Construct Spectrum SDK
for Client/Server Applications

)
1)
0
g
‘j
p))
m
D
)

Manual Order Number: SPV451-0211BW
This document applies to Construct Spectrum SDK Version 4.5 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers comments are welcomed. Comments may be addressed to the Documentation Department at the
address on the back cover or to the following e-mail address:
Documentation@softwareag.com

© Copyright Software AG 2003
All rights reserved
Printed in the Federal Republic of Germany

The name Software AG and/or al Software AG product names are ether trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

TABLE OF CONTENTS

PREFACE
Prerequisite Knowledge.o 14
Structure of thisDocumentationt et 14
How to UsethisDocumentation e 16
To Create aNew Client/Server Application, 16
To Move an Existing Application to a Client/Server Architecture. 16
DocuMENt CONVENLIONS.ttt e e e e e e e 17
O hEr RESOUICES. . . oottt e e e e e e e e e e e 18
Related DOCUMENtatiONottt e e e e e 18
Construct Spectrum SDK 18
CONSIrUCt SPECITUM oo 19
Natural CoNStrUCE. oo e e e et e 19
Other DOCUMENtAtiONot e e e et e e e 20
RE GO COUMSES. . . ottt e e e e e e e e e 20

1. INTRODUCTION

What is CONStruct SPeCtrUmM?o e 22
Development Environments oot 23
Architecture of aClient/Server Application o ... 26
M AN M SOV Er . . o e 27
WiNAOWS . .ot e e 28
Overview of the Development Procedure. oo 30
Step 1: Plan Your Application.t 31
DecideWhatto Show theUser e 31
Keep Window Design SImple.o 32
Number and Structure of Windows. 32
Content of EachWindow e 32

Plan Your CoOe. oo 32
UseaConsistent Style.t e 32
Anticipate Translation ISSUES.t 33
Step 2: Set Up Your Mainframe Environmentc. i, 33
Predict Definitions.o 33
Steplib Chainsand DOmains.o ottt e 33
Security for Domains, Steplibs, Users,and Groupscovviiiinvnnnn.. 33

Construct Spectrum SDK for Client/Server Applications

Step 3: Generate Application Components.o 34
UsingtheSuper Model e 34
Using Individual MOdEIS. 34
Deciding Which Modulesto Generate ...t 34
GENEraliON PrOCESS . . oot e e 34

Server ModUlES 34
Client MOdUIES e e e 35
Setting Up YOUr Project e 35
Transferring Your Generated Codeto the Project.ot 35

Step 4: Customize Your Application and Environment 36

Step 5: Test and Debug Your Application ... 36

Step 6: Deploy Your Application . ..ottt e e 36

2. USING THE DEMO APPLICATION

OV IV B .« oottt e e e e e e e e e e 38
Setting Up PrereqUISIteSot e 39
Opening the Construct Spectrum Demo Project.t 40
Understanding the Construct Spectrum Add-In oL, 42
Understanding theDemo Project.t 43
Framework COmpPONENntS oottt e e 43
Generated MOdUIES oot 45
Running the Demo AppliCation.ot e 47
Application Interface. e 50
MeNU OPLIONSot e e 51
Toolbar Options. 51
Application WOrKSPaCeot 53
SAUS Bar. . ..ot 54
Additional OpLioNS o e 54
Error Notification Options.ttt e 54
Remote Dispatch Service Options.t 55
Tour of theDemo Application e 57
Opening aBusineSS ODJECE oot 57
Maintaining aBusinessObjeCt 61
Validations. e 61
Business DataTypes (BDTS)ot e e 63
GIIOS . oo 64
NeSted Gridsot 65
Nested Drop-DowWNn GridSo e 66
Keyboard Shortcutsfor Grids e 67

Table of Contents

Browsing For aBusiness Objectt 67
Select DataFrom aBrowse Window 68
Open aBrowse Window fromtheFileMenu 68
OpenaSecond Order.o vt e 69

Open Foreign FileInformation 69
Specify Browse Customization Optionscvv i 71
Specify SElection OptionS.ot 71
Specify Display Options oot e e 72
TroublesShooting.ot e 75

USING THE SUPER MODEL TO GENERATE APPLICATIONS

OV IV B .« oottt e e e e e e e e e e 78
BEfOre YOU BegIN . . .ot 80
Establish aNaming Conventionot 80
Understand the Object Factoryo e 82
Which Modulesto Generatet e 82
ForaMaintenance Dialog o oot 83

FOor aBrowse Dialogo ot 84
Dependent MOdelS. oo 85
Generating withthe Super Model 86
Construct Windows Interface 86
Step 1: Invokethe Super Model Wizard 86
Step 2: Define General Package Parameters. ...t 88
Step 3: Define Specific Package Parameters. ...t 20
Step 4: GeneratetheModules 93
Generating Modules fromthe Model Wizard 93
Generating ModulesinBatch i 93
Generation SUDSYStEM. 94
Step 1: Invokethe Super Model 94
Step 2: Define General Package Parameters.t 95
Step 3: Define Specific Package Parameters.t 97
Step 4: GeneratetheModules 98
TroubleShOOtiNg.ot e 100
Transferring Your ApplicationtotheClient........... o .., 100

CREATING A CONSTRUCT SPECTRUM PROJECT

OV VI B .« o ottt e e e e e 102
AreYOU REAAY? . .. 103
Creating the Project.o 104
Priorto Downloadingt e 106
Downloading the Generated Modules. 107
Hand-Coding the Object Factory. e 109

Construct Spectrum SDK for Client/Server Applications

Modify theDialogso
Testthe Application
Deploy the Application o e
Setting Up SECUMLY . .. oo e

5. CREATING AND CUSTOMIZING MAINTENANCE DIALOGS

Overview of the Maintenance Dialog oo e
Waysto Generate Maintenance Dialogs.ot
PrerEqUISITES . . . o
Using Individual Models to Generate Maintenance Modules.
Generate the Object Maintenance Subprogramand PDAS oo
Generate the Maintenance Subprogram Proxy,
Generate the Visual Basic Maintenance Object
Add Business Validationso e
Add Browse FUNCLIONSt
Generatethe Maintenance Dialog.
Downloading Client MOdUIESot
Integrating a New Maintenance Dialog.
Strategies for Customizing aMaintenanceDialogt
Doing the Predict Data Dictionary Work Up Front.
Choosing an Appropriate Place to Add Hand-WrittenCode
Adding New User EXItS.ot
Making aCopy BeforeYouRegeneratet
CustomizZzing ONthe SEIVEr e e e
DerivingVariable Names e
Deriving GUI Control Names.t e

GUI Control Identifier. e e

Object Identifier.t

Field Identifier. e
Deriving Label Captionsfor GUI Controls.,
Overriding GUI Controls. e
Step 1: Search for GUI Keywordsin Field Definitions
Generate a ComboBox Control to Display External Values.................
Step 2: Search for GUI Keywords on Verification Definitions.
Step 3: Search for Business Data Type Keywords in Field Definitions..........
Step 4: UseDefault Derivationot e e
Repeating Field Threshold. i
Option Button Threshold. i e
Foreign Field Threshold e

Table of Contents

Setting Generation GUI Standards oot 143
Controlling the Size of aMaintenanceDialog, 144
Overflow ConditionS. vu i e 144
Customizingonthe Client. ... e 145
Creating Calculated Fields e 145
Does aGUI Control Exist for the Calculated Field?. 145
CodingtheCalculationt e e e e e 145
Integrating Maintenance and Browse Functions., 146
Validating Data Using the Visual Basic Maintenance Object. 146
Tailoring the Maintenance Dialog.t 147
Working with Overflow Frames. i 148
Multi-column Layout.o e 149
Tabbed Layout. 150
State-Dependent Layoutt 151
AddingaNew FieldbyHand i 152
AddaScalar Fieldby Hand. 152
Add aRegular Grid ColumnforaField 156
RemovingaFieldby Hand 164
UsSiNgthe Grid. e e 165
Nested Gridst e 165
Nested Drop-Down Gridso e 166
Displaying Gridsot e 167
ReSIZING GridS. . . .ot 168
Adding Sound to Error Notifications 169
Understanding How a Sound Fileis Associated WithanError 170
Multilingual Support for MaintenanceDialogs.ccovvi i 172
Uploading Changestothe Servert e e 173

CREATING AND CUSTOMIZING BROWSE DIALOGS

Overview of the BrowseDialogot e 176
ADOUL BrowSe Dialogso v vt et 176
The BrowWSe PrOCESS oot 176

Browse Object SUDProgram.ot 177
Browse Object SUbProgram ProXyot 178
Visual Basic Browse Objectot e 178

DataCache. 178
Framework COmpPONEntSottt e e 179

Creating aBrowse Dialogot i 180
Setting up Predict for theBrowse Dialog 180

BUSINESS Dala TYPES . . o oottt et 180
Descriptive Fieldso 180

Construct Spectrum SDK for Client/Server Applications

Using Modelsto Generate BrowseModules. i, 181
Generating the Browse Subprogramand PDAS oo 182
Generating the Subprogram Proxy 182
Generating the Visual Basic Browse Object. 182
Defining Alternate Browse DalaSourCeS oo v v 185

Downloading theClient Modules e 188

Updating the Project e e e 189
Extend Object Factory. 189

Customizingonthe Client. ... e 190

Adding Command Handlers 190

Customizing the Generic BrowseDialogt 190

Understanding the BrowseManager Class. 190
Display the BrowseDialog 190
Support aBrowseCommand Handler. i, 190
ReturnaSpecificRow of Datao 191
Return All Rowsof Data.o e e 191

Using the BrowSEManagerttt et e e 191
BrowseManager Methodst 194

Understanding Browse Command Handlers. 195

Creating Browse Command Handlers. ... 197

Coding the Custom Browse Command Handler. 198
Enabling Commands on the Browse Toolbar and Menu. 198

Coding the UICommandTarget() Method. 199
Marking Updated Rows Using the UpdateListViewlcons Method. 200

7. MOVING EXISTING APPLICATIONSTO CONSTRUCT SPECTRUM

L0 T 202
Moving Natural Construct Object Applicationsc.coviiiiiinnn, 202
Moving Natural Construct Non-Object Applications., 203
Step 1: Set Up Your Server Environmentot 203
Step 2: Evaluate Your ApplicationData. 203
Step 3: Set up Predict Definitions (Optional)t 204
Step 4: Generatethe Client/Server Modules. 204
Step 5: Update Object Subprograms with BusinessRules. 205
Considerations for Implementing BusinessRules. 205
Step 6: Set Up and Run Y our Construct Spectrum Project. 206

Table of Contents

8. UNDERSTANDING AND CUSTOMIZING THE CLIENT FRAMEWORK

Introduction to the Client Framework. 208
ADOUL BOX . .o ottt e 210
Customizing the ADOUE BOX oot e e e 211
Application Preferences.o 212
APPHCALioN SEINGSo ot e 213
Customizing the Application SEttings.t 214
BrOWSE SUPPOIT . . .o 215
Internationalization SUPPOITttt 217
MaiNteNaNCe ClassES . . . oo v ottt e e e e 218
Grd SUPPOIT .« . 218
Menu and Toolbar SUPPOItt 219
Understanding Menu and Toolbar Command Handling. 220
ClassS SUMMANYt ettt e e e e e e e e e e 221
Defining, Sending, and HandlingCommands. oo, 221
Step 1: Declare aGlobal Instance of theUICommandsClass 222
Step 2: DefinetheCommands. 222
Step 3: Code Menu and Toolbar Events to Send the Commands. 223
Step 4: CodetheCommand Handlers. ...t 224
Step 5: Link the Commands to the Command Handlers. 224
Updating User Interface Controls. e 226
Step 1: Code Eventsto UpdatetheMenu Controls.t 227
Step 2: Codethe Logic that Determines the Stateof aCommand 228
Step 3: Code Eventsto Update the Toolbar Buttons. 229
DisplayingaDisabled Bitmap. 229
Displaying aMessageot 230
Update CyCleso 230
Additional Methods For Command Handling. 233
Unhooking Commandsttt 233
Customizing the Menu and Toolbar in the Client Framework 233
Changingthe Menu Structure oot e e 234
Example of Changing the Menu Bar and ItsMenu ltems. 237
Changingthe Toolbar Structure i e 240
Example of Adding Buttonstothe Toolbar i, 241
MDI (Multiple-Document Interface) FrameForm i, 242
ObJeCt FaCtOry . . . oot 243
Understanding theOpen Dialogo ot e 244
Understanding the Object Factory. e 244
Usingthe Object Factory.t e e e 245
Exampleof UsingtheObject Factory 246
Customizing the Object FaCtoryottt e 246
Setting Up Object/Action Combinationsand Forms. 247

Construct Spectrum SDK for Client/Server Applications

Making Your Application Aware of New BusinessObjects.
Step 1: Updatethe InitializeOpenDialog Procedure
Step 2: Updatethe CreateForm Procedure
Step 3: Updatethe GetBrowser Procedure
Step 4: Update the BrowserExistsProcedurecoiviiiiiii ..

Spectrum Dispatch Client SUPPOIto

LOgoN Dialog. . . oot e

Error MESSAgESo

Dispatcher Selection Windowot

Utility Procedureso oo e e

9. VALIDATING YOUR DATA

OV VI B .« ottt
Basic Data Type Validation.t e
BusinessDataTypeValidation. e
Local BusinessValidation.t e
BusinessObject Validation
Client Validation e
Validation in Maintenance Dialogs. oo oo
USINg BD TS, ..o
Hand-Coded Validationsin Generated Dialogs,
Validation in Visual Basic Maintenance Objects,

Adding Validationsin the CLIENT-VALIDATIONSUser Exit

Validationsfrom Predict
Creating VerificationRulesin Predict i
Deciding Where To Implement aValidationRule
CodingUser TYpeRUIESt e
Order of Precedencein DataValidationccoo ...
Validation Error Handling.o
Framework COmpPONEntS.ot e
Handling Business Object Validation Errors oo,

10. INTEGRATING BROWSE AND MAINTENANCE FUNCTIONS

(@< =
Drill-Down CapabilitiesfromaBrowseDialog
ActiveHelpon MaintenanceDialogs oot
Primary Key Field ActiveHelp.

Foreign Field Active Help.

Design ObJeCtiVeSo oo e
Application Component Independence.
Simplified Generated COMPONENESttt it e

~-10 -

Table of Contents

Overview of Foreign Key Field Relationshipso, 282
Fields that can be Used in aForeign Key Relationship. 282
SimpleField. 282
Repeating Field 283
When Not to Use a Foreign Field Relationship. 283
Listof ValueSiSStatiC.o v e 283
Listof ValuesisSmall. ... 284
List of Values Contains Two ChoicesOnly oo, 284
Foreign Field Support in MaintenanceDialogs. oo 285
GUI Control Representations of Foreign Fields. 285
Foreign Fieldsin the Primary Part of aMaintenanceDialog 285
GUI ControlsinaGrid 287
How Construct Spectrum Determines Which GUI Control toUse. 288
Displaying Descriptionsfor aForeignField. 289
Examples of DescriptiveFields. i i 289
Supporting Multiple Descriptive Valuesand Derived Values 290
How Foreign Field Descriptions AreRefreshed 291
Supporting Code for Drop-DOwWNn ListS.o 292
Initializing aDrop-Down List.t 292
Support for Value Selection 293
Supporting Code for Command BUttONS.t 294
InitializingaCommand Button. 294
Click Eventsonthe Command Button oo, 294

11. INTERNATIONALIZING YOUR APPLICATION

Planning Y our Internationalized Application i, 296
Internationalizing Using the Client Framework s, 297
Resource File Syntax.o 300
TeXEValUBS . ..o 300
Binary ValUes e 300
LiNKS . 301
Using the Internationalization Componentst 302
MEthOOS. o 302
GELRESOUICEGIOUD . . o v vttt et et e e e e e e 302
LocalizeFOrm. . .. e 303
LOoadBiNaryRESOUICE.\ttt sttt e e et et e e e 303
LOadStriNgRESOUICEttt ettt et e e e 303

M ESSagE. . . o ot e 304
MESSAgEEXottt 304
SetDefaultMeSSageGIOUD v o et e e 304

—-11 -

Construct Spectrum SDK for Client/Server Applications

PrOPEItiES. . . o 305
LaNQUAOE . . . oot 305
LanguageRegistryKeyo 306
LanguagelNIKeY 306
ResourceFilePath. 307

HintSfor DeVEIOParSo 308
Setting the Language Automatically 308
Strategy for Using Resource Filesand Groups. oo oo 308
Starting an ApplicationinaSpecificLanguage, 309
Associating Windows Locale Setting withalLanguage 310
Changing Languageat Runtime e 311
APPENDIX A: MODIFYING CONSTRUCT SPECTRUM MODELS..... 313
VB-Maint-Dialog Model 314
VB AP L 316

Componentsof the VB APL. 316
How the VB API WOIKS oo e 317
GUI Controlswiththe VB APL e 319
Parameter Data Areas (PDAS) Usedo 324

12—

PREFACE

Construct Spectrum SDK for Client/Server Applicationsis designed to help developers
create and customize applications using the Construct Spectrum software devel opment
kit (SDK) and Visual Basic.

