
Predict and Other Systems
Version 4.3.1

This document applies to Predict Version 4.3.1 and to all subsequent releases. Specifications contained herein
are subject to change and these changes will be reported in subsequent release notes or new editions.

© June 2003, Software AG
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

Table of Contents
............... 1Predict and Other Systems - Overview
............... 1Predict and Other Systems - Overview
................ 2Verifications And Processing Rules
............... 2Verifications And Processing Rules
.................... 2Terminology
.................. 3General Information
.................... 3Benefits
............ 4Rules Applying to Processing Rules in Predict
.......... 4Using Rules of Verifications in an External Environment
.............. 4Verifications of Status Documented
............... 4Verifications of Status Conceptual
................ 4Verifications of Status Free
............... 5Verifications of Status Automatic
............. 6Verifications of Status Natural Construct
................ 6Verifications of Status SQL
............... 6How Predict Stores Processing Rules
.............. 6Variable Names in Processing Rules
................ 7Priority of Processing Rules
............ 7Generating Processing Rules from Verifications
............... 8Editing the Rule of a Verification
.................. 8Editor Commands
............... 9Changing the Status of a Verification
..................... 10Example
.................. 11Rippling Verifications
............. 11Rippling Verifications from Standard Files
.......... 12Rippling Verifications from Physical Files to Userviews
.................... 13Steplib Support
.................... 13Steplib Support
.................. 13General Information
................ 13Object Type Library Structure
................. 13Program Type Dynamic
.................. 14Metadata Diagram
................ 14Active Retrieval Functions
............... 14Documenting Dynamic Structures
.................... 14Example
............ 16Steplib Support with Active Retrieval Functions
............... 16Function Program using Program
.............. 18Function Systems containing Programs
............. 19Steplib Support with LIST XREF for Natural
............ 20The Library Structure Documented in Predict
.................. 20Runtime Structure
................. 20Without any Structure
............... 20Steplib Support in Batch Mode
............. 20Effects of Steplib Support on LIST XREF
..................... 23Adabas Vista
.................... 23Adabas Vista
............... 23Different Types of Data Distribution
............. 24Defining the Distribution of Data in Predict
.................. 24General Information
............... 25Defining the Distribution of Data
......... 25Defining a Network, Virtual Machine and Database Structure
............. 25Defining Networks and Virtual Machines
.................. 25Defining a Database

iCopyright © Software AG 2003

Table of ContentsPredict and Other Systems - Overview

.................. 27Defining the File Structure

............ 28Defining a File Structure Logically and Physically

.................. 29Defining a Logical File

........... 30Defining the Physical Implementation of Logical Files

............. 30Adding, Modifying and Purging Physical Files

............. 31Specifying the Vista Attributes of Physical Files

.............. 32Specifying Physical Distribution Attributes

............ 33Specifying Distribution Criteria for Partitioned Files

.............. 34Including the Definition in the Vista Table

............ 36Retrieving Information on the Use of Vista Numbers

... 36Generating, Incorporating, Comparing and Maintaining Data Definitions under Adabas Vista

....................... 38VSAM

....................... 38VSAM

................... 38Documenting VSAM

............. 38Physical VSAM file - Master File, File Type V

............. 39Logical VSAM File - Master File, File type L

......... 42File Type W and R - Userview of Physical / Logical VSAM File

............. 43Generating DDMs from Predict VSAM Objects

............ 43Using Natural for VSAM with Physical VSAM Files

................. 43Using a Record Layout Concept

.......... 43Using a Record Layout Concept Without Logical VSAM Files

..................... 44Natural For DL1

..................... 44Natural For DL1

................... 44General Information

............... 44Documenting IMS/DL1 Data Structures

..................... 44Databases

..................... 45Segments

.................... 45Segment Layouts

..................... 45Userviews

........... 45Creating Objects for IMS/DL1 with Incorporation Functions

............... 46Maintaining Documentation for IMS/DL1

.......... 46Maintaining Documentation of IMS/DL1 Segment Layouts

............ 46Maintaining Documentation of IMS/DL1 Userviews

............. 46Generation Functions for Files of Type I, J and K

................... 47Generating DDMs

..................... 48DB2 and SQL/DS

..................... 48DB2 and SQL/DS

.................. 48Documenting DB2 in Predict

................... 48General Information

................ 49Documenting DB2 Storagegroups

................. 49Documenting DB2 Databases

........... 49Documenting DB2 Tablespaces and SQL/DS Dbspaces

............... 50Documenting DB2 Tables and Views

............... 51Documenting Referential Constraints

............... 51Documenting DB2 Application Plans

................. 51Documenting DB2 Packages

................. 51Documenting DB2 Triggers

............. 52Documenting DB2 Procedures and Functions

................ 52Documenting Other DB2 Objects

................. 54Naming Conventions for DB2

................... 55Correlation Names

.................... 55Distinct Types

.................... 55Procedure Name

.................... 55Index Names

.................... 55Function Name

.................... 55Trigger Names

Copyright © Software AG 2003ii

Predict and Other Systems - OverviewTable of Contents

.................. 55Delimited Identifiers

............ 56Generating, Incorporating and Comparing DB2 Objects

..................... 56Prerequisites

..................... 56Generation

.................... 57Incorporation

..................... 57Comparison

............... 57Administrating Implemented DB2 Objects

......... 58Locking the Functions of the DB2 Utilities SYSDB2 and SYSSQL

....................... 59Static SQL

...................... 59Static SQL

................... 59General Information

................ 59Documenting the Use of Static SQL

............ 60Documenting Which Natural Programs Use a DBRM

............. 60Generating DBRMs from Predict Documentation

.............. 61Which Information is Stored in XRef Data

.............. 61Retrieval Functions and Consistency Checking

........... 62Using Predict Information when Binding Application Plans

................. 63Adabas D And Other SQL Systems

................. 63Adabas D And Other SQL Systems

................... 63General Information

................ 64Documenting SQL Systems in Predict

............... 64Documenting SQL Tables and Views

................ 65Documenting Other SQL Objects

.................... 66Common Keys

.................. 66Referential Constraints

............... 67Naming Conventions for SQL Objects

............... 68Generating SQL CREATE Statements

.................... 68Functional Scope

................... 69More Information

................ 69Generating DDMs from SQL Objects

............ 69Incorporating Tables / Views of SQL Database Systems

.................. 71Administrating SQL Objects

.................... 72Adabas SQL Server

.................... 72Adabas SQL Server

................... 72General Information

.............. 72Documenting Adabas SQL Server in Predict

................. 73Documenting Adabas Tables

................. 73Documenting Adabas Views

............ 74Documenting Adabas SQL Databases/ Tablespaces

............... 74Documenting Adabas SQL Columns

................... 74Documenting Indexes

................ 74Documenting Unique Elements

.............. 74Documenting Primary and Foreign Keys

............... 75Documenting Referential Constraints

.............. 75Naming Conventions for Adabas SQL Server

.......... 75Generating, Incorporating and Comparing Adabas SQL Objects

..................... 76Prerequisites

............. 76Generate Table Description, Cluster Description

.................... 77Generate View

................... 77Incorporate Table

.................... 77Incorporate View

................. 77Compare Adabas Table/View

.............. 77Administrating Adabas SQL Server Objects

................. 77Disconnect Implementation

.................. 78Display Implementation

.................. 78Rename Implementation

iiiCopyright © Software AG 2003

Table of ContentsPredict and Other Systems - Overview

.................. 78Purge Implementation

.................. 78Select Implementation

.............. 78XRef Data for Adabas SQL Server Objects

.................. 80Third Generation Languages

.................. 80Third Generation Languages

................. 80Documenting 3GL Applications

............. 80Implementation Pointer for 3GL Application

........ 80Documenting a 3GL Application with a Predict Object of Type System

.................. 81Documenting 3GL Programs

.............. 81Implementation Pointer for 3GL Programs

........ 83Documenting a 3GL Program with a Predict Object of Type Program

............. 83Creating XRef Data for Implemented Programs

...... 84Connecting External and Documentation Objects by Implementation Pointer

............. 84Documenting Entry Points for 3GL Programs

............. 85XRef Data for 3GL Applications and Programs

................. 85How is XRef Data Created?

............... 86What is Contained in 3GL XRef Data?

.................. 86How is XRef Data Used?

.......... 86Using Predict Functions When Developing 3GL Applications

................ 87Redocumenting of 3GL Applications

.............. 87Redocumenting COBOL Record Structures

............... 88Predict and Natural Development Server

................ 88Predict and Natural Development Server

................... 88General Information

............ 88Documenting Natural Development Server in Predict

.............. 89Documenting Base Application Descriptions

............ 90Documenting Compound Applications Descriptions

............. 90Documenting Data Definition Modules (DDM)

.............. 90Documenting Natural Programming Objects

................... 90Documenting Libraries

Copyright © Software AG 2003iv

Predict and Other Systems - OverviewTable of Contents

Predict and Other Systems - Overview
Predict supports a wide variety of application development environments, database management systems and
programming languages. Many functions support the active use of data stored in the dictionary when developing
applications and when using these applications in a production environment.

This document describes how Predict is used with specific systems or facilities.

Verifications and
Processing Rules

The interaction between verification objects in Predict and processing rules in Natural.

Steplib Support Provides an overview of the areas in Predict affected by the Steplib concept in Natural.
documentation.

Adabas Vista How to define distributed data structures for working with Adabas Vista in Predict, and
how to generate from these definitions the objects you need for the physical
implementation of these structures.

VSAM How to document physical and logical VSAM structures in Predict; how to generate
DDMs from VSAM objects in Predict; using Natural for VSAM with physical VSAM;
using a record layout concept.

Natural for DL/I How to document IMS/DL1 data structures; how to create objects for IMS/DL1 with
incorporation functions; how to maintain documentation for IMS/D1; generation
functions for files of types I, J and K.

DB2 and SQL/DS How to document DB2 objects in Predict; generating, incorporating comparing and
administering DB2 objects.

Static SQL Describes how to document the use of Static SQL in Predict and how to generate
DBRMs from the Predict documentation. Retrieval functions and consistency checking
is discussed, along with a description of how to use Predict information when binding
application plans.

Other SQL
Systems

Predict support of the following DBMS: Adabas D, Oracle, Ingres, Informix, Sybase.
How to document SQL objects in Predict; generating and incorporating SQL objects.

Adabas SQL
Server

Describes how to document Adabas SQL Server objects in Predict. Generation,
Incorporation, Comparison and Administration functions which process Adabas SQL
Server objects are described. This section also discusses XRef data created for Adabas
SQL Server.

Third Generation
Languages

Describes the documentation of 3GL applications and programs and how XRef data for
these applications is generated and maintained. The Predict functions used when
developing a 3GL application are explained here.

Natural
Development
Server

Describes the documentation of Natural Development Server objects.

1Copyright © Software AG 2003

Predict and Other Systems - OverviewPredict and Other Systems - Overview

Verifications And Processing Rules
This section covers the following topics:

Terminology
General Information
Using Rules of Verifications in an External Environment
How Predict Stores Processing Rules
Generating Processing Rules from Verifications
Editing the Rule of a Verification
Changing the Status of a Verification
Example
Rippling Verifications

Terminology
Automatic Rule

An automatic rule is used automatically whenever a field to which a verification of status automatic has been
linked via Is verified by VE is included in a map. Automatic rules cannot be changed in the Natural map editor,
which guarantees consistent use of these processing rules throughout an application.

Automatic - Verification Status

A verification has the status automatic if it contains a rule that is linked to at least one field of at least one file for
which a DDM has been generated.

Conceptual - Verification Status

A verification of status conceptual contains a rule that has not yet been cataloged with CAT FREE or SA[VE]
FREE.

Documented - Verification Status

A verification of status documented does not contain a rule and cannot be used in a Natural map. It is used in the
early phases of application design.

Free Rule

A free rule is used in a Natural map by specifying the ID of a verification of status free. The Natural code of the
processing rule stored with the verification will be included into the map when the map is cataloged. Free rules
can be defined and modified with the Natural map editor and directly in Predict.

Free - Verification Status

A verification has the status free if it contains a rule that has been cataloged with CAT FREE or SA[VE] FREE.

Inline Rule

Inline processing rules are defined within a Natural map source and do not have a name assigned. Inline rules in
Natural can be used independently of Predict.

Copyright © Software AG 20032

Verifications And Processing RulesVerifications And Processing Rules

Natural Construct - Verification Status

A verification of status Natural Construct is created by entering command CAT N or SA[VE] N in the Rule
Editor. These verifications are only used by Natural Construct.

Processing Rule

Rule for validating data entry in a Natural map or SQL database. The following types of processing rules can be
defined:

For Natural:

Inline processing rules
Free rules
Automatic rules

For SQL:

SQL

Rule Editor

The Rule Editor is a modified Natural Editor in Predict which is used to edit the rule of a verification. See the
section Editors in Predict in the Predict Reference documentation.

SQL - Verification Status

A verification of status SQL is created by entering command CAT S or SA[VE] S in the Rule Editor. See
Verifications of Status SQL.

Verification

A verification is a predefined object type in Predict and can contain the Natural or SQL code of a processing
rule.

General Information
Natural processing rules perform validity checks on input data to ensure that the data to be processed is suitable.
For example, in a program controlling traffic lights, the only input values allowed for the field colour might be
red, green and amber.

Natural processing rules can be defined and stored centrally in Predict.

Benefits

Storing processing rules in Predict has the following advantages:

Programming costs and the number of errors can be reduced by using free rules stored in Predict.
The use of processing rules can be forced by linking automatic rules to fields via association Is verified by
VE. Automatic rules cannot be changed in the Natural map editor. This guarantees consistent use of these
processing rules throughout an application.
The use and design of processing rules can be planned and revised by using verifications of status
documented and conceptual.

3Copyright © Software AG 2003

General InformationVerifications And Processing Rules

Rules Applying to Processing Rules in Predict

The following general rules apply to processing rules in Predict:

Processing rules of status documented or conceptual can be linked to fields via Is verified by VE.
Natural inline processing rules can be integrated into Predict as free rules by giving them a name in the
Natural map editor.
Automatic rules can be used as free rules by specifying their name in the map.
Processing rules can be written in either structured mode or report mode.
A GENERATE command creates the Natural code of a processing rule from the rule of a verification. The
generated code can then be changed to meet specific requirements.
Links from fields to verifications linked via Is verified by VE are rippled. See Rippling Verifications

Using Rules of Verifications in an External Environment
The status of the Predict verification object determines how a rule stored with the verification is used in an
external environment. Six status types are distinguished:

Documented
Conceptual
Free
Automatic
Natural Construct
SQL

The characteristics of the different status types are described below.

Verifications of Status Documented

Verifications of status documented can be used in the early phases of application design when the parts of an
application that have to be implemented are listed. verifications of status documented do not contain processing
rules and cannot be used in Natural maps.

Documented

ID: xyz

Type: equal

Format: alpha

Value ’xyz’

Verifications of type documented are not connected to an external environment.

Verifications of Status Conceptual

Verifications containing a processing rule that has not yet been cataloged with CAT FREE or SA[VE] FREE
have the status conceptual.

Verifications of Status Free

A verification has the status free if it contains a processing rule that has been cataloged with CAT FREE or
SA[VE] FREE and can therefore be used in any Natural map by linking it explicitly to a field.

Copyright © Software AG 20034

Verifications And Processing RulesUsing Rules of Verifications in an External Environment

A free rule is used in a Natural map by specifying the verification ID. A Select function is provided for selecting
free rules from Predict. Only free rules with a format compatible with the format of the input field of the map for
which they are to be used will be displayed by the select function. The Natural code of the processing rules
stored under the given verification ID will be included into the map when the map is cataloged.

Free rules can be defined and modified with the Natural map editor and directly in Predict.

Verifications of Status Automatic

A verification has the status automatic if it contains a processing rule that is linked to at least one field of at least
one file for which a DDM has been generated. An automatic rule is automatically used every time a field to
which it has been linked is included in a map. Automatic rules are centrally defined by the administrator who
generates DDMs and cannot be modified by individual programmers with the Natural map editor. Defining an
automatic rule is a two-stage process:

1. Link the verification containing the rule to a field of a file (a real file or a userview) in Predict.
2. Activate the rule by generating a DDM for that file.

Rules Applying to Automatic Rules

The following rules apply for the use of automatic rules:

Up to 50 automatic rules can be linked to a field.
If the code contained in an automatic rule is changed but its links to fields remain, the Predict Replace
Verification Rule function can be used to update the active code which is used by the fields. There is no
need to regenerate the DDM. Natural maps using processing rules that have been modified should be
recataloged to ensure that they use the new version of the processing rule.
The LIST XREF function with the option Save set set to Y can be used to recatalog maps efficiently.
An automatic rule can also be used as a free rule by specifying the name of the corresponding verification in
a Natural map. Automatic rules that have been used in this fashion cannot be modified with the Natural map
editor.
Automatic rules cannot be changed with the Natural map editor.

5Copyright © Software AG 2003

Verifications of Status AutomaticVerifications And Processing Rules

Verifications of Status Natural Construct

Verifications of status Natural Construct can be accessed only from Natural Construct.

These verifications must be linked to a field so that Natural Construct can access them. Unlike verifications of
status Automatic, it is not necessary to generate a DDM for a verification of status Natural Construct in order
that the rule is used.

Verifications of Status SQL

The following rules apply:

Verifications of status SQL are skipped by functions Generate DDM and Replace Verification rule.
The syntax of the processing rules is not checked by Predict.
These processing rules may only contain references to the field to which they are linked. Ampersand
notation is used instead of a fixed allocation.
The ampersand references are replaced by the corresponding field name when the CREATE TABLE
statement is generated.
If you execute the command GEN[ERATE] S in the Rule Editor, a corresponding SQL clause is created for
all rule types except user routine. When the code of the rule is saved, the status of the verification is
changed to SQL.
Only one verification of status SQL (and 49 of a status other than SQL) may be linked to a field. This
condition is checked only when the CREATE TABLE statement is generated.
Comments are removed when the CREATE TABLE statement is generated.
Otherwise the handling of these verifications corresponds to verifications of status Natural Construct. See
Verifications of Status Natural Construct.

How Predict Stores Processing Rules
Processing rules are stored in Predict as attributes of verifications. If a verification has been linked to a field of a
map, the Natural code of the rule is inserted when that map is cataloged.

Variable Names in Processing Rules

In the source code of a processing rule, the name of a variable can be represented by an ampersand (&). The
Natural compiler or Predict generation function will substitute the name of the field (or PF key for a PF key rule)
for the ampersand. This allows the use of a rule for different fields.

Example:

IF & = ’ ’ REINPUT ’ENTER NAME’ MARK *&

Copyright © Software AG 20036

Verifications And Processing RulesHow Predict Stores Processing Rules

Priority of Processing Rules

1. Processing rules assigned to function keys have highest priority.
2. Rules linked to different fields of a map are executed in the order in which the fields appear on a terminal

screen.
3. A rank from 0 to 99 can be allocated to each inline rule or free rule linked to a field of that map.

Additionally a rank can be allocated to all automatic rules linked to a field.
The rules linked to that field will then be executed in ascending order of rank.

4. Automatic rules linked to a field in Predict are executed in the order their Predict verification IDs appear in
the verification list of the field.

Processing Rules and Field Formats

Every rule is allocated a format to ensure that the rule will be compatible with the field format. The following
table lists the compatible combinations of field format and rule format.

