Software AG 200364

Adabas VSAM Bridge Transparency TableSample Output

 13:40:44 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Transparency Table - Page: 5
 File: AZ-QA-AVB-A-ART Fnr: 76
 T L Adabas Field F Length D DB Occ File name
 Corresponding VSAM Field(s)
 -- - -------------------------------- -- -------- - -- --- --------------------

 PE 1 COMPONENTS AT 64
 PE 1 COMPONENTS 99 AZ-QA-AVB-L-ART-COMP
 >>> Check different field occurrences <<<

 2 COMPONENT-ART-NR A 12.0 AU
 2 COMPONENT-ART-NR A 12.0 AZ-QA-AVB-L-ART-COMP

 2 COMPONENT-QUANTITY P 5.0 AV
 2 COMPONENT-QUANTITY P 5.0 AZ-QA-AVB-L-ART-COMP

 PE 1 COMPONENTS-C AW 35

 2 COMPONENT-ART-NR-C A 12.0 AX

 2 COMPONENT-QUANTITY-C P 5.0 AY

 >>> Splitting of VSAM tables supposed. <<<

 1 STOCKS-CNT N 2.0 B2
 1 STOCKS-CNT N 2.0 AZ-QA-AVB-L-ART-COMP

 PE 1 STOCKS AZ 30
 PE 1 STOCKS 30 AZ-QA-AVB-L-ART-COMP

 2 STOCK-NR A 12.0 A0
 2 STOCK-NR A 12.0 AZ-QA-AVB-L-ART-COMP

 2 STOCK-QUANTITY I 4.0 A1
 2 STOCK-QUANTITY I 4.0 AZ-QA-AVB-L-ART-COMP

65Copyright © Software AG 2003

Sample OutputAdabas VSAM Bridge Transparency Table

Copyright © Software AG 200366

Adabas VSAM Bridge Transparency TableSample Output

 13:48:07 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Transparency Table - Page: 6
 File: AZ-QA-AVB-L-ART-COMP Fnr: 156
 CNT T L VSAM field F Length D DB Occ OFF FB OFF
 Corresponding Adabas field DB FB
 ---- -- - -------------------------------- -- -------- - -- --- ----- -- -----

 1 GR 1 ART-FIX AA 0 AA 0
 ART-FIX

 2 2 ART-DESC A 32.0 A AB 0 AA 0
 ART-DESC D

 3 2 DATE-ADD N 6.0 AC 32 AA 32
 DATE-ADD

 4 2 DATE-MODIFIED N 6.0 AD 38 AA 38
 DATE-MODIFIED

 5 GR 2 ART-NR AE 44 AA 44
 ART-NR

 6 3 ART-REC-KEY A 5.0 II 44 AA 44
 ART-REC-KEY

 7 3 ART-GROUP A 4.0 AF 49 AA 49
 ART-GROUP D

 8 3 DEPARTMENT N 3.0 AG 53 AA 53
 DEPARTMENT

 9 3 SEQ-NR N 2.0 AH 56 AA 56
 SEQ-NR

 10 3 CHECKDIGIT N 2.0 AI 58 AA 58
 CHECKDIGIT

 11 2 SPECIALIST A 30.0 A AJ 60 AA 60
 SPECIALIST D

 12 2 REC-TYPE N 2.0 MI 90 AA 90
 REC-TYPE D

 13 SP 1 ART-KEY A 16.0 P SK 44
 ART-KEY D
 CHECKDIGIT

 11 2 SPECIALIST A 30.0 A AJ 60 AA 60
 SPECIALIST D

 12 2 REC-TYPE N 2.0 MI 90 AA 90
 REC-TYPE D

 13 SP 1 ART-KEY A 16.0 P SK 44
 ART-KEY D

 14 1 COMPONENTS-NR N 2.0 AS 92 AS 0
 COMPONENTS-NR

 15 PE 1 COMPONENTS AT 99 94 AT 0

 COMPONENTS

67Copyright © Software AG 2003

Sample OutputAdabas VSAM Bridge Transparency Table

 13:48:07 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Transparency Table - Page: 7
 File: AZ-QA-AVB-L-ART-COMP Fnr: 156
 CNT T L VSAM field F Length D DB Occ OFF FB OFF
 Corresponding Adabas field DB FB
 ---- -- - -------------------------------- -- -------- - -- --- ----- -- -----

 >>>> Table is splitted in the Adabas file <<<<

 16 2 COMPONENT-ART-NR A 12.0 AU 94 AT 0
 COMPONENT-ART-NR

 17 2 COMPONENT-QUANTITY P 5.0 AV 106 AT 12
 COMPONENT-QUANTITY

 18 1 STOCKS-CNT N 2.0 B2 1579 B2 0
 STOCKS-CNT

 19 PE 1 STOCKS AZ 30 1581 AZ 0
 STOCKS

 20 2 STOCK-NR A 12.0 A0 1581 AZ 0
 STOCK-NR

 21 2 STOCK-QUANTITY I 4.0 A1 1593 AZ 12
 STOCK-QUANTITY

Copyright © Software AG 200368

Adabas VSAM Bridge Transparency TableSample Output

 13:48:07 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Transparency Table - Page: 8
 File: AZ-QA-AVB-L-ART-SALE Fnr: 155
 CNT T L VSAM field F Length D DB Occ OFF FB OFF
 Corresponding ADABAS field DB FB
 ---- -- - -------------------------------- -- -------- - -- --- ----- -- -----

 1 GR 1 ART-FIX AA 0 AA 0
 ART-FIX

 2 2 ART-DESC A 32.0 A AB 0 AA 0
 ART-DESC D

 3 2 DATE-ADD N 6.0 AC 32 AA 32
 DATE-ADD

 4 2 DATE-MODIFIED N 6.0 AD 38 AA 38
 DATE-MODIFIED

 5 GR 2 ART-NR AE 44 AA 44
 ART-NR

 6 3 ART-REC-GROUP A 5.0 II 44 AA 44
 ART-REC-KEY

 7 3 ART-GROUP A 4.0 AF 49 AA 49
 ART-GROUP D

 8 3 DEPARTMENT N 3.0 AG 53 AA 53
 DEPARTMENT

 9 3 SEQ-NR N 2.0 AH 56 AA 56
 SEQ-NR

 10 3 CHECKDIGIT N 2.0 AI 58 AA 58
 CHECKDIGIT

 11 2 SPECIALIST A 30.0 A AJ 60 AA 60
 SPECIALIST D

 12 2 REC-TYPE N 2.0 MI 90 AA 90
 REC-TYPE D

69Copyright © Software AG 2003

Sample OutputAdabas VSAM Bridge Transparency Table

 13:48:07 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Transparency Table - Page: 9
 File: AZ-QA-AVB-L-ART-SALE Fnr: 155
 CNT T L VSAM field F Length D DB Occ OFF FB OFF
 Corresponding ADABAS field DB FB
 ---- -- - -------------------------------- -- -------- - -- --- ----- -- -----

 13 SP 1 ART-KEY A 16.0 P SK 44
 ART-KEY D
 10 3 CHECKDIGIT N 2.0 AI 58 AA 58
 CHECKDIGIT

 11 2 SPECIALIST A 30.0 A AJ 60 AA 60
 SPECIALIST D

 12 2 REC-TYPE N 2.0 MI 90 AA 90
 REC-TYPE D

 13 SP 1 ART-KEY A 16.0 P SK 44
 ART-KEY D

 14 1 PRICE N 5.2 AM 92 AM 0
 PRICE

 15 MU 1 DISCOUNT N 5.2 AN 6 99 AN 0
 DISCOUNT

 16 PE 1 STATISTICS-MONTH AP 12 141 AP 0
 STATISTICS-MONTH

 17 2 TURNOVER N 5.0 AQ 141 AP 0
 TURNOVER

 13:48:07 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Transparency Table - Page: 10
 File: AZ-QA-AVB-L-ART-SALE Fnr: 155
 CNT T L VSAM field F Length D DB Occ OFF FB OFF
 Corresponding ADABAS field DB FB
 ---- -- - -------------------------------- -- -------- - -- --- ----- -- -----

 18 2 QUANTITY N 5.0 AR 146 AP 5
 QUANTITY

 19 1 STOCKS-NR-DELIVERY-CNT N 2.0 B1 261 B1 0
 STOCKS-NR-DELIVERY-CNT

 20 MU 1 STOCKS-NR-DELIVERY A 12.0 AO 20 263 AO 0
 STOCKS-NR-DELIVERY D

Copyright © Software AG 200370

Adabas VSAM Bridge Transparency TableSample Output

 13:48:07 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate Transparency Table - Page: 11
 File: AZ-QA-AVB-V-ART Fnr: 126

 * THIS TRANSPARENCY TABLE WAS GENERATED BY PREDICT
 * FOR VSAM FILE: AZ-QA-AVB-V-ART
 * ADABAS FILE: AZ-QA-AVB-A-ART
 * ON: 2003-05-31 AT 13:48:07

 MCTAB TYPE=GEN,FN=AVBVART,FNR=76,RECSIZ=2061, -
 KEY1=SK,KEYLEN=16,KEYOFF=44,INDXTYP=P, -
 ODNAME=(AZ,AO), -
 ODLEN=(2,2), -
 ODFMT=(U,U),OSOFF=(1581,263), -
 ODOFF=(1579,261),ODPOS=(0,0),OSSIZ=(16,12), -
 RECTYPE=Y,RECIDFB=II,RECTBYT=5,RECTOFF=44,RECTCNT=2, -
 RECTFMT=A, -
 RECFMTS=(’5x3b1AA,AS,AT1-64,AW1-35,B2,AZ001-030’,’12345A-
 A,AM,AN1-6,AP1-12,B1,AO001-020’)
 MCTAB TYPE=GEN,FN=ARTDESC,FNR=76,RECSIZ=2061, -
 KEY1=AB,KEYLEN=32,KEYOFF=0,INDXTYP=S,UNIQUE=N, -
 ODNAME=(AZ,AO), -
 ODLEN=(2,2), -
 A,AM,AN1-6,AP1-12,B1,AO001-020’)
 MCTAB TYPE=GEN,FN=ARTDESC,FNR=76,RECSIZ=2061, -
 KEY1=AB,KEYLEN=32,KEYOFF=0,INDXTYP=S,UNIQUE=N, -
 ODNAME=(AZ,AO), -
 ODLEN=(2,2), -
 ODFMT=(U,U),OSOFF=(1581,263), -
 ODOFF=(1579,261),ODPOS=(0,0),OSSIZ=(16,12), -
 RECTYPE=Y,RECIDFB=II,RECTBYT=5,RECTOFF=44,RECTCNT=2, -
 RECTFMT=A, -
 RECFMTS=(’5x3b1AA,AS,AT1-64,AW1-35,B2,AZ001-030’,’12345A-
 A,AM,AN1-6,AP1-12,B1,AO001-020’)
 MCTAB TYPE=GEN,FN=ARTSPEC,FNR=76,RECSIZ=2061, -
 KEY1=AJ,KEYLEN=30,KEYOFF=60,INDXTYP=S,UNIQUE=N, -
 ODNAME=(AZ,AO), -
 ODLEN=(2,2), -
 ODFMT=(U,U),OSOFF=(1581,263), -
 ODOFF=(1579,261),ODPOS=(0,0),OSSIZ=(16,12), -
 RECTYPE=Y,RECIDFB=II,RECTBYT=5,RECTOFF=44,RECTCNT=2, -
 RECTFMT=A, -
 RECFMTS=(’5x3b1AA,AS,AT1-64,AW1-35,B2,AZ001-030’,’12345A-
 A,AM,AN1-6,AP1-12,B1,AO001-020’)

 *** End of transparency table ***

71Copyright © Software AG 2003

Sample OutputAdabas VSAM Bridge Transparency Table

Adabas Table/Cluster/View
This function is used to create table descriptions, cluster descriptions or views in an Adabas SQL Server catalog.

Predict Object(s) Generated Command Result

One Adabas file
corresponding to one SQL
table CREATE TABLE

DESCRIPTION
Adds a description of a table in an Adabas SQL Server
catalog without creating an Adabas file.

One AT file corresponding
to one SQL table

Multiple AT files
corresponding to multiple
SQL tables

CREATE CLUSTER
DESCRIPTION

Adds description of several base tables containing
multiple value fields or periodic groups with variable
occurrences in Adabas SQL Server.

From files of type B, a CREATE VIEW statement is generated.

Copyright © Software AG 200372

Adabas Table/Cluster/ViewAdabas Table/Cluster/View

See also section Adabas SQL Server in the Predict and Other Systems documentation.

This section contains:

Calling the Function
Recommendations when Using Adabas Vista
Generate Adabas Table/View in Batch Mode

Calling the Function
Display the Generate Adabas table/view screen with function code G and object code EQ in a Predict main
menu, or with the command GENERATE ESQ.

 09:33:43 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate Adabas table/view -

 Current VM HOME
 File ID *
 Contained in DA *

 Add table / view Y (Y,N) Use Vista access-nr ..* Y
 Replace table / view N (Y,N)
 Drop table / view cascade .. N (Y,N)

 List SQL statements Y (Y,N)

 Protocol saved in member ... *
 in library .. ASQLIB

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Presettings

The parameters below can be changed in the Modify Adabas Table/View Defaults screen. See Generation
Defaults.

Specification
DB ID

Y
Database ID must be specified.

N
Database ID may be specified.

This parameter is set to N at installation.

Count of saved
actions

Number (0-99) of generation actions which are stored in the protocol specified under
Protocol saved in member/library.
If 99 is entered, all generation actions are stored. This is the default setting at installation.

Parameters

73Copyright © Software AG 2003

Calling the FunctionAdabas Table/Cluster/View

Current VM Adabas tables/views can only be generated from Predict file objects contained in databases of
type local linked to the Current VM or contained in databases accessible via the network
containing the Current VM. This is a read-only field.

File ID ID of the Predict file object from which the definitions are to be generated.
To generate an Adabas table, the file must be of

type A (with parameter SQL usage set to Y) or
type AT.

To generate an Adabas view, the file must be of type B.
To generate an Adabas cluster, the file must be of type AT. Enter only one file from the
cluster; all files in the cluster will be used for generation.

Contained in
DA

Only applicable to tables. Depending on the setting of Specification DB ID in the Modify
Adabas table/view defaults screen, entry of a Database ID is mandatory or optional for
Adabas files and userviews.
If a database is specified, its file list must contain the specified file and the Database type
must be compatible with the database type specified for this database number within the
Natural Parameter Module (via NTDB macro).
Enter an asterisk to display a list of databases for selection.

Use Vista
access-nr

N
Vista access number is not used.

T
Vista access number is used and the system tests whether a Vista element for this file with
the same number exists.
If so, and if no database ID is specified and the file contains a Vista access number, an
Adabas table/view is generated with the access number taken from the file.
If the file has no Vista access number, an error message is given.

Y
Vista access number is used, but no testing is performed.
If no database ID is specified and the file contains a Vista access number, an Adabas
table/view isgenerated with the access number taken from the file.
If the file has no Vista access number, an error message is given.

Add table/view Y
A new Adabas table, view or cluster is created.

If the external object does not exist, this parameter must be set to Y.

Replace
table/view

Y
If the Adabas table or view already exists, an Adabas statement DROP TABLE
DESCRIPTION or DROP VIEW is generated first.

If a cluster already exists for one of the files in the cluster structure, a DROP CLUSTER
DESCRIPTION statement is generated.

Copyright © Software AG 200374

Adabas Table/Cluster/ViewCalling the Function

Drop table/view
cascade

Y
For tables: Tables and all dependent views will be dropped.
The statement DROP TABLE DESCRIPTION <file-ID> CASCADE is generated first.

For clusters: All tables in the cluster will be dropped. The statement DROP CLUSTER
DESCRIPTION <cluster-name> CASCADE is generated first. The cluster-name is taken
from the catalog.

Note:
If the table already exists and Replace table/view and Drop table/view cascade are set to
Y, the dependent views are listed. If the purge is confirmed, the table and all dependent
views will be deleted and only the table will be generated. Dependent views must then
be generated separately.
For clusters, all base tables which belong to the cluster and all dependent views are
listed. If the purge is confirmed, all listed objects will be deleted.

List SQL
statements

Y
Generated SQL statements are listed.

Protocol saved
in member

SQL statements generated for the implementation of the database can be saved in a Natural
source member (protocol) on the FDIC file.

A member name for the protocol is only required when the Adabas table/view is generated
for the first time. SQL statements generated in subsequent generation runs are concatenated
to the protocol.

The protocol can be displayed using the Display function of the Administration Implemented
File menu.

Protocol saved
in library

Library where the protocol is to be saved.

Note:
All tables in a cluster are given the same member/library name.

Recommendations when Using Adabas Vista
If using Predict with Vista distributed data processing, we recommend the following:

Always enter a Vista access number for Adabas files (Add, Modify file).
Set the parameter Specification DB ID in the Modify Adabas table/view defaults to N (database ID may be
specified but is not mandatory).
If this parameter is set to Y, the user is forced to enter a database ID when generating an Adabas table/view
from an Adabas file.
Set the parameter Use Vista access-nr in the Modify Adabas table/view defaults screen to T, but do not
protect the field.

If you do not want to use Vista:

Set the parameter Use Vista access-nr in the Modify Adabas table/view defaults screen to N and deactivate
the option by blanking out the preceding X.

The table below illustrates the use of the parameter Use Vista access-nr.

Specification
DB ID

Use Vista
Access
Number

Result if Database ID is specified

75Copyright © Software AG 2003

Recommendations when Using Adabas VistaAdabas Table/Cluster/View

Y N, Y, T [1] If the file is Simple in this database and the Adabas attribute Vista access
only is not set to Y:
the Adabas table/view is generated with the physical database number and
physical file number.

Y N [2] If the file is defined as partitioned in this database or the Adabas attribute
Vista access only=Y:
the system checks whether a Vista element for this file and database exists.

If exactly one element exists, the Adabas table is generated with the logical
Vista number defined in this Vista element.

If the Vista numbers are used, the CREATE TABLE DESCRIPTION
statement is appended by ’MODIFICATION NOT ALLOWED’ and has the
result that an ALTER statement for this table is rejected in Adabas.

If more than one Vista element is found, no Adabas table is generated and an
error message is given.

Y T,Y Same as above, except that if several Vista elements exist for the file and
database, the system checks whether the Vista access number of the file is
identical to the Vista file number of one of these Vista elements.

If identical, the Adabas table is generated.
If not, no Adabas table is generated and an error message is given.

If the Vista numbers are used, the CREATE TABLE DESCRIPTION
statement is appended by ’MODIFICATION NOT ALLOWED’ and has the
result that an ALTER statement for this table is rejected in Adabas.

N Y If the file does not contain Vista access numbers, an error message is given.
If the file does contain Vista access numbers, an Adabas table is generated
with the access number taken from the file.

If the Vista numbers are used, the CREATE TABLE DESCRIPTION
statement is appended by ’MODIFICATION NOT ALLOWED’ and has the
result that an ALTER statement for this table is rejected in Adabas.

N Y If the file does not contain Vista access numbers, an error message is given.
If the file does contain Vista access numbers, the system tests whether Vista
elements with the same numbers exist for this file. If so, an Adabas table is
generated with this access number.

If the Vista numbers are used, the CREATE TABLE DESCRIPTION
statement is appended by ’MODIFICATION NOT ALLOWED’ and has the
result that an ALTER statement for this table is rejected in Adabas.

N Y If the file does not contain Vista access numbers, an error message is given.
If the file does contain Vista access numbers, the system tests whether a Vista
element with the same number exists for this file. If so, an Adabas table is
generated with this access number.

If the Vista numbers are used, the CREATE TABLE DESCRIPTION
statement is appended by ’MODIFICATION NOT ALLOWED’ and has the
result that an ALTER statement for this table is rejected in Adabas.

Copyright © Software AG 200376

Adabas Table/Cluster/ViewRecommendations when Using Adabas Vista

Generate Adabas Table/View in Batch Mode
Command: GENERATE ESQ

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Field Keyword Position

File ID FILE-ID 1

Database ID DATABASE-ID 2

Add table/view ADD-TABLE 3

Replace table/view REPLACE 4

Drop table/view cascade CASCADE 5

List Adabas statement LIST 6

Protocol saved in memberMEM 7

Protocol saved in library LIB 8

Use Vista access-nr USE-ACCESS-NR 9

77Copyright © Software AG 2003

Generate Adabas Table/View in Batch ModeAdabas Table/Cluster/View

Generate for Natural
The following types of external objects can be generated for Natural:

IMS User-Defined Fields
Replace Verification Rule
Data Definition Module

IMS User-Defined Fields

IMS UDFs are required to access data in IMS segments from Natural for DL/I programs. UDFs are used for
mapping IMS segments to fields in DDMs.

IMS UDFs for physical or logical IMS segments can be generated from Predict file objects of type I. IMS UDFs
contain the segment name and - in the case of physical IMS segments - the user-defined field definitions for one
IMS segment.

When generating IMS UDFs for logical IMS segments, the IMS UDFs for physical IMS segments that the
logical IMS segments are derived from are also generated if necessary (if they do not already exist or if the
Predict file objects for the physical IMS segments have been modified since generation).

Rules Applying to the Generation of IMS UDFs

In a first step the Generate IMS User-Defined Fields function collects file objects of the types I, K or J that
are affected by the operation and displays them in a table. See Displaying all Predict file objects affected by
UDF Generation.
The offsets of the IMS descriptor fields in the IMS segment layout (file type J) are checked for consistency
with the respective descriptor fields in IMS segments (file type I) before an IMS UDF is actually generated.
A database and file number is assigned to the newly generated IMS UDF.
DDMs use this database number and file number.
If differences between the format of IMS descriptor fields in the NDB and the respective format definitions
of Predict are detected, the IMS descriptor field formats in the NDB are changed.
Differences can occur if the descriptor fields have the format packed or packed-signed.

Copyright © Software AG 200378

Generate for NaturalGenerate for Natural

Calling the Function

The Generate IMS UDF screen is displayed with function code G and object code UD in a Predict main menu, or
with the command GENERATE UDF

 13:45:33 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate IMS UDF -

 File ID*
 Contained in DA ...

 Overwrite option .. Y (Y,N)
 List IMS segment .. Y (Y,N)

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Parameters

File ID ID of the Predict file object from which UDF is to be generated. The file must be of type I.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

Contained in
DA

ID of the Predict database containing the file. Must be of type I and the file list of the
database must contain the file.

Overwrite
option

Y
Existing UDFs are overwritten by the newly generated UDFs.

List IMS
segment

Y
The generated fields are to be listed.

Displaying all Predict File Objects Affected by UDF Generation

Before actually generating IMS UDFs, Predict checks which file objects of the types I, K or J are affected and
displays the results of this check in a table.

 13:00:32 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Checked IMS files -
 File Segm.
 File name Type Type Relation Udf DBnr/Fnr

 PARTUSED-LCONTD I L entered file nonexist
 ARTICLE-CONTAIND I V virt.child
 ARTICLE-PART I P log.parent nonexist
 ARTICLE-CONTAINS I C real.child nonexist

79Copyright © Software AG 2003

Calling the FunctionGenerate for Natural

Columns in the Table

File name ID of a Predict file object.

File Type Predict file type.

Segment
Type

Type of IMS segment.

Relation How the Predict file object is related to the file to which the generation function is applied

entered
file

File to which the generation function is applied.

phys. file For a logical segment, the physical segment from which it is derived.

log child
For a concatenated segment derived from a logical child and its logical parent, the
logical child from which it is derived.

log.
parent

For a concatenated segment, the parent segment from which it is derived.

virtual
child

For a concatenated segment derived from a virtual logical child and the physical
parent of its paired real logical child, the virtual logical child from which it is
derived.

real child
For a virtual logical child segment the real logical child segment from which it is
derived.

UDF Status of the UDF

generated UDF exists for the file

modified The Predict file/field objects have been modified after generation of the UDF.

nonexist UDF does not exist

invalid
The generated UDF points to a wrong DBNR, i.e. the database number is not
defined as IMS or DL/I database number in the Natural parameter module via the
NTDB macro

not found The generated UDF is deleted

UDF diff.
The segment in the UDF differs from the segment name in the file, i.e. the
generated segment was modified with an external utility.

DBnr/Fnr Database and file number assigned to the UDF.

Note:
If a DDM for Natural IMS or DL/I is to be generated, all related IMS UDFs must be of
status generated.

Generate IMS User-Defined Fields in Batch Mode

Command: GENERATE UDF

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Copyright © Software AG 200380

Generate for NaturalCalling the Function

Field Keyword Position

File ID FILE-ID 1

Contained in DA DATABASE-ID 2

Overwrite option REPLACE 3

List IMS segmentLIST 4

Sample Output

 13:29:33 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - List IMS UDFs - Page: 1
 Database: PARTUSED DBD:
 File : PARTUSED-LCONTD IMS Segment: LCONTD
 Seg. length: 600-700

 T L DB Field name F Length D Occ Offset Var
 -- - -- -------------------------------- -- -------- --- --- ------- ---
 1 NG PARTNO N 3.0 SRC 201
 1 NH PARTNAME A 20.0 SRC 291
 1 NI XPART A 20.0 AIX 200
 **** IMS udf generated (Dbnr: 153 Fnr: 84) ****

Replace Verification Rule
The Replace Verification Rule function can be applied only to rules of status automatic. A rule is assigned status
automatic by applying the function Generate DDM to the file containing the field that the corresponding
Verification object is linked to via Is verified by VE.

The function Replace Verification Rule replaces the code of the rule; all links to fields remain unchanged.

Calling the Function

The Replace Verification Rule screen is displayed with function code G and object code RU in a Predict main
menu, or with the command GENERATE RULE.

 09:40:26 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Replace Verification Rule -

 Rule ID

 List related fields ... Y (Y,N)
 List related maps Y (Y,N)
 List generated rule ... Y (Y,N)

Values for input fields which have been locked by the data dictionary administrator cannot be overwritten. These
fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

81Copyright © Software AG 2003

Replace Verification RuleGenerate for Natural

Parameters

Rule ID ID of the Predict verification object from which the verification rule is to be generated.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

List related
fields

Y
The IDs of all fields connected to this verification rule via Is verified by VE are to be listed.

List related
maps

Natural maps using replaced verifications are to be recataloged so that they use the new
verification rules. List related maps helps to find these maps.

Y
The IDs of all maps connected to this verification rule are to be listed.

List generated
code

Y
The generated code is to be listed.

Replace Verification Rule in Batch Mode

Command: GENERATE RULE

Enter parameters on next line in positional or keyword form. Rule ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Field Keyword Position

Rule ID RULE-ID 1

List related fields RELATE 2

List generated code LIST 3

List related maps RELATED-MAPS 4

Sample Output

 13:04:07 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Replace Verification Rule - Page: 1

 Link of Verification GEN-CHECK-ZERO to Elementary Fields
 File Name Field Name Remark
 -------------------------------- -------------------------------- -------------
 GENERATION-EXAMPLE ELE-N-9V5 activ
 ELE-PS-5V2 activ
 PC-MC-PS-6V1 activ
 Gen-examples Ele-N-9V5 not activ
 Ele-PS-5V2 not activ
 PC-MU-PS-6V1 not activ

Copyright © Software AG 200382

Generate for NaturalCalling the Function

 13:04:07 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Replace Verification Rule - Page: 2
 Rule: GEN-CHECK-ZERO

 0010 * **
 0020 * Verification: GEN-CHECK-ZERO generated by Predict *
 0030 * with format: Numeric; Type: Not Equal; *
 0040 * on: 2003-05-31; at: 13:03:46; from user: SMR; *
 0050 **
 0060 IF & = 0
 0070 REINPUT ’Invalid value(s): ’’0’’ .’
 0080 MARK *&

Data Definition Module

Rules Applying to the Generation of DDMs

If Natural Security is installed and the specified file is defined to Natural Security, the same checks are
performed as are performed before a DDM can be regenerated or a file can be added. See description of the
parameter DDM Modifier in the section File Maintenance of the Natural Security documentation.
A DDM generated for a physically coupled file contains the ID of the file to which it is coupled and the
short names of the fields via which they are coupled as a comment. For example: "Coupled via AA to GA
of FINANCE".
The names of the Predict file and its userviews begin with SYSDIC. When a DDM is generated for a file
whose name begins with SYSDIC, the logical database number (255) and logical file number (253) that
point to the FDIC are taken.
If the file (which has a DDM) was renamed, the old DDM is purged in the Generate DDM function and the
new DDM is added. If Natural Security objects or Super Natural objects exist for the old DDM, these
objects are renamed too.

Note:
Rules applying to the generation of DDMs for use with IMS or Adabas Vista are described in the sections
Generating DDMs for Use with IMS and Generating a DDM for Use with Adabas Vista.

When generating DDMs on Windows or UNIX platforms and the FDIC file is located on the mainframe,
the DDM will not be available on the mainframe. It will be stored only in the file system where FNAT is
located.

83Copyright © Software AG 2003

Data Definition ModuleGenerate for Natural

When generating DDMs on the mainframe and the FDIC file is also located on mainframe, the DDM will
not be available on the Windows or UNIX platform.
The function must be executed twice.

Calling the Function

The Generate a DDM screen is displayed with function code G and object code DD in a Predict main menu, or
with the command GENERATE DDM.

 13:44:32 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 10 - Generate a DDM -

 Current VM HOME
 File ID*
 Contained in DA

 Overwrite option Y (Y,N) For Adabas
 List generated code Y (Y,N) Use Vista access-nr* N
 Adabas version* I7 For SQL
 Truncate creator N (Y,N)
 Field name prefix For IMS
 Line comments* Y Generate UDFs N (Y,N)
 Abstract 3 (0-16) Replace modified UDFs ... N (Y,N)
 General comments Y (Y,N) List UDFs N (Y,N)
 IMS field suffix N (Y,N)
 Generate verif. rules .. Y (Y,N) For Natural Subsystems
 Replace verif. rules ..* Y Generate Security N (Y,N)
 List verif. rules Y (Y,N) Super Natural file opt .. N (Y,N)

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Presettings

The parameters below can be changed in the Modify DDM Defaults screen.
See Generation Defaults.

Specification
DB ID

Only applicable to Adabas files and userviews.

Y
Database ID must be specified.

N
Database ID may be specified.

D
Database ID may not be specified

This parameter is set to N at installation.

Money format
(for SQL)

N
Unpacked numeric

P
Packed numeric

Copyright © Software AG 200384

Generate for NaturalCalling the Function

Super Natural
file DBNR

The database number of the Super Natural system file must be supplied by the DDA if the
Super Natural file is not the current FUSER file at generation time.
This parameter is set to 0 at installation.

VSAM trailing
BLANK char

If a VSAM prefix name contains trailing blanks, these blanks must be represented in Predict
with a special character (because trailing blanks cannot be entered in Predict).
When generating a DDM for Natural VSAM the special character specified is removed and
the correct representation of a blank inserted.

A VSAM trailing BLANK char. is not defined at installation.
We recommend setting this parameter to $.

Super Natural
file FNR

The file number of the Super Natural system file must be supplied by the DDA if the Super
Natural file is not the current FUSER file at generation time.
This parameter is set to 0 at installation.

Parameters

Current VM Virtual machine that is currently valid. A read only field. DDMs can be only generated from
Predict file objects contained

in the database of type local linked via Contains DA to the Current VM or
in databases accessible via the network containing the Current VM.

See Generating a DDM for Use with Adabas Vista for a description of how this parameter is
evaluated when generating a DDM for use with Adabas Vista.

File ID ID of the Predict file object from which the definitions are to be generated. Alpha characters
must be entered in upper case.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

Contained in DA Depending on the setting of Specification DB ID in the Modify DDM defaults screen, entry
of a database ID is mandatory, optional, or prohibited for Adabas files and userviews. See
Presettings above.
If a database is specified, its file list must contain the specified file and the database type
must be compatible with the database type specified for this database number within the
Natural Parameter Module (via NTDB macro).
Enter an asterisk to display a list of databases for selection.

Do not enter a Database ID for a DB2 table or view.

Overwrite option Y
An existing DDM is overwritten.

List generated
code

Y
Generated code is listed.

Adabas version The version of Adabas for which the DDM is to be generated. Enter an asterisk for valid
values or see Adabas Version for more information.
The Adabas version you specify for DDM generation is independent of your installation
platform.

Field name
prefix

Prefix to be used for each generated field name.

Note:
This parameter does not apply if you are generating a DDM from an SQL file type. See
list of SQL file types in Generating DDMs for Use with SQL below.

85Copyright © Software AG 2003

Calling the FunctionGenerate for Natural

Line comments Y
The first abstract line from each Predict field object is truncated to 20 characters and
appended as a line comment to the generated description.

N
No line comments are generated from Predict object.

O
The maximum number of abstract lines defined in Predict (0 - 16) are written as line
comments.

Abstract The number of Predict abstract lines to be included in the generated code as lines beginning
with an asterisk.

General
comments

Y
Comment lines in the Predict file object (marked with ** or */ in field Type) are included.

If the field synonym is used, the original field name is displayed. The date and time of the
generation and the ID of the user who initiated it are inserted.
Source fields of sub/super/hyperdescriptors are also listed.

Generate verif.
rules

Y
The status of verification objects connected to fields of this file via Is verified by VE is
changed to automatic.

Replace verif.
rules

Y
Verification objects of status automatic connected to fields of this file via Is verified by VE
are regenerated if they have been modified since generation.

S
Verification objects of status automatic connected to fields of this file via Is verified by VE
are regenerated only if they are not connected to any other file.

List verif. rules Y
List the IDs of all verification objects connected to each field.

For Adabas

Use Vista
access-nr

See table Meaning of Parameter Use Vista access-nr.

Note:
This parameter is only applicable to Adabas files and userviews.

See also section Adabas Vista in the Predict and Other Systems documentation.

For SQL

Truncate creatorY
The name of the generated DDM is the original SQL table/view name without the part that
identifies the creator.

Note:
Only applicable to SQL file types. See Generating DDMs for Use with SQL.

For IMS

Generate UDFs Y
User-defined fields for Natural for DL/I are generated or regenerated.
Only applicable to files of type I, J, and K.

Replace UDFs Y
Any user-defined fields are replaced.

Copyright © Software AG 200386

Generate for NaturalCalling the Function

List UDFs Y
User-defined fields are to be listed.

IMS field suffix Y
The DDM field name is created using a compressed field name (or Natural synonym),
hyphen and IMS segment name.

For Natural subsystems

Generate
security

Only applicable if Natural Security is installed and the user is authorized to create profiles.
An authorized user is an administrator who either has no owners or is an owner of himself
without countersignatures.

Y
An authorized user can create a Natural Security profile for the file whose DDM has just
been generated.

Super Natural
file opt.

This option can only be used by a Super Natural administrator.

Y
The file is to be declared to Super Natural and causes a list of Super Natural users to be
displayed so that the administrator can specify which of them can use the file. If Natural
Security is installed, the file is declared to Super Natural only if it is given, or already has, a
Natural Security definition.

Generating DDMs for Use with IMS

When generating a DDM for one of the IMS file types, the following fields are included:

For all file types (I, J, K)

KEY fields from the higher level IMS segments
KEY fields from the current IMS segment
KEY fields from the lower level IMS segment if data is accessed via an AIX index

Additionally for IMS Segments (file type I)

user-defined fields of all IMS segment layouts (file type J)
user-defined fields of the related logical child or logical parent segment

IMS Segment (file type J)

user-defined fields of the named IMS segment layout
user-defined fields of the related logical child or logical parent segment

IMS userview (file type K)

user-defined fields of the named IMS User View file
user-defined fields of the related logical child or logical parent segment

Generating DDMs for Use with SQL

Please note the following when generating DDMs for SQL file types:

Parameter Truncate creator only applies when generating DDMs for the file types listed below.
Natural synonyms and parameter Field name prefix are ignored for these file types.

87Copyright © Software AG 2003

Generating DDMs for Use with IMSGenerate for Natural

SQL file types are

SQL File Types

A(SQL) Adabas (with SQL usage set to Y)

AT Adabas table cluster

B Adabas SQL view

BT Adabas D table

BV Adabas D view

D DB2 table

E DB2 view

JT Ingres table

JV Ingres view

OT Oracle table

OV Oracle view

X General SQL file

XT Informix table

XV Informix view

YT Sybase table

YV Sybase view

Generating a DDM for Use with Adabas Vista

Prerequisites

If an Vista access number is used for generating a DDM, the virtual machine of the Vista element used for
generation must be linked to the current network.

Changing the Current VM and Current Network is described under Miscellaneous in the Predict
Administration documentation.

Recommendations when Using Adabas Vista

If using Predict with Adabas Vista distributed data processing, we recommend the following:

Always enter Vista access numbers for Adabas files and userviews (Add, Modify file).
Set the parameter Specification DB ID in the Modify DDM defaults screen to D (database ID may not be
specified when generating a DDM from an Adabas file/userview) or to N (database ID may be specified but
is not mandatory).
If this parameter is set to Y, the user is forced to enter a database ID when generating a DDM from an
Adabas file/userview.
Set the parameter Use Vista access-nr in the Modify DDM defaults screen to T, but do not protect the field.
Do not enter a database ID with the function Generate a DDM. This ensures the Vista access number is used
for generation.

Copyright © Software AG 200388

Generate for NaturalGenerating a DDM for Use with Adabas Vista

If you do not want to use Adabas Vista:

Set the parameter Use Vista access-nr in the Modify DDM defaults screen to N and deactivate the option by
blanking out the preceding X.

The table below illustrates the use of the parameter Use Vista access-nr.

Meaning of Parameter Use Vista access-nr

Specification
DB ID

Use
Vista
Access-Nr

Database
ID
specified

Result

D,N N no DDM is generated with DB ID=0

D,N Y no If the file does not contain Vista access numbers, an error message is
given.
If the file contains Vista access numbers, a DDM is generated with the
access numbers taken from the file.

D,N T no If the file does not contain Vista access numbers, an error message is
given.
If the file contains Vista access numbers, the system tests whether a
Vista element with the same numbers exists for this file. If so, a DDM
is generated with this access numbers.

N,Y N yes [1] If the file is not defined as partitioned in this database and the
Adabas attribute Vista access only is not set to Y:

the DDM is generated with the physical database number and physical
file number (defined with file maintenance function Modify Adabas
attributes).

N,Y N yes [2] If the file is defined as partitioned in this database or the Adabas
attribute Vista access only=Y:
the system checks whether a Vista element for this file and database
exists.

If exactly one element exists, the DDM is generated with the Vista
numbers defined in this Vista element.

If more than one Vista element is found, no DDM is generated and an
error message is given.

N,Y T,Y yes Same as above, except that if several Vista elements exist for the file
and database, the system checks whether the Vista access numbers of
the file are identical to the Vista numbers of one of these Vista
elements.

If identical, the DDM is generated.

If not, no DDM is generated and an error message is given.

Generate DDM in Batch Mode

Command: GENERATE DDM

89Copyright © Software AG 2003

Generate DDM in Batch ModeGenerate for Natural

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Field Keyword Position

File ID FILE-ID 1

Database ID DATABASE-ID 2

Overwrite option REPLACE 3

Field name prefix PREFIX 4

Line comments LINE-COM 5

General comments GENERAL-COM 6

Abstract SHORT-COM 7

List generated code LIST 8

Generate verif. rules GENERATE-RULE 9

Replace verif. rules REPLACE-RULE 10

List verif. rules LIST-RULE 11

Generate UDFs GENERATE-UDF 12

Replace UDFs REPLACE-UDF 13

List UDFs LIST-UDF 14

Adabas version ADA-VER 15

Truncate creator TRUNC-CREATOR 16

IMS field suffix IMS-SUFFIX 17

Use Vista access nr.USE-ACCESS-NR 18

Generate Security ADD-SECURITY 19

Status 1) STATUS 20

DDM Modifiers 1) MODIFIER1 21

DDM Modifiers 1) MODIFIER1-COUNTER-SIGN 22

DDM Modifiers 1) MODIFIER2 23

DDM Modifiers 1) MODIFIER2-COUNTER-SIGN 24

DDM Modifiers 1) MODIFIER3 25

DDM Modifiers 1) MODIFIER3-COUNTER-SIGN 26

DDM Modifiers 1) MODIFIER4 27

DDM Modifiers 1) MODIFIER4-COUNTER-SIGN 28

DDM Modifiers 1) MODIFIER5 29

DDM Modifiers 1) MODIFIER5-COUNTER-SIGN 30

DDM Modifiers 1) MODIFIER6 31

DDM Modifiers 1) MODIFIER6-COUNTER-SIGN 32

Copyright © Software AG 200390

Generate for NaturalGenerate DDM in Batch Mode

DDM Modifiers 1) MODIFIER7 33

DDM Modifiers 1) MODIFIER7-COUNTER-SIGN 34

DDM Modifiers 1) MODIFIER8 35

DDM Modifiers 1) MODIFIER8-COUNTER-SIGN 36

Owner 1) OWNER1 37

Owner 1) OWNER1-COUNTER-SIGN 38

Owner 1) OWNER2 39

Owner 1) OWNER2-COUNTER-SIGN 40

Owner 1) OWNER3 41

Owner 1) OWNER3-COUNTER-SIGN 42

Owner 1) OWNER4 43

Owner 1) OWNER4-COUNTER-SIGN 44

Owner 1) OWNER5 45

Owner 1) OWNER5-COUNTER-SIGN 46

Owner 1) OWNER6 47

Owner 1) OWNER6-COUNTER-SIGN 48

Owner 1) OWNER7 49

Owner 1) OWNER7-COUNTER-SIGN 50

Owner 1) OWNER8 51

Owner 1) OWNER8-COUNTER-SIGN 52

Security Notes 1) NOTE1 53

Security Notes 1) NOTE2 54

Security Notes 1) NOTE3 55

Security Notes 1) NOTE4 56

Security Notes 1) NOTE5 57

Security Notes 1) NOTE6 58

Security Notes 1) NOTE7 59

Security Notes 1) NOTE8 60

Security Notes 1) NOTE9 61

Security Notes 1) NOTE10 62

1) Only available in Natural Security. For further details and possible values see the Natural Security
documentation.

Note:
When generating a DDM in batch mode for database 0, DATABASE-ID must be set to blank and at least
one other parameter must be specified in order that this parameter is recognized. For example:

91Copyright © Software AG 2003

Generate DDM in Batch ModeGenerate for Natural

GENERATE DDM
FILE-ID=FILE1,DATABASE-ID= ,LIST=Y

or in positional form:

GENERATE DDM
FILE1, ,,,,,,LIST=Y

Sample Output

 13:19:05 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate a DDM - Page: 1

 DBID: 180 FNR: 171 DDM: GENERATION-EXAMPLE DEF.SEQ:

 T L DB NAME F LENG S D REMARKS
 - - -- -------------------------------- - ----- - - -----------------------
 * Generation started
 * at 2003-05-31 13:19:05
 * by user MSZ
 *
 *
 * EXAMPLE FILE FOR THE
 * GENERATION SUBSYSTEM
 *
 G 1 AA GROUP-1
 2 AB ELE-N-9V5 N 9.5 N
 HD=ELE/HEADER

 VER: GEN-CHECK-ZERO

 G 2 AC GR-IN-GROUP
 3 AD ELE-B-4 B 4.0 F D

 VER: GEN-VER-EXAM

 3 AE ELE-PS-5V2 P 5.2 N

 VER: GEN-CHECK-ZERO

 * MU field in group redefined two
 * times
 M 3 AF MU-B-4 B 4.0 N
 2 AG ELE-A-42 A 42.0 N

 VER: GEN-CHECK-BLANK
 VER: GEN-VER-EXAM

 2 AH ELE-F-8 F 8.0 F
 2 AI ELE-B-3 B 3.0 N
 * Superfield and superdescriptor
 1 AJ SB-ELE-A-5 A 5.0 N
 * -------- SOURCE FIELD(S) -------
 * ELE-A-42(10-14)

Copyright © Software AG 200392

Generate for NaturalSample Output

 13:19:05 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate a DDM - Page: 2

 DBID: 180 FNR: 171 DDM: GENERATION-EXAMPLE DEF.SEQ:

 T L DB NAME F LENG S D REMARKS
 - - -- -------------------------------- - ----- - - -----------------------

 1 S1 SP-DE-A-24 A 24.0 N S
 * -------- SOURCE FIELD(S) -------
 * ELE-B-3(1-3)
 * ELE-A-42(20-36)
 * ELE-PS-5V2(1-4)
 *
 * PE-group with automatic counter
 *
 P 1 AL PC-OCC-7
 2 AM PC-ELE-DE-NS-7V3 N 7.3 N D
 * counter for MU-field in PE-group
 M 2 AN PC-MC-PS-6V1 P 6.1 N D

 VER: GEN-CHECK-ZERO

 *
 G 2 AO PC-GR
 3 AP PC-ELE-I-2 B 2.0 F
 Format ’INTEGER’ changed to ’BINARY’.
 3 AQ PC-PS-20V7 P 20.7 N
 2 AR PC-ELE-F-4 F 4.0 F
 * Formats: date,time,logical
 1 AS ELE-D D 6.0 N
 1 AT ELE-T T 12.0 N
 1 AU ELE-L L 1.0 N
 * Hyperdescriptor with MU field
 * and source field of a PE-group
 M 1 S2 HQ-DE-I-4 I 4.0 H
 * -------- SOURCE FIELD(S) -------
 * PC-ELE-I-2
 * MU-B-4
 ***** DDM replaced *****

93Copyright © Software AG 2003

Sample OutputGenerate for Natural

Generate for DB2
Various types of external objects can be generated for DB2. This section contains:

Common Parameters for all DB2 Types
DB2 Database
DB2 Procedure/Function
DB2 Table/View
DB2 Storagegroup
DB2 Tablespace

For the above object types several common parameters can be set that are described under Common Parameters
for all DB2 Types.

Prerequisites

Generation of DB2 objects is subject to DB2 security mechanisms. See the section DB2 and SQL/DS in the
Predict and Other Systems documentation for more information.

Common Parameters for all DB2 Types
The following parameters can be set in all DB2 object types.

Parameters

Use SQLID To switch from the logon user ID to a group ID in DB2, you can enter a different SQL ID in
this field. The statement SET CURRENT SQLID will then be submitted.

List DB2
statements

Y
List the generated DB2 SQL statements.

Protocol saved
in member

SQL statements generated for the implementation of the database can be saved in a Natural
source member (protocol) on the FDIC file.

A member name for the protocol is only required when the DB2 database is generated for
the first time. SQL statements generated in subsequent generation runs are concatenated to
the protocol.

The protocol can be displayed using the Display function of the Administration
Implemented Database menu.

Protocol saved
in library

Library where the protocol is to be saved.

DB2 Database
A DB2 database can be implemented with Predict by generating the necessary SQL statements. An additional
confirmation is requested before the DB2 database is actually implemented. The generated SQL statements can
be saved in a generation protocol.

Copyright © Software AG 200394

Generate for DB2Generate for DB2

Note:
This function is only available if DB2 is installed in your environment. The function is not applicable to
SQL/DS.

Calling the Function

The Generate DB2 Database screen is displayed with function code G and object code D2 in a Predict main
menu, or with the command GENERATE DB2-DATABASE.

Prerequisites

Generation of DB2 objects is subject to DB2 security mechanisms. See the section DB2 and SQL/DS in the
Predict and Other Systems documentation for more information.

 13:13:38 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate DB2 Database -

 Database ID*

 Add database Y (Y,N)
 Update database N (Y,N)

 Use SQLID HNO
 List DB2 statements Y (Y,N)

 Protocol saved in member ... *
 in library .. DB2LIB

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

95Copyright © Software AG 2003

Calling the FunctionGenerate for DB2

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Presetting

The parameter below can be changed in the Modify DB2 Database Defaults screen. See Generation Defaults.

Count of
saved actions

Number (0-99) of generation actions which are stored in the protocol specified under Protocol
saved in member/library.
If 99 is entered, all generation actions are stored. This is the default setting at installation.

Parameters

Database ID ID of the Predict database object from which the DB2 database is to be generated.

Enter an asterisk to display a selection screen. Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

Add databaseY
A new DB2 database is created. If the DB2 database already exists, this parameter must be set
to N.

Update
database

Y
If the database is already implemented, the differences of the implemented database and the
Database object in Predict are determined and update commands are generated to modify the
implemented database according to the Predict object.

Generate DB2 Database in Batch Mode

Command: GENERATE DB2-DATABASE

Enter parameters on next line in positional or keyword form. Database ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Field Keyword Position

Database ID DB 1

List DB2 statements LIST 2

Protocol saved in memberMEM 3

Protocol saved in library LIB 4

Add database ADD-DB 5

Update database UPD-DB 6

Use SQLID SQLID 7

Sample Output

 13:51:40 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate DB2 Database - Page: 1

 Database-ID: EXAM-DATABASE

 CREATE DATABASE EXAMDB
 STOGROUP EXAM001
 BUFFERPOOL BP1;

Copyright © Software AG 200396

Generate for DB2Generate DB2 Database in Batch Mode

DB2 Procedure/Function
A DB2 procedure or function requires an object of type Program as input, from which then either a procedure or
a function is generated.

Note:
This function is only available if DB2 is installed in your environment. The function is not applicable to
SQL/DS.

Calling the Function

The Generate DB2 Proc/Function screen is displayed with function code G and object code P2 in a Predict main
menu, or with the command GENERATE DB2-PROCEDURE.

Prerequisites

Generation of DB2 objects is subject to DB2 security mechanisms. See the section DB2 and SQL/DS in the
Predict and Other Systems documentation for more information.

97Copyright © Software AG 2003

DB2 Procedure/FunctionGenerate for DB2

 13:13:38 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate DB2 Proc/Function -

 Program ID*

 Add procedure/function (Y,N) Replace procedure/function .. (Y,N)
 Update procedure/function .. (Y,N) Comment on (Y,N)

 Use SQLID HNO
 List DB2 statements Y (Y,N)

 Protocol saved in member ... *
 in library .. DB2LIB

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Copyright © Software AG 200398

Generate for DB2Calling the Function

Presetting

The parameter below can be changed in the Modify DB2 Proc/Function Defaults screen. See Generation
Defaults.