This preface will help you get the most out of the documentation and find other sources
of information about creating Construct Spectrum applications.

The following topics are covered:
» Prerequisite Knowledge, page 14
« Structure of this Documentation, page 14
+ How to Usethis Documentation, page 16
« Document Conventions, page 17
« Other Resources, page 18

—13 -

Construct Spectrum SDK for Client/Server Applications

Prerequisite Knowledge

Construct Spectrum SDK for Client/Server Applications does not provide information
about the following topics. We assumethat you are either familiar with thesetopics or

have access to other sources of information about them.

Natura Construct
Microsoft Visual Basic
Predict

Natural programming language and environment

Entire Broker
Entire Net-Work

Structure of this Documentation

This section describes the contents of each chapter. For information about how to use
the documentation, see How to Use this Documentation, page 16.

The chapters in Construct Spectrum SDK for Client/Server Applications are:

Chapter Title

Topics

1 Introduction, page 21

2 Using the Demo
Application, page 37

3 Using the Super
Model to Generate
Applications, page 77

4 Creating a Construct
Spectrum Project,
page 101

5 Creating and
Customizing
M aintenance Dialogs,
page 113

14 -

Describes the components of Construct
Spectrum and the architecture of the
client/server applications you can create
with the software development kit (SDK).

Provides a guided tour of ademo
application created using Construct
Spectrum.

Describes how to generate al of the
application modules required to create a
Construct Spectrum client/server
application using the super model (VB-
Client-Server-Super-Model).

Describes the process of setting up a
Construct Spectrum project on the client.

Provides step-by-step instructions for
generating the modules required to
maintain server information from a
maintenance dialog on the client.

Preface

Chapter Title Topics (continued)

6 Creating and Provides step-by-step instructions for
Customizing Browse generating the modules required to
Dialogs, page 175 provide browse services from the client.

7 Moving Existing Describes how to move existing Natural
Applicationsto Construct-generated server-based
Construct Spectrum, applicationsto aclient/server architecture
page 201 using the Construct Spectrum models.

8 Understanding and Describes how to customize the client
Customizing the framework supplied with Construct
Client Framework, Spectrum while devel oping your
page 207 Construct Spectrum application.

9 Validating Your Data, Outlines the data validation facilities
page 261 provided with Construct Spectrum.

10 Integrating Browse Explains how browse and maintenance
and Maintenance functions are integrated. It includes
Functions, page 275 information about linking and using

browses from a maintenance dialog.

11 Internationalizing Describesthetools provided by Construct
Your Application, Spectrum to help you write
page 295 internationalized applications.

Appendix A Appendix A: Provides a guideline to follow when

M odifying Construct
Spectrum Models,
page 313

creating new models based on the VB-
Maint-Dialog model.

—15—

Construct Spectrum SDK for Client/Server Applications

How to Use this Documentation

Construct Spectrum SDK for Client/Server Applications describes how to create and
customize client/server applications using the Construct Spectrum SDK and Visual Ba-
sic. In particular, it provides information aboult:

Creating new client/server applications
Moving existing server-based applications to a client/server architecture

The following sections describe how to use this and related Construct Spectrum docu-
mentation to perform these tasks.

To Create a New Client/Server Application

If youwant to use Construct Spectrum’ stoolsto create aclient/server application to run
on Windows 95 or Windows NT, we recommend that you first read the following chap-
tersin Construct Spectrum SDK Reference:

Introduction, page 21
Contains an overview of the product, development process, and applications you can
develop.

Setting up the Mainframe Environment, page 37
Contains detailed information on how to define domains and security options that con-
trol what data application users can access on the mainframe.

Construct Spectrum DK for Client/Server Applications contains detailed information

on using the VB-Client-Server-Super-Model to generate all of your application’s com-
ponents. It describes how to set up a Visual Basic project, customize maintenance and

browse dialogs, and internationalize your application.

As you customize and regenerate application components, you will find the following
chapters in Construct Spectrum SDK Reference useful:

Using the Subprogram-Proxy M odel, page 103

Using Business Data Types (BDTs), page 121
Debugging Your Client/Server Application, page 161
Deploying Your Client/Server Application, page 189

To Move an Existing Application to a Client/Ser ver
Architecture

Before moving any existing server-based applicationsto the Construct Spectrum client/
server architecture, gain familiarity with Construct Spectrum by creating a new appli-
cation. For information, see Overview of the Development Procedur e, page 30.

To learn how to migrate existing server-based applications to a client/server architec-
ture, see Moving Existing Applications to Construct Spectrum, page 201.

—16 —

Preface

Document Conventions

This documentation uses the following typographical conventions:

Example

Description

Introduction

L‘AH

Browse model,
GotFocus, Enter

Alt+F1

CHANGE-HISTORY

Construct Spectrum
SDK for Client/
Server Applications,
variable name

[variable]

{WHILEJUNTIL}

Bolded text in cross references indicates chapter and section
titles.

Items within quotation marks indicate values you must enter.

Mixed case text indicates names of:

« Natural Construct and Construct Spectrum editors, fields,
files, functions, models, panels, parameters, subsystems,
variables, and dialogs

» Visua Basic classes, constants, controls, dialogs, events,
files, menus, methods, properties, and variables

« Keys

A plussign (+) between two key names indicatesthat you
must press the keys together to invoke a function. For
example, Alt+F1 means hold down the Alt key while pressing
the F1 key.

Uppercase text indicates the names of Natural command
keywords, command operands, data areas, helproutines,
libraries, members, parameters, programs, statements,
subprograms, subroutines, user exits, and utilities.

Italicized text indicates:
» Book titles
» Placeholders for information you must supply

In syntax and code examples, values within square brackets
indicate optional items.

In syntax examples, values within brace brackets indicate a
choice between two or more items; each item is separated by
avertical bar (J).

17 -

Construct Spectrum SDK for Client/Server Applications

Other Resources

This section providesinformation about other resourcesyou can useto learn more about
Construct Spectrum and Natural Construct. For more information about these docu-
ments and courses, contact the nearest Software AG office or visit the website at
www.softwareag.com to order documents or view course schedules and locations. Y ou
can also use the website to email questions to Customer Support.

Related Documentation

This section lists other documentation in the Construct Spectrum and Natural Construct
documentation set.

Construct Spectrum SDK

« Construct Spectrum SDK for Microsoft .NET Framework
This guideis for developers creating Microsoft .NET Web servicesto invoke Natural
subprograms (business objects) over the Inter/Intranet viathe W3C SOAP standard.

« Construct Spectrum SDK for Web Applications
This documentation is for devel opers creating the web components of applications. It
describes how to use the Construct Spectrum wizards in Visua Basic to generate
HTML templates, page handlers, and object factory entries. It also contains detailed in-
formation about customizing, debugging, deploying, and securing web applications.

» Construct Spectrum SDK Reference
This documentation is for developers creating Natural modules and ActiveX Business
Objectsto support applications that will runin the Natural mainframe environment and
aWindows environment and/or an internet server.

« Construct Spectrum Messages
This documentation is for application devel opers, application administrators, and sys-
tem administrators who want to investigate messages returned by Construct Spectrum
runtime and SDK components.

—18 -

Preface

Construct Spectrum

Construct Spectrum Administration
This documentation is for administrators who want to use the Construct Spectrum Ad-
ministration subsystem to set up and manage Construct Spectrum applications.

Construct Spectrum Reference

This documentation is for application developers and administrators who need quick
access to information about Construct Spectrum application programming interfaces
(APIs) and utilities.

Construct Spectrum and SDK Vn Release Notes
These notes contain information on new features, enhancements, and other changesin
this version of Construct Spectrum.

Construct Spectrum and SDK Installation Guide for Windows
This documentation describeshow to install and set up the Construct Spectrum runtime
and SDK components on the client.

Construct Spectrum and SDK Installation Guide for Mainframes
This documentation describeshow to install and set up the Construct Spectrum runtime
and SDK components on the mainframe.

Natural Construct

Natural Construct Installation Guide for Mainframes

This guide provides essential information for installing and setting up the latest version
of Natural Construct, which is required to operate the Construct Spectrum program-
ming environment.

Natural Construct Generation
This documentation describes how to use the Natural Construct modelsto generate ap-
plications that will run in a mainframe environment.

Natural Construct Administration and Modeling
This documentation describes how to use the Administration subsystem of Natural
Construct and how to create new models.

Natural Construct Help Text
This documentation describes how to create online help for applications that run on
server platforms.

Natural Construct Getting Started Guide
Thisguideintroduces new usersto Natural Construct and provides step-by-step instruc-
tions to create several common processes.

—19 -

Construct Spectrum SDK for Client/Server Applications

Other Documentation
This section lists documents published by WH& O International:

» Natural Construct Tips & Techniques
This book provides areference of tips and techniques for developing and supporting
Natural Construct applications.

» Natural Construct Application Development User’s Guide
This guide describes the basics of generating Natural Construct modules using the sup-
plied models.

+ Natural Construct Study Guide
This guideis intended for programmers who have never used Natural Construct.

Related Courses

In addition to the documentation, the following courses are available from Software
AG:

» A sdf-study course on Natural Construct fundamentals
« Aningtructor-led course on building applications with Natural Construct

» Aningtructor-led course on modifying the existing Natural Construct models or creat-
ing your own models

—20-—

INTRODUCTION

This chapter describes the components of Construct Spectrum and the architecture of
the client/server applications you can create with the software development kit (SDK).
Anoverview of the stepsinvolved in developing an application prepares you for the de-
tailed procedures in the chaptersthat follow.

The following topics are covered:

What is Construct Spectrum?, page 22
Architecture of a Client/Server Application, page 26
Overview of the Development Procedure, page 30

21—

Construct Spectrum SDK for Client/Server Applications

What is Construct Spectrum?

Construct Spectrum comprises a set of middleware and framework components, aswell
asintegrated tools, that use the specifications you supply to generate all the components
of distributed applications.

Construct Spectrum works with other products in the following partnership:

Natural is an open server that provides access to databases such as Adabas, DB2, and
VSAM

Predict provides a comprehensive repository
Entire Broker provides message-oriented communication

Y ou define and manage data and business rules for your application in arepository
managed by Predict. Using Natural Construct, you can then generate the Natural mod-
ulesthat processdata. Using Construct Spectrum SDK, you can aso generatetheVisual
Basic client code and download the appropriate components to the client. Y ou define
the security privileges in the Construct Spectrum Administration subsystem and then
deploy the application.

Construct Spectrum includes two components for delivering the performance and secu-
rity that mission-critical applications reguire:

Spectrum Dispatch Client (SDC) on the client

Spectrum dispatch service on the mainframe server

When the client makes a communication request, the SDC trand ates the request into a
compact, secure message and transmitsit to the server viaEntire Broker. On the server,
the Spectrum dispatch service converts the incoming request for processing by the serv-
er application while enforcing multi-level security. Construct Spectrum then uses a
similar technique to return the processed result to the client.

This documentation describes how to generate and customize client/server applications
using the Construct Spectrum SDK. Refer to Construct Spectrum SDK Referencefor in-
formation abouit:

Setting up your application environment on the mainframe

Using business data types (BDTs)

Debugging and deploying your application

Creating client/server applications without the Construct Spectrum

—_22_

Introduction

Development Environments

Asyou develop applications, you will be working in at least three environments: the
Construct Spectrum Administration subsystem, Construct Windows interface, and Vi-
sual Basic (using the Construct Spectrum Add-In).

Use the Construct Spectrum Administration subsystem to manage the system and ap-
plication datafor your applications:

BS MAIN ****x Construct Spectrum Adm nistration Subsystem ***** CDLAYMNL
Jul 30 - Main Menu - 10: 14 AM

Functi ons
SA System Administration
AA Application Adm nistration

? Hel p
. Term nate
Function -
Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit flip mai n

Consgtruct Spectrum Administration Main Menu

—_23—

Construct Spectrum SDK for Client/Server Applications

Usethewizardsinthe Construct Windowsinterface on your PC to generate Natural and
Visual Basic modules for your application:

Construct — O] x|
Filz [y ETEEETE—

L Mew Specification |J
[0z

Create in Library: ISF'ECDEMO |

Packages |Natural I YWisual Basic I &l Models I
4B-CLIENT-SERVER-SUPER-MODEL |
. NATURAL-BUSINESS-OBIECTS
enerate many modules with just a few simple o
patamnekers,
Cancel

New Specification Window in the Construct Windows I nterface

Thewizards availablein the Construct Windows interface are also available in the Gen-
eration subsystem in your Natural Construct mainframe environment.

—24—

Introduction

Use the Construct Spectrum Add-Inin Visual Basic to create projects, download mod-
ules from the mainframe server, and set configuration options:

‘w5, Microzoft Yisual Basic

Fil= Edit “ew Project Format Debug Run Query Diagram Tools Spectrum | Add-Ins Window Help

Hgv’ﬁlv“@||ﬁin| e |r:| m|%3§5§_1£] Yisual Data Managet. ..
= *EE ‘ 'i!T_"] = % Add-In Managetr...

(e
X

General |
3

Download Generaked Modules. .. Construck Spe

Upload Modules. ..

Create New Praject. ..

Preferences. ..

About

Construct Spectrum Options on the Add-Ins Menu

Information about how to access and use these environmentsis presented where you
need it throughout the documentation.

— 25—

Construct Spectrum SDK for Client/Server Applications

Architecture of a Client/Server Application

Construct Spectrum generates high-performance, distributed components using COM-
enabled clientsto access Natural application servers. The following diagram showsthe
architecture of a Construct Spectrum client/server application:

Windows : []Generated
GUI Dialog [Spectrum

Il System

Visual Basic Business Object

Library

Spectrum Dispatch Client Image

) File
Entire Broker

Entire Net-Work or TCP/IP

Mainframe Server

Entire Broker

Spectrum Dispatch Service Security Service

Subprogram Proxy

Dispatch Spectrum
Service Administration
Natural Subprogram Data

Architecture of a Construct Spectrum Client/Server Application

Thefollowing sections describe these components according to the platforms on which
the components run.

— 26—

Introduction

M ainframe Ser ver

Component

Description

Natural
subprograms

Subprogram
proxy

Spectrum
dispatch services

Dispatch service
data

Spectrum
administration

Perform maintenance and browse functions on the mainframe
server. The same set of business objects can be accessed from
character-based Natural applications, client/server
applications, and web applications. This ensures that the
integrity of business datais preserved, independent of the
presentation layer.

Natural subprograms may be either written by hand or
generated by Construct models. The VB-Client-Server-Super-
Model, Object-Maint-Subprogram, and Object-Browse-
Subprogram model s generate subprograms and parameter data
areas (PDAS) for client/server applications.

Acts as a bridge between a specific subprogram and the
Spectrum dispatch service. It performs a number of vital
functions, including trandating parameter datainto aformat
that can be transmitted between client and server, issuing
CALLNATSsto subprograms, and validating the format and
length of datareceived from the client.

For moreinformation, see Gener ating a Subprogr am Proxy,
page 105, Construct Spectrum SDK Reference.

Ensurethat the current user isallowed to perform the requested
function. Once the service has performed user authentication,
it activates the correct Natura subprogram to handle the
request. After the target subprogram finishes processing, the
results are transferred back to the client. Depending on user
options, the service may also be required to compress and
decompress and/or encrypt and decrypt messages.

For more information, see Defining and Managing
Construct Spectrum Services, page 39, Construct Spectrum
Administration.

Information defined and maintai ned in the Construct Spectrum
Administration subsystem and accessed by Spectrum dispatch
services anywhere on the network via Entire Broker.

Allows system administrators, application administrators, and
application developers to set up and manage system and
application environments. For more information, see
Construct Spectrum Administration.

— 27 —

Construct Spectrum SDK for Client/Server Applications

Component

Description (continued)

Security service

Entire Broker

Checks client requests against the security settings defined in
the Construct Spectrum Administration subsystem. This stand-
alone service operates independently of the Spectrum dispatch
services. It allowsthe security serviceto process, in one central
location, the requests of severa Spectrum dispatch services,
which may be located on nodes throughout the network.

For more information about security services and security
settings, see Construct Spectrum Administration.

Transfers messages between Windows and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Windows

Construct Spectrum client/server applications run on Windows or Windows NT.

Component

Description

Entire Broker

Spectrum Dispatch
Client (SDC)

Transfers messages between the client and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Component Object M odel (COM) middleware component that
enables client/server applicationsto read from, and write to,
variablesin a Natural parameter data area (PDA) and to issue
CALLNAT statements to Natural subprograms. Its main
functions are simulating PDAs and CALLNATS,
encapsulating Entire Broker calls, and controlling database
transactions. As the client counterpart of Spectrum dispatch
services, it isalso responsible for datamarshaling, encryption,
compression, error-handling, and all Entire Broker
communication.

For more information, see Using the Spectrum Dispatch
Client, page 193, Construct Spectrum SDK Reference.