Field Format Compatible Rule Format

A A,B

N,P N

I,F B

B =< 4 A,B,N

B > 4 A,B

D (date/time) D (date/time)

L L

The rule format K (function key) applies exclusively to free rules.

Generating Processing Rules from Verifications
Processing rules can be created from Predict objects of type verification. Follow the steps below:

1. Enter Y in the field labelled Additional attributes in an Add, Copy or Modify Verification screen and select
Rule code or execute the Edit rule of a Verification function (code R).

2. Enter the GENERATE [S|N] command in the Rule Editor to generate a first version of the processing rule
from the definitions in the verification.

3. Modify the processing rule as required.
4. Test the rule with the RUN or CHECK command (Natural rules only).
5. The rule is cataloged/saved with either one of the following commands:

SA[VE] [[FREE] RET[URN]]
CAT [[FREE] RET[URN]]
SA[VE] [S|N]
CAT [S|N]

If FREE is used, the rule is stored as a free rule.

Note:
Commands SAVE or CAT do not perform a syntax check. The syntax is checked when you catalog a map
that uses the rule or when the CREATE TABLE statement is executed.

7Copyright © Software AG 2003

Generating Processing Rules from VerificationsVerifications And Processing Rules

Editing the Rule of a Verification
The rule of a verification is edited with the Predict Rule Editor. This editor can be invoked in one of the
following ways:

Enter Y in the field Additional attributes in the bottom line of the Add, Copy or Modify Verification screen
and select Rule code.
Call function Edit rule in the Verification Maintenance Menu.
Enter command EDIT VERIFICATION RULE <Verification-ID>

Editor Commands

Note:
This section describes rule-specific editor commands. General editor commands are described in the section
Editors in Predict in the Predict Reference documentation.

CAT [[FREE]
RET[URN]], SA[VE]
[[FREE] RET[URN]]

Catalog/save the edited rule as a free rule. This command is only available when
creating new rules and when editing conceptual rules.

Note:
The commands SAVE and CAT do not perform a syntax check. The syntax
is checked however, when you catalog a map that uses a rule.

C[HECK] Checks whether the edited rule’s Natural syntax is valid and reports errors.

GEN[ERATE] Generates a processing rule from the values defined in the rule of the verification
and adds it to the end of the Natural source in the rule editor. This command is not
available for verifications of type User routine.

A table which shows the Natural and SQL statements generated for the different
verification types can be found in the section Rule Editor in the Predict
Reference documentation.

GEN[ERATE] N Generates a rule for Natural Construct from a verification of status documented
(D).
The status of the verification is changed to N.

GEN[ERATE] S Generates an SQL clause for all verification types except user routine. When the
code is saved, the status of the verification is changed to S.

GLOBALS SM=OFF Switch to the reporting mode of Natural.

GLOBALS SM=ON Switch to the structured mode of Natural.

RENUM[BER], N Renumber the source lines in steps of N and renumber references to them
accordingly.

Copyright © Software AG 20038

Verifications And Processing RulesEditing the Rule of a Verification

RUN Checks the edited rule. If no errors are found, a map is produced with which the
user can test the rule by entering input values. The following rules apply:

Length and format of the input field are derived from the rule format. For
rules with format A, B or N, an additional window is displayed, where the
derived field length can be overwritten.

Rule Format Format of the derived field Length of the derived field

A A 66

B B 33

D D

L L 1

N N 27

RUN tests a rule of format K (function key) without input data.
For a rule of format L (logical), a blank space means false and any other
input value means true.
The stack must not be changed.
The contents of the source area must not be changed.

Note:
All variables used except the ampersand (&) must be defined within the
code.

The variable names SYSDIC-C1 and SYSDIC-C2 are used for internal
purposes and must not be used within the rule.
The source will be renumbered.

Changing the Status of a Verification
Predict assigns the status of verifications itself. The following table shows which actions cause a change of
status.

9Copyright © Software AG 2003

Changing the Status of a VerificationVerifications And Processing Rules

Old Status New Status Action

inline free Give the rule a name in the map editor.

documented conceptual Add a rule to the verification.

conceptual free Either catalog the rule in the rule editor with the command SAVE FREE or
CAT FREE or use the Rename Verification function to change the status
explicitly.

conceptual SQL, Natural
Construct

Catalog the rule in the rule editor with the command SAVE S|N or CAT S|N.
At least one line must have been changed before cataloging.

free inline Change the rule’s name to a blank in the map editor. The rule will still exist
in Predict with status free.

conceptual automatic Link the rule to at least one field (with the field maintenance function Link
Verification), then generate a DDM for the file which includes it.

free automatic Link the rule to at least one field (with the field maintenance function Link
verification), then generate a DDM for the file which includes it.

free conceptual,
Natural
Construct

Use the Rename Verification function. The status of a free rule cannot be
changed to conceptual if the rule is used in any Natural map.

automatic conceptual Unlink all fields from the rule (with the field maintenance function Link
Verification) then regenerate the related DDMs. If the rule is also used as a
free rule, the status of the verification will be changed to free.

documented SQL, Natural
Construct

Generate a rule for Natural Construct from a verification of status
documented (D) using the GEN[ERATE] N command of the Rule Editor; for
SQL using the command GEN[ERATE] S.

Natural
Construct

free, conceptual Use the Rename Verification function.

Example
One of six town names are allowed as input. The verification describing this validity check is created with values
as shown below:

Copyright © Software AG 200310

Verifications And Processing RulesExample

 10:13:40 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Modify Verification -
 Verification ID . TEST-TOWN Modified 2003-05-31 at 09:46
 Status Free by HNO
 Keys .. Zoom: N

 Format* A Alphanumeric Modifier Zoom: N
 Type* T Table of values
 Message nr
 Replacement 1 ...
 Replacement 2 ...
 Replacement 3 ...
 Message text No SAG-office in that town.

 Abstract Zoom: N Values Zoom: N
 BRUESSEL
 RESTON
 PARIS
 DERBY
 CAMBRIDGE
 DARMSTADT

 Additional attributes ..* N Associations ..* N

The following processing rule is generated if the GENERATE command in the Rule Editor is applied to this
verification.

 * **
 * Verification: TEST-TOWN generated by PREDICT *
 * with format: Alphanumeric; Type: Table of values; *
 * on: 2003-05-31; at: 10:13:33; from user: HNO *
 * **
 IF NOT (& = ’BRUESSEL’ OR = ’RESTON’ OR = ’PARIS’ OR = ’DERBY’
 OR = ’CAMBRIDGE’ OR = ’DARMSTADT’)
 REINPUT ’No SAG-office in that town.’
 MARK *&

Rippling Verifications

Rippling Verifications from Standard Files

Each field of a standard file can have a list of verifications via association Is verified by VE, which apply to that
field. When the list is edited, corresponding changes are automatically made in the verification list of every field
related to that standard field, according to the following rules:

Every verification contained in the verification list of a standard field must also be contained in the
verification list of a field related to that standard field. However, the sequence of verifications in the lists
can differ.
If a verification ID is changed, the same change is automatically made to that verification ID everywhere it
appears in a verification list of related fields.
If a verification ID is deleted, every instance of that verification ID is automatically deleted from the
verification list of every related field.
If a verification ID is added anywhere in the list, the same verification ID is automatically added to the end
of the verification list of every related field.
A verification ID can be removed from verification lists of related fields that are marked as no check against
standard.

11Copyright © Software AG 2003

Rippling VerificationsVerifications And Processing Rules

Rippling Verifications from Physical Files to Userviews

Fields of physical files can have verifications linked to them via Is verified by VE. When a list of verifications
linked to a field in a physical file is modified, corresponding changes are automatically made in the verification
list of userview fields related to that field in the file. The following rules apply:

The verification list of a field in a userview does not have to contain all the verifications that are contained
in the list of the physical file field from which the userview field has been related.
Hence, verifications can be deleted from the verification lists of userview fields, after these have been
related to physical files.
If a verification ID is changed, the verification ID is changed in the verification lists of all related fields.
If a verification ID is deleted, every instance of that verification ID is automatically deleted from the
verification list of every related field.
If a verification ID is added, it is added to the verification lists of related fields.

Copyright © Software AG 200312

Verifications And Processing RulesRippling Verifications from Physical Files to Userviews

Steplib Support
Natural as well as 3GL applications allow up to 8 steplibs for one main library. This structure can be documented
in Predict with the object type library structure. This structure is evaluated by LIST XREF and active retrieval
functions for programs and systems.

This section covers the following topics:

General Information
Documenting Dynamic Structures
Steplib Support with Active Retrieval Functions
Steplib Support with LIST XREF for Natural

General Information
Predict supports the Natural steplib concept using the features listed below.

Object Type Library Structure

An object of type library structure documents a structure which describes a runtime or development environment
(for example libraries for copy code). The system objects which document these libraries are linked as children
to the library structure via Contains SY. The following rules apply:

The first entry in the link list is the main library, the following entries are steplibs.
The link list of a library structure can contain up to 10 systems of type A (Application):

the first system in the list is the main library
the default steplib *STEPLIB plus up to 8 additional steplibs can be defined.

The link list can contain additional systems of type G (3GL Application), but the maximum number of
linked systems is 15.
Dummy objects and systems without an implementation pointer for Library are permitted in the link list, but
these objects are ignored when the library structure is evaluated for active retrieval function Program using
programs and all LIST XREF functions.

See the section Library Structure in the Predefined Object Types in Predict documentation.

Program Type Dynamic

Programs of type dynamic are used to document calls of programs of the same name from different steplibs
depending on the library structure. The following rules apply:

Because programs of type dynamic document any number of implemented members, no check is performed
as to whether the members documented by the program are actually implemented.
With the active retrieval function Programs using programs, programs of type dynamic are ignored as
current objects.
Programs of this type can only have children of type program (via Uses PR concept). The linked programs
document the possible implementations. Therefore they all must use the same programtype and member
name.

See Documenting Dynamic Structures.

13Copyright © Software AG 2003

Steplib SupportSteplib Support

Metadata Diagram

The diagram below is an extract of the metadata structure in Predict showing the object type library structure and
its associations.

A library structure can have system children of type Application Library.

The first system of type Application Library is the main library, the other child systems are the steplibs. The
order of the children in the link list reflects the steplib hierarchy.

Active Retrieval Functions

The following active retrieval functions evaluate library structures to retrieve documentation and XRef data
according to a specified steplib structure:

Programs using programs
Systems containing programs

Documenting Dynamic Structures

Example

In the example below, member MENU calls one of two INIT members depending which library is active at
runtime.

Copyright © Software AG 200314

Steplib SupportDocumenting Dynamic Structures

Documentation without Library Structure

The following table shows the objects needed to document the structure above without evaluating the steplib
structure.

Object Type Subtype

Implementation Pointer

Member Library Fnr DBnr

DOC-LIB-MAIN System Application Library - LIB-MAIN 54 180

DOC-LIB System Application Library - LIB 54 180

DOC-LIB1 System Application Library - LIB1 64 180

DOC-MENU Program Program MENU LIB 54 180

DOC-INIT1 Program Subprogram INIT LIB 54 180

DOC-INIT2 Program Subprogram INIT LIB1 64 180

Enter DOC-INIT1 and DOC-INIT2 in the Program>Program link list of DOC-MENU.
This has the disadvantage that you cannot tell which INIT member will be called by member MENU at runtime.

Documentation with Library Structure

The following table shows the objects needed to document the structure above in such a way that the steplib
structure is evaluated.

15Copyright © Software AG 2003

ExampleSteplib Support

Object Type Subtype

Implementation Pointer

Member Library Fnr DBnr

DOC-LS1 Lib. Structure

DOC-LS2 Lib. Structure

DOC-LIB-MAIN System Application Library - LIB-MAIN 54 180

DOC-LIB System Application Library - LIB 54 180

DOC-LIB1 System Application Library - LIB1 64 180

DOC-MENU Program Program MENU LIB 54 180

DOC-INIT Program Dynamic INIT See note below

DOC-INIT1 Program Subprogram INIT LIB 54 180

DOC-INIT2 Program Subprogram INIT LIB1 64 180

Enter DOC-INIT (program of type Dynamic) in the link list of DOC-MENU.
Member MENU will call up the member documented by DOC-INIT1 or DOC-INIT2 at runtime depending on
the library structure.

Steplib Support with Active Retrieval Functions
The following active retrieval functions use library structures:

Programs using programs
Systems containing programs
Programs using files

If the first two functions listed above are executed with the parameter Library structure, the steplib structure
documented by the corresponding library structure object is evaluated.

Note:
These functions are also described in the section Active Retrieval in the Predict Reference
documentation. The descriptions there apply without evaluating the steplib structure.

Function Program using Program

This section describes the active retrieval function Program using program where a library structure is evaluated.
See the section Active Retrieval in the Predict Reference documentation for a description of this function
without evaluating the library structure.

Specifying the Library Structure

Enter fully qualified library structure ID. Asterisk notation can be used to select one library structure from a
list.
If the implementation pointer of the main library in the library structure is incomplete, a window appears in
which you must enter the missing parameters Library, Fnr, or DBnr.

Copyright © Software AG 200316

Steplib SupportSteplib Support with Active Retrieval Functions

 +----------------- Additional criteria ---------------+
 Retrieval t ! Main Library/first Natural Library of the !
 Output mode ! Library Structure DOC-LS1 !
 Program ID ! has no qualified Implementation Pointer. !
 in system . ! Please enter following parameters: !
 Member ! !
 Library ... ! Library ARH1 !
 Library str ! Fnr 64 !
 Entry ! DBnr 180 !
 Restriction ! !
 Output opti ! Press ENTER to confirm !
 +---

If the main library in the library structure is a 3GL library, the first Natural library is taken as main library
and must be given a fully qualified implementation pointer if required.
The implementation pointer defined for the main library (or first Natural library) is used to append all other
incomplete implementation pointers for all other libraries in the library structure.
If you set the output option Cover page to Y, the library structure with complete implementation pointers
for all libraries is displayed:

 --------------- Cover page ---------------
 Program ID ... DOC*

 Library structure ID .. DOC-LS1

 Library Fnr DBnr
 ARH1 64 180
 ARH3 64 180
 ARH 54 180
 ARH3GL2 255 255

In the example above, the missing values have been appended with the DBnr 180 specified under
Additional criteria above.

Determining the Current Objects to be Output

The following rules apply:

Programs of type Dynamic are ignored as current objects.
Only programs with identical implementation information to a system contained in the library structure are
output:

if the implementation pointer of the program object is complete (Member, Library, Fnr, DBnr), this is
evaluated;
if the implementation pointer of the program object is incomplete, the XRef data is evaluated.

Determining the Related Objects to be Output

Related objects are evaluated against documentation data (implementation pointer) and XRef data. The following
rules apply:

If a program of type Dynamic is linked to the current object via Uses PR concept., this link must be
resolved. The programs represented by the program of type Dynamic are checked, and the program with the
implementation pointer that best matches the library structure replaces the program of type Dynamic.
During checks as to whether a program is implemented, the entire library structure is evaluated. If the

17Copyright © Software AG 2003

Function Program using ProgramSteplib Support

implemented member is found in a steplib, the program is marked as I and the comment >>>impl. in steplib
XXXXXXXX DBnr 99999 Fnr 99999<<<.

Sample Output

The screen below shows sample output for function Programs using Programs.

 13:27:36 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - List Program Using Programs -

 Program ID * DOC-MENU
 Type Program

 Implementation
 Member .. MENU Library .. ARH Fnr .. 54 DBnr .. 180

 Cnt Program ID Ty La Member Library Fnr DBnr L D I U

 1 DOC-INIT2 P N INIT ARH1 64 180 L D
 >>> Dynamic call defined in DOC-INIT <<<

 *** End of report ***

 Command ===> Scroll ==> CSR
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Quit RFind Flip - + Left Right

Comments

Program DOC-INIT2 is linked via Uses PR concept. to a program of type Dynamic named DOC-INIT. The link
list of the dynamic program DOC-INIT is checked and the program with the most complete implementation
pointer is given.

Function Systems containing Programs

This section describes the active retrieval function Systems containing programs where a library structure is
evaluated. See the section Active Retrieval in the Predict Reference documentation for a description of this
function without evaluating the library structure.

Specifying the Library Structure

Enter fully qualified library structure ID. Asterisk notation can be used to select one library structure from a
list.
If the implementation pointer of the main library in the library structure is incomplete, a window appears in
which you must enter the missing parameters Library, Fnr, or DBnr.

Copyright © Software AG 200318

Steplib SupportFunction Systems containing Programs

 +----------------- Additional criteria ---------------+
 Retrieval t ! Main Library/first Natural Library of the !
 Output mode ! Library Structure DOC-LS1 !
 Program ID ! has no qualified Implementation Pointer. !
 in system . ! Please enter following parameters: !
 Member ! !
 Library ... ! Library ARH1 !
 Library str ! Fnr 64 !
 Entry ! DBnr 180 !
 Restriction ! !
 Output opti ! Press ENTER to confirm !
 +---

If the main library in the library structure is a 3GL library, the first Natural library is taken as main library
and must be given a fully qualified implementation pointer if required.
The implementation pointer defined for the main library (or first Natural library) is used to append all other
incomplete implementation pointers for all other libraries in the library structure.
If you set the output option Cover page to Y, the library structure with complete implementation pointers
for all libraries is displayed:

 --------------- Cover page ---------------
 System ID ... DOC*

 Library structure ID .. DOC-LS1

 Library Fnr DBnr
 ARH1 64 180
 ARH3 64 180
 ARH 54 180
 ARH3GL2 255 255

In the example above, the missing values have been appended with the DBnr 180 specified under
Additional criteria above.

Determining the Current Objects for Output

XRef data is evaluated, and only systems with an identical implementation pointer to one of the systems in the
library structure are given.

Determining the Related Objects for Output

A program is marked as implemented if it is contained in the current library. The current library is the library
documented by the system specified.

A program is also marked as implemented if it is linked via Uses PR concept. to a system documented as a
steplib. (The program would not be marked as implemented if you were working without a library structure.)

A note is given indicating in which other steplib(s) of the library structure the program is implemented.

Steplib Support with LIST XREF for Natural
The three possible methods of evaluating XRef data are listed below. Select the method you require in the LIST
XREF menu before you call a function. This option is valid for the duration of your session or until you select
another option in the LIST XREF menu.

19Copyright © Software AG 2003

Steplib Support with LIST XREF for NaturalSteplib Support

See also section LIST XREF for Natural in the Predict Reference documentation.

Using the command INFO you can display at any time during your LIST XREF session all libraries that will be
evaluated by LIST XREF functions. The current library is marked with an arrow.

The Library Structure Documented in Predict

The link list Library structure to System is evaluated via Contains SY. Each system in the list is checked as
follows:

If no information is present in the implementation pointer of the system, the system is ignored.
If the implementation pointer is incomplete, the system searches for possible XRef data. This XRef data is
used to supply the missing Fnr and DBnr information in the implementation pointer.
If no XRef data is found, the values of the current FUSER file are used to supply the missing DBnr and Fnr
information in the implementation pointer.
If the current library is a Natural library, the structure is appended with --> *STEPLIB <--.

Runtime Structure

The runtime structure is determined as follows. The following rules apply:

The current library always appears first in the list. If this library is documented in Predict, the corresponding
system ID is also displayed.
With Natural Security, up to 8 Libraries can be specified as steplibs with Library, DBnr and Fnr.
The default steplib is declared in the Natural parameter module NATPARM or allocated with the dynamic
parameter STEPLIB when starting Natural (*STEPLIB).