Count of saved
actions

Number (0-99) of generation actions which are stored in the protocol specified under
Protocol saved in member/library.
If 99 is entered, all generation actions are stored. This is the default setting at installation.

Parameters

Program ID ID of the Predict program object from which the DB2 procedure/function is to be
generated.

The procedure name or function name is unique in Predict. However, in DB2, there can
be several objects with the same name in different schemata. Therefore the object type
Program has been extended by the attribute Schema. If no schema is given for a program,
the correlation of the documentation and an implementation can be driven by the user,
that is:

If there is no object with the specified name in DB2, a CREATE statement is
generated.
If an object already exists in DB2, you are asked whether the specified object is the
correct one, or if you want to create a new object. If the you want to create a new
object, a CREATE statement is generated, otherwise an ALTER statement is
generated.

Enter an asterisk to display a selection screen. Alternatively, use an asterisk as a
wildcard.
For example, enter A* to display IDs beginning with A only.

Note:
The option Use SQLID can be set to choose a specific SQLID before the generation. It
influences the allocation of the schema to which an object belongs.

If no schema was given for an object of type Program, the documentation is
supplemented by the SQLID after successful generation.

Add
procedure/function

Y
A new DB2 procedure/function is created. If the DB2 procedure/function already exists,
this parameter must be set to N.

Replace
procedure/function

Y
An existing procedure/function in DB2 is dropped and created newly.

Update
procedure/function

Y
If the procedure/function is already implemented, the differences of the implemented
procedure/function and the program object in Predict are determined and update
commands are generated to modify the implemented procedure/function according to the
Predict object.

Comment on Y
The first eight abstract lines of Predict field and file objects are used as DB2 comments
for the columns and the table (SQL statement COMMENT ON).

Note:
Links concerning the associations IN (Input FI) and RE (Returns FI) define the input and output parameters of
the procedure or function.

99Copyright © Software AG 2003

Calling the FunctionGenerate for DB2

Generate DB2 Procedures/Functions in Batch Mode

Command: GENERATE DB2-PROCEDURE

Enter parameters on next line in positional or keyword form. Program ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Field Keyword Position

Program ID PROGRAM-ID 1

Add procedure/function ADD-PROCEDURE 2

Update procedure/functionUPD-PROCEDURE 3

Replace procedure/functionREPLACE 4

Comment on COMMENT 5

List DB2 statements LIST 6

Protocol saved in memberMEM 7

Protocol saved in library LIB 8

Use SQLID SQLID 9

DB2 Table/View
The Generate DB2 Table / View function:

Generates DB2 and SQL/DS Table/View/Indexes. If a table contains a LOB column, the function generates
a SET CURRENT RULE=’STD’ statement which allows DB2 to create the necessary auxiliary tablespaces,
tables and indexes for these objects.
Generates distinct types.
Generates check expressions. A check expression that differs from the documentation in Predict is dropped
and recreated.
Generates triggers. A trigger that differs from the documentation in Predict is dropped and recreated.
Modifies existing DB2 and SQL/DS Table/Indexes, replaces DB2 and SQL/DS Views/Indexes or
Purges indexes from DB2 or SQL/DS tables if no longer documented with a corresponding Predict file
object of file type D (DB2 Table).

Copyright © Software AG 2003100

Generate for DB2DB2 Table/View

Calling the Function

The Generate DB2 Table/View screen is displayed with function code G and object code T2 in a Predict main
menu, or with the command GENERATE TABLE.

Prerequisites

Generation of DB2 objects is subject to DB2 security mechanisms. See the section DB2 and SQL/DS in the
Predict and Other Systems documentation for more information.

 13:32:37 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate DB2 Table / View -

 File ID*

 Add table / view Y (Y,N) Replace view N (Y,N)
 Add index Y (Y,N) Defer option for indexes .* Y
 Update table N (Y,N) Label on Y (Y,N)
 Update index N (Y,N) Comment on Y (Y,N)
 Purge index N (Y,N)

 Use SQLID HNO
 List DB2 statements Y (Y,N)

 Protocol saved in member ... *
 in library .. DB2LIB

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Presetting

The parameter below can be changed in the Modify DB2 Table/View Defaults screen. See Generation Defaults.

Count of saved
actions

Number (0-99) of generation actions which are stored in the protocol specified under Protocol
saved in member/library.
If 99 is entered, all generation actions are stored. This is the default setting at installation.

Parameters

File ID ID of the Predict file object from which the DB2 table/view is to be generated.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

Add table/view Y
A new DB2 table/view is created. If the DB2 table already exists, this parameter must be N.

101Copyright © Software AG 2003

Calling the FunctionGenerate for DB2

Replace view Y
If the DB2 view already exists, the DB2 statements DROP VIEW and COMMIT are generated
first, followed by the CREATE VIEW statement.

Add index If DB2 indexes are defined for the DB2 table in Predict, set this option to Y to generate the
CREATE INDEX statements.

Update table Y
If the DB2 table/view is already implemented, commands are generated to adapt the DB2
table/view to the documentation (if differences were found).

Update index Y
If the DB2 index is already implemented, update commands are generated to adapt the DB2
index to the documentation (if differences were found).
Updating DB2 indexes is only possible for differences of the following attributes: buffer pool,
close, freepage, pctfree, VSAM catalog, storage group, primary allocation, secondary
allocation, erase, index type, GBPCACHE, piece size.
If any other attributes differ, Update index and Purge index must be set to Y. Predict will then
"update" the index by issuing the statements DROP INDEX, COMMIT and CREATE
INDEX.

Purge index Y
A DROP INDEX and a COMMIT statement are generated if a DB2 index exists and no
corresponding index is defined in Predict.

Note:
Partitioned indexes cannot be purged.

Label on Y
The string specified in the Predict field attribute Header1 is used as DB2 label for the columns
(SQL statement LABEL ON).

Note:
If Label on is set to Y, existing labels are generally overwritten even if Header1 is not
specified in Predict for each column in the table.

Comment on Y
The first eight abstract lines of Predict field and file objects are used as DB2 comments for the
columns and the table (SQL statement COMMENT ON).

Note:
If Comment on is set to Y, existing comments are generally overwritten even if no
abstract is specified in Predict.

Defer option
for indexes

Y
The SQL statement CREATE INDEX is generated with the option DEFER YES.

N
The SQL statement CREATE INDEX is generated without the option DEFER YES.

S
A list containing all indexes is displayed. Enter Y for indexes which you would like to
generate with the option.
If you enter N or leave the field blank, the CREATE INDEX statement is generated without
this option.

Copyright © Software AG 2003102

Generate for DB2Calling the Function

Generate DB2 Table/View in Batch Mode

Command: GENERATE TABLE

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Field Keyword Position

File ID FILE-ID 1

Add table/view ADD-TABLE 2

Add index ADD-INDEX 3

Update table UPD-TABLE 4

Update index UPD-INDEX 5

Purge index PURGE-INDEX 6

Replace view REPLACE 7

Note:
For compatibility reasons only

PSW 8

List DB2 statements LIST 9

Protocol saved in member MEM 10

Protocol saved in library LIB 11

Label on LABEL 12

Comment on COMMENT 13

Defer option for indexes DEFER 14

Use SQLID SQLID 15

Sample File Definition

The following file definition was used for generating the sample output:

103Copyright © Software AG 2003

Generate DB2 Table/View in Batch ModeGenerate for DB2

 13:21:21 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Display File with Children - Page: 1

 File ID EXAM-GEN_TABLE

 DB2 attributes
 Number of partitions ..
 Edit program PROGDB
 Validation program
 Audit N Audit none
 OBid 0
 Data capture
 Max. length 4056

 Abstract
 this are comments for table
 exam-gen_table

 Cnt Ty L Field ID F Cs Length D DB N Df

 1 1 EMPNO A 6.0 P AA R N
 Field is defined as unique
 Source field(s) Order
 EMPNO ascending
 2 1 FIRSTNME AV 12.0 N AB R N
 3 1 MIDINIT A 1.0 N AC R N
 4 1 LASTNAME AV 15.0 N AD R N
 5 1 WORKDEPT A 3.0 F AE R Y
 Source field(s) Order
 WORKDEPT ascending
 6 1 PHONENO A 4.0 N AF R Y
 7 1 HIREDATE D N AG R Y
 8 1 JOB A 8.0 N AH R Y
 9 1 EDLEVEL I 2.0 N AI R Y
 10 1 SEX A 1.0 N AJ R Y
 11 1 BIRTHDATE D N AK R Y
 12 1 SALARY PS 7.2 N AL R Y
 13 1 BONUS PS 7.2 N AM R Y
 14 1 COMM PS 7.2 N AN R Y
 *** End of report ***

Sample Output

Copyright © Software AG 2003104

Generate for DB2Sample Output

 13:52:21 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate DB2 Table / View - Page: 1
 File-ID: EXAM-GEN_TABLE
 CREATE TABLE EXAM.GEN_TABLE
 (EMPNO CHAR(6) NOT NULL,
 FIRSTNME VARCHAR(12) NOT NULL,
 MIDINIT CHAR(1) NOT NULL,
 LASTNAME VARCHAR(15) NOT NULL,
 WORKDEPT CHAR(3) NOT NULL WITH DEFAULT,
 PHONENO CHAR(4) NOT NULL WITH DEFAULT,
 HIREDATE DATE NOT NULL WITH DEFAULT,
 JOB CHAR(8) NOT NULL WITH DEFAULT,
 EDLEVEL SMALLINT NOT NULL WITH DEFAULT,
 SEX CHAR(1) NOT NULL WITH DEFAULT,
 BIRTHDATE DATE NOT NULL WITH DEFAULT,
 SALARY DECIMAL(9, 2) NOT NULL WITH DEFAULT,
 BONUS DECIMAL(9, 2) NOT NULL WITH DEFAULT,
 COMM DECIMAL(9, 2) NOT NULL WITH DEFAULT,
 PRIMARY KEY (EMPNO))
 IN DATABASE EXAMDB
 EDITPROC PROGDB
 AUDIT NONE;
 CREATE UNIQUE INDEX PRDDBA.EMPNO
 ON EXAM.GEN_TABLE
 (EMPNO ASC)
 SUBPAGES 4
 BUFFERPOOL BP0
 CLOSE YES;
 CREATE INDEX DSN8210.XEMP2
 ON EXAM.GEN_TABLE
 (WORKDEPT ASC)
 SUBPAGES 4
 BUFFERPOOL BP0
 CLOSE YES;

 DIC1880 SUMMARY: 14 FIELD(S) PROCESSED

DB2 Storagegroup
A DB2 storagegroup can be implemented with Predict by generating the necessary SQL statements. An
additional confirmation is requested before the DB2 storagegroup is actually implemented. The generated SQL
statements can be saved in a generation protocol.

105Copyright © Software AG 2003

DB2 StoragegroupGenerate for DB2

Calling the Function

The Generate DB2 Storagegroup screen is displayed with function code G and object code SG in a Predict main
menu, or with the command GENERATE STORAGEGROUP.

Prerequisites

Generation of DB2 objects is subject to DB2 security mechanisms. See the section DB2 and SQL/DS in the
Predict and Other Systems documentation for more information.

 13:09:57 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan - Generate DB2 Storagegroup -

 Storagespace ID*

 Add storagegroup Y (Y,N)
 Update storagegroup N (Y,N)

 Use SQLID HNO
 List DB2 statements Y (Y,N)

 Protocol saved in member ... *
 in library .. DB2LIB

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Copyright © Software AG 2003106

Generate for DB2Calling the Function

Presetting

The parameter below can be changed in the Modify DB2 Storagegroup Defaults screen. See Generation
Defaults.

Count of saved
actions

Number (0-99) of generation actions which are stored in the protocol specified under
Protocol saved in member/library.
If 99 is entered, all generation actions are stored. This is the default setting at installation.

Parameters

Storagespace ID ID of the Predict storagespace object from which the DB2 storagegroup is to be generated.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

Add storagegroupY
A new DB2 storagegroup is created. If the DB2 storagegroup already exists, this parameter
must be set to N.

Update
storagegroup

Y
If the DB2 storagegroup is already implemented, commands are generated to adapt the
DB2 storagegroup to the documentation (if differences were found).

Generate DB2 Storagegroup in Batch Mode

Command: GENERATE STORAGEGROUP

Enter parameters on next line in positional or keyword form. Storagespace ID is obligatory, all other parameters
are optional. If a parameter is not specified, the default value is taken.

Field Keyword Position

Storagespace ID STORAGESPACE-ID 1

Add Storagegroup ADD-STORAGEGROUP 2

Update Storagegroup UPD-STORAGEGROUP 3

List DB2 statements LIST 4

Protocol saved in member MEM 5

Protocol saved in library LIB 6

Note:
For compatibility reasons only.

PASSWORD 7

Use SQLID SQLID 8

Sample Output

 13:53:28 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate DB2 Storagegroup - Page: 1

 Storagespace-ID: EXAM-STORAGEGROUP

 CREATE STOGROUP EXAM001
 VOLUMES (VOL05)
 VCAT DB2;

107Copyright © Software AG 2003

Generate DB2 Storagegroup in Batch ModeGenerate for DB2

DB2 Tablespace
A DB2 tablespace can be implemented with Predict by generating the necessary SQL statements. Additional
confirmation is requested before the DB2 tablespace is actually implemented. The generated SQL statements can
be saved in a generation protocol.

Calling the Function

Display the Generate DB2 Tablespace screen with code G and object code TS in a Predict main menu, or with
the command GENERATE TABLESPACE.

Prerequisites

Generation of DB2 objects is subject to DB2 security mechanisms. See the section DB2 and SQL/DS in the
Predict and Other Systems documentation for more information.

 13:19:18 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan - Generate DB2 Tablespace -

 Dataspace ID*

 Add tablespace Y (Y,N)
 Update tablespace N (Y,N)

 Define Y (Y,N)

 Use SQLID HNO
 List DB2 statements Y (Y,N)

 Protocol saved in member *
 in library DB2LIB

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Copyright © Software AG 2003108

Generate for DB2DB2 Tablespace

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Presetting

The parameter below can be changed in the Modify DB2 Tablespace Defaults screen. See Generation Defaults.

Count of
saved actions

Number (0-99) of generation actions which are stored in the protocol specified under Protocol
saved in member/library.
If 99 is entered, all generation actions are stored. This is the default setting at installation.

Parameters

Dataspace ID ID of the Predict dataspace object from which the DB2 tablespace is to be generated.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

Add
tablespace

Y
A new DB2 tablespace is created. If the DB2 tablespace already exists, this parameter must be
set to N.

Update
tablespace

Y
If the tablespace is already implemented, the differences of the implemented tablespace and the
documented dataspace are determined and update commands are generated to modify the
implemented tablespace according to the documented dataspace.

Note:
Certain parameters may be modified with the ALTER TABLESPACE statement only
when the database is active, other parameters only when the database is stopped. For this
reason it may be necessary to submit the generation job twice.

Define N
A DEFINE NO clause is generated

Generate DB2 Tablespace in Batch Mode

Command: GENERATE TABLESPACE.

Enter parameters on next line in positional or keyword form. Dataspace ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Field Keyword Position

Dataspace ID DATASPACE-ID 1

Add tablespace ADD-TABLESPACE 2

Update tablespace UPD-TABLESPACE 3

List DB2 statements LIST 4

Protocol saved in member MEM 5

Protocol saved in library LIB 6

Note:
For compatibilty reasons only.

PASSWORD 7

Define DEFINE 8

Use SQLID SQLID 9

109Copyright © Software AG 2003

Generate DB2 Tablespace in Batch ModeGenerate for DB2

Sample Output

 13:54:53 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate DB2 Tablespace - Page: 1
 Dataspace-ID: EXAM-TABLESPACE

 CREATE TABLESPACE EXAMTS IN EXAMDB
 NUMPARTS 4
 BUFFERPOOL BP0
 LOCKSIZE ANY
 CLOSE NO;

Copyright © Software AG 2003110

Generate for DB2Sample Output

Generating for SQL
The following topics provide necessary knowledge on Generating for SQL.

SQL CREATE Statements
With the function Generate SQL Create Statements you can generate CREATE TABLE or CREATE VIEW
statements. For Adabas SQL Server you can generate CREATE TABLE DESCRIPTION and CREATE
CLUSTER DESCRIPTIONS. These SQL statements are stored as Natural members.

Calling the Function

The Generate SQL Create Statements screen is called with function code G and object code CR in a Predict main
menu or with the command GENERATE CR.

 10:41:04 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 10 - Generate SQL Create Statements -

 File ID*

 Save as member Save in library CRELIB
 Overwrite option Y (Y,N) Op. system member
 Punch / output* N

 List generated code Y (Y,N)

 Truncate creator N (Y,N) Label on Y (Y,N)
 Generate defaults Y (Y,N) Comment on Y (Y,N)
 Generate procedures Y (Y,N)
 Generate indexes Y (Y,N) Defer option for indexes .* N

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Parameters

111Copyright © Software AG 2003

Generating for SQLGenerating for SQL

The parameters Save as member, Save in library, Overwrite option and Op. system member, Punch/output and
List generated code are described in the section Generation Defaults.

File ID ID of the Predict file object from which the CREATE statement is to be generated.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

CREATE statements can be generated from the following file types:

A, B
(with parameter Adabas SQL usage set to Y) Adabas tables and views

AT
Adabas table clusters

D, E
DB2 tables and views

BT, BV
Adabas D tables and views

JT, JV
Ingres tables and views

OT, OV
Oracle tables and views

XT, XT
Informix tables and views

YT, YV
Sybase tables and views

X
General SQL file

Truncate
creator

Y
The creator is truncated from all object names in the CREATE statement.

For DB2 CREATE statements: If parameter Generate indexes is set to Y, the creator is
truncated in the generated distinct types and indexes, too.

Generate
indexes

Y
Only applicable to DB2:
CREATE INDEX statements are also generated.

Copyright © Software AG 2003112

Generating for SQLCalling the Function

Generate
defaults

Y
For Sybase tables:
If default values have been specified in Predict for fields in the file, the following statements
are generated:

create default
sp_binddefault

For other SQL systems:
A corresponding DEFAULT clause is generated as part of the generated CREATE TABLE
statement.
If a default for non-null values has been specified in Predict for fields in the file, this value is
used in the generated CREATE statement.

Generate
procedures

Only applicable to Sybase, Informix and Ingres tables if triggers are defined and linked to the
corresponding file object in Predict via Has TR or to field of the file via Triggered by TR and
these triggers contain references to procedures.

Y
For Sybase, Informix and Ingres tables, the statement CREATE PROCEDURE is also
generated.

Label on Y
The string specified in the Predict field attribute Header1 is used as label for the columns
(SQL statement LABEL ON).

Comment on Y
The first eight abstract lines of the field and file objects in Predict are entered as comments for
the columns and the table (SQL Statement COMMENT ON).

Defer option
for indexes

Y
The SQL statement CREATE INDEX is generated with the clause DEFER YES.

N
The SQL statement CREATE INDEX is generated without the clause DEFER YES.

S
A list containing all indexes is displayed. Enter Y for indexes which you would like to
generate with the DEFER YES clause.

If you enter N or leave the field blank, the CREATE INDEX statement is generated without
this clause.

Generating SQL CREATE Statements in Batch Mode

Command: GENERATE SQL-CREATE

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

113Copyright © Software AG 2003

Generating SQL CREATE Statements in Batch ModeGenerating for SQL

Field Keyword Position

File ID FILE-ID 1

Save as member MEM 2

Save in library LIB 3

Overwrite option REP-OPT 4

Op. system member OS-MEMBER 5

Punch / output PUNCH 6

Truncate creator TRUNC-CREATOR 7

Generate defaults DEFAULTS 8

Generate procedures PROCEDURES 9

Generate indexes INDEX 10

Label on LABEL 11

Comment on COMMENT 12

Defer option for indexes DEFER 13

If you are working with Entire System Server

- DB-ID NP-DBID 14

- Dataset NP-DSNAME 15

- Volume NP-VOLSER 16

- Library NP-LIB 17

- Sublibrary NP-SUBLIB 18

- Member type NP-MEMTYPE 19

- VSAM catalog NP-VSAMCAT 20

Sample Output

Copyright © Software AG 2003114

Generating for SQLSample Output

 13:50:03 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate SQL Create Statements - Page: 1

 File ID .. DSN8230-EMPPROJACT

 CREATE TABLE DSN8230.EMPPROJACT
 (EMPNO CHAR(6) FOR SBCS DATA
 NOT NULL,
 PROJNO CHAR(6) FOR SBCS DATA
 NOT NULL,
 ACTNO SMALLINT NOT NULL,
 EMPTIME DECIMAL(5, 2),
 EMSTDATE DATE,
 EMENDATE DATE,
 UNIQUE (PROJNO,
 ACTNO,
 EMSTDATE,
 EMPNO),
 FOREIGN KEY REPAE (EMPNO)
 REFERENCES DSN8230.EMP ON DELETE RESTRICT,
 FOREIGN KEY REPAPA (PROJNO,
 ACTNO,
 EMSTDATE)
 REFERENCES DSN8230.PROJACT ON DELETE RESTRICT)
 IN DATABASE DSN8D23A
 AUDIT NONE
 DATA CAPTURE NONE;
 CREATE INDEX DSN8230.XEMPPROJACT2
 ON DSN8230.EMPPROJACT
 (EMPNO ASC)
 USING STOGROUP DSN8G230
 PRIQTY 12
 SECQTY 12
 ERASE NO
 PCTFREE 10
 SUBPAGES 8
 BUFFERPOOL BP0
 CLOSE NO;
 CREATE UNIQUE INDEX DSN8230.XEMPPROJACT1
 ON DSN8230.EMPPROJACT
 (PROJNO ASC,
 ACTNO ASC,
 EMSTDATE ASC,
 EMPNO ASC)

 USING STOGROUP DSN8G230
 PRIQTY 12
 SECQTY 12
 ERASE NO
 PCTFREE 10
 SUBPAGES 8
 BUFFERPOOL BP0
 CLOSE NO;

 DIC1800 SUMMARY: 16 FIELD(S) PROCESSED

115Copyright © Software AG 2003

Sample OutputGenerating for SQL

Generating for OS/400
The following topics provide information needed to generate a native OS/400 file:

Principles
Defining an OS/400 File Object
Calling the Generate Function
Changing an OS/400 Database File

Principles
This section describes the principles of how the Predict file and field view is mapped on OS/400 database files. It
also demonstrates the components that are used to create and manage a physical OS/400 file. The following
topics are covered:

Components
Mapping Rules

Components

The diagram below shows the components in the Predict and AFS File-Mapping environment that enable you to
create a physical OS/400 file from a Predict file object.

The following abbreviations are used on the diagram above:

Copyright © Software AG 2003116

Generating for OS/400Generating for OS/400

PRD: Product short code for Predict. In this document, PRD also denotes the Natural terminology of file
field-level structures.
AFS: The Software AG term AFS is the product short code for the OS/400 Shell Environment that includes
all database- and file-mapping programs.
FDT: The Software AG term Field Description Table describes the field-mapping information that is stored
in the data-mapping library AFSvrsDTA. vrs denotes version, release and SM level.
DDS: The IBM term Data Description Specification is a source file that is used to build a new database file.
FFD: The IBM term File Field Description describes the field structure of an existing OS/400 database file.

When Natural accesses an OS/400 database file, it uses the FDT information to map its data view to the OS/400
data records. For details, see Using the AFS File-Mapping Environment in the Natural for OS/400
Administration document.

Mapping Rules

This section describes the rules of how Predict field types and field formats are mapped to the corresponding
OS/400 file field structures.

In principle, Predict assumes that the generated file would be an Adabas file. Because an OS/400 FFD cannot
provide all elements used by Adabas, this section also lists the limitations that are caused by differences in the
database management systems.

Field Type Mapping

The following table lists how Predict field types (column Ty) are mapped to the corresponding FDT (column T)
and OS/400 DDS field attributes:

PRD
Field
Type

Description FDT Type in AFS DDS Source
Lines will be:

Remarks

blank plain field blank
generated,
but not as part
of a PE array

GR Group G not generated

MU,
MC

Multiple
value field

M generated
Overall field length in DDS/FFD = (field length
* Occ) + 2

PE, PC
Periodic
group

P generated
Overall field length in DDS/FFD = (sum of all
field lengths * Occ) + 2

SB Subfield S not generated

The FDT-field name matches the parent field
name. The FDT-field offset is derived from the
relative start- and end-character offset within the
PRD field.

SP Superfield

T indicates the
Superfield
name

not generated

The FDT offsets of the Superfield elements are
derived from the relative start- and
end-character offsets of the parent fields.

U indicates the
Superfield
elements

117Copyright © Software AG 2003

Mapping RulesGenerating for OS/400

Field Attribute Limitations

Due to the differences between the Adabas data view and and the OS/400 file field model, you have to consider
the following limitations:

Descriptors are not allowed for fields within multiple occurrence structures, such as MUs and PEs.
Redefinitions in the Predict file document are ignored during the generation function.
Under OS/400 it is efficient if you specify the maximum number of occurrences for field arrays (mupltiple
fields and periodic groups). If a Predict array object does not contain a value for occurrence (Column Occ),
the generation function creates 199 MU or PE elements (the maximum).
Multi-occurrence structures are not allowed for parent fields of Sub- and Superfields.
Parent fields with format "P" are invalid in Super- and Subfields.
Parent fields with format "N" are invalid in Subfields.
Predict suppression options are not fully covered under OS/400. See the details:

PRD Suppression Option FDT Option "S" Remarks

N Null supression N

F Fixed blank

blank Normal supressionblank

U Null allowed Not allowed in FDT.
Generation stopped with Error message displayed.

R Not Null Not allowed in FDT.
Generation stopped with Error message displayed.

Copyright © Software AG 2003118

Generating for OS/400Mapping Rules

Field Format Mapping

The following table lists various Predict field formats and how they are mapped to the corresponding FDT and
OS/400 DDS field formats:

PRD Format Description FDT
Format

DDS
Format

Max.
length

Remarks

A Alphanumeric /
Character

A A 253 bytes

AV Varchar - - not processed

B Binary B H 126 digits

I Integer Treated like Format B

N, NS, U, US Numeric unpacked N S 31 digits

P, PS (in
digits)

Packed numeric P (in bytes) P (in digits) 16 digits See the table below for
examples.

D Date P4 (4 bytes) P6 (6 digits) Change message displayed

T Time P7 (7 bytes) P12 (12
digits)

 Change message displayed

F Floating point - - not processed

L Logical - - not processed

Examples of Packed Format notations:

Format in Units are in Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6

PRD (Natural) digits 5.0 6.0 5.2 6.2 7.2 8.2

DDS (OS/400 source) digits 5P 6P 7P02 8P02 9P02 10P02

FDT (AFS file-mapping) bytes 3 4 4 5 5 6

FFD (OS/400 buffer length
 in physical record)

bytes 3 4 4 5 5 6

119Copyright © Software AG 2003

Mapping RulesGenerating for OS/400

Defining an OS/400 File Object
 To create an OS/400 file object, perform the following steps in Predict:

1. Invoke Predict and add a new database object or select an existing one.

The database object must comply with the following criteria:

The Predict database object must be of type "A" (Adabas).
The database number must exist in the AFS Database-Mapping environment with type "blank" (not
"ADA" !!).
The first 10 characters of the "Abstract" field must denote the physical library name of the database. It
must exist in the AFS File-Mapping environment. The name will be rejected during the generation
function if it exceeds 10 characters or if it contains characters that are invalid within an OS/400 library
name.

The following screen excerpt displays a sample database-object definition:

 13:13:29 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Display Database -

 Database ID NAT-315-DB
 Type Adabas , Local Added 2002-07-28 at 13:58 by SAG
 Physical DBnr 1 Modified 2002-07-29 at 13:31 by SAG

 Adabas attributes Nattural file numbers
 Maximal files System file (FNAT) ...
 Checkpoint file NAT-Security (FSEC) ..
 Adabas security Predict (FDIC)
 Size of RABN 0
 Distr. transaction ... N No
 Vista access only N

 Abstract
 NAT315DB

 *** End of report ***
 Command ===> Scroll ==> CSR
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Quit RFind Flip - + Left Right

The example shows the specifications of the sample database NAT315DB that is delivered with Natural for
OS/400 Version 3.1.5.

Copyright © Software AG 2003120

Generating for OS/400Defining an OS/400 File Object

2. Add a new file object that must comply with the following criteria:

The first 10 characters of the "Abstract" field must denote the physical name of the target file. The
name will be rejected during the generation function if it exceeds 10 characters or if it contains
characters that are invalid within an OS/400 file name.

The following screen excerpt displays a sample file-object definition:

 13:01:06 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Display File -

 File ID CUSTOMER
 Type Adabas file
 File number 19 Added 2002-07-29 at 13:00 by SAG
 Modified
 Fields modified 2002-07-29 at 13:01 by SAG

 File attributes
 Sequence field
 Adabas SQL usage N

 Abstract
 CUST

 Description
 ===
 File additional description
 Command ===> Scroll ==> CSR
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Quit RFind Flip - + Left Right

where 19 is the Predict file-object number, CUSTOMER the Predict file ID and CUST the name of the
physical OS/400 target file.

121Copyright © Software AG 2003

Defining an OS/400 File ObjectGenerating for OS/400

3. Add fields to your file object. The following screen excerpt displays sample elements that are also used later
in this document:

>> + Fi: CUSTOMER L: 1 S: 9
 Ty L Field ID F Cs Length Occ D U DB S All
 *- - -------------------------------- *- * -------- ----- * * -- *
 1 CUST-NAME A 20.0 D AA
 1 CUST-NO N 8.0 D AB
 GR 1 ADDRESS AC
 2 CITY A 20.0 D AD
 2 STREET A 20.0 AE
 1 SEX A 1.0 AF
 1 DEBIT P 6.2 AG
 MC 1 PRODUCTS A 10.0 6 AH
 SB 1 CITY-SHORT A 3.0 S1

4. Link the new file object to the Adabas database object defined in Step 1:

You can use the Predict command LINK DATABASE FI <database ID> to invoke the child list of
your database.
Add the file object to the list. In the column PFnr specify the file number of the physical target file.
The physical file number must not yet exist in the file list of the target database ID.
If you want to upgrade an existing OS/400 file, see the next topic.

The following screen excerpt displays a child list reflecting the previous database and file sample:

>> + DA: NAT-315-DB L: 1 S: 11
 All Contains FI PFnr T Fnr DDM Impl Other
 -------------------------------- ----- -- ----- --- ---- -----
 CUSTOMER 319 A 19

Note:
The file ID and the physical file name are different in the example above. However, they can be identical. This
applies accordingly to the object-file number and the physical file number and to the database ID and the
physical library name.

Copyright © Software AG 2003122

Generating for OS/400Defining an OS/400 File Object

Calling the Generate Function
With the current Predict Version 4.2 you can call the function Generate an OS/400 File only from the Natural
command line using the command GENOS4.

With the next Predict version, this function will be provided as an individual External Object type of the
Generate function.

 To generate a physical OS/400 file and the corresponding OS/400 FDT, perform the following steps:

1. Start a Natural session in which the Workfile Support 1 is enabled.

2. Logon to SYSDIC and execute the command GENOS4 from the Natural command line or from the
NEXT-prompt.

3. On the input screen, specify the File ID of the file object you plan to generate.

The following excerpt displays a sample "Generate OS/400 File Definitions" screen. The file details of the
previous example are used:

 18:47:44 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate OS/400 File Definitions -

 File ID CUSTOMER
 Phys. File number.......
 Contained in DA
 Phys. Database number ..

 List generated code Y (Y,N)

 Truncation* R Validate *

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl - - Impl AdmFi SelFi Prof Main

123Copyright © Software AG 2003

Calling the Generate FunctionGenerating for OS/400

The screen’s input fields are described below:

Input Field Explanation / Options

File ID The file object to be generated from. This is the only mandatory input field.

Phys. File
number

This file number must not yet be available in the AFS Database-Mapping file list of the
target DBID.
The physical file name (specified in the first 10 characters of the file’s "Abstract" field)
must not yet exist in the OS/400 database library.

Contained in
DA

The Predict database name. Note that the database library name will be extracted from the
first 10 characters of the database’s "Abstract" field.

Phys.
Database
number

The DBID of the target database library. Note that this DBID must be available in the
AFS Database-Mapping Interface and the library (specified in the first 10 characters of
the database’s "Abstract" field) must exist physically.

List generated
code

The physical OS/400 file name, file number, database name and database number are
always displayed. Depending on this parameter, additionally the following will be
displayed:

if Y (yes) the generated code.

if N (no) only messages and the affected fields.

Truncation This parameter describes how long field names should be truncated to 10 characters. The
following options are possible:

R (right) Trailing characters will be truncated. This is the default.

L (left) Leading characters will be truncated.

M (middle) Middle characters will be truncated.

Validate This parameter indicates how characters that are invalid within OS/400 field names
should be handled:

Blank Field names stay unchanged.
If invalid characters are identified, error messages will be displayed
for the relevant fields.

A replacement
character

This character will replace all invalid characters that are found
within field names.
Valid replacement characters are the letters A through Z, the digits 0
through 9, and the special characters $, #, @ and underscore(_).

* Invalid characters within field names will be truncated. This is the
default.

Copyright © Software AG 2003124

Generating for OS/400Calling the Generate Function

4. Press Enter to start the generation. On the succeeding screen prompt, the system displays the complete
information that ought to be transferred to the AFS File-Mapping Interface. The first part lists all file and
field details for building an OS/400 FDT in the Mapping Interface. The second part includes the temporary
DDS specification for creating the corresponding physical file.

The excerpt below shows sample file field details if parameter "List generated code" was set to "Y":

 VVVV
 13:19:04 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate OS/400 File Definitions - Page: 1

 File ID .. CUSTOMER

 * FILENAME = CUST
 * FILENUMBER = 319
 * DATABASENAME = NAT315DB
 * DATABASENUMBER = 1
 T Lv DB O Name From F Len S D U M-Len Occ Remarks
 - -- -- - ---------- ----- - ----- - - - ----- --- -------------
 * 01 AA O CUSTNAME 1 A 20 D
 * 01 AB O CUSTNO 21 N 8 D
 * G 01 AC ADDRESS
 * 02 AD O CITY 29 A 20 D
 * 02 AE O STREET 49 A 20
 * 01 AF O SEX 69 A 1
 * 01 AG O DEBIT 70 P 5 8 digits
 * M 01 AH O PRODUCTS 75 A 10 62 6
 - -- -- - ---------- ----- - ----- - - - ----- --- -------------
 * S 01 S1 CITY A 1 3
 **

 R CUST
 CUSTNAME 00020A B
 CUSTNO 00008S B
 CITY 00020A B
 STREET 00020A B
 SEX 00001A B
 DEBIT 00008P02B
 PRODUCTS 00062H B

When you page (by pressing ENTER) through the generated transfer list, all fields that caused problems are
followed by a message line, which reports a warning, an error or changes that were performed by the system. See
the section Field Check Messages for possible messages. If errors occur, the generation process will be
interrupted abnormally.

125Copyright © Software AG 2003

Calling the Generate FunctionGenerating for OS/400

5. If the generation process was performed successfully, you will be requested to execute the file creation. A
request similar to the one below appears:

 13:26:09 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate OS/400 File Definitions -

 File ID CUSTOMER PFnr ... 319
 Database ID .. NAT-315-DB PDBnr .. 1

 +---+
 ! Do you want to execute: Y (Y/N) !
 +---+

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl - - Impl AdmFi SelFi Prof Main

The system will confirm the successful file creation. The following screen excerpt reflects the sample used
above:

 MORE
 Page 2 02-07-31 13:19:04

 DIC1800 SUMMARY: 9 FIELD(S) PROCESSED.

The current step also inserted the new file’s FDT into the File-Mapping data of the AFS Database
Environment. Before Natural can access the new file, you must perform the steps described in the following
paragraph.

Copyright © Software AG 2003126

Generating for OS/400Calling the Generate Function

 To edit and catalog the generated OS/400 FDT information, perform the following steps:

1. Invoke the File Entries and Associations menu from the OS/400 Database Shell main menu by selecting
Function Code F and the database ID that you specified as Physical DBnr in Predict. The file you just
created should appear in the file list of your database.

2. Issue the command EDT or press PF6-EDT to edit the new file entry. The field list appears. First, press
PF4-CHK to allow the check program to complete some information, e.g. adding field lengths to group
definitions.

Continuing with the example above, you should get the following field description table (FDT):

 13:07:37 SOFTWARE AG - OS/400 Database Shell 7/31/02

 DB-Nbr 1 NAT315DB File-Nbr 319 CUST Status UNCATALOGED

 I T L DB O Name OS400 From F Leng S D U M-Len Occ Remarks
 __ _ __ __ _ __________ _____ _ _____ _ _ _ _____ ___ ____________________
 1 AA O CUSTNAME 1 A 20 D
 1 AB O CUSTNO 21 N 8 D
 G 1 AC ADDRESS 29 40
 2 AD O CITY 29 A 20 D
 2 AE O STREET 49 A 20
 1 AF O SX 69 A 1
 1 AG O DEBIT 70 P 5
 M 1 AH O PRODUCTS 75 B 10 62 6
 S 1 S1 CITY 29 A 3

 Command __

 Enter PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12
 EXIT CHK SAV CAT UNC

The FDT is still in UNCATALOGED state. You could now edit/modify field details, like adding
descriptors. However, the physical layout of the fields cannot be changed any more. It is good practice to
apply all changes also in the corresponding Predict file document to guarantee consistency for later file
generations.

3. Issue the command CAT or press PF6-CAT to catalog the file information. During this step, also the logical
files (descriptors) will be created in the file’s library.

If the cataloging has been ended successfully, the file is ready to be accessed by Natural.

127Copyright © Software AG 2003

Calling the Generate FunctionGenerating for OS/400

Field Check Messages

Type Message Explanation / Action

Error END-VALUE NOT WITHIN
SOURCE FIELD

The end value of a Superfield is not located within a source
field.

SOURCE FIELD HAS INVALID
FORMAT

Parent fields with Format "P" are invalid in Super- and
Subfields.
Parent fields with Format "N" are invalid in Subfields.

INVALID SOURCE FIELD Multi-occurrence structures are not allowed for parent fields of
Sub- and Superfields.

RECORD IS LONGER THAN
32K

OS/400 only supports file records shorter than 32K.

INVALID FIELD NAME The field name contains invalid characters and the Validate
parameter is blank.

FIELD IN USERVIEW LONGER
THAN IN MASTERFILE

A field in a userview cannot be longer than the corresponding
field in the master file.

INVALID SUPPRESSION
OPTION

The suppression options "U" and "R" are not allowed for
OS/400 files.

DUPLICATE FIELD-NAME
GENERATED

OS/400 database-field names must be unique.

Warning NUMBER OF OCCURRENCES
MISSING

On OS/400, the number of occurrences has been set to the
default value of 199.

Change FORMAT NOT SUPPORTED The specified field format is not supported on OS/400. It was
changed to the format displayed.

DESCRIPTOR OPTION
DELETED

An invalid descriptor option was deleted. Multiple fields and
periodic groups mapped to an OS/400 file field cannot contain
descriptors.

FORMAT ’’D’’/’’T’’ CHANGED
TO ’’P’’

The OS/400 field description table does not support Date or
Time. The format was changed to packed.

UNIQUE OPTION DELETED The unique option was deleted because the field has no
descriptor.

MULTI BYTE CHARACTER
SET SUPPRESSED

Mixed data character set is not supported.

FIELD NAME TRUNCATED The field name was shortened to 10 characters corresponding to
the truncation rules specified.

FIELD NAME SET TO FILLER The field name was set to FILLERn because it consisted of
invalid characters only.

Copyright © Software AG 2003128

Generating for OS/400Field Check Messages

Changing an OS/400 Database File
Important: If you plan to change the physical layout of an existing OS/400 database file, your starting point
must always be the Predict file definition.

 To change the layout of an OS/400 database file, proceed as follows:

1. From the OS/400 Database-Shell menu, invoke the Field Entries and Descriptions menu of your file to be
changed. Uncatalog the file and remove it from the file list. The file is now no longer available for the
mapping interface. In addition, all logical files (descriptors) in the file’s library have disappeared.

2. Rename the physical OS/400 file to a save name.

3. Invoke Predict and apply your modification to the relevant file object. For example, add fields, delete fields
or enhance field lengths.
Warning:
You must not change field names, otherwise the *MAP option of the CPYF copy file command will not
find the counter field in the saved file. See the FMTOPT option below.

4. Generate a new OS/400 file from the Predict file object that you modified in the previous step. During this
run, the corresponding file and field definitions will be added again to the AFS File-Mapping information.
See the section Calling the Generate Function on how to perform the Generate function for OS/400 files.

5. From the OS/400 Database-Shell menu, invoke the Entries and Associations Menu to edit, check and
catalog the new file’s FDT. The logical files (descriptors) will then be available again in the file’s library.

6. Copy the data contents on a field-to-field basis from the saved file (see Step 2) to the new empty file using
the OS/400 command CPYF. The Copy File run will consider the changed layout if you specify the option
FMTOPT(*MAP). For example, new fields will be padded according the characteristic of the new file’s
field description. Use additionally the option FMTOPT(*DROP) to drop those fields in the save-file record
format for which there are no fields of the same name in the new-file record format. For more details on the
FMTOPT parameter, refer to IBM’s File Management documentation (scan for the section
"database-to-database copies").

7. According to the changes in the file field layout, you may have to adjust the corresponding DDM definition,
e.g. by generating the new DDM from the Predict file object.

8. The OS/400 file is now ready to be accessed by Natural.

129Copyright © Software AG 2003

Changing an OS/400 Database FileGenerating for OS/400

http://publib.boulder.ibm.com/html/as400/v5r1/ic2924/index.htm?info/cl/cpyf.htm
http://publib.boulder.ibm.com/html/as400/v5r1/ic2924/index.htm?info/dm/rbal3mst103.htm

Generate For Third Generation Languages
- 3GL
The following types of external objects can be generated for 3GL:

Assembler Copy Code
C Include Code
Cobol Copy Code
FORTRAN Copy Code
PL/I Include Code

Additional Usage Information for Fields in a File
To enable the Predict Preprocessor to create consistent XRef data for a member where the corresponding file has
been modified since generation, Predict generation functions for 3GL members append the generated code with
the following information:

a line containing the text ’FIELD USAGE INFORMATION’
a list of all fields contained in the file together with usage information. Usage is indicated with a preceding
C or U (COUNT or UPDATE).

Please note the following for generated members containing this additional usage information:

If you copy a member using the Preprocessor command EXEC Adabas COPY and set the parameter Ignore
changes to X, the XRef data is written on the basis of this additional information and not from the current
documentation in Predict. This results in consistent XRef data, even if the file has been modified since
generation.
This information is not displayed with Administration functions such as Display implementation. Only the
actual member is displayed.
The same applies to the commands PUNCH/WRITE and to PUNCH with Entire System Server: only the
actual member is written

Copyright © Software AG 2003130

Generate For Third Generation Languages - 3GLGenerate For Third Generation Languages - 3GL

Assembler Copy Code
The function Generate Assembler Copy Code generates a record buffer for use in Assembler programs based on
a Predict file object.

In addition, an Adabas format buffer can also be generated if required for files of the following types:

Adabas file (file type A) with parameter Adabas SQL usage = N
Adabas userview (file type U)

This section contains:

Calling the Function
Generate Assembler Copy Code in Batch Mode
Names in Assembler Copy Code
Field Format and Assembler Copy Code
Sample Output

Calling the Function
The Generate Assembler Copy Code screen is displayed with function code G and object code BA in a Predict
main menu or with the command GENERATE BAL or GENERATE ASSEMBLER.

131Copyright © Software AG 2003

Assembler Copy CodeAssembler Copy Code

 09:43:39 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate ASSEMBLER Copy Code -

 File ID*

 Save as member Save in library BALLIB
 Overwrite option Y (Y,N) Op. system member ..
 Punch / output* N

 List generated code Y (Y,N) List offsets* N
 Generate format buffer* N Adabas version* I7

 As DSECT N (Y,N) Field name prefix ..
 With DC or DS* DC Field name suffix ..
 Nr. of abstract lines 4 (0-16) Validate *
 Generate initial value N (Y,N) Truncation* R
 Align* N With EQUs Y (Y,N)
 DSECT name Counter length 1 (1,2)
 Format buffer name

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Presettings

The parameter below can be changed in the Modify BAL Defaults screen. See Generation Defaults.

Library
system

Library system for which the generated code is punched. Determines which additional cards
need to be punched. An operating system member must be entered for the additional cards to be
generated. See Parameters Specifying the Form of Output for more information.

Parameters

The parameters Save as member, Save in library, Overwrite option, Op. system member, Punch/output,
Workfile name and List generated code are described in the section Parameters Specifying the Form of Output.

File ID ID of the Predict file object from which the definitions are to be generated.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

Copyright © Software AG 2003132

Assembler Copy CodeCalling the Function

List offsets Y
Include the offset of each item in the record buffer structure (relative to the beginning of the
structure) in decimal and hexadecimal formats as a comment. The total length of each buffer is
also included.

P
Include the absolute position (offset+1) as a comment.

L
Include the total lengths of the record buffer and the format buffer as a comment.

V
Only allowed if parameters As DSECT=N and With DC or DS=DC.
The file number and the calculated lengths of the record buffer and the format buffer are to be
generated as constants in the copy code. The name of the file number constant is the record
buffer name with N as prefix. The name of each length constant is the appropriate buffer name
with L as prefix. Each name is prefixed, suffixed, validated and truncated in the same way as any
other field name.

N
No offset.

Generate
format
buffer

Format buffer generation for Assembler copy code is only allowed if parameters As DSECT=N
and With DC or DS=DC.
The contents of the format buffer will correspond exactly to the contents of the record buffer.
Only valid for files of type A (with parameter Adabas SQL usage set to N) or for files of type U.

Valid values:

Y
Adabas format buffer is to be generated. Adabas groups, standard formats and lengths are used
whenever possible. The resulting format buffers are then as short as possible.

F
Full format buffer is to be generated. Length and format of Adabas fields are included.

N
No format buffer is to be generated.

Note:
If you are generating for a WANG environment, set this parameter to F or N.

Adabas
version

The version of Adabas for which the copy code is to be generated. Enter an asterisk for valid
values or see table in the section Adabas Version.

133Copyright © Software AG 2003

Calling the FunctionAssembler Copy Code

As DSECT The effect of this parameter depends on the parameter DSECT name. See table below

As DSECT DSECT name Copy Code Generated

Y specified <DSECT name> DSECT

Y blank <File-ID> DSECT

N
specified

<DSECT name> DS OCLnnn

Note.: nnn=Length of the record buffer structure

N blank Only entries for fields are generated

N
* (asterisk)

<File-ID> DS OCLnnn

Note.: nnn=Length of the record buffer structure

Field name
prefix

The prefix to be used for each field name generated.

With DC or
DS

DC
Assembler DC (define constant) instruction is to be used. If AS DSECT=Y, this parameter must
be set to DS.

DS
Assembler DS (define storage) instruction is to be used.

Field name
suffix

The suffix to be used for each field name generated.

Nr. of
abstract
lines

The number of Predict abstract lines per field to be included in the generated code.

Validate Determines how invalid characters are handled.

blank
Invalid characters in a field name will result in an error message but will not be modified.

rep.char
Invalid characters in a field name are replaced by this character. Valid replace characters: letters
A-Z, digits 0-9, $, § and #.

*
Invalid characters in a field name are deleted.

Generate
initial value

This option takes effect only when With DC or DS=DC and As DSECT is set to N.

N
No initialization.

Y
Statements are generated to initialize the structure with the value specified for Init value in the
corresponding field object in Predict. Fields with no value for Init value are initialized with zeros
or blanks.
Aligned 8-digit fields with format B or I are not initialized.
In a PE group with the 3GL specification Gr.structur set to blank, only the first occurrence of
each field is initialized.

Copyright © Software AG 2003134

Assembler Copy CodeCalling the Function

Truncation Specifies which characters are deleted if a generated field name is too long:

L
truncate from the left

R
truncate from the right

M
truncate from the middle

A warning is given if field names are truncated.

Align Determines which fields are to be aligned.
Fields are aligned on the boundary shown in the table in the section Field Format and Assembler
Copy Code.

Y
All appropriate fields are aligned.

N
No fields are aligned.

S
Fields are aligned only if the corresponding Predict field object has the 3GL specification
Synchronized=S.

With EQUs Y EQU statements are to be generated for fields of length 1 whose format is not P and comment
lines are to be generated for other fields, using any condition names defined as attributes of the
Predict field objects. These names are prefixed, suffixed, validated and truncated in the same
way as field names.
For fields of format L where no condition name was specified, a condition name is generated by
concatenating the field name "Example" to the prefix N.
In this case the following statement is generated:
NEXAMPLE EQU X’00’.

DSECT
name

Specifies the name of the record buffer in the generated structure. The effect of this parameter
depends on parameter AS DSECT. See above in this table.

Counter
length

Length of additional counter fields.
Valid values: 1, 2

Format
buffer name

Specifies the name of the format buffer in the generated structure. If omitted, the file ID prefixed
by F is used.

Names in Assembler Copy Code
The following rules apply to the generation of names for Assembler copy code.