28—

Introduction

Component

Description (continued)

Library image
files (LIFs)

Visual Basic
business object

GUI diaogs

Define information to the client component of aclient/server
application that it needs to assemble data and call the
mainframe server. This file contains the following
information:

» Parameter dataarea (PDA) definitions that specify
information required for communication with the server.
They are an image of the PDASs used by the Natural
subprograms.

« Application service definitionsthat specify to theclient the
names of the available subprograms.

« Steplib definitions. The SDC alows chaining of library
image files. The entries are used to point to other library
image files in the same directory. The SDC checks all
library image filesin the chain for the required parameter
or application service definition.

Visual Basic class that acts as an intermediary between a
dialog and the Spectrum Dispatch Client. This class invokes
the methods of subprograms on behalf of dialogs and
instantiates all the data areas required to communicate with a
subprogram. Visual Basic business objects can also perform
local datavalidation to provideimmediate feedback to the user
without involving a network call.

Represent graphical interface screensthat communicate with
the user and interact with the Visual Basic business objectsand
other framework components to implement business
processes.

—29—

Construct Spectrum SDK for Client/Server Applications

Overview of the Development Procedure

I I N I N W 74

If you are creating anew application, you must decide on the nature of your application
and itsuses. If you are planning to reuse an existing application, evaluate the character
screen displays and decide how to improve them using the power of agraphical user
interface.

Note: For moreinformation about reusing existing Natural Construct applications,
see Moving Existing Applications to Construct Spectrum, page 201.

To develop an application:

Step 1: Plan Your Application, page 31

Step 2: Set Up Your Mainframe Environment, page 33

Step 3: Generate Application Components, page 34

Step 4: Customize Your Application and Environment, page 36
Step 5: Test and Debug Your Application, page 36

Step 6: Deploy Your Application, page 36

The following sections describe these steps in detail.

—30 -

Introduction

Step 1: Plan Your Application

Decide what the main purpose of your application is and what features you must pro-
vide to address it. After you determine the core features, consider the advanced
functionality you may want to provide.

Decide What to Show the User

Before you begin creating anew application, decide on the purpose of your application,
how it will be presented to the user, and how it will communicate with other applica
tions. Decide what you want users to do with your application and determine what you
need to providein your application so that they can do it.

During the planning stages of your project, identify and itemize what the user will need
to do. Then, design what the users will see when they use your application, such asthe
content, number, and order of windows in the application.

Plan to help your users, who will have varying degrees of experience with your client
environment. Consider providing online help tailored for the level of knowledge of your
typical user. You may choose to include all three types of online help:

« context-sensitive help
» task help
» window-level help

Provide customized error messages that are clear and informative. If you' ve planned
your application, the chances of error are reduced. Since you cannot plan for every pos-
sibility, plan how your application will inform users about an action it cannot interpret.
For example, you may want to display amessageif auser triesto exit afilewithout sav-
ing the changes made during an edit session.

Note: Many error messages provided by Construct Spectrum will be available to
your users. However, you must provide error messages for application-specif-
ic windows.

Design windows that are clear and intuitive. Try to give users al information they re-
quire to complete atask. Provide meaningful prompts and labels on GUI windows. To
help minimize the amount of information your users need to provide, pre-set default
values.

31—

Construct Spectrum SDK for Client/Server Applications

Keep Window Design Simple

When designing windows for your application, keep the window design simple. First
determine the number and structure of windows, then determine the content.

Number and Structure of Windows
When designing the number and structure of windows, consider the following tips:
Have one main window from which the user can initiate all of the main tasks.

Provide secondary windows for additional information the user must specify to com-
plete atask.

Avoid alot of nested windows, which can:

— make asimpletask look complex

— clutter the user’ s screen (especidly if the more than one application is open)
— cause the user to becomelost

Content of Each Window

When determining the content of each window, consider the following tips:
Group related information together

Use graphic images and iconsto identify tasks or complement the words
Position information in aneat, logical manner

Position common information in the same place throughout your application. This
makes it easier for your users to navigate.

Plan Your Code

After designing the application windows, decide what code is required to support ac-
tions users will perform with your application. When you generate your application,
Construct Spectrum supplies many actions and default values. While several routine
tasks are predefined and contain default attributes, you must explicitly set others for
your application.

Use a Consistent Style

To help your users learn to navigate through your application, use consistent terminol-
ogy. To help minimize confusion, use consistent mnemonicsin all application
windows.

-32—

Introduction

Anticipate Trandation Issues

When planning your application, consider whether the user interface will betranslated
into other languages. Construct Spectrum suppliestrandation facilities to support
translation.

To minimize the effort required for trandation, anticipate any issues when designing
your application. For example, you may have to change mnemonic characters for dif-
ferent languages (if you are using mnemonics) or trandation may change the size
requirements for window text (such as text boxes, labels, and command buttons). Fre-
guently, translated text is longer than the original text.

For more information, see I nternationalizing Your Application, page 295.

Step 2: Set Up Your Mainframe Environment

Before you can create a Construct Spectrum application, ensure that Predict definitions,
steplib chains, domains, users, groups, and security settings are defined.

Predict Definitions

Set up file and field definitions in Predict for all database applications generated using
Construct Spectrum. This includes your application files and their intra- and inter-ob-
ject relationships. For more information, see Setting Up Predict Definitions, page 39,
Construct Spectrum SDK Reference.

Steplib Chainsand Domains

Define the steplib chains and domains for your applications. The application environ-
ment includes users, application libraries, business objects, and associated modules.
Users are combined into larger entities called “groups’. Application libraries, business
objects, and associated modul es are combined into larger entities called “ domains”. For
more information, see Step 1: Define the Steplib Chain, page 43, and Step 2: Define
the Domain, page 45, Construct Spectrum SDK Reference.

Security for Domains, Steplibs, Users, and Groups

Define user I Ds for users of your application, the groups to which each user belongs,
and security privilegesfor each user. Then, assign users and security privilegesfor each
group. Finally, grant groups applicable access to the domain for your application.
Granting access to adomain enabl es usersto access the abjects and methods within the
domain. For moreinformation, see Step 3: Define Security for the Domain, page 47,
Construct Spectrum SDK Reference.

—33-—

Construct Spectrum SDK for Client/Server Applications

Step 3. Generate Application Components

After planning your application and setting up your environment, use the Construct
Spectrum model s to generate the application-specific components of your application.
These components interact with the client framework components to form your com-
plete application. To generate your application modules, use either the VB-Client-
Server-Super-Model or the individual models.

Using the Super Model

Use the V B-Client-Server-Super-Model to quickly create a new application or add a
graphical front-end to an existing application. For more information, see Using the Su-
per Model to Generate Applications, page 77.

Using Individual M odels

Use theindividual models to fine-tune your application. Using individual models pro-
vides more opportunity to create unique model specifications. Additionally, you can
add user exit codeto further refine your application modules. For more information, see
Creating and Customizing Maintenance Dialogs, page 113, and Creating and Cus-
tomizing Browse Dialogs, page 175.

Deciding Which M odulesto Generate

Regardless of how you generate your application modul es, the same modules must exist
to create a client/server application. These modules are grouped by function: mainte-
nance or browse. To application users, these functions are displayed as either awindow
or dialog.

For a description of the modules that must be generated for either a maintenance or
browse function, see Using the Super Model to Gener ate Applications, page 77.

Generation Process
The following sections describe how the server and client modules function.

Server Modules

Modulesfor the server portion of your application are generated in Natural, leveraging
the existing Natural Construct object methodology. Y ou can reuse existing Natural
Construct modules generated using the Object-Maint-Subp or Object-Browse-Subp
model as components of a client/server application.

For moreinformation about moving existing applications, see M oving Existing Appli-
cationsto Construct Spectrum, page 201.

—34-—

Introduction

Client Modules

Modules for the client portion of your application are also generated on the server.
These modules are generated as Visual Basic code and stored as text membersin the
Natural library in which you generate them. When you are ready to set up your appli-
cation on the client, use the Construct Spectrum Add-1n to download the Visual Basic
source code from the generation library to your client.

Asyou become more experienced in developing Construct Spectrum applications, you
will want to create modules (or regenerate existing ones to add customizations) using
individual models. The two types of objects you will create with Construct Spectrum
are Visual Basic maintenance objects and Visual Basic browse objects.

Y ou can access the models that generate application components either in the Genera-
tion subsystem on the server or in the Construct Windows interface. In both cases,
modules are generated on the server.

For more information about using the super model, see Using the Super Model to
Gener ate Applications, page 77.

For more information about generating with individual models, see:

Creating and Customizing M aintenance Dialogs, page 113

Creating and Customizing Browse Dialogs page 175

Generating a Subprogram Proxy, page 105, Construct Spectrum SDK Reference

Setting Up Your Project

When you create a new project using the Construct Spectrum Add-Inin Visua Basic,
Construct Spectrum automatically adds the client framework componentsto a standard
Visual Basic project. For more information, see Creating a Construct Spectrum
Project, page 101.

Transferring Your Generated Codeto the Project

Use the Construct Spectrum Add-1n from the Visual Basic Add-Ins menu to download
your generated components to the client. The components are added to your Construct
Spectrum project, which includes the client framework components.

After integrating the generated componentsinto your project, you can modify them and
test your application. The following section describes this in more detail .

For more information about transferring your application to the client, see Download-
ing the Generated M odules, page 107.

35—

Construct Spectrum SDK for Client/Server Applications

Step 4: Customize Your Application and Environment

After creating your application, use Visual Basic on theclient to tailor the user interface
for your application.

For more information about customizing your application, see:

Under standing and Customizing the Client Framework, page 207
Creating and Customizing M aintenance Dialogs, page 113
Creating and Customizing Browse Dialogs page 175

Step 5: Test and Debug Your Application

Asyour application becomes more stable, thoroughly test each component. In your test
plan, include tests for each of the objects and their associated actions, each form, all lo-
cal validations, and al remote methods.

While you can fix many errors you may encounter while creating your application on
the client, you must fix others on the server. Construct Spectrum supplies methods that
help track the origin and reason for errors. For more information, see Debugging Y our
Client/Server Application, page 161, Construct Spectrum SDK Reference.

Once satisfied with the appearance and robustness of your application, you can begin
to deploy your application for users. The following section describes how to make your
application accessibleto users.

Step 6: Deploy Your Application

>
1
2
3
4
5

Deploy your Construct Spectrum applicationsin the same way as you deploy any Visu-
al Basic application.

To deploy your client/server application:

Create the executable file.

Collect thefiles to be installed.

Create a set of installation disks.

Install the client application on theuser’s PC.

Run the application.

Note: Torun the application, the Construct Spectrum runtime environment must be
installed on the user’s PC.

For more information, see Deploying Your Client/Server Application, page 189,
Construct Spectrum SDK Reference.

— 36—

USING THE DEMO APPLICATION

This chapter provides aguided tour of ademo application created using Construct Spec-
trum. It al so describesthe underlying structure of the demo application. Usethis chapter
to familiarize yourself with the basic features avail able for client/server applications
created with Construct Spectrum.

The following topics are covered:
« Overview, page 38
» Setting Up Prerequisites, page 39
» Openingthe Construct Spectrum Demo Project, page 40
* Running the Demo Application, page 47
« Tour of the Demo Application, page 57
« Troubleshooting, page 75

37—

Construct Spectrum SDK for Client/Server Applications

Overview

The demo application isaCustomer order maintenance program. Thisapplicationisde-
signed to demonstrate the features and functions of atypical application created with
Construct Spectrum. As a demo application, certain “real-world” features, such as en-
suring invoice numbers are sequentia or order numbers are not duplicated, have been
left out. Y ou can add this type of application-specific checking when customizing your
applications. Use the demo application to become familiar with using the application
controls and components. Understanding the potential of Construct Spectrum s crucial
to planning and devel oping an application that meets your needs.

Construct Spectrum isaflexible tool and your generated applications can be as simple
or complex asyou require. Additionally, you can implement features, such as abrowse
lookup, in many different ways. Therefore, you can give your applicationsalook and
feel that is best suited to your organization’s needs.

— 38 —

Using the Demo Application

Setting Up Prerequisites

Ensure thefollowing items arein place before you begin generating applications using
Construct Spectrum:

Q Installation and configuration is complete.
Ensure that al client and server software has been installed as described in the
Construct Spectrum and SDK Installation Guide for Windows.

O Entire Net-Work kernel is running on your PC (if you are using Entire Net-Work).
An Entire Net-Work kernel that enables communication between the client and server
must be running on your PC.

O Your PCis attached to an Entire Broker node.
Y our PC must be attached to an Entire Broker node that enables access to the demo
database files and modules on the server. Use Spectrum Service Manager to configure
the Entire Broker node.

O Thedemo project’s AppSettings.bas file is set up correctly.
The AppSettings.bas file must specify the database ID (DBID) and file number (FNR)
of the FUSER filein which you installed the Construct Spectrum demo application on
the server. The default Natura library name for the demo application is SPECDEMO.

The AppSettings.bas file for the demo project is located in the same directory as your
demo application files. Y ou can modify this file using atext editor, such as the Win-
dows Notepad editor.

Consult with your system administrator to ensurethat all of thelisted prerequisites have
been met before using the Construct Spectrum demo project.

—39—

Construct Spectrum SDK for Client/Server Applications

Opening the Construct Spectrum Demo Project

This section describes how to open the Construct Spectrum demo project. A project is
acontainer for all of the components required in the client portion of your application.
All Construct Spectrum projects, including the demo project, are created using the Con-
struct Spectrum Add-Inin Visual Basic. Usethis add-in to create the project and, if
necessary, to download the required components from the server. For the demo appli-
cation, these two steps are done for you. The demo project and the Construct Spectrum
Add-1n are described in more detail later in this section.

Note: Ensurethat all of the prerequisites described in Setting Up Prerequisites,
page 39, have been met before opening the demo project.

» To open the demo project:
1 Sedlect Programs > Construct Spectrum > Construct Order Entry Project from the Start

menu.
‘Wirsfower NT Esplore
Gow
!_. Admiriratve Took [Comman]
| Mew Qs Document -, Adobe)
1" B, Adobe Aciobet v
£ OpenDfcellooment o picte dccber 40 »

8, AdcbeP 5

B Hrokaeiliive
E j [o irmarid s L _5. Corcdiic] 'Wiridows Inlisfaos E Char'gi Pasimond
o B , B ENTIREConechon 312+ @ Conuct Dude Eriy
i 5l ENTIRE MET/WORE 231 1
= 4] b b Enie v i Disgrosics
1 © o, Miciach Visusl Basc 60 # By GCD
I, Heotion, Anfus ¥) GCD Fiogest
_a T A B, Sl * [Remols Clock
E 5, Wirdowr NT &0 OptionPack. * (T Flemote Clock \wilh Dipatrher
£ B Do, &, Wridp * [P Spectum Senice Manags
@ Miciowoh Bader D Trarolstion:

Opening the Demo Application

The Construct Spectrum demo project is displayed. If Visual Basic isnot running, itis
also opened.

—40 -

Using the Demo Application

The project window contains referencesto all of the components required to compile
and run your demo application:

ry DEMID - Miciassll Vieual Bazic Jiezign]

Eis Ect Yesw [nset Aun Took Adddre Heip

5|]|]|
[-

View Fom | View Cods |

% Aot Frm bt &
[Browsslialoglptioens =fosssliskoglpton
i CUSTHECDY. fim e _CUSTOMER

[ErvroiProferences fim mf roFisfesnces

B B Tip b ImEraTp

[GenoricBrosss bim nGensichimws

1 GenmercMDIBrowse b (mGensncHDIB e

[GridSizniniofrm frmiGindS nalnfo
™ Mainbm freid
% Dpen.bm fmidpen

| 7 FRODMCDY. fm fm_PROCLCT |

Construct Spectrum Demo Project

Tip: You can set up anicon or shortcut to open the Construct Spectrum demo project.
For information, refer to your Windows help.

Onceyou have opened the project, you must run it to create aworking application. This
is described in Running the Demo Application, page 47.

41 -

Construct Spectrum SDK for Client/Server Applications

Under standing the Construct Spectrum Add-In

Usethe Construct Spectrum Add-1n to manage the development of the client portion of
your application. It is available from the Add-Ins menu on the Visual Basic menu:

. Praject] - Micsoeoft Visual Basic [design]

Ele Ect Wew Projech Formet [ebug Bun Query Discram Toold Spectrum | Add-Ins Window Help

H-n-T @ W B o oy g ow | M deudDataMansger.,
fidd-Ini Maniager...
Dok Generated vodie:... [
Craatn b Progect. .,
Eraferances,.,
dbout

Construct Spectrum Add-In

The Construct Spectrum Add-In options are:

Add-In Option Description

Download Downloads generated modules from the server to your

Generated Modules application project. For the demo application, this has aready
been done.

Upload Modules Preserves user exit code that has been added on the client. For

example, if you add user exit codeto a Visual Basic
maintenance object on the client, use this option to upload the
business object module to the server so the codeis preserved
upon future regenerations of the business object.

Create New Project Creates a project for your Construct Spectrum client/server
application. For the demo application, this has already been
done.