Without any Structure

The LIST XREF functions evaluate XRef data without specification of steplibs. Only objects in the current
library are displayed.

Steplib Support in Batch Mode

In batch mode, too, there are three possible methods of evaluating XRef data:

STRUCTURE <structure-name>
With this command you can specify which library structure is to be used for evaluating XRef data.
STRUCTURE *R
This command specifies that the runtime structure is to be used for evaluating XRef data.
No Structure specified
If you do not specify any structure, LIST XREF functions work without evaluation of steplib specification.

Effects of Steplib Support on LIST XREF

Steplib support affects LIST XREF functions as follows. A distinction is made between Top-down and
Bottom-up functions:

Top-down

Example: Function Program using program

Copyright © Software AG 200320

Steplib SupportThe Library Structure Documented in Predict

 09:50:43 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Library: PDLX - Invoked Programs - DBnr: 180 Fnr: 54
 Command: PROG * (*) USING PROG * (*) WITH * VIA * Page: 1

 T:Program using via
 --
 1 P:ZPDFIELD 1 N:N-BUFEDT <<- nfnd Callnat

 2 P:ZPDP0 1 P:ZPDP1 Fetch
 via ZPDP&
 2 S:ZPDS1 (NEWDICLX,180,54) Perform
 Function: SUB-IN-ZPDS

Comments

Only programs in the current library that call other programs are displayed.

to
1

The note <<- nfnd means that the called program was not found within the structure specified. "Not found"
in this context means that no XRef data is present.

to
2

If the called program is not contained in the current library, it is displayed in parentheses with DBnr
andFnr.

Bottom-up

Example: Function Programs referenced in programs

 09:53:09 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Library: PDLX - Invoked Programs - DBnr: 180 Fnr: 54
 Command: PROG * (*) REF PROG * (*) WITH * VIA * Page: 1

 T:Program referenced in via
 --
 1 ?:*DYNAMIC
 1 P:ZPDP3 Fetch
 2 ?:N-BUFEDT
 1 P:ZPDFIELD Callnat
 3 M:ZPDM1
 1 P:ZPDP1 Map
 2 P:ZPDP2 (NEWDIC,180,54) Map
 4 P:PGMCO002 (*SYSCOB*,255,255)
 Entry : PGMCO002
 1 P:ZPDP1 Call
 2 P:ZPDP2 Call
 3 S:ZPDS1 Call

Comments

21Copyright © Software AG 2003

Effects of Steplib Support on LIST XREFSteplib Support

to
1

*DYNAMIC produces a list of all programs that call up other programs by means of variables:

ASSIGN #A = ’SUB1’
FETCH #A

to
2

The question mark means that the program N-BUFEDT was not found within the specified structure. "Not
found" in this context means that no XRef data was found for the program object.

The program is, however, referenced by program P:ZPDFIELD via CALLNAT.

to
3

Member ZPDM1 was found within the current library.

If the called program is contained in the current library (here ZPDM1), programs not contained in the
current library that call this program are also displayed (here ZPDP2 in Library NEWDIC). Library, DBnr,
Fnr are displayed in parentheses.

to
4

The called program (PGMCO002) was found, but in another library within the structure (library
SYSCOB). In this case only calling programs within the current library are displayed.

Example: Function Program referenced in programs recursively

 13:44:35 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Library: NEWDICLX - Invoked Programs - DBnr: 180 Fnr: 54
 Command: PROG XHMENU10 (*) REF REC * (*) WITH * VIA * Page: 1
 DEPTH 7
 1 M:XHMENU10
 1 ---------2 ---------3 ---------4 ---------5 ---------6 ---------7 ---------
 P:XPHELP P:XPCIMPL P:XPVERI M:XMCIMP00 P:XPCIMPL <--- rec
 M:XMREFE00 P:XPREFE P:XPVERI <--- rec
 P:XPCIMPL <--- rec
 P:XPCMDP M:XMCIMP00 <--- suppr
 M:XMCONS00 P:XPVCONS P:XPVERI
 <--- rec
 M:XMCOPY00 P:XPCOPY P:XPMENU
 <--- steplib

Comments

The note <--steplib means that the evaluation was stopped at this point because the called program is contained
in another library.

 09:44:21 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 Library: NEWDICLX - XRef Menu - DBnr: 180 Fnr: 54

 Structure: LS-NEWDICLX

 System Id Library Fnr DBnr
 -------------------------------- -------- --- ----
 PD-COB *SYSCOB* 255 255
 -->PD-NEWDICLX NEWDICLX 180 54
 --> *STEPLIB <-- SYSTEM 180 54

Copyright © Software AG 200322

Steplib SupportEffects of Steplib Support on LIST XREF

Adabas Vista
Storing data in individual files of databases on local machines that are not integrated in any network is a rather
limited approach when designing large and complex applications. To gain flexibility and safety, data can be
distributed across several Adabas databases which may reside on different machines. Such distributed data
structures can be realized with the Software AG product Adabas Vista.

Distributed data structures for use with Adabas Vista and can be defined in Predict, and the objects necessary to
implement the structures physically can be generated from these definitions.

It is important to understand that storing data in the good old-fashioned way (simple files residing in isolated
databases on local machines) also establishes a data distribution structure, albeit a very simple one. The
description given below therefore also applies to the definition of simple files.

Note:
This section applies exclusively to Adabas files. See the Adabas Vista documentation for a complete
description of this product.

The Software AG product Entire Transaction Propagator can also be used to define distributed data structures.

This section describes how data distribution structures are defined. This section covers the following topics:

Different Types of Data Distribution
Defining the Distribution of Data in Predict
Defining a Network, Virtual Machine and Database Structure
Defining the File Structure
Including the Definition in the Vista Table
Retrieving Information on the Use of Vista Numbers
Generating, Incorporating, Comparing and Maintaining Data Definitions under Adabas Vista

Different Types of Data Distribution
Adabas Vista offers various options for distributing data across a network.

Storing Data Locally in an Isolated Database
Adabas Vista is not required if data is stored locally in a single database. In this case, the database is called
an isolated database and the logical distribution type of all files is either simple or expanded.
Distributing/Duplicating Data Across Several Databases (Adabas Vista)
With Adabas Vista, data belonging to one logical file can be physically distributed across several physical
files (that may reside in different databases).

Data logically belonging to one file can be split between several physical files.
For example: A (logical) file is defined to store information on all customers of a company. Data of
customers living in the north is to be stored separately from the data of customers living in the south of the
country. The zip code is used as the distribution criterion.
A file with the logical Distribution type partitioned can be used to store data in this fashion.

Storing Data in Remote Databases (Net-work)
With Net-work, data stored in databases on remote systems can be accessed as if it were stored locally. The
use of this product is described in the documentation of Net-work.
Distributing/Duplicating Data Across Several Databases on Different Machines
By combining Net-work and Adabas Vista, data belonging to one file can be distributed across several
databases residing on different machines.

23Copyright © Software AG 2003

Adabas VistaAdabas Vista

Defining the Distribution of Data in Predict

General Information

Predict objects of type network, virtual machine, database and file are used to define where exactly data is
stored.

Adabas attributes of Predict file objects define how files are implemented in a database, for example partitioned.
Adabas attributes document the physical links between files and databases.

Vista elements document the accessibility of the physical files with Adabas Vista.

A: Active
P: Passive

Links between networks, virtual machines, databases and files are defined as follows:

Links between networks, virtual machines, databases are defined with attributes of the respective lower
level objects, for example: the link between a network and a virtual machine is defined with the parameter
in Network of the virtual machine.
Each virtual machine object must be linked to a network object, and each database object must be linked to
a virtual machine object.
Links between databases and files are defined with the function Link children of association Contains FI.
Information on how files are implemented in a database is stored in the Adabas attributes of file objects.
Adabas attributes can be modified by entering the line command .A when editing the file list of a database
or with the file maintenance function Modify Adabas attributes.

Copyright © Software AG 200324

Adabas VistaDefining the Distribution of Data in Predict

Defining the Distribution of Data

Defining the distribution of data is a two-step process:

1. Define the structure of the data distribution by creating and linking the respective network, virtual machine,
database and file objects. See the sections Defining a Network, Virtual Machine and Database Structure and
Defining the File Structure.

2. Determine the accessibility of data by creating Vista elements for physical file definitions. A Vista
translation table can be generated from Vista elements.
See the section Vista Translation Table in the section Generation in the External Objects in Predict
documentation.

Defining a Network, Virtual Machine and Database
Structure
Since data can be distributed across several databases, the exact location of data storage has to be specified: each
database object must be linked to a virtual machine and each virtual machine must be assigned to one network.

Defining Networks and Virtual Machines

Networks and virtual machines identify the location of databases.

What is a Network?

A network contains all virtual machines and databases that are to be accessed.
In the case of databases that reside on local machines without any remote databases being connected, a
network may in fact identify a local machine.
A network object HOME is provided by Predict.

What is a Virtual Machine?

A Predict object Virtual Machine identifies a machine and operating system environment of databases. A
virtual machine represents one Adabas SVC (supervisor call).
Each virtual machine can contain one Transaction Manager used to distribute Adabas calls across the
network. However, a virtual machine does not necessarily have to contain a Transaction Manager.
Each virtual machine can contain one or more Vista databases providing access to partitioned data.
However, a virtual machine does not necessarily have to contain a Vista database.

Attributes of Networks and Virtual Machines

A network object has all the standard attributes of Predict objects (for example extended description and
abstract) and no type-specific attributes.
A virtual machine object has all the standard attributes plus the type-specific attribute Operating system
type.

Note:
Network and virtual machine attributes are described in detail in the respective sections of the Predefined
Object Types in Predict documentation.

Defining a Database

25Copyright © Software AG 2003

Defining a Network, Virtual Machine and Database StructureAdabas Vista

 13:36:38 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Add a database -
 Database ID DATABASE-TEST +All--------Run mode----------+
 ! _ I Isolated !
 ! _ L Local !
 ! _ V Vista !
 Database type* A Adabas ! _ !
 Belongs to VM* HOME ! _ !
 Run mode* * Vista ! _ !
 Physical database number ..* ! _ !
 ! _ !

Note:
Database attributes are described in detail in the section Database in the Predefined Object Types in
Predict documentation.

Copyright © Software AG 200326

Adabas VistaDefining a Database

Parameters

Belongs to
VM

Associates the database to a virtual machine. Must be specified for all databases except types
Conceptual, DB2 and IMS. A default virtual machine can be defined in the profile. See
Maintenance Options in the section Predict User Interface in the Introduction to Predict
documentation.

Run mode Determines the use of the database with respect to the distribution of data with Adabas Vista.
Valid Values: Isolated, Local and Vista.

Note:
The Predict parameter Run mode corresponds to the ADARUN parameters Vista and
Local. The corresponding values in Predict and ADARUN are shown in the table below:

Predict ADARUN

Run mode Vista Local

Isolated - -

Local - Yes

Vista Yes -

I
Isolated. Vista is not used. The database may be accessible using NET-WORK. A database of
type isolated can only contain files of the types simple and expanded.

L
Local. The database cannot be accessed using Net-work.

V
Vista. Adabas Vista is used.

Physical
database
number

Identifies a database in a virtual machine and, in the case of databases that can be accessed using
Adabas Vista, in a network.

If a database can be accessed using Vista (Run mode V is set to Y or N), the Physical
database number must be unique throughout the network.
If a database is of type isolated or local, the Physical database number must be unique only
within a virtual machine.
However, it is recommended to use physical database numbers that are unique throughout a
network for local and isolated databases as well.

The uniqueness of physical database numbers can be forced by setting the parameter
Unique-DBnr/Fnr in the second Miscellaneous screen of the General Defaults function.
See the section Defaults in the Predict Administration documentation.

Defining the File Structure

27Copyright © Software AG 2003

Defining the File StructureAdabas Vista

Description of the Structure

The above diagram shows how data distribution is defined on two levels:

The logical level
The file Test-file has the logical distribution type partitioned.
The physical level
The data is distributed across the physical files 12 and 13 in databases 2 and 3. It also exists as physical file
11 of type simple in database 1 (for example for evaluation purposes).

Defining a File Structure Logically and Physically

The diagram shows that files are defined on the logical and the physical file level:

On the logical level.
Defining a logical file includes the definition of the fields in a file.
Files of type simple, expanded, partitioned and PROPAGATOR can be defined on the logical level.

See Defining a Logical file.

On the physical level
The exact physical implementation for the storage of data is defined.

Copyright © Software AG 200328

Adabas VistaDefining a File Structure Logically and Physically

Depending on the logical distribution type, different types of physical files can be implemented. The
following table shows which types of physical files can be used for files with different logical Vista types.

See Defining the Physical Implementation of Logical Files.

Logical Level Physical Level

simple simple

expanded expanded, simple

partitioned partitioned, simple

PROPAGATOR PROPAGATOR master, PROPAGATOR replicated, simple

Defining a Logical File

In the first screen that is displayed when you define a file, basic attributes of the file are specified. The
parameters that are important when defining files for use with Adabas Vista are described below.
See also section File in the Predefined Object Types in Predict documentation.

 13:01:26 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Add a file -
 File ID ADABADA-33 +All---Distribution types-----+
 ! _ E Expanded file !
 ! _ P Partitioned !
 ! _ N PROPAGATOR file !
 ! _ ’ ’ Simple file !
 ! _ !
 ! _ !
 File type* A Adab ! _ !
 Master file* ! _ !
 File number* 123 ! _ !
 Logical distribution type .* * Simp ! _ !
 Contained in DA* ! _ !

29Copyright © Software AG 2003

Defining a Logical FileAdabas Vista

Parameters

File number If a database is specified, the file number of the logical file is taken as a physical file number
automatically (if this is possible). If not, a free physical number can be selected from a
selection window. The file number must be in the range 1 - 5000.

Logical
distribution
type

Determines how the file can be implemented in an Vista or Entire Transaction Propagator
environment.

E
Expanded: to be implemented in several physical files with identical FDT but different data in
each physical file (continuous file). All files are located in the same database.

P
Partitioned: as expanded but data is accessed with Adabas Vista and can be distributed over
several databases.

N
Propagator file: to support multiple, partially replicated copies of one physical file with Entire
Transaction Propagator.

blank
Simple file (default).

Contained in
DA

A link to this database is established.

Defining the Physical Implementation of Logical Files

A logical file definition does not contain any information on the physical implementation of the file. To specify
the physical implementation of a file, a physical file definition has to be added. Physical file definitions are
identified by both a physical database number (PDBnr) and a physical file number (PFnr).

The physical database number and a physical file number are specified in one of the following ways:

A database is specified by adding the logical file (with the in database parameter). The PDBnr is taken from
the Predict database object.
The PFnr is the same as the logical file number (the File number) if this is possible. If not, a free physical
number can be selected from a selection window.
By specifying a database ID when adding new physical file in the Select one or more physical files window
as described in the next section.
By executing the .A line command in the list editor when maintaining the file list of a database object.
If a file is not yet in the database, a new physical file is added.

Note:
If no physical file has yet been defined for a logical file, the string ** default record ** is displayed in the
Select one or more physical files window.

Adding, Modifying and Purging Physical Files

Physical file definitions are added or modified using the Select one or more physical files window. This window
appears when either

the Modify Adabas Attributes Function (Code J) in the File Maintenance menu is executed or
the Additional attributes parameter in the first Add/Modify file screen is set to Y.

Copyright © Software AG 200330

Adabas VistaDefining the Physical Implementation of Logical Files

The Select one or more physical files window contains a list of all physical files belonging to the logical file.

Physical file definitions are added, modified or purged with one-letter commands in the column Cmd.

Note:
The Select one or more physical files window is also displayed if the logical file contains only one physical
file (as shown in the screen below).

 08:57:25 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Add a file -
 File ID JPE-PART5 +--- Additional attributes ---+
 Type Adabas, Partitioned ! --> Mark one or more !
 File number 923 +All--------Select one or more physical file-------+
 Contained in DA . HNO-D ! Cmd Database name T PDBnr PFnr !
 Keys .. ! !
 ! _ ** new ** !
 Literal name ! _ HNO-DA-A P 134 125 !
 Average count ! !
 Stability ! !
 Sequence field ! !
 Vista Access DBnr ! !
 Vista Access Fnr ! !
 Adabas SQL usage ! !
 Abstract Zoom: N ! !
 ! !
 +--+
 ! !
 EDIT: Owner: N Desc: N Has Field+-----------------------------+

Commands in the Select one or more physical files window

A Add a new physical file definition. A can only be entered in the line **new** at the top of the list. The
Add command displays a window to enter a physical database ID and subsequently the Modify Adabas
Attributes screen.

M, X
or /

Modify the physical file definition. The Modify Adabas Attributes screen is displayed.

P Purge the physical file definition. Additional confirmation is requested. The physical file is removed
from the file list of the database.

Specifying the Vista Attributes of Physical Files

31Copyright © Software AG 2003

Specifying the Vista Attributes of Physical FilesAdabas Vista

 13:47:38 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Add Adabas attributes -
 File ID JPE-PART4 +-----Additional attributes-----+
 Type Adabas, Partitioned ! --> Mark one or more !
 Contained in DA . HEB-DA-3 (PDBnr: 33333) ! attributes !
 ! _ Phys. distribution attr. !
 Required attributes Ph ! _ Miscellaneous attributes !
 Phys. file number ..* 146 ! _ ADAM key definition !
 Min ISN 1 ! _ Extent allocation !
 Max ISN ! _ Distribution criteria !
 ! _ Encodings !
 Device Cylinder Blocks Paddin ! !
 *----- -------- -------- ------ ! !
 ASSO 3380 UI ! !
 NI ! !
 DATA 3380 DS ! !
 ! !
 Loading attributes Lo ! !
 Max recl. ! !
 ISN reusage N (Y,N) ! !
 User ISN N (Y,N) +-------------------------------+

 Additional attributes ..* N Associations ..* N

The Additional attributes window that is displayed by entering Y in the Additional attributes field of the Modify
Adabas Attributes screen (see screen above) contains two topics needed for defining data distribution:

Physical distribution attributes
Distribution criteria

Both topics are described in the sections Specifying Physical Distribution Attributes and Specifying Distribution
Criteria for Partitioned files below.
All general attributes of physical file definitions are described in the section Adding, Modifying and Purging
Physical Files.

Specifying Physical Distribution Attributes

To specify or modify the Vista attributes of a physical file, select the topic Phys. distribution attr. in the
Additional Attributes window. Physical distribution attributes is not contained in the Additional attributes
window if no association to a database exists or the logical distribution type is simple.

[V43

 13:58:35 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Modify Adabas attributes -
 File ID PD-A-EXP Modified 2003-05-31 at 13:24
 Type Adabas, Expanded file by PD
 Contained in DA . PD-AAA (PDBnr: 28)

 Distribution attribute
 Phys. distribution attr.* E Expanded file

 Loading attributes
 Min ISN 1
 Max ISN
 One AC extent Y (Y,N)

Copyright © Software AG 200332

Adabas VistaSpecifying Physical Distribution Attributes

:V43]

Parameters

Type The distribution types to be assigned to a physical file. The table below shows which types of
physical distribution types apply to different logical distribution types:

Logical distribution type Physical distribution type

simple simple

expanded expanded, simple

partitioned partitioned, simple

PROPAGATOR PROPAGATOR master, PROPAGATOR replicated, simple

Loading attributes

Min ISN ADALOD LOAD parameter MINISN

Max ISN ADALOD LOAD parameter MAXISN

One AC
extent

ADALOD LOAD parameter NO AC EXTENSION.