Alpha characters in Predict object IDs, such as file and field IDs, are converted to upper-case.
Each field name (label) used in Assembler copy code is taken from the corresponding Predict field object:
either the field name synonym for Assembler or, if none exists, the Predict field ID.
All field names and any condition names are prefixed, suffixed, validated and - if necessary - truncated to 8
characters according to the parameter settings.
For example, with Field name prefix set to JUN, Field name suffix to *86, Validate to § and Truncation to
R two fields JUNCDAY§ and JUNDAY§8 are generated for a field of type MC called DAY.
If a resulting field name is not unique within the entire file structure, an error message is given.
Any DSECT name or format buffer name does not receive the field name prefix and suffix. The value

135Copyright © Software AG 2003

Names in Assembler Copy CodeAssembler Copy Code

supplied may not contain invalid characters.
If the file ID is taken as default DSECT name or, with the prefix F, as default format buffer name, it is
validated and if necessary truncated.

Assembler Names for Counter Fields - MC or PC

Before each field of type MC or PC, a counter field is generated automatically in the copy code, with a name
created from the name of the MC or PC field prefixed by C.
For example, a Predict field object DAY with no field name synonym for Assembler and with type MC will
generate two fields with the names CDAY and DAY.

Assembler Names for Logical Fields - L

If no condition name is defined for a logical field (format L), the field name prefixed by N is used for the EQU
statement.

Assembler Names for Fields of Type AV

For fields of format AV, a group is generated where groupname=fieldname. The group contains a length field
and a text field prefixed with L and T respectively. See second table in the section Field Format and Assembler
Copy Code.

Assembler Names for Additionally Generated Indicator Fields

An additional indicator field prefixed with S is generated in the following cases:

a field is defined with Suppression option set to U (null allowed)
a field of a file of type A, U or B is defined with Suppression option set to R (not null)

Note:
For Adabas Fields, the additional indicator field is only generated for the following Adabas versions:

I3 or above
U1 or above
V4 or above.

Field Format and Assembler Copy Code
Fields in the Assembler copy code have a clause determined by the following factors:

length and format of the corresponding Predict field object
file type of the file containing the field

Copyright © Software AG 2003136

Assembler Copy CodeField Format and Assembler Copy Code

Predict Format File
Type

PRD
Length

Alignment
Boundary

Assembler
Clause

(if
aligned)

Note

B 1 XL1

l=3,5,6,7 XL l

I 1 XL1

B/I 2 2 XL2 H

4 4 XL4 FL4

8 4 XL8 FL8

B l=>9 PIC X(l)

F 4 4 CL4 E

8 8 CL8 D

N/U
NS/US
(nn+m<17)

 nn.m ZLl l=nn+m

N/U
NS/US
(nn+m>16)

 nn.m CLl l=nn+m

P/PS nn.m PLl l=(nn+m+2)
/2

D D, E CL10

other PL4

T D, E CL8

other PL7

L XL1

G n CLm m=2*n

GL n CLm m=2*n

GV n CLm m=2*n

LO D, E 4 XL4 FL4

The clause XLn is normally generated for B formats. There are two exceptions to this rule:

parameter Align is set to Y, or
parameter Align is set to S and the field is defined in Predict as Synchronized.

The clause H or FL4 or FL8 is normally generated for I formats. The exception to this rule is when the parameter
Align is set to N and the field does not start at a "synchronized" address.

An indicator or length field is generated like a B2 field. A counter field is also generated like a B2 field if
Counter length = 2. If Counter length = 1, the clause XL1 is generated.

A numerical format field with a length > 17 is treated in Assembler copy code as alphanumeric format field. No
INIT VALUE can be generated for these fields and a warning is given.

137Copyright © Software AG 2003

Field Format and Assembler Copy CodeAssembler Copy Code

A DB2 large object is generated as locator like an I4 field.

Note:
When generating Assembler copy code for DB2 tables and views, format NS or US is converted to
Assembler format PL. Any redefinitions that exist for this field are skipped.

File Type in
Predict

Predict
Format

Length Assembler Clause Note

D, E A, AL n CLn

AV Two-level group is generated:

Fieldname DS CLm
FieldnameL Dx yyy
FieldnameT Dx CLn

m = n + 2

Dx is either DS or DC, depending on
parameter With DC or DS.

yyy is either XL2 or H, like a B2 field.

A,U,B A n CLn

AV Two-level group is generated.
See above.

Sample Output

 13:27:40 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate ASSEMBLER Copy Code - Page: 1

 File ID .. GENERATION-EXAMPLE

 **
 * THIS RECORD-BUFFER LAYOUT WAS GENERATED BY PREDICT
 * FOR FILE: GENERATION-EXAMPLE
 * ON: 2003-05-31 STARTING AT 13:27:40
 * FILE COMMENTS: Example file for the
 * PREDICT generation subsystem
 * ..
 **
 DS 0D
 GROUP1 DS 0CL99
 ELN9V5 DC ZL14’0’ ELE-N-9V5
 GRINGR DS 0CL30
 ELEB4 DC FL4’0’ ELE-B-4
 * CONDITION NAMES:
 * INIT-ELE-B-4=00001000
 * COND-ELE-B-4-V-1=FFFFFFFF
 ELPS52 DC PL4’0’ ELE-PS-5V2
 MUB4 DC 5FL4’0’ MU-B-4
 ORG MUB4
 MURB7 DC XL7’0’ MU-RED-B-7
 MURB13 DC ZL13’0’ MU-RED-US-13
 ORG MUB4
 MURB8 DC XL8’0’ MU-RED-B-8
 * CONDITION NAMES:
 * MU-RED-B-8-COND1=111111

Copyright © Software AG 2003138

Assembler Copy CodeSample Output

 13:27:40 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate ASSEMBLER Copy Code - Page: 2

 DS CL12
 ELEA42 DC CL42’ ’ ELE-A-42
 * CONDITION NAMES:
 * COND-NAME-START=COND-START
 * *THRU=COND-ZEND

 ELEF8 DC D’0’ ELE-F-8
 ELEB3 DC XL3’0’ ELE-B-3
 CPCOCC7 DC XL1’0’ CNT OF PC-OCC-7
 PCOCC7 DS 0CL76
 PCNS7V3 DC ZL10’0’ PC-ELE-DE-NS-7V3
 CPCMCPS DC XL1’0’ CNT OF PC-MC-PS-6V1
 PCMCPS DC 11PL4’0’ PC-MC-PS-6V1
 PCGR DS 0CL17
 BALI2 DC H’0’ PC-ELE-I-2
 PCPS20V7 DC PL14’0’ PC-PS-20V7
 BALF4 DC E’0’ PC-ELE-F-4
 DS 6CL76
 ELED DC PL4’0’ ELE-D
 ELET DC PL7’0’ ELE-T
 ELEL DC XL1’0’ ELE-L
 NELEL EQU X’00’
 **
 * THIS FORMAT-BUFFER WAS GENERATED BY PREDICT
 * FOR FILE: GENERATION-EXAMPLE
 * ON: 2003-05-31 STARTING AT 13:27:40
 **
 FGENERAT DS 0CL295
 * >>> DIC1809 WARNING: FIELDNAME(S) TRUNCATED
 DC CL50’AB,2X,AD,AE,AF1-5,AG,2X,AH,AI,ALC,AM1,AN1C,2,AN1(1’
 DC CL50’-11),1X,AP1,AQ1,AR1,AM2,AN2C,2,AN2(1-11),1X,AP2,AQ’
 DC CL50’2,AR2,AM3,AN3C,2,AN3(1-11),1X,AP3,AQ3,AR3,AM4,AN4C’
 DC CL50’,2,AN4(1-11),1X,AP4,AQ4,AR4,AM5,AN5C,2,AN5(1-11),1’
 DC CL50’X,AP5,AQ5,AR5,AM6,AN6C,2,AN6(1-11),1X,AP6,AQ6,AR6,’
 DC CL45’AM7,AN7C,2,AN7(1-11),1X,AP7,AQ7,AR7,AS,AT,AU.’
 **

 DIC1800 SUMMARY: 25 FIELD(S) PROCESSED
 DIC1809 WARNING: 1 FIELDNAME(S) TRUNCATED
 DIC1819 MESSAGE: 11 SLACK BYTE(S) GENERATED
 DIC1847 MESSAGE: 3 FIELD(S) SKIPPED FOR RECORDBUFFER STRUCTURE

139Copyright © Software AG 2003

Sample OutputAssembler Copy Code

C Include Code
The function Generate C Include Code generates a record buffer for use in C programs based on a Predict file
object.

In addition, an Adabas format buffer can also be generated if required for files of the following types:

Adabas file (file type A) with parameter Adabas SQL usage = N
Adabas userview (file type U)

This section contains:

Calling the Function
Generate C Include Code in Batch Mode
Names in C Include Code
Field Format and C Include Code
Sample Output

Calling the Function
The Generate C Copy Code screen is displayed with function code G and object code CC in a Predict main
menu, or with the command GENERATE LANG-C.

Copyright © Software AG 2003140

C Include CodeC Include Code

 10:00:41 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate C Copy Code -

 File ID*

 Save as member Save in library CCCLIB
 Overwrite option Y (Y,N) Op. system member ..
 Punch / output* N

 List generated code Y (Y,N) List offsets* N
 Generate format buffer* N Adabas version* I7
 Check field name* A

 Shift increment 3 (0-9) Field name prefix ..
 Nr. of abstract lines 3 (0-16) Field name suffix ..
 Storage class* A Validate _
 Upper or lower case* L Truncation* R
 Record buffer name
 Format buffer name

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Presettings

The parameters below can be changed in the second Modify C Defaults screen. See Generation Defaults.

Library
system

Library system for which the generated code is punched. Determines which additional cards
need to be punched. An operating system member must be entered for the additional cards to
be generated. See Parameters Specifying the Form of Output for more information.

Max. name
length

Maximum length of name in C.

Signific.
length

Number of characters that are used for uniqueness check. May not be greater than Max. name
length.

Represent. of
I2

Determines how 2-byte integers are represented in the generated code.

C
unsigned character, 2 bytes

S
short

I
int

141Copyright © Software AG 2003

Calling the FunctionC Include Code

Represent. of
I4

Determines how 4-byte integers are represented in the generated code.

C
unsigned character, 4 bytes

I
int

L
long

Note:
It is not possible for both I2 and I4 to be represented by int.

Open square
bracket

Up to 5 characters used to represent the character [.

Close square
bracket

Up to 5 characters used to represent the character].

Open brace Up to 5 characters used to represent the character {.

Close brace Up to 5 characters used to represent the character }.

Note:
All characters are valid apart from the plus sign (+). Characters can be specified in
hexadecimal notation.
If either the normal or hexadecimal notation for any of these four parameters is changed,
the alternative notation must be deleted. Predict then inserts the correct value in either
normal or hexadecimal format.

Parameters

The parameters Save as member, Save in library, Overwrite option, Op. system member, Punch/output,
Workfile name and List generated code are described in the section Parameters Specifying the Form of Output.

File ID ID of the Predict file object from which the definitions are to be generated.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

Copyright © Software AG 2003142

C Include CodeCalling the Function

List offsets Y
Include the offset of each item in the record buffer structure (relative to the beginning of the
structure) in decimal and hexadecimal formats as a comment. The total length of each buffer is
also included.

P
Include the absolute position (offset+1) as a comment.

L
Include the total lengths of the record buffer and the format buffer as a comment.

V
The file number and the calculated lengths of the record buffer and the format buffer are to be
generated as constants in the include code. The name of the file number constant is the record
buffer name prefixed by N_.
The name of each length constant is the appropriate buffer name prefixed by L_.
Each name is prefixed, suffixed, validated and truncated in the same way as any other field
name.

N
No offset.

Generate
format buffer

The contents of the format buffer will correspond exactly to the contents of the record buffer.
Only valid for files of type A (with parameter Adabas SQL usage set to N) or for files of type
U.

Valid values:

Y
Adabas format buffer is to be generated. Adabas groups, standard formats and lengths are used
whenever possible. The resulting format buffers are then as short as possible.

F
Full format buffer is to be generated. Length and format of Adabas fields are included.

N
No format buffer is to be generated.

Note:
If you are generating for a WANG environment, set this parameter to F or N.

Adabas
version

The version of Adabas for which the include code is to be generated. Enter an asterisk for valid
values or see table in the section Adabas Version for more information.

Check field
name

A
Type names are checked for uniqueness (against other type names) within the whole structure.
Field names must be unique as field names within the entire structure.

Y
As above, but duplicate field names are only identified as errors if this would result in compiler
errors.

N
No check for duplicate names is performed.

Shift
increment

The number of positions to be shifted right when an open brace (or substitute character string,
see Presetting above) is encountered.

Field name
prefix

The prefix to be used for each name generated.

143Copyright © Software AG 2003

Calling the FunctionC Include Code

Nr. of abstract
lines

Number of Predict abstract lines per field to be included in the generated code.

Field name
suffix

The suffix to be used for each name generated.

Storage class A
Automatic (default)

S
Static.

Validate Determines how invalid characters are handled.

blank
Invalid characters in a field name will result in an error message but will not be modified.

rep.char
Invalid characters in a field name are replaced by this character.
Valid values: A-Z, a-z, 0-9 and _ (underscore).

*
Invalid characters in a field name are deleted.

Upper or
lower case

Case of names in generated code.

U
upper-case names

L
lower-case names.

Truncation Specifies which characters are deleted if a generated field name is too long:

L
Truncate from the left

R
Truncate from the right

M
Truncate from the middle

A warning is given if field names are truncated.

Record buffer
name

Specifies the name of the record buffer in the generated structure. If omitted, the file ID is
used.

Format buffer
name

Specifies the name of the format buffer in the generated structure. If omitted, the file ID
prefixed by F_ is used.

Generate C Include Code in Batch Mode
Command: GENERATE LANG-C

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Copyright © Software AG 2003144

C Include CodeGenerate C Include Code in Batch Mode

Field Keyword Position

File ID FILE-ID 1

Save as member MEM 2

Save in library LIB 3

Overwrite option REPLACE 4

Op. system member OS-MEMBER 5

Punch / output PUNCH 6

List generated code LIST 7

List offsets OFFSET 8

Generate format buffer FORMAT-BUFFER 9

Adabas version ADA-VER 10

Check field name CHECK-NAME 11

Shift increment SHIFT-INC 12

Field name prefix PREFIX 13

Nr. of abstract lines NR 14

Field name suffix SUFFIX 15

Storage class STO-CLASS 16

Validate VALIDATION 17

Upper or lower case UPPER-LOWER 18

Truncation TRUNCATION 19

Record buffer name RECORD-BUFFER-NAME 20

Format buffer name FORMAT-BUFFER-NAME 21

Workfile name (see note below) WORKFILE-NAME 22

If Entire System Server is used

- Database ID NP-DBID 23

- Dataset NP-DSNAME 24

- Volume NP-VOLSER 25

- Library NP-LIB 26

- Sublibrary NP-SUBLIB 27

- Member type NP-MEMTYPE 28

- VSAM catalog name NP-VSAMCAT 29

Note:
You can not specify a value other than blank (’ ’) for WORKFILE-NAME on mainframes.

Parameters NP-LIB, NP-SUBLIB and NP-MEMTYPE must be specified if the generated code is written to
workfile 1 (Punch/output=Y) and Library system=3.

145Copyright © Software AG 2003

Generate C Include Code in Batch ModeC Include Code

Names in C Include Code
The following rules apply to the generation of names for C include code.

Field names are derived from the name of the corresponding Predict field object if no C field name
synonym has been specified.
The case of alpha characters in field and file names is determined by the parameter Upper or lower case.
The parameters Field name prefix, Field name suffix, Validate and Truncate apply to the generation of field
names (see description of parameters above).
If supplementary fields have to be generated the names of these extra fields are derived from the Predict
field names by generating prefixes. The rules for generating names for extra fields are described in the
sections below.
If a generated field name or type name is not unique, an error message may be displayed if Check field
name is either set to A or Y.

C Names for Redefinition Fields - RE

When a field is redefined, a data type with structure union is generated. The name of the data type is
tu_fieldname. The name of the corresponding variable is u_fieldname. The union consists of

the redefined field
one type tn for each redefinition with corresponding variable rn_fieldname.

C Names for Counter Fields (MC or PC)

When generating C fields for Predict fields of type MC or PC, a counter field will automatically be generated in
the copy code. The name of this field is derived from the ID of the MC or PC field by adding the prefix C-.

With the following parameter settings

Field name prefix = Adabas
Field name suffix = *PERSONNELOFFICE
Validate = _
Truncation = R
Max. name length = 30

the following field names are generated in C include code for field HOURS_DAY of type MC:

 ADABAS_C_HOURS_DAY_PERSONNELOF
 ADABAS_HOURS_DAY_PERSONNELOFFI

C Names for Additionally Generated Indicator Fields

An additional indicator field prefixed with s_ is generated in the following cases:

a field is defined with Suppression option set to U (null allowed)
a field of a file of type A or U is defined with Suppression option set to R (not null)

Note:
For Adabas fields, the additional indicator field is only generated for the following Adabas versions:

I3 or above
U1 or above
V4 or above.

Copyright © Software AG 2003146

C Include CodeNames in C Include Code

Field Format and C Include Code
Fields in the C include code have a C clause determined by the length and format of the corresponding Predict
field object, as shown in the table below:

Predict
Format

File Type Predict
Length

C Clause Note

B/I YT, YV 1 CS_TINYINT

I JT, JV 1 short

BT, BV, XT,
XV

2
short int Irrespective of default value for Represent.

of I2

A(SQL) means file type A with Adabas
SQL usage=Y

JT, JV, B, AT
A(SQL)

2
short

YT, YV 2 CS_SMALLINT

B/I other
2

short, int or unsigned
char [2]

Depending on default value Represent. of
I2.

I BT, BV, XT,
XV

4
long int Irrespective of default value for Represent.

of I4

JT, JV
4

long If in defaults Represent. of I4=L

int If in defaults Represent. of I4≠L

B, AT A(SQL) 4 long Irrespective of default value for Represent.
of I4

YT, YV 4 CS_INT

B/I other
4

int, long or unsigned
char [4]

Depending on default value Represent. of
I4.

8 unsigned char [8]

B A(SQL), AT,B ESQ-BINARY[l]

other l=3,5,6,7 unsigned char [l]

l=>9 unsigned char [l]

F YT, YV 4 CS_REAL

other 4 float

YT, YV 8 CS_FLOAT

other 8 double

NS/US XT, XV nn.m dec_t

B, AT A(SQL)
nn.m

long nn < 10, m=0

double all other values of n and m

D, E nn.m DECIMAL (l,m) l=nn+m

BT, BV
nn.m

DECIMAL { l,m} if nn+m<13: l=nn+m

char [l] if nn+m>13: l=nn+m

NS JT, JV nn.m double

147Copyright © Software AG 2003

Field Format and C Include CodeC Include Code

N/U
NS/US

other
nn.m

unsigned char [l]
l=nn+m

D, E DECIMAL (l,m)

PS JT, JV nn.m double

XT, XV nn.m dec_t

B, AT A(SQL)
nn.m

long nn < 10, m=0

double all other values of nn and m

BT, BV
nn.m

DECIMAL { l,m} if nn+m<13: l=nn+m

char [l] if nn+m>13: l=(nn+m+2)/2

P/PS other
nn.m

unsigned char [l] l=(nn+m+2)/2

D, E DECIMAL (l,m) l=nn+m

D D, E unsigned char [10] * See note at the end of this table

BT, BV char [8]

XT, XV long int

other unsigned char [4]

T BT, BV char [8] * See note at the end of this table

D,E unsigned char [8] * See note at the end of this table

other unsigned char [7]

L BT, BV short int

other unsigned char [1]

BT YT, YV CS_BIT

DT JT, JV unsigned char [25] * See note at the end of this table

OT, OV unsigned char [9]

XT, XV dtime_t

YT, YV CS_DATETIME

DS YT, YV CS_DATETIME4

G D, E n unsigned char [m] m=2*n

GV D, E n unsigned char [m]

GL D, E n unsigned char [m]

IV XT, XV 7 | 17 intrvl_t

S XT, XV long int

TS BT, BV char [20] * See note at the end of this table

D, E unsigned char [26] * See note at the end of this table

YT, YV CS_VARBINARY

MO JT, JV double

XT, XV n.m dec_t

YT, YV CS_MONEY

Copyright © Software AG 2003148

C Include CodeField Format and C Include Code

MS YT, YV CS_MONEY4

TK JT, JV

 Is generated like format A with Character
Set B and n=8. See next table below.

OK JT, JV As above, but n=16.

Note:
For fields marked with an asterisk (*), the length given in the table is applicable if the field is within a
redefinition. If the field is not within a redefinition, an additional byte is used to denote the end of the string.

File Type
in Predict

Predict
Format

Predict
Character
Set

Length C Clause Note

BT, BV A any n char [n] * See note above this table

AL any n VARCHAR [n]

 VARCHAR *

AV any n VARCHAR [n]

JT, JV A, AV blank n unsigned char [n] * See note above this table

B n Two-level group is
generated:

varchar struct
{
short Fieldname_len;
char Fieldname_txt
[n];
} Fieldname;

AL B n Two-level group is
generated:

varchar struct
{
short Fieldname_len;
char Fieldname_txt
[n];
} Fieldname;

Field is skipped if no length is
specified

B, BL,
BV

 n Two-level group is
generated:

varbyte struct
{
short Fieldname_len;
char Fieldname_txt
[n];
} Fieldname;

Field is skipped if no length is
specified

149Copyright © Software AG 2003

Field Format and C Include CodeC Include Code

OT, OV A, AL blank n unsigned char [n]

AV blank n VARCHAR [n]

A B n RAW

AL B n LONGRAW

LO blank, M n OCICloblocator * Indicator field is generated as
OCIInd

B n OCIBloblocator * Indicator field is generated as
OCIInd

XT, XV A blank n unsigned char [n] * See note above this table

M n Two-level group is
generated:

struct t_Fieldname
{
short int
Fieldname_len;
unsigned char
Fieldname_txt [n];
} Fieldname;

AL any n loc_t

AV any n Two-level group is
generated:

struct t_Fieldname
{
short int
Fieldname_len;
unsigned char
Fieldname_txt [n];
} Fieldname;

YT, YV A S n CS_CHAR [n]

A D n CS_CHAR [2*n]

A B n CS_BINARY [2*n]

AL blank CS_TEXT

AL B CS_IMAGE

AV S n CS_VARCHAR

AV D n CS_VARCHAR

AV B n CS_VARBINARY

Copyright © Software AG 2003150

C Include CodeField Format and C Include Code

D, E A, AL any n unsigned char[n] * See note above this table

AV any n Two-level group is
generated:

struct t_Fieldname
{
i2form Fieldname_len;
unsigned char
Fieldname_txt [n];
} Fieldname;

i2form corresponds to the code
generated for an I2 field: short, int
or unsigned char [2]

LO any n int, long or unsigned
char[4]

Depending on default value
Represent. of I4.
(Field is generated as locator)

A(SQL), B,
AT

A, AV only 1 Char.
Set

n unsigned char [n] * See note above this table

A, U A anyt n unsigned char [n]

AV n Two-level group is
generated.
See file type D.

An automatically generated counter field has the same clause as an I2 field.
A numeric or binary format field with a length not included in the table above is treated in C include code as an
alphanumeric format field. A warning message is given.

Note:
If C include code for DB2 tables/views is generated, any redefinition of a field with format NS or US is
skipped.

Sample Output

151Copyright © Software AG 2003

Sample OutputC Include Code

 13:27:28 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate C Copy Code - Page: 1

 File ID .. GENERATION-EXAMPLE

 /**/
 /* THIS RECORD-BUFFER LAYOUT WAS GENERATED BY PREDICT */
 /* FOR FILE: GENERATION-EXAMPLE */
 /* ON: 2003-05-31 STARTING AT 13:27:28 */
 /* FILE-COMMENTS: Example file for the */
 /* PREDICT generation subsystem */
 /* .. */
 /**/
 struct t_generation_example
 {
 struct t_group_1
 {
 unsigned char ele_n_9v5[14];
 /* * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ N ’ --> ’ A ’) */
 struct t_gr_in_group
 {
 long ele_b_4;
 unsigned char ele_ps_5v2[4];
 /* * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ PS ’ --> ’ A ’) */
 union tu_mu_b_4
 {
 long mu_b_4[5];
 struct t1_mu_b_4
 {
 unsigned char mu_red_b_7[7];
 /* * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ B ’ --> ’ A ’) */
 unsigned char mu_red_us_13[13];
 /* * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ NS ’ --> ’ A ’) */
 } r1_mu_b_4;
 struct t2_mu_b_4
 {
 unsigned char mu_red_b_8[8];
 /* * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ B ’ --> ’ A ’) */
 } r2_mu_b_4;
 } u_mu_b_4;
 } gr_in_group;
 unsigned char ele_a_42[42];
 double ele_f_8;
 unsigned char ele_b_3[3];

Copyright © Software AG 2003152

C Include CodeSample Output

 13:27:28 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate C Copy Code - Page: 2

 File ID .. GENERATION-EXAMPLE

 /* * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ B ’ --> ’ A ’) */
 } group_1;
 short c_pc_occ_7;
 struct t_pc_occ_7
 {
 unsigned char pc_ele_de_ns_7v3[10];
 /* * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ NS ’ --> ’ A ’) */
 short c_pc_mc_ps_6v1;
 unsigned char pc_mc_ps_6v1[11] [4];
 /* * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ PS ’ --> ’ A ’) */
 struct t_pc_gr
 {
 short pc_ele_i_2;
 unsigned char pc_ps_20v7[14];
 /* * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ PS ’ --> ’ A ’) */
 } pc_gr;
 float pc_ele_f_4;
 } pc_occ_7[7];
 unsigned char ele_d[4];
 /* * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ D ’ --> ’ A ’) */
 unsigned char ele_t[7];
 /* * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ T ’ --> ’ A ’) */
 unsigned char ele_l;
 } generation_example;
 /**/
 /* THIS FORMAT-BUFFER WAS GENERATED BY PREDICT */
 /* FOR FILE: GENERATION-EXAMPLE */
 /* ON: 2003-05-31 STARTING AT 13:27:28 */
 /**/
 unsigned char f_generation_example [293] =
 "AB,2X,AD,AE,AF1-5,AG,2X,AH,AI,1X,ALC,2,AM1,AN1C,2,AN"
 "1(1-11),AO1,2X,AR1,2X,AM2,AN2C,2,AN2(1-11),AO2,2X,AR"
 "2,2X,AM3,AN3C,2,AN3(1-11),AO3,2X,AR3,2X,AM4,AN4C,2,A"
 "N4(1-11),AO4,2X,AR4,2X,AM5,AN5C,2,AN5(1-11),AO5,2X,A"
 "R5,2X,AM6,AN6C,2,AN6(1-11),AO6,2X,AR6,2X,AM7,AN7C,2,"
 "AN7(1-11),AO7,2X,AR7,2X,AS,AT,AU."
 /**/

 DIC1800 SUMMARY: 25 FIELD(S) PROCESSED
 DIC1818 WARNING: 11 FORMAT(S) CHANGED
 DIC1819 MESSAGE: 33 SLACK BYTE(S) GENERATED
 DIC1847 MESSAGE: 3 FIELD(S) SKIPPED FOR RECORDBUFFER STRUCTURE

153Copyright © Software AG 2003

Sample OutputC Include Code

COBOL Copy Code
The function Generate COBOL Copy Code generates a record buffer for use in COBOL programs based on a
Predict file object.

In addition, an Adabas format buffer can also be generated if required for files of the following types:

Adabas file (file type A) with parameter Adabas SQL usage = N
Adabas userview (file type U)

This section contains:

Calling the Function
Generate COBOL Copy Code in Batch Mode
Names in COBOL Copy Code
Field Format and COBOL Copy Code
COBOL Copy Code for DB2 Tables/Views
Sample Output

Calling the Function
The Generate COBOL Copy Code screen is displayed with function code G and object code CO in a Predict
main menu, or with the command GENERATE COBOL.

Copyright © Software AG 2003154

COBOL Copy CodeCOBOL Copy Code

 10:03:05 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate COBOL Copy Code -

 File ID*
 Save as member Save in library COBLIB
 Overwrite option Y (Y,N) Op. system member ..
 Punch / output* N List offsets* N
 List generated code Y (Y,N) Adabas version* I7
 Generate format buffer* N Field name prefix ..
 Check field name* A Field name suffix ..
 Start level 1 (0-40) Validate -
 Level number increment 1 (1-40) Truncation* R
 Level shift increment 3 (0-9) With Cond. names ... N (Y,N)
 Nr. of abstract lines 3 (0-16) Indexed by* N
 Generate initial value* N Literal delimiter .* S
 Synchronized* Y Decimal character .* P
 Depending on N (Y,N) Redefinition name .* S
 Record buffer name
 Format buffer name

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Presettings

The parameters below can be changed in the Modify COBOL Defaults screen. See Generation Defaults.

Library system Library system for which the generated code is punched. Determines which additional cards
need to be punched. An operating system member must be entered for the additional cards to
be generated. See Parameters Specifying the Form of Output for more information.

Compiler Copy code can be generated for the following compilers:

7
Standard COBOL 74 compiler.

8
COBOL 85 compiler.

W
COBOL compiler for WANG.

Parameters

The parameters Save as member, Save in library, Overwrite option, Op. system member, Punch/output,
Workfile name and List generated code are described in the section Parameters Specifying the Form of Output.

File ID ID of the Predict file object from which the definitions are to be generated.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

155Copyright © Software AG 2003

Calling the FunctionCOBOL Copy Code

List offsets Y
The offset of each item in the record buffer structure (relative to the beginning of the
structure) in decimal and hexadecimal formats is to be included as a comment. The total
length of each buffer is also included.

P
As above, but the absolute position (offset+1) is included as a comment.

L
The total lengths of the record buffer and the format buffer are to be included as a comment.

V
The file number and the calculated lengths of the record buffer and the format buffer are to
be generated as constants in the copy code. The name of the file number constant is the
record buffer name prefixed by N-.
The name of each length constant is the appropriate buffer name prefixed by L-.
Each name is prefixed, suffixed, validated and truncated in the same way as any other field
name.

N
No offset.

Adabas version The version of Adabas for which the copy code is to be generated. Enter an asterisk for valid
values or see table in the section Adabas Version for more information.

Generate format
buffer

The contents of the format buffer will correspond exactly to the contents of the record buffer.
Only valid for files of type A (with parameter Adabas SQL usage set to N) or for files of type
U.

Valid values:

Y
Adabas format buffer is to be generated. Adabas groups, standard formats and lengths are
used whenever possible. The resulting format buffers are then as short as possible.

F
Full format buffer is to be generated. Length and format of Adabas fields are included.

N
No format buffer is to be generated.

Note:
If you are generating for a WANG environment, set this parameter to F or N.

Field name
prefix

The prefix to be used for each field name generated.

Check field
name

A
COBOL field names are checked for uniqueness within the whole structure.

Y
Structure levels are included in the validation check of the field names: if two fields have the
same name, they must be separated by at least one field with a different name and a smaller
level number.

N
No check for duplicate field names is performed.

Field name
suffix

The suffix to be used for each field name generated.

Copyright © Software AG 2003156

COBOL Copy CodeCalling the Function

Start level The starting level number to be used for the generated statements.

Validate Determines how invalid characters are handled.

blank
Invalid characters in a field name will result in an error message but will not be modified.

rep.char
Invalid characters in a field name are replaced by this character. Valid replace characters:
letters A-Z, digits 0-9 and hyphen (-).

*
Invalid characters in a field name are deleted.

Level number
increment

This parameter is evaluated with the parameter Start level. The level numbers of the
generated statements are incremented as follows

Start Level Level number increment (example) Level numbers

0 5 1, 6, 11...

1 5 1, 5, 10 ...

2 - 40 5 n, n+5, n+10...

Truncation Specifies which characters are deleted if a generated field name is too long:

L
truncate from the left

R
truncate from the right

M
truncate from the middle

A warning is given if field names are truncated.

Level shift
increment

The number of positions to be shifted right when a level higher than the current level number
is found.

With Cond.
names

Y
Any condition names defined in the Predict field objects are to be generated on level 88,
provided that the respective field objects have one of the following formats:

A
All lengths
N or P
Less than 19 digits
I or B
2, 4 or 8 digits
L
A FALSE-condition will always be generated. The Condition name is then generated by
concatenating the field name to the prefix N- (if not specified explicitly).

These names are prefixed, suffixed, validated and truncated in the same way as field names.

Nr. of abstract
lines

The number of Predict abstract lines per field to be included in the generated code.

157Copyright © Software AG 2003

Calling the FunctionCOBOL Copy Code

Indexed by Y
COBOL clause INDEXED BY is generated for all repetitive fields (MC, MU, PC and PE).
For a field which has no INDEXED BY name in its Predict object, I- followed by the field
name is used as index name. These names are prefixed, suffixed, validated and truncated in
the same way as field names.

N
COBOL clause INDEXED BY will not be generated for any field.

S
COBOL clause INDEXED BY is generated only for repetitive fields which have an
INDEXED BY name in their Predict objects.

Generate initial
value

Y
Statements are generated to initialize the structure with the value for Init value defined for the
field objects in Predict. Fields with no value defined for Init value are initialized as follows

Format Length Initialized with

A all lengths spaces

N, NS, P, PS< 19 digits zeros

I, B 2,4,or 8 digits zeros

D, T - zeros

Logical - low value

No members of redefine groups are initialized.

N
No initialization.

S
Only fields which have a value defined for Init value in the corresponding Predict object are
initialized.

Literal delimiter Literal delimiter character:

D
double quotation marks (")

S
single quotation marks (’).

Synchronized Determines which fields are to be aligned. Fields are aligned in the record buffer and in the
format buffer on the boundary shown in the table in the section Field Format and COBOL
Copy Code.

Y
All fields with COBOL attribute COMP, COMP-1 or COMP-2 are aligned.

N
No fields are aligned.

S
Fields are aligned only if the 3GL specification Synchronized of the corresponding Predict
object is set to S.

Copyright © Software AG 2003158

COBOL Copy CodeCalling the Function

Decimal
character

P
decimal point

C
decimal comma

Depending on Y
COBOL attribute OCCURS DEPENDING ON is generated for a field or field group in a file
if it has type PE or MU and a DEPENDING ON name is specified for this field.

These names are prefixed, suffixed, validated and truncated in the same way as field names.

Note:
This option is not allowed for files of type A or U.
This option is ignored when using a WANG COBOL compiler.

Redefinition
name

Determines how COBOL field names for Predict fields of type RE are generated:

F
The string FILLER is used as redefinition name.

S
The suffix REGR is added to the Predict field name. If a field name is redefined more than
once, the suffix will have the form REGRn, where n is an integer incremented by 1 for each
field of type RE.

Record buffer
name

Specifies the name of the record buffer in the generated structure. If omitted, the file ID is
used.

Format buffer
name

Specifies the name of the format buffer in the generated structure. If omitted, the file ID
prefixed by FORMAT-BUFFER- is used.

Generate COBOL Copy Code in Batch Mode
Command: GENERATE COBOL

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Field Keyword Position

File ID FILE-ID 1

Save as member MEM 2

Save in library LIB 3

Overwrite option REPLACE 4

Op. system member OS-MEMBER 5

Start level START-LEVEL 6

Field name prefix PREFIX 7

Level number increment LEVEL-INCREMENT 8

Field name suffix SUFFIX 9

Level shift increment LEVEL-SHIFT 10

Nr. of abstract lines NR 11

159Copyright © Software AG 2003

Generate COBOL Copy Code in Batch ModeCOBOL Copy Code

Validate VALIDATION 12

Generate initial value INIT 13

Truncation TRUNCATION 14

Generate format buffer FORMAT-BUFFER 15

List offsets OFFSET 16

List generated code LIST 17

Punch / output PUNCH 18

Record buffer name RECORD-BUFFER-NAME 19

Format buffer name FORMAT-BUFFER-NAME 20

With Cond. names COND-NAME 21

Synchronized SYNC 22

Indexed by INDEXED 23

Depending on DEPENDING 24

Adabas version ADA-VER 25

Check field name CHECK-NAME 26

Literal delimiter DELIMITER 27

Decimal character DECIMAL-CHAR 28

Redefinition name REDEFINE-NAME 29

Workfile name (see note below) WORKFILE-NAME 30

If Entire System Server is used

- DB-ID NP-DBID 31

- Dataset NP-DSNAME 32

- Volume NP-VOLSER 33

- Library NP-LIB 34

- Sublibrary NP-SUBLIB 35

- Member type NP-MEMTYPE 36

- VSAM catalog NP-VSAMCAT 37

Note:
You can not specify a value other than blank (’ ’) for WORKFILE-NAME on mainframes.

Parameters NP-LIB, NP-SUBLIB and NP-MEMTYPE must be specified if the generated code is written to
workfile 1 (Punch/output=Y) and Library system=3.

Names in COBOL Copy Code
The following rules apply to the generation of names for COBOL copy code.

Field names are derived from the name of the corresponding Predict field object if no COBOL field name
synonym has been specified.
Alphabetic characters of field and file names are converted to upper-case. The parameters Field name

Copyright © Software AG 2003160

COBOL Copy CodeNames in COBOL Copy Code

prefix, Field name suffix, Validate and Truncate apply to the generation of field names (see description of
parameters above).
In cases when supplementary fields have to be generated the names of these extra fields are derived from
the Predict field names by generating prefixes and/or suffixes.
If a resulting field name, indexed by name or depending on name is not unique, an error message may be
displayed if Check field name is either set to A or Y.

The rules applying when deriving the names of extra fields when generating COBOL copy code are described in
the sections below.

COBOL Names for Counter Fields - MC or PC

When generating COBOL fields for Predict fields of type MC or PC, a counter field will automatically be
generated in the copy code. The name of this field is derived from the name of the MC or PC field by adding the
prefix C-.

COBOL Names for Multiple Fields - MU - Contained in Periodic Groups -
PE

When generating COBOL fields for a Predict field of type PE that contains a field of type MU and the parameter
Gr.structur is set to N, a dummy field will automatically be generated preceding the MU field. The name of this
field is derived from the name of the MU field by adding the prefix G-.

The MU field can then be used as a two-dimensional table and its real occurrence need not be computed.

COBOL Names for Redefined Fields - RE in Periodic Groups - PE

When generating COBOL fields for a Predict field of type PE that contains a redefinition and the parameter
Gr.structur is set to N, a dummy field will automatically be generated preceding the RE field. The name of this
field is derived from the name of the RE field by adding the prefix R-.

COBOL Names for Logical Fields - L

When generating COBOL fields for a Predict logical field (field format L) with the parameter With cond. names
set to Y and no condition name is defined for the field, a condition name is generated by adding the prefix N- to
the field ID.

COBOL Names for Record Buffer and Format Buffer

The record buffer name and the format buffer name are generated without prefix and suffix. The value(s)
supplied must not contain invalid characters. If the file ID is taken as default record buffer name or, with the
prefix FORMAT-BUFFER-, as default format buffer name, it is validated and, if necessary, truncated.

COBOL Names for Default Indexed by Name

When COBOL copy code is generated with the option Indexed by set to Y, and no INDEXED BY NAME has
been specified, this name is generated by adding the prefix I- to the Predict name.

COBOL Names for Additionally Generated Indicator Fields

An additional indicator field prefixed with S- is generated in the following cases:

a field is defined with Suppression option set to U (null allowed)
a field of a file of type A, U or B is defined with Suppression option set to R (not null)

161Copyright © Software AG 2003

COBOL Names for Counter Fields - MC or PCCOBOL Copy Code

Note:
For Adabas fields, the additional indicator field is only generated for the following Adabas versions:

I3 or above
U1 or above
V4 or above.

Examples for the Generation of COBOL Field Names

The GENERATE COBOL function is applied on a field HOURS_DAY. This field has the following attributes:

A field name synonym for COBOL is not defined.
The field type is MC.
The field occurs in a periodic group.
The parameter Gr.structur is set to N.

Three fields are generated in the COBOL copy code

C-HOURS_DAY
G-HOURS_DAY
HOURS_DAY

If the parameter Field name prefix had been set to Adabas, the parameter Field name suffix to
*PERSONNELOFFICE, Validate to -, Truncation to R and Indexed by to Y when generating COBOL copy code
from this field, the following COBOL field names are generated:

ADABAS-C-HOURS-DAY-PERSONNELOF indexed by ADABAS-I-C-HOURS-DAY-PERSONNEL
ADABAS-G-HOURS-DAY-PERSONNELOF indexed by ADABAS-I-G-HOURS-DAY-PERSONNEL
ADABAS-HOURS-DAY-PERSONNELOFFI indexed by ADABAS-I-HOURS-DAY-PERSONNELOF

Field Format and COBOL Copy Code
Fields in the COBOL copy code have a COBOL clause determined by the following factors:

length and format of the corresponding Predict field object
file type of the file containing the field
the compiler for which you are generating.

File type A(SQL) in the table below represents files of type A with parameter Adabas SQL usage set ot Y.

Predict
Format

Predict
Length

File Type or
Compiler

COBOL Clause Note

B l=1,3,5,6,7 PIC X(l)

I 1 File Type: JT, JV PIC S9(2) COMP

other file types PIC X(1)

Copyright © Software AG 2003162

COBOL Copy CodeField Format and COBOL Copy Code

B/I 2 File Type: BT, BV or
Compiler:
WANG/VS
(and file type not JT,
JV)

PIC S9(4) BINARY aligned on half word
boundary
(if word length=4)

File Type: JT, JV or
Compiler: 74,85
(and file type not BT,
BV)

PIC S9(4) COMP

4 File Type: BT, BV or
Compiler:
WANG/VS
(and file type not JT,
JV)

PIC S9(9) BINARY aligned on word
boundary
(if word length=4)

File Type: JT, JV or
Compiler: 74,85
(and file type not BT,
BV)

PIC S9(9) COMP

8 Compiler:
WANG/VS

PIC X(8)

other compiler PIC S9(18) COMP aligned on word
boundary
(if word length=4)

B l=>9 PIC X(l)

F l=4,8 File Type: not BT,
BV, JT, JV
Compiler:
WANG/VS

PIC X(l)

File Type: JT, JV PIC S9(10)V9(8) COMP-3

4 File Type: BT, BV or
Compiler: not
WANG/VS

COMP-1 aligned on word
boundary
(if word length=4)

8 File Type: BT, BV or
Compiler: not
WANG/VS

COMP-2 aligned on double word
boundary (if word
length=4)

N/U nn.m
(nn+m<19)

 PIC 9(nn)V9(m) if m=0, V9(m) is not
applicable

nn.m
(nn+m>18)

 PIC X(nn+m)

NS/US nn.m
(nn+m>15)

File Type: B,
A(SQL), AT

PIC X(nn+m)

nn.m
(nn+m<19)

 PIC S9(nn)V9(m) if m=0, V9(m) is not
applicable

nn.m
(nn+m>18)

 PIC X(nn+m)

163Copyright © Software AG 2003

Field Format and COBOL Copy CodeCOBOL Copy Code

P nn.m
(nn+m<19)

Compiler: 74 PIC 9(nn)V9(m)COMP-3 if m=0, V9(m) is not
applicable

Compiler: 85 PIC 9(nn)V9(m)PACKED
DECIMAL

Compiler: WANG PIC 9(nn)V9(m)COMP

nn.m
(nn+m>18)

 PIC X(l) l =(nn+m+2)/2

PS nn.m
(nn+m>15)

File Type: B, A(SQL)
AT

PIC X(l) l=(nn+m+2)/2

nn.m
(nn+m<19)

File Type: BT, BV or
Compiler: 85

PIC S9(nn)V9(m)
PACKED-DECIMAL

if m=0, V9(m) is not
applicable

File Type: not BT,
BV or
Compiler: 74

PIC S9(nn)V9(m)COMP-3

File Type: not BT,
BV or
Compiler: WANG

PIC S9(nn)V9(m)COMP

nn.m
(nn+m>18)

 PIC X(l) l=(nn+m+2)/2

D File Type: D, E, BT,
BV

PIC X(10)

File Type: XT, XV see format I, length 4

other file types see Format P, length 6

T File Type: D, E, BT,
BV

PIC X(8)

other file types see Format P, length 12

L File Type: BT, BV PIC S9(4) BINARY

other file types PIC X(1)

BT File Type: YT, YV PIC X(1)

DT File Type: JT, JV PIC X(25)

File Type: OT, OV PIC X(9)

File Type: XT, XV PIC X(23)

File Type: YT, YV PIC X(32)

DS File Type: YT, YV PIC X(28)

G,

GV,

GL

n File Type: D, E PIC X(m) m=2*n

IV 7 / 17 File Type: XT, XV PIC X (n)

S File Type: XT, XV see format I, length 4

TK File Type: JT, JV PIC X(8)

Copyright © Software AG 2003164

COBOL Copy CodeField Format and COBOL Copy Code

TS File Type: BT, BV,
D, E

PIC X(26)

File Type: YT, YV PIC X(8)

OK File Type: JT, JV PIC X(16)

MO File Type: JT, JV,
YT, YV

see format F, length 8

n.m File Type: XT, XV PIC S9(n)V9(m)

MS File Type: YT, YV see format F, length 4

A numeric or binary format field with a length not included in the table above is treated in COBOL copy code as
an alphanumeric format field and cannot have an initial value generated for it. A warning message is issued.

File Type in
Predict

Predict
Format

Predict Char
Set

Length COBOL Clause Note

YT, YV A S n PIC X(n)

B n PIC X(m) m=2*n

D n PIC X(m) m=2*n

AV S n Two-level group is
generated:

02 Fieldname

03 Fieldname-LEN
corresponding to I2
03 Fieldname-TXT Char of
length m

m=n

B, D m=2*n

JT, JV A, AV any n PIC X(n)

AL B n PIC X(n) Field is skipped if no
length is specified

BL n PIC X(n) Field is skipped if no
length is specified

BV n PIC X(n)

XT, XV, OT,
OV,

A, AL any n PIC X(n)

AV there is only one
Char Set

n Two-level group is
generated:

02 Fieldname

03 Fieldname-LEN
corresponding to I2
03 Fieldname-TXT Char of
length n

165Copyright © Software AG 2003

Field Format and COBOL Copy CodeCOBOL Copy Code

D, E A, AL any n PIC X(n)

AV any n Two-level group is
generated:

02 Fieldname

03 Fieldname-LEN
corresponding to I2
03 Fieldname-TXT Char of
length n

A, U A there is only one
Char Set

n PIC X(n)

AV n Two-level group is
generated:

02 Fieldname

03 Fieldname-LEN
corresponding to I2
03 Fieldname-TXT Char of
length n

A(SQL), AT,
B

A, AV there is only one
Char Set

n PIC X(n)

BT, BV A any n PIC X(n)

AL any n Two-level group is
generated:

02 Fieldname

03 Fieldname-LEN
corresponding to I2
03 Fieldname-TXT Char of
length n

Field is skipped if no
length is specified

AV any n Two-level group is
generated:

02 Fieldname

03 Fieldname-LEN
corresponding to I2
03 Fieldname-TXT Char of
length n

Automatically Generated Counter Fields

An automatically generated counter field has the following clause, depending on the COBOL compiler used:

Compiler Clause

COBOL 74, COBOL 85PIC S9(4) COMP

WANG PIC S9(4) BINARY

Copyright © Software AG 2003166

COBOL Copy CodeAutomatically Generated Counter Fields

COBOL Copy Code for DB2 Tables/Views
If COBOL copy code for DB2 Tables/Views is generated, the format NS or US is converted to the following
COBOL format depending on the COBOL compiler used:

Compiler Clause

COBOL 74, PIC S9(nn)V9(m) COMP-3

COBOL 85 PIC S9(nn)V9(m) COMP

WANG PIC S9(nn)V9(m) PACKED-DECIMAL

Any redefinitions that exist for this field are skipped.

A DB2 large object is generated as locator like an I4 field.

Sample Output

 13:27:53 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate COBOL Copy Code - Page: 1

 File ID .. GENERATION-EXAMPLE

 * THIS RECORD-BUFFER LAYOUT WAS GENERATED BY PREDICT
 * FOR FILE: GENERATION-EXAMPLE
 * ON: 2003-05-31 STARTING AT 13:27:53
 * FILE-COMMENTS: Example file for the
 * PREDICT generation subsystem.
 * ..

 01 GENERATION-EXAMPLE.
 02 GROUP-1.
 03 ELE-N-9V5 PIC 9(9)V9(5).
 03 GR-IN-GROUP.
 04 ELE-B-4 PIC S9(9) COMP SYNC.
 88 INIT-ELE-B-4 VALUE IS 4096.
 88 COND-ELE-B-4-V-1
 VALUE IS -1.
 04 ELE-PS-5V2 PIC S9(5)V9(2) COMP-3.
 04 R-MU-B-4.
 05 MU-B-4 OCCURS 5 TIMES PIC S9(9) COMP
 SYNC.
 04 R-MU-B-4-REGR REDEFINES R-MU-B-4.
 05 MU-RED-B-7 PIC X(7).
 * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ B ’ --> ’ A ’)
 05 MU-RED-US-13 PIC S9(13).
 04 R-MU-B-4-REGR1 REDEFINES R-MU-B-4.
 05 MU-RED-B-8 PIC S9(18) COMP.
 88 MU-RED-B-8-COND1
 VALUE IS 1118481.
 03 ELE-A-42 PIC X(42).
 88 COND-NAME-START VALUE IS ’COND-START’ THRU
 ’COND-ZEND’.
 88 FILL-WITH-STRING VALUE IS ALL ’A’.
 03 ELE-F-8 COMP-2 SYNC.
 03 ELE-B-3 PIC X(3).