Preferences Allows you to select aremote dispatch service. To allow
access to the mainframe for downloading, enter your user ID
and password in the appropriate fields.

About Identifies the Construct Spectrum version level you are using
and contains PC resource information, such as available
memory.

—42 —

Using the Demo Application

Under standing the Demo Pr oj ect

The demo project contains all client componentsrequired to make afully functional cli-
ent/server application. The client components consist of framework components and
generated modules. These are briefly described in the following sections. Also included
in the following sections are diagrams showing both aframework component and agen-
erated module as they appear before and after the project is run.

Framewor k Components

Framework components are reusable application components. These components pro-
vide a skeleton of functionality that interactswith generated and hand-coded Construct
Spectrum modulesto create a client/server application. When you create a project using
the Create New Project option on the Construct Spectrum Add-1n menu, framework
components are automatically included in your project.

The following example shows one of the framework components in your project: the
Construct Spectrum Multiple Document Interface (MDI) frame:

& Project] - kmMain [MDIForm] [Bead Only]

"EI M1 Frame
File Edit Achons Ophtionz Window Help

=| 4|ml|| x|o| 2] Ble|n|@|Rl | S

MDI Frame Before Running Project

—43 -

Construct Spectrum SDK for Client/Server Applications

When you run the project to create your demo application, the frame looks similar to
the following example:

i@ Construct Demo Applit&itiun H=]
File Edit Actionz Option: Window Help

=2 N el e 15 B 4 s e il [=X A A N =

| 9/22/99 [O1AIPM

MDI Frame After Running Project

Use thiswindow to access standard options, such as Open or Close, aswell as business
objects and maintenance actions such as Update, Delete, Move, and Next. For morein-
formation, see Under standing and Customizing the Client Framework, page 207.

—44 —

Using the Demo Application

Generated Modules

Generated modules are specific to your application. For example, the demo has a num-
ber of windows to maintain customer orders and products. Other generated modules
include, but are not limited to, Visua Basic maintenance and browse objects, subpro-
gram proxies, and PDA definitions. Generated modules are created on the server; those
required on the client are downloaded to your Construct Spectrum project using the
Download Generated M odules option on the Visual Basic Add-Ins menu.

The generated modules required for the demo have already been downloaded for you.
The following diagram shows one of the generated componentsin your demo project:
the Order Mai ntenance window:

Order Maintenance Form Before Running the Project

— 45—

Construct Spectrum SDK for Client/Server Applications

When you run the project to create your demo application, the window |ooks similar to
the following example:

I'E' Construct Demo Application h Hi=]
File Edit Actionz Optionz: ‘Window Help

2| o=@ %o 7| oler O m|la]» 62| S

a8 Order Maintenance [123] -
Order Mumnber: 123
Order Amount: |$300.00

Order D ate: IW

Customer Mumber: I'IES— j
Warehouze [d: W j Warehouze 802
Irwaice Murnber: |34—

Delivery Instructions: Confirm delivery with Jack Fendled
Product: |
Froduct Id Line Dezcription Guantity | Unit Cosgt
1112 Stainless steel ralings 10
2
3
4
E

: L : (et} l
‘I'i.. S I I . I ’

| 9422093 | D216FM

Order Maintenance Form After Running the Project

Usethiswindow to maintain customer order information for your demo application. For
more information, see Overview of the Development Procedure, page 30.

— 46 —

Using the Demo Application

Running the Demo Application

This section describes how to run the demo application to add, delete, and update
recordsto your Customer Order demo application. Experiment to become familiar with
the user interface and various features that you get with any Construct Spectrum
application.

This section also contains information about some of the standard features that you get
with every application developed with Construct Spectrum.
» To create the demo application:

1 Open the demo project as described in Opening the Construct Spectrum Demo
Proj ect, page 40.

Select Start from the Run menu.

3 Click OK.
Do not type auser ID or password in this window; the default user ID for the demo
application is SY STEM and no password is required.

—47 -

Construct Spectrum SDK for Client/Server Applications

When the project successfully compiles, the MDI frame is displayed:

i-ﬁl Construct Demo Application

File Edit Actionz Option: Window Help

2| o|zl@ x| 2] e ol || S

9/22/93 | 0217 PM - o

MDI Frame

Y ou can use the demo application aslong asthe Visual Basic devel opment environment
is running. Steps 4 to 7 describe how to create an executable file from which you can
use the demo application independent of the Visual Basic development environment.

Select End from the Run menul.
The MDI frame closes.

—48 —

Using the Demo Application

5 Select Make EXE Filefrom the File menu.
The Make Project window is displayed:

Makaraet /) 1) 0) 1) 7)))) |
Save jr: Igﬂ j ﬁl E:

1 “mzsetup.t [HtrilHelp [pzafonts [
|1 Acrobat3 3 Inetpub 3 Sag (
] AalZ5i =3 ¥.pcms =3 SpectrumaBOPojects |
1 Audia = by Documents = Spectumiw'ebProjects |
| 1Dos [Nedtres =3 Temp
i Ewchange 55 Program Files 55 unzipped

| |

File name: IEIr-:Ier Entrp.exe K.
Cancel
Help

Options...

dddin

Make Project Window

By default, the executablefile (DEMO.exe) is saved in the ConstructOrderEntry direc-
tory in your Demo folder.

6 To savethe executablefile to another directory or with a different name, type new
information in thiswindow. When you are ready to replace the existing executablefile,
click OK.

The executablefileis compiled and saved.

7 Locate and execute the file using the Run option on the Taskbar.
Alternatively, you can create a Windows shortcut to the file and double-click the
shortcut icon.
When the Logon window is displayed, click OK to start the demo application.

—49 —

Construct Spectrum SDK for Client/Server Applications

Application Interface

This section describes the user interface provided by default with all Construct Spec-
trum applications. Thefirst window displayed when you start the demo isthe Construct
Spectrum M ultiple Document Interface (MDI) frame. Thisistheworkspacefromwhich
you manage your business objects, such as:

» Order object

» Customer object
» Product object

» Warehouse object
» Province object

Note: The Province object is atablein a Predict validation rule.

Onthe MDI frame, you can select an object for an action, such asto open it to maintain
or browse records. The M DI frame consists of the components shown in the following

example:
B! COMSTRUCT Damo Apphicstion
Menu —— Fils Edl #ctiors [Opdon: Windew Help
Toobar ——— @ i [mlm| || 2] Yle|m|w|m|e|w| &
Application
Workspace —
Status Bar ———— B2LAT | B P

MDI Frame Window

—50 -

Using the Demo Application

Menu Options

The following table describes each menu option in the MDI Frame window

Menu Option

Description

File

Edit

Actions

Options

Window

Help

Contains options to open or close abusiness object, 1og off, or exit
the application.

Contains options to cut, copy, paste, undo or delete typing. Also
contains optionsto add or delete rows of information; for example,
when maintaining a customer order, you can add or delete rows of
order information.

Contai ns methods for working with your application, for example,
methods to add, delete, or get an object record. The methods
available from this menu correspond to the methods associated
with the business object.

Contains notification options for handling errors when they are
encountered. For example, when an error occurs, you can chose to
be notified by a sound, an error message, or both. Also contains a
Services option to select between different dispatch services. For
an example, see Additional Options, page 54.

Contai ns optionsto manage the windowsthat are currently open on
your MDI frame. For example, you can move between open
windows using this menu.

Contains optionsto access help for your application. Also contains
an About option from which you can display standard information
about the application as well as standard system resource
information.

Toolbar Options

Toolbar button options are available for the most commonly used menu options. These
are described in the following table.

—-51—

Construct Spectrum SDK for Client/Server Applications

Note: Todisplay the name of atoolbar button, place your cursor on the button for at
least two seconds; atooltip containing the name is displayed.

Toolbar Button

Description

@

X B |& |

| 5

B |

e 2

e |=

Displays the Open dialog, where you can select a business object
and one of its associated actions for opening.

Cuts the selection to the Windows Clipboard.

Copies the selection to the Windows Clipboard.

Pastes the selection to the Windows Clipboard.

Deletes the selected characters.

Undoesthelast typing sequence you did; for example, if you delete
aline of information using the Backspace key, clicking this button
restores the line of information.

Displays online help for Construct Spectrum.

Adds a new record.

Retrieves alisting of records from the server. You can select a
record from thelist to do some further action to it.

Clears the currently displayed record from your desktop. If there
are unsaved changes, you will be asked to save them; otherwise,
changes will belost.

Deletes the current record.

Retrieves the specified record.

Retrieves the next record. If there are unsaved changes to the
currently displayed record, you will be asked to save them;
otherwise, they will be lost.

52—

Using the Demo Application

Toolbar Button Description (continued)

Updates the currently displayed record to the server database.

=i

Prints the selected object in the MDI frame.

Application Workspace

The Application workspace is where you work with your business objects. When you
open one or more business objects, such as a customer order or awarehouse browse ob-
ject, they are displayed on this workspace:

Iﬁ' Construct Demo Application =]
File Edit Acton: Options Window Help

=] 2lmlm| x[o] 7| bl D] @R+ e S

City: IT:::ru:untc:
rrovies IDntaril:l (] wWarehouse Bmwse A _ O]]
Postal Code: I_
Warehouze |0 | Dezcription |
Shipping Strest: Im a0z | Warehouse A02
chiosia iy IW
Shipping Province: W
Shipping Postal Code: I_
Contact: Im
Credit Rafing |3_ Selection Key Range Filter
Credi Limit [$20.000.01 [Werehause ID =l = =] optins Get
Digcount i 12.00 Wwarshouze |0
Warshouse |d: W E W
| aF. Cancel

| Records displayed: 1

| 942299 | D1E2ZPM

Open Documents on the Application Workspace

— 53—

Construct Spectrum SDK for Client/Server Applications

The MDI frameis a parent window to all business objects. Y ou can manage your busi-
ness objects through the MDI frame. For example, you can move between open objects
using the MDI window menu commands. The previous diagram depicts a number of
open objects on the application workspace.

Status Bar

The status bar displays messages and information about the current state of your appli-
cation. For example, if you attempt an action that is not currently available, the status
bar displays the following message:

| Thiz command is rot available | | | 4417497

Status Bar

Additional Options

The following sections describe additional options available from the MDI frame:
« Error notification options
» Remote dispatch service options

Error Notification Options

Users can specify how they are to be notified when an error is encountered while using
an application. For example, users can specify that the text box containing the error be
highlighted and that information about the error be displayed immediately or only when
the text box is selected.

» To modify error notification options:

1 Start the Demo.exefile created in Running the Demo Application, page 47.
The Logon window is displayed.

2 Click OK.
The Construct Demo Application MDI frame is displayed.

—_54 —

Using the Demo Application

3

4

=

On the Options menu, click Validation Errors.
The Error Notification window is displayed:

=] Error Nutiﬁcat;*:m Options

After receiving an object error, do pou
want b

v Dizplay popup emar message Cancel 1

[T Dizplay hidedshow instructions

[~ Dizplay sound icon
[~ Play audio eror message

v Highlight color on erraor field

Set Foreground Set Background] m

Error Notification Options

Select the check box(es) corresponding to the error notification options you want to
enable.

If you selected the Highlight color on the error field option, choose the highlight colors
by clicking the Set Foreground and Set Background buttons.

Later in thischapter, you will experiment with text box validations by entering incorrect

valuesin atext box. At this point, try experimenting with your error notification op-
tions. Text box validations are described in Validations, page 61.

Remote Dispatch Service Options

Spectrum dispatch services can be set up for distinct unitsin your organization. For ex-
ample, you could have one Spectrum dispatch service for your inventory control users
and another one for your payroll users. Users who have been set up to access multiple
Spectrum dispatch services do so by selecting the appropriate service from the MDI
frame. For moreinformation about Spectrum dispatch services, see Construct Spectrum
Administration.

To select aremote dispatch service:
Start the Demo.exe file that you created in Running the Demo Application, page 47.

Click OK.
The Construct Demo Application MDI frame is displayed.

— 55 —

Construct Spectrum SDK for Client/Server Applications

3 Sdect Service from the Options menu.
The Select Remote Dispatch Service window is displayed:

Select Remote Dispatch Service k |

Q 5 Select a remote dispakch service, ok

i =7

Cancel

Service: DISPATCHER-0AST - Dispatcher

Select Remote Service Dispatch Services Window

4 Select the Spectrum dispatch service you want to use.
Any open windows on the MDI frame are closed and you are prompted to save any
unsaved changes.

Y ou can now access the business objects available from the specified Spectrum dis-
patch service.

— 56—

Using the Demo Application

Tour of the Demo Application

This section describes many of the features and functions of the demo application by
taking you on a guided tour of the customer order maintenance and browse functions.
Some features are provided by default with every Construct Spectrum-generated appli-
cation, while others are based on the Predict setup of your application files and fields
on the server. Both types of features areidentified in the following sections. For Predict
features, you are also provided with information about the set up required to make the
features available.

This section also contains alisting of the standard keyboard shortcuts available with al
Construct Spectrum applications.

Y our tour of the demo application involves working with customer orders. Y ou will
maintain and browse customer orders. Asyou do this, you will perform varioustasksto
give you an idea of what the application can do. Y ou should be able to develop appli-
cationsthat are at least as functionally rich asthe demo application. At this point, do not
worry about the details of how things work, but try to get an understanding of what fea-
tures you can providein your own application.

Opening a Business Obj ect
In this section, you will open an order business object. It will be used to demonstrate
most of the Construct Spectrum features described in the remainder of this chapter.
» To open acustomer order business object:

1 Start the Demo.exefile created in Running the Demo Application, page 47.
The Logon window is displayed.

2 Click OK.
The Construct Demo Application MDI frame is displayed.

—_57—

Construct Spectrum SDK for Client/Server Applications

3 Select Open from the File menu.
The Select a Dialog window is displayed:

@] Select a Dialog E |

Objects: Actions:
Maintenance
Custorme Browse
Product
Warehouse
Province

Clrcler] I Cancel

Select a Dialog Window

4 Select Order from the Objects column.
The available actions for the Order object are displayed in the Actions column.

5 Select Maintenance from the Actions column.

Note: This procedure assumes you are opening a business object for maintenance.
To browsefor arecord, select Browse from the Actions column.

_58—

6 Click OK.

The Order Maintenance window is displayed:

iﬁl Construct Demo Application

File Edit Actionz Options

Window Help

Using the Demo Application

=) e[| x| 7] EledD|m(a)»[er| &

Order Murnber:
Order Arnaunt:
Order Date:
Cusztarner Murnber:
Warehouse |d:

|nvoice Mumber;

Delivery [nstructions;

&% Order Maintenance

IS[=] E3

Froduct:
Praduct 14 Line D'ezcription [uantity | Uit Cogt Tatal Cost
1
2
K]
4
E
EE':'St Acct |Project| DistAmount [
enter
1
=

T ul

| 9/22/39 | 0223PM

Order Maintenance Window

— 50 —

Construct Spectrum SDK for Client/Server Applications

7 Click Next.
Thefirst customer order record is displayed:

=k Order Maintenance [512) M= F

Order Mumber: A1z

Order Amount; |288.EIEI

Order Date: IW
Custorer Mumber; |123— j
W arehouse |d: W j
[reeoice Mumber: |1—

Deliveny Instructions: Canfirm delivery with Jack Fendler.
Product;
Froduct Id Line Description Cuantity | Unit Cost Total Cost [
11111 Iron railings 24 12.00 288,00
2
3
Fl
=
Diztribution [2];
I:E':'St Acct (Project| Dist Amount |2
enter
1)tc 231 |5
1| i B

| 89/23/33 | 0212PM

Order Maintenance Window With an Open Order

The following section describes some of the standard features of the demo application
by using an order object.

— 60—

Using the Demo Application

M aintaining a Business Object
This section demonstrates some of the standard features availableto help usersmaintain
their business objects. This section covers:
« Validations
» Business datatypes (BDTs)
« Grids

The features described in this section are demonstrated using the customer order object
opened in Opening a Business Object, page 57.

Tip: In addition to experimenting with the features described in this section, try add-
ing, updating, and deleting a customer order.

Validations

When a LostFocus event istriggered in atext box, it is validated. For example, when a
user types avalue in atext box and tabs to the next text box, a L ostFocus event istrig-
gered and the text box is validated. Four types of validations occur on the client:

» Basicdatatype
These validations verify that the format and length of an entered value is acceptable for
the particular field.

« Business datatype (BDTS)
These validations ensure that datais formatted consistently and in away that is easily
understood. For example, if al datesin your organization should be formatted with for-
ward slash (/) delimiters, you can assign aBDT to format such values. If auser enters
avalid date without forward slash delimiters, the BDT formats the date when a L ostFo-
cus event occursin the date text box. BDT validations are described inBusiness Data
Types (BDTs), page 63.

» Loca businesstype
These validations are based on your business rules. For example, alocal business vali-
dation can ensure that one of afinite set of valid valuesis alowed in thefield, such as
avalid province code. A more complex local businessvalidation could calculate the
provincial tax amount on an order based on the province code entered.