Specifying Distribution Criteria for Partitioned Files

The distribution criteria are used as follows:

For files with logical distribution type partitioned, the distribution criteria determine how data is split across
several physical files.

Any field of a file can be taken as the distribution criterion. An example:
The field zip_code is evaluated. Only if a record has a zip_code starting with 6 (identifying the area around
Frankfurt/Main) but equal or less than 61999 is a record to be included into the file. The respective input is
shown in the diagram below

33Copyright © Software AG 2003

Specifying Distribution Criteria for Partitioned FilesAdabas Vista

 08:13:12 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Modify Adabas attributes -
 File ID PD-A-PAR Modified 2003-05-31 at 08:12
 Contained in DA . PD-A0 by SMR
 PDBnr 16 PFnr ... 151

 Ty Partitioning field F Cs Length Occ D U DB N NAT-l
 -- *------------------------------- -- -- -------- ----- - - -- - -----
 ZIP-CODE N 5.00 AH N

 1 Access* GE Critical .. (Y,N) Shared Partition .. (Y,N)
 Part. name . Frankfurt
 High value . 61999 Zoom: N

 1 Access* GE Critical .. (Y,N) Shared Partition .. (Y,N)
 Part. name . Munich
 High value . 82999 Zoom: N

 1 Access* GE Critical .. (Y,N) Shared Partition .. (Y,N)
 Part. name . Hamburg
 High value . 22999 Zoom: N

 Additional attributes ..* N Associations ..* N Scroll to:

For an explanation of the valid parameters and values see Specifying Restrictions on Input Data - Distribution
Criteria in the section Documenting Files of Different Types in the Predefined Object Types documentation.

Including the Definition in the Vista Table

To access data in physical files with Adabas Vista, the file definitions must be contained in the Vista translation
table of the Adabas Vista translator database. Exactly one Vista translator database must exist in any Virtual
Machine (see also description of the Vista parameter in the section Defining a Database).

Vista translation tables can be generated from Vista elements defined in Predict. See Vista Translation Table in
the section Generation in the External Objects in Predict documentation.

Vista elements on file level are defined with the file maintenance functions Add/Modify Vista elements.

Vista elements on database level are defined with the database maintenance functions Add/Modify Vista
elements.

The function uses the following screen:

Copyright © Software AG 200334

Adabas VistaIncluding the Definition in the Vista Table

 13:30:02 ***** P R E D I C T 4.3.1 ***** 2003-05-31
 - Add Vista element -
 File ID HNO-FI-V Added 2003-05-31 at 13:30
 Type Adabas, Partitioned by HNO

 Network* HOME
 Simple Y (Y,N) Partition ID assignment ..* V Vista
 Vista Max number of partitions .. 255
 Environment ID . Enable Read-by-ISN Y (Y,N)
 DBnr Part. file concurrency 8
 Fnr Store control option* 1 Reject
 Name HNO-FI-V

 Database PDBnr PFnr Criterion
 *------------------------------- ----- ----- -------------------------------
 1

 Additional attributes ..* N Associations ..* N Scroll to:

35Copyright © Software AG 2003

Including the Definition in the Vista TableAdabas Vista

Parameters

Type Type of the logical file (for example Adabas, Partitioned). A read-only field.

Note:
The subsequent parameters Network, Environment ID and Simple can be specified when
adding a Vista element.
When modifying a Vista element, these fields are read-only.

Network The Vista element is available throughout the given network.

Simple Y
Only physical files of type simple can be accessed with this Vista element.

N
Physical files of all other suitable types can be accessed with this Vista element. Which types
are suitable depends on the logical Vista type of the file. See Specifying Vista Attributes.

Environment
ID

The Vista element can be used exclusively by the given environment. If, for example, a data
administrator wants to access a file for administration purposes, he might create a Vista element
for his privileged use.

DBnr Database number used for access from the application. This number is translated into the
PDBnr by Vista.

Fnr File number used for access from the application. This number is translated into the PFnr by
Vista.

Name Name of the translation element in Vista.

Database Database containing the physical file.

PDBnr Physical database number.

PFnr Physical file number.

Criterion Name of the distribution criterion.

Vista Key

The Vista element attributes Network, Environment ID and Vista numbers together identify how a Vista element
can be used.
These attributes are also referred to as the Vista Key. The following rules apply:

Environment ID and Vista numbers must be unique for each Vista element within each network.
If the parameter Unique DBnr/Fnr in the Predict defaults is set to Y, Environment ID and Vista number
must additionally be unique throughout all networks.

Retrieving Information on the Use of Vista Numbers
The function Vista number (code N) in the Network Retrieval Menu can be used to determine how Vista
numbers are referenced in databases, physical files and Vista elements. See the section Network in the
Predefined Object Types in Predict documentation.

Generating, Incorporating, Comparing and Maintaining
Data Definitions under Adabas Vista

Copyright © Software AG 200336

Adabas VistaRetrieving Information on the Use of Vista Numbers

Predict generation, incorporation and comparison functions can be applied to data definitions under Adabas
Vista. The following functions are designed especially for maintaining Vista translation tables:

Generation of Vista translation tables (command: GENERATE STARTAB)
Incorporation of entries in Vista translation tables as Vista elements of Predict database and file objects of
type A with the function Incorporate Adabas Database/File. Incorporating Vista elements requires that
either a Predict file object for the implemented physical file does not exist, or an existing Predict file object
has the correct physical distribution type.
Comparison of Vista translation tables with Adabas file definitions in Predict (command: COMPARE
VISTA-FI).

Note:
Using the above functions requires the following:

An interface that is provided with Adabas Vista Version 7.4.
If you want to use this interface together with Adabas Vista Version 7.3, please contact Software AG.
LFILE 152 must be set and must point to the Vista system file.

For detailed descriptions of the above options, see the respective parts of the sections Generation, Incorporation
and Comparison in the External Objects in Predict documentation.

37Copyright © Software AG 2003

Generating, Incorporating, Comparing and Maintaining Data Definitions under Adabas VistaAdabas Vista

VSAM
This section covers the following topics:

Documenting VSAM
Generating DDMs from Predict VSAM Objects
Using Natural for VSAM with Physical VSAM Files
Using a Record Layout Concept

Documenting VSAM
VSAM files and userviews can be documented in Predict with four different types of Predict file objects.

File type V
Physical VSAM file (master file)

File type L
Logical VSAM file (master file). This type can only be applied to VSAM files using KSDS (key-sequenced
dataset).

File type W
Userview of physical VSAM file

File type R
Userview of logical VSAM file. This type can only be applied to VSAM files using KSDS (key-sequenced
dataset).

The different file types are described in detail below.

Physical VSAM file - Master File, File Type V

File type V is used for the documentation of a physical VSAM file in Predict.

Field definitions of a physical VSAM file have the same structure as definitions of a sequential file: the position
of a field cannot be specified directly but is determined by its offset. The offset is calculated from the lengths of
the fields already defined. Therefore DUMMY fields must be defined if space is to be left free between two
fields (see examples below).

Example

Copyright © Software AG 200338

VSAMVSAM

File ID..: EXAMPLE-V

 File-Type: V

 DD name..: EXAMDD

 L Field-name F Length D Offset Remark

 1 DUMMY1 A 10.0 0

 1 PRIM-KEY A 15.0 P 10 Primary key

 1 DUMMY2 A 8.0 25

 1 ALT-KEY1 A 5.0 A 33 Alternate Key

 1 ALT-KEY2 B 7.0 A 38 Alternate Key

In this physical file definition, only the keys of the VSAM file (DD name: EXAMDD) are defined. This physical
VSAM file is to be used in connection with the two logical VSAM files (EXAMPLE-L1 and EXAMPLE-L2)
which are shown below.

The primary key field has the length 15.0. In the definition of logical VSAM files EXAMPLE-L1 and
EXAMPLE-L2 below, these 15 places are used for the storage of the record type specifying VSAM prefix
(length 9.0) and the primary key of the logical file (length 6.0). The DUMMY field (A 10.0) in the beginning
ensures that the primary key field position matches the field definitions for the VSAM prefix and primary key in
the logical files.

Logical VSAM File - Master File, File type L

Logical VSAM files can be documented with file type L. A logical VSAM file defines a record layout for use in
a physical VSAM file. By using logical VSAM files information objects of different types (and correspondingly
different record layouts) can be stored in one physical VSAM file. See also Using a Record Layout Concept.

The following rules apply when defining a logical VSAM file:

Before a logical VSAM file can be documented in Predict, the physical VSAM file to which the logical file
belongs must have been documented.
Position and length of fields in logical VSAM files are defined in the same way as in physical VSAM files.
Records in a VSAM dataset belonging to a logical file are identified by a VSAM prefix. For use with
Natural for VSAM the field for the VSAM prefix has to start at the same position as the primary key in the
physical VSAM file.
Therefore the length of the field for the primary key in a logical file can be calculated as follows (see also
examples below):

39Copyright © Software AG 2003

Logical VSAM File - Master File, File type LVSAM

length of primary key in logical file =
length of primary key in physical file - length of VSAM prefix

The value of the prefix can be specified explicitly for each logical file. If the VSAM prefix is to be specified
with trailing blanks, each blank must be replaced with a special VSAM trailing blank character. This special
character is defined with the Modify DDM defaults function.
If no VSAM prefix is specified explicitly, the rightmost three digits of the file number are used as the
VSAM prefix. The field defined for the prefix then has to have the length 3.0.
Alternate keys must be defined with the same offset and length in a logical and the corresponding physical
VSAM file.

Examples

Copyright © Software AG 200340

VSAMLogical VSAM File - Master File, File type L

File ID.....: EXAMPLE-L1

 File-Type...: L

 Related file: EXAMPLE-V

 VSAM prefix.: RECTYPE-A

 L Field-name F Length D Offset Remark

 1 FIELD-A-1 A 2.0 0

 1 FIELD-A-2 A 8.0 2

 1 VSAM-PREFIX A 9.0 10 VSAM prefix

 1 PRIMKEY-A A 6.0 P 19 Primary key

 1 FIELD-A-3 A 1.0 25

 1 FIELD-A-4 A 2.0 26

 1 FIELD-A-5 A 5.0 28

 1 ALT-KEY1 A 5.0 A 33 Alternate Key

 1 ALT-KEY2 B 7.0 A 38 Alternate Key

 1 FIELD-A-6 P 2.5 45

 1 FIELD-A-7 N 8.2 49

41Copyright © Software AG 2003

Logical VSAM File - Master File, File type LVSAM

File ID.....: EXAMPLE-L2

 File-Type...: L

 Related file: EXAMPLE-V

 VSAM prefix.: RECTYPE-B

 L Field-name F Length D Offset Remark

 1 FIELD-B-1 B 6.0 0

 1 FIELD-B-2 A 4.0 2

 1 VSAM-PREFIX A 9.0 10 VSAM prefix

 1 PRIMKEY-B A 6.0 P 19 Primary key

 1 FIELD-B-3 A 3.0 25

 1 FIELD-B-5 A 5.0 28

 1 ALT-KEY1 A 5.0 A 33 Alternate Key

 1 ALT-KEY2 B 7.0 A 38 Alternate Key

 1 FIELD-B-6 N 5.3 45

 1 FIELD-B-7 B 18.0 53

The fields for storage of the VSAM prefix identifying the record type starts in the same position as the primary
key in the corresponding physical VSAM file EXAMPLE-V above. The length of the fields VSAM-PREFIX and
PRIMKEY-A (or PRIMKEY-B) together is 15.0 as is the length of the primary key in EXAMPLE-V above.

File Type W and R - Userview of Physical / Logical VSAM File

File types W (userview of physical VSAM file) and R (userview of logical VSAM files) are used to document
DDMs for Natural for VSAM. DDMs documented with Predict objects of this type are used to access parts of the
VSAM file record structure defined in the related physical/logical VSAM file.
The following rules apply:

Copyright © Software AG 200342

VSAMFile Type W and R - Userview of Physical / Logical VSAM File

The relationship between a userview and physical VSAM fields is established by the two-character field
attribute short name. Therefore field names can be changed in userviews and the connection to the
corresponding field definition of a file remains.
Only fields which are defined in the physical/logical VSAM file may be defined in the userview.
The position of the field in the userview is independent from the VSAM file layout.
Before a DDM can be generated from a file object of type W or R, the DDM of the corresponding
physical/logical VSAM file must have been generated.

Generating DDMs from Predict VSAM Objects
When generating a DDM from a Predict object documenting a VSAM file, the file must already have been
linked to a Predict database object of type V via Contains FI. The database number is included in the DDM. The
database number of this database must have been specified as a VSAM database in the Natural parameter
module by the NTDB macro (e.g. NTDB VSAM,254).

Using Natural for VSAM with Physical VSAM Files
When a DDM generated from a VSAM file layout is used by Natural for VSAM, this DDM must always be
available at runtime (it is not incorporated into the program at compile time).

Using a Record Layout Concept
Predict enables the use of different record layouts within a physical file (record layout concept) by the concept of
logical VSAM files. When Natural for VSAM uses a DDM generated from a logical VSAM file only records
with the VSAM prefix identifying that logical file will be returned.

When a logical VSAM file is used it is not necessary to define all fields in the physical VSAM file. Only the
primary and alternate keys must be entered. The correct position of fields for keys must be ensured by insertion
of DUMMY fields.

If Natural for VSAM is used in connection with logical VSAM files the rules outlined above have to be
followed. This is especially true for the following point:

The VSAM prefix must be a fixed-length constant and it must precede the primary key in the logical file.
Therefore the VSAM prefix plus primary key together in the logical file must have the same position and
length as the primary key in the physical file.

Using a Record Layout Concept Without Logical VSAM Files

If the record type is not a constant or not the first part of the primary key, the logical VSAM files may not be
used to generate DDMs for Natural for VSAM. In this case the following actions have to be taken if different
record layouts are to be used in the same VSAM dataset:

The layout of the different record type structures must be specified as multiple physical VSAM files
containing the same DD name and therefore pointing to the same VSAM dataset.
Check in the Natural program after the FIND/READ statement that the DDM corresponds to the record
type. When a record does not correspond to the DDM, the record can be read again using the correct DDM.
In these circumstances it is sometimes helpful to know the current record length. Natural for VSAM offers a
subprogram which returns the record length.

43Copyright © Software AG 2003

Generating DDMs from Predict VSAM ObjectsVSAM

Natural For DL1
This section covers the following topics:

General Information
Documenting IMS/DL1 Data Structures
Creating Objects for IMS/DL1 with Incorporation Functions
Maintaining Documentation for IMS/DL1
Generation Functions for Files of Type I, J and K

General Information
Natural for DL1 allows use of data stored in IMS/DL1 databases with Natural applications. Natural for DL1 uses
the following control blocks:

Natural for DL1 database descriptions (NDB) containing the information about the segment structure of an
IMS/DL1 database and about the key fields of the segments.
Natural for DL1 program specification blocks (NSB) reflecting an external view of a database, as it is used
by an application program.
User-defined fields (UDF) establishing a field structure in a database segment.

For more details see the description of the Natural SYSDDM Utility in the Natural Utilities Menu.

Predict supports the use of Natural for DL1 in the following ways:

IMS/DL1 databases can be documented.
User-defined fields can be documented (as segment layouts).
Userviews of segments can be defined.
Natural DDMs for IMS/DL1 segments and their userviews can be generated.
Copy code for segment layouts in third generation languages can be generated.
User-defined fields for Natural for DL1 can be generated.

The documentation of NSBs (Natural for DL1 program specification blocks) is currently not supported by
Predict.

Documenting IMS/DL1 Data Structures
IMS/DL1 data structures are documented with objects of the following types:

Databases are documented with database objects of type I.
Segments are documented with file objects of type I.
Sequence fields, search fields and alternate index fields are documented with field objects in these files.
Segment layouts are documented with file objects of type J.
Userviews are documented with file objects of type K.

Databases

There are two types of IMS/DL1 databases: physical and logical.
The file list of a database object of type I consists only of files of type I.

Copyright © Software AG 200344

Natural For DL1Natural For DL1

Segments

Segments of an IMS/DL1 database are documented with file objects of type I. There are four types of IMS/DL1
segments:

logical segments (only in logical databases);
physical segments (only in physical databases);
logical children (only in physical databases);
virtual logical children (only in physical databases).

Each file of type I belonging to a physical database contains the sequence field, the search fields and the alternate
index fields of the segment it documents. These fields are referred to below as "IMS/DL1 fields".

Each file of type I belonging to a logical database contains the IMS/DL1 fields of the segment of a physical
database from which it is derived. A concatenated segment in a logical database contains the IMS/DL1 fields of
both the logical child (virtual logical child) and the logical parent (physical parent of paired real logical child)
from which it is derived.

Segment Layouts

User-defined layouts for an IMS/DL1 segment are documented with files of type J. Each file of type J has a
master file of type I that documents the segment. Field definitions of a segment layout have the same structure as
definitions of a sequential file: the position of a field cannot be specified directly but is determined by its offset.
The offset is calculated from the lengths of the fields already defined. Therefore dummy fields must be defined if
space is to be left free between two fields.

The IMS/DL1 fields of a file object of type I can be contained in the file of type J but they must have the same
format, length and offset as in the file of type I.

Recommendations

Predict allows field IDs longer than 19 characters for files of type J; IDs of this length are not supported by
SYSDDM. For this reason we recommend the following:

Only use Predict to generate DDMs from files of this type. Do not use the utility SYSDDM. This can be
enforced by setting the general default parameter Protection > SYSDDM utility to C or D.
Only use the Predict Coordinator to transfer DL1 structures. If you use Natural utilities, field IDs longer
than 19 characters will be truncated.

Userviews

Userviews of the segment are documented with file type K. Userviews have as master files the files of type I that
document the segment. A userview (file type K) can contain the IMS/DL1 fields of the segment (type I) and
fields of each layout (type J) of the segment.

Creating Objects for IMS/DL1 with Incorporation
Functions
Databases and file objects of type I are created by incorporating Natural for DL1 NDBs using the Incorporate
NDB function. These objects cannot be created manually using Predict maintenance functions Add
Database/File.
The following rules apply for incorporation of IMS/DL1 databases and segments:

45Copyright © Software AG 2003

Creating Objects for IMS/DL1 with Incorporation FunctionsNatural For DL1

A Natural for DL1 NDB is generated by assembling an IMS/DL1 database description (DBD) with the
Natural for DL1 macro library according to the Natural Utilities documentation. When this has been done,
the NDB can be incorporated into Predict.
Before a logical NDB is incorporated, the physical NDB or NDBs from which the logical NDB is derived
should be incorporated so that the references to source segments can be established. Also, if a physical
NDB contains a virtual logical child and the paired real logical child is located in a different NDB, the NDB
containing the real logical child should be incorporated first. If this is not possible, because there are either
references back to the first NDB, or references to source segments inside the same NDB, the incorporation
must be run twice to make sure that all source references are established.
If user-defined fields for a segment have been defined in the SYSDDM DL1 services before the NDB is
incorporated, the Incorporate NDB function incorporates the user-defined fields as well. In this case, at least
one file of type J is created. If there are redefinitions in the user-defined fields, several layouts are created
for the segment.

For details and options of the NDB incorporation function, see the section Incorporation in the External Objects
in Predict documentation.