167Copyright © Software AG 2003

COBOL Copy Code for DB2 Tables/ViewsCOBOL Copy Code

 13:27:53 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate COBOL Copy Code - Page: 2

 File ID .. GENERATION-EXAMPLE

 * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ B ’ --> ’ A ’)

 02 C-PC-OCC-7 PIC S9(4) COMP SYNC.
 02 PC-OCC-7 OCCURS 7 TIMES.
 03 PC-ELE-DE-NS-7V3 PIC S9(7)V9(3).
 03 C-PC-MC-PS-6V1 PIC S9(4) COMP SYNC.
 03 PC-MC-PS-6V1 OCCURS 11 TIMES PIC S9(6)V9(1)
 COMP-3.
 03 PC-GR.
 04 PC-ELE-I-2 PIC S9(4) COMP SYNC.
 04 PC-PS-20V7 PIC X(14).
 * >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ PS ’ --> ’ A ’)
 03 PC-ELE-F-4 COMP-1 SYNC.
 02 ELE-D PIC 9(6) COMP-3.
 02 ELE-T PIC 9(12) COMP-3.
 02 ELE-L PIC X(1).
 88 N-ELE-L VALUE IS LOW-VALUE.

 * THIS FORMAT-BUFFER WAS GENERATED BY PREDICT
 * FOR FILE: GENERATION-EXAMPLE
 * ON: 2003-05-31 STARTING AT 13:27:53

 01 FORMAT-BUFFER-GENERATION-EXAMP.
 * >>> DIC1809 WARNING: FIELDNAME(S) TRUNCATED
 02 FILLER PIC X(54) VALUE IS
 ’AB,2X,AD,AE,AF1-5,AG,2X,AH,AI,1X,ALC,2,AM1,AN1C,2,AN1(’.
 02 FILLER PIC X(54) VALUE IS
 ’1-11),AO1,2X,AR1,2X,AM2,AN2C,2,AN2(1-11),AO2,2X,AR2,2X’.
 02 FILLER PIC X(54) VALUE IS
 ’,AM3,AN3C,2,AN3(1-11),AO3,2X,AR3,2X,AM4,AN4C,2,AN4(1-1’.
 02 FILLER PIC X(54) VALUE IS
 ’1),AO4,2X,AR4,2X,AM5,AN5C,2,AN5(1-11),AO5,2X,AR5,2X,AM’.
 02 FILLER PIC X(54) VALUE IS
 ’6,AN6C,2,AN6(1-11),AO6,2X,AR6,2X,AM7,AN7C,2,AN7(1-11),’.
 02 FILLER PIC X(23) VALUE IS
 ’AO7,2X,AR7,2X,AS,AT,AU.’.
 * **

 DIC1800 SUMMARY: 25 FIELD(S) PROCESSED
 DIC1809 WARNING: 1 FIELDNAME(S) TRUNCATED
 DIC1818 WARNING: 3 FORMAT(S) CHANGED
 DIC1819 MESSAGE: 33 SLACK BYTE(S) GENERATED
 DIC1847 MESSAGE: 3 FIELD(S) SKIPPED FOR RECORDBUFFER STRUCTURE

Copyright © Software AG 2003168

COBOL Copy CodeSample Output

FORTRAN Copy Code
The function Generate FORTRAN Copy Code generates a record buffer for use in FORTRAN programs based
on a Predict file object.

In addition, an Adabas format buffer can also be generated if required for files of the following types:

Adabas file (file type A) with parameter Adabas SQL usage = N
Adabas userview (file type U)

This section contains:

Calling the Function
Generate FORTRAN Copy Code in Batch Mode
Names in FORTRAN Copy Code
Field Format and FORTRAN Copy Code
Sample Output

Calling the Function
The Generate FORTRAN Copy Code screen is displayed with function code G and object code FO in a Predict
main menu, or with the command GENERATE FORTRAN.

169Copyright © Software AG 2003

FORTRAN Copy CodeFORTRAN Copy Code

 10:13:24 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate FORTRAN Copy Code -

 File ID*

 Save as member Save in library FORLIB
 Overwrite option Y (Y,N) Op. system member
 Punch directly* N

 List generated code Y (Y,N) Generate length.field .. N (Y,N)
 Generate format buffer* N Adabas version* I7

 Nr. of abstract lines 4 (0-16) Field name prefix
 Generate initial value* N Field name suffix
 Truncation* R Validate *
 Offset name OFF
 Record buffer name Compiler* I
 Format buffer name

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Presettings

The parameters below can be changed in the Modify FORTRAN Defaults screen. See Generation Defaults.

Library
system

Library system for which the generated code is punched. Determines which additional cards
need to be punched. An operating system member must be entered for the additional cards to be
generated. See Parameters Specifying the Form of Output for more information.

Parameters

The parameters Save as member, Save in library, Overwrite option, Op. system member, Punch/output,
Workfile name and List generated code are described in the section Parameters Specifying the Form of Output.

File ID ID of the Predict file object from which the definitions are to be generated.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

Generate
length field

Y
An INTEGER*2 field is to be created for each buffer generated. The initial value of this field is
the length of the buffer (including slack bytes). Another INTEGER*2 field is created in the
record buffer and will contain the file number. The name of the file number constant is the
record buffer name prefixed by N.

The name of each length constant will be the appropriate buffer name prefixed by L.
Each name is prefixed, suffixed, validated and truncated in the same way as any other field
name.

Copyright © Software AG 2003170

FORTRAN Copy CodeCalling the Function

Generate
format buffer

The contents of the format buffer will correspond exactly to the contents of the record buffer.
Only valid for files of type A (with parameter Adabas SQL usage set to N) or for files of type U.

Valid values:

Y
Adabas format buffer is to be generated. Adabas groups, standard formats and lengths are used
whenever possible. The resulting format buffers are then as short as possible.

F
Full format buffer is to be generated. Length and format of Adabas fields are included.

N
No format buffer is to be generated.

Note:
If you are generating for a WANG environment, set this parameter to F or N.

Adabas
version

The version of Adabas for which the copy code is to be generated. Enter an asterisk for valid
values or see table in the section Adabas Version for more information.

Nr. of
abstract lines

The number of Predict abstract lines per field to be included in the generated code.

Field name
prefix

The prefix to be used for each field name generated.

Generate
initial value

Y
Statements are generated to initialize the structure with the value for Init value defined for the
field objects in Predict. Fields with no value defined for Init value are initialized with zeros or
spaces.

S
Only fields which have a value defined for Init value in the corresponding Predict object are
initialized.

N
No initialization.

Field name
suffix

Suffix appended to each field name generated.

Truncation Names are truncated to 30 characters for the VAX/VMS compiler. They are truncated to 6
characters for the IBM or Siemens compiler and FORTRAN 77 Standard.

Specifies which characters are deleted if a generated field name is too long:

L
truncate from the left

R
truncate from the right

M
truncate from the middle

A warning is given if field names are truncated.

171Copyright © Software AG 2003

Calling the FunctionFORTRAN Copy Code

Validate Determines how invalid characters are handled.

blank
Invalid characters in a field name will result in an error message but will not be modified.

rep.char
Invalid characters in a field name are replaced by this character. Valid replace characters: letters
A-Z, digits 0-9 and, for VAX/VMS only, $ and _ (underscore).

*
Invalid characters in a field name are deleted.

Offset name To display the offset of each item in the structure, Predict creates a CHARACTER*1 array with
as many elements as there are bytes in the buffer, and generates EQUIVALENCE statements.
Valid characters of this parameter are used as the name of the array in the record buffer. Valid
characters of this parameter followed by AA are used as the name of the array in the format
buffer.

Record
buffer name

Specifies the name of the record buffer in the generated structure. If omitted, the file ID is used.

Format
buffer name

Specifies the name of the format buffer in the generated structure. If omitted, the file ID
prefixed by F is used.

Compiler FORTRAN copy code can be generated for the following compilers:

I
IBM

S
Siemens

V
VMS

7
FORTRAN 77 Standard

Generate FORTRAN Copy Code in Batch Mode
Command: GENERATE FORTRAN.

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Copyright © Software AG 2003172

FORTRAN Copy CodeGenerate FORTRAN Copy Code in Batch Mode

Field Keyword Position

File ID FILE-ID 1

Save as member MEM 2

Save in library LIB 3

Overwrite option REPLACE 4

Op. system member OS-MEMBER 5

Nr. of abstract lines NR 6

Field name prefix PREFIX 7

Generate format buffer FORMAT-BUFFER 8

Field name suffix SUFFIX 9

Generate initial value INIT 10

Generate length field LENGTH-FIELD 11

List generated code LIST 12

Validate VALIDATION 13

Punch / output PUNCH 14

Truncation TRUNCATION 15

Offset name OFFSET-NAME 16

Record buffer name RECORD-BUFFER-NAME 17

Format buffer name FORMAT-BUFFER-NAME 18

Adabas version ADA-VER 19

Compiler COMPILER 20

Workfile name (see note below) WORKFILE-NAME 21

If Entire System Server is used

- DB-ID NP-DBID 22

- Dataset NP-DSNAME 23

- Volume NP-VOLSER 24

- Library NP-LIB 25

- Sublibrary NP-SUBLIB 26

- Member type NP-MEMTYPE 27

- VSAM catalog NP-VSAMCAT 28

Note:
You can not specify a value other than blank (’ ’) for WORKFILE-NAME on mainframes.

Parameters NP-LIB, NP-SUBLIB and NP-MEMTYPE must be specified if the generated code is written to
workfile 1 (Punch/output=Y) and Library system=3.

173Copyright © Software AG 2003

Generate FORTRAN Copy Code in Batch ModeFORTRAN Copy Code

Names in FORTRAN Copy Code
The following rules apply to the generation of names for FORTRAN copy code.

Alphabetic characters (letters) in Predict object IDs, such as file and field IDs, are converted into
upper-case.
Field names in FORTRAN copy code are created from Predict fields: either the field name synonym for
FORTRAN or, if none exists, the Predict field ID.
Any periodic groups with Gr.structur set to blank are treated as periodic groups with Gr.structur set to N
and a warning message is issued.
The parameters Validate and Truncate are applied when generating all field names:

when using compiler option IBM, Siemens, or FORTRAN 77, the names are truncated to 6 characters
with compiler option VMS, the names are truncated to 30 characters.

Parameters Field name prefix and Field name suffix are applied when generating all field names except
record buffer and format buffer.
See Examples for the Generation of FORTRAN Field Names.
If a resulting field name is not unique within the entire file structure, an error message is given.

FORTRAN Names for Multiple Fields - MU - Contained in Periodic
Groups - PE

Before each field of type MC or PC, a counter field is generated, with a name created from the name of the MC
or PC field prefixed by C.
For example, a Predict field object DAY with no field name synonym for FORTRAN and with type MC will
generate the field names CDAY and DAY.

FORTRAN Names for Additionally Generated Indicator Fields

An additional indicator field prefixed with S is generated in the following cases:

a field is defined with Suppression option set to U (null allowed)
a field of a file of type A, U or B is defined with Suppression option set to R (not null)

Note:
For Adabas fields, the additional indicator field is only generated for the following Adabas versions:

I3 or above
U1 or above
V4 or above.

Examples for the Generation of FORTRAN Field Names

Example: with the parameter settings

Field prefix = PR
Field suffix = SUF
Validate = *
Truncation = R

the following field names are generated for a field named "day" of type MC:

PRCDAY, PRDAYS for IBM or Siemens compiler

Copyright © Software AG 2003174

FORTRAN Copy CodeNames in FORTRAN Copy Code

PRCDAYSUF, PRDAYSUF for VAX/VMS compiler.

Field Format and FORTRAN Copy Code
Fields in the FORTRAN copy code have a FORTRAN clause determined by the following factors:

length and format of the corresponding Predict field object
file type of the file containing the field
the compiler for which you are generating.

PRD Format PRD Length File Type or Compiler FORTRAN Clause Byte Length

B/I 1 Compiler: Siemens INTEGER*1

Compiler: VMS BYTE

Compiler: IBM, FORTRAN 77 CHARACTER*1

B l=3, 5, 6, 7 CHARACTER*l

B/I 2 File Type: BT, BV or
Compiler: IBM, Siemens, VMS

INTEGER*2

Compiler: FORTRAN 77 and
File Type: not BT, BV

CHARACTER*2

4 File Type: BT, BV or
Compiler: IBM, Siemens, VMS

INTEGER*4

Compiler: FORTRAN 77 and
File Type: not BT, BV

INTEGER

8 IBM, VMS, FORTRAN 77 CHARACTER*8

Compiler: Siemens INTEGER*8

B l=>9 CHARACTER*l

F 4 Compiler: IBM, Siemens, VMSREAL*4

Compiler: FORTRAN 77 REAL

8 Compiler: IBM, Siemens, VMSREAL*8

Compiler: FORTRAN 77 DOUBLE PRECISION

N/U
NS/US

nn.m CHARACTER*l l=nn+m

P/PS nn.m CHARACTER*l l=(nn+m+2)/2

D File Type: D, E CHARACTER*10

File Type: BT, BV CHARACTER*8

other file types CHARACTER*4

T File Type: D, E, BT, BV CHARACTER*8 8

other file types CHARACTER*7 7

L Compiler: IBM, Siemens, VMSLOGICAL*1 1

Compiler: FORTRAN 77 CHARACTER*1 1

BT File Type: YT, YV see format B, length 1 1

175Copyright © Software AG 2003

Field Format and FORTRAN Copy CodeFORTRAN Copy Code

DT File Type: JT, JV CHARACTER*25 25

File Type: OT, OV CHARACTER*9 9

File Type: YT, YV CHARACTER*32 32

DS File Type: YT, YV CHARACTER*28 28

G n File Type: D, E CHARACTER*m m=2*n

GV n File Type: D, E CHARACTER*m m=2*n

GL n File Type: D, E CHARACTER*m m=2*n

TS File Type: D, E CHARACTER*26 26

File Type: YT, YV CHARACTER*8 8

MO File Type: YT, YV, JT, JV see format F, length 8 8

MS File Type: YT, YV see format F, length 4 4

OK File Type: JT, JV CHARACTER*16 16

TK File Type: JT, JV CHARACTER*8 8

If generated for IBM, Siemens or VMS compilers:
Any file number field, length fields and automatically generated counter fields have the clause
INTEGER*2.
If generated for a FORTRAN 77 compiler:
Constants for the file number and length fields have the clause INTEGER. Automatically generated counter
fields have the clause CHARACTER*2.

A numeric or binary format field with a length not included in the table above is treated in FORTRAN copy code
as an alphanumeric format field and cannot have an initial value generated for it. A warning message is given.

Fields other than redefinitions are always aligned, both in the record buffer and in the format buffer, on the
boundary shown in the table above.

The array that is created to show the offset of each item in the file (see the parameter Offset name) is aligned so
that its first element, (Offset name(1)), corresponds to offset 0. Similarly, the element number in each
EQUIVALENCE statement generated is one more than the offset of the corresponding field. For example, the
statement EQUIVALENCE(Offset name(15),elem) in FORTRAN copy code would correspond to a field named
elem with offset 14.

In FORTRAN copy code, redefinitions are generated both for elements within a group and for single fields on
level 1. Redefinitions are not generated for periodic groups; instead, a warning message is issued.

Note:
If FORTRAN copy code for DB2 tables/views is generated, the format NS or US is converted to the
FORTRAN format CHARACTER. Any redefinitions that exist for this field are skipped.

A DB2 large object is generated as locator like an I4 field.

Sample Output

Copyright © Software AG 2003176

FORTRAN Copy CodeSample Output

 13:28:09 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate FORTRAN Copy Code - Page: 1

 File ID .. GENERATION-EXAMPLE

 C***
 C THIS RECORD-BUFFER LAYOUT WAS GENERATED BY PREDICT
 C FOR FILE: GENERATION-EXAMPLE
 C ON: 2003-05-31 STARTING AT 13:28:09
 C FILE-COMMENTS: Example file for the
 C PREDICT generation subsystem.
 C ..
 C***
 CHARACTER*648 GENERA
 C >>> RB NAME :
 C >>> DIC1809 WARNING: FIELDNAME(S) TRUNCATED
 CHARACTER*1 OFF(648)
 EQUIVALENCE(OFF(1),GENERA)
 CHARACTER*99 GROUP1
 EQUIVALENCE(OFF(1),GROUP1)
 CHARACTER*14 ELN9V5
 EQUIVALENCE(OFF(1),ELN9V5)
 C >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ N ’ --> ’ A ’)
 CHARACTER*30 GRINGR
 EQUIVALENCE(OFF(15),GRINGR)
 C >>> GR-IN-GROUP :
 C >>> DIC1809 WARNING: FIELDNAME(S) TRUNCATED
 INTEGER*4 ELEB4
 EQUIVALENCE(OFF(17),ELEB4)
 CHARACTER*4 ELPS52
 EQUIVALENCE(OFF(21),ELPS52)
 C >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ PS ’ --> ’ A ’)
 INTEGER*4 MUB4(5)
 EQUIVALENCE(OFF(25),MUB4)
 CHARACTER*7 MURB7
 EQUIVALENCE(OFF(25),MURB7)
 C >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ B ’ --> ’ A ’)
 CHARACTER*13 MURB13
 EQUIVALENCE(OFF(32),MURB13)

177Copyright © Software AG 2003

Sample OutputFORTRAN Copy Code

 13:28:09 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate FORTRAN Copy Code - Page: 2

 File ID .. GENERATION-EXAMPLE

 C >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ NS ’ --> ’ A ’)
 CHARACTER*8 MURB8
 EQUIVALENCE(OFF(25),MURB8)
 C >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ B ’ --> ’ A ’)
 CHARACTER*42 ELEA42
 EQUIVALENCE(OFF(45),ELEA42)
 REAL*8 ELEF8
 EQUIVALENCE(OFF(89),ELEF8)
 CHARACTER*3 FOB3
 EQUIVALENCE(OFF(97),FOB3)
 C >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ B ’ --> ’ A ’)
 INTEGER*2 CPCOCC
 EQUIVALENCE(OFF(101),CPCOCC)
 C >>> PC-OCC-7 :
 C >>> DIC1809 WARNING: FIELDNAME(S) TRUNCATED
 CHARACTER*534 PCOCC7
 EQUIVALENCE(OFF(103),PCOCC7)
 C >>> DIC1848 MESSAGE: PE-GROUP(S) ’STRUCT’ DEFINITION SET TO ’N’
 CHARACTER*10 PCELED(7)
 EQUIVALENCE(OFF(103),PCELED)
 C >>> PC-ELE-DE-NS-7V3 :
 C >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ NS ’ --> ’ A ’)
 C >>> DIC1809 WARNING: FIELDNAME(S) TRUNCATED
 INTEGER*2 CMCPS(7)
 EQUIVALENCE(OFF(173),CMCPS)
 CHARACTER*4 MCPS(11,7)
 EQUIVALENCE(OFF(187),MCPS)
 C >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ PS ’ --> ’ A ’)
 CHARACTER*112 PCGR
 EQUIVALENCE(OFF(495),PCGR)
 INTEGER*2 FOI2(7)
 EQUIVALENCE(OFF(495),FOI2)
 CHARACTER*14 PS20V7(7)
 EQUIVALENCE(OFF(509),PS20V7)
 C >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ PS ’ --> ’ A ’)
 REAL*4 FOF4(7)
 EQUIVALENCE(OFF(609),FOF4)
 CHARACTER*4 ELED
 EQUIVALENCE(OFF(637),ELED)

Copyright © Software AG 2003178

FORTRAN Copy CodeSample Output

 13:28:09 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate FORTRAN Copy Code - Page: 3

 File ID .. GENERATION-EXAMPLE

 C >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ D ’ --> ’ A ’)
 CHARACTER*7 ELET
 EQUIVALENCE(OFF(641),ELET)
 C >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ T ’ --> ’ A ’)
 LOGICAL*1 ELEL
 EQUIVALENCE(OFF(648),ELEL)

 C***
 C THIS FORMAT-BUFFER WAS GENERATED BY PREDICT
 C FOR FILE: GENERATION-EXAMPLE
 C ON: 2003-05-31 STARTING AT 13:28:09
 C***
 CHARACTER*136 FGENER
 C >>> FORMAT BUFFER NAME :
 C >>> DIC1809 WARNING: FIELDNAME(S) TRUNCATED
 CHARACTER*1 OFFAA(136)
 CHARACTER*60 OFFAB
 1 /’AB,2X,AD,AE,AF1-5,AG,2X,AH,AI,1X,ALC,2,AM1-7,AN1C,2,AN2C,2,A’/
 CHARACTER*60 OFFAC
 1 /’N3C,2,AN4C,2,AN5C,2,AN6C,2,AN7C,2,AN1-7(1-11),AP1-7,AQ1-7,2X,/
 CHARACTER*16 OFFAD
 1 /’,AR1-7,AS,AT,AU.’/
 EQUIVALENCE(OFFAA(1),FGENER)
 EQUIVALENCE(OFFAA(1),OFFAB)
 EQUIVALENCE(OFFAA(61),OFFAC)
 EQUIVALENCE(OFFAA(121),OFFAD)
 C***

 DIC1800 SUMMARY: 25 FIELD(S) PROCESSED
 DIC1809 WARNING: 5 FIELDNAME(S) TRUNCATED
 DIC1818 WARNING: 11 FORMAT(S) CHANGED
 DIC1819 MESSAGE: 7 SLACK BYTE(S) GENERATED
 DIC1847 MESSAGE: 3 FIELD(S) SKIPPED FOR RECORDBUFFER STRUCTURE
 DIC1848 MESSAGE: 1 PE-GROUP(S) ’STRUCT’ DEFINITION SET TO ’N’

179Copyright © Software AG 2003

Sample OutputFORTRAN Copy Code

PL/I Include Code
The function Generate PL/I Include Code generates a record buffer for use in PL/I programs based on a Predict
file object.

In addition, an Adabas format buffer can also be generated if required for files of the following types:

Adabas file (file type A) with parameter Adabas SQL usage = N
Adabas userview (file type U)

This section contains:

Calling the Function
Generate PL/I Include Code in Batch Mode
Names in PL/I Include Code
Field Format and PL/I Include Code
Sample Output

Calling the Function
The Generate PL/I Include Code screen is displayed with function code G and object code PL in a Predict main
menu, or with the command GENERATE PLI.

Copyright © Software AG 2003180

PL/I Include CodePL/I Include Code

 10:13:10 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Generate PLI Copy Code -

 File ID*
 Save as member Save in library PLILIB
 Overwrite option Y (Y,N) Op. system member ..
 Punch / output* N
 List generated code Y (Y,N) List offsets* N
 Generate format buffer* N Adabas version* I7
 Check field name* A Field name prefix .. ADABAS_
 Start level 1 (0-40) Field name suffix ..
 Level number increment 1 (1-40) Validate _
 Level shift increment 3 (0-9) Truncation* R
 Nr. of abstract lines 4 (0-16) Align* N
 Generate initial value* N Static N (Y,N)
 Structure as char N (Y,N) Numeric sign* T
 With DCL N (Y,N) Position of sign ..* R
 Record buffer name
 Format buffer name

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Values for input fields which have been locked by your data dictionary administrator cannot be overwritten.
These fields are skipped when positioning the cursor with the TAB key. See Generation Defaults.

Presettings

The parameters below can be changed in the Modify PL/I Defaults screen. See Generation Defaults.

Library
system

Library system for which the generated code is punched. Determines which additional cards
need to be punched. An operating system member must be entered for the additional cards to
be generated. See Parameters Specifying the Form of Output for more information.

Parameters

The parameters Save as member, Save in library, Overwrite option, Op. system member, Punch/output,
Workfile name and List generated code are described in the section Parameters Specifying the Form of Output.

File ID ID of the Predict file object from which the definitions are to be generated.

Enter an asterisk to display a selection screen.
Alternatively, use an asterisk as a wildcard.
For example, enter A* to display IDs beginning with A only.

181Copyright © Software AG 2003

Calling the FunctionPL/I Include Code

List offsets Y
The offset of each item in the record buffer structure (relative to the beginning of the structure)
in decimal and hexadecimal formats is to be included as a comment. The total length of each
buffer is also included.

P
As above, but the absolute position (offset+1) is included as a comment.

L
The total lengths of the record buffer and the format buffer are to be included as a comment.

V
The file number and the calculated lengths of the record buffer and the format buffer are to be
generated as constants in the include code. The name of the file number constant will be the
record buffer name prefixed by N_.
The name of each length constant will be the appropriate buffer name prefixed by L_.
Each name is prefixed, suffixed, validated and truncated in the same way as any other field
name.

N
No offset.

Generate
format buffer

The contents of the format buffer will correspond exactly to the contents of the record buffer.
Only valid for files of type A (with parameter Adabas SQL usage set to N) or for files of type
U.
Valid values:

Y
Adabas format buffer is to be generated. Adabas groups, standard formats and lengths are used
whenever possible. The resulting format buffers are then as short as possible.

F
Full format buffer is to be generated. Length and format of Adabas fields are included.

N
No format buffer is to be generated.

Note:
If you are generating for a WANG environment, you must set this parameter to F or N.

Adabas
version

The version of Adabas for which the include code is to be generated. Enter an asterisk for valid
values or see table in the section Adabas Version for more information.

Check field
names

A
The field names must be unique throughout the entire structure

Y
Structure levels are included in the validation check of the field names: if two fields have the
same name, they must be separated by at least one field with a different name and a lower level
number.

N
The field names in the generated PL/I code will not be checked for uniqueness.

Start level The starting level number to be used for the generated statements.

Note:
For fields within a redefinition, Start level is always 1.

Copyright © Software AG 2003182

PL/I Include CodeCalling the Function

Field name
prefix

The prefix appended to each field name generated.

Field name
suffix

The suffix appended to each field name generated.

Level number
increment

The increment to be used when assigning level numbers to the generated statements. This
parameter is evaluated in conjunction with parameter Start level. See table below.

Note:
This parameter is ignored for fields within a redefinition.

Start Level Level number increment (Example) Level Numbers

0 5 1, 6, 11...

1 5 1, 5, 10 ...

2 - 40 5 n, n+5, n+10...

Level shift
increment

The number of positions to be shifted right when a level number which is higher than the
current level number is encountered.

Note:
This parameter is ignored for fields within a redefinition.

Validate Determines how invalid characters are handled.

blank
Invalid characters in a field name will result in an error message but will not be modified.

rep.char
Invalid characters in a field name are replaced by this character. Valid replace characters:
letters A-Z, digits 0-9, $, §, # and _ (underscore).

*
Invalid characters in a field name are deleted.

Nr. of abstract
lines

The number of Predict abstract lines per field to be included in the generated code.

Truncation Specifies which characters are deleted if a generated field name is too long:

L
from the left

R
from the right

M
from the middle

A warning is given if field names are truncated.

183Copyright © Software AG 2003

Calling the FunctionPL/I Include Code

Generate
initial value

Y
Statements are generated to initialize the structure with the value for Init value defined for the
field objects in Predict. Fields with no value defined for Init value are initialized with zeros or
spaces.

S
Only fields which have a value defined for Init value in the corresponding Predict object are
initialized.

N
No initialization.

Align Determines which fields are to be aligned. In the record buffer and in the format buffer fields
are aligned on the boundary shown in the table in the section Field Format and PL/I Include
Code.

Note:
This parameter only takes effect with fields that have the PL/I attribute FIXED BIN or
FLOAT DEC.

Y
All fields are aligned.

N
No fields will be aligned. Predict will add the PL/I keyword UNAL to all appropriate fields.

S
Fields are aligned only if the 3GL specification Synchronized of the corresponding Predict
object is set to S. Otherwise Predict adds the PL/I keyword UNAL.

Static The structure is declared with the attribute STATIC.

Structure as
char

The entire generated structure is declared at the end of the record buffer as a single character
string.

Numeric sign Specifies which of the PL/I picture characters T, I or R is to be used for the representation of
numeric values of format packed with sign or unpacked with sign.

With DCL Y
The generated code is preceded by a declare statement DCL and ends with a semicolon (not a
comma). PL/I copy code can be inserted in any position of a PL/I program, it does not have to
be inserted at the beginning.

Position of
sign

Defines the position of the sign in a numeric field

R
right

L
left.

Record buffer
name

Specifies the name of the record buffer in the generated structure. If omitted, the file ID is used.

Format buffer
name

Specifies the name of the format buffer in the generated structure. If omitted, the file ID
prefixed by FORBUF_ is used.

Copyright © Software AG 2003184

PL/I Include CodeCalling the Function

Generate PL/I Include Code in Batch Mode
Command: GENERATE PLI

Enter parameters on next line in positional or keyword form. File ID is obligatory, all other parameters are
optional. If a parameter is not specified, the default value is taken.

Field Keyword Position

File ID FILE-ID 1

Save as member MEM 2

Save in library LIB 3

Overwrite option REPLACE 4

Op. system member OS-MEMBER 5

Start level START-LEVEL 6

Field name prefix PREFIX 7

Level number increment LEVEL-INCREMENT 8

Field name suffix SUFFIX 9

Level shift increment LEVEL-SHIFT 10

Nr. of abstract lines NR 11

Validate VALIDATION 12

Generate initial value INIT 13

Truncation TRUNCATION 14

Generate format buffer FORMAT-BUFFER 15

List offsets OFFSET 16

Structure as char STRUCTURE 17

List generated code LIST 18

Static STATIC 19

Punch / output PUNCH 20

Record buffer name RECORD-BUFFER-NAME 21

Format buffer name FORMAT-BUFFER-NAME 22

Align SYNC 23

With DCL DCL 24

Adabas version ADA-VER 25

Check field name CHECK-NAME 26

Numeric sign NUM-SIGN 27

Position of sign POS-SIGN 28

Workfile name (see note below) WORKFILE-NAME 29

If Entire System Server is used

185Copyright © Software AG 2003

Generate PL/I Include Code in Batch ModePL/I Include Code

- DB-ID NP-DBID 30

- Dataset NP-DSNAME 31

- Volume NP-VOLSER 32

- Library NP-LIB 33

- Sublibrary NP-SUBLIB 34

- Member type NP-MEMTYPE 35

- VSAM catalog NP-VSAMCAT 36

Note:
You can not specify a value other than blank (’ ’) for WORKFILE-NAME on mainframes.

Parameters NP-LIB, NP-SUBLIB and NP-MEMTYPE must be specified if the generated code is written to
workfile 1 (Punch/output=Y) and Library system=3.

Names in PL/I Include Code
The following rules apply to the generation of names for PL/I copy code.

Field names are derived from Predict field objects: either the Field Name Synonym for PL/I or, if none
exists, the Predict field ID.
Alphabetic characters (letters) in Predict object IDs, such as file and field IDs, are converted to upper-case.
All field names are prefixed, suffixed, validated and if necessary truncated to 31 characters according to the
setting of these four options.
For example, with Field name prefix set to Adabas/, Field name suffix to *PERSONNELOFFICE, Validate
to _ and Truncation to R the following names are generated for a field named "day" of type MC.

ADABAS_C_HOURS_DAY_PERSONNELOFF
ADABAS_HOURS_DAY_PERSONNELOFFIC

If a resulting field name is not unique, an error message may be issued if Check field name is either set to A
or Y.
The record buffer name and the format buffer name do not receive the prefix and suffix. The value(s)
supplied must not contain invalid characters. If the file ID is taken as default record buffer name or, with the
prefix FORBUF_, as default format buffer name, it is validated and if necessary truncated.

PL/I Names for Counter Fields - MC or PC

Before each field of type MC or PC, a counter field is generated, with a name created from the name of the MC
or PC field prefixed by C_.

For example, a Predict field object HOURS-DAY with no field name synonym for PL/I and with type MC will
result in two fields C_HOURS-DAY and HOURS-DAY.

PL/I Names for Additionally Generated Indicator Fields

An additional indicator field prefixed with S_ is generated in the following cases:

a field is defined with Suppression option set to U (null allowed)
a field of a file of type A, U or B is defined with Suppression option set to R (not null)

Copyright © Software AG 2003186

PL/I Include CodeNames in PL/I Include Code

Note:
For Adabas fields, the additional indicator field is only generated for the following Adabas versions:

I3 or above
U1 or above
V4 or above.

Field Format and PL/I Include Code
Fields in the PL/I include code have a PL/I clause determined by the length and format of the corresponding
Predict field object, as shown in the table below where s is the numeric sign whose content (T, I, or R) and
position (left or right) are defined in the PL/I generation defaults; nn+m must not exceed 15; and if m is zero,
V(m)9 is omitted.

Predict
Format

File
Type

Predict
Length

PL/I Clause Note

A nnn CHAR(nnn)

B/I 1 BIT(8)

B 3 BIT(24)

B/I 2 FIXED BIN(15,0) Aligned at half word boundary (if word length=4)

4 FIXED BIN(31,0) Aligned at word boundary (if word length=4)

B l=>5 CHAR(l)

I 8 CHAR(8)

F 4 FLOAT DEC(6) Aligned at word boundary (if word length=4)

8 FLOAT DEC(16) Aligned at double word boundary (if word length=4)

N/U nn.m
(nn+m<16)

PIC ’(nn)9V(m)9’ If m = 0, V(m)9 is not applicable.

nn.m
(nn+m>15)

CHAR(nn+m)

NS/US nn.m
(nn+m<16)

PIC
’(nn)9V(m-1)9s’ or
PIC
’s(nn-1)9V(m)9’.

s represents the numeric sign, the contents of which (T,
I or R) and Position (left or right) depend on the
parameters Numeric sign and Position of sign

If m = 0, V(m) 9 is not applicable.

nn.m
(nn+m>15)

CHAR(nn+m)

P/PS nn.m
(nn+m<16)

FIXED(nn+m,m)

nn.m
(nn+m>15

CHAR(l)

D D, E CHAR(10)

other FIXED(6)

T D, E CHAR(8)

other FIXED(12)

187Copyright © Software AG 2003

Field Format and PL/I Include CodePL/I Include Code

L BIT(8)

DT OT,
OV

 CHAR(9)

JT, JV CHAR(25)

G, GV,
GL

D, E n CHAR(m) m=2*n

JT, JV BV n CHAR(n)

BL n CHAR(n) Field is skipped if no length is specified

MO JT, JV FLOAT DEC(16)

OK JT, JV CHAR(16)

TK JT, JV CHAR(8)

Copyright © Software AG 2003188

PL/I Include CodeField Format and PL/I Include Code

File Type in
Predict

Predict
Format

Predict Char.
Set

Length PL/I Clause Note

OT, OV A, AL any n CHAR(n)

AV there is only one
char. set

n Two-level group is
generated:

02 Fieldname

03 Fieldname-LEN FIXED
BIN (15,0)
03 Fieldname-TXT CHAR
(n)

JT, JV A, AV any n CHAR(n)

AL there is only one
char. set

n CHAR(n) Field is skipped if no
length is specified

D, E A, AL any n CHAR(n)

AV any n Two-level group is
generated:

02 Fieldname

03 Fieldname-LEN FIXED
BIN (15,0)
03 Fieldname-TXT CHAR
(n)

A, U A there is only one
char. set

n CHAR(n)

AV n Two-level group is
generated:

02 Fieldname

03 Fieldname-LEN FIXED
BIN (15,0)
03 Fieldname-TXT CHAR
(n)

A(SQL) AT,
B

A, AV there is only one
char. set

n CHAR(n)

Additional Notes

An automatically generated counter field has the clause FIXED BIN (15,0).

A numeric or binary format field with a length not included in the table above is treated in PL/I include code as
an alphanumeric format field and cannot have an initial value generated for it. A warning message is issued.

See also description of parameter Align.

If PL/I include code for DB2 tables/views is generated, the format NS or US is converted to the PL/I format
FIXED. Any redefinitions that exist for this field are skipped.

189Copyright © Software AG 2003

Additional NotesPL/I Include Code

A DB2 large object is generated as locator like an I4 field.

Sample Output

 13:28:02 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate PL/I Copy Code - Page: 1

 File ID .. GENERATION-EXAMPLE

 /***/
 /* THIS RECORD-BUFFER LAYOUT WAS GENERATED BY PREDICT */
 /* FOR FILE: GENERATION-EXAMPLE */
 /* ON: 2003-05-31 STARTING AT 13:28:02 */
 /* FILE-COMMENTS: Example file for the */
 /* PREDICT generation subsystem. */
 /* .. */
 /***/
 01 GENERATION_EXAMPLE,
 02 GROUP_1 ,
 03 ELE_N_9V5 PIC ’(9)9V(5)9’,
 03 GR_IN_GROUP ,
 04 ELE_B_4 FIXED BIN (31,0),
 04 ELE_PS_5V2 FIXED (7,02),
 04 MU_B_4 (5) FIXED BIN (31,0),
 03 ELE_A_42 CHAR (42),
 03 ELE_F_8 FLOAT DEC (16),
 03 ELE_B_3 BIT(24) UNAL,
 02 C_PC_OCC_7 FIXED BIN (15,0),
 02 PC_OCC_7 (7) ,
 03 PC_ELE_DE_NS_7V3 PIC ’(7)9V(2)9T’,
 03 C_PC_MC_PS_6V1 FIXED BIN (15,0),
 03 PC_MC_PS_6V1 (11) FIXED (7,01),
 03 PC_GR ,
 04 PC_ELE_I_2 FIXED BIN (15,0),
 04 PC_PS_20V7 CHAR (14),
 /* >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ PS ’ --> ’ A ’) */
 03 PC_ELE_F_4 FLOAT DEC (6),
 02 ELE_D FIXED (6,00),
 02 ELE_T FIXED (12,00),
 02 ELE_L BIT(8),
 01 MU_B_4_STRUCT
 BASED(ADDR(GENERATION_EXAMPLE.MU_B_4)),
 02 MU_RED_B_7 CHAR (7),

Copyright © Software AG 2003190

PL/I Include CodeSample Output

 13:28:02 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Generate PL/I Copy Code - Page: 2

 File ID .. GENERATION-EXAMPLE

 /* >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ B ’ --> ’ A ’) */
 02 MU_RED_US_13 PIC ’(12)9T’,

 01 MU_B_4_STRUCT1
 BASED(ADDR(GENERATION_EXAMPLE.MU_B_4)),
 02 MU_RED_B_8 CHAR (8),
 /* >>> DIC1818 WARNING: FORMAT(S) CHANGED (’ B ’ --> ’ A ’) */
 /* ++ CONSTANTS FOR RECORD BUFFER LENGTH AND FILE NUMBER */
 01 L_GENERATION_EXAMPLE FIXED BIN (15,0) UNAL INIT(674),
 01 N_GENERATION_EXAMPLE FIXED BIN (15,0) UNAL INIT(231),
 /***/
 /* THIS FORMAT-BUFFER WAS GENERATED BY PREDICT */
 /* FOR FILE: GENERATION-EXAMPLE */
 /* ON: 2003-05-31 STARTING AT 13:28:03 */
 /***/
 01 FORBUF_GENERATION_EXAMPLE_1 ,
 02 FILLE001 CHAR(34) INIT(’AB,2X,AD,AE,AF1-5,AG,2X,AH,AI,1X,A’),
 02 FILLE002 CHAR(34) INIT(’LC,2,AM1,AN1C,2,AN1(1-11),AO1,2X,A’),
 02 FILLE003 CHAR(34) INIT(’R1,2X,AM2,AN2C,2,AN2(1-11),AO2,2X,’),
 02 FILLE004 CHAR(34) INIT(’AR2,2X,AM3,AN3C,2,AN3(1-11),AO3,2X’),
 02 FILLE005 CHAR(34) INIT(’,AR3,2X,AM4,AN4C,2,AN4(1-11),AO4,2’),
 02 FILLE006 CHAR(34) INIT(’X,AR4,2X,AM5,AN5C,2,AN5(1-11),AO5,’),
 02 FILLE007 CHAR(34) INIT(’2X,AR5,2X,AM6,AN6C,2,AN6(1-11),AO6’),
 02 FILLE008 CHAR(34) INIT(’,2X,AR6,2X,AM7,AN7C,2,AN7(1-11),AO’),
 02 FILLE009 CHAR(21) INIT(’7,2X,AR7,2X,AS,AT,AU.’),
 01 FORBUF_GENERATION_EXAMPLE CHAR(293)
 BASED (ADDR(FORBUF_GENERATION_EXAMPLE_1)),
 /*++ CONSTANT FOR FORMAT BUFFER LENGTH */
 01 L_FORBUF_GENERATION_EXAMPLE FIXED BIN (15,0) UNAL INIT(293),
 /***/

 DIC1800 SUMMARY: 25 FIELD(S) PROCESSED
 DIC1818 WARNING: 3 FORMAT(S) CHANGED
 DIC1819 MESSAGE: 33 SLACK BYTE(S) GENERATED
 DIC1847 MESSAGE: 3 FIELD(S) SKIPPED FOR RECORDBUFFER STRUCTURE

191Copyright © Software AG 2003

Sample OutputPL/I Include Code

Sample File Definition
The following file definition was used for generating the sample output for the following external object types:

ADACMP, ADAWAN or ADAFDU definitions
Adabas files
ADAINV definitions
ADASCR definitions
Vista translator table
DDM
Assembler copy code
C include Code
COBOL copy code
FORTRAN copy code
PL/I include Code

Note:
The file definitions used for generating a DB2 table and an Adabas VSAM Bridge Transparency table are
given in the respective sections of this section.

 13:58:55 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Display File with Children - Page: 1

 File ID * GENERATION-EXAMPLE
 Type Adabas, Simple file
 File number 231 Added 2003-05-31 at 13:30 by BOE
 Modified 2003-05-31 at 13:35 by HNO
 Fields modified 2003-05-31 at 13:37 by CHD

 File attributes
 Sequence field
 Log. distribution type .. Simple file
 Adabas SQL usage N

 Vista
 L-DBnr 3
 L-Fnr 241

 Abstract
 Example file for the
 Predict generation subsystem.
 ..

Copyright © Software AG 2003192

Sample File DefinitionSample File Definition

 13:58:55 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Display File with Children - Page: 2

 File ID * GENERATION-EXAMPLE

 Adabas attributes
 Required attributes Added 2003-05-31 at 13:30 by BOE
 Phys. file number 231 Modified 2003-05-31 at 13:35 by CHD
 Min ISN 1
 Max ISN 3391

 Loading attributes Loading attributes
 Max recl One AC extent N
 ISN reusage N DS reusage Y
 User ISN N Mixed DS device .. N
 Ciphered N Mirror N
 LOWNERID
 Refresh from program .. N
 Automatic allocation .. Y
 PLOG Y
 ISN SIZE 0 Adabas decides

 Adabas security definition
 Access level ... 2
 Update level ... 3

 Extend allocation
 Device Padding factor Cylinder Blocks Max 2. Alloc
 Asso 3390 10 UI 41
 NI 80
 Data 3390 10 DS > 1 233

193Copyright © Software AG 2003

Sample File DefinitionSample File Definition

 13:58:55 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Display File with Children - Page: 3

 File ID * GENERATION-EXAMPLE

 --------------- Generation ---------------
 Generation status on DBnr Fnr Warnings
 NATURAL DDM GENERATED 2003-05-31 180 171 NATURAL DDM GENERATED
 VERIFIC. RULE GENERATED 2003-05-31 180 171 VERIFIC. RULE GENERATED

 Cnt Ty L Field ID F Length Occ D DB S

 1 GR 1 GROUP-1 AA
 2 2 ELE-N-9V5 N 9.5 AB N
 Specifications for 3GL
 Initialize with Z Zero
 Field synonyms
 BAL/Assembler ELN9V5
 FORTRAN ELN9V5
 Verification name
 GEN-CHECK-ZERO
 3 GR 2 GR-IN-GROUP AC
 Field synonyms
 BAL/Assembler GR-IN-GR
 4 3 ELE-B-4 B 4.0 D AD F
 Specifications for 3GL
 Init value 00001111
 Condition name
 INIT-ELE-B-4
 : Condition value
 : 00001000
 COND-ELE-B-4-V-1
 : Condition value
 : FFFFFFFF
 Verification name
 GEN-VER-EXAM
 5 3 ELE-PS-5V2 PS 5.2 AE N
 Specifications for 3GL
 Initialize with Z Zero
 Field synonyms
 BAL/Assembler ELPS52
 FORTRAN ELPS52
 Verification name
 GEN-CHECK-ZERO

Copyright © Software AG 2003194

Sample File DefinitionSample File Definition

 13:58:55 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Display File with Children - Page: 4

 File ID * GENERATION-EXAMPLE

 6 MU 3 MU-B-4 B 4.0 5 AF N
 7 RE 3 MU-B-4
 8 4 MU-RED-B-7 B 7.0
 Field synonyms
 BAL/Assembler MURB7
 FORTRAN MURB7
 9 4 MU-RED-US-13 US 13.0
 Field synonyms
 BAL/Assembler MURB13
 FORTRAN MURB13

 10 RE 3 MU-B-4
 11 4 MU-RED-B-8 B 8.0
 Condition name
 MU-RED-B-8-COND1
 : Condition value
 : 111111
 Field synonyms
 BAL/Assembler MURB8
 FORTRAN MURB8
 12 2 ELE-A-42 A 42.0 AG N
 Specifications for 3GL
 Initialize with H High-value
 Condition name
 COND-NAME-START
 : Condition value
 : COND-START
 : THRU
 : COND-ZEND
 FILL-WITH-STRING
 : Condition value
 : A
 Verification name
 GEN-CHECK-BLANK
 GEN-VER-EXAM
 13 2 ELE-F-8 F 8.0 AH F
 14 2 ELE-B-3 B 3.0 AI N
 Field synonyms
 FORTRAN FOB3

195Copyright © Software AG 2003

Sample File DefinitionSample File Definition

 13:58:55 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Display File with Children - Page: 5

 File ID * GENERATION-EXAMPLE

 15 SB 1 SB-ELE-A-5 A 5.0 AJ N
 Source field(s) Start End DB
 ELE-A-42 10 14 AG(10-14)
 Field synonyms
 BAL/Assembler SBB5
 FORTRAN SBB5
 16 SP 1 SP-DE-A-24 A 24.0 D S1 N
 Source field(s) Start End DB
 ELE-B-3 AI(1-3)
 ELE-A-42 20 36 AG(20-36)
 ELE-PS-5V2 AE(1-4)
 Field synonyms
 BAL/Assembler SPDA24
 FORTRAN SPDA24
 17 PC 1 PC-OCC-7 7 AL
 18 2 PC-ELE-DE-NS-7V3 NS 7.3 D AM N
 Field synonyms
 BAL/Assembler PCNS7V3
 19 MC 2 PC-MC-PS-6V1 PS 6.1 11 D AN N
 Field synonyms
 BAL/Assembler PCMCPS
 FORTRAN MCPS
 Verification name
 GEN-CHECK-ZERO
 20 GR 2 PC-GR AO
 21 3 PC-ELE-I-2 I 2.0 AP F
 Field synonyms
 BAL/Assembler BALI2
 FORTRAN FOI2
 22 3 PC-PS-20V7 PS 20.7 AQ N
 Field synonyms
 BAL/Assembler PCPS20V7
 FORTRAN PS20V7
 23 2 PC-ELE-F-4 F 4.0 AR F
 Field synonyms
 BAL/Assembler BALF4
 FORTRAN FOF4
 24 1 ELE-D D AS N
 25 1 ELE-T T AT N
 26 1 ELE-L L AU N
 27 HQ 1 HQ-DE-I-4 I 4.0 D S2
 Source field(s) DB
 PC-ELE-I-2 AP
 MU-B-4 AF

 *** End of report ***

Copyright © Software AG 2003196

Sample File DefinitionSample File Definition

File Implementation
When generating external objects from Predict file objects, several generation tasks can be executed comfortably
in one run using an implementation plan.
An implementation plan is defined online and can be executed either online or in batch mode.

How this section is Organized

This section covers the following topics:

Concepts of File Implementation
Calling File Implementation Functions
File Implementation Functions

The individual generation functions are described in the section Generation in this documentation.

Concepts of File Implementation
Generation functions can be executed from an implementation plan.
Each generation task contained in an implementation plan calls a generation function once.

A generation task comprises the following:

the call of the generation function (for example GENERATE FDT)
the Predict file object to be processed
a complete set of generation options to be used for generation
status information.

Implementation plans can be created, extended, copied, displayed, modified, renamed, purged and executed. An
implementation plan to be processed can be selected from a list.

Benefits of Implementation Plans

Whenever many generation operations are to be performed repeatedly, it is advisable to create an implementation
plan containing the generation tasks. Here are some examples of where to use an implementation plan:

Creating DDMs for a Natural application. If all files to be used in an information processing system are
defined in Predict, all DDMs to be used by Natural programs can easily be generated (and regenerated)
using an implementation plan.
Creating all copy code used in an application written in a third generation language.
Implementing Vista elements for complex data distribution structures. If data is distributed across several
machines in a complex (possibly heterogeneous) network, implementing the required Vista elements may
require many calls of the generation function GENERATE VISTATAB. These calls can be executed
comfortably from an implementation plan.

Note:
Using an implementation plan not only helps when several generation functions have to be called one after
another, but also helps keep track of data structures of an application or of distributed data structures.

197Copyright © Software AG 2003

File ImplementationFile Implementation

Overview of Activities

The following activities can or must be performed when using an implementation plan:

Create an Implementation Plan

Implementation plans are created with the Add implementation plan function by specifying a Plan ID in the File
Implementation menu and - in the subsequent Add implementation plan screen - a combination of Predict
selection criteria and generation function(s).

Extend an Implementation Plan

The function Extend implementation plan is used to add generation tasks for file objects that are not yet
contained in the plan.

Modify an Implementation Plan

The function Modify implementation plan is used for various tasks:

Add generation tasks for file objects that are already contained in a plan (command IN).
Display external object (command DI).
Specify which generation options are to be used (commands OO, MO, DO).
Display messages of generation functions called from the plan (command SM).
Determine that a generation task is to be executed again (command RE).
Delete generation tasks from plan (command UN).

Execute an Implementation Plan

The function Execute implementation plan processes all generation tasks with status no or reexecute.

Depending on the result of a generation function, the generation status of the tasks is changed. All messages of
the generation function are stored and can be displayed with command SM of the function Modify
implementation plan.

Reexecute an Implementation Plan

The function Reexecute implementation plan changes the status of all tasks which could be reset to status
reexecute manually, to reexecute and then starts the execution of the implementation plan.