» Foreignfield type

When afield in amaintenance window is akey field in aforeign file, Construct Spec-
trum generates code to validate thefield using the foreign file. For example, the Order
window in the demo application has a Warehouse ID text box that isa key field in the
Warehouse file. When a LostFocus event is triggered in the Warehouse ID text box,
Construct Spectrum verifies that the Warehouse ID entered isavalid ID. For morein-
formation about foreign field validations, see I ntegr ating Browse and Maintenance
Functions, page 275.

For more information about basic datatype, business datatype, and local businesstype
validations, see Validating Y our Data, page 261.

—61-—

Construct Spectrum SDK for Client/Server Applications

» Totest how avalidation works:

1 Open an Order object.
For information, see Opening a Business Object, page 57.

Type an invalid warehouse ID in Warehouse ID.

Select Update from the A ctions menu.
The Warehouse ID text box is highlighted and, depending on how your Error
Notification options are set up, an error message is displayed. Or you can select the

highlighted text box to display the message. For more information, see Error
Notification Options, page 54.

w

I'E' Construct Demo Application =]

File Edit Actionz Optionz Window Help

= 3| x| 7] BlaD|mlR e S

&k Order Maintenance [512] h
Order Mumber: a1
Order Amount: | 15000.00

Order D ate: IW .
Customer Mumber: |123— j S&GA Software, Inc.

Warehouze |d: m j Warehouze 407

[reeice Mumber: I'I—

Delivery |nstructions: IEanirm delivery with Jack Fendler. _ILI
| | r

| 9422093 | D233FM

Validation in the Warehouse ID Text Box

4 To correct the problem, type avalid warehouse ID in the text box (or select avalid
warehouse from the drop-down list box).

5 Select Update from the Actions menu.

—-62 —

Using the Demo Application

Business Data Types (BDTYS)

Business data types (BDTs) help ensure that information is displayed in away that is
consistent and easy to understand. For example, aBDT can reformat a telephone num-
ber that was entered without dashes or round a numeric value.

Construct Spectrum comes with a number of predefined BDTs you can customize and
attach to any field based on your business requirements. When a user enters avalue in
thefield, formatting is applied automatically when alost focus event occurs (for exam-
ple, when the user selects another field or option).

» Totest how aBDT works:

1 Open aCustomer Order object.
For information, see Opening a Business Object, page 57.

2 Placeyour cursor in the Order Amount text box and type “ 15007 :

I'El Construct Demo Application k

File Edit Actionz Optionz Window Help
2| o |Em| <[] 7] Bl D @R 26 S

=8 Order Maintenance [123)]

Order Mumber: 123

Order Ammount; |1 5o -
« I _>I_I

| 9422093 | D235FPM

Value Before BDT Formatting Occurs

—-63-—

Construct Spectrum SDK for Client/Server Applications

3 Click outside the Order Amount text box.

The value you entered is formatted with a decimal and two trailing zeros:

] Construct Demo Albpli

File Edit Actionz Option: Window Help

= 4= x| 2] Bleln| w2 S

ak Order Maintenance [123)

Order Mumber: 123

Order Amaourt: |$1 500.00 -
4| | _’I—I

| | 9422093 | O236FM

Value After BDT Formatting Occurs

Enter an aphabetical character in the Order Amount text box to see what happens. In
this case, the BDT for Order Amount was set up to convert alphabetical charactersto
zeros. Optionally, an error can be displayed if alphabetical characters are entered.

Grids

Grids display rows of related information about abusiness object. The Order object
contains the Product grid, which displaysthe individual lines for a particular customer
order. Each row corresponds to a separate order line. In thefollowing diagram, thereis
one order line, Cat Nuggets, for the customer order:

Li: Desscription I [i | Lt =]
10

18531 AT HNUGEE TS =

1.
2
3 -

4 1 I

Grid Showing Order Lines for a Customer Order

Experiment with the grid by adding and deleting additional order lines.

—64—

Using the Demo Application

s
1

I\JI—‘V(AJ N

NoR oy

To add an order line:

Open a Customer Order object.
For information, see Opening a Business Object, page 57.

Place your cursor on an empty order line and compl ete the cells.
Use the horizontal scroll bar to access additional information on the grid.

Select Update from the A ctions menu.

To add anew order line between two lines:

Select the row immediately above the location where you want to add a new row.
Select Insert Row from the Edit menu.

An empty row is added below the selected row.

To delete an order line:

Select the order line.

Select Delete Row from the Edit menu.
The selected order line is deleted.

Grids can also be linked to browse functions and nested grids. For information on using
abrowse window from agrid, see Browsing For a Business Obj ect, page 67. See the
following section for information on nested grids.

Nested Grids

Nested grids show additional information related to arow or asinglecell inagrid. The
Order object has anested grid containing the distribution information for each order
line. The Distribution grid is nested to each order linein the Product grid. In the follow-
ing example, two distribution lines are set up for the Cat Nuggets order:

Coat | Project | Disl Amount -~

Cenis
11 521 |4 Elige
14 333 [8d 7500

= ek P —=

Nested Grid Showing Distribution for an Order Line

Select thefirst order line in the order object and then another order line; notice that the
Distribution grid changes depending on which order line you select. Thisis becauseyou
can have multiplelines of distribution for each order line. To accomplish this, the dis-
tribution grid was set up as anested grid.

— 65—

Construct Spectrum SDK for Client/Server Applications

Nested Drop-Down Grids

Y ou can set up anested grid to “ drop down” for acell within agrid. When auser selects
the cell, the drop-down grid displays additional information. For example, suppose you
had a grid showing customer accounts and one of the grid cells showed thefirst of up
to five lines of the customer’s address. Y ou could set up anested grid containing the
remaining lines of address information.

The demo application does not have a drop-down grid. The following procedure con-
tains adiagram of a sample drop-down grid to show you what one looks like.

Tip: Cells containing drop-down grids areidentified with gray shading and an occur-
rence number in brackets () for each repeating valuein the grid.

» To display adrop-down grid:

1 Select the cell containing a drop-down grid.
A down arrow is displayed in the cell.

2 Select the down arrow.
The drop-down grid is displayed:

| rizome:
Currency | Annual Bonus L%
code galary

1|0k BEQ00 [1] BE2 b

2(U5 59000 (11900 Drop-down

3|COM 75000 (111200 column —

41T 95000 3178 |- placeholder for
50 drop-down grid
1023
A\

\— Drop-down grid

for repeating
field (Bonus)

Sample Drop-Down Grid

To learn more about working with drop-down grids, see Keyboar d Shortcuts for
Grids, page 67.

— 66—

Using the Demo Application

Keyboard Shortcutsfor Grids

Thefirst two keyboard shortcuts apply to aselected grid row. Select agrid row by high-
lighting the number to the left of the grid row. The remaining shortcuts apply only to

nested drop-down grids.

Keystroke Action

Del Deletes the selected row of information from agrid. If
the row has child grids, these are also del eted.

Ins Insertsablank row above the sel ected row. If the sel ected

Alt+Down Arrow
Alt+Up Arrow or Esc

Shift+Alt+Down Arrow

Shift+Alt+Up Arrow

row has child grids, these are also inserted.
Displays the drop-down grid.
Hides the drop-down grid.

Displays the next value in adrop-down column without
displaying the entire drop-down grid.

Displays the previous value in adrop-down column
without displaying the entire drop-down grid.

Browsing For a Business Object

Browses enable you to search for and select records. For example, if you want to update
an order but do not remember the order number, you can locate and select the order us-
ing the order browse. Construct Spectrum provides anumber of methods to browse for
abusiness object. Browse windows can be invoked as a menu option or from a mainte-
nance window. This section describes some of the ways users can browsefor data, as
well as some of the features available to customize abrowse. This section covers:

Selecting a business object from a browse window

Specifying browse customization options

—67 -

Construct Spectrum SDK for Client/Server Applications

Select Data From a Browse Window

This section describes anumber of waysto search for and open records from a browse
window. Y ou can open abrowse window directly from the File menu or from a main-
tenance window.

Open a Browse Window from the File Menu

To open abrowse window from the File menu:

Select Open from the File menu.
The Select an Object/Action window is displayed.

Select Orders from the Object list box.
The available actions for the Order object are displayed in the Actions list box.

Select Browse from Actions.

Click OK.
The Order Browse window is displayed:

Ouder Bromss

Drder Hurber | Dlschas Aermuri | Dreder Dabm | Cutorress Mussbe | -
1M $11Em T 10000
1A §545 00 et Pz 2
12 510,200 () B 24 FeeE]
13 2 Eoces)
m 1500) TN 100001
a3 $1.500000 120748 3333
1111 §1. 500000 24 24 10003
1238 11,500,000 M 1111
91 12 100 Tl 1
111132 £7 1500 V1948 1111 =
Dpdion: | [ETE I
Dt Mashen
[i11
Doabeie Updaie.. 0K | Cancal |
Aecoids dplagped: 13 EQD

Order Browse Window

Click Get.
A list of ordersis displayed in the window.

Select an order.

Click Update.
The Order Maintenance window is displayed with the selected order.

- 68—

Using the Demo Application

Tip: TheUpdate and Delete optionsin the Order Browse window were created by add-
ing Update and Delete commands to the command handler for the demo applica-
tion. For information about adding these and other commands, seeCr eating and
Customizing Browse Dialogs, page 175.

Open a Second Order

To browse for and open a second order:

Open an order to perform a maintenance activity.
For information, see Opening a Business Object, page 57.

Select Browse from the Actions menu.
The Order Browse window is displayed.

Click Get.
A list of customer ordersis displayed in the window.

Select another order.

Click OK.
Details for the selected order are displayed in the maintenance window.

Open Foreign File Information

When a maintenance dialog containstext box or grid information that is defined in a
another file (foreign file), Construct Spectrum automatically adds a browse function to
the foreign field or grid information. For example, the Order Mai ntenance window in-
cludes the Customer Number text box, which is defined in the Customer file. Y ou can
initiate a browse from thisfield to locate and select a customer number for an order. In
the following procedure, you will browse the Customer file from the Order Mainte-
nance window.

—69 —

Construct Spectrum SDK for Client/Server Applications

» To open the Customer Browse window from the Order M aintenance window:

1 Open the Order Maintenance window.

2 Select the Down arrow to the right of the Customer Number text box.
The Customer Browse window is displayed:

Cuztomer Diowsa [_ 8] =|
Cudnme hharhe | Enprmis Mame | P Humbe | & amhouss ID | -
1001 Jouprepnan Fatncsirg 519 2345422 B32
10002 L= Fliwees Cuslom Fabaoosting [519] B23-E350 113
T2 MLMIEN ST LL R 218 B2 112
1004 STEELFALLCD IMC [519] B850 117
1000 CAMERIDGE TWSTEREQD B9 RZ3-24% 55
1000 PALILS VINEYARDS 519 2336200 222
10007 STANDARD TOOL axi DIE 18] R23-166S 222
TNE U TIHE DaMadh, ML [21Y) bl Sl L
Lo iic] AUTIWTORES [519) B3esh0 20
100110 TIEM SLIM [519] BZ3-5550 544 d
|' Ot :l et I
Cr ot Mol
|1:l'. 1]
Orders. | i | Cancal I
Aemcoids dplagped: 20

Customer Browse Window

3 Click Get.
A list of customer records is displayed.

4 Select acustomer number.

Click OK.
The selected customer number is displayed in Customer Number in the Order
Maintenance window.

The Order Maintenance window also has a browse window linked to the Product grid.
Use this browse to select a product.
» To open the Product browse window from the Product grid:

1 Click acell inthefirst column of the grid.
A Down arrow is displayed:

Proxuict |d Lirve: hesscriplion l Gl usarting | Lt 2]
1187351 _=|CAT HUGGE 15 10 —
2
3 -

al | o[|

Grid with Down Arrow Displayed

—70 -

Using the Demo Application

2 Click the Down arrow.
The Product browse is displayed with alist of products.

Select a product.

Click OK.
The selected product isdisplayed in the Product grid in the Order Maintenance window.

Specify Browse Customization Options

Construct Spectrum-generated browse dialogs include options that enable you to nar-
row your search criteria and to customize the information displayed in the browse
window. The following topics are covered in this section:

» Specifying selection options
« Specifying display options

Specify Selection Options
Y ou can specify selection options to display as many or as few records as you want.

» To specify selection options:
1 Open the Order Browse window.
For information, see Select Data From a Browse Window, page 68.

2 Click Options.
The Browse Dialog Options window is displayed with the Key Options tab selected:

= Browse Dislog Options

Seedaxzlion E ey Fnrige Filisr Freed Field:

| Decken Huriza = = = =]

B Shoaw Sedection Eey
I Shewe Rangs Oplion
[T Siwe Fays Seltrgs

ok | Cawel .ﬁ.pﬂ.ll

Browse Options — Key Options Tab

3 Ensurethat Show Selection Key and Show Range Options are selected.

—71 -

0 N o O

Construct Spectrum SDK for Client/Server Applications

Click OK.
The Browse Options window closes and the Order Browse window is displayed.

Select Customer Number from the Selection Key drop-down list box.
Select the greater than symbol (>) from the Range Filter drop-down list box.
Type“ 777" in Order Number.

Click Get (or press Enter).
The Order Browse window displays all customer order numbers greater than 777:

LU T B AP

Orde Mumber | Drder denond | Doder Date | C =
i 1500 (1)
124 $1.50000 o
111113 $1221000
111114 R B
123 F2.000 00 -
4| | v
S election ey Fsrge Fltar
[Chices M = = = Optors | [Gei
i T
|ﬁ'.|
(1] 4 Carcel
Facoide cheplapsd 12 EQD

Order Browse Window

Specify your own selection options by experimenting with Selection Key, Range Filter,
and Order Number.

Specify Display Options

Y ou can customize your browse window to show as many or few columns of informa-
tion as required.

To customize the display options for your browse window:

Open the Order Browse window.
For information, see Select Data From a Browse Window, page 68.

Click Options.
The Browse Options window is displayed.

72—

Using the Demo Application

3 Select the Column Visihility tab:

= Browse Dislog Options

Disda Coiivc:

w Dy Mumbes

o [l Sl
Oirdies Dphe

W Ciugbormet Mumizey
W sy e 10
Irspgacss Mismbier
Urdi ©irvazsiamp
CHdediven Iraliuchion:
Diakwety Instaachons
Lrigus |d

[Saws Diabas Cobann Sefing:

ok | Cawel .ﬁ.pﬂ.ll

Browse Options — Column Visibility Tab

4 Clear al check boxes except Order Number, Order Amount, and Customer Number.

Clear the Save Data Columns check box.
To save your column selections on closing the Order Browse window, select this check
box.

73—

Construct Spectrum SDK for Client/Server Applications

6 Click OK.
The Order Browse window is displayed with the Order Number, Order Amount, and
Customer Number columns only:

LU T B AP

Qs Musmbes | En:hl.ﬁnni.nl:l Cophiores Mumnbes | -
e 31 500000 TN
124 §1. 500000 1111
117012 £ 2200000 1111 =
111114 a8 FrEry
123 £9,000000 100
200004 757300 100 ;l
S election ey Fsrge Fltar
[Chices M = = = [Tpion: | Giel |
Doy b umizeey
|ﬁ'.l
OF. Carced
Facoide cheplapsd 12 EQD

Order Browse After Specifying Display Options

Specify other display options by experimenting with the values on the Column Visibil-
ity tab in the Browse Options window.

—74 -

Using the Demo Application

Troubleshooting

If you encounter errors while using the demo application, ensure that all prerequisites
listed in Setting Up Prerequisites, page 39, have been met. Y our system administrator
can help you with this.

In diagnosing the problem, refer to the Construct Spectrumand SDK Installation Guide
for Windows and Construct Spectrum and SDK Installation Guide for Mainframes to
ensure that the client and server components have been installed correctly.

—75—

Construct Spectrum SDK for Client/Server Applications

—76 —

USING THE SUPER MODEL TO GENERATE
APPLICATIONS

This chapter describes how to generate all of the application modules required to create
a Construct Spectrum client/server application using the super model (VB-Client-Serv-
er-Super-Model).

The following topics are covered:
» Overview, page 78
» Before You Begin, page 80
» Generating with the Super M odel, page 86
» Troubleshooting, page 100
« Transferring Your Application to the Client, page 100

77 -

Construct Spectrum SDK for Client/Server Applications

Overview

The super model, VB-Client-Server-Super-Model, is designed to be used as part of a
rapid application development (RAD) process, whereit is important to be able to gen-
erate aworking client/server application from a minimum of input parameters.

The super model drivesthe generation of all the required modulesfor aclient/server ap-
plication using a single high-level model specification. For example, given a set of
database file names defined in Predict, all the client and server modules required for ful-
ly functioning maintenance and browse services can be generated.

A single super model specification can generate al of the maintenance and browse
modules required for up to 12 packages. A package contains the modules required to
provide both browse and maintenance services for a business abject. For example, the
modul es that make up the maintenance and browse services for a Customer Order busi-
ness object are referred to as a package.