Maintaining Documentation for IMS/DL1
The segment structure of an IMS/DL1 database and the format, length, offset and type of the IMS/DL1 fields can
be changed by carrying out the following three steps:

rewrite the IMS/DL1 database description
reassemble the IMS/DL1 database description with the Natural for DL1 macro library
incorporate the resulting NDB into Predict using the Replace option.

Note:
These attributes cannot be changed with maintenance functions as described in the section Maintenance in
the Predict Reference documentation.

When an NDB is replaced, existing segment layouts in Predict are not replaced. Hence, user-defined fields are
only incorporated once, and should from then on be maintained only in Predict.

Only certain attributes of Predict field objects contained in files of type I can be changed, for example, Field ID,
Natural edit mask and Abstract. Certain changes to field formats are allowed, as described in the section Field in
the Predefined Object Types in Predict documentation.

Maintaining Documentation of IMS/DL1 Segment Layouts

Segment layouts (type J) can be modified without restrictions. Also, new layouts can be created and existing
layouts can be deleted.

Maintaining Documentation of IMS/DL1 Userviews

A userview (file of type K) can be created by selecting fields of a segment (file of type I) and fields of layouts
(files of type J) that belong to that segment. Attributes such as field ID, Natural edit mask and field comments
can be changed in Predict objects belonging to files of type K.

Generation Functions for Files of Type I, J and K

Copyright © Software AG 200346

Natural For DL1Maintaining Documentation for IMS/DL1

Generating DDMs

DDMs can be generated for files of type I, J and K.

The generation of a DDM requires the existence of the corresponding Natural for DL1 user-defined fields
(UDF). The required UDF is generated automatically whenever a DDM for a segment is generated (or
regenerated if the segment layouts have been changed). A UDF can also be generated independently from the
generation of a DDM. When generating the UDF, Predict automatically selects a valid database number (for
example a database number which is defined in an IMS or DL1 macro) and a free file number. These numbers
are later used for the DDM generation.

The position and length of fields in a UDF is determined from the layouts of the segment (file type J).

Each DDM contains the IMS/DL1 fields of the given segment and the higher level segments. Additionally the
following definitions will be contained for the different file types:

The DDM of a file of type I contains the fields of all layouts of that segment.
The DDM of a file of type J contains the fields of that layout.
the DDM of a file of type K contains the fields of that userview.

Generating Copy Code

Copy code for record buffers in third generation programming languages can be generated for a given layout
(file of type J). Synchronized and align options are not allowed: for FORTRAN copy code, fields must already
lie within the appropriate boundary.

47Copyright © Software AG 2003

Generating DDMsNatural For DL1

DB2 and SQL/DS
DB2 objects can be documented in Predict and generation, incorporation, comparison and administration
functions can be applied to them.

Note:
To use functions of Predict that support DB2, Natural/DB2 must be installed. Most functions described in
this section apply both to DB2 and SQL/DS. Exceptions to this rule are listed as appropriate.

This section covers the following topics:

Documenting DB2 in Predict
Naming Conventions for DB2
Generating, Incorporating and Comparing DB2 Objects
Administrating Implemented DB2 Objects

Documenting DB2 in Predict

General Information

DB2 storagegroups, databases, tablespaces, tables, views, columns, distinct types, indexes, referential
constraints, triggers, packages, application plans, procedures and functions can be documented in Predict.

Copyright © Software AG 200348

DB2 and SQL/DSDB2 and SQL/DS

The following table gives an overview of how different DB2 objects are documented.

DB2 Object Documented in Predict with

Database Database object of type D

Storagegroup Storagespace object

DB2 tablespace /SQL/DS DbspaceDataspace object

Table / view File object of type D or E

Table check constraint Attribute of file object (type D)

Column check constraint Verification object

Application plan System object of type P

DBRM Program object of type P and language Q

Package Program object of type P and language B, C, F, H, P or Q or user-defined.
Packages are linked to application plans with objects of type packagelist.

Collection Packagelist attributes Collection name and Location name.

Index Field attributes.

Column Field objects.

Distinct Type Field object of standard file SAG-DISTINCT-TYPE.

Trigger Trigger object.

Proccedure Program object of type R.

Function Program object of type U.

Documenting DB2 objects is described in the sections below.

Documenting DB2 Storagegroups

Storagegroups are documented as objects of type storagespace.

Documenting DB2 Databases

Databases are documented as objects of type database with database type D.
A database of type D has a flag determining the kind of database. Two types are distinguished:

DB2 databases that can be implemented in DB2 by issuing a CREATE DATABASE statement.
SQL/DS databases that can be addressed with a CONNECT statement.

Only files of type D (DB2 table) can be linked to databases of type D.

Documenting DB2 Tablespaces and SQL/DS Dbspaces

In DB2/SQL/DS, tables/views are not directly linked to databases: a DB2 tablespace or SQL/DS DBspace
establishes the connection of tables/views and databases.

DB2 tablespaces and SQL/DS Dbspaces are documented with Predict dataspace objects of type D (DB2) or S
(SQL/DS).

49Copyright © Software AG 2003

Documenting DB2 StoragegroupsDB2 and SQL/DS

Note:
DB2 tablespaces need only be documented with Predict dataspace objects if you intend to generate the DB2
tablespace from the Predict dataspace object. If you use the option to create the DB2 tablespace implicitly
when generating tables/views, the tablespace need not be documented with a Predict dataspace object.
Partitioned or segmented tablespaces are not created implicitly.

A SQL/DS Dbspace must be documented with a Predict tablespace object because a Dbspace cannot be
created implicitly.

No auxiliary tablespaces are supported. See Columns With Format LOB for further information.

Documenting DB2 Tables and Views

Tables are documented as files of type D. Views are documented as files of type E.

Note:
If a table contains a partitioning index, the number of partitions must be documented as an attribute of the
file if the file is not linked to a dataspace via association Contains FI.

Subselect Clauses and Expressions in field Definitions

The documentation of views is supported by an additional editor to specify the part of the subselect clause
starting from the first FROM clause.

The selection clause of the subselect clause is documented by the specification of the field list of the view. The
specified list of tables/views in the first FROM clause of the subselect clause is generated by Predict and will be
updated if a field from an additional table/view is added to the view. Correlation names can be added to the
tables and views in the list (using editor functions). The remaining part of the subselect clause is left unchanged.

The expression used to define DB2 or SQL/DS fields can contain complex expressions. Fields that are defined
not only by a single column name but use either a constant or a more complex expression are called derived
fields. A special editor is provided for specifying the expression of derived fields.

In the field expression and in the subselect clause, comment lines (lines starting with * or **) and remarks within
a line (starting with /*) are allowed.

Beginning with version 5, DB2 offers the possibility to use subqueries and joined tables in the FROM clause of
the view definitions. This functionality is also supported under Predict.

You can define in the subquery of a view whether the FROM clause is made up of an INNER, LEFT OUTER,
RIGHT OUTER, FULL OUTER JOIN, UNION or UNION ALL. Use the subquery editor to add and modify
joined views.

Predict has a file of type IV (Intermediate View) that enables you to use subselects in the FROM clause of a
view definition. Files of type IV have a field list to show the selection clause and a subquery to show the search
condition. Just like views, files of type IV can have a Join type. They can be used as master files for views and
files of type IV. When a view is generated that has a file of type IV as a master file, a SELECT partial statement
is generated into the FROM clause. Files of type IV are not in the DB2 catalog. Nevertheless, the same naming
standards are valid for files of type IV as for tables and views. See Naming Conventions for DB2 for further
information.

When using Incorporate and Compare, files of type IV are created in addition to the view in order to represent
subselects in the FROM clause. Files of type IV are implemented as file objects in Predict, in order to ensure the
consistency of the field definitions via rippling.

The maximum number of master files for a view or file of type IV is 100 in Predict.

Copyright © Software AG 200350

DB2 and SQL/DSDocumenting DB2 Tables and Views

Documenting Referential Constraints

Referential constraints are documented as file relations of type R (referential constraint). The relation is
established between a unique constraint and a foreign key. Unique constraint and foreign key can belong to the
same or to different tables.

Documenting DB2 Application Plans

DB2 application plans are documented as Predict system objects of type P.

Documenting DB2 Packages

With DB2 Version 2.3 or above, DBRMs can be grouped to packages. Packages are linked to plans dynamically
(at run-time). DB2 packages are documented in Predict with program objects of with language B, C, F, H, P or Q
or user-defined.

Linking Packages to Application Plans with Packagelists

Packages are linked to application plans with objects of type packagelist (PG).
The subtypes of the object type packagelist determine the type of inclusion of packages into an application plan
when binding a plan. Valid values are:

Q
DBRM,

T
total collection and

S
subcollection.

The different subtypes are described in the section Using Predict Information when Binding Application Plans.

Packages are referenced in a plan by collections. Any collection is a virtual summary of packages, used to
simplify references to packages. Any package can be contained in several collections. Collections are
documented as attributes of packagelists.

Documenting DB2 Triggers

Trigger objects represent DB2 triggers.

You can link an unlimited number of triggers to a table. Update triggers that can only be executed if certain table
fields are changed are then linked to these fields. The appropriate update-clauses are created during the table
generation process.

Using Incorporate and Compare on the tables creates the trigger objects in Predict and establishes the links to the
file, or to the files, whichever is relevant. The connection to the DB2 catalog is not the Predict object ID, but an
attribute Triggername. See Naming Conventions for DB2 for further information.

In addition, triggers contain information as to when they are executed (during Insert, Update or Delete) and
whether they are to be executed before or after a certain statement is executed. The code that is to be executed is
noted in the trigger body, which is a text attribute in Predict. The use of procedures in triggers is retrieved from
the text of the trigger body.

51Copyright © Software AG 2003

Documenting Referential ConstraintsDB2 and SQL/DS

Documenting DB2 Procedures and Functions

DB2 gives you the possibility to write procedures and user-defined functions. These objects can be documented
as programs in Predict. The program type R (SQL procedure) has been modified to accept many specifications
that are only related to DB2. Procedures can be implemented in third generation programming languages or
SQL.

Program type U (Database function) is a new feature of Predict. These functions can return a table as a result.
There are two new associations between PR and FI with the names Input FI and Returns FI. The association
names are supposed to indicate that the linked files represent the structure of the input parameter or the structure
of the results table.

Only files of type IT (Intermediate Table) can be linked (see below). If the entered value or the results table is a
scalar value, then you still must create a file that has exactly one field. In DB2, you can use table functions in the
definition from views. Predict does not support this.

Files of Type IT

There is a new file type IT (Intermediate Table) for documenting the formal parameters of database functions.
They do not exist in DB2. Their fields can, like tables, have a link to the standard file SAG-DISTINCT-TYPE,
that is interpreted as being distinct type.

Documenting Other DB2 Objects

DB2 Distinct Types

In Predict, distinct types are implemented with the help of an indicated standard file called
SAG-DISTINCT-TYPE.

The connection with the DB2 catalog is established by the names of the fields of this standard file. The field
names of SAG-DISTINCT-TYPE consist of a SCHEMA_NAME and a TYPE_NAME. See Naming
Conventions for DB2 for further information. Table fields that are connected to a standard field in
SAG-DISTINCT-TYPE have the predefined format which is the basis for the type. Changes in the type
definition are spread via rippling to the derived fields.

Note: The name of the standard field ist not a valid column name. After copying from
SAG-DISTINCT-TYPE via the SEL command into the field list of a table, the field name must be changed
so that it conforms with the SQL naming standards.

When a table is generated, a CREATE DISTINCT TYPE statement is created for every type in the fields with
distinct type, if the type has not already been defined in the DB2 catalog. The type definition of the table field is
in this case the distinct type name.

When using the commands Incorporate and Compare on the table, the connections to the type definition are also
compared. If the type definition in Predict is different from the one in DB2, then the field format of the table
field is adapted to the catalog entry, and the field is marked as NON-Standard.

The type definitions are always regarded by the tables using it. Therefore, there are no explicit Generate,
Incorporate and Compare distinct type functions. A type definition in DB2 is also deleted via Drop if the last
table using it is dropped by Administration (Database, dataspace or file). Since every distinct type is based on a
predefined type, the table fields derived from these types are represented in the DDM with the predefined type.

Copyright © Software AG 200352

DB2 and SQL/DSDocumenting DB2 Procedures and Functions

DB2 Columns

DB2 columns are documented as field objects.

Columns With Format LOB

LOBs are represented as the field format LO. The character set determines whether it is a BLOB, CLOB or a
DCLOG. The lengths of these fields can be declared in the following units: bytes, kilobytes, megabytes or
gigabytes.

In order to create a connection between a row in the original table and a LOB value, DB2 uses so-called
auxiliary tablespaces, auxiliary tables and an index to save the LOB values. Predict does not support the creation
of these database objects.

Instead Predict uses the DB2 feature that automatically create these auxiliary objects. This is achieved by
generating a statement SET CURRENT RULE=’STD’ whenever a table with LOB column is to be generated,
provided that the Special Register Current Rule does not already have this setting.

Columns With Format ROWID

ROWID fields are documented with fieldtype QN. Their format is A and their length is 40. The field
maintenance ensures that only one ROWID field exists per table. It also ensures that every table containing a
LOB column also contains a ROWID column. This is necessary, so that DB2 can create the index to connect the
row in the original table with the auxiliary table.

When deleting databases, tablespaces and tables, the auxiliary objects are deleted as well. It is possible to define
an identity property for numeric fields. The contents of these fields can be generated by DB2. This is an easy
way to created a primary key.

LOB fields are skipped during the DDM generation process, since NAT 3.x does not make any dynamic
variables available. ROWID fields are only represented by A40 fields in the DDM.

DB2 Indexes

DB2 indexes are documented with field objects as follows:

Field attributes
index name
definition of index
using- and free-block

If the index consists of only one column, the field documenting the column is marked as a descriptor with
descriptor type D, P or F.
If the index consists of multiple columns, it is documented as a field with field type SP (superfield) and
descriptor type D, P or F. The descriptor types have the following meaning:

D
Field is an index.
F
Field is a foreign key and an index.
P
Field is a primary key. This always implies that the field is also a unique index.

Unique Constraints

Unique constraints are documented as follows:

53Copyright © Software AG 2003

Documenting Other DB2 ObjectsDB2 and SQL/DS

If the unique constraint applies to only one column, the field documenting the column is marked U in
column Unique option.
If the unique constraint applies to multiple columns, it is documented as a field of type SP (superfield) with
descriptor type D, F or P, and U in column Unique option. The descriptor types have the following
meaning:

D
Field is a unique index.
F
Field is a foreign key with unique index.
P
Field is a primary key. This always implies that the field has a unique constraint.

Foreign Keys

Foreign keys are documented as follows:

If the foreign key consists of only one column, the field documenting the foreign key is marked as a
descriptor with descriptor type F or E.
If the foreign key consists of multiple columns, it is documented as a field with field type SP (superfield)
and descriptor type F or E. The descriptor type F means the field is a foreign key and an index. E means the
field is a foreign key without an index.

Column Check Expressions

Check expressions for single columns are documented with verifications of status SQL. The check expression is
stored as the rule of the verification.

Check expressions can be edited with the Predict Rule Editor.

Comment lines (lines starting with * or **) and remarks within a line (starting with /*) are allowed.

Table Check Expression

A table check expression is a check expression that applies to more than one column. A table check expression is
an attribute of a file.

To edit table check expressions, enter Y in the field Trigger of the corresponding file object.

Comment lines (lines starting with * or **) and remarks within a line (starting with /*) are allowed.

Naming Conventions for DB2
DB2 naming conventions must be observed when creating or maintaining Predict objects for DB2. The following
rules apply:

Valid identifiers are from 2 to 27 characters long, must start with an alpha character (A - Z) and may be
followed by either an alpha, US national character (#, $, @), a digit or underscore character. Identifiers
must comply with these rules if Predict maintenance and generation functions are to be applied.
The identifier of a table, view, index or field of file SAG-DISTINCT-TYPE (representing distinct types)
must be given in qualified form: the creator name (maximum length 8 characters), a delimiter and the
table/view/index name (maximum length 18 characters). A hyphen is used as a delimiter (not a period as in
SQL). Example: SYSIBM-SYSCOLUMNS. Hyphens in names are treated as follows:

When a table/view is generated from a Predict file object, the hyphen will be transformed into a period
(.).
Because hyphens are used as delimiters, only one hyphen can occur in the file ID. Column names must
not contain a hyphen.

Copyright © Software AG 200354

DB2 and SQL/DSNaming Conventions for DB2

The hyphen can be used as a minus sign or negative sign in the field expression or the subselect clause
and must then be preceded by a blank.

Correlation Names

Correlation names can be defined in the subselect clause of a view. If a correlation name is defined for a
table/view in the subselect clause, all references (in field expressions as well as in the field editor of the view) to
columns of the table/view must be qualified with the correlation name. If no correlation name is defined for a
table/view in the subselect clause, all references to columns of the table/view must be fully qualified with
creator-tablename-columnname (for example: SYSIBM-SYSCOLUMNS-COLNAME).

Distinct Types

Distinct types consist of SCHEMA_NAME and TYPE_NAME concatenated by a hyphen (used as qualification
character).

Procedure Name

Procedure names must be defined in unqualified form (a long SQL identifier).

Index Names

Index names consist of the creator name and the index concatenated by a hyphen (used as qualification
character).

Function Name

Function names must be defined in unqualified form (a long SQL identifier).

Trigger Names

Trigger names consist of the creator name and the Trigger_Name concatenated by a hyphen (used as
qualification character).

Delimited Identifiers

With DB2 or SQL/DS, special characters can be used in identifiers of tables and views. Identifiers that contain
special characters have to be delimited (usually with single or double quotes) and are therefore called delimited
identifiers.

DB2 or SQL/DS tables and views with delimited identifiers can be incorporated. They can then be renamed with
Predict maintenance functions and retrieval functions can be applied to them. It is strongly advisable to rename
delimited identifiers for the following reasons:

The only Predict functions that can be applied without restriction to objects with delimited identifiers are
Incorporate and Rename.
If identifiers contain special characters such as blank or asterisk, results of retrieval functions are
unpredictable.
Views can only be generated if the subselect clause and the column expressions do not contain references to
delimited identifiers enclosed by quotation marks.

As the SQL escape character Predict uses quotation marks (") and as the SQL string delimiter apostrophes (’) are
used. The Predict Incorporate function converts other escape characters or string delimiters to quotation marks
(") and apostrophes (’).

55Copyright © Software AG 2003

Correlation NamesDB2 and SQL/DS

Generating, Incorporating and Comparing DB2 Objects

Prerequisites

Generation, Incorporation and Comparison are subject to DB2 security mechanisms:

To perform the Generate function and administration functions Purge and Refresh, the user must have the
appropriate privileges within DB2 / SQL/DS.
To perform Incorporation and Comparison functions, the user must have SELECT privilege on nearly all
catalog tables.