Administrate an Implementation Plan

Implementation plans can be renamed, copied, displayed, purged, and selected from a list.

Executing Implementation Plans under Adabas Vista

If an implementation plan contains a generation task for an Adabas file, ADAINV cards, a DDM or Vista
translation tables, the virtual machine and the network that were current when adding the task(s) to the plan are
stored with the plan.

Such an implementation plan can be modified/extended/executed only if the current virtual machine/network and
the virtual machine/network that are stored with the plan are identical.

Copyright © Software AG 2003198

File ImplementationOverview of Activities

Generating a DDM under Natural Security

If you use an implementation plan to generate a DDM that is protected by Natural Security, the task is set to mis
(valid generation options missing) because a countersignature is required. The function MO (modify generation
options) must be performed and a countersignature entered.

If the Predict file object and the Natural Security definition have not been modified since countersigning the task,
the generate DDM function will then be performed when the implementation plan is executed.

If either the Predict file object or the Natural Security definition has been modified since countersigning, the
generation task will be skipped.

Calling File Implementation Functions

The File Implementation Menu

File implementation functions are called from the File Implementation Menu, which is called with function code
F from any Predict main menu or with the command IMPLEMENT FILE.

 13:13:01 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 10 - File Implementation Menu - Profile HNO

 Function Function

 A Add an implementation plan D Display implementation plan
 C Copy implementation plan E Extend implementation plan
 M Modify implementation plan S Select implementation plan from list
 N Rename implementation plan X Execute implementation plan
 P Purge implementation plan R Reexecute implementation plan

 Function

 Implementation plan ID ...
 Copy ID

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Parameters

Function Select function code from menu.

Implementation Plan
ID

ID of implementation plan to be processed. Up to 12 alphanumeric characters and
starting with a letter.

Copy ID For Copy implementation plan function:
ID of new implementation plan to be created. Up to 12 alphanumeric characters and
starting with a letter.

199Copyright © Software AG 2003

Calling File Implementation FunctionsFile Implementation

Executing and Displaying an Implementation Plan in Batch Mode

Implementation plans can be executed, reexecuted and displayed in batch mode.
Enter command IMPLEMENT FILE, and on the next line the required parameters in positional or keyword form.

Field Keyword Position

Function FUNCTION 1

Plan ID PLAN-ID 2

Example_Batch

To execute and list the implementation plan IMP-TEST use the commands:

IMPLEMENT FILE
FUNCTION=X,PLAN-ID=IMP-TEST
IMPLEMENT FILE
D,IMP-TEST

Handling of Errors in Batch Mode

Condition Code 106 is issued if

a function in the implementation plan is executed with errors,
or a function terminates abnormally,
or the plan contains at least one generation task that failed or could not be executed (status impossible).

File Implementation Functions

Add Implementation Plan - Code A

Implementation plans are created with the Add implementation plan function by specifying an Implementation
Plan ID in the File implementation Menu and - in the subsequent Add Implementation Plan screen - a
combination of Predict selection criteria and generation functions.
Invalid combinations of file object and generation function are not added to the implementation plan.

Generation tasks are added for each file that meets the given selection criteria according to the following rules:

for each valid combination of file object and generation function, one generation task is added (if no
external object for the file exists)
if external objects for a file already exist, one generation task is added for each external object. This
facilitates regenerating existing external objects.

Note:
For Adabas files, DDMs, ADAINV cards and Vista translation tables, tasks are added only for those
external objects that are accessible in the current virtual machine/network.

The plan is displayed and the tasks can be modified with the same functions that are provided in the Modify
Implementation Plan screen

Copyright © Software AG 2003200

File ImplementationFile Implementation Functions

 13:13:17 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Add Implementation Plan - Profile HNO
 Implementation plan ID .. HNO-PLAN1 Added 2003-05-31 at 13:12 by HNO
 Modified
 Executed

 File ID
 Files of type* File number ...
 Contained in DA ...

 Implemented N (Y,N)
 Modified N (Y,N)
 with userviews N (Y,N) Restrictions* Profile HNO ,used

 ----------------------- Generation functions --------------------------------
 ADACMP/ADAWAN Adabas file ADAINV cards
 ADASCR Adabas - VSAM DB2 table/view
 SQL CREATE Stmnt DDM for Natural OS/400 File Def.
 BAL/ASSEMBLER Language C COBOL
 FORTRAN PL/1

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

201Copyright © Software AG 2003

Add Implementation Plan - Code AFile Implementation

Parameters

Implementation
plan ID

ID of the plan. A read-only field.

Added Date and time the plan was added.

Modified Date and time the plan was last modified.

Executed For function Extend implementation plan:
Date and time the plan was executed last. Date and time are taken when executing the last
task in the plan. Not applicable for function Add implementation plan.

File ID ID of the file(s) for which generation tasks are to be included in the plan. Use asterisk
notation to select a range of files.
If a unique file ID is specified, all other selection criteria are ignored.

Files of type Only files of this type are added to the plan.

File number Only files with this number are added to the plan.

Contained in DA Only files in the specified database(s) are added to the plan.

Implemented Y
A generation task will be included in the plan only for Predict file objects for which
implemented external objects exist for the respective generation function. Each generation
task will therefore replace an external object.

Modified Y
A generation task will be included in the plan only for Predict objects marked modified
after generation. Each generation task will therefore replace an external object if the
Predict object has been changed since generation.

with userviews Y
The selection criteria will apply to master files only. If userviews are derived from the
Predict file objects, generation tasks for these userviews are automatically included into the
implementation plan.
For files of type AT (Adabas cluster table), only one file is entered in the plan. The
generation task automatically generates a cluster description for each file in the cluster.

Restrictions See Restrictions in the section Predict User Interface in the Introduction to Predict
documentation.

Generation
functions

Mark with any non-blank character the external object(s) to be created for each file
selected.

Copy Implementation Plan - Code C

Copies the plan Implementation Plan ID to Copy ID.
The IDs are entered in the File Implementation Menu.

Modify Implementation Plan - Code M

Generation tasks in an implementation plan can be changed with several functions. If a task is modified, its
generation status (indicated in the column Generation) is changed to reexecute if it had already been executed.

Note:
Plans containing a generation task for an Adabas file, ADAINV cards, a DDM or Vista translation tables
can only be modified if the current virtual machine/network and the virtual machine/network that are stored
with the plan are identical. It is however possible to purge a plan regardless of the current virtual
machine/network.

Copyright © Software AG 2003202

File ImplementationCopy Implementation Plan - Code C

 13:19:18 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Modify Implementation Plan -

 Implementation plan ID .. CHD-FDT

 F Language Dbnr Fnr Library Member Op.-mem. Opt Generation

 __ --- FILE-ID: CHD-FDT
 __ ADACMP/ADAWAN 188 57 WANLIB CHD-FDT1 old performed
 __ ADABAS file 188 57 WANLIB CHD-FDT1 mod abended
 __ 181 57 mod executing
 __ 180 57 mod warning
 __ 205 57 mis impossible
 __
 __
 __
 __
 __
 __
 __
 __

 __ (’.’ = EXIT , ’T’ = TOP)

Meaning of Columns

203Copyright © Software AG 2003

Modify Implementation Plan - Code MFile Implementation

F Two-letter command processing the generation task.

IN
Insert new task for the file object with the same language. The task is inserted after current task.
Different generation options can be used.

DI
Display external object.

DO
Use default options. The external object will be generated with the options defined in the Modify
... Defaults screen.

OO
Use old generation options for generation.

MO
Modify generation options. The respective generation screen is displayed. File ID, Overwrite
option and List generated code cannot be modified and Member and Library cannot be changed
if the external object already exists.

SM
Show messages that the generation function issued when the generation task was executed last.

RE
Reexecute a generation task that was executed successfully or which terminated abnormally.

UN
Undo generation task (delete from list).

Note:
Which functions can be applied to a generation task depends on several factors, such as type
of generation function and whether the generation task has already been executed. Enter an
asterisk in the column F to show valid functions for a specific generation task.

Language The type of external object to be generated, for example: COBOL when generating COBOL
copy code.

Dbnr / Fnr Database number / file number of the external object (if applicable).

Library /
Member

Member and library of the external object (if applicable).

Op.-mem. See description of parameters Save as member, Save in library and Op. sys member in the
section Parameters Specifying the Form of Output.

Opt Shows which generation options are used:

def
Execute task using default generation options. See the section Defaults in the
Predict Administration documentation.

mis
No valid generation options are available. The function MO (modify generation
options) must be performed for the generation task before it can be executed.

old
Execute task using generation options that were used when the member was
generated last.

mod
Execute task using modified generation options. This value appears if the command
MO has been issued for a generation task (even if no options were in fact changed).

Copyright © Software AG 2003204

File ImplementationModify Implementation Plan - Code M

Generation Status of the generation tasks:

abended Task terminated abnormally.

errorTask performed with errors. See also Error Handling - Online.

executing Task is executing or terminated abnormally.

impossible

Task could not be performed, for example because the generation options are
missing or because you are not authorized to generate the DDM.
This status can be reset with the command MO (modify generation options).
See above.

interrupted Task interrupted by the user.

no Task not yet performed.

performed Task performed successfully.

reexecute Task will be performed again.

sav.error Task performed with errors; the generated code was saved.

warning Task performed with warnings.

Rename Implementation Plan - Code N

After calling the function Rename implementation plan, a screen appears for entering a new Implementation Plan
ID.

Purge Implementation Plan - Code P

Additional confirmation is requested before a plan is actually purged. The implementation plan will be purged if
you enter DELETE.

Display Implementation Plan - Code D

The function Display implementation plan displays a plan as shown below:

205Copyright © Software AG 2003

Rename Implementation Plan - Code NFile Implementation

 13:42:18 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Display Implementation Plan -
 Added 2003-05-31 at 13:01 by CHD
 Modified
 Executed 2003-05-31 at 13:05
 Implementation plan ID .. TEST
 Network
 Virtual machine

 Language DBnr Fnr Library Member Op.-mem. Option Generation

 File ID CHD-CIPHER
 Language C old warning
 DIC1800 SUMMARY: 4 FIELD(S) PROCESSED
 DIC1818 WARNING: 1 FORMAT(S) CHANGED
 COBOL old performed
 DIC1800 SUMMARY: 4 FIELD(S) PROCESSED

 File ID CHD-COBOL-PREF-G
 Language C old performed
 Command ===> Scroll ==> CSR
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Quit RFind Flip - + Left Right
 line 1 of 47 (line 10 on screen)

Information Given by Display Implementation Plan

The function Display Implementation Plan gives the following information:

Information as contained in the Add/Extend/Modify Implementation Plan screens.
If a plan contains a generation task for an Adabas file, ADAINV cards, a DDM or Vista translation tables,
the virtual machine/network combination that is stored with the plan is displayed.
If the current virtual machine/network combination differs from the one that is stored with the plan, a
warning is issued.
Warnings and error messages issued by generation functions are displayed if the generation function was
executed from the plan.

Note:
Display Implementation Plan can be executed in batch mode. See Executing and Displaying an
Implementation Plan in Batch Mode.

Extend Implementation Plan - Code E

This function is used to add generation tasks for file objects that are not yet contained in the implementation
plan.
The function Extend implementation plan uses the same input screens as Add Implementation Plan.

Note:
New generation tasks for file object/generation function combinations that are already contained in a plan
can be added with the command IN of the function Modify implementation plan.

Select Implementation Plan from List - Code S

Implementation plans can be selected for further processing. Enter function code S in the File Implementation
Menu and

Copyright © Software AG 2003206

File ImplementationExtend Implementation Plan - Code E

leave field Plan ID blank to display all plans for selection or
enter a plan ID ending with an asterisk to specify a range of values.

The Implementation Plan Selection screen will appear:

 13:48:24 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Implementation Plan Selection -

 M Impl. plan ID Last modification Exec. Date Remarks

 _ CHD 2002-07-30 at 13:59 2002-07-12 at 13:55 mod. after exec.
 _ CHD-A-FDT 2002-07-03 at 13:48 2002-07-03 at 13:50
 _ CHD-ABC 2002-07-03 at 13:25 2002-07-03 at 13:25 mod. after exec.
 _ CHD-COPY2 2002-07-12 at 13:38 2002-07-12 at 13:41
 _ CHD-FDT 2002-07-12 at 13:57 2002-07-03 at 13:14
 _ CHD-FDT2 2002-07-03 at 13:15
 _ CHD-NET 2002-07-07 at 18:09
 _ CHD-TRUNC 2002-07-03 at 13:03 2002-07-03 at 13:03 mod. after exec.
 _ CHDA 2002-07-02 at 13:04 2002-07-02 at 13:05
 _ CHDABC 2002-07-02 at 13:22 2002-07-02 at 13:22
 _ CHDAN 2002-07-08 at 13:47 2002-07-08 at 13:47
 _ CHDB 2002-07-02 at 19:01
 _ CHDBA 2002-07-06 at 09:54 2002-07-06 at 09:55
 _ CHDBBB 2002-07-12 at 18:27
 _ CHDC 2002-07-05 at 13:12 currently modified
 _ CHDCOB 2002-07-12 at 13:03 2002-07-12 at 13:03

 _ (’.’ = EXIT , ’T’ = TOP)

The following information is displayed:

implementation plan ID
date and time of last modification
execution date and time
remarks (see below)

Enter a non-blank character in column M to select a plan for further processing.

Remarks

The following remarks are possible:

currently
modified

Another user is currently modifying this implementation plan or the last attempt to modify the
plan terminated abnormally.

mod. after exec.The implementation plan has been modified since it was last executed.

executing The plan is currently executing or the execution of the implementation plan terminated
abnormally.

Execute Implementation Plan - Code X

The function Execute Implementation Plan can also be executed in batch mode. See Executing and Displaying
an Implementation Plan in Batch Mode.

Note:
Plans containing a generation task for an Adabas file, ADAINV cards, a DDM or Vista translation tables
can only be executed if the current virtual machine/network combination and the virtual machine/network

207Copyright © Software AG 2003

Execute Implementation Plan - Code XFile Implementation

combination stored with the plan are identical.

 09:57:05 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - File Implementation Menu - Profile HNO

 Function Function

 A Add an implementation plan D Display implementation plan
 C Copy implementation plan E Extend implementation plan
 M Modify implementation plan S Select implementation plan from list
 N Rename implementation plan X Execute implementation plan
 P Purge implementation plan R Reexecute implementation plan
 +--+
 ! !
 ! File Implementation performed for !
 F ! !
 ! File ID ... CHD-COND !
 I ! Language .. Language C !
 C ! Library ... CCCLIB Member !
 ! DBnr File nr ... !
 ! !
 C +--+
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

When an Implementation Plan is executed, all generation tasks of status no or reexecute are executed. All other
generation tasks are skipped. The task currently being executed is displayed in a window (see screen above). If
the plan does not contain any executable task (status no or reexecute), a corresponding message is given.

You can repeat the execution of a plan if necessary (for example due to abnormal termination or system errors).

Reexecute Implementation Plan - Code R

This function consists of two parts:

Tasks are set to status reexecute
All tasks in the implementation plan for which the command RE could be entered when executing the
function Modify Plan are set to reexecute. The command RE is valid for all tasks that have been started at
least once, i.e. in one of the following statuses: abended, error, executing, interrupted, performed, sav. error,
or warning.
If a task is set to reexecute, any messages that were issued during the last generation are removed from the
plan.
Generate DDM tasks are set to impossible if Natural Security is installed and a countersignature is required.
Function Execute plan is started
In the second step, the function Execute Plan is started. If the execution terminates for any reason, the
function Execute Plan can be started again at a later time to process the tasks that could not be executed.

Reexecute Implementation Plan in Batch Mode

This function can also be executed in batch mode. See Executing and Displaying an Implementation Plan in
Batch Mode.

Copyright © Software AG 2003208

File ImplementationReexecute Implementation Plan - Code R

Error Handling - Online

If parameters of a generation task cannot be applied, a message is returned and in some cases a selection
window. Select a valid value from this window to execute the task.

A generation task that cannot be executed due to errors is given the status error. The status can be set to
reexecute with the function RE or by modifying the generation options.

If a generation task terminates abnormally (status abended or executing), call the generation function directly to
get a detailed error message (DICnnnn).

209Copyright © Software AG 2003

Error Handling - OnlineFile Implementation

Incorporation
Predict objects can be created or updated by incorporating information from external objects, for example
Natural DDMs or File Description Tables in Adabas .

This section covers the following topics:

Concepts of Incorporation
Calling Incorporation Functions
Incorporating Adabas Databases
Incorporating Adabas Files
Incorporating DB2 Storagegroups
Incorporating DB2 Databases
Incorporating DB2 Tablespaces and SQL/DS DBspaces
Incorporating DB2 and SQL/DS Tables/Views
Incorporating NDBs for IMS Databases/Segments
Incorporating Adabas Tables and Views
Incorporating Natural DDMs
Incorporating COBOL Copy Code
Incorporating Super Natural Users
Incorporating Natural Security Users
Incorporating Tables / Views of SQL Database Systems

Copyright © Software AG 2003210

IncorporationIncorporation

Concepts of Incorporation
Incorporation functions are used

to find external objects that are not yet documented/connected to a documentation object,
to document applications that are not yet documented in Predict,
to redocument applications that are not completely documented in Predict.

Overview of Incorporation Options
Incorporation functions perform the following tasks:

Compare external and documentation objects (command code T).
The function finds implemented objects already documented with Predict objects, where the implemented
object and the Predict object are not connected.
If an implemented and a documented object with no differences are found and the parameter Connect
automatic is set to Y, the implemented object is connected to the Predict object.
Connect external and documentation objects (command code C).
The function connects documentation and implementation objects and - if appropriate - the documentation
object is partially updated. For example: physical file attributes are updated, but file lists are not.
Display IDs of objects that must be documented in Predict before objects can be incorporated (command
codes M and V).

Display related DDM(s) that must be documented in Predict before DDMs can be incorporated
(command code V)
Display DB2 databases, tablespaces and storagegroups that must be documented in Predict before
tables/views or tablespaces can be incorporated (command code M).

Incorporate external objects (command code I).
A Predict object is created, its attributes are taken from the implemented object. The implemented object
and the new documentation object are connected.
Replace documentation objects with newly created objects (command code R)

Replace IMS database objects in Predict with newly created objects.
Replace file object by incorporating COBOL copy code.

Overview of Incorporation Subfunctions

Not all incorporation subfunctions are available for all object types. See table below.

211Copyright © Software AG 2003

Concepts of IncorporationConcepts of Incorporation

Documentation Object Compare Connect Display
Masters

Display Related
DDMs

Incorporate Replace

Adabas Database Y Y Y

Adabas File Y Y Y

DB2 Database Y Y Y

DB2 and SQL/DS
Tables/Views

Y Y Y Y

DB2 Storagegroup Y Y Y

DB2 Tablespace Y Y Y Y

DDM Y Y Y Y

IMS Database Y Y

Natural Security User Y

SQL Tables/Views Y Y

Super Natural User Y

Connecting External and Predict Objects

The incorporate functions Compare, Connect, Incorporate and Replace can be used to connect Predict objects
and external objects.

See the section Handling of External and documentation Objects in this documentation for a description of the
basic principles of connecting external and Predict objects.

Identifying Corresponding External and documentation Objects

Incorporation functions read information from Predict and from external sources to try and find objects that
correspond. Corresponding objects are identified as follows:

Predict Object Corresponding Object Identified with

Adabas Database Physical database number (P-DBnr)

Adabas File Physical database and file number (P-DBnr/P-Fnr)

see also note below

DDM DDM name - Predict file ID

DB2 Database DB2 database name

DB2,SQL/DS Tables/ViewsDB2,SQL/DS table/view name - Predict file ID

DB2 Storagegroup DB2 storagegroup name

DB2 Tablespace DB2 tablespace name

IMS Database IMS database name

Natural SEC. User User name - ID of User object in Predict

SQL Tables/Views SQL table view name - Predict file ID

Super Natural User User name - Predict user ID

Copyright © Software AG 2003212

Concepts of IncorporationConnecting External and Predict Objects

Note:
With partitioned files, a Predict file object can be implemented with several physical files: In this case the
database/file number of implemented files and corresponding Predict file objects need not be identical.
Predict evaluates the Vista translation table to determine implemented files documented with Predict file
object when the database/file numbers are not identical.

Sources of Information on External Objects

Predict reads the following external sources of information:

documentation Object External Source of Information

Adabas Database Adabas GCB

Adabas file Adabas FCB and FDT

DB2 Database DB2 catalog

DB2,SQL/DS Tables/ViewsDB2 catalog

DB2 Storagegroup DB2 catalog

DB2 Tablespace DB2 catalog

DDM DDM (in Predict system file)

IMS Database Natural for DL1 database description (NDB) in Predict system file

Natural SEC. User Natural Sec. system file

SQL Tables/Views Catalog of corresponding DBMS

Super Natural User Super Natural system file

Calling Incorporation Functions
When working online, incorporation functions are called from object type-dependent Incorporate screens. These
are called by entering code I and an external object code in a Predict main menu.

To display a list of the valid external objects that can be processed with incorporation functions, select function
code I in a Predict main menu and either leave the Object type blank or enter an asterisk. The external object
types displayed depend on the environment. If DB2 is not installed, for example, DB2 objects are not contained
in the list.

Incorporation Functions are Executed in Two Steps

Create a list of external objects not yet connected to any Predict documentation object by specifying
selection criteria.
Process the selected objects with incorporation functions.

When incorporating Natural Security users and Super Natural users, the external object is selected and the
incorporation subfunction is executed in one step.

Step 1: Selecting the Objects to be Processed

A selection list containing external objects is displayed. Selection criteria determine which objects are contained
in the list. The layout of the list depends on the external object type.

213Copyright © Software AG 2003

Calling Incorporation FunctionsConcepts of Incorporation

 13:50:11 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Incorporate DB2 Tablespaces -
 Search-crit.: Tablespace name=ALL
 DB2 Tablespace Predict
 Cmd database name dataspace ID Remark

 __ ABAG ABAGTS01 DA missing
 __ ABAG ABAGTS02 DA missing
 __ ABAG ABAGTS03 DA missing
 __ ABAG ABAGTS04 DA missing
 __ ABAG ABAGTS05 DA missing
 __ BGCDA AAB$PACE SC missing
 __ BGCDA TABSPACE PD-TABSPACE SC missing
 __ DB01 TS01 DA missing
 __ DSNCV DSNAUTH DA missing

Remarks which apply to all Object Types

Note:
Type-specific remarks are described with the respective external object types.

Remark Function Description

Equal Compare No significant differences between external and
documentation object. Connection between the
two can be established.

Different Significant differences between external and
documentation object. No connection between
the two possible.

Connected After execution of incorporation function
Connect or Compare with parameter
Connect automatic set to Y

Connection between external and documentation
object was established.

Not
connected

No connection established due to significant
differences between external and documentation
object.

Incorporated After execution of function Incorporate New Predict object created with information from
external object.

Not
incorporated

No new Predict object created.

Step 2: Processing Objects with Incorporation Functions

Compare - Code T

Compares the external objects with Predict objects and reports differences between attributes and lists of
children (if applicable). Requires that both an implemented object and a corresponding Predict object exist.
This function connects Predict objects to external objects if the following prerequisites are met:

The parameter Connect automatic is set to Y.
No differences or insignificant differences are found between the external object and the Predict object. If
insignificant differences are found, the Predict object is updated.

Applicable to all external object types except Natural Security, Super Natural users and SQL tables/views.

Copyright © Software AG 2003214

Concepts of IncorporationStep 2: Processing Objects with Incorporation Functions

Connect - Code C

Connects the external object to an existing Predict object and

copies current information from external object to the Predict object;
writes to the generation log of the object that a corresponding implemented database existed when the
connection was established;
connects child objects to the corresponding external objects.

Applicable to all external object types except Natural Security, Super Natural users and SQL tables/views.

Display Masters - Code M

When incorporating tables/views/tablespaces, higher-level objects (databases, storagegroups, tablespaces) must
be documented in Predict.
This function finds higher-level objects that are not documented.

Display Related DDMs - Code V

When incorporating DDMs, related DDMs must already be documented in Predict. This function displays related
DDMs that must be incorporated before a DDM can be incorporated.

Applicable to DDMs.

Incorporate - Code I

Creates Predict objects from information of external objects and connects the Predict objects to the external
objects. Applicable to all external object types.

When incorporating files/tables/views, Predict objects for the files in the database and links from files to
fields are also created.
When incorporating IMS databases, Predict objects for the files in the database and links from files to fields
are also created.

Type-specific parameters determine how the different incorporation functions work.

Replace - Code R

This is the only function with which existing Predict objects documenting NDBs can be changed. Applicable to
NDBs for IMS databases and segments.

Overview of Function Codes and Commands

The following table gives an overview of the codes to be entered in a Predict main menu and the corresponding
commands.

215Copyright © Software AG 2003

Overview of Function Codes and CommandsConcepts of Incorporation

Object Type Code Command

Adabas Database AD INCORPORATE ADABAS-DATABASE

Adabas File AF INCORPORATE FDT

Adabas D Table/View BF ESD-TABLE

COBOL Copy Code CO INCORPORATE COBOL

DDM DD INCORPORATE DDM

IMS Database ND INCORPORATE NDB

DB2 Database D2 INCORPORATE DB2-DATABASE

Adabas table/view EQ INCORPORATE ESQ

Ingres Table/View JF INGRES-TABLE

Natural Security User NS INCORPORATE SECURITY

Oracle Table/View OF ORACLE-TABLE

Super Natural User SU INCORPORATE SUPER

DB2 Table/Views T2 INCORPORATE TABLE

DB2 Storagespace SG INCORPORATE STORAGEGROUP

DB2 Tablespace TS INCORPORATE TABLESPACE

Informix Table/View XF INFORMIX-TABLE

Sybase Table/View YF SYBASE-TABLE

Using Incorporation Functions in Batch Mode

Incorporation functions can be used both online and in batch mode.
Exception: Incorporate DDM is only available online.

Copyright © Software AG 2003216

Concepts of IncorporationUsing Incorporation Functions in Batch Mode

Incorporating Adabas Databases
Prerequisites

Adabas Online Services must be active.
Databases must be Adabas Version 6 databases or above.
If Natural Security is installed and function protection for Predict is activated, access rights must be given.

Restrictions

Only databases accessible from the current virtual machine can be processed (see also the description of the
Current VM parameter below).

Note:
See Concepts of Incorporation for basic information on how to use incorporation functions.

Selecting Adabas Databases
The Incorporate Adabas Databases screen is called with function code I and object code AD in a Predict main
menu or with the command INCORPORATE ADABAS-DATABASE.

 09:49:24 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate Adabas Databases -

 Current VM HOME

 Database number from 1 (1-65535)
 to 65535 (1-65535)

 Processing option
 Connect automatic N (Y/N)

Parameters

Current VM Virtual machine of the database. A read-only field. The current virtual machine can be
changed in the session profile.
If no Current VM is specified in the session profile, the parameter Default current virtual
machine in the Miscellaneous section of the General Defaults is used.

Database
number from/to

The physical numbers of the Adabas databases to be incorporated. A range of up to 23
databases can be specified.

Connect
automatic

Y
The Adabas database and a corresponding Predict database object will be connected by the
Compare function (code T) if no differences are detected between the file lists of the two
objects.

Databases which meet the given selection criteria and are not already connected to a Predict database are then
listed as follows:

217Copyright © Software AG 2003

Incorporating Adabas DatabasesIncorporating Adabas Databases

 13:59:54 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Incorporate Adabas Databases -
 Search-crit.: DBnr:8-30

 Cmd DBnr Adabas name Predict database ID Remark

 __ 8 HEB-ADA Vista element exis
 __ 9 GENERAL-DATABASE HEB-ADA-1
 __ 10 DB010-NATURAL BER-DA-10
 __ 11 PD-A0000 Vista element exis
 __ 12 GSD-MVS-012 DA with diff. type
 __ 13 HEB-A-HEB-VM DB error:3148

Columns in the List

Cmd Enter a valid incorporation subfunction. Enter an asterisk to display possible values.

DBnr Number of the database.

Adabas name The Adabas name of the database (the name specified with the ADADEF or the
ADAREF utility).

Predict database ID The IDs of Predict database object.

Remark

Any of the following type-specific remarks or blank. For type-independent remarks see Remarks which apply
to all Object Types.

Note:
If any of the following remarks is given, no incorporation function is possible.

DB error: nnnn Where nnnn is an Adabas response code between 3001 and 3255. The database is not
defined in NTDB as type Adabas.

Vista element existsIncorporating the database would destroy the consistency of the Predict documentation.

Database with
different type exists

A Predict database object with a different database type exists. Incorporating the
database would destroy the consistency of the Predict documentation.

Exists in other
Network

Unique database number is required and the database already is exists in another
network. Incorporating the database would destroy the consistency of the Predict
documentation.

Access via Vista The database to be incorporated is only accessible using Vista, but Vista support is not
activated in Predict.

Incorporation Functions for Adabas Databases

Compare - Code T

Compares (test) the database and the Predict database object and report differences between attributes and file
lists.
If no differences between the file lists are found and Connect automatic is set to Y, connect the dictionary object
to the database.

Copyright © Software AG 2003218

Incorporating Adabas DatabasesIncorporation Functions for Adabas Databases

Connect - Code C

Connects the database to the existing Predict database object, and

copies current information from Adabas to Predict object
writes to the generation log of the object that a corresponding implemented database existed when the
connection was established
connects the checkpoint and security file (if any) of the Adabas database to Predict file objects in the file list
of the database with the same file number.

Incorporate - Code I

Scope of the Incorporation

A Predict database object of type A is created and connected to the external object.
Vista elements for the database are created

if Vista is installed and
the Vista translation table contains translation elements with this database specified as target.

The new database object is linked to the current virtual machine.
If this database has a checkpoint or security file, the following files are added to the file list of the database:
SAG-ADA-CHECKPOINT and SAG-ADA-Security.

Specify the following options in an additional input screen before executing the function.

Incorporation Options

Database ID The ID of the new database object in Predict (mandatory). The Adabas name of the database
is displayed and can be accepted or overwritten. The Adabas name is specified in the
ADADEF or the ADAREF utility when creating the database.

List
incorporated
code

Y The values of all attributes incorporated for the database are listed (optional).

Incorporate Adabas Database in Batch Mode
Command: INCORPORATE ADABAS-DATABASE

Field Keyword Position

Database number fromDBNR-FROM 1

Database number to DBNR-TO 2

Connect automatic AUTO-CONNECT 3

Function SUB-FUNCTION 4

Database ID DATABASE-ID 5

List incorporated codeLIST 6

Enter the parameters on the next line in positional or keyword form.

Example

219Copyright © Software AG 2003

Incorporate Adabas Database in Batch ModeIncorporating Adabas Databases

To incorporate the Adabas database with number 188 as ’TEST-DB’ and display the database attributes, enter:

INCORPORATE ADABAS-DATABASE
DBNR-FROM=188,DBNR-TO=188,SUB-FUNCTION=I,DATABASE-ID=TEST-DB,LIST=Y

or

INCORPORATE ADABAS
188,188,,I,TEST-DB,Y

The example above uses the Natural parameters ID=, and IA==

Copyright © Software AG 2003220

Incorporating Adabas DatabasesIncorporate Adabas Database in Batch Mode

Incorporating Adabas Files
Prerequisites and Restrictions

A Predict database object for the Adabas database of the file must exist.
If Natural Security is installed and function protection for Predict is activated, access rights must be given.
Certain features of the Connect and Incorporate functions require Adabas Online Services to be active and
Adabas Version 6 or above (see descriptions below).

Note:
See Concepts of Incorporation for basic information on how to use incorporation functions.

With partitioned or replicated files, a Predict file object can be implemented as several physical files. In this
case the database/file number of implemented files and corresponding Predict file objects need not be
identical. Predict evaluates the Vista translation table to determine if an implemented file is documented
with a Predict file object, even if the database/file number are not identical.
Therefore, when incorporating partitioned files, only one implemented Adabas file can be incorporated
using function I (incorporate). Other components of that file can then be connected with the incorporate
function C (connect). Both the functions I and C update the Vista translation table of the file.

Selecting Adabas Files
The Incorporate Adabas Files screen is called with function code I and object code AF in a Predict main menu or
with the command INCORPORATE FDT.

 09:58:15 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate Adabas Files -

 Current VM HOME

 Database number 180 (1-65535)
 Physical file number from 1 (1-2096)
 to 255 (1-2096)

 Select option
 Even if only FDT exists Y (Y/N)

 Processing option
 Connect automatic N (Y/N)
 Incorporate file attributes* R Required attr.
 Adabas password

221Copyright © Software AG 2003

Incorporating Adabas FilesIncorporating Adabas Files

Parameters

Database
number

The physical number of the Adabas database in which the Adabas files to be incorporated
reside.

Physical file
number

Range of physical file numbers of the Adabas files to be incorporated.

even if only
FDT exists

Y
A file is to be incorporated even if it has been deleted with the Keep FDT option.

N
only valid if the following conditions are met:

Adabas Online Services must be available;
The file to be incorporated must reside in a database of Adabas Version 6 or above;
The file to be incorporated must not have been deleted with the Keep FDT option, since
it must have implementation data.

Connect
automatic

Y
The Adabas file and the Predict file object will connected by the Compare function (code T) if
no differences are detected between the field lists of the two objects.

Incorporate file
attributes

Determines which attributes of the data dictionary file object are to be updated. Provided that
Adabas Online Services are available and the file to be connected or incorporated resides in a
database of Adabas Version 6 or above, the following values can be specified:

R
File attributes required when loading a file and any other file attributes specified in the data
dictionary object

O
All file attributes including optional attributes not specified in the data dictionary object.

Adabas
password

The password required to access the file if the file is protected by Adabas security. The
password is not converted to upper case.

Files which meet the given selection criteria and are not already connected to a Predict file object will then listed
as follows:

 13:04:29 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Incorporate Adabas Files -
 Search-crit.: DBnr=180,File range=1-255,Even-only-FDT=Y

 Cmd PFnr Adabas name Predict File ID Remark

 __ 5 MISCELLANEOUS
 __ 6 N-213-FNATS N-213-FNATS
 __ 8 AUTOMOBILES
 __ 9 FINANCE
 __ 10 CST332-SYSF

Copyright © Software AG 2003222

Incorporating Adabas FilesSelecting Adabas Files

Columns in the List

Adabas name The name that was specified, either to the ADALOD utility or to Adabas Online
Services, when the file was loaded into the database.

Predict File ID The ID of Predict file object of type A that may correspond to the Adabas files.

Remark

Any of the following type-specific remarks or blank.
In any of the following messages is displayed, the connect function cannot be executed.
For type-independent remarks see Remarks which apply to all Object Types.

Partitioned master
missing

Documentation of Vista elements and entries in Vista translation table are different.

ISN range
overlapping

Predict file object with physical distribution type expanded is different.

Different
components

Predict file object with physical distribution type expanded is different.
Vista elements and entries in Vista translation table are different.

Different Vista type Documentation of Vista elements and entries in Vista translation are different.

Different local
definition

Documentation of Vista elements and entries in Vista translation are different.

Incorporation Functions for Adabas Files
The functions T, C and I apply.

Compare - Code T

Compares Adabas files and corresponding Predict file objects.

Differences between field lists and - if Adabas Online Services are available - their file attributes are reported. If
no differences between the field lists are found and Connect automatic is set to Y, the Adabas file and the Predict
file object are connected.

Connect - Code C

Connects Adabas file to the corresponding Predict file object and

copies information from the Adabas FCB to the Predict file object,
writes to the generation log of the object that a corresponding Adabas file existed when the connection was
established.
adds or updates Vista elements according to Vista translation table (if applicable).

Incorporate - Code I

Scope of the Incorporation

One Predict file object is created for each Adabas file.
The Predict file objects are connected to the Adabas files.
The new file object is linked to the database object via association Contains FI.
One field object is created for each field in the file.
The ID assigned to each field object is created from the name of the field followed by either -GROUP for a
group or -FIELD for a single field.
A prefix and/or suffix specified with the parameters Field name prefix/suffix is/are added.

223Copyright © Software AG 2003

Incorporation Functions for Adabas FilesIncorporating Adabas Files

If the file is physically coupled, a relationship object is created for each coupling definition.
One Vista element (if applicable). If the file is accessible via several entries in the Vista translation table,
the Vista element is created for the lowest logical file number.
If Adabas Online Services are active and the file is implemented in a database of Adabas Version 6 or
above, information on the implementation of the file (space allocation, for example) is incorporated.

Before the function is executed, enter the following parameters in an additional input screen. Parameter File ID
is mandatory, all other parameters are optional.

Incorporation Options

File ID ID of the new file object (mandatory).
The Adabas name of the file is displayed and can be accepted or overwritten.

Field name prefix Prefix of each field ID.

Field name suffix Suffix of each field ID.

List incorporated codeY
The values of all attributes incorporated for the file are to be listed.

Edit elementary fieldsY
The function Edit elements of a file is to be executed after incorporation.

Incorporating Adabas Files in Batch Mode
Command: INCORPORATE FDT

Enter parameters on next line in positional or keyword form.

Field Keyword Position

Database number DBNR 1

Physical file number fromFROM-FNR 2

Physical file number to TO-FNR 3

Even if only FDT exists EVEN-ONLY-FDT 4

Connect automatic AUTO-CONNECT 5

Incorporate file attributesFILE-ATTR 6

Adabas password PSW 7

Function SUB-FUNCTION 8

File ID FILE-ID 9

Field name prefix PREFIX 10

Field name suffix SUFFIX 11

List incorporated code LIST 12

Example

To incorporate the file 1 in database 177 and give the file the name ’INC-TEST’, code the command:

Copyright © Software AG 2003224

Incorporating Adabas FilesIncorporating Adabas Files in Batch Mode

INCORPORATE FDT
DBNR=177,FROM-FNR=1,TO-FNR=1,SUB-FUNCTION=I,
FILE-ID=INC-TEST

or (abbreviated)

INCORPORATE FDT
177,1,1,,,,,I,INC-TEST

The example above uses the Natural parameters ID=, and IA==

225Copyright © Software AG 2003

Incorporating Adabas Files in Batch ModeIncorporating Adabas Files

Incorporating DB2 Storagegroups
Prerequisites

Incorporation of DB2 objects is subject to DB2 security mechanisms. See the section DB2 and SQL/DS in the
Predict and Other Systems documentation.

Note:
See Concepts of Incorporation for basic information on how to use incorporation functions.

Selecting DB2 Storagegroups
The Incorporate DB2 Storagegroup screen is called with function code I and object code SG in a Predict main
menu or with the command INCORPORATE STORAGEGROUP.

 09:31:44 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate DB2 Storagegroups -

 Storagegroup name

 Select option
 Creator name

 Processing option
 Connect automatic .. N (Y,N)

Parameters

Storagegroup
name

DB2 storagegroup name. Asterisk notation is allowed.

Creator name DB2 creator name. Asterisk notation is allowed.

Connect
automatic

Y With the Compare function: the DB2 storagegroup and the Predict object are connected if
no differences are detected between the two objects.

 13:07:27 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Incorporate DB2 Storagegroups -
 Search-crit.: Storagegroup name=ALL
 Storage- Predict
 Cmd Creator group name storagespace ID Remark

 __ BHD LMRK0001
 __ BHD RISPASTO
 __ BHD SYSDEFLT SYSDEFLT
 __ RSH GROUPY
 __ RSH RSH#GROU
 __ RSH RSHGROU
 __ SCM SCMSTG

Copyright © Software AG 2003226

Incorporating DB2 StoragegroupsIncorporating DB2 Storagegroups

Columns in the List

Creator Creator of the storagegroup.

Storagegroup name Name of the storagegroup.

Predict Storagespace IDID of a Predict storagespace documenting the storagegroup.

Remark A type-independent remark (see Remarks which apply to all Object Types or blank.

Incorporation Functions for DB2 Storagegroups
The functions T, C and I apply.

Note:
Corresponding DB2 storagegroups and Predict objects of type storagespace are identified by the DB2
storagegroup name.

Compare - Code T

Compares the storagegroup and the Predict storagespace and reports differences between attributes.

If no differences between the two objects are found and Connect automatic is set to Y, the dictionary object is
connected to the storagegroup.

Connect - Code C

Connects the storagegroup to the existing Predict storagespace, and

updates the Predict storagespace;
writes to the generation log of the Predict object that a corresponding implemented storagegroup existed
when the connection was established.

Incorporate - Code I

Scope of the Incorporation

Creates a Predict storagespace with attributes documenting the storagegroup.
Connects the storagegroup and the Predict storagespace.

Before the function is executed, specify the following parameters in an additional input screen. Storagespace ID
is mandatory, List incorporated code is optional

Incorporation Options

Storagespace ID ID to be assigned to the new Predict storagespace.

List incorporated codeY
The values of all attributes incorporated for the table or view are to be listed.

Incorporate DB2 Storagegroups in Batch Mode
Command: INCORPORATE STORAGEGROUP

227Copyright © Software AG 2003

Incorporation Functions for DB2 StoragegroupsIncorporating DB2 Storagegroups

Enter parameters on next line using positional or keyword form.

Field Keyword Position

Storagegroup name STOGROUP 1

Creator name CREATOR 2

Connect automatic AUTO-CONNECT 3

Function SUB-FUNCTION 4

Storagespace ID STOSPACE-ID 5

List incorporated codeLIST 6

Example

To incorporate the DB2 storagegroup ’SYSDEFLT’ with storagespace ID ’TEST-ST’ and display the storage
space attributes, code the command:

INCORPORATE STORAGEGROUP
STOGROUP=SYSDEFLT,SUB-FUNCTION=I,STOSPACE-ID=TEST-ST,LIST=Y

or

INCORPORATE STORAGEGROUP
SYSDEFLT,,,I,TEST-ST,Y

The example above uses the Natural parameters ID=, and IA==

Copyright © Software AG 2003228

Incorporating DB2 StoragegroupsIncorporate DB2 Storagegroups in Batch Mode

Incorporating DB2 Databases
Prerequisites

Incorporation of DB2 objects is subject to DB2 security mechanisms. See the section DB2 and SQL/DS in the
Predict and Other Systems documentation.

Note:
See Concepts of Incorporation for basic information on how to use incorporation functions.

Selecting DB2 Databases
The Incorporate DB2 database screen is called with function code I and object code D2 in a Predict main menu
or with the command INCORPORATE DB2.

 09:23:24 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate DB2 Databases -

 DB2 database name

 Select option
 Creator name

 Processing option
 Connect automatic .. N (Y/N)

Parameters

DB2 database
name

DB2 database name. Asterisk notation is allowed.

Creator name Creator name. Asterisk notation is allowed.

Connect
automatic

Y
The DB2 database and the Predict object will be connected by the Compare function (code T)
if no differences were detected between the file lists of the two objects.

Databases which meet the selection criteria and are not already connected to a Predict database object will then
be listed as follows.

229Copyright © Software AG 2003

Incorporating DB2 DatabasesIncorporating DB2 Databases

 13:09:09 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Incorporate DB2 Databases -
 Search-crit.: DB2 database name=ALL
 Database Default
 Cmd Creator name stogroup Predict database ID Remark

 __ BHD ABAG SYSDEFLT
 __ BHD ADAPT1 SYSDEFLT
 __ BHD DSNCV SYSDEFLT
 __ BHD DSNDB07 SYSDEFLT
 __ BHD DSNDDF SYSDEFLT
 __ BHD DSNRGFDB SYSDEFLT
 __ BHD DSNRLST SYSDEFLT
 __ BHD LANDMARK LMRK0001 SC missing
 __ BHD RISPADB RISPASTO SC missing

Columns in the List

Creator Creator of the database.

Database name Name of the database

Predict database IDID of Predict database object for a DB2 database with this DB2 name.

Remark

Either the following type-specific remark or blank.
For type-independent remarks see Remarks which apply to all Object Types.

SC missing Default storagegroup is not documented. Incorporation is not possible.

Incorporation Functions for DB2 Databases
The functions T, C and I apply.

Compare - Code T

Compares the database and the Predict database object and reports differences between attributes and file lists.

If no differences between the file lists are found and Connect automatic is set to Y, the dictionary object is
connected to the database.

Connect - Code C

Connects the DB2 database to the corresponding Predict database object and

copies current information from the DB2 catalog into the dictionary object;
writes to the generation log of the Predict database object that a corresponding implemented database
existed when the connection was established.

Incorporate - Code I

Scope of the Incorporation

Creates a database object of type D with attributes documenting the database.
The new database object is linked to the Predict object documenting the current virtual machine via
association Contains DA.

Copyright © Software AG 2003230

Incorporating DB2 Databases Incorporation Functions for DB2 Databases

Connects the database and the Predict database object.

Before the function is executed, specify the following parameters in an additional input screen. The parameter
Database ID is mandatory, the other parameter optional

Incorporation Options

Database ID ID of the new Predict database object.
The creator and DB2 name of the database joined by a hyphen is displayed and can be
accepted or overwritten.

List incorporated
code

Y
the values of all attributes incorporated for the database are to be listed.

Incorporate DB2 Databases in Batch Mode
Command: INCORPORATE DB2-DATABASE

Enter parameters on next line using positional or keyword form.

Field Keyword Position

DB2 database name DB2NAME 1

Creator name CREATOR 2

Connect automatic AUTO-CONNECT 3

Function SUB-FUNCTION 4

Database ID DATABASE-ID 5

List incorporated codeLIST 6

Example

To incorporate the DB2 database ’DSN8D13A’ as database object in Predict with ID ’TEST-DB’ and display the
database attributes, code the command:

INCORPORATE DB2
DB2NAME=DSN8D13A,SUB-FUNCTION=I,DATABASE-ID=TEST-DB,LIST=Y

or

INCORPORATE DB2
DSN8D13A,,,I,TEST-DB,Y

The example above uses the Natural parameters ID=, and IA==

231Copyright © Software AG 2003

Incorporate DB2 Databases in Batch ModeIncorporating DB2 Databases

Incorporating DB2 Tablespaces and
SQL/DS DBspaces
Prerequisites

Incorporation of DB2 objects is subject to DB2 security mechanisms. See the section DB2 and SQL/DS in the
Predict and Other Systems documentation.

Note:
See Concepts of Incorporation for basic information on how to use incorporation functions.

Selecting Tablespaces
The Incorporate DB2 Tablespaces screen is called with function code I and object code TS in a Predict main
menu or with the command INCORPORATE TABLESPACE.

 09:28:15 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate DB2 Tablespaces -

 Tablespace name

 Select options
 Creator name
 DB2 database name ...

 Processing option
 Connect automatic ... N (Y,N)

Parameters

Tablespace
name

Name of DB2 tablespace. Asterisk notation is allowed.

Creator name Name of tablespace creator. Asterisk notation is allowed.

DB2 database
name

Name of DB2 database. Protected when processing SQL/DS DBspaces. Asterisk notation is
allowed.

Connect
automatic

Y
The DB2 Tablespace and the Predict object will be connected by the Compare function (code
T) if no differences are detected between the file lists of the two objects.

Copyright © Software AG 2003232

Incorporating DB2 Tablespaces and SQL/DS DBspacesIncorporating DB2 Tablespaces and SQL/DS DBspaces

 13:13:06 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Incorporate DB2 Tablespaces -
 Search-crit.: Tablespace name=ALL
 DB2 Tablespace Predict
 Cmd database name dataspace ID Remark

 __ ABAG ABAGTS01 DA missing
 __ ABAG ABAGTS02 DA missing
 __ ABAG ABAGTS03 DA missing
 __ ABAG ABAGTS04 DA missing
 __ ABAG ABAGTS05 DA missing
 __ BGCDA AAB$PACE SC missing
 __ BGCDA TABSPACE PD-TABSPACE SC missing
 __ DB01 TS01 DA missing

Columns in the List

DB2 database Name of the database containing the tablespace.

Tablespace name Name of the tablespace.

Predict dataspace ID ID of the Predict dataspace object documenting the DB2 tablespace.

Remark

Any of the following type-specific remarks or blank.
For type-independent remarks see Remarks which apply to all Object Types.

DA missing, ST
missing

The DB2 database or storagegroup are not documented in Predict. Incorporation is not
possible.

Incorporation Functions for Tablespaces
The functions T, C, M and I apply.

Compare - Code T

Compares DB2 tablespaces and corresponding Predict dataspace objects. Differences between file lists and
tablespace/dataspaces attributes are reported.

If no differences are found and Connect automatic is set to Y, the tablespace/DBspace and the Predict dataspace
object are connected.

Connect - Code C

Connects DB2 tablespaces to Predict dataspace object and

copies current information from the DB2/SQL/DS catalog to the dictionary object
writes to the generation log of the Predict dataspace object that a corresponding implemented database
existed when the connection was established.

Display Masters - Code M

The DB2 databases and storagegroups a tablespace is related to must be documented in Predict before the
tablespace can be incorporated. The incorporation function M can be used to identify all objects that are missing.
These can then be incorporated before the tablespace is incorporated.

233Copyright © Software AG 2003

Incorporation Functions for TablespacesIncorporating DB2 Tablespaces and SQL/DS DBspaces

Incorporate - Code I

Scope of the Incorporation

A Predict dataspace object is created for each tablespace and connected to the tablespace.
The dataspace object is linked to the corresponding database in Predict via association Contains DC.

Before the function is executed, enter the following parameters in an additional input screen. Dataspace ID is
mandatory, List incorporated code is optional

Incorporation Options

Dataspace ID ID of the Predict dataspace object.
The DB2 tablespace name is displayed and can be accepted or overwritten.

List incorporated codeY
Display what has been incorporated as attributes of the dataspace object.

Incorporate DB2 Tablespaces in Batch Mode
Command: INCORPORATE TABLESPACE

Enter parameters on next line using positional or keyword form.