If you are creating a new application, or adding a graphical front-end to an existing ap-
plication, the fastest way to do thisis by using the super mode. The super model
invokes each of the models necessary to produce the modules for your application:

Super Model
(high level specification)

\ 4 Generate
Models (up to 9) for
each
Business Object Object
Factory

Generate l
Module5

| Module4

| Module3

| Module2
| Module 1

Module1l
| Module10
| Module9
| Module8
| Module 7

Super Model Generation Overview

Tip: The super model does not allow you to specify user exits. To specify user exits,
regenerate using the specific model that supports the desired user exit.

—78 -

Using the Super Model to Generate Applications

Using the super model, you can specify one or more high-level specifications. Each
high-level specification corresponds to a business object such as a Customer Order ob-
ject. Together, these specifications define the business objectsin your client/server
application. Next, select the modelsto run for each high-level specification. These mod-
els, using information derived from the business object’s Predict file and field
definitions, supply the specifications required to produce the Visual Basic and Natural
modules for your application.

Because the super model requires few specifications, it uses many default values. If
necessary, you can fine-tune and customize a module by re-generating it individually.
Re-generating with theindividual model enablesyou to override default values, add ad-
ditional specifications, and add user exit code.

Another advantage to using the super model isthat you can select to create an object
factory module that defines all business objects within the application. The object fac-
tory performs many functions, for example, it enables you to use the Open dialog by
providing the names of all business objects within the application along with the actions

they support.

Tip: If your application requires more than 12 packages, generate with the super mod-
el as many times as necessary to create al of the required modules.

Typically, you will use the super model to generate application modules when you de-
velop the first iteration of your application. Asyou refine your application, you will
likely need to regenerate certai n application modules. In most cases, you will regenerate
these modules separately using the individual models. Step-by-step instructions for
generating application modules with the individual models are provided in the follow-
ing documentation:

Generating a Subprogram Proxy, page 105, Construct Spectrum SDK Reference
Object-Maint Models, page 347, Natural Construct Generation

79—

Construct Spectrum SDK for Client/Server Applications

Before You Begin

Before using the super model, do some planning and research to make your generation
procedure go smoothly. This preparation includes:

» Edtablish anaming convention

» Determine the domain name

» Understand the object factory

» Determine the Predict default values

» Decide which modules to generate
These tasks are described in the following sections.

Establish a Naming Convention

Establishing a naming convention isimportant because modulesfor up to 12 packages
can be created with the super model at onetime. A naming convention allows you to
easily identify the package a module belongs to and what type of moduleitis.

If you use the super model, all the modules belonging to a package are given the four-
character prefix you assign. If you assign a prefix that isless than four characters, the
prefix is padded with dashes.

The module name suffix is defaulted by the super model. The suffix identifies the mod-
ule type and can be up to four characters in length.

The following diagram shows the default naming conventions for a generated module:

“M” for Maintenance or
“B” for Browse

“C"for Client or

“S” for Server
“CUST" for Customer i
Identifies the purpose of
the module
CUSTMCDV
Four-character prefix Four-character suffix
assigned by you assigned by system

Naming Conventions for a Generated Module

— 80 —

Using the Super Model to Generate Applications

Note:

These naming conventions apply only to modules generated by the super
model.

Thefollowing table lists the default suffixes for modules generated by the super model:

Default Suffix

Module

MSD
MSA
MSR

MSP
MCPV
MCDV

BSO
BKEY
BROW
BPRI

BSP
BCPV

Note:

Note:

Object maintenance subprogram
Object PDA (parameter data area)
Restricted PDA

Y ou cannot select the PDAsindividually for generation. They are
generated by the Object-Maint-Subp model.

Subprogram proxy for the object maintenance subprogram
Visual Basic maintenance object

Maintenance dialog

Object browse subprogram

Key PDA

Row PDA

Restricted PDA

Y ou cannot select the PDAsindividually for generation. They are
generated by the Object-Browse-Subp model.

Subprogram proxy for the object browse subprogram

Visual Basic browse object

Tip: You can override adefault name by typing over the default value in the super
model specifications.

—-81-—

Construct Spectrum SDK for Client/Server Applications

Under stand the Object Factory

Each Construct Spectrum application contains a module called the object factory. The
purpose of the object factory isto make an application aware of its objects and the ac-
tions, such as a maintenance or browse action, associated with the objects. Each
application aso has an Open dialog (Open.frm) that enables users to select an object
and one of its corresponding actions. When a user displaysthe Open dia og, the object
factory populatesit with alist of the application objects and their associated actions.

The super model allows you to generate an object factory. During subsequent iterations
of your application, you have the option of regenerating an object factory with the super
model or modifying the existing object factory by hand.

Tip: Because the super model can generate modulesfor up 12 business objects at one
time, you must use the super model multiple times if your application includes
more than 12 business objects. In this situation, generate a unique object factory
each time and then merge each object factory into a single object factory module.

For more information, see Customizing the Object Factory, page 246.

Which Modulesto Generate

A package consists of two groups of modules, each bundling services for either amain-
tenance or browse function. For either group of servicesto be complete, all the modules
belonging to a group must be generated and deployed. The modules are generated on
the server but are deployed to either the server or the client.

Y ou may choose to generate only certain modules. For example, if you already have an
existing mai ntenance subprogram and you only want to generate amaintenance dial og,
generate the following models. Subprogram-Proxy, VB-Maint-Object, and VB-Maint-
Dialog. Later, if you decide to generate only abrowse dialog, select only the Object-
Browse-Subp, Subprogram-Proxy, and VB-Browse-Object models.

Tip: If youwanttoallow usersto browsethe business objectsin the package, you must
generate browse dialogs. Additionally, you must generate browse dialogsfor the
package if the business object is linked by aforeign field relationship to another
businessobject. Foreign field rel ationships enabl e a user to browse and select key
field values for foreign fieldsin a browse window. For more information, seel n-
tegrating Browse and M aintenance Functions, page 275.

-82—

For a Maintenance Dialog

The following table shows the modul es you must generate to implement a client/server
maintenance dialog. When you generate these modules individually, rather than using

the super model, generate them in the order shown.

Module

Model Name

Using the Super Model to Generate Applications

Result

Object maintenance
subprogram,

object PDA,
restricted PDA

Object maintenance
subprogram proxy

Visual Basic
maintenance object

Visual Basic
maintenance dialog

Object factory

Object-Maint-Subp

Subprogram-Proxy

VB-Maint-Object

VB-Maint-Diaog

VB-Client-Server-
Super-Model

Subprogram used to maintain a
business object. Thismodel also
generatesthe PDA and restricted
PDA for the object.

Proxy used to communicate
information between the
Spectrum Dispatch Service and
an object maintenance
subprogram.

Visual Basic classinstantiated by
amaintenance dialog to
encapsulate calls to the Spectrum
Dispatch Client and implement
local validations.

Dialog that provides the
graphical interface between the
maintenance application and the
user.

Visual Basic module that
identifies all business objects
within an application and
instantiates objects upon request.

— 83—

Construct Spectrum SDK for Client/Server Applications

For a Browse Dialog

The following table shows the modul es you must generate to implement a client/server
browse dialog. When you generate these modulesindividually, rather than using the su-
per model, generate them in the order shown.

Module M odel Result

Object browse Object-Browse-Subp Natural subprogram used to
subprogram, encapsul ate accessto data on the
key PDA, row PDA, server and return records as a
restricted PDA series of rows. The parameter

data areas (PDAS) communicate
information to and from an obj ect

browse subprogram.
Object browse Subprogram Proxy Proxy used to communicate
subprogram proxy information between the

Spectrum Dispatch Service and
an object browse subprogram.

Visual Basic V B-Browse-Object For each object browse

browse object subprogram on the server, you
must generate a supporting
Visual Basic class. Thisclass
describes the object browse
subprogram to the BrowseBase
class, which in turn provides
information to a browse dialog
that is configured at runtime.

Object factory VB-Client-Server- Visual Basic code module that
Super-Model or identifies all business objects
hand coded within an application and

instantiates objects upon request.

Unlike maintenance subprograms, which use a specific Visual Basic form for each
maintenancedial og, al generated browse subprograms use the same underlying browse
form. This browse dialog form communicates with a BrowseBase class to obtain infor-
mation needed to configure itself for a particular browse subprogram and to retrieve
datafrom the BrowseBase class.

Although many objectsinteract to produce a browse dialog, most of these are standard,
reusable client framework components. For more information about browse processes,
see Creating and Customizing Browse Dialogs, page 175.

—84—

Dependent Models

Using the Super Model to Generate Applications

Some models that are used to generate individual modules have dependencies on one
another. This means you have to generate the modules in an established order.

Note: If you usethe super model to generate all modules for aclient/server object,
the order of generation is managed for you.

The following table shows the dependencies between models:

Model and Module

Prerequisite Module

Object-Maint-Subp
Object maintenance subprogram

Subprogram-Proxy

Object maintenance subprogram proxy

VB-Maint-Object
Visual Basic maintenance object

VB-Maint-Dialog
Visual Basic maintenance dialog

Object-Browse-Subp
Object browse subprogram

Subprogram-Proxy
Object browse subprogram proxy

V B-Browse-Object
Visual Basic browse object

None

Object maintenance subprogram

Object maintenance subprogram proxy

Visual Basic maintenance object

None

Object browse subprogram

Object browse subprogram proxy

-85 —

Construct Spectrum SDK for Client/Server Applications

Generating with the Super Model

A WO DN P

Generating with the super model involves four main tasks:
Invoking the super model to create a new specification.
Defining general parameters.

Defining specific package parameters.

Generating the modules.

Each task is described in the following sections, along with the steps you must follow
to complete the task.

The super model is available in both the Construct Windows interface on the client and
the Generation subsystem on the server.

— If you are using the model wizard, see Construct Windows | nter face, page 86
— If you are using the model on the server, see Generation Subsystem, page 94
If you encounter problems, see Tr oubleshooting, page 100.

Construct Windows I nter face

The following sections describe the steps to generate the super model in the Construct
Windows interface.

Step 1: Invokethe Super Model Wizard

» Toinvoke the wizard:

1 Sdect New from the File menu.

The Create New Specification window is displayed.

2 Double-click VB-Client-Server-Super-Model on the Packages tab.

The model wizard is displayed.

— 86—

Using the Super Model to Generate Applications

3 Click Standard Parameters in the wizard navigator.
The Standard Parameters window is displayed:

VB-CLIENT-SERVER-SUPER-MODEL Wizard i

B stan Standard Parameters
Standard
Parameters Module: §|
» System: [sPECDEMO
Title: ;Super Spec far, ..
Finish
Description: |Descripkion. .. ___r_j

[T Message numbers

Yalidate] Cancel < Back. l Mexk = l Einish

VB-Client-Server-Super-Model Wizard — Standard Parameters Window

Thiswindow issimilar for all models. The parameters are described in General M odel
Specifications, page 169, Natural Construct Generation.

To use message numbers rather than message text for all REINPUT and INPUT mes-
sages in the generated subprogram, select M essage numbers.

Click Next to proceed to Step 2.

87—

Construct Spectrum SDK for Client/Server Applications

Step 2: Define General Package Parameters

Usethe Packages and Object Factory window to specify the domain, object factory, and
generation preferences for your application:

VB-CLIENT-SERVER-SUPER-MODEL Wizard

. Start Packages and Object Factory

Standard)

. Paramatars Darnain: DEMO
Packages and

B Dbject Ohject Factory module: [OFACTORY

Factory
ULl [Generate object Factory,

Finish [v Generate package modules

If package modules exisk:

{* Regenerate them, preserving all custom code

" Delete them and generate new copies

Yalidate Zancel < Back | Mext = | Einish

V B-Client-Server-Super-Model — Packages and Object Factory Window

» To define the general package parameters:

1 Select adomain from Domain.
For more information, see Under stand the Object Factory, page 82.

2 Select “OFACTORY” from Object factory module.

Tip: Use“OFACTORY” to identify your object factory as thisis the default name
used by the client framework.

3 Select Generate object factory to generate the object factory.
For more information about the object factory, see Understand the Object Factory,

page 82.

— 88 —

Using the Super Model to Generate Applications

Note: If you do not generate an object factory module, you must code it by hand on
the client (see Customizing the Object Factory, page 246).

Select Generate package modules to generate the package modules.
Do one of the following:
If you are creating a new specification, click Next to proceed to the next step.

If modules already exist for the super model specification, select one of the following
options:

— By default, Regenerate it, preserving all custom code is selected. When you regen-
erate existing modules, any modified parametersin the specification will not be used
during the regeneration. However, the model will:

— Keep user exits
— Apply updates from Predict (such asanew field or aBDT keyword)
— Apply updates that have been added to the model’s code frames

— Toreplace al existing modules with newly generated ones, click Delete it and gen-
erate anew copy.

In the following step, you can select the modules you want to regenerate or replace.

— 89 —

Construct Spectrum SDK for Client/Server Applications

Tip: If you are regenerating some, but not all, modules for a package and have added
custom actions that need to be reflected in the object factory:

1 Regenerate the modules.

2 In aseparate procedure, regenerate the object factory. Similarly, if you are
adding modules to an existing package (for example, adding modules to
support a browse service), generate the new modules first and, in a separate
procedure, regenerate the object factory.

3 Whenyou regenerate the object factory, select Generate object factory, but do
not select Generate package modules.

4 Whenyou define the specific package parameters (see Step 3), select all of the
modulesin your package so that the object factory isupdated with therequired
information about your package.

Step 3: Define Specific Package Parameters
Specify details for each package in your application:
VB CLIENT SERVER SUPERMODEL Wizard S|
B s Package prefix: [ORD
Standard PREDICT wiew: ;NCST-ORDER-HEADER ,_.__j Cefaulks ;

Parameters

Primary kew: ;DRDER-NUMEER ,.‘..j
Hald Field: | oRDER-TIMESTAMP __.j
N Descripkion: ;Drderl Add i Delete i
Finish

Package modules:

Module | Gen. | Model | fRJD | Library
CRD-MS0 [#] ©Object Maintenance Subprogram R ?
ORD-M3P ¥ Spectrum Maintenance Proxy F. ? ?
QR C-PCPY [# B Maintenance Class R ? ?
OR.D-MCD [# WEB Maintenance Form R ? ?
CRD-BS0 [#] Ohject Browse Subprogram R 7 ?
ORD-BESP [# Spectrum Browse Proxy F. ? ?
QR D-BCPY [# WE Browse Class R ? ?

Yalidate] Cancel < Back. l exk = l Einish I

VB-Client-Server-Super-Model Wizard — New Package Window

—90 -

Using the Super Model to Generate Applications

=

If you areworking on an existing super model specification, the packages are displayed
inthewizard navigator. Click a packageinthewizard navigator to view it, or click Next
to proceed through the packages.

To add a new package:

Do one of the following:

— While viewing the last package, click Next or Add.

— Click New Package in the wizard navigator.

To delete an existing package:
Select the package.
Click Delete.

To define specific package parameters:

Specify a package prefix.

This prefix will be used to identify each module generated for the package. The prefix
can be up to four characters long and should enable you to easily identify the package
to which the generated modules belong. The importance of establishing alogical
naming convention is explained in Establish a Naming Convention, page 80. Once
you provide a prefix for anew package, the Package modules grid is populated.

Specify a Predict view.
Provide the primary key, hold field, and object description.

Tip: Click Defaults to use default values for thesefields. Y ou can also specify your
own default override values using Predict keywords. Rather than typing these
valuesdirectly, set up your filedefinition in Predict to default the required val ues.
For more information, see Setting Up Predict Definitions, page 39, Construct
Spectrum SDK Reference.

Determine which package modulesto generate.
The Package modules grid contains the following information:

Column Description

Module All of the modules that can be generated with the super model are
listed. Each moduleisidentified by the package prefix, followed by the
standard suffix for the module type. For more information about
suffixes, see Establish a Naming Convention, page 80.

Gen. Use the check boxes to specify which modules will be generated. For
more information, see Which M odulesto Gener ate, page 82.

—91—

Construct Spectrum SDK for Client/Server Applications

Column Description (continued)

Model Individual models the super model invokes to generate the package
modules. Although seven models are listed, up to 12 modules can be
generated. The Object-Browse-Subp model generates a subprogram,
key PDA, row PDA, and restricted PDA. The Object-Maint-Subp
model generates a subprogram, object PDA, and restricted PDA.

G/R/IO + “G” indicatesthat modulesdo not currently existin sourceformand
will be generated and saved in the current library.

+ “R” indicates that modules currently exist in source form and will
be regenerated and saved in the current library. This status occurs
when you select Regenerate it, preserving custom code, while
defining the general package parameters.

« "0 indicates that modules currently exist in source form and will
be overwritten and saved in the current library. This status occurs
when you select Deleteit, and generate a new copy while defining
the general package parameters.

Library Displays any of the following information:

» A question mark (?) indicates that you must click Check to
determine if thereis existing source or compiled (object) code for
the module.

« No content indicates that a check has been made, but there is no
existing code for the module.

« “S indicates that source code exigts. If the“S” is black, the source
codeisin the current library. If the “S” isred, the source codeisin
another library. To view the location of the source code, place the
mouse pointer over the“S.” A pop-up window shows the library or
libraries.