The SELECT privilege in DB2 is the minimum prerequisite for incorporation of DB2 tables/Views
(see GRANT (TABLE or VIEW PRIVILEGES) in your DB2 documentation for the following
tables:

SYSIBM-SYSCHECKDEP
SYSIBM-SYSCHECKS
SYSIBM-SYSCOLUMNS
SYSIBM-SYSDATABASE
SYSIBM-SYSFIELDS
SYSIBM-SYSFOREIGNKEYS
SYSIBM-SYSINDEXES
SYSIBM-SYSINDEXPART
SYSIBM-SYSKEYS
SYSIBM-SYSPLAN
SYSIBM-SYSSTOGROUP
SYSIBM-SYSRELS
SYSIBM-SYSSYNONYMS
SYSIBM-SYSTABLEPART
SYSIBM-SYSTABLES
SYSIBM-SYSTABLESPACE
SYSIBM-SYSVIEWDEP
SYSIBM-SYSVIEWS
SYSIBM-SYSVOLUMES
SYSIBM-SYSDATATYPES
SYSIBM-SYSTRIGGERS

To use the SQL statements generated by Predict, the corresponding DB2 privileges are also required.
To incorporate the SQL/DS tables contained in the following list, the SELECT privilege in SQL/DS is
also a prerequisite:

SYSTEM-SYSCATALOG
SYSTEM-SYSCOLUMNS
SYSTEM-SYSDBSPACES
SYSTEM-SYSINDEXES
SYSTEM-SYSKEYCOLS
SYSTEM-SYSKEYS
SYSTEM-SYSSYNONYMS
SYSTEM-SYSUSAGE
SYSTEM-SYSVIEWS

Generation

DB2 objects can be generated from Predict documentation objects.

Copyright © Software AG 200356

DB2 and SQL/DSGenerating, Incorporating and Comparing DB2 Objects

DB2 database The function is not available for SQL/DS.
Command: GENERATE DB2-DATABASE

DB2 storagegroup Command: GENERATE STORAGEGROUP

DB2 tablespace /
SQL/DS Dbspace

Command: GENERATE TABLESPACE

DB2/SQL/DS
table/view

Columns, indexes, referential constraints, triggers and distinct types are automatically
included when generating DB2 tables and views.
Command: GENERATE TABLE

Rules Applying when Generating DB2 / SQL/DS Objects

All objects are generated by first generating the SQL statements that are necessary to implement the object
and then executing these statements.
An additional confirmation is requested before a DB2 object is actually implemented.
The generated SQL statements can be saved in a protocol.
If a generation function is executed for an object that is already implemented, the existing DB2 object can
be updated.
Tables with LOB column: Statement SET CURRENT RULE=’STD’ is created when a table with LOB
column is generated.
Auxiliary tablespaces, tables and indexes are created automatically by DB2.

See respective sections in Generation in the External Objects in Predict documentation for more information.

Incorporation

The incorporation functions create Predict documentation objects for databases (not for SQL/DS), tablespaces,
storagegroups, tables/views, (including columns, indexes and referential constraints) from the system catalog.

See the section Incorporation in the External Objects in Predict documentation.

Comparison

The comparison functions list differences between the current implementation in DB2 / SQL/DS and the
corresponding documentation. The documentation can be updated to match the implementation.

See the section Comparison in the External Objects in Predict documentation.

Administrating Implemented DB2 Objects
Functions for administrating DB2 objects are provided to display, purge or refresh DB2 objects that have been
implemented from Predict documentation.

The Display function lists generation protocols.
The Purge function drops a table/view physically in DB2 or SQL/DS. If a table holds the last reference to a
distinct type, the distinct type is also dropped.
The Refresh function deletes all data in an implemented table but keeps the table structure.

See the section Administration of External Objects in the External Objects in Predict documentation.

57Copyright © Software AG 2003

Administrating Implemented DB2 ObjectsDB2 and SQL/DS

Locking the Functions of the DB2 Utilities SYSDB2 and SYSSQL

With the Natural for DB2 utilities SYSDB2 (for DB2) and SYSSQL (for SQL/DS) storagegroups, databases,
tablespaces/Dbspaces, tables/views and indexes can be created or modified. To avoid undocumented changes to
DB2 or SQL/DS concerning these object types, your data dictionary administrator (DDA) may have set the
parameter SYSDB2 utility in the Defaults > General Defaults > Protection screen.

A Allowed: all SYSDB2 functions can be executed.

D Disallowed: the following SYSDB2 functions cannot be executed:

CREATE DATABASE
CREATE STORAGEGROUP
CREATE TABLE
CREATE TABLESPACE
CREATE VIEW
CREATE INDEX

I Incorporate: all SYSDB2 functions can be executed outside of Predict. If one of the following statements is
submitted to DB2, an automatic incorporation in Predict is performed:

CREATE DATABASE
CREATE STORAGEGROUP
CREATE TABLE
CREATE TABLESPACE
CREATE VIEW

Copyright © Software AG 200358

DB2 and SQL/DSLocking the Functions of the DB2 Utilities SYSDB2 and SYSSQL

Static SQL
With static SQL, data in an SQL-based DBMS (DB2 or SQL/DS) is accessed using an application plan.
Accessing data with static SQL is faster than with dynamic SQL.

Natural for DB2 supports the use of static SQL. If a Natural program uses static SQL, a DBRM (database request
module) must be generated for that program. In DB2, this DBRM must be included in an application plan.

This section covers the following topics:

General Information
Documenting the Use of Static SQL
Generating DBRMs from Predict Documentation
Retrieval Functions and Consistency Checking
Using Predict Information when Binding Application Plans

General Information
Predict supports static SQL in several ways:

DBRMs can be generated with the Natural for DB2 function CREATE DBRM from information stored in
Predict, and Predict documentation of DBRMs can be partially generated from XRef data of existing
DBRMs with the program maintenance function Redocument program. Hence Predict supports
implementing and documenting static SQL no matter which one of them is done first.
Programs that use dynamic SQL instead of static SQL can be detected easily.

If a program that uses static SQL has been modified and recataloged, the information stored in the
DBRM for that program is no longer correct. In this case, the program automatically switches back to
the use of dynamic SQL. No action has to be taken by the programmer. The switch back to dynamic
SQL is therefore not necessarily recognized by the user (only increasing response times might indicate
that dynamic SQL is being used again).
Renaming a program that uses static SQL leads to an error at execution time.

With Predict active retrieval functions, programs that have switched back to the use of dynamic SQL
because of modifications or that have been renamed after DBRM generation can be found easily.

Documenting the Use of Static SQL
DBRMs are documented with program objects with language Q (Static SQL). Static SQL is treated in Predict
like a Third Generation Language (3GL).

An implemented DBRM is referenced in a Predict program object by an 8-character member name. A
member is a set of XRef data created for the DBRM (as with 3GL programs).
With members, an 8-character 3GL library name can be specified to identify the load library of the DBRM.
A library must have been documented with a Predict system object of type G (3GL Application). This
system object can be used to document the load library.
If a 3GL application has not yet been documented with a system of type G, the default DBRM library
SYSSTA is used.

Both the 8-character member name and the 8-character library name belong to the implementation pointer of the
program object documenting the DBRM and hence connect the documentation object to the implemented
DBRM.

59Copyright © Software AG 2003

Static SQLStatic SQL

Documenting Which Natural Programs Use a DBRM

A DBRM is typically used by several Natural programs, which may or may not belong to the same library.
Programs using the same DBRM must be stored in the same user system file.

For each Natural program using a DBRM, an entry point must be defined in the documentation of the DBRM.
The procedure is as follows:

The Natural program is entered in the entry point list with the Link Editor and Predict generates a unique entry
point name for this program in the entry point list. Each entry point name is concatenated from

the DBRM library name (not if the default library *SYSSTA* is used)
the DBRM member name
the Natural library name
the Natural member name.

The Natural-based Link Editor is available for maintaining entry point lists in Predict:

Natural programs documented in Predict can be selected from a list. See command SELECT in the section
Editors in Predict in the Predict Reference documentation.
If the DBRM has already been implemented and XRef data exists, the entry points can be derived with the
commands ACTIVE or UPDATE.

ACTIVE reads the entry point names from the XRef data of the DBRM into the editor workspace and
marks them as < active. Entry point names that have been entered manually but are not in the XRef
data are marked as < unused.
UPDATE additionally deletes the entry points marked as < unused from the editor workspace.

Generating DBRMs from Predict Documentation
DBRMs can be generated from Predict program objects of language Q with the Natural for DB2 function
CREATE DBRM. XRef data for the DBRM can then be created as well.

The names of Natural programs for which DBRMs are to be generated can be specified in two ways:

Directly as input data to the Natural for DB2 function CREATE DBRM.
By using the entry point list of the Predict object.
In this case, the Predict object to be used for the DBRM creation must be specified with the following
options of the CREATE DBRM function:

The option USING PREDICT DOCUMENTATION must be specified.
The 8-character member name of the DBRM
(CREATE DBRM <member name> ...).
The 3GL library the DBRM is assigned to can be specified with the parameter
LIB <library name>.
Predict then searches for a DBRM documentation with the <member name> and <library name> in the
implementation pointer.
If no <library name> is specified, the default library *SYSSTA* is searched for the given <member
name>.

In both cases, XRef data can be created (provided that all Natural members themselves have been cataloged with
XRef data). The XREF option (N, Y, F) of the Natural for DB2 function CREATE DBRM determines how the
generation function behaves with respect to documentation and XRef data for the DBRM:

If the XREF option is N, no XRef data will be written.
Existing XRef data will be deleted.
If the XREF option is Y, XRef data will be written.
Existing XRef data will be overwritten.

Copyright © Software AG 200360

Static SQLGenerating DBRMs from Predict Documentation

If the XREF option is F, the DBRM generation is only executed if the DBRM has already been documented
in Predict. If this is true, XRef data will be written and existing XRef data will be overwritten.

A default value for the XREF option for DBRMs can be defined (use function Defaults > General Defaults >
Miscellaneous > Static SQL XREF).
This default value can be changed for a single execution of the CREATE DBRM function

from N to Y or F, or
from Y to F

It cannot be changed from

from F to Y or N, or
from Y to N.

Which Information is Stored in XRef Data

XRef data for a DBRM contains the following information:

which files and fields are accessed via the DBRM,
which Natural members use the DBRM. A list of entry names of the DBRM are generated from the names
of the Natural members for which the DBRM is generated. The construction of the entry names is the same
as in the documentation of the DBRM.

Creation of a DBRM with the XREF option set to Y or F also affects the XRef data of the Natural programs for
which the DBRM was created.
Since the Natural program now ’uses’ the DBRM to access the database with Static SQL, this is noted in the
XRef data of the Natural program as a CALL reference to the corresponding entry point in the DBRM (special
call-type Static SQL).

Retrieval Functions and Consistency Checking
If a Natural program using static SQL has been modified and recataloged, the DBRM must be regenerated.
Otherwise the program will automatically switch back to the use of dynamic SQL. This is reflected in the XRef
data written when recataloging the program: It no longer contains a CALL reference to the DBRM.

However, an unused entry point in the documentation of the DBRM remains. This indicates that a Natural
program designed for the use of static SQL via a DBRM in fact uses dynamic SQL. It is therefore possible to
check if DBRMs have to be regenerated by comparing the Predict program object documenting a DBRM and the
corresponding DBRM member (XRef data).

The following functions are available:

LIST XREF for 3GL functions show XRef data for DBRMs.
The Verify consistency function of LIST XREF shows all programs which have been renamed after DBRM
generation.
The File Active Retrieval function List files accessed via dynamic SQL shows all DB2 files that are
accessed by Natural without using a DBRM.
The Member Active Retrieval function List members using dynamic SQL shows all Natural members using
DB2 files without using a DBRM.

61Copyright © Software AG 2003

Retrieval Functions and Consistency CheckingStatic SQL

Using Predict Information when Binding Application
Plans
Natural for DB2 can use information in Predict to bind plans. See your Natural for DB2 documentation for
details. Information in Predict packagelist objects is then used to build the MEMBER and the PKLIST CLAUSE
of a BIND statement. The following is created depending on the type of packagelist:

Type of Packagelist PKLIST CLAUSE or MEMBER Created

Total collection (T) PKLIST (location.collection.*, ...)

Subcollection (S) PKLIST (location.collection.package_ID, ...)

Member (Q) MEMBER (DBRM_name, ...)

Note:
The member name of the Predict program object documenting a package is interpreted as the package_ID or
DBRM_name.

Copyright © Software AG 200362

Static SQLUsing Predict Information when Binding Application Plans

Adabas D And Other SQL Systems
This section covers the following topics:

General Information
Documenting SQL Systems in Predict
Naming Conventions for SQL Objects
Generating SQL CREATE Statements
Generating DDMs from SQL Objects
Incorporating Tables / Views of SQL Database Systems
Administrating SQL Objects

General Information
Predict offers enhanced support for the following SQL systems:

Adabas D
Oracle
Ingres
Informix
Sybase

The following SQL objects and attributes can be documented in Predict. Not all attributes are applicable for all
SQL systems.

Tables and Views
Columns
Referential constraints
Unique constraints
Check constraints
Stored procedures
Triggers

63Copyright © Software AG 2003

Adabas D And Other SQL SystemsAdabas D And Other SQL Systems

Documenting SQL Systems in Predict

Documenting SQL Tables and Views

The following table gives an overview of how different SQL objects are documented in Predict.

SQL Object Documented in Predict with
File of Type

Adabas D Table, ViewBT, BV

Oracle Table, View OT, OV

Ingres Table, View JT, JV

Informix Table, View XT, XV

Sybase Table, View YT, YV

Other SQL systems X

Subselect Clauses and Derived Field Expressions

The documentation of views is supported by the Natural-based Subquery Editor in Predict to specify the part of
the subselect clause starting from the first FROM clause.

The selection clause of the subselect clause is documented by the specification of the field list of the view. The
specified list of tables/views in the first FROM clause of the subselect clause is generated by Predict and will be
updated if a field from an additional table/view is added to the view. Correlation names can be added to the

Copyright © Software AG 200364

Adabas D And Other SQL SystemsDocumenting SQL Systems in Predict

tables and views in the list (using editor functions). The remaining part of the subselect clause is left unchanged.

The expression used to define SQL fields can contain complex expressions. fields that are defined not only by a
single column name but use either a constant or a more complex expression are called derived fields. These
derived fields can be edited with the Subquery Editor.

Comment lines (starting with * or **) and remarks within a line (starting with /*) are allowed in derived field
expressions and subselect clauses.

Documenting Other SQL Objects

SQL Object

Valid for Documented in
Predict with
Object of Type Note BT,BV OT,OV JT,JV XT,XV YT,YV

Trigger Y Y Y Trigger ’Triggers’ are referred to as
’Rules’ in Ingres

Table Check
Constraint

Y Y Y Y Attribute of file

Column Check
Constraint

Y Y Y Y Y Verification of
status SQL

A ’Column check constraint’
is referred to as ’Integrity’ in
Ingres and ’Rule’ in Sybase.

Stored
Procedure

(Y) (Y) Y Y Y Program of type
R

Column Y Y Y Y Y Field

Common Key Y Field

Primary Key Y Y Y Y Y Field

Foreign Key Y Y Y Y Y Field

Unique
constraint

Y Y Y Y Y Field

Referential
constraint

Y Y Y Y Y File Relation of
type R

Note:
Objects marked with (Y) can be documented in Predict but are not included in the respective CREATE
statement.

SQL Columns

SQL columns are documented as field objects.

Keys

SQL keys are documented as follows:

If the key consists of only one column, the field documenting the column is marked as a descriptor with
descriptor type P, E or K.
If the key applies to multiple columns, it is documented as a field of type SP (superfield) with descriptor
type P, E or K. The descriptor types have the following meaning:

E
Field is a foreign key.

65Copyright © Software AG 2003

Documenting Other SQL ObjectsAdabas D And Other SQL Systems

K
Field is a common key.
P
Field is a primary key. This always implies that the field has a unique constraint.

Unique Constraints

Unique constraints are documented as follows:

If the unique constrain applies to only one column, the field documenting the column is marked U in
column Unique option.
If the unique constraint applies to multiple columns, it is documented as a field of type SP (superfield) with
descriptor type P, E or K, and U in column Unique option. The descriptor types have the following
meaning:

E
Field is a unique foreign key.
K
Field is a unique common key.
P
Field is a primary key. This always implies that the field has a unique constraint.

Common Keys

Common keys (columns that are frequently joined between two tables or views) are documented in Predict with
a file relation of type K. The two fields for which the relationship is to be established must have descriptor type
K.

Common keys are only applicable to Sybase.

Referential Constraints

Referential constraints are documented as file relations of type R (referential constraint). A relationship is
established between a unique key and a foreign key. Unique and foreign key can belong to the same or to
different tables.

Column Check Expressions

Check expressions for single columns are documented with verifications of status SQL. The check expression is
stored as the rule of the Verification.

Check expressions can be edited with the Predict Rule Editor.

Comment lines (lines starting with * or **) and remarks within a line (starting with /*) are allowed.

Table Check Expressions

A table check expression is a check expression that applies to more than one column. A table check expression is
an attribute of a file.

To edit table check expressions, enter Y in the field Trigger of the corresponding file object.

Comment lines (lines starting with * or **) and remarks within a line (starting with /*) are allowed.

Copyright © Software AG 200366

Adabas D And Other SQL SystemsCommon Keys

Triggers

See the section Trigger in the Predefined Object Types in Predict documentation

Stored Procedure

Stored procedures are documented the procedure code of programs of type R (SQL procedure) and language S
(SQL).
If the trigger of a file of type XT, YT or JT contains the text EXECUTE procedure_name, and the
procedure_name corresponds to a program of type R and language Q, then the procedure code of the program
object is included in the generated CREATE statement.

Naming Conventions for SQL Objects
Special naming conventions apply to the following objects in Predict

SQL file types. See table below.
Fields linked as children to these file types
Constraint names
Correlation names
Tablespace for Oracle
Procedure/Function name

The file IDs must be fully qualified.

A fully qualified ID consists of three parts:

Creator of up to 8 characters
Hyphen to separate creator from table/view name
Table/view name. The maximum length depends on the SQL system. See table below.

Fully qualified IDs may not exceed 32 characters. For SQL objects where the table/view name may not exceed
18 characters, the maximum length of the fully qualified ID in Predict is 27.

The permitted characters listed in the table below apply to creator and table/view name.

67Copyright © Software AG 2003

Naming Conventions for SQL ObjectsAdabas D And Other SQL Systems

File Type

Convention
BT, BV JT, JV OT, OV XT, XV YT, YV

Maximum length of table/view name 18 24 30 18 30

Upper case Y

Upper/lower case Y Y Y Y

’_’ allowed at first pos. Y Y

’#’ allowed at first pos. Y

’$’ allowed at first pos. Y

’@’ allowed at first pos. Y

’_’ allowed from second position Y Y Y Y Y

’#’ allowed from second position Y Y Y Y

’$’ allowed from second position Y Y Y Y

’@’ allowed from sec. position Y Y Y

Numbers allowed from second position Y Y Y Y Y

Correlation Names

Correlation names can be defined in the subselect clause of a view. If a correlation name is defined for a
table/view in the subselect clause, all references (in field expressions as well as in the field editor of the view) to
columns of the table/view must be qualified with the correlation name. If no correlation name is defined for a
table/view in the subselect clause, all references to columns of the table/view must be fully qualified with
creator-tablename-columnname (for example: SYSIBM-SYSCOLUMNS-COLNAME).

Delimited Identifiers

It is possible to incorporate SQL tables and views that have delimited identifiers. These tables and views can
then be renamed with Predict maintenance functions, and retrieval functions can be applied to them. It is strongly
advisable to rename delimited identifiers for the following reasons:

The only Predict functions that can be applied without restriction to objects with delimited identifiers are
Incorporate and Rename.
If identifiers contain special characters such as blank or asterisk, results of retrieval functions are
unpredictable.
Views can only be generated if the subselect clause and the column expressions do not contain references to
delimited identifiers enclosed by quotation marks.

Generating SQL CREATE Statements

Functional Scope

The following table gives an overview of the CREATE statements that can be generated from Predict objects
with the function Generate SQL CREATE Statement. These SQL statements are stored as Natural members.