Field Keyword Position

Tablespace name TBSPACE 1

Creator name CREATOR 2

DB2 database name DB2NAME 3

Connect automatic AUTO-CONNECT 4

Function SUB-FUNCTION 5

Dataspace ID DSSPACE-ID 6

List incorporated codeLIST 7

Example

To incorporate the DB2 Tablespace with the DB2 tablespace name ’SYSDBASE’ with dataspace ID ’TEST-TS’
and display the dataspace attributes, code the command:

INCORPORATE TABLESPACE
TBSPACE=SYSDBASE,SUB-FUNCTION=I,DSSPACE-ID=TEST-TS,
LIST=Y

or

INCORPORATE TABLESPACE
SYSDBASE,,,,I,TEST-TS,Y

Note: The example above uses the Natural parameters ID=, and IA==

Copyright © Software AG 2003234

Incorporating DB2 Tablespaces and SQL/DS DBspacesIncorporate DB2 Tablespaces in Batch Mode

Incorporating DB2 and SQL/DS
Tables/Views
Prerequisites

For DB2 tables and views, a Predict object documenting the DB2 database containing the tables/views must
exist.
For SQL/DS tables and views, a corresponding database object in Predict is not required.
See the section DB2 and SQL/DS in the Predict and Other Systems documentation.

Note:
See Concepts of Incorporation for basic information on how to use incorporation functions.

Selecting DB2 and SQL/DS Tables/Views
The Incorporate DB2 Tables/Views screen is called with function code I and object code T2 in a Predict main
menu or with the command INCORPORATE TABLES.

 09:30:17 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate DB2 Tables/Views -

 Table / View name

 Select options
 Tables or Views*
 Creator name
 DB2 database name ...

 Processing option
 Connect automatic ... N (Y,N)

235Copyright © Software AG 2003

Incorporating DB2 and SQL/DS Tables/ViewsIncorporating DB2 and SQL/DS Tables/Views

Parameters

Table / view
name

The name in DB2 of the tables and views from which the data dictionary objects are to be
created. Asterisk notation is allowed.

Tables or
views

Limit the function to files of one type. Valid values:

T
DB2 tables

V
DB2 views

Creator name The DB2 "creator" of the tables and views from which the data dictionary objects are to be
created. Asterisk notation is allowed.

DB2 database
name

The name in DB2 of the database or databases in which the specified tables and views reside.
Asterisk notation is allowed.
When incorporating Tables/Views from SQL/DS, this parameter is protected.

Connect
automatic

Y
DB2 table/views and the Predict object will be connected by the Compare function (code T) if
no differences were detected between the field lists of the two objects.

Files which meet the given selection criteria and are not already connected to a Predict file object are listed as
below.

 13:03:38 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Incorporate DB2 Tables/Views -
 Search-crit.: Table/View name=ALL,DB name=ALL,Creator=ALL
 Doc.
 Cmd Creator Table/View name Database T exists Remark

 __ ABA DEMO1 DSNDB04 T No
 __ ABA PLAN_TABLE DSNDB04 T No
 __ AZ APPT_TODAY DSNDB04 V No
 __ AZ D_BAR PREDICT T No
 __ AZ D_FX PREDICT T No
 __ AZ D_NAT1 DSNDB04 T Yes

Copyright © Software AG 2003236

Incorporating DB2 and SQL/DS Tables/ViewsSelecting DB2 and SQL/DS Tables/Views

Columns in the List

Creator Creator in DB2.

Table/view name Name of the table/view.

Database Name of DB2 database(s) where the table/view is implemented.

T Type of the DB2 file:

T
DB2 table

V
DB2 view

Doc. exists Y
Predict object exists for the table/view.

Remark

Any of the following type-specific remarks or blank. For type-independent remarks see Remarks which apply
to all Object Types.

DA missing, ST
missing, DS missing

The DB2 database, storagegroup or tablespace the table/view belongs to are not
documented in Predict. Incorporation is not possible.

Master missing The specified DB2 view cannot be incorporated as a data dictionary object until a
dictionary object for a related DB2 table or view has been created.

Invalid file-type The type of the specified DB2 table or view does not match the type of the
corresponding Predict object: the file type of the data dictionary object is either not D
(DB2 table) or not E (DB2 view).

The tables/views in the list can then be processed by entering a function code in the Cmd column. The functions
T, C and I apply.

Incorporation Functions for Tables/Views
The functions T, C, M and I apply.

Note:
Corresponding DB2 tables/views and Predict file objects of type D and E are identified by DB2 table/view
name.

Compare - Code T

Compares DB2 table/views and corresponding Predict file object.
Differences between field lists and attributes of the tables/views are reported.

If no differences between the field lists are found and Connect automatic is set to Y, the DB2 tables/view and the
Predict file object are connected.

Connect - Code C

Connects DB2 tables/views to Predict file object and

copies current information from the DB2 catalog to the dictionary object;
writes to the generation log of the Predict file object that a corresponding implemented table/view existed
when the connection was established.

237Copyright © Software AG 2003

Incorporation Functions for Tables/ViewsIncorporating DB2 and SQL/DS Tables/Views

Display Masters - Code M

DB2 databases, storagegroups and tablespace and tables/views a table/view is related to must be documented in
Predict before the table/view can be incorporated.
This function finds all objects that are not documented. These can then be incorporated before the table/view is
incorporated.

Incorporate - Code I

Scope of the Incorporation

One Predict file object is created for each table or view.
The ID of the new file object consists of the creator name and DB2 name of the table or view joined by a
hyphen.
One field object is created for each field in the table or view.
The ID assigned to each new field object will be the name of the field in DB2. For each view that is
incorporated, the appropriate parts of the subselect specification in the SQL statement CREATE will be
copied to the file and field objects created.
One field object is added to file SAG-DISTINCT-TYPE for each distinct type that is not already
documented.
The ID assigned to each new field object consists of the schema name and the type name concatenated by a
hyphen.
The connection between the standard fields of SAG-DISTINCT-TYPE and the table field is established if
the field in DB2 is distinct type.
One Predict file object with file type IV (Intermediate view) is created for each subselect clause in the from
clause of a view definition. For each column in the select list of subselect a Predict field object is created.
For each intermediate view that is created, the appropriate parts of the subselect specification in the SQL
statement CREATE will be copied to the file and field objects created.
One Predict field object (type SP) for each composite index is created.
One Predict field object (type SP) for each composite foreign key is created if there is not already a Predict
field object for a composite index built from the same columns.
One Predict relationship object is created for each foreign key.
Labels defined for columns are documented as field headers.
A trigger object is added for each trigger defined for a table.
A link is established either to the file object via association Has TR or to the corresponding field objects in
case of an update trigger.
A verification is added and linked to the corresponding field for each check constraint that is defined for
one column.
Attributes of the corresponding file object are updated for each table check constraint (check expression for
more than one column).

Calling the Function

Before the function is executed, enter the following parameters in an additional input screen:

Incorporation Options

Comments as
abstract

Y
String constants assigned with COMMENT ON are to be incorporated as the abstract of
the corresponding Predict object:

Comments assigned to the table or view are to be copied to the file object.
Comments assigned to a field of the table or view are to be copied to the field object.

List incorporated
code

Y
The values of all attributes incorporated for the table or view are to be listed.

Copyright © Software AG 2003238

Incorporating DB2 and SQL/DS Tables/ViewsDisplay Masters - Code M

Incorporating DB2 Tables and Views in Batch Mode
Command: INCORPORATE TABLE

Enter parameters on the next line in positional or keyword form.

Field Keyword Position

Table/View name TABLE 1

Tables or Views TYPE 2

Creator name CREATOR 3

DB2 Database name DB2NAME 4

Connect automatic AUTO-CONNECT 5

Function SUB-FUNCTION 6

Incorporate commentsCOMMENT 7

List incorporated codeLIST 8

Note:
The keyword ABSTRACT can be used as a synonym for COMMENT.

Example

To incorporate the table ’TDEPT’ in database ’DSN8130’, code the command:

INCORPORATE TABLE
TABLE=TDEPT,TYPE=T,DB2NAME=DSN8130,,SUB-FUNCTION=I

or

INCORPORATE TABLE
TDEPT,T,DSN8130,,I

The example above uses the Natural parameters ID=, and IA==

239Copyright © Software AG 2003

Incorporating DB2 Tables and Views in Batch ModeIncorporating DB2 and SQL/DS Tables/Views

Incorporating NDBs for IMS
Databases/Segments
NDBs and UDFs of physical and logical IMS databases can be incorporated into the Predict data dictionary.

As a safeguard against accidental overwriting, an NDB will not be incorporated if the dictionary already contains
a database incorporated from the same NDB. To change a database object of type I, use the Replace function
(code R).

Note:
See Concepts of Incorporation for basic information on how to use incorporation functions.

Selecting Natural DBDs for IMS Databases and Segments
The Incorporate NDBs screen is displayed by selecting function code I and object code ND in a Predict main
menu or by entering the direct command INCORPORATE NDB.

 13:44:22 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate NDBs -

 NDB name

Parameters

NDB
name

Name of the NDB. NDB names correspond to the name of IMS databases. Asterisk notation is
allowed.

NDBs which meet this selection criterion are then listed as follows:

 13:27:58 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Incorporate NDBs -
 Search-crit.:NDB name=ALL
 Segment
 Cmd NDB name NDB type Count Database ID Remark

 __ ARTICLE Physical 6 ARTICLE4
 __ CUSTOMER Physical 3 CUSTOMER
 __ ED00DBD Physical 5 ED00DBD1
 __ PARTLIST Logical 3 PARTLIST2
 __ PARTUSED Logical 3 PARTUSED
 __

Copyright © Software AG 2003240

Incorporating NDBs for IMS Databases/SegmentsIncorporating NDBs for IMS Databases/Segments

Columns in the List

NDB name Name of the NDB corresponding to an IMS database.

NDB type Type of the IMS database: either Physical or Logical.

Segment countThe number of segments in the IMS database.

Database ID The ID of a Predict database object documenting the NDB.

Remark After successful execution of the function: either Replaced or Incorporated.

Incorporating Natural DBDs for IMS Databases and
Segments

Incorporate - Code I

Scope of the Incorporation

A database object of type I is created for each NDB.
A Predict file object of type I is created for each segment of the NDB.
Predict file objects of type J are created if a segment has UDFs.
If the segment contains a DBID and FNR (connection to the UDF) Predict checks whether a UDF is defined
with this DBID and FNR and whether the DBID is defined in the NTDB macro as an IMS/DL1 database.
If no corresponding UDF is defined, an error message is returned.
If the DBID does not correspond to an IMS/DL1 database, any UDF is incorporated with a warning
message. The DBID and FNR remain unchanged.
If a corresponding UDF is defined, one or more files of type J containing all user defined fields are created.

Each time a redefinition is found, i.e., the offset of a field is equal to or less than the offset of a previous field, a
new file of type J is created. Gaps between two user defined fields are filled with DUMMY fields.

Predict ensures that the Adabas short names of UDFs in logical child segments fall within the range allowed by
Natural for DL1.
This range is documented in the DDA Services and should only be changed on special advice of SAG.
DBID/FNR of the UDF are recorded in the generation log of the file of type I.

Before the Incorporate function is executed, specify the following parameters for each NDB in an additional
input screen:

241Copyright © Software AG 2003

Incorporating Natural DBDs for IMS Databases and SegmentsIncorporating NDBs for IMS Databases/Segments

Incorporation Options

Segment name
prefix

The prefix to be concatenated both with the NDB name to create an ID for the Predict
database object and with the name of each segment in the NDB to create an ID for the
corresponding Predict file object of type I.

Segment name
suffix

The suffix to be concatenated both with the NDB name to create an ID for the Predict
database object and with the name of each segment in the NDB to create an ID for the
corresponding Predict file object of type I.

Layout name
prefix

The prefix to be concatenated with the name of each segment in the NDB that has user
defined fields, to create an ID for the corresponding Predict file object of type J.

Layout name
suffix

The suffix to be concatenated with the name of each segment in the NDB that has user
defined fields, to create an ID for the corresponding Predict file object of type J. If several
layouts are created for one segment, a different number is added to the layout name suffix
for each layout.

Field name
prefix / suffix

How each segment name is to be concatenated with the name of each field in that segment
(file of type I):

P
as a prefix to the field name

S
as a suffix to the field name.

Only for
identical field
names

Y
Prefixes and suffixes are only used to distinguish between fields with identical names in the
same NDB.

List incorporated
code

Y
the resulting definitions are to be displayed.

Standard
comments

Y
The first three abstract lines of each object incorporated (database, files and fields) will
contain the name of the incorporated NDB and its date of incorporation.

N
The incorporated Predict objects will contain no abstract.

Replace - Code R

Replaces Predict objects documenting NDBs.

Prerequisites and Restrictions

Predict objects documenting NDBs will be not be replaced in the following circumstances:

if a physical database is to replace a logical database or vice versa;
if a file of type I or a related file of type J or K for which a DDM exists is to be deleted and Natural Security
does not allow the user to delete the DDM.

Scope of the Replace Operation

The Replace function creates, replaces and deletes Predict file objects.
The following rules apply:

Copyright © Software AG 2003242

Incorporating NDBs for IMS Databases/SegmentsReplace - Code R

New Predict file objects will be created for all segments in the NDB that are not yet documented in Predict.
Existing Predict file objects are replaced if they document segments that are still used in the NDB. Changes
to IMS fields and deletion of IMS fields are then rippled across all related files of types J and K that contain
these fields.
The following files will be marked as modified after generation after this rippling:

If the changed file represents a segment of a physical database:
the changed file and all its related files of types J and K;
Files of type I that depend on the changed file and all their related files of types J and K.

If the changed file represents a segment of a logical database:
the changed file and all files of types J and K that are related to the physical file of type I from
which the changed file is derived;
Files of type I that depend on the changed file and all files of types J and K that are related to the
physical files of type I from which these files of type I are derived.

Predict file objects documenting segments that are no longer contained in the NDB will be deleted.
Whenever a file of type I is deleted, all related files of types J and K are also deleted. If DDMs have been
generated from the files of type I, J and K, these files can only be purged if the user is authorized to modify
the Natural Security definition of the files. This is only applicable if Natural Security is active. See
Protecting DDMs in the section Protecting External Objects in Predict with Natural Security in the
Predict Security documentation.
Files of type J are not replaced, even if the UDF has been changed.

Before the Replace function is executed, enter the following parameters for each NDB in an additional input
screen:

Replace Options

Keep layout
structure

When files of type I are replaced, changes in IMS fields are rippled across the layouts and
userviews that contain them. Rippled changes to the offset and length of IMS fields in a file of
type J and deletion of IMS fields from a file of type J can change the offset of fields later in a
layout.

Y
Predict either adjusts the length of DUMMY fields to cancel this effect or issues a warning
that the effect cannot be cancelled.

List
incorporated
code

Y
The resulting definitions are to be displayed.

Comments as
abstract

Y
The first three abstract lines of each object incorporated (database, files and fields) will
contain the name of the incorporated NDB and its date of incorporation.

N
The incorporated Predict objects will contain no abstract.

Before replacing any files of type I during an online session, Predict displays the file IDs
together with the IDs of related files of types J and K.

Confirm the deletions to continue processing.

Incorporating IMS Database in Batch Mode
Command: INCORPORATE NDB

243Copyright © Software AG 2003

Incorporating IMS Database in Batch ModeIncorporating NDBs for IMS Databases/Segments

Enter parameters on the next line in positional or keyword form.

Field / Code Keyword Position

NDB name NDB 1

I (incorp.) o. R (replace) SUB-FUNCTION 2

Segment name prefix SEGMENT-PREFIX 3

Segment name suffix SEGMENT-SUFFIX 4

Layout name prefix LAYOUT-PREFIX 5

Layout name suffix LAYOUT-SUFFIX 6

Field name prefix / suffix FIELD-NAME 7

Only identical field namesID-ONLY 8

List incorporated code LIST 9

Keep layout structure KEEP 10

Comments as abstract COMMENT 11

Delete DELETE 12

Note:
The keyword ABSTRACT can be used as a synonym for COMMENT.

Example

To incorporate the IMS-NDB of name TEST, code the command:

INCORPORATE NDB
NDB=TEST,SUB-FUNCTION=I

or (using positional parameters)

INCORPORATE NDB
TEST,I

The example above uses the Natural parameters ID=, and IA==

Extra Parameter for Replacing an NDB in Batch Mode

DELETE N
If a file of type I is to be replaced, no changes are made to Predict; the IDs of the files of type I that
should have been replaced are listed. The function can then be rerun with DELETE=Y.

This parameter is only available in batch mode. Default is Y.

Copyright © Software AG 2003244

Incorporating NDBs for IMS Databases/SegmentsIncorporating IMS Database in Batch Mode

Incorporating Adabas Tables and Views
Prerequisites

See the section Adabas SQL Server in the Predict and Other Systems documentation.

Note:
See also Concepts of Incorporation for basic information on how to use incorporation functions.

Selecting Adabas Tables/Views

 10:00:30 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate Adabas Tables/Views -

 Table / View name

 Select options
 Tables or Views ...*
 Creator name

 Processing option
 Connect automatic .. N (Y,N)

Parameters

Table / view
name

The name in Adabas SQL Server of the tables and views from which the data dictionary
objects are to be created. Asterisk notation is allowed.

Tables or
views

Limit the function to files of one type. Valid values:

T
Adabas tables (files of type A(SQL) or
Adabas SQL Server base tables (files of type AT or A(SQL).

V
Adabas views

Creator name The schema name of the tables and views in Adabas SQL Server from which the data
dictionary objects are to be created.
Asterisk notation is allowed.

Connect
automatic

Y
Adabas table/views and the Predict object are connected by the Compare function (code T) if
no differences were detected between the field lists of the two objects.

245Copyright © Software AG 2003

Incorporating Adabas Tables and ViewsIncorporating Adabas Tables and Views

 13:09:11 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Incorporate Adabas Tables/Views -
 Search-crit.: Table/View name=ALL,Creator=ALL
 Doc.
 Cmd Creator Table/View name T exists Remark

 __ ESQ FILE150 T No
 __ ESQ FILE151 T No
 __ ESQ FILE152 T No
 __ ESQ FILE153 T No

Columns in the List

Creator Schema ID in Adabas SQL.

Table/view
name

Name of the table/view.

T Type:

T
Adabas table

V
Adabas view

Doc. exists Y
Predict object exists for the table/view.

Remark

Any of the following type-specific remarks or blank.
For type-independent remarks see Remarks which apply to all Object Types.

Master
missing

The specified Adabas view cannot be incorporated in Predict until an object for a related
Adabas file or Adabas view has been created, or
file of type AT cannot be incorporated because the related Adabas file is not documented in
Predict.

Different file
type

The type of the specified Adabas table or view does not match the type of the corresponding
Predict object: the file type of the data dictionary object is either not A (Adabas file) or not B
(Adabas view).

Lev0 table
exists

The base table in Adabas SQL Server has level 0, a corresponding Adabas file and an AT file
not at level 0 exist in Predict, but the files have different IDs.

Incorporation Functions for Tables/Views
Note:
Corresponding Adabas tables/views and Predict file objects of type A and B are identified by file ID.

Compare - Code T

Compares Adabas table/views and corresponding Predict file object.
Differences between field lists and attributes of the tables/views are reported.

Copyright © Software AG 2003246

Incorporating Adabas Tables and ViewsIncorporation Functions for Tables/Views

If no differences between the field lists are found and Connect automatic is set to Y, the Adabas table/view and
the Predict file object are connected.

Connect - Code C

Connects Adabas tables/views to Predict file object and copies current information from the Adabas SQL Server
directory to the dictionary object.
Writes to the generation log of the Predict file object that a corresponding implemented table/view existed when
the connection was established.

Display Masters - Code M

A higher level object must be documented in Predict before the Adabas view can be incorporated.
The function Display Masters finds all tables/views that are not documented but must be documented before
table/views can be incorporated.

Incorporate - Code I

Scope of the Incorporation

One Predict file object is created for each table or view.
The ID of the new file object consists of the creator name and name of the table or view joined by a hyphen.
One field object is created for each field in the table or view.
The ID assigned to each new field object will be the name of the field in Adabas SQL. For each view that is
incorporated, the appropriate parts of the subselect specification in the SQL statement CREATE will be
copied to the file and field objects created.
One Predict field object (type SP) for each composite index or key is created.
One file relation object is created for each referential constraint.

Incorporation Option

List incorporated codeY
the values of all attributes incorporated for the table or view are to be listed.

Incorporating Adabas Tables and Views in Batch Mode
Command: INCORPORATE ESQ

Enter parameters on the next line in positional or keyword form.

Field Keyword Position

Table/View name TABLE 1

Tables or Views TYPE 2

Creator name CREATOR 3

Connect automatic AUTO-CONNECT 4

Function SUB-FUNCTION 5

List incorporated codeLIST 6

247Copyright © Software AG 2003

Incorporating Adabas Tables and Views in Batch ModeIncorporating Adabas Tables and Views

Example

To incorporate the table ’TDEPT’, code the command:

INCORPORATE ESQ
TABLE=TDEPT,TYPE=T,,,SUB-FUNCTION=I

or

INCORPORATE ESQ
TDEPT,T,,,I

The example above uses the Natural parameters ID=, and IA==

Copyright © Software AG 2003248

Incorporating Adabas Tables and ViewsIncorporating Adabas Tables and Views in Batch Mode

Incorporating Natural DDMs
Prerequisites and Restrictions

Functions compare and connect functions are available both online and in batch mode; the incorporate
subfunction is only available online.
For DDMs of type DB2/ESQ, IMS or PROCESS, the functions I and V are not applicable.

Note:
See Concepts of Incorporation for basic information on how to use incorporation functions.

Selecting DDMs
Display the Incorporate DDMs screen with function code I and object code DD in a Predict main menu or with
the command INCORPORATE DDM.

 10:00:00 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate DDMs -

 Current VM HOME

 DDM ID

 Select option
 DDMs of type*

 Processing option
 Connect automatic .. N (Y/N)

Parameters for Selecting DDMs to be Incorporated

Current VM If a Predict database object is found that is either linked to the Current VM and of type local or
accessible from the network containing the Current VM, the master file incorporated from the
DDM is linked to this database. A read-only field.
If no current VM is specified in the session profile, the parameter Default current virtual
machine in the Miscellaneous section of the General Defaults is used.

DDM ID ID of the DDM. Asterisk notation is allowed.

DDMs of
type

Limit the function to DDMs that access databases of the type specified. Enter an asterisk to
display valid values.

Connect
automatic

Y
The DDM is connected to an existing the corresponding file object whenever the Test
subfunction confirms that the two correspond.

DDMs which meet the given selection criteria and are not already connected to a Predict file object are then
listed as follows.

249Copyright © Software AG 2003

Incorporating Natural DDMsIncorporating Natural DDMs

 13:13:32 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Incorporate DDMs -
 Search-crit.: DDM ID=ALL
 DDM Predict
 Cmd DDM ID type file type Remark

 __ ACCOUNTING PROCESS
 __ BS2000-COMMAND PROCESS
 __ CATALOG PROCESS
 __ CATALOG-UPDATE PROCESS
 __ CHD-FORMATE1 ADABAS
 __ CHD-TEST ADABAS Conceptual file Diff. Filetype

Columns in the List

DDM ID ID of the DDM.

DDM type The type of database that can be accessed by using the DDM with this ID:
Adabas or VSAM or DB2 or IMS or Entire System Server.

Predict file type The type of any data dictionary object for a file with this ID.

Remark

Any of the following type-specific remarks or blank. For type-independent remarks see Remarks which apply
to all Object Types.

No related object Applies to VSAM DDMs.
The specified VSAM DDM cannot be incorporated as a data dictionary object
until a data dictionary object for a related VSAM file has been created:

Different file type Predict file object and entry in the NTDB differ.

No master DDM Master DDM of logical VSAM view is missing.

No physical DDM Master DDM of physical VSAM view is missing.

DBID is VSAM Type of DDM different from corresponding entry in NTDB.

DBID is Adabas Type of DDM different from corresponding entry in NTDB.

Super Natural DDM Super Natural DDMs cannot be processed.

Incorporation Functions for DDMs
Valid functions: T, C, V and I.

Compare - Code T

Compares DDMs and corresponding Predict file objects. Differences between field lists and file attributes are
reported.

If no differences are found and Connect automatic is set to Y, the DDM and the Predict file object are connected.

Copyright © Software AG 2003250

Incorporating Natural DDMsIncorporation Functions for DDMs

Connect - Code C

Connects DDMs to Predict file object and writes to the generation log of the Predict file object that a
corresponding DDM existed when the connection was established.

Display Related DDMs - Code V

If the message No related object the IDs of the related DDM or DDMs that must be incorporated first can be
displayed with the function V. The DDMs are listed in the order in which they have to be incorporated.

Incorporate - Code I

Incorporates information from the DDM to a new Predict file object of type A, F, L, R, U, T, V, W, 1 and 2 as
appropriate and connects the DDM and the new Predict file object.

Prerequisites and Restrictions

Before an object for a file of type W or L can be created, an object for the related file of type V must exist;
Before an object for a file of type R can be created, an object for the related file of type L must exist.
Before an object for a file of type U can be created, an object for the related file of type A must exist.
Incorporate DDM can only be executed online.
The V function (see above) can be used to identify related DDMs that must be incorporated first.

Scope of the Incorporation

One Predict object of the type file will be created: The new file object has the DDM name as ID.
The Predict file object is linked to a Predict database that is either linked to the Current VM and of type
local or accessible from the network containing the Current VM.
One field object will be created for each field of the DDM. Each new field object will be assigned the name
of the field in the DDM.
Any prefix specified by the user and present in all field names will be removed to create the corresponding
field IDs.
One relationship object is created for each coupling definition.

Before the function is executed the following parameters can/must be specified for each file in an additional
input screen

251Copyright © Software AG 2003

Connect - Code CIncorporating Natural DDMs

Incorporation Options

Related master
file

ID of the Predict file object describing the file for which the specified DDM is a userview

Type Type of Master File

L or W V Physical VSAM file

R L Logical VSAM file

U A Adabas file

Leave this field blank if the DDM corresponds to a master file.

Truncation
prefix

If the names of all fields of the DDM have a common prefix and that prefix is specified here,
it is removed from the field names to create the IDs of the field objects in the data dictionary.

Comment lines Y
General comment lines in the DDM are incorporated as field descriptions with field type type
**.

Remark as
abstract

Y
Field comments in the DDM are to be incorporated.

Old synonym
mode

Y
Fields with identical Adabas field names are regarded as synonyms if their type, format,
length and descriptor options are the same. This switch can only be set if the Old mode
synonyms in the Synonyms screen of the General Defaults menu is set to Y.

List
incorporated
code

Y
the values of all attributes incorporated for the file or userview are to be listed.

After the Incorporate DDM function has been executed, the function Edit elements of a file is
executed and a CATalog is performed.
If an error occurs, the editor is called so that the error can be corrected.
Errors may occur, for example, because a DDM contains less information than an FDT about
subdescriptors, superdescriptors and phonetic descriptors. Because errors are possible, this
subfunction is not available in batch mode.

Incorporate DDM in Batch Mode
Command: INCORPORATE DDM

Enter parameters on the next line in positional or keyword form.

Field Keyword Position

DDM ID FILE-ID 1

DDMs of type DDM-TYPE 2

Connect automaticAUTO-CONNECT 3

Function SUB-FUNCTION 4

Example

To connect the DDM with the name ’TEST-DDM’ to the corresponding file object in Predict, code the
command:

Copyright © Software AG 2003252

Incorporating Natural DDMsIncorporate DDM in Batch Mode

INCORPORATE DDM
FILE-ID=TEST-DDM,SUB-FUNCTION=C

or

INCORPORATE DDM
TEST-DDM,,,C

The example above uses the Natural parameters ID=, and IA==

253Copyright © Software AG 2003

Incorporate DDM in Batch ModeIncorporating Natural DDMs

Incorporating COBOL Copy Code
This function builds a Predict file and linked fields from COBOL copy code (record description or a subordinate
section without a level 01 entry).
Up to 20 files can be built per session. The copy code may contain only the following:

File definitions. Each line may contain a maximum of one data definition.
Blank lines.
Comment lines. Comments are added to the last valid file or field object that is incorporated.

It is not possible to incorporate information from COBOL programs.

The information incorporated is stored in Predict file objects of type sequential and field objects.

Prerequisites

The following resources are required for this function:

Natural workfile 1 (record format F or FB with record length 80, V or VB)
Natural workfile 2 (record format V or VB, record length at least 44).

In batch mode, the following additional resources are also required:

Natural report 1
Natural report 2
Natural report 3.

Calling the Function
The Incorporate COBOL Copy Code screen is called with function code I and object type code CO in any
Predict main menu or with command INCORPORATE COBOL.

 09:59:05 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate COBOL Copy Code -

 File ID

 Incorporation options
 Prefix A-
 Decimal character ..* P
 Currency sign* $
 Literal delimiter ..* ’
 List* R
 Store Y (Y,N)
 Replace N (Y,N)
 Input type* W
 Compiler* 7
 Comment lines to ...* A

Parameters

Copyright © Software AG 2003254

Incorporating COBOL Copy CodeIncorporating COBOL Copy Code

File ID If file ID is not specified, level 01 entries on the workfile are interpreted as file IDs. A new file is
created for each new level 01 entry. All other entries are interpreted as fields of these files.

If file ID is specified, all entries on the workfile are interpreted as fields of this file. Level 01 entries
are taken as groups.

Incorporation Options

Prefix Prefix to be added to any field ID with an invalid initial character for a Predict object ID. See
Naming Conventions in the section General Information in the Predefined Object Types in
Predict documentation.

Field IDs that are too long are truncated from the right.

Decimal
character

Determines how the input data on the workfile is interpreted. Default value is taken from generation
defaults but can be overridden here.

C
Decimal comma. The DECIMAL-POINT IS COMMA clause is set in the SPECIAL-NAMES
paragraph of the corresponding COBOL program.

P
Decimal point.

Currency
sign

The currency symbol in the PICTURE clause. Any currency symbol valid in COBOL can be used.
The default is dollar.

Literal
delimiter

Literal delimiter character. Default value is taken from generation defaults but can be overridden
here.

"
Double quotation mark. The compiler option QUOTE is used.

’
Single quotation mark. The compiler option APOST is used.

List Determines which columns of each COBOL line are listed. Valid values:

R
Columns 73-80 on the right are not listed.

L
Columns 1-6 on the left are not listed.

A
All columns will be listed. Only valid in batch mode.

Store Y
The generated file description will be incorporated in Predict.

N
File description will be displayed on screen, but not incorporated in Predict.

255Copyright © Software AG 2003

Calling the FunctionIncorporating COBOL Copy Code

Replace Only valid if Store is set to Y. Valid values:

Y
Existing Predict file(s) and any dependent fields with same name will be replaced. Only files of
type Conceptual, Other or Sequential will be replaced.

N
Error message will be given if file with same name exists, but dictionary objects will not be
replaced. Default.

Input
type

W
Copy code is taken from Natural workfile 1.

I
Copy code is entered directly in the screen below. The last card must be END. For more
information see your COBOL documentation.

Note:
Sequence numbers are ignored.

Compiler Determines the type of compiler used. Default value is taken from generation defaults but can be
overridden here.

7
Standard COBOL 74 compiler is used.

8
COBOL 85 compiler is used.

W
COBOL compiler for WANG is used.

Comment
lines to

Determines where comment lines in COBOL are written to.

A
Comments are written to the abstract of file/field object.

D
Comments are written to the extended description of file/field object.

Copyright © Software AG 2003256

Incorporating COBOL Copy CodeCalling the Function

Incorporating COBOL Copy Code in Batch Mode
Command: INCORPORATE COBOL

Enter parameters on next line using positional or keyword form.

Field Keyword Position

File ID FILE-ID 1

Prefix PREFIX 2

Decimal characterDECIMAL-CHAR 3

Currency sign CURRENCY-SIGN 4

List LIST 5

Store STORE 6

Replace REPLACE 7

Input type INPUT-TYPE 8

Literal delimiter DELIMITER 9

Compiler COMPILER 10

Comment lines toCOMMENT 11

Representation of COBOL Field Definitions in Predict
The table below shows how COBOL data definitions are documented in Predict after incorporating COBOL
copy code.

257Copyright © Software AG 2003

Incorporating COBOL Copy Code in Batch ModeIncorporating COBOL Copy Code

COBOL
USAGE Clause

COBOL
PICTURE
Clause

COBOL Number
of digits/bytes

Predict
Format
Length

Meaning * For COBOL
Compiler

BINARY none I 2 binary WANG

BINARY P S V 9

1-4 2 I 2

binary

WANG

5-9 4 I 4

10-18 8 I 8

COMP P S V 9

1-4 2 I 2 binary

5-9 4 I 4

10-18 8 I 8

 P or
PS

nn.m
packed numeric
binary

WANG

COMP-1
not applicable

F 4

internal floating
point short

COMP-2 not applicable

F 8
internal floating
point long

COMP-3 P S V 9
 P or

PS
nn.m

packed numeric
binary

COMP-4 P S V 9

1-4 2 I 2 binary

5-9 4 I 4

10-18 8 I 8

DISPLAY AB A nnnnn alphabetic

DISPLAY A * 9 A nnnnn alphanumeric

DISPLAY A * 9 B 0 /

A nnnnn
alphanum. for
print

DISPLAY
A P V Z 9 0 / , . +
- CR DB * $

 P or
PS

nn.m
numerical for
print

DISPLAY P S V 9
 N or

NS
nn.m decimal external

DISPLAY E V 9 . + - F 8

DISPLAY V 9 for mantissa 16 F 8 floating point
external

DISPLAY 99 for exponent 2 F 8

INDEX not applicable not supported Index

PACKED-
DECIMAL

P S V 9
 P or

PS
nn.m

packed numeric
binary

85

* See the respective COBOL language description for more information on the different data formats.

Copyright © Software AG 2003258

Incorporating COBOL Copy CodeRepresentation of COBOL Field Definitions in Predict

Incorporating Super Natural Users
The Incorporate Super Natural user screen is displayed by selecting function code I and object code SU in a
Predict main menu or by entering the direct command INCORPORATE SUPER.

Note:
See Concepts of Incorporation for basic information on how to use incorporation functions.

 10:01:45 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate NSP user -

 User ID

 Add user N (Y/N)

 Super Natural File
 Database number .. 76
 File number....... 252

Parameters

User ID ID of the Super Natural user to be processed. Asterisk notation is allowed.

Add user Y
Super Natural users not already defined as user objects in Predict will be added.

Super Natural File

Database numberNumber of the database where the Super Natural user description is stored.

File number Number of the file where the Super Natural user description is stored.

Incorporating Super Natural User in Batch Mode
Command: INCORPORATE SUPER

Enter parameters on the next line in positional or keyword form.

Field Keyword Position

User ID USER-ID 1

Add user ADD-USER 2

Database numberDBNR 3

File number FNR 4

Example

To incorporate Super Natural users whose names starts with ’A’ in batch, enter:

INCORPORATE SUPER
USER-ID=A*,ADD-USER=Y

259Copyright © Software AG 2003

Incorporating Super Natural UsersIncorporating Super Natural Users

or

INCORPORATE SUPER
A*,Y

The example above uses the Natural parameters IA== and ID=,

Copyright © Software AG 2003260

Incorporating Super Natural UsersIncorporating Super Natural User in Batch Mode

Incorporating Natural Security Users
Prerequisites and Restrictions

Only a Natural Security System Administrator can incorporate a Natural Security user.

Note:
See Concepts of Incorporation for basic information on how to use incorporation functions.

Selecting Natural Security Users

The Incorporate Natural Security user screen is displayed by selecting function code I and object code NS in a
Predict main menu or by entering the direct command INCORPORATE SECURITY.

 13:32:58 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Incorporate Natural Security User -

 User ID..............

 Incorporation options
 Add user............. N (Y/N)
 From date............ 0000-00-00
 User type...........*
 with comments........ Y (Y/N)
 with edit description N (Y/N)

Parameters

User ID ID of the Natural Security user to be processed. Asterisk notation is allowed.

Add user Y Natural Security users that are not defined in Predict will be added to it.

From date Limit the incorporation to user IDs which were added to the Natural Security system after
the specified date.

User type The type of user defined in Natural Security:

A
Administrator

M
Member

P
Person or

blank
any

with comments Y
User ID comments in the Natural Security system will be copied to Predict. Each comment
line will be split and stored as two halves.

with edit
description

Y
User ID comments in the Natural Security system will be copied to the extended description.

261Copyright © Software AG 2003

Incorporating Natural Security UsersIncorporating Natural Security Users

Incorporating Natural Security Users in Batch Mode
Command: INCORPORATE Security

Enter parameters on next line in positional or keyword form.

Field Keyword Position

User USER-ID 1

Add user ADD-USER 2

from date DATE 3

User type TYPE 4

with comments COMMENT 5

with edit descriptionDESC 6

Example

To incorporate Natural Security administrators whose names start with ’A’, code the command:

INCORPORATE SECURITY
USER-ID=A*,ADD-USER=Y,TYPE=A

or in positional form:

INCORPORATE SECURITY
A*,Y,,A

The example above uses the Natural parameters IA==, ID=, and IM=D

Copyright © Software AG 2003262

Incorporating Natural Security UsersIncorporating Natural Security Users in Batch Mode

Incorporating Tables / Views of SQL
Database Systems
Functional Scope

This function is available for the SQL systems listed below.

Adabas D
Ingres
Informix
Oracle
Sybase

Note:
The screens and examples in this section are given for Adabas D but are also applicable to the other SQL
systems.

Prerequisites

The prerequisites depend on whether you are using your SQL system locally or within a network environment:

Locally
Entire Access must be installed
Specify the Entire Access database driver to be used with the dbms parameter in the NATCONF.CFG
file. See your Entire Access documentation for more information.

Network environment
Entire Access must be installed
Specify a remote connect string as described in your Entire Access documentation.

Restrictions

The following restrictions apply:

Ingres
No rules or procedures are incorporated.
Adabas D
When incorporating Adabas D views, the message "Master missing" does not appear even if the
corresponding master file does not exist or is not accessible.
All constraints are incorporated as one check constraint of the file object in Predict.
Upper/Lower Case
If the general default parameter Miscellaneous > Upper/lower case > Object ID is set to U and SQL tables
and views with mixed-case names are to be incorporated, it is possible that some references are not
recognized.

Selecting SQL Tables and Views

The respective Incorporate screen is called with function code I and the corresponding code in a Predict main
menu or with the command INCORPORATE <sql-type>. See table below.

263Copyright © Software AG 2003

Incorporating Tables / Views of SQL Database SystemsIncorporating Tables / Views of SQL Database Systems

SQL System Code Command Word

Adabas D BF ESD-TABLE

Ingres JF INGRES-TABLE

Informix XF INFORMIX-TABLE

Oracle OF ORACLE-TABLE

Sybase YF SYBASE-TABLE

For example, the Incorporate Adabas D Tables/Views screen below is called with command INCORPORATE
BF or INCORPORATE ESD-TABLE.

 10:00:30 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Incorporate Adabas D Tables/Views -

 Table / View name

 Select options
 Tables or Views ...*
 Creator name

 from DBID*

Parameters

Table /
View name

Name of table / view in the SQL environment. Asterisk notation can be used to specify a range of
table/view names.

Select
options

Determines whether tables or views are to be incorporated.

Tables or
Views

T
Tables

V
Views

Creator
name

Limits the scope of the function to SQL tables/views with the specified creator.

From DBID Number of the database as defined in the NATCONF.CFG file. This number identifies the SQL
system from which tables/views are to be incorporated. Enter an asterisk to display a list of
database numbers for selection.

Note:
If you are using more than one SQL system in a network environment, all possible databases
are offered for selection, even if they are from another system.

Copyright © Software AG 2003264

Incorporating Tables / Views of SQL Database SystemsSelecting SQL Tables and Views

Columns in the List

Creator Creator in the respective SQL system.

Table/view
name

Name of the table/view.

T Type of the SQL object:

T
SQL table

V
SQL view

Remark

Either the following remark or blank.

Master
missing

The specified SQL view cannot be incorporated in Predict until a documentation object for a
related SQL table or view has been created.

Note:
This remark is not given when incorporating Adabas D views.

Incorporation Functions for SQL Tables and Views
Subfunctions Incorporate and Display masters are available when incorporating SQL tables and views.

Display Masters - Code M

The SQL tables/views a view is related to must be documented in Predict before the SQL view can be
incorporated. This subfunction finds all tables/views that must be documented in Predict before table/views can
be incorporated.

Incorporate - Code I

Scope of the Incorporation

One Predict file object is created for each table or view.
The ID of the new file object consists of the creator name and SQL name of the table or view joined by a
hyphen.
One field object is created for each field in the table or view.
The ID of the field is the name of the field in the respective SQL system. For each view that is incorporated,
the appropriate parts of the subselect specification in the SQL statement CREATE will be copied to the file
and field objects created.
One Predict field object (type SP) is created for each composite unique constraint.
One Predict field object (type SP) is created for each composite foreign key if there is not already a Predict
field object for a composite unique constraint built from the same columns.
One Predict file relation object is created for each foreign key.
A verification is added and linked to the corresponding field for each check constraint that is defined for
one column.
Attributes of the corresponding file object are updated for each table check constraint (check expression for
more than one column).
One trigger object for each trigger that is connected to the file being incorporated. The trigger object is
linked to the file object via association Has TR.

265Copyright © Software AG 2003

Incorporation Functions for SQL Tables and ViewsIncorporating Tables / Views of SQL Database Systems

Before the function is executed, enter the following parameters in an additional input screen

Incorporation Options

Comments as
abstract

Y
String constants assigned with COMMENT ON are incorporated as the abstract of the
corresponding Predict object:

Comments assigned to the table or view are to be copied to the file object.
Comments assigned to a field of the table or view are to be copied to the field object.

Note:
This parameter is not applicable to all SQL systems.

List incorporated
code

Y
The values of all attributes incorporated for the table or view are to be listed.

Incorporate SQL Tables / Views in Batch Mode

Command: INCORPORATE <sql-type>

See list of codes and command words in the section Selecting SQL Tables and Views.

Enter the parameters on next line in positional or keyword form.

Field Keyword Position

Table/View name TABLE 1

Tables or Views TYPE 2

Creator name CREATOR 3

From DBID DBNR 4

Incorporate commentsCOMMENT 5

List incorporated codeLIST 6

Note:
The keyword ABSTRACT can be used as a synonym for COMMENT.

Copyright © Software AG 2003266

Incorporating Tables / Views of SQL Database SystemsIncorporate SQL Tables / Views in Batch Mode

Comparison
Comparison functions help to keep Predict documentation and the actual implementation of an information
processing system consistent. Comparison functions are needed because the external objects can be changed with
utilities of the programming environment independent of Predict, even if protection options for external objects
are activated. See function General Defaults > Protection in the section Defaults in the Predict Administration
documentation.

This section covers the following topics:

Concepts of Comparison
Calling Comparison Functions
Comparing Different Types of Objects
Comparing Adabas Databases
Comparing Adabas Files
Comparing Vista Translation Tables
Comparing DDMs
Comparing Adabas Tables/Views
Comparing DB2 Databases
Comparing DB2 Storagegroups
Comparing DB2 Tablespaces
Comparing DB2 Tables and Views

267Copyright © Software AG 2003

ComparisonComparison

Concepts of Comparison
Functional Scope

The following Predict objects and external objects can be compared:

Predict Object External Object

File DDM

Adabas File

DB2 Tables and Views

Adabas Tables and Views

All Adabas files and databases in a networkVista Translation Table

Database Adabas Database

DB2 Database

Storagespace DB2 Storagegroup

Dataspace DB2 Tablespace

SQL/DS Dataspace

If comparison functions find differences between an external object and its corresponding documentation object,
either the implementation or the documentation can be changed to restore consistency.

Actions to restore consistency are either performed by the Predict comparison function or have to be executed
manually.
The following actions can be executed by Predict Compare functions:

Update documentation objects according to external objects.
Reset the Modified after generation flag for documentation objects that do not differ from corresponding
external objects.
See Resetting the Modified after generation Flag below.

The following actions must be executed manually:

Generate a new external object from the documentation object.
Disconnect the external object and the documentation object.
Purge the external object or the documentation object.

The Save Set option helps to create a list of members which have to be processed according to changes in the
documentation of an information processing system.
See Saving the Result of Comparison Functions in Sets.

Resetting the Modified after generation Flag

The Modified after generation flag of Predict objects indicates if a Predict object has been changed after an
external object was generated from it.

With Predict file objects of type A, separate Modified after generation flags are set for changes to file attributes
and changes to the field list of the file.

Copyright © Software AG 2003268

Concepts of ComparisonConcepts of Comparison

If compare functions find that a Modified after generation flag is set for a Predict object that does not differ from
the external object, the flag is reset.

Modified after generation flags are reset if the respective check options of the compare function are activated:

When comparing Adabas files, the Modified after generation flags for file attributes and for field lists can
be reset separately.
Predict evaluates the check options File attributes and Fields.
For all other objects types, only one Modified after generation flag is set.
All check options must set to Y if the flag is to be reset.

Format of Reports Created by Comparison Functions

When attributes of documentation and external objects differ, the attribute values of documentation objects are
reported first and the information on external objects is indented and highlighted, together with a brief
description of the difference.

 13:40:33 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Compare DD Objects with Adabas Files -

 File ID A-A PFnr ... 331
 Database ID .. PREDICT-TEST-DB PDBnr .. 188

 File attributes
 Maxisn 667
 Maxisn in database: 1289
 ISN reusage Yes
 ISN reusage in database: No
 User ISN Yes
 User ISN in database: No

Calling Comparison Functions
When working online, comparison functions are called from type-specific Compare screens called with code C
and an external object code in a Predict main menu or with the corresponding command. See table in the section
Calling Comparison Functions with Commands.

General Prerequisites for Comparison Functions

Predict objects and external objects to be compared must be connected. See the section Handling of External and
documentation Objects in this documentation.

Note:
There is one exception: If Adabas Online Services are not installed, implemented Adabas files and Predict
file objects of type A can be compared even if they are not connected.

A variety of Adabas attributes can only be compared if Adabas version 6 or above is used and Adabas Online
Services are installed.

269Copyright © Software AG 2003

Calling Comparison FunctionsConcepts of Comparison

Selecting Objects for Comparison Functions

Comparison functions can either be applied to individual objects or groups of objects which meet selection
criteria. The selection criteria vary for the different object types and are described in detail with the respective
object type.

Check, List, Update and Save Options

When comparing external objects and Predict objects, Check, List, Update and Save options determine the scope
of the operation:

Check Options
Determine how attributes are to be compared.
If check options are not set, compare functions will not reset the Modified after generation flag. See
Resetting the Modified after generation Flag.
List Options
Determine the scope of results of the comparison to be displayed.
Update Options
Determine which attributes of the Predict object are to be updated if differences were found.
Save Option
See Saving the Result of Comparison Functions in Sets below.

The options available depend on the object type. All options are described in detail with the respective object
type in the sections below.

Saving the Result of Comparison Functions in Sets

The IDs of members reported by comparison functions can be saved in sets for further processing. The following
rules apply:

To save the set of members, set the Save set option to Y before executing the function.
With comparison functions, sets are saved in the library that contains the objects they describe. Hence,
executing one Predict comparison function may save sets of objects in more than one library.
The sets saved in a library can be maintained. See Operate on Sets in the section LIST XREF for Natural
in the Predict Reference documentation.

Calling Comparison Functions with Commands

Comparison functions can be used both online and in batch mode.

The following table gives an overview of objects that can be compared, the codes to be entered in any Predict
main menu and the corresponding command.

Copyright © Software AG 2003270

Concepts of ComparisonSelecting Objects for Comparison Functions

External Object Type Code Command

Adabas Database AD COMPARE ADA-DA

Adabas File AF COMPARE FDT

Vista Translation Table AT COMPARE VISTATAB

DDM DD COMPARE DDM

Adabas Table/View EQ COMPARE ESQ

DB2 Database D2 COMPARE DB2-DATABASE

DB2 Storagegroup SG COMPARE STORAGEGROUP

DB2 Table/View T2 COMPARE TABLE

DB2 Tablespace or SQL/DBspaceTS COMPARE DB2-TABLESPACE

271Copyright © Software AG 2003

Calling Comparison Functions with CommandsConcepts of Comparison

Comparing Different Types of Objects
The following external objects can be compared with Predict objects:

Adabas Databases
Adabas Files
Vista Translation Tables
DDMs
Adabas Tables and Views
DB2 Databases
DB2 Storagegroups
DB2 Tablespaces
DB2 Tables and Views

Comparing Adabas Databases
Prerequisites

Adabas Online Services must be available if a database of Adabas Version 6 or above is to be compared.

If Natural Security function protection for Predict is activated, permission is required to compare Adabas
databases.

See also General Prerequisites for Comparison Functions.

Calling the Function

The Compare DD Objects with Adabas DBs screen is called with code C and object code AD in any Predict
main menu or with the command COMPARE ADABAS-DATABASE.

 10:53:02 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Compare DD Objects with Adabas DBs - Profile HNO

 Current VM HOME

 Database ID
 Database number
 Belongs to VM

 List options Update options
 DB attributes* D DB attributes N (Y/N)
 File list* D File list
 Unlink files ... N (Y/N)

 Restrictions* Profile HNO ,used

Copyright © Software AG 2003272

Comparing Different Types of ObjectsComparing Different Types of Objects

Parameters

Current VM ID of the virtual machine object identifying the current environment. A read-only field. This
value can be changed in the Maintenance options of the Modify User Defaults function or with
the command

SET VM<virtual machine ID>.

If no current VM is specified in the session profile, the Default current virtual machine
parameter in the Miscellaneous section of the General Defaults is used.

Database ID ID of the Predict database object to be compared. Asterisk notation can be used.

Database
number

The number of the Adabas database to be compared.