« “C”indicatesthat compiled (object) codeexists. If the* C” isblack,
the source codeisin the current library. If the“C” isred, the source
codeisin another library. To view the location of the source code,
place the mouse pointer over the“C.” A pop-up window showsthe
library or libraries.

5 After specifying the parameters for all packages, do one of the following:

— Click Finish to proceed to the Code window, where you can view the specification
lines. The super model does not alow you to specify user exits. To specify user ex-
its, regenerate using the specific model which supports the desired user exit. When
you have finished viewing the Code window, proceed to Step 4.

— Click Generate to proceed to Step 4.

—92 -

Using the Super Model to Generate Applications

(AJI\JHV

Step 4: Generatethe Modules

Y ou have two options for generating the modules. you can generate in batch or you can
generate from the model wizard.

Tip: If you are generating a number of modules, generate in batch to avoid tying up
System resources.

Generating M odules from the Model Wizard

When you click Generatein the previous step, the following process occurs as the super
model generates.

The super model specification is saved.
All the specifications for the individual modules are created and saved.

The Generate window is displayed. The Module pane provides information such asthe
module name, type, and action status. The Message pane provides a scrollable list of
status messages from the server regarding the generation process. The Message pane
displays the word “Done” when generation is compl ete.

To terminate the generation process, click Cancel.

Generating M odulesin Batch

To generate in batch:
Select Save from the File menu to save the specification.
In a mainframe session, log onto the library where the specification is saved.

Usethe NCSTBGEN utility in batch to generate, specifying the name of your super
model specification and the model hame: V B-Client-Server-Super-Model.

For information about using this utility, see M ultiple Generation Utility, page 755,
Natural Construct Generation.

—03-—

Construct Spectrum SDK for Client/Server Applications

Generation Subsystem

Thefollowing sections describe the steps to generate the super model in the Generation
subsystem.

Step 1: Invokethe Super M odel

» Toinvoke the super model:
1 Type“M" inthe Function field of the Natural Construct Generation main menu.

2 Type an eight-character name for the super model specification in Module.
This name identifies the super model specification you are creating. The name should
be descriptive so you can easily identify it as the super model specification for the
application you are creating.

3 Enter “VB-Client-Server-Super-Mode” in the Model field.
Alternatively, you can enter “VB-C”. The Standard Parameters panel is displayed:

CUSSMA VB- CLI ENT- SERVER- SUPER- MODEL Mul ti - modul e CUSSVAO
May 28 St andard Paraneters 1 of 3
Module CE- SPEC
System DEMO
Title ... Ml ti - Cbj ect spec -
Description Order Entry denp systemfor Spectrum
Message numbers X
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
right help retrn quit right main

Super Model Multi-Module — Standard Parameters Panel

4 Specify the standard parameters and press PF11 (right).
The Standard Parameters panel is similar for all models. For information about the
fields on this panel, see General M odel Specifications, page 169, Natural Construct
Generation.

—94 -

Using the Super Model to Generate Applications

=

Step 2: Define General Package Parameters

Use the General Package Parameters panel to specify the application packages for
which you want to generate modules. Y ou can generate up to 12 packages at atime:

CUSSMB VB- CLI ENT- SERVER- SUPER- MODEL Mul ti - modul e CUSSMVBO
May 28 General Package Paraneters 2 of 3
Domein DEMO *
Gen object factory X Object factory nodule OFACTORY *
Only gen object factory _ Replace existing nodules ... _
Package prefix Predict view
ORD- NCST- ORDER- HEADER *
CUST NCST- CUSTOVER
PROD NCST- PRODUCT
WH - NCST- WAREHOUSE

Enter - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
right help retrn quit left right main

Super Model Multi-Object Specification — General Package Parameters Panel

If you added custom actions that need to be reflected in the object factory, you can re-
generate selected modules.

To regenerate some, but not all modules for a package:
Regenerate the modules.

In a separate procedure, regenerate the object factory. Similarly, if you are adding
modules to an existing package, generate the new modulesfirst, and in a separate
procedure, regenerate the object factory.

When you regenerate the object factory, sel ect the Gen object factory field and the Only
gen object factory field.

When you define the specific package parameters, select modules in your package so
the object factory is updated with all required information.
To define general package parameters:

Type the domain name for this application in the Domain field.

To display alist of domains from which to select avalue, place the cursor in the field
and press PF1. You must enter avauein thisfield. For more information about
domains, see Understand the Object Factory, page 82.

To generate an object factory module, mark Gen object factory.
For more information, see Under stand the Object Factory, page 82.

—95—

Construct Spectrum SDK for Client/Server Applications

Note: If you do not generate an object factory module, you must code it by hand on
the client. This procedure is described inCustomizing the Object Factory,
page 246.

Type “OFACTORY” in the Object factory modulefield.

Tip: Use“OFACTORY” to identify your object factory as thisis the default name
used by the client framework.

To generate only an object factory module, without regenerating any other modules,
mark the Only gen object factory field. Y ou must also select the package modulesfor
which the object factory will be generated in Step 3: Define Specific Package Par am-
eters, page 97.

If you are using the super model to regenerate modules, you must decide whether you
want to replace or regenerate existing modules. If you select the Replace existing
modules option, the super model will replace any existing modules, including their user
exit code. If you do not select thisoption, it will regenerate the existing modul es but not
the user exit code.

When you regenerate an existing module, any modified parametersin the specification
will not be used during the regeneration. However, the model will:

— Keep user exits
— Apply updates from Predict (such as anew field or aBDT keyword)
— Apply updates that have been added to the model’ s code frames

Type the prefix that will be added to each module generated for this package in the
Package prefix field.

The prefix can beup to four charactersin length and should enable you to easily identify
the package to which the generated modules belong. The importance of establishing a
logical naming convention is explained in Establish a Naming Convention, page 80.

Typethe primary file namefor which the package is being generated in the Predict view
field.
Thisisthefilethat represents your business object. This file must exist in Predict.

When you have added all of the primary files to beincluded in your application,
together with a prefix name for each of the files, press Enter or PF11 to display the
Specific Package Parameters panel.

— 06—

Using the Super Model to Generate Applications

Step 3: Define Specific Package Parameters

Use the Specific Package Parameters panel to specify generation details for each pack-
ageincluded in your application.

VB- CLI ENT- SERVER- SUPER- MODEL Mul ti - nodul e CUSSMC0
May 28 Specific Package Paraneters 3 of 3
>> 01 Package prefix ORD-
Predict view NCST- ORDER- HEADER ___ *
Prinmary key ORDER- NUMBER *
Hold field ORDER-TIMESTAMP____ *
Description O der

- Modules to Generate -------c-cnmmom i

Model Modul e Sour ce bj ect GRO
X Maint Object Subp ORD- MBO_ * G
X Maint Object Proxy ORD- MBP_ G
X Maint VB Obj ect ORD- MCPV G
X Maint VB Dial og ORD- MCDV G
X Browse Obj ect Subp ORD- BSO_ G
X Browse Obj ect Proxy ORD- BSP_ G
X Browse VB Obj ect ORD- BCPV G

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit sel ct bkwd frwd left mai n

Super Model Multi-Module — Specific Package Parameters Panel

Note: You must complete this panel for each package in your application.

Y ou can scroll through the packagesin the application. The Package prefix field auto-
matically shows the prefix defined on the General Package Parameters panel for the
first package. The >> field shows which package is currently displayed.

To scroll between packages, do one of the following:

— Press PF8 (frwrd) and PF7 (bkwrd)

— Enter a package number in the field following the two angle brackets (>>)

To define specific package parameters:

Specify aPredict view.

Specify the primary key, hold field, and object description of your packagefile in the
Primary key, Hold field, and Description fields, respectively.

97—

Construct Spectrum SDK for Client/Server Applications

Tip: Based on how the file is defined in Predict, the super model attemptsto provide
default values for these fields. Y ou can also specify your own default override
values using Predict keywords. Rather than typing these values directly, set up
your file definition in Predict to default the required values. For information, see
Setting Up Predict Definitions, page 39, Construct Spectrum SDK Reference.

3 If you are generating both a maintenance and a browse function for this package, press
PF5 (selct) to select all modules. Otherwise, mark each one you want to generate. For
information about determining which modules to generate, see Which Modulesto
Generate, page 82.

Note: Although only seven models are displayed on this screen, up to 12 modules
can be generated. The Browse-Object-Subp model creates three additional
modules. Key PDA, Row PDA, and Restricted PDA. The Maint-Object-Subp
model generates two additional modules: Object PDA and Restricted PDA.

If you marked the Replace existing modules field on the General Package Parameters
panel, any existing modules marked for generation will bereplaced, including user exit
code. For these modules, “O” is displayed in the G/R/O field. If you did not mark this
field, existing modules will be regenerated and user exit code will be preserved. For
these modules, “R” is displayed in the G/R/O field.

4 Press PF8 (frwrd) to display the next package in your application.
Completethe panel asdescribed in Steps 1 and 2. When you have entered specifications
for al of your packages, return to the Natural Construct Generation main menu.

5 Saveyour super model specification.
Y ou are now ready to generate the modules.

Step 4: Generatethe Modules

Y ou have two options for generating modules using the super model: you can generate
in batch or you can generate from the main menu.

Tip: If you are generating a number of modules, generate in batch to avoid tying up
System resources.

» To generate from the Natural Construct Generation main menu:
1 Type“R" inthe Function field.

2 Typethe name of the super model specification in the Module field and press Enter.
This reads the super model specification into Natural Construct.

3 Enter “G” in the Function field.

08—

Using the Super Model to Generate Applications

The following steps occur as the super model generates:
The super model specification is saved.
The specifications for the individual modules are created and saved.

The standard generation statuswindow isdisplayed. Y ou will also see agenerated mod-
ule status panel that lists the modules as they are generated and stowed.

When all of the modules have been generated and stowed, a summary report is dis-
played listing the status of each modul e that was generated and detailing any errors that
may have occurred.

To generate in batch:

Save the specification from the Natural Construct Generation main menu.

Use the NCSTBGEN utility in batch to generate, specifying the name of your super
model specification, and the model name: VB-Client-Server-Super-Model.

For information about using this utility, see M ultiple Generation Utility, page 755,
Natural Construct Generation.

—99—

Construct Spectrum SDK for Client/Server Applications

Troubleshooting

After generating with the super model, review the generation status report to reconcile
any errors that may have occurred.

« If amodule was generated but not stowed because of a missing DDM, you can regen-
erate the missing modules at a later time after correcting the error.

« If there was a generation error for a specific module because of a missing dependent
module, you can regenerate the individual module from its model specification after
correcting the error.

» If the generation errors affect several of the individual modules, you may find it easier
toregenerate them from the original super model specification after correcting theerror.
Read the original super mode! specification into Natural Construct and mark only those
modulesthat require regeneration. Then repeat the generation step until al the modules
have been successfully generated and stowed.

Tip: Ensurethat SY NERR=ON in your user profile NATPARM. Otherwise, compila-
tion errors in the generated code may cause cycling.

Transferring Y our Application to the Client

If you have successfully generated all the modules of a package, or minimally al the
modules of a browse or maintenance function, you are ready to download your client
application modules to the PC and compl ete the process of creating a client/server
application.

Using Visua Basic and the Construct Spectrum Add-In, you will set up a Construct
Spectrum project, download application modules to your project, and compile the
project to create afully functiona client/server application. These steps are described
in Creating a Construct Spectrum Proj ect, page 101.

—100 -

CREATING A CONSTRUCT SPECTRUM
PROJECT

This chapter describes the process of setting up a Construct Spectrum project on your
client. Follow the instructionsin this chapter once you have generated your application
modules on the server and are ready to download them to the client. This chapter also
describes how to test, deploy, and set up security for your application.

The following topics are covered:
« Overview, page 102
+ AreYou Ready?, page 103
« Creating the Project, page 104
» Downloading the Generated M odules, page 107
+ What’s Next?, page 110

-101 -

Construct Spectrum SDK for Client/Server Applications

Overview

All Visual Basic client/server projects that use Construct Spectrum must include the
Construct Spectrum client framework. Client framework components are reusable ap-
plication components that provide a skeleton of functionality that interacts with
generated and hand-coded Construct Spectrum modules to create a client/server
application.

The client framework also includes forms, classes, procedures, global variables, and
constants that are shared among various generated modul es. Thisreducesthe size of the
generated modules and allows the modules to interact through the shared components.

Construct Spectrum includes an Add-In that extends the Visual Basic Add-Ins menu
with commands to:

» Create aproject and add the client framework components to the project.

« Download generated modul es from the server to the client and automatically add them
to your project.

» Upload generated modules from the client to the server when you have customized the
modules and need to regenerate them, preserving all of your customizations.

The following example shows the Construct Spectrum Add-In:

sy, Project] - Micioenft Viaual Basic [design]
Fle Edt Wew Project Formst [ebug Bun Query Disorem Toold Zosdirum Add-Tns Whndow Help
B-n- & » B [§ Yo Cuta tanager..
fiddH-Ir Mansger...
Downkead Generated Modules. ..
Criate Mew Progedt. ., .
Eraferences. .,
About

Construct Spectrum Add-In

-102 -

Creating a Construct Spectrum Project

Are Y ou Ready?

Before using the Construct Spectrum Add-1n to create anew project and download gen-
erated modules, ensure that the following prerequisites have been met:

O You used the super model to generate the client and server modules of your application.
For information, see Using the Super M odel to Generate Applications, page 77.

Q Youknow thelibrary name, the database ID (DBID), and the file number (FNR) of the
FUSER containing the library where your generated modul es reside.

Q A Spectrum dispatch serviceis running.
For information about running a Spectrum dispatch service, see Defining Construct
Spectrum Services, page 42, and Managing Construct Spectrum Services, page 58,
Construct Spectrum Administration.

-103 -

Construct Spectrum SDK for Client/Server Applications

Creating the Project

Usethe Construct Spectrum Add-Into create a new project with all the necessary client
framework components or to add client framework components to an existing project.
» To create a Construct Spectrum project:
1 Start Visua Basic.

2 Select Create New Project from the Construct Spectrum submenul.
The Create New Project window is displayed:

Plaaze specily B main Baluesl By Tor iz piopscl | Ok I
Wi ey [SPECDEMD pEID: [50 FNR: 125

Cancal I
Briogan
-

o Cipale 4 rse progec

Progeci Herms
|r LB pecta e Damadipe' Demc vip Buocassie .

Create New Project Window

3 Typethe name of the library containing your generated modules and the database I D
(DBID) and file number (FNR) of thelibrary’s FUSER file.
Thisinformation will be used as the default whenever you want to download or upload
generated modules and will be stored in the AppSettings.bas module in your project.

4 Select the folder and project name from Project filename.
Click OK.

Note: Alternatively, you can click the Browse button to display a window from
which you can select afolder and enter the name of your project.

—104 -

Creating a Construct Spectrum Project

6 Select Open.
The Create New Project window is displayed:

Plssze speciy B e Baluesl Biay o e propscl oK I
Bain ey | QeI | R |
Cancal I
Progant
-

' Cipale & ree propec

Propec] lleruyms
|r LE pecia ek Diemodi pot Deme vbp

Create New Project Window

7 Click OK.
Construct Spectrum creates the new project and prompts you to open it:

Construct Spectrum Add-In E2

@ Do wou want to open the new project’?

Prompt to Open New Project

8 Click Yesto open your new project.

Most client framework components are not copied to your project folder. Instead, your
Construct Spectrum project pointsto the FrameWrk5 folder in your Construct Spectrum
Install directory. Y ou can see this by choosing a client framework component such as
Open.frm and choosing the Save As command on the Visua Basic File menu. These
client framework components are shared among all projects created with the Construct
Spectrum Add-In. Beawarethat if you change one of these shared components and save
it back to the FrameWrk5 directory, you could be affecting other projects.

For more information about customizing client framework components, see Under -
standing and Customizing the Client Framework, page 207.

- 105 -

Construct Spectrum SDK for Client/Server Applications

The following client framework components are copied to your project folder because
they are different for every application.

Name Description

OFactory.bas Containsthe object factory, whichidentifiesall business objects
within an application and instantiates objects upon request.

AppSettings.bas Contains application-specific settings, such as the application
name, library name, DBID, and FNR. Y ou can change these
settings by editing them in the module.

The Construct Spectrum Add-1n also creates anew library image file for your applica-
tion and places it in the project folder. The name of thisfile will be the library name
with a“.lif” extension.

After the Construct Spectrum Add-In creates your project, you can run it and test the
default functionality provided by the client framework. For more information, seeUn-
der standing and Customizing the Client Framework, page 207.

Prior to Downloading

» To alow access to the mainframe:

1 Select Remote Dispatch Service Preferences.
The Remote Dispatch Services Preferences window is displayed:

Hemole Dxpabch Sefvice Prelel et

‘:E;r‘:" I:;I:::ﬂ-:mﬂ:.immhm sl Enker your wEser |:
SarCR:

User 10 [

Passmord |—

Remote Dispatch Service Preferences Window

2 Enter your user ID and password.

- 106 —

Creating a Construct Spectrum Project

Downloading the Generated Modules

Next, download the client modul es generated by the super model and add them to your
project.