Note:
If a CREATE statement is not available for a particular SQL system, a corresponding clause is generated in
the CREATE TABLE or CREATE VIEW statement if applicable.

Copyright © Software AG 200368

Adabas D And Other SQL SystemsGenerating SQL CREATE Statements

CREATE STATEMENT

File Type

BT,BV D,E OT,OV JT, JV X XT,XV YT,YV

TABLE, VIEW Y Y Y Y Y Y Y

INDEX Y

DEFAULT Y Y

RULE Y Y Y

PROCEDURE Y Y Y

TRIGGER Y Y Y

LABEL ON Y

COMMENT ON Y Y

The statements can be punched to an operating system member for further processing, for example execution
with an interactive SQL tool or a user program.

More Information

For more information see the section Generation in the External Objects in Predict documentation.

Generating DDMs from SQL Objects
The following rules apply when generating a DDM for Natural from an SQL file object:

The file must be linked via Contains FI to a database of a compatible type:

File Type Compatible Database Type

BT, BV Adabas D Table, ViewB Adabas D Handler

JT, JV Ingres Table, View J Ingres Handler

OT, JV Oracle Table, View O Oracle Handler

XT, XT Informix Table, View X Informix Handler

YT, YV Sybase Table, View Y Sybase Handler

Files documenting both tables and views must be linked to a database of the corresponding type.
The file must be linked via Contains FI to a database of which the database number is defined in the
NATCONF.CFG file of type OSQ.
For more information see Data Definition Module in the section Generation in the External Objects in
Predict documentation.

Incorporating Tables / Views of SQL Database Systems
Incorporation of tables and views of SQL systems is subject to security mechanisms of the respective system.

Tables and views of the following SQL systems can be incorporated.

Adabas D
Ingres
Informix

69Copyright © Software AG 2003

Generating DDMs from SQL ObjectsAdabas D And Other SQL Systems

Oracle
Sybase

Required Access

Access is required to the following in the respective SQL system:

Adabas D

Command SHOW

Ingres

IICOLUMNS
IIDBDEPENDS
IIINTEGRITIES
IIRELATION
IITABLES
IIVIEWS

Informix

SYSCOLUMNS
SYSCONSTRAINTS
SYSDEPEND
SYSINDEXES
SYSTABLES
SYSUSERS
SYSVIEWS

Oracle

SYS.DBA_CATALOG
SYS.DBA_COL_COMMENTS
SYS.DBA_CONS_COLUMNS
SYS.DBA_CROSS_REFS
SYS.DBA_TAB_COLUMNS
SYS.DBA_VIEWS
ALL_CATALOG
ALL_COL_COMMENTS
ALL_CONS_COLUMNS
ALL_CROSS_REFS
ALL_TAB_COLUMNS
ALL_VIEWS

Sybase

master.dbo.spt_values
syscolumns
syscomments
sysdepends
syskeys
sysobjects
systypes

Copyright © Software AG 200370

Adabas D And Other SQL SystemsIncorporating Tables / Views of SQL Database Systems

More Information

For more information see the section Incorporation in the External Objects in Predict documentation.

Administrating SQL Objects
You can display and purge the generation protocols created by Predict from the function Generate SQL
CREATE statement. You cannot process objects in the external SQL environment with administration functions.

More Information

For more information see the section Administration of External Objects in the External Objects in Predict
documentation.

71Copyright © Software AG 2003

Administrating SQL ObjectsAdabas D And Other SQL Systems

Adabas SQL Server
The Adabas SQL catalog contains all the necessary information on Adabas tables and views. This information
can be documented in Predict, and from this documentation a table or view can be created with a Predict
generation, incorporation or administration function.

This section covers the following topics:

General Information
Documenting Adabas SQL Server in Predict
Naming Conventions for Adabas SQL Server
Generating, Incorporating and Comparing Adabas SQL Objects
Administrating Adabas SQL Server Objects
XRef Data for Adabas SQL Server Objects

General Information
Predict supports the following SQL statements:

CREATE TABLE DESCRIPTION
CREATE CLUSTER DESCRIPTION
CREATE VIEW
DROP TABLE DESCRIPTION
DROP CLUSTER DESCRIPTION
DROP VIEW

Note:
The statements CREATE TABLE DESCRIPTION and CREATE CLUSTER DESCRIPTION are supported
instead of CREATE TABLE and CREATE CLUSTER to pass existing data structures to the Adabas SQL
Server. Also, Predict descriptions already take account of a variety of Adabas-specific features.

Prerequisites

Parts of the ADVANCED Interactive Facilities of Adabas SQL Server must be installed within Natural. For
detailed information see the requirements table in the respective part of the Predict Installation documentation.

Documenting Adabas SQL Server in Predict
The following Adabas SQL Server objects can be documented in Predict:

Adabas tables
Adabas Views
Indexes
Unique elements
Primary and foreign keys
Referential constraints

Copyright © Software AG 200372

Adabas SQL ServerAdabas SQL Server

Documenting Adabas Tables

There are two methods of documenting Adabas tables:

With Files of Type A - with Adabas SQL usage set to Y

If an Adabas file corresponds exactly to a base table in Adabas SQL Server, it can be documented as a file of
type A (SQL).

The Adabas file must not contain groups structures or multiple value fields. Rotated fields are not supported with
this method.

This method is retained for reasons of compatibility with earlier Predict versions.

With Files of Type AT

Tables can also be documented with files of type AT (Adabas cluster table). Files of this type can be understood
as userviews to an Adabas file.

Files of type AT have the following additional attribute:

Table level 0
Only "flat" structures are permitted (no MU or PE fields).

1
For defining multiple fields and periodic groups.

2
For defining multiple fields within a periodic group.

There are two methods of documenting periodic groups and multiple value fields in AT files:

If the occurrences of PE/MU fields are fixed, you can use rotated fields in the AT file.
If the occurrences of PE/MU fields are variable, use subtables (AT files at level 1 or level 2).

Documenting Adabas Views

Adabas views can be documented with files of type B.

Subselect Clauses and Expressions in Field Definitions

The documentation of views is supported by an additional editor to specify the part of the subselect clause
starting from the first FROM clause.

The selection clause of the subselect is documented by the specification of the field list of the view. The
specified list of tables/views in the first FROM clause of the subselect is generated by Predict and will be
updated if a field from an additional table/view is added to the view. Correlation names can be added to the
tables and views in the list (using functions of the editor). The remaining part of the subselect clause is left
unchanged.

The expression used to define Adabas SQL fields can contain complex expressions.
Fields that are defined not only by a single column name but use either a constant or a more complex expression
are called derived fields. A special editor is provided for the specification of the expression of derived fields.

In the field expression and in the subselect clause, comment lines (lines starting with * or **) and remarks within
a line (starting with /*) are allowed.

73Copyright © Software AG 2003

Documenting Adabas TablesAdabas SQL Server

Documenting Adabas SQL Databases/ Tablespaces

Adabas SQL database and tablespace definitions need not be documented with separate Predict objects:

Adabas SQL databases need not be documented with separate Predict objects, because the information to
which Adabas database an Adabas SQL tablespace belongs is documented with the file-database link.
The properties of Adabas SQL tablespaces are documented as attributes of Adabas file objects.

The physical implementation of Adabas tables in Adabas can be performed by Predict (with Generate Adabas
file or Generate ADACMP/ADAFDU).
The description needed by Adabas SQL to address the Adabas files can be generated with the function Generate
Adabas table description.

Documenting Adabas SQL Columns

Adabas SQL columns are documented as field objects in Predict.

Adabas SQL Server has fields with data type SEQNO. These fields are documented in Predict with fields of type
QN. This data type is used for documenting occurrences of MU or PE fields:

SEQNO(0) corresponds to the ISN of the underlying Adabas C table
SEQNO(1) corresponds to the index of a multiple-value or periodic field.
SEQNO(2) corresponds to a multiple-value field within a periodic group.

For fields of this type, the column Occ represents an individual occurrence of a PE or MU field, and not the
maximum number of occurrences.

These fields can be given a name in a table description and can be selected. However, they are only necessary if
you want to perform a search operation using individual occurrences. If an AT file contains more than one MU
fields or fields from more than one periodic group, it is only possible to address the same occurrence by means
of a SEQNO(1) or SEQNO(2) field.

Documenting Indexes

The following attributes of indexes can be specified:
index name,
definition of index

If the index consists of only one column, the field documenting the column is marked as a descriptor with
descriptor type D.
If the index consists of multiple columns, it is documented as a field with field type SP (superfield) and
descriptor type D.

Documenting Unique Elements

Unique elements are documented as Fields with descriptor type D, unique option U and suppression option R.

Documenting Primary and Foreign Keys

Primary Keys

A primary key always includes an index with descriptor option P.

Copyright © Software AG 200374

Adabas SQL ServerDocumenting Adabas SQL Databases/ Tablespaces

Foreign Keys

Foreign keys are documented as follows:

If the foreign key consists of only one column, the field documenting the foreign key is marked as a
descriptor with descriptor type F or E.
If the foreign key consists of multiple columns, it is documented as a field with field type SP (superfield)
and descriptor type F or E. The descriptor type F means the field is a foreign key and an index. E means the
field is a foreign key without an index.

Documenting Referential Constraints

Referential constraints are documented as file relations of type R (referential constraint). The relation is
established between a unique element and a foreign key. Primary and foreign key must belong to different
subtables. The subtables themselves must belong to the same Adabas file.

Naming Conventions for Adabas SQL Server
Adabas SQL naming conventions have to be followed when creating or maintaining Predict objects for Adabas
SQL. The following rules apply:

Valid identifiers are from 2 to 32 characters long, must start with an alpha character (A - Z) and may be
followed by either an alpha, a digit or underscore. Identifiers must obey these rules if Predict maintenance
and generation functions are to be applied.
The identifier of a table or view must be given in qualified form: the schema identifier (maximum length 32
characters), a delimiter and the table/view name (maximum length 32 characters). A hyphen is used as a
delimiter (not a period as in SQL). An example: SYSSAG-SYSCOLUMNS. Hyphens in names are treated
as follows:

When a table/view is generated from a Predict table/view object the hyphen will be transformed into a
period (.).
Because hyphens are used as delimiters, only one hyphen can occur in the SQL identifier. Column
names must not contain a hyphen.
The hyphen can be used as a minus sign or negative sign in the field expression or the subselect clause
and must then be preceded by a blank.

Correlation Names

Correlation names can be defined in the subselect clause of a view. If a correlation name is defined for a
table/view in the subselect clause, all references (in field expressions as well as in the field editor of the view) to
columns of the table/view must be qualified with the correlation name. If no correlation name is defined for a
table/view in the subselect clause, all references to columns of the table/view must be fully qualified with
creator-tablename-columnname (for example: SYSSAG-SYSCOLUMNS-COLNAME).

Index Names

Index names must be fully qualified: schema, delimiter, index name.

Generating, Incorporating and Comparing Adabas SQL
Objects

75Copyright © Software AG 2003

Naming Conventions for Adabas SQL ServerAdabas SQL Server

Prerequisites

The following Predict functions are subject to SQL security mechanisms:

Function Generate Adabas Table/View and administration functions Purge and Refresh:
When the catalog is accessed for the first time, the user ID DBA is used for read access to the catalog.
Generate Adabas Table/View:
If a description is generated into a schema which is not owned by the catalog user, a window appears in
which you can enter the ID and password of the schema owner. In batch mode, use the command SET
SCHEMA_OWNER.
Incorporation and Comparison functions:
User must have SELECT privilege for the schema definition_schema which is delivered with Adabas SQL
Server.

Generate Table Description, Cluster Description

With the Predict function Generate Adabas Table/View, a CREATE TABLE DESCRIPTION statement or a
CREATE CLUSTER DESCRIPTION statement is generated from a file of type A (with SQL usage set to Y) or
from a file of type AT. See table below:

Constellation Generated Command Note

One Adabas file corresponding to
one SQL table GENERATE TABLE

DESCRIPTION

One AT file corresponding to one
SQL table

Multiple AT files corresponding
to multiple SQL tables

GENERATE CLUSTER
DESCRIPTION

Specify only one file in the cluster. All files in
the cluster will be used for generation.

The statements add descriptions of multiple tables in an Adabas SQL catalog without creating an Adabas file
(the standard SQL statements CREATE TABLE/CLUSTER generate both an Adabas file and a description in an
Adabas SQL catalog).

This description contains the following:

a list of fields in the file
details of descriptors and superdescriptors, unique constraints, primary and foreign keys
database name and file number. This information is used to access the Adabas file.
The database name is taken from the catalog. If no database name exists, a CREATE DATABASE
statement is generated. If the ID of the Predict database object complies with SQL naming conventions, this
name is taken. If not, the database name DB_DBnr is generated.

The available options are described under Adabas Table/View in the section Generation in the External
Objects in Predict documentation.

If the database/file number is a logical file number or the number of an anchor file (with a file of type
Expanded), the table description is appended with ’MODIFICATION NOT ALLOWED’. This has the result that
ALTER statements for this table are rejected. Only DML (Data Manipulation Language) statements can be
executed for tables marked in this manner; DDL (Data Definition Language) statements are not possible except
DROP TABLE DESCRIPTION.

The generated SQL statements can be saved in a protocol.

Copyright © Software AG 200376

Adabas SQL ServerPrerequisites

Generate View

With the Predict function Generate Adabas Table/View, a CREATE VIEW statement is generated from a file of
type B.

The available options are described under Adabas Table/View in the section Generation in the External
Objects in Predict documentation.

Incorporate Table

With the Predict function Incorporate Adabas Table/View, a file of type A (with SQL usage set to Y) or a file of
type AT is documented in Predict from the entry in the Adabas SQL catalog. The constellation in the catalog
determines which file type is incorporated in Predict:

Constellation Incorporated Object

External object is contained in the catalog as a table and created with
CREATE TABLE / CREATE TABLE DESCRIPTION
or
Cluster with one table and no rotating fields

File of type A (with SQL usage) set to Y.

Master Adabas file exists in Predict (determined using DBnr/Fnr).File of type AT.

The database number is interpreted as a physical Adabas database and a link is created from this database to the
Adabas file. The values of the Adabas attributes can either be taken from the tablespace attributes in the catalog,
or default values are used which can be adapted to the ’real world’ with the function Compare Adabas File.

Incorporate View

With the Predict function Incorporate Adabas Table/View, a file of type B is documented in Predict from the
entry in the Adabas SQL catalog.

Compare Adabas Table/View

Files of type A (SQL), type AT and type B are compared with information contained in the description of the
table/view in an Adabas SQL catalog. See the section Comparison in the External Objects in Predict
documentation for more details.

Administrating Adabas SQL Server Objects
The following administration functions are valid for Adabas table descriptions. Enter function code L and object
code FI in any Predict main menu or the command ADMINISTRATE FILE. File type is A (SQL), AT or B and
external object code is EQ.

For more information see the section Files in the section Administration of External Objects in the External
Objects in Predict documentation.

Disconnect Implementation

Deletes the generation protocol and the generation pointer from the Predict File object to the Adabas table
description, but the table description is left intact.

With files of type AT, all files used for generation are disconnected in a single operation.

77Copyright © Software AG 2003

Administrating Adabas SQL Server ObjectsAdabas SQL Server

Display Implementation

Displays documentation data, generation options and generated table description of specified file ID(s).

Rename Implementation

Moves the generation protocol to another member and/or library.

Purge Implementation

Deletes Adabas table descriptions and all dependent views.

A DROP TABLE DESCRIPTION, DROP CLUSTER DESCRIPTION or DROP VIEW statement will delete the
definition from the Adabas SQL catalog and any statements referencing this table / view are marked as invalid.

When a table / view is dropped, all dependent views are dropped too.

Note:
The function is equivalent to the function Generate with Replace table/view set to Y.

Select Implementation

Selects Adabas table/view for further processing.

XRef Data for Adabas SQL Server Objects
Programs using embedded SQL must be precompiled with the Adabas SQL precompiler before the host
language compiler is executed.

During precompilation, an option is available to create XRef data. The creation of XRef data is controlled by
options specified in the Adabas SQL parameters. See the Adabas SQL documentation for a detailed description
of these options.

As described in the section Third Generation Languages in this documentation, XRef data is always assigned to
members contained in logical libraries. The library containing the member can be specified explicitly or - if no
library is specified - the member is assigned to a default library depending on the host language. See table below.

Host Language Default-Library

C *SYSCCC*

COBOL *SYSCOB*

PL/I *SYSPLI*

FORTRAN *SYSFOR*

The following XRef data is stored for programs processed by the Adabas SQL precompiler:

directory information (user ID, terminal ID, date and time of precompilation)
each Copy/Include Code member used in the program
each table name used in certain clauses of DML statements, together with the usage:

Copyright © Software AG 200378

Adabas SQL ServerXRef Data for Adabas SQL Server Objects

Statement Clause Usage

SELECT FROM Read

INSERT INTO Store

UPDATE Update

DELETE FROM Delete

each column name used in certain clauses of DML statements, together with the usage:

Statement Clause Usage

SELECT Read

SELECT WHERE Search

INSERT INTO Store

UPDATE <row amendment expression>Update

UPDATE WHERE Search

DELETE WHERE Search

79Copyright © Software AG 2003

XRef Data for Adabas SQL Server ObjectsAdabas SQL Server

Third Generation Languages
Predict provides functions for documentation, development and redocumentation of 3GL applications and
programs. The following third generation languages are supported:

BAL/Assembler
C
COBOL
FORTRAN
PL/I
Ada

Not all facilities are available for all of these languages. On the other hand there are areas in Predict where
additional user-specified languages are supported. In other areas, special classes of programs are used that are
treated by Predict like languages. These restrictions and extensions are either mentioned here or in the relevant
section of this documentation or the External Objects in Predict documentation.

This section covers the following topics:

Documenting 3GL Applications
Documenting 3GL Programs
XRef Data for 3GL Applications and Programs
Using Predict Functions When Developing 3GL Applications
Redocumenting of 3GL Applications
Redocumenting COBOL Record Structures

Documenting 3GL Applications
3GL applications are documented in Predict with system objects of type 3GL Application (code G).

The system object and the 3GL application it represents are connected by an implementation pointer.

Implementation Pointer for 3GL Application

Parameters

Library This name can be freely chosen when an object of type system is added or modified, and
represents one or more source or load libraries/directories or parts thereof.
Once defined here, this name can be used to document 3GL programs belonging to the
application and for creating and retrieving XRef data.
If XRef data related to this library exists, the name may no longer be changed.

User system
Fnr, DBnr

These attributes are used to distinguish 3GL libraries from Natural libraries. Both must be set
to 255 for 3GL applications.

Documenting a 3GL Application with a Predict Object of Type System

Copyright © Software AG 200380

Third Generation LanguagesThird Generation Languages

System implementation pointer Library represents for Predict one or more source or load libraries/directories or
parts thereof.

Documenting 3GL Programs
3GL programs are documented in Predict with objects of type Program, with one of the languages listed on page
2 and one of the following subtypes, depending on the programming language.

copy code
documented
program
function
subprogram.

Other languages can be defined in the user exit U-PGMLAN. See the section User Exits in the Predict
Administration documentation for more information.

Predict also knows the pseudo-languages System program and Static SQL.

As with applications, the program object and the implemented 3GL member it represents are connected by an
implementation pointer.