Belongs to
VM

Limits the function to databases linked to this virtual machine via association Contains DA.
Asterisk notation can be used.

List options

DB attributes How attributes of the Predict database object are to be displayed.

Y
All attributes

N
No attributes

D
Different: only database attributes whose values differ.

File list How files contained in the file list of the Predict database object are to be displayed:

Y
All files

N
No files

D
Different: only files that are either not implemented in the Adabas database or are not linked to
a Predict documentation object.

Update options

DB attributes Y
The attributes of the Predict database object are to be updated.

File list:
Unlink files

Y
Files that are not implemented in the Adabas database are to be removed from the file list of the
Predict database object.

Comparing Adabas Databases in Batch Mode

Command: COMPARE ADABAS-DATABASE

Enter parameters on next line in the positional or keyword form.

273Copyright © Software AG 2003

Comparing Adabas Databases in Batch ModeComparing Different Types of Objects

Field Keyword Position

Database ID DATABASE-ID 1

Database numberDBNR 2

Belongs to VM PARENT 3

List options

DB attributes LIST-DB 4

File list LIST-FILE 5

Update options

DB attributes UPD-DB 6

Unlink files UNLINK-FILE 7

Example

To compare all databases of type ’A’ with prefix ’TEST’ and to display the file lists code the command:

COMPARE ADABAS-DATABASE
DATABASE-ID=TEST*,LIST-FILE=Y

or

COMPARE ADABAS-DATABASE
TEST*,,,,,Y

The above example uses the Natural parameter ID=, and IA==

Copyright © Software AG 2003274

Comparing Different Types of ObjectsComparing Adabas Databases in Batch Mode

Comparing Adabas Files
Prerequisites and Restrictions

Adabas files and Predict files to be compared must be connected. There is one exception to this rule: if AOS
is not installed, implemented Adabas files and Predict file objects can be compared even if they are not
connected.
If Natural Security function protection for Predict is activated, permission is required to compare Adabas
files.

See also General Prerequisites for Comparison Functions.

Calling the Function
The Compare DD Objects with Adabas files screen is called with code C and object code AF in any Predict main
menu or with the command COMPARE FDT.

 10:55:35 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Compare DD Objects with Adabas Files - Profile HNO

 Current VM HOME
 File ID File number
 Contained in DA .. Database number ..
 Check options List options
 File attributes Y (Y/N) Files* D
 Fields Y (Y/N) Fields* D
 Even if only FDT exists .. Y (Y/N) Members using differences ..* N
 Adabas password
 Update options
 File attributes* N
 Field sequences N (Y/N)
 Add fields N (Y/N)
 Purge fields N (Y/N)
 Field attributes* N

 Restrictions* Profile HNO ,used Save set .. N (Y/N)

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Parameters

Current VM ID of Predict virtual machine object identifying the environment of the Adabas file. A read-only
field. See also table with Parameter descriptions in the section Comparing Adabas Databases.

File ID ID of the Predict file object of type A to be compared with the connected Adabas file. Asterisk
notation can be used.

Contained in
DA

Limits the function to files in this database.
Asterisk notation can be used.

File number File with this file number is processed.

Database
number

Only file in database with this number is processed.

275Copyright © Software AG 2003

Comparing Adabas FilesComparing Adabas Files

Check options

If the check options File attributes or Fields are not set, compare functions will not reset the Modified after
generation flag. See Resetting the Modified after generation Flag for more information.

File
attributes

Y
Attributes of the file are to be compared with the implementation of the file in the database
(space allocation, for example).
Attributes not required when loading a file are compared only if they are specified in the Predict
object.
This setting is valid only when Adabas Online Services is available and the file that is to be
compared resides in a database of Adabas Version 6 or above.

Fields Y
The field list of the file object is to be compared with the Adabas file definition table (FDT).

Even if only
FDT exists

Y
A file is to be compared even if it has been deleted with the Keep FDT option.

N
File is not compared. For this setting, three conditions must be met:

the Adabas Online Services selectable unit must be installed
the file to be compared must reside in a database of Adabas Version 6 or above
the file to be compared must not have been deleted with the Keep FDT option.

Adabas
password

Password required to access the file if the file is protected by Adabas security. Passwords are not
converted to upper case.

List options

Files How attributes of the Predict file object are to be displayed.

Y
All file attributes

N
No file attributes

D
Different: only file attributes whose Predict values differ from the implementation.

Fields How fields linked to the Predict file object are to be displayed.

Y
All fields

N
No fields

D
Different: only fields whose Predict definitions differ from the FDT.

Copyright © Software AG 2003276

Comparing Adabas FilesCalling the Function

Members
using diff.

Determines the amount of information to be displayed on members using external objects that
differ from the corresponding Predict objects.

The following differences are possible:

file numbers of Predict file objects differ from the FDT or a userview of such a file.
Predict field objects differ from the FDT.

Valid values:

Y
Display types and names of all members using files that differ in any of the above ways.

N
Do not display members.

C
Count the number of members per library.

Update options

Update options are effective only if parameters Save set and Programs using differences are set to N.

File
attributes

How attributes of the Predict file object are to be updated. Provided that the Adabas Online
Services selectable unit is available and the file that was compared resides in a database of
Adabas Version 6 or above, one of the following can be specified:

R
File attributes required when loading a file and any other file attributes specified in the Predict
object

N
No file attributes

O
File attributes not required when loading a file are updated only if they are specified in the
Predict object.

Field
sequence

Y
The field list is to be rearranged to match the sequence of the fields in the FDT.

Add fields Y
Fields in the FDT that are missing in the field list are to be inserted in the field list.

Purge fields Y
Fields in the field list that are missing from the FDT are to be removed from the field list.

277Copyright © Software AG 2003

Calling the FunctionComparing Adabas Files

Field
attributes

How attributes of the fields linked to the Predict file object are to be changed to match the FDT.

A
All field attributes

N
No field attributes

I
Field attributes that can only be changed in the FDT by deleting and re-implementing the file.

After fields have been updated, the function Edit elements of a file is executed automatically and
a catalog is performed.

Note:
We recommend that you set all or none of the field update parameters to Y. Otherwise
confusing results may occur, especially if the Field sequence parameter is not set to Y. For
example, a periodic group may be inserted out of sequence. A cursory inspection might
then give the false impression that the group’s member fields are on the wrong level.

Save set Y
Program types and names reported by the function are saved in a set. See also Saving the Result
of Comparison Funtions in Sets.

Comparing Adabas Files in Batch Mode
Command: COMPARE FDT

Enter parameters on the next line in positional or keyword form.

Copyright © Software AG 2003278

Comparing Adabas FilesComparing Adabas Files in Batch Mode

Field Keyword Position

File ID FILE-ID 1

Contained in DA DB 2

File number FNR 3

Database number DBNR 4

Check options

File attributes CHECK-FILE 5

Fields CHECK-FIELD 6

Even if only FDT exists EVEN-ONLY-FDT 7

Adabas password PSW 8

List options

Files LIST-FILE 9

Fields LIST-FIELD 10

Members using differencesLIST-PROGRAM 11

Save set SAVE-SET 12

Update options

File attributes UPD-FILE 13

Field sequence UPD-SEQUENCE 14

Add fields ADD-FIELD 15

Purge fields PURGE-FIELD 16

Field attributes UPD-FIELD 17

Example

To compare all files in database ’TEST’ and display all fields with a different definition, code the command:

COMPARE FDT
DB=TEST,LIST-FIELD=D

or

COMPARE FDT
,TEST,,,,,,,,,D

The example above uses the Natural parameter ID=, and IA==

279Copyright © Software AG 2003

ExampleComparing Adabas Files

Comparing Vista Translation Tables
Prerequisites

Adabas Vista must be installed. See also General Prerequisites for Comparison Functions.

Note:
To compare a Vista translation table and Predict Vista elements, external and documentation objects do not
have to be connected.

Calling the Function
The Compare DD Objects with Vista screen is called with code C and object code AT in any Predict main menu
or with the command COMPARE VISTATAB.

 13:32:48 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Compare DD with Vista table - Profile HNO

 Current VM HOME

 List Vista elements* D

Parameters

Current VM ID of Predict virtual machine object identifying the current environment. A read-only field. See
table of Parameter descriptions in the section Comparing Adabas Databases for detailed
information.

List Vista
elements

The amount of information to be displayed on entries in an Vista translation table.

Y
All entries in the Vista translation table

N
No entries

D
Only entries in Vista tables differing from corresponding Predict Vista elements.

Comparing Vista Translation Tables in Batch Mode
Command: COMPARE VISTATAB

Enter parameter in next line.

Field Keyword

List Vista elementsLIST

Copyright © Software AG 2003280

Comparing Vista Translation TablesComparing Vista Translation Tables

Example

To compare an Vista translation table and list all Vista elements, code the command:

COMPARE VISTATAB
LIST=Y

or

COMPARE VISTATAB
Y

The above example uses the Natural parameter ID=, and IA==

281Copyright © Software AG 2003

ExampleComparing Vista Translation Tables

Comparing DDMs
Prerequisites

See also General Prerequisites for Comparison Functions.

If Natural Security is installed and the file (DDM) has been defined to the Security system, only administrators
may compare the file. Also, if the file object in Natural Security has an Owner list, the DDM may be compared
only by one of its owners. No countersignatures are necessary. A file is not selected if a DDM connected to the
file is defined to the Security system and the user is either not an administrator or not in the Owner list.

Calling the Function
The Compare DD Objects with DDMs screen is called with code C and object code DD in any Predict main
menu or with the command COMPARE DDM.

 10:56:12 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Compare DD Objects with DDMs - Profile HNO

 Current VM HOME

 File ID Files of type ..*
 Contained in DA ... File number

 Check options List options
 File attributes Y (Y/N) Fields* D
 Fields Y (Y/N) Verifications* D
 Verifications Y (Y/N) Members using differences* N
 Adabas Version* I7

 Restrictions* Profile HNO ,used Save set N (Y/N)

Parameters

Current VM ID of the virtual machine object identifying the current environment. A read-only field. See
also table with Parameter descriptions in the section Comparing Adabas Databases.

File ID The ID of the Predict file object or objects which are to be compared with the connected
DDMs of userviews or files. Asterisk notation can be used.

Files of type Limit the function to files of the specified type.

File number File with this file number is processed.

Contained in
DA

Limit the function to files in the specified database.

Check options

If check options are not set, compare functions will not reset the Modified after generation flag. See Resetting
the Modified after generation Flag for more information.

File attributes Y
Attributes of the file are to be compared with the implementation of the file in the DDM and
any differences in file number, database ID and file type-specific attributes are to be
displayed.

Copyright © Software AG 2003282

Comparing DDMsComparing DDMs

Fields Y
The field list of the file object is to be compared with the DDM.

Verifications Y
The verifications of the fields are to be compared with the DDM to find any that

have incompatible formats,
are not activated, or
have been modified, disconnected or resequenced since the DDM was generated.

Adabas version The version of Adabas for which the DDM was generated. This determines the representation
of integers and floating point numbers, hyperdescriptors and the size of the DBnr and Fnr in
the DDM.

List options

Fields How fields linked to the Predict file object are to be displayed.

Y
All fields

N
No fields

D
Different: only fields whose Predict definitions differ from the DDM.

Verifications How verifications of the fields are to be displayed.

Y
All verifications

N
No verifications

D
Different: only verifications that are not activated or have been modified, disconnected or
resequenced since the DDM was generated.

Members using
diff.

Determines the amount of information to be displayed on members using external objects that
differ from the corresponding Predict objects:

The following differences are possible:

A verification has been modified, disconnected or resequenced since the DDM was
generated.
A Predict field definition differs from the DDM.
The file number of a Predict file object differs from the DDM or a userview of such a
file.

Valid values:

Y
Display types and names of all members using objects that differ in any of the above ways.

N
Do not display members.

C
Count the number of members per library.

283Copyright © Software AG 2003

Calling the FunctionComparing DDMs

Save set Y
Program types and names reported by the function are saved in a set. See also Saving the
Result of Comparison Funtions in Sets.

Comparing DDMs in Batch Mode
Command COMPARE DDM

Enter parameters on the next line in positional or keyword form.

Field Keyword Position

File ID FILE-ID 1

Files of type TYPE 2

File number FNR 3

Contained in DA DB 4

Check options

File attributes CHECK-FILE 5

Fields CHECK-FIELD 6

Verifications CHECK-RULE 7

Adabas version ADA-VER 8

List options

Fields LIST-FIELD 9

Verifications LIST-RULE 10

Members using differencesLIST-PROGRAM 11

Save set SAVE-SET 12

Example

To compare all files that begin with ’TEST’ and to display members using differences code the command:

COMPARE DDM
FILE-ID=TEST*,LIST-PROGRAM=Y

or

COMPARE DDM
TEST*,,,,,,,,,,Y

The example above uses the Natural parameter ID=, and IA==

Copyright © Software AG 2003284

Comparing DDMsComparing DDMs in Batch Mode

Comparing Adabas Tables/Views
Prerequisites

Parts of the ADVANCED Interactive Facilities of Adabas SQL Server must be installed within Natural. For
detailed information see the requirements table in the respective part of the Predict Installation documentation.

Calling the Function
The Compare DD Objects with Adabas Tables/Views screen is called with code C and object code EQ in any
Predict main menu or with the command COMPARE ESQ.

 13:01:20 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Compare DD with Adabas Tbls/Views - Profile HNO

 Current VM HOME
 File ID Files of type ..*
 Contained in DA ...

 Check options List options
 File attributes Y (Y/N) Files* D
 Fields Y (Y/N) Fields* D
 Members using differences* N
 Update options
 File attributes N (Y/N)
 Field sequences N (Y/N)
 Add fields N (Y/N)
 Purge fields N (Y/N)
 Field attributes ... N (Y/N)

 Restrictions* Profile HNO ,used Save set ... N (Y/N)

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Parameters

Current VM ID of the virtual machine object identifying the current environment. A read-only field. See
table with Parameter descriptions in the section Comparing Adabas Databases for more
information.

File ID The ID of the Predict file object(s) to be compared with the connected Adabas tables or views.
Asterisk notation can be used.

Files of type For Adabas tables: must be type A (with SQL usage set to Y) or type AT.
For Adabas views: must be type B.

Contained in
DA

Limit the function to tables and views which reside in the specified database of type A.

Check options

If check options are not set, compare functions will not reset the Modified after generation flag. See Resetting
the Modified after generation Flag for more information.

285Copyright © Software AG 2003

Comparing Adabas Tables/ViewsComparing Adabas Tables/Views

File attributes Y
Attributes of the file are to be compared with the implementation of the file in the Adabas
table/view.

Fields Y
The field list of the file object is to be compared with the Adabas table/view.

List options

Files How attributes of the Predict file object are to be displayed.

Y
All file attributes

N
No file attributes

D
Different: only file attributes whose Predict values differ from the implementation.

Fields How fields linked to the Predict file object are to be displayed.

Y
All fields

N
No fields

D
Different: only fields whose Predict definitions differ from the Adabas table/view.

Members
using diff.

Determines the amount of information to be displayed on members using fields that have been
compared and whose Predict definition differs from the Adabas table/view

Y
Display the names and types of all member.

N
Do not display members.

C
Count the number of members per library.

Update options

File attributes Y
File attributes are to be updated.

Field
sequence

Y
The field list is to be rearranged to match the sequence of the fields in the Adabas table/view.

Add fields Y
Fields in the Adabas table/view missing in the field list are to be inserted in the field list.

Purge fields Y
Fields that are missing in the Adabas table/view are to be removed from the field list.

Field
attributes

Y
Attributes of the fields linked to the Predict file object are to be changed to match the Adabas
table/view.

Copyright © Software AG 2003286

Comparing Adabas Tables/ViewsCalling the Function

Save set Y
Program types and names reported by the function are saved in a set. See also Saving the
Result of Comparison Funtions in Sets.

Comparing Adabas Tables and Views in Batch Mode
Command: COMPARE ESQ

Enter parameters on the next line in positional or keyword form.

Field Keyword Position

File ID FILE-ID 1

Files of type TYPE 2

Contained in DA DB 3

Check options

File attributes CHECK-FILE 4

Fields CHECK-FIELD 5

List options

Files LIST-FILE 6

Fields LIST-FIELD 7

Members using differencesLIST-PROGRAM 8

Save set SAVE-SET 9

Update options

File attributes UPD-FILE 10

Field sequences UPD-SEQUENCE11

Add fields ADD-FIELD 12

Purge fields PURGE-FIELD 13

Fields attributes UPD-FIELD 14

Example

To compare all files of type A or B with prefix ’TEST’ and display all fields with a different definition, code the
command:

COMPARE ESQ
FILE-ID=TEST*,LIST-FIELD=D

or

COMPARE ESQ
TEST*,,,,,D

287Copyright © Software AG 2003

Comparing Adabas Tables and Views in Batch ModeComparing Adabas Tables/Views

The example above uses the Natural parameter ID=, and IA==

Copyright © Software AG 2003288

Comparing Adabas Tables/ViewsExample

Comparing DB2 Databases
Prerequisites

DB2 must be installed. See the section DB2 and SQL/DS in the Predict and Other Systems documentation

See also General Prerequisites for Comparison Functions.

Calling the Function
The Compare DD Objects with DB2 DBs screen is called with code C and object code D2 in any Predict main
menu or with the command COMPARE D2.

 09:42:13 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Compare DD Objects with DB2 DBs - Profile HNO

 Database ID
 Belongs to VM

 List options Update options
 DB attributes* D DB attributes N (Y/N)
 Dataspace list* D Links
 File list* D Unlink dataspaces ... N (Y/N)
 Unlink files N (Y/N)

 Restrictions* Profile HNO ,used

Parameters

Selection criteria

Database ID The ID of the Predict database object or objects of type D which are to be compared with the
connected DB2 database or databases. Asterisk notation can be used.

Belongs to
VM

Limits the scope of the function to DB2 databases linked to this virtual machine via association
Contains DA. Asterisk notation can be used.

List options

DB attributes How attributes of the Predict database object are to be displayed.

Y
All database attributes

N
No database attributes

D
Different: only database attributes whose Predict values differ from the implementation.

289Copyright © Software AG 2003

Comparing DB2 DatabasesComparing DB2 Databases

Dataspace list How Predict dataspace objects linked to the Predict database object via association Contains
DC are to be displayed.

Y
All dataspaces

N
No dataspaces

D
Different: only dataspaces that are not implemented as DB2 tablespaces and DB2 tablespaces
that are not documented with Predict dataspaces are contained in the list.

File list How files linked to the Predict database object are to be displayed.

Y
All files

N
No files

D
Different: only files that are either not implemented in the DB2 database or not defined in
Predict.

Update options

DB attributes Y
The attributes of the Predict database object are to be updated.

Unlink
dataspaces

Y
Dataspaces not implemented as DB2 tablespaces are to be removed from the dataspace list of
the Predict database object.

Unlink files Y
Files that are not implemented in the DB2 database are to be removed form the file list of the
Predict database object.

Note:
Unlink files can only be set to Y if Unlink dataspaces is also set to Y.

Comparing DB2 Databases in Batch Mode
Command: COMPARE DB2

Enter parameters on the next line in positional or keyword form.

Copyright © Software AG 2003290

Comparing DB2 DatabasesComparing DB2 Databases in Batch Mode

Field Keyword Position

Database ID DATABASE-ID 1

Belongs to VM PARENT 2

List options

DB attributes LIST-DB 3

Dataspace list LIST-DS 4

File list LIST-FILE 5

Update options

DB attributes UPD-DB 6

Unlink dataspacesUNLINK-DS 7

Unlink files UNLINK-FILE 8

Example

To compare all databases of type D with prefix ’TEST’ and to display the file lists code the command:

COMPARE DB2
DATABASE-ID=TEST*,LIST-FILE=Y

or

COMPARE DB2
TEST*,,,,Y

The above example uses the Natural parameter ID=, and IA==

291Copyright © Software AG 2003

ExampleComparing DB2 Databases

Comparing DB2 Storagegroups
Prerequisites

DB2 must be installed. See the section DB2 and SQL/DS in the Predict and Other Systems documentation

See also General Prerequisites for Comparison Functions.

Calling the Function
The Compare DD Objects with Stogroups screen is called with code C and object code SG in any Predict main
menu or with the command COMPARE STORAGEGROUP.

 09:40:44 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Compare DD Objects with Stogroups - Profile HNO

 Storagespace ID ...

 Update option List option
 Storagespace attributes .. N (Y/N) Storagespace attributes* D

 Restrictions* Profile HNO ,used

Parameters

Selection criteria

Storagespace ID ID of the Predict storagespace object to be compared with a DB2 storagegroup.
Asterisk notation can be used

List option

Storagespace
attributes

How attributes of the Predict storagespace object are to be displayed.

Y
Attributes of the Predict storagespace that differ from the DB2 storagegroup are listed.

N
No attributes are listed.

D
Different: only attributes of storagespace that are different from the storagegroup are
listed.

Update option

Storagespace
attributes

Y Attributes of the Predict storagespace that differ from the DB2 storagegroup are
updated.

Copyright © Software AG 2003292

Comparing DB2 StoragegroupsComparing DB2 Storagegroups

Comparing DB2 Storagegroups in Batch Mode
Command: COMPARE STORAGEGROUP

Enter parameters on the next line in positional or keyword form.

Field Keyword Position

Storagespace ID STOSPACE-ID 1

List option

Storagespace attributesLIST-ST 2

Update options

Storagespace attributesUPD-ST 3

Example

To compare all storagespaces with prefix ’TEST’ and list all attributes, code the command:

COMPARE STORAGEGROUP
STOSPACE-ID=TEST*,LIST-ST=Y

or

COMPARE STORAGEGROUP
TEST*,Y

The example above uses the Natural parameter ID=, and IA==

293Copyright © Software AG 2003

Comparing DB2 Storagegroups in Batch ModeComparing DB2 Storagegroups

Comparing DB2 Tablespaces
Prerequisites

DB2 must be installed. See the section DB2 and SQL/DS in the Predict and Other Systems documentation

See also General Prerequisites for Comparison Functions.

Calling the Function
The Compare DD Objects with Tablespaces screen is called with code C and object code TS in any Predict main
menu or with the command COMPARE TABLESPACE

 09:44:54 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Compare DD Objects with Tablespaces - Profile HNO

 Dataspace ID
 Located in DA

 Check options List options
 Dataspace attributes ... Y (Y/N) Dataspace attributes* D
 Files Y (Y/N) Files* D

 Update options
 Dataspace attributes ... N (Y/N)
 Unlink files N (Y/N)

 Restrictions* Profile HNO ,used

Copyright © Software AG 2003294

Comparing DB2 TablespacesComparing DB2 Tablespaces

Parameters

Dataspace ID ID of the Predict dataspace object that is to be compared. Asterisk notation can be used.

Contained in
DA

Predict database object the dataspace object is linked to (via association Contains DC).
Asterisk notation can be used.

Check options

If check options are not set, compare functions will not reset the Modified after generation flag. See Resetting
the Modified after generation Flag for more information.

Dataspace
attributes

Y
Attributes of the Predict dataspace are compared with the DB2 tablespace.

Files Y
The file list of the dataspace is to be compared with the DB2 tablespace.

List options

Dataspace
attributes

How dataspace attributes are reported.

Y
All attributes of the Predict dataspace are reported.

N
No attributes are reported.

D
Different: only attributes of dataspace that are different from the tablespace are reported.

Files How files linked to the dataspace via association Contains FI are to be reported:

Y
All files

N
No files

D
Different: only files that are either not implemented in the DB2 tablespace or not defined in
Predict.

Update options

Dataspace
attributes

Y
Attributes of the Predict dataspace that differ from the DB2 tablespace are changed.

Unlink files Y
Files that are not implemented in the DB2 tablespace are removed from the file lists of the
Predict dataspace object and the database objects the dataspace belongs to.

Comparing DB2 Tablespaces in Batch Mode
Command: COMPARE TABLESPACE

Enter parameters on the next line in positional or keyword form.

295Copyright © Software AG 2003

Comparing DB2 Tablespaces in Batch ModeComparing DB2 Tablespaces

Field Keyword Position

Dataspace ID DATASPACE-ID 1

Contained in DA DB 2

Check options

Dataspace attributesCHECK-DS 3

Files CHECK-FILE 4

List options

Dataspace attributesLIST-DS 5

Files LIST-FILE 6

Update options

Dataspace attributesUPD-DS 7

Unlink files UNLINK-FILE 8

Example

To compare all dataspaces with prefix ’TEST’ and display all files, code the command:

COMPARE TABLESPACE
DATASPACE-ID=TEST*,LIST-FILE=Y

or

COMPARE TABLESPACE
TEST*,,Y

The example above uses the Natural parameter ID=, and IA==

Copyright © Software AG 2003296

Comparing DB2 TablespacesExample

Comparing DB2 Tables and Views
Prerequisites and Restrictions

DB2 must be installed. See the section DB2 and SQL/DS in the Predict and Other Systems documentation

See also General Prerequisites for Comparison Functions.

Calling the Function
The Compare DD Objects with DB2 files screen is called with code C and object code T2 in any Predict main
menu or with the command COMPARE TABLE.

 09:44:12 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Compare DD Objects with DB2 Files - Profile HNO

 File ID Files of type ..*
 Contained in DA ...

 Check options List options
 File attributes Y (Y/N) Files* D
 Fields Y (Y/N) Fields* D
 Members using differences* N
 Update options
 File attributes N (Y/N)
 Field sequences N (Y/N)
 Add fields N (Y/N)
 Purge fields N (Y/N)
 Field attributes ... N (Y/N)

 Restrictions* Profile HNO ,used Save set N (Y/N)

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Parameters

Selection criteria

File ID The ID of the Predict file object or objects which are to be compared with the connected DB2
tables or views. Asterisk notation can be used.

Files of type Limit the function to files of the specified type.

Contained in
DA

Limit the function to tables and views which reside in the specified database of type D. Asterisk
notation can be used.

Check options

If check options are not set, compare functions will not reset the Modified after generation flag. See Resetting
the Modified after generation Flag for more information.

File attributes Y
Attributes of the file are to be compared with the implementation of the file in DB2.

297Copyright © Software AG 2003

Comparing DB2 Tables and ViewsComparing DB2 Tables and Views

Fields Y
The field list of the file object is to be compared with the DB2 table or view.

List options

Files How attributes of the Predict file object are to be displayed.

Y
All file attributes

N
No file attributes

D
Different: only file attributes whose Predict values differ from the implementation.

Fields How fields linked to the Predict file object are to be displayed.

Y
All fields

N
No fields

D
Different: only fields whose Predict definitions differ from the DB2 table or view.

Members
using diff.

Determines the amount of information to be displayed on members using fields that have been
compared and whose Predict definition differs from the DB2 table or view

Y
Display the names and types of all member.

N
Do not display members.

C
Count the number of members per library.

Update options

File attributes Y
Attributes of the Predict file object and, for files of type E, the subselect specification of the
SQL create statement are to be updated. The triggers linked to the file via association Has TR
are also updated.

Field
sequence

Y
The field list is to be rearranged to match the sequence of the fields in the DB2 table or view.

Add fields Y
Fields in the DB2 table or view missing in the field list are to be inserted in the field list.

Distinct types not already documented in standard file SAG-DISTINCT-TYPE will be added as
fields. The connection between the standard field and the table field will be established.

Purge fields Y
Fields that are missing in the DB2 table or view are to be removed from the field list.

Copyright © Software AG 2003298

Comparing DB2 Tables and ViewsCalling the Function

Field
attributes

Y
Attributes of the fields linked to the Predict file object are to be changed to match the DB2 table
or view.

If a field has a connection to a standard field of SAG-DISTINCT-TYPE and the type definition
differs from the DB2 catalog, the field attributes will be updated and the field will be marked
non-standard.

For files of type E, the attributes that are to be updated include the subselect specification of the
SQL create statement for each field.

Comments of fields are not updated.

Save set Y
Program types and names reported by the function are saved in a set. See also Saving the Result
of Comparison Funtions in Sets.

Comparing DB2 Tables and Views in Batch Mode
Command: COMPARE TABLE

Enter parameters on the next line in positional or keyword form.

Field Keyword Position

File ID FILE-ID 1

Files of type TYPE 2

Contained in DA DB 3

Check options

File attributes CHECK-FILE 4

Fields CHECK-FIELD 5

List options

Files LIST-FILE 6

Fields LIST-FIELD 7

Members using differencesLIST-PROGRAM 8

Save set SAVE-SET 9

Update options

File attributes UPD-FILE 10

Field sequences UPD-SEQUENCE 11

Add fields ADD-FIELD 12

Purge fields PURGE-FIELD 13

Fields attributes UPD-FIELD 14

299Copyright © Software AG 2003

Comparing DB2 Tables and Views in Batch ModeComparing DB2 Tables and Views

Example

To compare all files of type D or E with prefix ’TEST’ and display all fields with a different definition, code the
command:

COMPARE TABLE
FILE-ID=TEST*,LIST-FIELD=D

or

COMPARE TABLE
TEST*,,,,,D

The example above uses the Natural parameter ID=, and IA==

Copyright © Software AG 2003300

Comparing DB2 Tables and ViewsExample

Administration of External Objects
Information stored in Predict objects can be used to generate external objects, and documentation objects can be
incorporated from external objects. External objects generated from documentation objects and documentation
objects incorporated from external objects are connected. Predict provides functions to administrate external
objects connected to documentation objects. These functions are described in this section.

See the section Handling of External and Documentation Objects in this documentation for a more detailed
description of how external and Predict objects are handled.

This section covers the following topics:

Overview of Options
Administrating Different Types of External Objects
Databases
Dataspaces
Files
Programs
Storagespaces

Overview of Options

Overview of Administration Functions

Administration functions are used to perform the following tasks. See External Object Types and Administration
Functions for a list of external objects and the functions that can be applied.

Disconnect implementation
Disconnects external objects from their corresponding Predict objects.
The implementation pointer from the documentation object to the external object is deleted, but the objects
themselves remain intact.

Command: DISCONNECT <ext.object-type><dict.object-ID>[<parameters>]

301Copyright © Software AG 2003

Administration of External ObjectsAdministration of External Objects

Purge implementation
Purges external objects and any dependent objects are physically deleted. It is sometimes necessary to
delete an external object before the connected Predict object can be deleted.

Command: PURGE <ext.object-type> <dict.object-ID> [<parameters>]

Display implementation
Displays external objects. The following information is displayed:

Predict documentation data: object ID, type, creation and modification dates.
Entire System Server data if external object was stored with Entire System Server.
Generation options: the most important generation options are listed.
Generated code.

Command: DISPLAY <ext.object-type> <dict.object-ID> [<parameters>]

Select implementation
Selects external objects for further processing.

Command: SELECT <ext.object-type> <dict.object-ID> [<parameters>]

Rename implementation
Moves generated code to another member and/or to another library.
Only applicable to copy code or utility cards generated from files.

Command: RENAME <ext.object-type> <dict.object-ID> [<parameters>]

Note:
This command cannot be used in batch mode. If the command is used online, not all parameters can be
specified and must be supplied in the screens that appear.

Refresh file
Deletes all records stored in Adabas files or DB2 tables/views.

Command: REFRESH <ext.object-type> <dict.object-ID> [<parameters>]

Purge Vista elements
Deletes entries in Vista translation tables. This function cannot be executed in batch mode.

Command: PURGE VISTATAB

General Rules

External objects to be processed are identified by the Predict documentation object to which they are
connected.
For all functions except Select implementation, an external object type must be specified.
The standard functions Disconnect implementation and Purge implementation and the file-specific
functions Rename implementation and Refresh file can only be applied to one object at a time.
If the Predict object was incorporated or connected with an Incorporation function, no generation protocol is
stored in Predict.

Commands

All functions except Rename implementation and Purge VISTATAB can be executed with direct commands. See
Overview of Administration Functions for syntax.

Copyright © Software AG 2003302

Administration of External ObjectsGeneral Rules

Batch Mode

All Select functions for administrating implemented objects can be executed in batch mode.

Command: SELECT <ext.obj.type> <dict.object-ID> [<parameters>]

See list of external object types. The parameters are listed in the respective sections of this section.

This command produces a report.

Administrating External Objects Stored with Entire System Server

With Entire System Server, generated code for COBOL, PL/I, Assembler (BAL), FORTRAN, C,
ADACMP/ADAWAN, ADAINV, Adabas Security, or Adabas VSAM BRIDGE can be stored directly as a
member in an operating system library on a local or remote machine.

If an external object was stored with Entire System Server, the administration functions Display implementation,
Purge implementation and Rename implementation list the following Entire System Server information:

database ID
DSname
volser
operating system member.

Purging Objects Stored with Entire System Server

Please note the following when applying the Purge implementation function to objects stored with Entire System
Server:

DELETE
Generated code stored in the Predict system file is purged.

SCRATCH
Generated code stored in the Predict system file and operating system member is purged.

External Object Types and Administration Functions

This table lists all types of external objects and the administration functions that can be applied to them.

303Copyright © Software AG 2003

Batch ModeAdministration of External Objects

External Object Code Discon. Display Purge Select Rename Refresh
file

Purge
VISTATAB

Connected to Predict Databases

Adabas database AD Y Y

IMS or DL/1 ND Y

DB2 database D2 Y Y Y(1)

Connected to Predict Files

ADACMP/ ADAWAN AC Y Y Y Y

Adabas file AF Y Y Y Y

ADAINV cards AI Y Y Y Y

Vista Trans. table AN Y(2) Y

ADASCR AS Y Y Y Y

Adabas-VSAM AV Y Y Y Y

BAL/Assembler BA Y Y Y Y

COBOL CO Y Y Y Y

SQL CREATE
Statement

CR Y Y Y Y

DDM for Natural DD Y Y Y Y

NSC file NF Y Y Y

NSP file SF Y Y Y

Preprocessor for 3GL DD Y Y Y

DB2 table/view T2 Y Y Y Y Y Y

Adabas table/view EQ Y Y Y Y Y

FORTRAN FO Y Y Y Y

Language C CC Y Y Y Y

PL/I PL Y Y Y Y

Verification rule RU Y Y

UDF for DL/1 UD Y Y(3) Y

Connected to Predict Dataspaces

DB2 tablespace TS Y Y Y Y

Connected to Predict Programs

DB2 procedure/function P2 Y Y Y Y

Connected to Predict Storagespaces

DB2 storagespace SG Y Y Y Y

(1) A DB2 database can only be purged if it is empty.

Copyright © Software AG 2003304

Administration of External ObjectsExternal Object Types and Administration Functions

(2) It is not checked whether the Vista translation table is accessible.

(3) UDF for DL/1 can only be purged if no DDM for the file exists.

Administrating Different Types of External Objects
The following sections describe all functions for the administration of external objects.

External Objects connected to Predict objects of the following types can be administrated:

Databases
Dataspaces
Files
Programs
Storagespaces

Databases
Implemented databases, Predict database objects and generation logs can be processed with functions of the
Administration Implemented Database menu. This menu is called with function code L and object code DA in a
Predict main menu or with the command ADMINISTRATE DATABASE.

 13:32:23 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Administration Implemented Database - Profile HNO

 Function

 C Disconnect implementation
 D Display implementation
 P Purge implementation
 S Select implementation
 U Purge Vista elements

 Function
 Database ID
 Belongs to VM
 Database number
 External object*
 Only modified N (Y/N)

 Restrictions ..* Profile HNO ,used

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

305Copyright © Software AG 2003

Administrating Different Types of External ObjectsAdministration of External Objects

Parameters

Database ID ID of Predict database object connected to the external database. ID must be unique for
functions Disconnect implementation, Display implementation and Purge implementation.
If asterisk notation is used for function Select implementation, the scope can be limited by the
parameters below.

Belongs to
VM

Restricts the selection to databases in the specified virtual machine.

Database
number

Restricts the selection to databases with the specified physical database number.

External
object

Enter the type of external object to be processed.

AD
Adabas database

AT
Vista table

D2
DB2 database

ND
Natural DBD

blank
all

Only modified Y
Restricts the selection to databases that have been modified since generation.

N
All databases are to be selected, whether they have been modified since generation or not.

Restrictions See Restrictions in the section Predict User Interface in the Introduction to Predict
documentation.

Functions

Display implementation - Code D

For DB2 databases: displays documentation data, generation options and the generation log for the specified
database.
For Adabas and IMS databases: only the implementation pointer is displayed.

Purge implementation - Code P

For DB2 databases: Deletes the database and all dependent tablespaces, tables and views. The database ID must
be entered again to confirm deletion. If a table holds the last reference to a distinct type, the distinct type is also
deleted.

The function can only be applied to one DB2 database at a time. The function is not available for Adabas and
IMS databases.

Warning:
Database and all dependent tablespaces, tables and views are physically deleted in DB2.
Recovery from this action is not possible.

Copyright © Software AG 2003306

Administration of External ObjectsFunctions

Disconnect implementation - Code C

Disconnects implemented databases connected to the Predict database object by deleting the implementation
pointer of the documentation object.

Select implementation - Code S

This function is used to select a database for further processing with one of the functions above. The following
information is given in a single-line list:

database ID
database type
whether the database has been modified since generation
implementation pointer depending on database type:

Adabas Adabas database ID, DBnr.

DB2 DB2 database ID, member, library

IMS NDB name.

Purge Vista elements - Code U

Deletes entries in the Vista translation table.

Enter unique database ID and external object code AT. Other parameters are ignored. A screen appears with all
the Vista elements for the specified file. Delete one or more elements by entering P or X in the Cmd column.

If several elements are purged in one transaction, each purge must be confirmed individually.

Dataspaces
DB2 tablespaces/SQL/DS DBspaces, Predict Dataspace objects and generation logs can be processed with
functions of the Administration Implemented Dataspace menu. This menu is invoked with code L and object
code DC in a Predict main menu or with the command ADMINISTRATE DATASPACE.

307Copyright © Software AG 2003

DataspacesAdministration of External Objects

 13:29:43 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Administration Implemented Dataspace - Profile HNO

 Function

 C Disconnect implementation
 D Display implementation
 P Purge implementation
 S Select implementation

 Function

 Dataspace ID
 Located in DA
 Member
 Library
 Only modified N (Y/N)

 Restrictions* Profile HNO ,used

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

Parameters

Dataspace ID ID of Predict Dataspace object connected to the DB2 tablespace or SQL/DS DBspace. ID must
be unique for functions Disconnect, Display and Purge implementation.

Contained in
DA

For Select implementation function: limits the scope to Dataspaces contained in the specified
Predict database object.

Member,
Library

If Select function has been executed, these values are displayed, but are not evaluated by any
other function.

Restrictions See Restrictions in the section Predict User Interface in the Introduction to Predict
documentation.

Only modified Y
Restricts the selection to dataspaces that have been modified since generation.

N
All dataspaces are to be selected, whether they have been modified since generation or not.

Functions

Display implementation - Code D

Displays documentation data, generation options and the generation log for the specified Dataspace.

Purge implementation - Code P

Deletes the tablespace and all dependent tables and views. The dataspace ID must be entered again to confirm
deletion. If a table holds the last reference to a distinct type, the distinct type is also deleted.

If dependent tables and views exist, they are listed. The deletion of these dependent objects has to be confirmed
with Y.

Copyright © Software AG 2003308

Administration of External ObjectsFunctions

The function can be applied to one DB2 tablespace at a time.

Warning:
Tablespace and dependent tables and views are physically deleted in DB2.
Recovery from this action is not possible.

Disconnect implementation - Code C

Disconnects tablespaces and Predict dataspaces by deleting the implementation pointer of the Predict dataspace
object.

Select implementation - Code S

This function is used to select a dataspace for further processing with one of the functions above.

The following information is given in a single-line list:

dataspace ID
name of tablespace generated from the dataspace
physical database containing the dataspace
library and member of implemented dataspace.

Files
Implemented files, Predict file objects and code generated from Predict file objects can be processed with
functions of the Administration Implemented File menu. This menu is invoked with code L and object code FI in
a Predict main menu or with the command ADMINISTRATE FILE.

 13:39:46 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 - Administration Implemented File - Profile HNO

 Function Function

 C Disconnect implementation P Purge implementation
 D Display implementation R Refresh file
 N Rename implementation S Select implementation
 U Purge Vista elements
 Function

 File ID Files of type*
 Contained in DA File number
 External name
 Member Phys Fnr
 Library Phys DBnr
 Only modified N (Y/N) External object ..*

 Restrictions* Profile HNO,used

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

309Copyright © Software AG 2003

FilesAdministration of External Objects

Parameters

File ID ID of Predict file object from which external objects were generated.
File ID and external object type must be unique for functions Disconnect, Display and Purge
implementation.
If asterisk notation is used for function Select, the scope can be limited by the parameters in
database, External name, Files of type, and File number.

Contained in
DA

Database containing the Predict file object via association Contains FI.

External nameUp to 50 characters can be entered here. Asterisk notation is possible and must be used if
external name is longer than 50 characters.
This field can be used to denote the full search path of a UNIX file, for example, or to identify
an external object without its creator.

Member,
Library

For the functions Rename and Purge implementation: if File ID is not sufficient to identify an
external object uniquely, Member and Library must be specified.
For the functions Disconnect and Display implementation, Member and Library can be
specified.
For Select implementation, Member and Library can be used to restrict the result list of
implementations.

Only modified Only for function Select.

Y
Restricts the function to external objects where the corresponding file object has been modified
since generation.

N
All external objects are to be included, whether the corresponding file object has been modified
since generation/incorporation or not.

Files of type Not all file types are valid for all functions. Enter an asterisk in this field to display the valid
values for the selected function.

File number Logical file number.

Phys Fnr
Phys DBnr

Physical file number/database number of Adabas file. If these parameters are used, Member
and Library are ignored.

External
object

Type of external object (language). Must be entered for all functions except Select
implementation to identify the object uniquely.
With the function Select, this field may be left blank to select files of all external object types.

Restrictions See Restrictions in the section Predict User Interface in the Introduction to Predict
documentation.

Functions

Disconnect implementation - Code C

Disconnects implemented external object(s) from the Predict file object by deleting the implementation pointer
of the file object.

Member and library must be specified (for Adabas files the physical database/file number).

With files of type AT, all files used for generation are disconnected in a single operation.

Copyright © Software AG 2003310

Administration of External ObjectsFunctions

Display implementation - Code D

Displays documentation data, generation options and generated code of specified file ID and external object
type.

Member and library may be specified to identify an external object uniquely.
If this information is not entered and more than one external object is found, each object is displayed in
sequence.

Rename implementation - Code N

Moves generated code to another member and/or to another library. Specify File ID, External object type Library
and Member of the code to be moved. The new member and/or the new library are entered in a second screen.

DDMs, Super Natural files and processing rules cannot be renamed with this function. To rename objects of
these types, they have to be generated again.

Purge implementation - Code P

Deletes generated code. File ID must be identified uniquely, either by library and member or, for Adabas files,
by physical file number/database number. If a DB2 table holds the last reference to a distinct type, the distinct
type is also deleted.

Warning:
File is physically deleted in Adabas, DB2 or Adabas SQL Server directory. All dependent objects are deleted,
too.

File ID and External object must be specified when deleting all types of external objects. In addition, Library and
Member must be specified when deleting generated code.

Note:
Special rules apply when deleting Adabas files or DDMs:

Adabas files

The following rules apply:

Parameters DB-Nr and File-Nr must be specified.
If the file to be deleted is in use, the Adabas option Stop user using file can be used.
If Predict/AOS Security is active, access rights are required to delete an Adabas file or to stop users
using the file.
See Protecting Adabas Databases and Files in the section Protecting External Objects in Predict
with Natural Security in the Predict Security documentation.

DDMs
For DDMs defined in Natural Security, access rights to maintain the security definition of the file in
Natural Security are required.
See Protecting DDMs in the section Protecting External Objects in Predict with Natural Security
in the Predict Security documentation.

Refresh file - Code R

Deletes all records stored in Adabas files or DB2 tables. Data structure remains intact. Refresh operation must be
confirmed.

Special rules apply when refreshing Adabas files:

311Copyright © Software AG 2003

FunctionsAdministration of External Objects

DB-Nr and File-Nr must be specified.
If the file to be refreshed is in use, the Adabas option Stop user using file can be used.

Note:
If Predict/AOS Security is active, access rights are required to delete an Adabas file or to stop users using
the file. See Protecting Adabas Databases and Files in the section Protecting External Objects in Predict
with Natural Security in the Predict Security documentation.

Warning:
This function deletes the entire contents of an Adabas file or DB2 table/view.
Recovery from this action is not possible.

Select implementation - Code S

Displays a list of existing generated code sorted by file ID of the Predict file objects that were used to generate
the code. Asterisk notation is possible for File ID.
Scope can be limited by parameters described above and by additional Restrictions.
The following information is given in a single-line list:

ID of Predict file object from which the code or object was generated
external object type
whether the file object has been modified after generation
for implemented Adabas files: database ID and file number
for 3GL preprocessor data: library containing XRef data, for example *SYSCOB* for COBOL copy code
for other objects: the name of the member and library where the implemented code is stored.

Note:
If this function is used for external object type AT, all Vista elements are listed, without checking whether
they can be accessed by the user or not.

Note:
If no external object type is specified, and for the same file both Adabas files and Vista elements exist, only
the Vista tables are listed with this function. If Vista elements exist, an Adabas file must exist for the
specified file.
The parameter Only modified refers to the Adabas file.

Note:
When you specify a database, all the implementations pointing to that database are listed, but if objects
which have further implementations (for example in other databases) are found, all these links are displayed
as well.

Purge Vista elements - Code U

Deletes entries in the Vista translation table.

Enter unique file ID and external object code AT. Other parameters are ignored. A screen appears with all the
Vista elements for the specified file. Delete one or more elements by entering P or X in the Cmd column.

If several elements are purged in one transaction, each purge must be confirmed individually.

Programs
DB2 procedures, DB2 database functions and generation logs can be processed with functions of the
Administration Implemented Program menu. This menu is invoked with code L and object code PR in a Predict
main menu or with the command ADMINISTRATE PROGRAM.

Copyright © Software AG 2003312

Administration of External ObjectsPrograms

 13:39:05 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 Administration Implemented Program Profile HNO

 Function

 C Disconnect implementation
 D Display implementation
 P Purge implementation
 S Select implementation

 Function

 Program ID Program of type ..*
 Member Language*
 Library
 Only modified N (N/Y)
 Belongs to SY
 Restrictions* Profile HNO ,used

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

313Copyright © Software AG 2003

ProgramsAdministration of External Objects

Parameters

Program ID ID of Predict program object from which external objects were generated.

ID must be unique for functions Disconnect, Display and Purge implementation. If asterisk
notation is used for function Select, the scope can be limited by the parameters below.

Program of
type

R
Only programs of type SQL procedure.

U
Only programs of type Database function.

blank
All programs.

Language Only available for programs of type R.

Valid values:

B BAL/Assembler

C COBOL

H Language C

N Natural

P PL/I

R REXX

S SQL procedure lang.

V Java

Member,
Library

If Select function has been executed, these values are displayed, but are not evaluated by any
other function.

Only
modified

Y
Restricts the selection to programs that have been modified since generation.

N
All programs are to be selected, whether they have been modified since generation or not.

Restrictions See Restrictions in the section Predict User Interface in the Introduction to Predict
documentation.

Functions

Disconnect implementation - Code C

Disconnects implemented external object(s) from the Predict program specified. The implementation pointer
from the documentation object to the external object(s) is deleted, but the objects themselves remain intact.

Display implementation - Code D

Displays documentation data, generation options and generated code of the specified program.

Copyright © Software AG 2003314

Administration of External ObjectsFunctions

Purge implementation - Code P

Deletes the procedure/function in DB2.

Select implementation - Code S

Displays a list of existing generated code sorted by program ID of the Predict entries that were used to generate
the code. Asterisk notation is possible for program ID.

Scope can also be limited by parameters Member and Library and by additional Restrictions.
The following information is given in a single-line list:

Program ID,
name of the procedure/function generated from the Predict program object,
library and member of the implemented procedure/function.

Storagespaces
DB2 storagegroups, Predict storagespace objects and generation logs can be processed with functions of the
Administration Implemented Storagespace menu. This menu is invoked with code L and object code ST in a
Predict main menu or with the command ADMINISTRATE STORAGESPACE.

 13:39:05 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Plan 0 Administration Implemented Storagespace Profile HNO

 Function

 C Disconnect implementation
 D Display implementation
 P Purge implementation
 S Select implementation

 Function

 Storagespace ID ..
 Member
 Library
 Only modified N (N/Y)

 Restrictions* Profile HNO ,used

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Next Stop Last LnkEl Flip Print Impl AdmFi SelFi Prof Main

315Copyright © Software AG 2003

StoragespacesAdministration of External Objects

Parameters

Storagespace
ID

ID of Predict storagespace object from which external objects were generated.
ID must be unique for functions Disconnect, Display and Purge implementation. If asterisk
notation is used for function Select, the scope can be limited by the parameters below.

Member,
Library

If Select function has been executed, these values are displayed, but are not evaluated by any
other function.

Only modified Y
Restricts the selection to storagespaces that have been modified since generation.

N
All storagespaces are to be selected, whether they have been modified since generation or not.

Restrictions See Restrictions in the section Predict User Interface in the Introduction to Predict
documentation.

Functions

Disconnect implementation - Code C

Disconnects implemented external object(s) from the Predict storagespace by deleting the implementation
pointer of the documentation object.

Display implementation - Code D

Displays documentation data, generation options and generated code of specified storagespace.

Purge implementation - Code P

Deletes generated code.

A storagespace which is used by any tablespace or index space cannot be deleted. In this case, a list of all the
tablespaces, tables and views used by the storagespace is displayed.

Warning:
Storagegroup is physically deleted in DB2.

Select implementation - Code S

Displays list of existing generated code sorted by storagespace ID of the Predict file objects that were used to
generate the code. Asterisk notation is possible for storagespace ID.
Scope can also be limited by parameters Member and Library and by additional Restrictions.
The following information is given in a single-line list:

Storagespace ID
name of storagegroup generated from the Predict storagespace object
library and member of implemented storagegroup.

Copyright © Software AG 2003316

Administration of External ObjectsFunctions

Preprocessor
This section covers the following topics:

Using the Preprocessor
Preprocessor Statements
Creation of XRef Data

Overview
The Predict preprocessor offers two main options:

XRef data on the use of copy/include code and on the call of external members in 3GL programs is written.
For Assembler, preprocessor statements have to be included into source code to perform this operation.
This option is completely independent from Predict documentation objects. See Creation of XRef Data for a
description.
Data definitions generated from Predict file objects can be included into COBOL, PL/I and Assembler
(BAL, 370-Assembler) programs and XRef data documenting the use of these definitions is written.

Data definitions generated from Predict objects can be included in two ways:

the Preprocessor copies file layouts into a source program that have already been generated in Predict
as copy code.
the Preprocessor generates file layouts from Predict file objects and copies these file layouts into a
source program.

Two types of definitions can be included:

record buffer structures
format buffer structures

317Copyright © Software AG 2003

PreprocessorPreprocessor

Using the Preprocessor
Using the preprocessor is a two-step process:

1. Write preprocessor statements to the source code of programs to be processed. See also Preprocessor
Statements.

2. Call the preprocessor for the programs to be processed.
See Calling the Preprocessor below.

The preprocessor

scans the source program for preprocessor statements and for certain other statements. See the section
Creation of XRef Data.
generates copy code from Predict file objects and inserts this code into the source program (or inserts
already generated code into the source program)
writes corresponding XRef data.

Using the Preprocessor with Adabas Native SQL

To use the preprocessor in combination with Adabas Native SQL, it must be called before Adabas Native SQL.
An asterisk must then be specified as Member name.

Calling the Preprocessor

The preprocessor is called with the following command:

PREPROCESS <language> [<member name>] [<library>] [<user-ID>]

If the generation default parameter Preprocessor force is set to Y, the member must be documented in Predict as
a 3GL program with fully qualified implementation pointer (member name and library name).

Copyright © Software AG 2003318

Using the PreprocessorUsing the Preprocessor

Parameters

language Language in which the program to be processed is written:

COBOL
PL/I
BAL
Identifies 370-Assembler.

member
name

The member name must not be longer then eight characters. The member name can be supplied in
three ways. If the member name is specified in more than one way, it is evaluated in the order
below:

When calling the Preprocessor;
Using the preprocessor statement PROGRAM;
Using a normal source program statement

in COBOL, the PROGRAM-ID in the Identification division;
in PL/I, the label preceding the first PROC or PROCEDURE statement
in BAL, the symbol in the name field of the START statement or the first CSECT
statement.

If the preprocessor is used in combination with Adabas Native SQL, an asterisk must be specified.

library If the parameter library is specified, a system of type G (3GL application) containing this library
name in its implementation pointer must already have been defined. If no library is specified, the
default libraries *SYSCOB*, *SYSBAL* or *SYSPLI* are used.

user-ID The parameter user ID is only evaluated in batch mode. Online, the session user ID is evaluated.

Prerequisites - Work Files

The PREPROCESS command requires the first three Natural workfiles (DD-names CMWKF01, CMWKF02
and CMWKF03; BS2000-link-names W01, W02 and W03).

The first workfile is the input data set for the preprocessor.
The second workfile is the output data set; it should be declared with a record length of 80.
The third workfile is a temporary workfile; it should have record format F (fixed) or FB (fixed blocked) and
the record size must be 91.

Note:
For an explanation of the Preprocessor Condition Codes see the section Predict in Batch Mode in the
Predict Administration documentation.

Reports - Print Files

The preprocessor produces three types of reports:

a report that the run was successful or unsuccessful
a list of preprocessor commands found
a list of errors.

In batch, the reports are written to the first three Natural reports (DD-names CMPRT01, CMPRT02 and
CMPRT03; BS2000-link-names P01, P02 and P03).

319Copyright © Software AG 2003

Prerequisites - Work FilesUsing the Preprocessor

Preprocessor Statements

Overview of Preprocessor Statements

Statements to Include Copy Code Generated from Predict file objects

The preprocessor statements COPY, FORMAT-BUFFER and GENERATE in COBOL, PL/I and Assembler
programs instruct the preprocessor to include data definitions or a format buffer.

COPY
Instructs the preprocessor to insert copy code which has previously been generated by Predict. XRef data is
written for the file and each field in the file.

FORMAT-BUFFER
Instructs the preprocessor to generate an Adabas format buffer and insert it at the position of the statement. XRef
data is written for the file and each field in the file.

GENERATE
Instructs the preprocessor to generate a record buffer and optionally a format buffer and insert it at the position
of the statement. XRef data is written for the file and each field in the file.

Statements to Write XRef Data for 3GL Copy/Include Code or Function
Calls

The preprocessor statements ENTRY and CALL - if included in Assembler programs - instruct the preprocessor
to write XRef data for entry points or the call of external programs. Information to be written to XRef data is
specified in parameters of the statement.

CALL
Specifies the name of a called external program or function that is to be stored in the active reference records.
This command can only be used for Assembler programs.

ENTRY
Specifies the name of a program entry that is to be stored in the active reference records. This command can only
be used for Assembler programs.

PROGRAM
Member ID used in XRef data. This statement is interpreted only if no member name is specified when the
Preprocessor is called.

Format of Preprocessor Statements
The following rules apply to preprocessor statements:

Preprocessor statements start with EXEC ADABAS (there may be any number of blanks between the two
words, but both must be coded on the same line).
Preprocessor statements can be terminated in any of the following ways:

with the statement END-EXEC
in COBOL by a period (.)
in PL/I by a semicolon (;)
In BAL, the preprocessor terminates processing at the end of the current card unless a continuation
character is punched in column 72.

The preprocessor assumes standard statement layout in BAL, for example the Assembler statement ICTL is

Copyright © Software AG 2003320

Preprocessor StatementsPreprocessor Statements

not valid.
Preprocessor control statements are left in the source program as comments.

Using Keyword and/or Positional Parameters

Parameters of preprocessor statements can be specified in positional or keyword form. Both forms are
described below.
Keyword and positional parameters can be mixed. This allows the use of a keyword parameter as a starting
point for subsequent positional parameters, as shown in the following example:
For Assembler, the INIT parameter is the eighth parameter of the EXEC Adabas GENERATE statement.
VALIDATION is the next parameter in the list and can therefore be specified as a positional parameter
directly behind the INIT parameter.

EXEC ADABAS GENERATE <file-name>,INIT=<init>,<validation>

CALL
The name of a called external program or function can be specified for Assembler programs. The name is stored
in the active reference records.

Syntax with Positional Parameters

EXEC ADABAS CALL <function-name>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS CALL FUNCTION=<function-name>
 END-EXEC

Parameters

function-nameThe name of a called external program or function that should be stored in the active reference
records. Maximum length: 8 characters.

COPY
Instructs the preprocessor to include copy code previously generated by Predict. If more than one copy code
member has been generated for the appropriate file and language, the copy code name must be specified.
XRef data is written for the file and each field in the file.

Copying a Member from a File that has been Modified after Generation

This statement can also be used if the file has been modified after the corresponding member was generated. The
system behavior depends on the Predict version with which the member was generated and on parameter Ignore
changes. See table below.

Syntax

with Positional Parameters

EXEC ADABAS COPY <file-name><copycode-name> <ignore-changes>
 END-EXEC

321Copyright © Software AG 2003

CALLPreprocessor Statements

with Keyword Parameters

EXEC ADABAS COPY FILE=<file-name>
 MEM=<copycode-name>
 IGNORE-CHANGES=<ignore-changes>
 END-EXEC

Note:
All parameters except <file-name> are optional.

Parameters

file name The ID of the Predict file object from which the copy code was generated. See GENERATE for a
list of file types that can be used for generating copy code.

member
name

The member name which was supplied during copy code generation. Maximum length: 8
characters.

ignore
changes

This parameter determines whether a member connected to a file that has been modified after
generation is copied.

N
Default. A member connected to a file that has been modified after generation is not copied.
The Preprocessor issues an error message and terminates with condition code 107.

Y
A member connected to a modified file is copied - irrespective of whether the member contains
usage information. With this option, the preprocessor writes the XRef data on the basis of the
current documentation of the file in Predict.
A warning is given if the file object has been modified after generation, since using this option may
result in inconsistent XRef data. See Additional Usage Information for Fields in a File.

X
A member of a modified file is only copied if it was generated with Predict version 3.3 or above.
With this version, additional information on the usage of fields in the file is available. This
information is used by the Preprocessor when writing XRef data. See Additional Usage Information
for Fields in a File.
If the file has been modified since generation and the usage information is not available because the
member was generated with an earlier version of Predict, the Preprocessor issues an error message
and terminates with condition code 107.

ENTRY
Declares the name of an entry point in Assembler programs. The name is stored in the active reference records.

Syntax with Positional Parameters

EXEC ADABAS ENTRY <entry-name>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS ENTRY FUNCTION=<entry-name>
 END-EXEC

Parameters

entry-name The name of an entry point to be stored in the XRef data. Maximum length: 8 characters.

Copyright © Software AG 2003322

Preprocessor StatementsENTRY

FORMAT-BUFFER
The FORMAT-BUFFER statement instructs the preprocessor to generate an Adabas format buffer and insert it
into the 3GL member at the position of the statement. XRef data is written for the file and each field in the file.

Syntax with Positional Parameters

EXEC ADABAS FORMAT-BUFFER
 <file-name><format-buffer-name>
 <sync><offset><dcl>
 <adabas-version><buffer-format>
 <literal-delimiter>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS FORMAT-BUFFER
 FILE=<file-name>
 FORMAT-BUFFER-NAME=<format-buffer-name>
 SYNC=<sync>
 OFFSET=<offset>
 DCL=<dcl>
 ADA-VER=<adabas-version>
 FORMAT=<buffer-format>
 DELIMITER=<literal-delimiter>
 END-EXEC

Note:
All parameters except <file-name> are optional.

323Copyright © Software AG 2003

FORMAT-BUFFERPreprocessor Statements

Parameters

file-name Specifies the ID of the file object in Predict. This parameter is mandatory. The file can be
one of the following types:

Adabas file (type A), where parameter Adabas SQL usage may not be set to Y.
Adabas userview (type U)

format-buffer-nameThe name to be given to the format buffer in the target program. In COBOL, this may be
up to 30 characters long; in PL/I, up to 31; and in BAL, up to 8 characters. The default
value is the same as in the respective generation function.

sync Y
All appropriate fields will be aligned.

N
No fields will be aligned.

S
Fields will be aligned only if the corresponding Predict object has the 3GL specification
Synchronized=S.

offset L,Y,P
The total length of the code will be included in the format buffer.

V
A constant will be generated for the format buffer length.

dcl Only applies to PL/I include code.

Y
The generated code will be preceded by a declare statement DCL and will end with a
semicolon instead of a comma.

adabas-version The version of Adabas for which the copy code of the Adabas files and userviews is to be
generated.
See list of possible values in the section Adabas Version.

buffer-format Y
Normal format for format buffer. Adabas groups, standard formats and lengths are used
whenever possible. The resulting format buffers are then as short as possible.

F
Full format for format buffer. The format buffer will include field length and format.

literal-delimiter Only valid for COBOL copy code.

S
single quotes

D
double quotes

GENERATE
The statement GENERATE instructs the preprocessor to generate copy code from Predict file objects and insert
it into the 3GL member at the position of the statement. XRef data is written for the file and each field in the file.

Copyright © Software AG 2003324

Preprocessor StatementsGENERATE

Generation can be performed for Assembler, COBOL and PL/I. See table of valid file types and languages
below.

The generated copy code will be written to the source area and then copied into the source program.

Code File Type Assembler COBOL PL/I

A Adabas file Y Y Y

B Adabas SQL view Y Y Y

BT, BV Adabas D table/view Y

D, E DB2 table/view Y Y Y

F rdb file Y Y Y

J IMS segment layout Y Y Y

JT, JV Ingres table/view Y Y

L logical VSAM file Y Y Y

M ISAM file Y Y Y

O other file Y Y Y

OT, OV Oracle table/view Y Y

S sequential file Y Y Y

T rms file Y Y Y

U Adabas user view Y Y Y

V VSAM file Y Y Y

X General SQL file Y Y Y

XT, XV Informix table/view Y

YT, YV Sybase table/view Y

1 LEASY Y Y Y

2 ISAM BS2000 Y Y Y

Generating Assembler Copy Code

Syntax with Positional Parameters

EXEC ADABAS GENERATE <filename><prefix><suffix><dsect>
 <dc-ds><nr-comments><offset><init>
 <validation><truncation><dsect-name><align>
 <equ><adabas-version><generate-format-buffer>
 <format-buffer-name><counter-length>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS GENERATE FILE=<file-name>
 PREFIX=<prefix>
 SUFFIX=<suffix>
 DSECT=<dsect>
 DC-DS=<dc-ds>
 NR-COMMENTS=<nr-comments>

325Copyright © Software AG 2003

Generating Assembler Copy CodePreprocessor Statements

 OFFSET=<offset>
 INIT=<init>
 VALIDATION=<validation>
 TRUNCATION=<truncation>
 RECORD-BUFFER-NAME=<dsect-name>
 SYNC=<align>
 EQU=<equ>
 ADA-VER=<adabas-version>
 FORMAT-BUFFER=<generate-format-buffer>
 FORMAT-BUFFER-NAME=<format-buffer-name>
 COUNTER-LENGTH=<counter-length>
 END-EXEC

Note:
All parameters except <file-name> are optional.

Details of the parameters are given in the following table and also in the section Generation in this
documentation. If a parameter is omitted, the default value defined in Predict by the DDA will be used. See the
section Defaults in the Predict Administration documentation.

If the statement is entered using positional parameters and no prefix or no suffix is required, an asterisk (*)
should be substituted for the parameter <prefix> or <suffix>.

Parameters

file-name ID of the Predict file object from which the Assembler copy code is to be generated.
This parameter is mandatory. See table of valid file types in the description of
Parameter Generate.

prefix A prefix for the field names.
Maximum length: 8 characters.

suffix A suffix for the field names.
Maximum length: 8 characters.

dsect Y
The copy code will be generated as an ASSEMBLER DSECT (dummy section).
The DSECT will have the name specified by the <dsect-name> parameter, or the file
ID if no <dsect-name> parameter is supplied.

dc-ds DC
Assembler DC (define constant) instructions will be generated.

DS
Assembler DS (define storage) instructions will be generated.

nr-comments Specifies the number of abstract lines per field (0-16) which will be included in the
generated code.

Copyright © Software AG 2003326

Preprocessor StatementsGenerating Assembler Copy Code

offset Y
Include the offset of each item in the record buffer structure (relative to the beginning
of the structure) in decimal and hexadecimal formats as a comment. The total length of
each buffer is also included.

P
Include the absolute position (offset+1) as a comment.

L
Include the total lengths of the record buffer and the format buffer as a comment.

V
Only allowed if parameters As DSECT=N and With DC or DS=DC.
The file number and the calculated lengths of the record buffer and the format buffer
are to be generated as constants in the copy code. The name of the file number constant
is the record buffer name with N as prefix. The name of each length constant is the
appropriate buffer name with L as prefix. Each name is prefixed, suffixed, validated
and truncated in the same way as any other field name.

N
No offset.

init This option takes effect only when With DC or DS=DC and As DSECT is set to N.

N
No initialization.

Y
Statements are generated to initialize the structure with the value specified for Init
value in the corresponding field object in Predict. Fields with no value for Init value
are initialized with zeros or blanks.
Aligned 8-digit fields with format B or I are not initialized.
In a PE group with the 3GL specification Gr.structur set to blank, only the first
occurrence of each field is initialized.

validation Determines how invalid characters in a field name are handled.

blank
Invalid characters will result in an error message but will not be deleted.

rep.char.
Invalid characters will be replaced by this character. Valid values: letters A-Z, digits
0-9, $, § or #.

*
Invalid characters will be deleted.

truncation Specifies which characters are deleted if a generated field name is longer than 8
characters:

L
truncate from the left

R
truncate from the right

M
truncate from the middle.

327Copyright © Software AG 2003

Generating Assembler Copy CodePreprocessor Statements

dsect-name Specifies the name of the record buffer in the generated structure. The effect of this
parameter depends on parameter dsect.

align Y
All appropriate fields will be aligned.

N
No fields will be aligned.

S
Fields will be aligned only if the corresponding Predict object has the 3GL
specification Synchronized= S.

equ Y
EQU statements are to be generated for fields of length 1 whose format is not P and
comment lines are to be generated for other fields, using any condition names defined
as attributes of the Predict field objects. These names are prefixed, suffixed, validated
and truncated in the same way as field names.

For fields of format L where no condition name was specified, a condition name is
generated by concatenating the field name "Example" to the prefix N.

In this case the following statement is generated:

NEXAMPLE EQU X’00’.

adabas-version The version of Adabas for which the copy code of the Adabas files and userviews is to
be generated.
See list of possible values in the section Adabas Version.

generate-format-bufferFormat buffer generation for Assembler copy code is only allowed if parameters As
DSECT=N and With DC or DS=DC.
The contents of the format buffer will correspond exactly to the contents of the record
buffer. Only valid for files of type A (with parameter Adabas SQL usage set to N) or
for files of type U.

Valid values:

Y
Adabas format buffer is to be generated. Adabas groups, standard formats and lengths
are used whenever possible. The resulting format buffers are then as short as possible.

F
Full format buffer is to be generated. Length and format of Adabas fields are included.

N
No format buffer is to be generated.

Note:
If you are generating for a WANG environment, set this parameter to F or N.

format-buffer-name Specifies the label (name) of the format buffer in the generated structure. If omitted,
the file ID prefixed by F is used.

counter-length Length of additional counter fields: Valid values: 1, 2.

Copyright © Software AG 2003328

Preprocessor StatementsGenerating Assembler Copy Code

Generating COBOL Copy Code

Syntax with Positional Parameters

EXEC ADABAS GENERATE <file-name><prefix><suffix> <start-level>
 <level-increment><shift-number><nr-comments>
 <offset><init><validation><truncation>
 <record-buffer-name><cond-name><sync>
 <indexed><depending>
 <adabas-version><generate-format-buffer>
 <format-buffer-name>
 <check-name>
 <literal-delimiter>
 <decimal-char>
 <redefine-name>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS GENERATE FILE=<file-name>
 PREFIX=<prefix>
 SUFFIX=<suffix>
 START-LEVEL=<start-level>
 LEVEL-INCREMENT=<level-increment>
 SHIFT-NUMBER=<shift-number>
 NR-COMMENTS=<nr-comments>
 OFFSET=<offset>
 INIT=<init>
 VALIDATION=<validation>
 TRUNCATION=<truncation>
 RECORD-BUFFER-NAME=<record-buffer-name>
 COND-NAME=<cond-name>
 SYNC=<sync>
 INDEXED=<indexed>
 DEPENDING=<depending>
 ADA-VER=<adabas-version>
 FORMAT-BUFFER=<generate-format-buffer>
 FORMAT-BUFFER-NAME=<format-buffer-name>
 CHECK-NAME=<check-name>
 DELIMITER=<literal-delimiter>
 DEC-CHAR=<decimal-char>
 REDEFINE-NAME=<redefine-name>
 END-EXEC

Note:
All parameters except <file-name> are optional.

Details of the parameters are given in the following table and also in the section Generation in this
documentation. If a parameter is omitted, the default value defined in Predict by the DDA will be used. See the
section Defaults in the Predict Administration documentation.

If the statement is entered using positional parameters and no prefix or no suffix is required, an asterisk (*)
should be substituted for the parameter <prefix> or <suffix>.

Parameters

file-name ID of the Predict file object from which the COBOL copy code is to be generated. This
parameter is mandatory. See table of valid file types in the description of Parameter
Generate.

329Copyright © Software AG 2003

Generating COBOL Copy CodePreprocessor Statements

prefix A prefix for the field names.
Maximum length: 16 characters.

suffix A suffix for the field names.
Maximum length: 16 characters.

start-level Specifies the starting level of the generated record buffer. Valid values are in the range
1 - 40.

level-increment Specifies the level-increment.
Valid values are in the range 1 - 40.

shift-number The number of positions to be shifted right when a level number which is higher than
the current level number is encountered. Valid values are in the range 0 - 9.

nr-comments Specifies the number of abstract lines per field that will be included in the generated
code.
Valid values are in the range 0 - 16.

offset Y
The offset of each item in the record buffer structure (relative to the beginning of the
structure) in decimal and hexadecimal formats is to be included as a comment. The
total length of each buffer is also included.

P
As above, but the absolute position (offset+1) is included as a comment.

L
The total lengths of the record buffer and the format buffer are to be included as a
comment.

V
The file number and the calculated lengths of the record buffer and the format buffer
are to be generated as constants in the copy code. The name of the file number constant
is the record buffer name prefixed by N-.
The name of each length constant is the appropriate buffer name prefixed by L-.
Each name is prefixed, suffixed, validated and truncated in the same way as any other
field name.

N
No offset.

init Y
The fields will be initialized wherever possible using a COBOL VALUE clause. Any
fields with INIT VALUEs in their Predict objects will be initialized with those values;
other fields will be initialized with low values (zeros or spaces).

S
Only fields with INIT VALUEs in the corresponding Predict object will be initialized.

N
No initialization.

Copyright © Software AG 2003330

Preprocessor StatementsGenerating COBOL Copy Code

validation Determines how invalid characters in a field name are handled.

blank
Invalid characters will result in an error message but will not be deleted.

rep.char.
Invalid characters will be replaced by this character. Valid values: letters A-Z, digits
0-9 or hyphen.

*
Invalid characters will be deleted.

truncation Specifies which characters are deleted if a generated field name is longer than 30
characters:

L
truncate from the left

R
truncate from the right

M
truncate from the middle.

record-buffer-name Specifies the name of the record buffer in the generated structure. If omitted, the file
ID is used.

cond-name Y
Any condition names defined in the Predict field objects are to be generated on level
88, provided that the respective field objects have one of the following formats:

A
All lengths
N or P
Less than 19 digits
I or B
2, 4 or 8 digits
L
A FALSE-condition will always be generated. The Condition name is then
generated by concatenating the field name to the prefix N- (if not specified
explicitly).

These names are prefixed, suffixed, validated and truncated in the same way as field
names.

sync Y
All appropriate fields will be aligned.

N
No fields will be aligned.

S
Fields will be aligned only if the corresponding Predict object has the 3GL
specification Synchronized = S.

331Copyright © Software AG 2003

Generating COBOL Copy CodePreprocessor Statements

indexed Y
The COBOL clause INDEXED BY will be generated for all repetitive fields (MU/MC
and PE/PC).

S
This clause will be generated only for repetitive fields which have INDEXED BY
NAMEs in their Predict objects.

N
This clause will not be generated for any field.

depending Y
COBOL attribute OCCURS DEPENDING ON is generated for a field or field group in
a file if it has type PE or MU and DEPENDING ON NAME is specified for this field.
These names are prefixed, suffixed, validated and truncated in the same way as field
names.

Note:
This option is not allowed for files of type A or U.
This option is ignored when using a WANG COBOL compiler.

adabas-version The version of Adabas for which the copy code of the Adabas files and userviews is to
be generated. See table of valid values in the section Adabas Version.

generate-format-buffer The contents of the format buffer will correspond exactly to the contents of the
record buffer. Only valid for files of type A (with parameter Adabas SQL usage
set to N) or for files of type U.

Valid values:

Y
Adabas format buffer is to be generated. Adabas groups, standard formats and
lengths are used whenever possible. The resulting format buffers are then as short
as possible.

F
Full format buffer is to be generated. Length and format of Adabas fields are
included.

N
No format buffer is to be generated.

Note:
If you are generating for a WANG environment, set this parameter to F or N.

format-buffer-name Specifies the name of the format buffer in the generated structure. If omitted, the file
ID prefixed by FORMAT-BUFFER- is used.

check-name A
COBOL field names are checked for uniqueness throughout the whole structure.

Y
Structure levels are included in the validation check of the field names: if two fields
have the same name, they must be separated by at least one field with a different name
and a lower-level number.

N
No check for duplicate field names is performed

Copyright © Software AG 2003332

Preprocessor StatementsGenerating COBOL Copy Code

literal-delimiter S
single quotes,

D
double quotes

decimal-character P
point,

C
comma

redefine-name Determines how COBOL field names for Predict fields of type RE are generated:

F
The string FILLER is used as redefinition name.

S
The suffix REGR is added to the Predict field ID. If a field is redefined more than
once, the suffix will have the form REGRn, where n is an integer incremented by 1 for
each field of type RE.

Generating PL/I Include Code

Syntax with Positional Parameters

EXEC ADABAS GENERATE <file-name><prefix><suffix>
 <start-level><level-increment><shift-number>
 <nr-comments><offset><init><struct-as-char>
 <static><validation><truncation>
 <record-buffer-name><align><dcl>
 <adabas-version><generate-format-buffer>
 <format-buffer-name><check-name>
 <numeric sign><position of sign>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS GENERATE FILE=<file-name>
 PREFIX=<prefix>
 SUFFIX=<suffix>
 START-LEVEL=<start-level>
 LEVEL-INCREMENT=<level-increment>
 SHIFT-NUMBER=<shift-number>
 NR-COMMENTS=<nr-comments>
 OFFSET=<offset>
 INIT=<init>
 STRUCTURE=<struct-as-char>
 STATIC=<static>
 VALIDATION=<validation>
 TRUNCATION=<truncation>
 RECORD-BUFFER-NAME=<record-buffer-name>
 SYNC=<align>
 DCL=<dcl>
 ADA-VER=<adabas-version>
 FORMAT-BUFFER=<generate-format-buffer>
 FORMAT-BUFFER-NAME=<format-buffer-name>

333Copyright © Software AG 2003

Generating PL/I Include CodePreprocessor Statements

 CHECK-NAME=<check-name>
 NUM-SIGN=<numeric sign>
 POS-SIGN=<position of sign>
 END-EXEC

Note:
All parameters except <file-name> are optional.

Details of the parameters are given in the following table and also in the section Generation in this
documentation. If a parameter is omitted, the default value defined in Predict by the DDA will be used. See the
section Defaults in the Predict Administration documentation.

If the statement is entered using positional parameters and no prefix or no suffix is required, an asterisk (*)
should be substituted for the parameter <prefix> or <suffix>.

Parameters

file-name ID of the Predict file object from which the PL/I include code is to be generated. This
parameter is mandatory.
See table of valid file types in the description of Parameter Generate.

prefix Specifies a prefix for the field names.
Maximum length: 16 characters.

suffix Specifies a suffix for the field names.
Maximum length: 16 characters.

start-level Specifies the starting level of the generated record buffer.
Valid values are in the range 1 - 40.

level-increment Specifies the level-increment.
Valid values are in the range 1 - 40.

shift-number The number of positions to be shifted right when a level number which is higher than
the current level number is encountered.
Valid values are in the range 0 - 9.

nr-comments Specifies the number of abstract lines per field that will be included in the generated
code.
Valid values are in the range 0 - 16.

Copyright © Software AG 2003334

Preprocessor StatementsGenerating PL/I Include Code

offset Y
The offset of each item in the record buffer structure (relative to the beginning of the
structure) in decimal and hexadecimal formats is to be included as a comment. The
total length of each buffer is also included.

P
As above, but the absolute position (offset+1) is included as a comment.

L
The total lengths of the record buffer and the format buffer are to be included as a
comment.

V
The file number and the calculated lengths of the record buffer and the format buffer
are to be generated as constants in the include code. The name of the file number
constant will be the record buffer name prefixed by N_.
The name of each length constant will be the appropriate buffer name prefixed by L_.
Each name is prefixed, suffixed, validated and truncated in the same way as any other
field name.

N
No offset.

init Y
The fields will be initialized wherever possible. Any fields with INIT VALUEs in their
Predict objects will be initialized with those values; other fields will be initialized with
low values (zeros or spaces).

S
Only fields with INIT VALUEs in the corresponding Predict object will be initialized.

N
No initialization.

struct-as-char Y
The entire generated structure will be declared at the end of the record buffer as a
single character-string.

static Y
The structure will be declared with the attribute STATIC.

validation Determines how invalid characters in a field name are handled.

blank
Invalid characters will result in an error message but will not be deleted.

rep.char.
Invalid characters will be replaced by this character. Valid values: letters A-Z, digits
0-9, $, §, # or _ (underscore).

*
Invalid characters will be deleted.

335Copyright © Software AG 2003

Generating PL/I Include CodePreprocessor Statements

truncation Specifies which characters are deleted if a generated field name is longer than 31
characters:

L
truncate from the left

R
truncate from the right

M
truncate from the middle.

record-buffer-name Specifies the name of the record buffer in the generated structure. If omitted, the file
ID is used.

align Y
All appropriate fields will be aligned.

N
No fields will be aligned.

S
Fields will be aligned only if the corresponding Predict object has the 3GL
specification Synchronized= S.

Note:
This parameter only takes effect with fields that have the PL/I attribute FIXED
BIN or FLOAT DEC.

dcl Y
The generated code will be preceded by a declare statement DCL and will end with a
semicolon instead of a comma.

adabas-version The version of Adabas for which the include code of the Adabas files and userviews is
to be generated. See table of valid values in the section Adabas Version.

generate-format-bufferThe contents of the format buffer will correspond exactly to the contents of the record
buffer. Only valid for files of type A (with parameter Adabas SQL usage set to N) or
for files of type U.

Valid values:

Y
Adabas format buffer is to be generated. Adabas groups, standard formats and lengths
are used whenever possible. The resulting format buffers are then as short as possible.

F
Full format buffer is to be generated. Length and format of Adabas fields are included.

N
No format buffer is to be generated.

Note:
If you are generating for a WANG environment, set this parameter to F or N.

format-buffer-name Specifies the name of the format buffer in the generated structure. If omitted, the file
ID prefixed by FORBUF_ is used.

Copyright © Software AG 2003336

Preprocessor StatementsGenerating PL/I Include Code

check-name A
Field names are checked for uniqueness throughout the whole structure.

Y
Structure levels are included in the validation check of the field names: if two fields
have the same name, they must be separated by at least one field with a different name
and a lower level number.

N
No check for duplicate field names is performed

numeric sign Specifies which of the PL/I picture characters T, I or R is to be used for the
representation of numeric values of format packed with sign or unpacked with sign.

position of sign Defines the position of the sign in a numeric field:

L
left

R
right.

PROGRAM
The member name can be passed to the preprocessor with the PROGRAM statement:

Syntax with Positional Parameters

EXEC ADABAS PROGRAM <member-name><library>
 END-EXEC

Syntax with Keyword Parameters

EXEC ADABAS PROGRAM
 PROGRAM-ID=<member-name>
 LIBRARY-ID=<library>
 END-EXEC

Note:
If member and library are specified when the Preprocessor is called, these values are taken. The statement
EXEC ADABAS PROGRAM is then not necessary.

Parameters

member-nameThe name used to identify the XRef data. Maximum length: 8 characters.

library If the parameter library is specified, a system of type G (3GL application) that contains this
library name in its implementation pointer must have been defined before.
If no library is specified, the *SYSCOB*, *SYSBAL* or *SYSPLI* libraries are used.

337Copyright © Software AG 2003

PROGRAMPreprocessor Statements

Creation of XRef Data
XRef data is written for Assembler, COBOL, or PL/I programs. The following general rules apply when writing
XRef data for these types of programs:

The programs are declared as programs of type P.
One XRef record is written for each program with the member name as the entry into the program.
XRef data is written for the file and each field in the file that are accessed in the program using an EXEC
ADABAS GENERATE or a COPY statement.

What Types of Code Use are Documented in XRef Data
XRef data is written for the following types of code use:

CALL and ENTRY statements. For COBOL and PL/I, the Preprocessor scans the source code for these
statements.
For Assembler (BAL, 370-Assembler), preprocessor statements have to be included in the source code to
identify the call of external programs and functions.
Use of copy code and include code.
EXEC CICS statements: All Assembler, COBOL and PL/I programs are scanned for several types of EXEC
CICS statements.

The different types are described in the sections below.

Documenting CALL Statements and Entry Points

COBOL or PL/I programs are scanned for CALL statements and entry points.

The following rules apply:

The name of the entry or external program can be up to 8 characters long.
In COBOL a maximum amount of 50 entries and 300 called modules are allowed.
A COBOL entry point is defined by an ENTRY statement.
A PL/I entry point is defined as the label before a PROC, PROCEDURE or ENTRY statement.
Equalization of module/entry names in PL/I will be performed. If an external program and an entry are
found with both the same name, the existence of an internal procedure will be presumed.
Assembler programs will be scanned for the macros CALL and CM$CALL. The names following these
statements will be written as the external member names. The entry points and called external programs
may also be specified in separate preprocessor statements.

Documenting the Use of Copy Code

All Assembler, COBOL and PL/I programs are scanned for copy code.

Assembler and COBOL programs are scanned for the COPY statement; the first eight characters of the
word following the COPY statement (in the same line) are stored as copy code name.
PL/I programs are scanned for the INCLUDE statement. All copy/include code names within an INCLUDE
statement are stored as XRef data.

Copyright © Software AG 2003338

Creation of XRef DataCreation of XRef Data

Documenting EXEC CICS Statements

All Assembler, COBOL and PL/I programs are scanned for a variety of EXEC CICS statements. The following
types of EXEC CICS statements are found and documented:

EXEC CICS LINK PROGRAM (’literal’)
EXEC CICS XCTL PROGRAM (’literal’)
EXEC CICS LOAD PROGRAM (’literal’)
EXEC CICS SEND MAP (’literal’)
EXEC CICS RECEIVE MAP (’literal’)
EXEC CICS HANDLE ABEND PROGRAM (’literal’)

The literal will be written into XRef data as the external member name. If the literal is longer then eight
characters, or the brackets contain a variable without apostrophes or quotes, *DYNAMIC will be written.

339Copyright © Software AG 2003

Documenting EXEC CICS StatementsCreation of XRef Data

	Cover Page
	page 2

	Table of Contents
	External Objects in Predict - Overview
	Handling of External and Documentation Objects
	What is an External Object
	External Objects Owned by Predict
	General Rules

	External Objects Not Owned by Predict
	General Rules

	Connection of External and Documentation Objects
	Disconnecting Objects
	Impact of Connecting External and Documentation Objects

	Overview of External Objects

	Generation of External Objects
	Generation
	Concepts of Generation
	
	External Objects Owned by Predict
	External Objects not Owned by Predict

	Connecting External Objects and Documentation Objects
	Overview of Generation Functions

	Calling Generation Functions
	Calling Generation Functions with Commands
	Generation Condition Codes

	Generation Defaults
	Preprocessor Force

	Storage of External Objects Owned by Predict
	Output / Storage Options for External Objects
	Option 1 - Generating External Objects Temporarily
	Option 2 - Storing Generated External Objects as Members in a Natural Library of the Predict System File
	Option 3 - Storing Generated External Objects Additionally in a Workfile or - with Entire System Server - as an Operating System Member

	Parameters Specifying the Form of Output
	Storing External Objects with Entire System Server
	Using Entire System Server in Networks
	Prerequisites for Using Entire System Server
	Regenerating Code Handled by Entire System Server
	Specifying Entire System Server and VSE Librarian Options

	Common Parameters
	Adabas Version

	Generate For Adabas
	ADACMP, ADAWAN, ADAFDU and ADALOD Definitions
	Calling the Function
	Additional ADALOD Parameters
	Additional ADAFDU Parameters
	Additional Parameters For UES Support
	Generate ADACMP, ADAWAN, ADAFDU or ADALOD Definitions in Batch Mode
	Sample Output

	Adabas File
	Calling the Function
	Generate Adabas File in Batch Mode
	Sample Output
	Sample Output - Continued

	ADAINV Definitions
	Calling the Function
	Generate ADAINV Definitions in Batch Mode
	Sample Output

	ADASCR Definitions
	Calling the Function
	Generate ADASCR Definitions in Batch Mode
	Sample Output

	Adabas Vista Translation Table
	Calling the Function
	Generate Vista Table in Batch Mode

	Adabas VSAM Bridge Transparency Table
	Prerequisites
	Rules Applying to the Design of the Adabas Files
	Calling the Function
	Generate Transparency Table in Batch Mode
	Examples
	Sample File Definition
	Sample Output

	Adabas Table/Cluster/View
	Calling the Function
	Recommendations when Using Adabas Vista
	Generate Adabas Table/View in Batch Mode

	Generate for Natural
	IMS User-Defined Fields
	Rules Applying to the Generation of IMS UDFs
	Calling the Function
	Displaying all Predict File Objects Affected by UDF Generation
	Generate IMS User-Defined Fields in Batch Mode
	Sample Output

	Replace Verification Rule
	Calling the Function
	Replace Verification Rule in Batch Mode
	Sample Output

	Data Definition Module
	Rules Applying to the Generation of DDMs
	Calling the Function
	Generating DDMs for Use with IMS
	Generating DDMs for Use with SQL
	Generating a DDM for Use with Adabas Vista
	Prerequisites

	Recommendations when Using Adabas Vista
	Meaning of Parameter Use Vista access-nr

	Generate DDM in Batch Mode
	Sample Output

	Generate for DB2
	Common Parameters for all DB2 Types
	DB2 Database
	Calling the Function
	Prerequisites

	Generate DB2 Database in Batch Mode
	Sample Output

	DB2 Procedure/Function
	Calling the Function
	Prerequisites

	Generate DB2 Procedures/Functions in Batch Mode

	DB2 Table/View
	Calling the Function
	Prerequisites

	Generate DB2 Table/View in Batch Mode
	Sample File Definition
	Sample Output

	DB2 Storagegroup
	Calling the Function
	Prerequisites

	Generate DB2 Storagegroup in Batch Mode
	Sample Output

	DB2 Tablespace
	Calling the Function
	Prerequisites

	Generate DB2 Tablespace in Batch Mode
	Sample Output

	Generating for SQL
	SQL CREATE Statements
	Calling the Function
	Generating SQL CREATE Statements in Batch Mode
	Sample Output

	Generating for OS/400
	Principles
	Components
	Mapping Rules
	Field Type Mapping
	Field Attribute Limitations
	Field Format Mapping

	Defining an OS/400 File Object
	Calling the Generate Function
	Field Check Messages

	Changing an OS/400 Database File

	Generate For Third Generation Languages - 3GL
	Additional Usage Information for Fields in a File

	Assembler Copy Code
	Calling the Function
	Names in Assembler Copy Code
	Assembler Names for Counter Fields - MC or PC
	Assembler Names for Logical Fields - L
	Assembler Names for Fields of Type AV
	Assembler Names for Additionally Generated Indicator Fields

	Field Format and Assembler Copy Code
	Sample Output

	C Include Code
	Calling the Function
	Generate C Include Code in Batch Mode
	Names in C Include Code
	C Names for Redefinition Fields - RE
	C Names for Counter Fields †MC or PC‡
	C Names for Additionally Generated Indicator Fields

	Field Format and C Include Code
	Sample Output

	COBOL Copy Code
	Calling the Function
	Generate COBOL Copy Code in Batch Mode
	Names in COBOL Copy Code
	COBOL Names for Counter Fields - MC or PC
	COBOL Names for Multiple Fields - MU - Contained in Periodic Groups - PE
	COBOL Names for Redefined Fields - RE in Periodic Groups - PE
	COBOL Names for Logical Fields - L
	COBOL Names for Record Buffer and Format Buffer
	COBOL Names for Default Indexed by Name
	COBOL Names for Additionally Generated Indicator Fields
	Examples for the Generation of COBOL Field Names

	Field Format and COBOL Copy Code
	Automatically Generated Counter Fields

	COBOL Copy Code for DB2 Tables/Views
	Sample Output

	FORTRAN Copy Code
	Calling the Function
	Generate FORTRAN Copy Code in Batch Mode
	Names in FORTRAN Copy Code
	 FORTRAN Names for Multiple Fields - MU - Contained in Periodic Groups - PE
	FORTRAN Names for Additionally Generated Indicator Fields
	Examples for the Generation of FORTRAN Field Names

	Field Format and FORTRAN Copy Code
	Sample Output

	PL/I Include Code
	Calling the Function
	Generate PL/I Include Code in Batch Mode
	Names in PL/I Include Code
	PL/I Names for Counter Fields - MC or PC
	PL/I Names for Additionally Generated Indicator Fields

	Field Format and PL/I Include Code
	Additional Notes

	Sample Output

	Sample File Definition
	File Implementation
	
	How this section is Organized

	Concepts of File Implementation
	Benefits of Implementation Plans
	Overview of Activities
	Create an Implementation Plan
	Extend an Implementation Plan
	Modify an Implementation Plan
	Execute an Implementation Plan
	Reexecute an Implementation Plan
	Administrate an Implementation Plan

	Executing Implementation Plans under Adabas Vista
	Generating a DDM under Natural Security

	Calling File Implementation Functions
	The File Implementation Menu
	Executing and Displaying an Implementation Plan in Batch Mode
	Example_Batch
	Handling of Errors in Batch Mode

	File Implementation Functions
	Add Implementation Plan - Code A
	Copy Implementation Plan - Code C
	Modify Implementation Plan - Code M
	Rename Implementation Plan - Code N
	Purge Implementation Plan - Code P
	Display Implementation Plan - Code D
	Information Given by Display Implementation Plan

	Extend Implementation Plan - Code E
	Select Implementation Plan from List - Code S
	Execute Implementation Plan - Code X
	Reexecute Implementation Plan - Code R
	Reexecute Implementation Plan in Batch Mode

	Error Handling - Online

	Incorporation
	Concepts of Incorporation
	Overview of Incorporation Options
	Overview of Incorporation Subfunctions
	Connecting External and Predict Objects
	Identifying Corresponding External and documentation Objects
	Sources of Information on External Objects

	Calling Incorporation Functions
	Incorporation Functions are Executed in Two Steps
	Step 1: Selecting the Objects to be Processed
	Remarks which apply to all Object Types

	Step 2: Processing Objects with Incorporation Functions
	Compare - Code T
	Connect - Code C
	Display Masters - Code M
	Display Related DDMs - Code V
	Incorporate - Code I
	Replace - Code R

	Overview of Function Codes and Commands
	Using Incorporation Functions in Batch Mode

	Incorporating Adabas Databases
	
	Prerequisites
	Restrictions

	Selecting Adabas Databases
	Incorporation Functions for Adabas Databases
	Compare - Code T
	Connect - Code C
	Incorporate - Code I
	Scope of the Incorporation

	Incorporate Adabas Database in Batch Mode

	Incorporating Adabas Files
	
	Prerequisites and Restrictions

	Selecting Adabas Files
	Incorporation Functions for Adabas Files
	Compare - Code T
	Connect - Code C
	Incorporate - Code I

	Incorporating Adabas Files in Batch Mode

	Incorporating DB2 Storagegroups
	
	Prerequisites

	Selecting DB2 Storagegroups
	Incorporation Functions for DB2 Storagegroups
	Compare - Code T
	Connect - Code C
	Incorporate - Code I
	Scope of the Incorporation

	Incorporate DB2 Storagegroups in Batch Mode

	Incorporating DB2 Databases
	
	Prerequisites

	Selecting DB2 Databases
	 Incorporation Functions for DB2 Databases
	Compare - Code T
	Connect - Code C
	Incorporate - Code I
	Scope of the Incorporation

	Incorporate DB2 Databases in Batch Mode

	Incorporating DB2 Tablespaces and SQL/DS DBspaces
	
	Prerequisites

	Selecting Tablespaces
	Incorporation Functions for Tablespaces
	Compare - Code T
	Connect - Code C
	Display Masters - Code M
	Incorporate - Code I
	Scope of the Incorporation

	Incorporate DB2 Tablespaces in Batch Mode

	Incorporating DB2 and SQL/DS Tables/Views
	
	Prerequisites

	Selecting DB2 and SQL/DS Tables/Views
	Incorporation Functions for Tables/Views
	Compare - Code T
	Connect - Code C
	Display Masters - Code M
	Incorporate - Code I
	Scope of the Incorporation

	Incorporating DB2 Tables and Views in Batch Mode
	
	Example

	Incorporating NDBs for IMS Databases/Segments
	Selecting Natural DBDs for IMS Databases and Segments
	Incorporating Natural DBDs for IMS Databases and Segments
	Incorporate - Code I
	Replace - Code R
	Prerequisites and Restrictions
	Scope of the Replace Operation

	Incorporating IMS Database in Batch Mode
	
	Example

	Incorporating Adabas Tables and Views
	
	Prerequisites

	Selecting Adabas Tables/Views
	Incorporation Functions for Tables/Views
	Compare - Code T
	Connect - Code C
	Display Masters - Code M
	Incorporate - Code I
	Scope of the Incorporation

	Incorporating Adabas Tables and Views in Batch Mode

	Incorporating Natural DDMs
	
	Prerequisites and Restrictions

	Selecting DDMs
	Incorporation Functions for DDMs
	Compare - Code T
	Connect - Code C
	Display Related DDMs - Code V
	Incorporate - Code I
	Prerequisites and Restrictions
	Scope of the Incorporation

	Incorporate DDM in Batch Mode

	Incorporating COBOL Copy Code
	
	Prerequisites

	Calling the Function
	Incorporating COBOL Copy Code in Batch Mode
	Representation of COBOL Field Definitions in Predict

	Incorporating Super Natural Users
	Incorporating Super Natural User in Batch Mode

	Incorporating Natural Security Users
	
	Prerequisites and Restrictions
	Selecting Natural Security Users

	Incorporating Natural Security Users in Batch Mode

	Incorporating Tables / Views of SQL Database Systems
	
	Functional Scope
	Prerequisites
	Restrictions
	Selecting SQL Tables and Views

	Incorporation Functions for SQL Tables and Views
	Display Masters - Code M
	Incorporate - Code I
	Scope of the Incorporation

	Incorporate SQL Tables / Views in Batch Mode

	Comparison
	Concepts of Comparison
	
	Functional Scope
	Resetting the Modified after generation Flag
	Format of Reports Created by Comparison Functions

	Calling Comparison Functions
	General Prerequisites for Comparison Functions
	Selecting Objects for Comparison Functions
	Check, List, Update and Save Options
	Saving the Result of Comparison Functions in Sets
	Calling Comparison Functions with Commands

	Comparing Different Types of Objects
	Comparing Adabas Databases
	
	Prerequisites

	Calling the Function
	Comparing Adabas Databases in Batch Mode
	Example

	Comparing Adabas Files
	
	Prerequisites and Restrictions

	Calling the Function
	Comparing Adabas Files in Batch Mode
	Example

	Comparing Vista Translation Tables
	
	Prerequisites

	Calling the Function
	Comparing Vista Translation Tables in Batch Mode
	Example

	Comparing DDMs
	
	Prerequisites

	Calling the Function
	Comparing DDMs in Batch Mode
	Example

	Comparing Adabas Tables/Views
	
	Prerequisites

	Calling the Function
	Comparing Adabas Tables and Views in Batch Mode
	Example

	Comparing DB2 Databases
	
	Prerequisites

	Calling the Function
	Comparing DB2 Databases in Batch Mode
	Example

	Comparing DB2 Storagegroups
	
	Prerequisites

	Calling the Function
	Comparing DB2 Storagegroups in Batch Mode
	Example

	Comparing DB2 Tablespaces
	
	Prerequisites

	Calling the Function
	Comparing DB2 Tablespaces in Batch Mode
	Example

	Comparing DB2 Tables and Views
	
	Prerequisites and Restrictions

	Calling the Function
	Comparing DB2 Tables and Views in Batch Mode
	Example

	Administration of External Objects
	Overview of Options
	Overview of Administration Functions
	General Rules
	Commands
	Batch Mode
	Administrating External Objects Stored with Entire System Server
	Purging Objects Stored with Entire System Server

	External Object Types and Administration Functions

	Administrating Different Types of External Objects
	Databases
	Functions
	Display implementation - Code D
	Purge implementation - Code P
	Disconnect implementation - Code C
	Select implementation - Code S
	Purge Vista elements - Code U

	Dataspaces
	Functions
	Display implementation - Code D
	Purge implementation - Code P
	Disconnect implementation - Code C
	Select implementation - Code S

	Files
	Functions
	Disconnect implementation - Code C
	Display implementation - Code D
	Rename implementation - Code N
	Purge implementation - Code P
	Refresh file - Code R
	Select implementation - Code S
	Purge Vista elements - Code U

	Programs
	Functions
	Disconnect implementation - Code C
	Display implementation - Code D
	Purge implementation - Code P
	Select implementation - Code S

	Storagespaces
	Functions
	Disconnect implementation - Code C
	Display implementation - Code D
	Purge implementation - Code P
	Select implementation - Code S

	Preprocessor
	Overview

	Using the Preprocessor
	
	
	Using the Preprocessor with Adabas Native SQL

	Calling the Preprocessor
	Prerequisites - Work Files
	Reports - Print Files

	Preprocessor Statements
	Overview of Preprocessor Statements
	Statements to Include Copy Code Generated from Predict file objects
	Statements to Write XRef Data for 3GL Copy/Include Code or Function Calls

	Format of Preprocessor Statements
	Using Keyword and/or Positional Parameters

	CALL
	
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	COPY
	
	Copying a Member from a File that has been Modified after Generation

	Syntax
	with Positional Parameters
	with Keyword Parameters

	ENTRY
	
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	FORMAT-BUFFER
	
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	GENERATE
	Generating Assembler Copy Code
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	Generating COBOL Copy Code
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	Generating PL/I Include Code
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	PROGRAM
	
	Syntax with Positional Parameters
	Syntax with Keyword Parameters

	Creation of XRef Data
	What Types of Code Use are Documented in XRef Data
	Documenting CALL Statements and Entry Points
	Documenting the Use of Copy Code
	Documenting EXEC CICS Statements