Implementation Pointer for 3GL Programs

If Member is not entered for the program implementation pointer, it is not possible to enter a value for Library. If
a Member is specified, the possible values for Library depend on how the maintenance option Implementation
library described below has been defined by your DDA in the General Defaults function.

81Copyright © Software AG 2003

Documenting 3GL ProgramsThird Generation Languages

Presetting

Implementation
library

F
Force. A library that is documented as a 3GL application must be entered. A default
library - for example *SYSCOB* - may not be entered.

A
Allowed. Either a library documented as a 3GL application or a default library must be
entered. See next table for a complete list of default libraries for 3GL programs.

D
Disallowed. Library concept is not used. Library *SYSALL* must be entered.

Parameters

Member Corresponds to the name of the implemented program as it is stored in a source or load
library/directory.

Library The possible values for this parameter depend on the maintenance option Implementation
Library. See Presetting above.
Corresponds to the implemented application to which the program belongs. If a non-default
library is specified, it must be defined in an object of type system if XRef data is to be created
for the program.
The program object does not have to be linked in Predict to the system object containing the
library name.
If Member is specified but Library is left blank, and if Implementation Library is set to A, the
program object is connected automatically to the corresponding default library:

Language Default Library

COBOL *SYSCOB*

BAL/Assembler *SYSBAL*

PL/I *SYSPLI*

FORTRAN *SYSFOR*

C *SYSCCC*

ADA *SYSADA*

Pseudo-LanguageDefault Library

Static SQL *SYSSTA*

System program *SYSSYS*

Default libraries do not need to be defined explicitly in a system object.

Note:
Programs of language System program must be linked to library *SYSSYS*. Programs of
all other languages in the above list can be linked either to their default library or to a
user-defined library defined in a system object.

User system
Fnr, DBnr

These attributes are used to distinguish implemented 3GL programs from Natural programs.
Both must be set to 255 for 3GL programs.

Copyright © Software AG 200382

Third Generation LanguagesImplementation Pointer for 3GL Programs

Documenting a 3GL Program with a Predict Object of Type Program

Program implementation pointer Member corresponds to the implemented program as it is stored in the source or
load library/directory.
Library must be defined in an object of type System if XRef data is to be created for the program.

Creating XRef Data for Implemented Programs

83Copyright © Software AG 2003

Documenting a 3GL Program with a Predict Object of Type ProgramThird Generation Languages

An implemented program is known to Predict only if XRef data exist.
In this example, the XRef data for COBOL program FREDPRG1 are created by assigning the program source as
Workfile 1 and then processing it with the Predict Preprocessor.

The different methods of creating XRef data are listed in the section XRef Data for 3GL Applications and
Programs.

Connecting External and Documentation Objects by Implementation
Pointer

The Predict system object is now connected to external library, and the program object is now connected to the
implemented program.

Documenting Entry Points for 3GL Programs

Entry points can be documented in Predict for the following languages:

Assembler
C
COBOL
FORTRAN
PL/I
Ada
Other (language code O)

If a member name is entered in the implementation pointer of a program object, this name is automatically
entered as an entry point. Other entry points can be entered using one of the following methods:

Documenting entry points manually
with program maintenance function Edit entry-points (Code R)
or by setting "Attribute" to Y, and then selecting Entry points in the "Additional attributes" window.

Copyright © Software AG 200384

Third Generation LanguagesConnecting External and Documentation Objects by Implementation Pointer

Documenting entry points with editor commands
If XRef data already exists for the implemented program, call the function Edit Entry Points with one of the
methods above and enter command ACTIVE or UPDATE in the editor command line.

ACTIVE reads the entry names from the XRef data of the program into the editor workspace and
marks them as < active. Entry names that have been entered manually but are not in the XRef data are
marked < unused.
UPDATE additionally deletes the entries marked < unused from the editor workspace.

See Program List Editor Commands in the section Program in the Predefined Object Types in Predict
documentation.

Documenting entry points with function Redocument program
See Redocumenting of 3GL Applications or Redocument Program section Program in the Predefined
Object Types in Predict documentation for more information.

XRef Data for 3GL Applications and Programs
XRef data for 3GL programs plays two important roles in Predict:

It contains information on the dependencies among implemented programs and between programs and other
objects they use.
It represents the implemented program in Predict. This means an XRef member corresponding to the
implemented program must exist if the program is to be known to Predict.

How is XRef Data Created?

XRef data for applications is created by creating XRef data for one or more programs contained within the
application. The method used for creating XRef data for programs depends on the program type:

For 3GL Programs

By Adabas Native SQL (ADA, COBOL, FORTRAN and PL/I).
By the Predict Preprocessor (Assembler, COBOL and PL/I). See the section Preprocessor in the External
Objects in Predict documentation
By Adabas SQL Server precompiler (C, COBOL, FORTRAN and PL/I).
See XRef Data for Adabas SQL Objects.

For Static SQL

If Natural for DB2 is installed, the function CREATE DBRM of Natural for DB2 creates XRef data for Static
SQL access modules (DBRMs) and for Natural programs that use Static SQL. See Static SQL.

For System Programs

It is not always possible to create XRef data for a 3GL program using one of the above methods. This applies
particularly to operating system routines, TP Monitor programming interfaces or other programs that are invoked
from within a 3GL application but for which no source code is available.
However, these programs can be documented as program objects of type Documented or External program
(subtypes D or E) with pseudo-language System program (language code Z).

For each program object of this type, Predict creates a minimal set of XRef data, containing directory
information and a list of entry points.

85Copyright © Software AG 2003

XRef Data for 3GL Applications and ProgramsThird Generation Languages

What is Contained in 3GL XRef Data?

The following information is stored for 3GL programs:

The name of the program and the application to which it belongs.
The program type (only main program).
The date and time the program was last cataloged.
ID of the user who cataloged the program.
ID of the terminal from which the program was cataloged. In batch mode the job name is given.
The entry points defined in the program. The member name is always entered as one of the entry points.
The entry points of invoked 3GL programs and the methods used to invoke them (only CALL, static SQL).
The names of files used in the program and the type of file usage.
Names of fields of files used in the program and the type of field usage.

How is XRef Data Used?

There are three main areas where XRef data is used:

Active Retrieval
Predict active retrieval functions evaluate XRef data and Predict documentation data to determine

if objects documented in the dictionary are not yet implemented
if implemented programs are not yet documented or
if documentation data differs from the implementation.

XRef data also provides answers to questions such as

which programs refer to file ABC*
which programs call the entry point MAIN in program START in library FREDLIB.

For more information see the section Active Retrieval in the Predict Reference documentation.

LIST XREF
XRef data for third generation languages is retrieved with functions of the Predict XRef menu. There are
essentially three groups of functions: those which

retrieve information on specific types of objects in an application
retrieve information on the consistency of an application as a whole
manage sets.

For more information see the section LIST XREF for Third Generation Languages in the Predict
Reference documentation.
Redocumenting of 3GL Applications
3GL applications for which XRef data exists can be redocumented automatically in Predict. See
Redocumenting of 3GL Applications.

Using Predict Functions When Developing 3GL
Applications
Two major features are available for the development of 3GL applications:

Generation of file layouts from Predict file objects in the syntax of several third generation languages. See
appropriate sections in the section Generation in the External Objects in Predict documentation.
Insertion of Predict generated file layouts and Adabas format buffers into 3GL source programs by the
Predict Preprocessor. See the section Preprocessor in the External Objects in Predict documentation for
more information.

Copyright © Software AG 200386

Third Generation LanguagesUsing Predict Functions When Developing 3GL Applications

Redocumenting of 3GL Applications
3GL applications for which XRef data exists can be automatically redocumented in Predict. The XRef data must
have been created using one of the methods described in XRef Data for 3GL Applications and Programs.

The Redocument program function (see the section Program in the Predefined Object Types in Predict
documentation) creates for each implemented program a new Predict Program object or updates an existing
object and evaluates the XRef data to establish links to other program and file objects.

This results in a basic documentation of the application objects and their relationships, which can be extended by
an abstract, extended description, keywords, owners etc.

Redocumenting COBOL Record Structures
Data definitions in the form of COBOL Copy Code members can be redocumented in Predict using the function
Incorporate COBOL. A file object of type Sequential is created for each Copy Code member. See appropriate
part of section Incorporation in the External Objects in Predict documentation for more information.

87Copyright © Software AG 2003

Redocumenting of 3GL ApplicationsThird Generation Languages

Predict and Natural Development Server

General Information
Natural Development Server (NDV) stores the following information into Predict:

Structure of Application Descriptions (APD)
Locks

Note:
Locks are internal used objects only and can not be maintained by Predict.

Note:
For more information about Applications see Introducing Natural’s Single Point of Development.

This section covers the following topics:

Documenting Natural Development Server in Predict
Documenting Base Application Descriptions
Documenting Compound Application Descriptions
Documenting Data Definition Modules (DDM)
Documenting Natural Programming Objects
Documenting Libraries

Documenting Natural Development Server in Predict
The following NDV objects can be documented in Predict:

Base Applications Descriptions
Compound Applications Descriptions
Data Definition Modules
Natural Programming Objects
Libraries
Message files

Copyright © Software AG 200388

Predict and Natural Development ServerPredict and Natural Development Server

The following table provides an overview of how different NDV objects are documented.

Natural Development Server Documented in Predict with

Base APD System object of type B

Compound APD System object of type O

DDM File object

Natural Programming ObjectsProgram object of corresponding type

Library System object of type A

Message file Program object of type 2

Documenting Base Application Descriptions
Base Application Descriptions are documented as objects of type System with system type B.
Base Application Descriptions have the following specific attributes:

Server name
Port
Profile name
Profile DBnr
Profile Fnr

For Base APDs the following specific associations exists:

89Copyright © Software AG 2003

Documenting Base Application DescriptionsPredict and Natural Development Server

Has component FI with association code CF:
which Data Definition Modelues belongs to this Application description.
Has component PR with association code CP:
which Natural Programming Objects belongs to this Application description.
Has library SY with association code LI:
each library of Natural Programming Objects, that are linked to the Base APD with association Has
component PR, must be linked to the Base APD.

Note:
The association Has library SY is build automatically when changing the association Has component PR.

Documenting Compound Applications Descriptions
Compound Application Descriptions are documented as objects of type System with system type O.
Compound Application Descriptions have no specific attributes.

The association from Compound APD to Base APD is named Has subappl. SY with association code CS.

Note:
Predict Maintenance functions ensure that only Systems of system type B are linked to Compound APDs.

Documenting Data Definition Modules (DDM)
Data Definition Modules are documented as objects of type File.
The association from a Base APD to the Data Definition Modules is named Has component FI with asssociation
code CF.

Documenting Natural Programming Objects
Natural Programming Objects are documented as objects of type Program with corresponding program type.
The association from a Base APD to the Natural Programming Objects is named Has component PR with
asssociation code CP.

The following rules apply for Natural Programming Objects linked to a Base APD:

The implementation pointer must be full qualified.
All members must be on the same Natural System File.
For each Natural Programming Object the library this object is in must be documented as a System of
system type A with the association Has library SY (association code LI).
If database number or file number of the implementation pointer is changed, the Natural Programming
Object is removed from the Base APD. If it is also the last member with the library in this Base APD, the
corresponding system type A, representing the library, must be removed from association Has library SY
too.

Documenting Libraries
Libraries are documented as objects of type System with system type A.
The association from a Base APD to the libraries is named Has library SY with asssociation code LI.

Copyright © Software AG 200390

Predict and Natural Development ServerDocumenting Compound Applications Descriptions

	Cover Page
	page 2

	Table of Contents
	Predict and Other Systems - Overview
	Verifications And Processing Rules
	Terminology
	
	Automatic Rule
	Automatic - Verification Status
	Conceptual - Verification Status
	Documented - Verification Status
	Free Rule
	Free - Verification Status
	Inline Rule
	Natural Construct - Verification Status
	Processing Rule
	Rule Editor
	SQL - Verification Status
	Verification

	General Information
	Benefits
	Rules Applying to Processing Rules in Predict

	Using Rules of Verifications in an External Environment
	Verifications of Status Documented
	Verifications of Status Conceptual
	Verifications of Status Free
	Verifications of Status Automatic
	Rules Applying to Automatic Rules

	Verifications of Status Natural Construct
	Verifications of Status SQL

	How Predict Stores Processing Rules
	Variable Names in Processing Rules
	Example:

	Priority of Processing Rules
	Processing Rules and Field Formats

	Generating Processing Rules from Verifications
	Editing the Rule of a Verification
	Editor Commands

	Changing the Status of a Verification
	Example
	Rippling Verifications
	Rippling Verifications from Standard Files
	Rippling Verifications from Physical Files to Userviews

	Steplib Support
	General Information
	Object Type Library Structure
	Program Type Dynamic
	Metadata Diagram
	Active Retrieval Functions

	Documenting Dynamic Structures
	Example
	Documentation without Library Structure
	Documentation with Library Structure

	Steplib Support with Active Retrieval Functions
	Function Program using Program
	Specifying the Library Structure
	Determining the Current Objects to be Output
	Determining the Related Objects to be Output
	Sample Output

	Function Systems containing Programs
	Specifying the Library Structure
	Determining the Current Objects for Output
	Determining the Related Objects for Output

	Steplib Support with LIST XREF for Natural
	The Library Structure Documented in Predict
	Runtime Structure
	Without any Structure
	Steplib Support in Batch Mode
	Effects of Steplib Support on LIST XREF
	Top-down
	Bottom-up

	Adabas Vista
	Different Types of Data Distribution
	Defining the Distribution of Data in Predict
	General Information
	Defining the Distribution of Data

	Defining a Network, Virtual Machine and Database Structure
	Defining Networks and Virtual Machines
	What is a Network?
	What is a Virtual Machine?
	Attributes of Networks and Virtual Machines

	Defining a Database

	Defining the File Structure
	
	Description of the Structure

	Defining a File Structure Logically and Physically
	Defining a Logical File
	Defining the Physical Implementation of Logical Files
	Adding, Modifying and Purging Physical Files
	Specifying the Vista Attributes of Physical Files
	Specifying Physical Distribution Attributes
	Specifying Distribution Criteria for Partitioned Files
	Including the Definition in the Vista Table
	Vista Key

	Retrieving Information on the Use of Vista Numbers
	Generating, Incorporating, Comparing and Maintaining Data Definitions under Adabas Vista

	VSAM
	Documenting VSAM
	Physical VSAM file - Master File, File Type V
	Logical VSAM File - Master File, File type L
	Examples

	File Type W and R - Userview of Physical / Logical VSAM File

	Generating DDMs from Predict VSAM Objects
	Using Natural for VSAM with Physical VSAM Files
	Using a Record Layout Concept
	Using a Record Layout Concept Without Logical VSAM Files

	Natural For DL1
	General Information
	Documenting IMS/DL1 Data Structures
	Databases
	Segments
	Segment Layouts
	Userviews

	Creating Objects for IMS/DL1 with Incorporation Functions
	Maintaining Documentation for IMS/DL1
	Maintaining Documentation of IMS/DL1 Segment Layouts
	Maintaining Documentation of IMS/DL1 Userviews

	Generation Functions for Files of Type I, J and K
	Generating DDMs
	Generating Copy Code

	DB2 and SQL/DS
	Documenting DB2 in Predict
	General Information
	Documenting DB2 Storagegroups
	Documenting DB2 Databases
	Documenting DB2 Tablespaces and SQL/DS Dbspaces
	Documenting DB2 Tables and Views
	Subselect Clauses and Expressions in field Definitions

	Documenting Referential Constraints
	Documenting DB2 Application Plans
	Documenting DB2 Packages
	Linking Packages to Application Plans with Packagelists

	Documenting DB2 Triggers
	Documenting DB2 Procedures and Functions
	Files of Type IT

	Documenting Other DB2 Objects
	DB2 Distinct Types
	DB2 Columns
	Columns With Format LOB
	Columns With Format ROWID
	DB2 Indexes
	Unique Constraints
	Foreign Keys
	Column Check Expressions
	Table Check Expression

	Naming Conventions for DB2
	Correlation Names
	Distinct Types
	Procedure Name
	Index Names
	Function Name
	Trigger Names
	Delimited Identifiers

	Generating, Incorporating and Comparing DB2 Objects
	Prerequisites
	Generation
	Rules Applying when Generating DB2 / SQL/DS Objects

	Incorporation
	Comparison

	Administrating Implemented DB2 Objects
	Locking the Functions of the DB2 Utilities SYSDB2 and SYSSQL

	Static SQL
	General Information
	Documenting the Use of Static SQL
	Documenting Which Natural Programs Use a DBRM

	Generating DBRMs from Predict Documentation
	Which Information is Stored in XRef Data

	Retrieval Functions and Consistency Checking
	Using Predict Information when Binding Application Plans

	Adabas D And Other SQL Systems
	General Information
	Documenting SQL Systems in Predict
	Documenting SQL Tables and Views
	Subselect Clauses and Derived Field Expressions

	Documenting Other SQL Objects
	SQL Columns
	Keys
	Unique Constraints

	Common Keys
	Referential Constraints
	Column Check Expressions
	Table Check Expressions
	Triggers
	Stored Procedure

	Naming Conventions for SQL Objects
	Generating SQL CREATE Statements
	Functional Scope
	More Information

	Generating DDMs from SQL Objects
	Incorporating Tables / Views of SQL Database Systems
	
	Required Access
	More Information

	Administrating SQL Objects
	
	More Information

	Adabas SQL Server
	General Information
	
	Prerequisites

	Documenting Adabas SQL Server in Predict
	Documenting Adabas Tables
	With Files of Type A - with Adabas SQL usage set to Y
	With Files of Type AT

	Documenting Adabas Views
	Subselect Clauses and Expressions in Field Definitions

	Documenting Adabas SQL Databases/ Tablespaces
	Documenting Adabas SQL Columns
	Documenting Indexes
	Documenting Unique Elements
	Documenting Primary and Foreign Keys
	Primary Keys
	Foreign Keys

	Documenting Referential Constraints

	Naming Conventions for Adabas SQL Server
	
	Correlation Names
	Index Names

	Generating, Incorporating and Comparing Adabas SQL Objects
	Prerequisites
	Generate Table Description, Cluster Description
	Generate View
	Incorporate Table
	Incorporate View
	Compare Adabas Table/View

	Administrating Adabas SQL Server Objects
	Disconnect Implementation
	Display Implementation
	Rename Implementation
	Purge Implementation
	Select Implementation

	XRef Data for Adabas SQL Server Objects

	Third Generation Languages
	Documenting 3GL Applications
	Implementation Pointer for 3GL Application
	Documenting a 3GL Application with a Predict Object of Type System

	Documenting 3GL Programs
	Implementation Pointer for 3GL Programs
	Documenting a 3GL Program with a Predict Object of Type Program
	Creating XRef Data for Implemented Programs
	Connecting External and Documentation Objects by Implementation Pointer
	Documenting Entry Points for 3GL Programs

	XRef Data for 3GL Applications and Programs
	How is XRef Data Created?
	For 3GL Programs
	For Static SQL
	For System Programs

	What is Contained in 3GL XRef Data?
	How is XRef Data Used?

	Using Predict Functions When Developing 3GL Applications
	Redocumenting of 3GL Applications
	Redocumenting COBOL Record Structures

	Predict and Natural Development Server
	General Information
	Documenting Natural Development Server in Predict
	Documenting Base Application Descriptions
	Documenting Compound Applications Descriptions
	Documenting Data Definition Modules †DDM‡
	Documenting Natural Programming Objects
	Documenting Libraries