» To download the client modules and add them to your project:

1 Select Construct Spectrum > Download Generated M odules from the Add-In menu.
The Download Generated Modules window is displayed:

Diovenlaad Madulez
| bty |:-'-+-J-rM|1 u]: 2] |:-: EMR | Lii
boudube names |° Cancel I
Hares [Tipe | model [s 10 Dl / Tt [
Diorvrilnad rogram modudes b groec] dischon [C gmchum[lsmotpop Charge I
Dvirvarsbonaed chilwletoricr s sl irdegal i |E'-F\:\g'ﬂ'r i s ol Wikl Sl B ISNS TS5 FED Chargs I
01 repchabes Biesd D) ool pelscied

Download Generated M odules Window

Usethiswindow to list the modulesin agiven library on the server and to select one or
more modulesto download. Thelibrary name, DBID (database ID), and FNR (file num-
ber) default to the values entered for thelast project created. If necessary, type the
library name, DBID, and FNR that was specified for the project to which you are
downloading.

Enter the package prefix followed by an asterisk in the Module namefield.

3 Click List.
After afew seconds, alist of modulesthat match the module name pattern you entered
are displayed and the List button changes to Download.

Tip: If you know the name of the modul e you want to download, type it in Module
name. When you click List or press Enter, the moduleis downloaded.

-107 -

Construct Spectrum SDK for Client/Server Applications

Tip: Toview your list in adifferent order, click acolumn header. Thelist is sorted ac-
cording to the header item. If the list is already sorted, selecting the same header
toggles the sort order between ascending and descending.

The following table lists the modules to download:

Module Description
Parameter data Parameter data area (PDA) definitionsin alibrary imagefile.
areas PDAs generated using the super model have “MSA”, “MSR”,

“BKEY”, “BROW", and “BPRI” suffixes.

Application service Application servicedefinitionsin alibrary imagefile. Modules

definitions have “App Service’ type and “ SUBPROGRAM-PROXY”
model in the list. Subprogram proxies generated using the
super model have “MSP” and “BSP” suffixes.

Visual Basic Dialog definitions that are saved in the project folder with the
forms extension“.frm” and automatically added to the project. Forms
generated using the super model have a“MCDV” suffix.
Visual Basic Modules saved inthe project folder witha*.cls” extension and
classes automatically added to the project. Classes generated using the

super model have “MCPV” and “BCPV” suffixes.

Object factory Visual Basic code module that identifies all business objects
within an application and instantiates objects upon request.
The name of this moduleis entered on the first panel of the
super model. When downloaded, it is saved in the project
folder with the extension “.bas”.

Tip: Thelower part of the Download Generated Modules window shows the name of
the project folder to which the modules will be downloaded and the name of the
library image file where definitions will be saved. To change either of these, se-
lect the corresponding Change button.

4 Do oneof thefollowing:
— Select one or more modules from the list.
— Type the module names in Module name.
5 Click Download or press Enter.

- 108 -

Creating a Construct Spectrum Project

Hand-Coding the Object Factory

If you generated the object factory using the super model and downloaded it, you should
be ableto run your application without having to do any hand-coding. Onthe File menu,
select Open to invoke the Open dialog; the objects and actions that you generated
should be listed in the window.

If you did not generate an abject factory, you must codeit by hand. If you generated
multiple object factories for your application, you must do some hand-coding to merge
each object factory into one object factory module. For information, seeCustomizing
the Object Factory, page 246.

—109 -

Construct Spectrum SDK for Client/Server Applications

What's Next?

Onceyou have created the project and downloaded the generated components, you can
modify the dialogs, test and deploy the application, or set up security.

M odify the Dialogs

If thisisan early iteration of your application, keep your dialog customizationsto amin-
imum because you will lose these customizations when you regenerate the dialog.
There are some modifications, however, that you need to do so that you can evaluate
your application more effectively. For more information, see I ntegratinga New M ain-
tenance Dialog, page 128.

Test the Application

At this point, compile and run your application. Test the following things:

» OntheFilemenu, click Open and test all objects and their associated actions to ensure
each invokes the correct form.

» Check that each dialog displays correctly and that you have moved the controlsin over-
flow frames onto the dialog form or onto separate tabs of atab control.

» Test any local validations that were generated into the maintenance objects.
« Invoke and test the remote methods. Get, Next, Update, Add, and Delete.

Note: Thefirst communication to the server typically takes afew seconds. Thisis
because the EntireX Broker and DLLs must be loaded into memory and ini-
tialized. Subsequent calls to the server will be faster.

For more information, see Debugging Y our Client/Server Application, page 161,
Construct Spectrum SDK Reference.

Deploy the Application

Once your application has been tested, you can distributeit to your users. The procedure
to deploy your application include:

» Creating the executable

« Collect thefiles to be installed
» Install the client application

* Run the application

For more information, see Deploying Your Client/Server Application, page 189,
Construct Spectrum SDK Reference.

-110-

Creating a Construct Spectrum Project

Setting Up Security

Before allowing usersto work with your application, you must implement security for
their environment by defining the usersto agroup. If usersrequiredifferent access priv-
ileges, set up one group for each type of user. Set up your application security based on
these groups. For information, see Defining Groups and User s, page 75, Construct
Spectrum Administration.

Grant access to business objects by group and domain combination. Y ou can grant a
particular group/domain combination access to as many or as few business objects as
necessary. Additionally, you can grant access to only specific methods within a group/
domain and business object combination.

For more information, see Setting Construct Spectrum Security Options, page 95,
Construct Spectrum Administration.

-111 -

Construct Spectrum SDK for Client/Server Applications

-112 -

CREATING AND CUSTOMIZING
MAINTENANCE DIALOGS

This chapter provides step-by-step instructions for generating the modul es required to
maintain server information from a maintenance dialog on the client. It describes how
to generate the necessary modules, download them to theclient, integrate them into an
existing Construct Spectrum project, and maintain server database information from
your maintenance dialog. Also included is information on how to customize the main-
tenance diaog. It provides conceptual information, suggestions on the best way to
approach customization problems, and step-by-step instructions for particular custom-
ization tasks.

The following topics are covered:
« Overview of the Maintenance Dialog, page 114
» Prerequistes, page 116
« Using Individual Modelsto Generate M aintenance M odules, page 117
» Downloading Client Modules, page 125
« Integrating a New Maintenance Dialog, page 128
« Strategiesfor Customizing a M aintenance Dialog, page 129
« Customizing on the Server, page 132
» Customizing on the Client, page 145
» Uploading Changesto the Server, page 173

-113 -

Construct Spectrum SDK for Client/Server Applications

Overview of the Maintenance Dialog

Maintenance dialogs are built on the foundation provided by the existing Natural Con-
struct object methodology. A maintenance dialog generated with Construct Spectrum
can share data access modul es with a character-based maintenance dialog.

The modules that must be generated to create a working Construct Spectrum mainte-
nance dialog are:

Object maintenance PDA

Object maintenance PDR

Object maintenance subprogram

Maintenance subprogram proxy

Visual Basic maintenance object

Visual Basic maintenance dialog

The following example shows the relationship between these generated modules:

Server Client

Maintenance
Object PDR

— |Maintenance Maintenance Visual Basic Visual Basic
Object [€«—»| Subprogram [«—>»{Maintenancej«—¥»|Maintenance

— Subprogram Proxy Object Dialog

Maintenance
Object PDA

Relationships Between Client and Server Maintenance Components

~114 -

Creating and Customizing Maintenance Dialogs

Waysto Generate Maintenance Dialogs

Each module that a maintenance dialog requires can be generated with the VB-Client-
Server-Super-Model or generated one at a time using individual models. To determine
which generation approach is best for you, consider the following guidelines:

« If you are creating a new application or a new business object, use the super model.

 If you are making major changes to the Predict file definitions of one or more business
objectsin an existing application, use the super model.

 If you want more control over the generation results, such as customized code for user
exits, use the individual models.

This chapter describes how to generate maintenance modules from the individual mod-
els. For information about using the super model, see Using the Super M odel to
Gener ate Applications, page 77.

Thefirst part of this chapter describesthe tasks required to create a maintenance dial og.
Theseinclude:

1 Usethe Construct models to generate modules.
Download the modules to the client using the Construct Spectrum Add-In.
3 Integrate a new maintenance dialog into your application.

Once you have completed these steps, it istimeto compile the application and test the
new maintenance dialog.

The second part of this chapter discusses various strategies for customizing a mainte-
nance dialog and different customization mechanisms available on both the client and
server. It also describes how to upload client changes to the server.

-115-

Construct Spectrum SDK for Client/Server Applications

Prerequisites

(]

Before generating a module for a maintenance dialog, use this checklist to ensure that
the following prerequisites are met:

The necessary Predict file(s) are created, along with any relevant Predict definitions
such asfile relationships and verification rules.

An object PDA, arestricted PDA, and an object maintenance subprogram exist for the
target Predict file(s). If these modules do not exist as part of a previousy generated
Construct Spectrum application, create them now. For information, see Obj ect-M aint
Models, page 347, Natural Construct Generation.

The Entire Net-Work kernel is running on your client (if you are using Entire Net-
Work) so that you can access the server used by the Spectrum dispatch service and the
Spectrum security service. Y our system administrator should ensure that this
prerequisite is met.

A Spectrum dispatch service and security service are set up to service requests from
your client. To determine whether these services are available, ping the service using
the Spectrum Service Manager. Y our system administrator should ensure that these
services are available on the client. For information, see Defining and M anaging
Construct Spectrum Services, page 39, Construct Spectrum Administration.

Y ou are set up as a user with apassword to access the Construct Spectrum environment.

Y ou created a Construct Spectrum project. If you have not done so, create one now. For
information, see Creating a Construct Spectrum Pr oj ect, page 101.

-116 -

Creating and Customizing Maintenance Dialogs

Using Individual Models to Generate Maintenance
Modules

The modules required to run a maintenance dialog share many files and parameters. If
you are using individual modelsto generate your maintenance modules, you must gen-
erate the models in a specific order. Each model reads the source code generated by
earlier models to make generation decisions.

Generate the dialog models in the following order:
Object-Maint-Subp model (object maintenance subprogram)
Subprogram-Proxy model (maintenance subprogram proxy)
VB-Maint-Object model (Visual Basic maintenance object)
VB-Maint-Dialog model (maintenance dial og)

A WODN P

Tip: Usethe same four-character prefix to nameall generated modulesrelated to asin-
gle business object. This convention makes it easier to select modules for down-
loading. For example, to download all client modules related to a Customer
business object, type* CUST*” (where “*” is the wildcard character) to narrow
the list of available items to those starting with CUST.

The models are available in the Generation subsystem.

Gener ate the Object Maintenance Subprogram and PDASs

The Object-Maint-Subp model generates a subprogram to maintain a business object.
Thismodel also generatesthe PDA and restricted PDA for the object. Before generating
amodule for amaintenance dialog, ensure that an object PDA, arestricted PDA and an
object maintenance subprogram exists for the target Predict file(s).

For more information, see Create the Object M aintenance Subprogram and PDAS,
page 152, Natural Construct Generation.

Gener ate the M aintenance Subprogram Proxy

The subprogram proxy accesses the generated object maintenance subprogram from the
client application. It calls an object maintenance subprogram, which fulfills arequest
on behalf of amaintenance dialog. It isalso responsiblefor converting data between the
network transfer format and the Natural data format used in the object maintenance
PDA and restricted object maintenance PDA. Typically, you will not haveto customize
or provide any user exit code for this model — just generate and catalog it. For infor-
mation, see Gener ating a Subprogram Proxy, page 105, Construct Spectrum SDK
Reference.

-117 -

Construct Spectrum SDK for Client/Server Applications

Generate the Visual Basic Maintenance Object

TheVB-Maint-Object model generatesaVisual Basic maintenance object that provides
maintenance dial ogs with access to the business object data and methods in the Spec-
trum Dispatch Client.

Add Business Validations

A Visual Basic maintenance objectisan ideal place to code simple business validations
such as verification rules. The model providesthe CLIENT-VALIDATION user exit
for this purpose.

The VB-Maint-Object model also extracts verification rules that are attached to your
Predict file and field definitions and generates validation code into a subroutine called
“Validate’. Thefollowing code exampleillustrates the type of validation code that
would be generated if the Predict verification type, Range, was attached to afield called
“CUSTOMER-NUMBER".

Example of validation code generated by the VB-Maint-Object model

Case " CUSTOVER- NUMBER'
If Value < 2 or Value > 4 Then
Err. Rai se Nunber:=csterrVal ueQut Of Range, _
Sour ce: =OBJECT_PDA_NAME, _
Descri ption: =cst err Val ueQut Of RangeMsg

For more information about validating data, see Validating Y our Data, page 261.

Add Browse Functions

The VB-Maint-Object model also generates methods that enable your maintenance di-
alog to have browse functions automatically linked to the primary key and all foreign

keysin the dialog. For more information, see I ntegrating Browse and M aintenance

Functions, page 275.

-118 -

Creating and Customizing Maintenance Dialogs

Usethe VB-Maint-Object model or wizard to generate the mai ntenance object. Thefol-
lowing example shows the Standard Parameters for the VB-Maint-Object wizard:

VB-MAINT-0BJECT Wizard [7] i

B stan Standard Parameters
Standard
N —— Module: ;CUSTOF{D
Finish System: |DEMO
Title: ;'-.-'isual Basic Maint Object
Description: This Wisual Basic business object is For the ‘__r_j

_ustomer maintenance syskem

Subprogram proy: ;CLISTMSF' oo ;

[~ Compress network data

[T Encrypt network data

Extra PDA: ; ;
Yalidate] Cancel] < Back. l Mexk = l Einish

VB-Maint-Object Wizard — Standard Parameters

The Module, System, Title, and Description parameters are similar for all modelsand
wizards. These parameters are described in General Model Specifications, page 169,
Natural Construct Generation.

The additional parameters on this panel are:

Parameter Description

Subprogram proxy Name of the subprogram proxy that communicates with the
object browse subprogram for this Visual Basic browse object.

Compress network Indicates whether the parameters sent to the server are

data compressed to reduce transmission time.

-119-

Construct Spectrum SDK for Client/Server Applications

Parameter Description
Encrypt network Indicates whether the parameters sent to the server are
data encrypted. Encryption secures sensitive data.

ExtraPDA Additional parameter for your mai ntenance object subprogram

(for example, to update foreign field descriptions on a

mai ntenance dial og without having to make an extracall to the
server). For more information about defining extra PDAS, see
How Foreign Field Descriptions Are Refreshed, page 291.

Note:

The Compress dataand Encrypt dataflags only apply to data sent from the cli-
ent to the server. To enable compression and encryption for data sent from the
server to the client, set the Compress data and Encrypt dataflagsin the sub-
program proxy, which is described in Gener ating a Subprogram Proxy,
page 105, Construct Spectrum SDK Reference.

-120 -

Creating and Customizing Maintenance Dialogs

After supplying model parameters, you can customize the generation results by creating
user exit code for the module. The following example shows the available user exitsin
the Code window for a Visual Basic maintenance object:

}3 Construct - [¥B-MAINT-0BJECT CUST] M=l B3
J_lﬁ Eile Edit “iew Window Help =12 x|
Deds &7 & 2R x @s, EE 0

£ |CHANGE-HISTORY

% [PUBLIC-PROPERTIES

% |CONSTANTS-AND-TYPES

% [PRIVATE-INSTANCE-VARTARLES

% [PUBLIC-PROPERTY-PROCEDURES

AFTER-BROWSE-EY-FOREIGN-KEY
AFTER-EROWSE-EY-0BJECT-KEY

AFTER-GET-FOREIGN-FEY-DESC

£ |PUBLIC-METHODS

% [PRIVATE-PROCEDURES

% |INVOKE-CUSTOM-LOCAL-METHODS
% [DEFINE-CUSTOM-LOCAL-METHODS
% |[CLIENT-VALIDATIONS

g FOREIGH-FEY-O0VERRIDE _ILI
4

Line 1 Col1 CHANGI|SPECDEMO on 10001002
| | | GLEST y

Code Window — VB-Maint-Object Wizard

The 5 icon indicates that sample code can be generated for the user exit. To do so,
right-click the user exit and select Generate Sample from the shortcut menu. Y ou can
then modify the code as required.

For moreinformation about the user exits, see User Exitsfor the Generation M odels,
page 419, Natural Construct Generation.

-121 -

Construct Spectrum SDK for Client/Server Applications

Gener ate the M aintenance Dialog

The VB-Maint-Dialog model generates a maintenance dialog that provides users with
agraphical user interface to data and a busi ness object (the object maintenance subpro-
gram) on the server. A maintenance dialog is used to maintain information for a given
business object. The dialog can support any object PDAS that can be generated.

All tailoring for maintenance dial ogs should be performed within the Visual Basic en-
vironment. In most cases, you will have to reposition and resize the GUI controlson the
form. By default, the VB-Maint-Dialog model generates GUI controls in two columns
with labels on the left and input controls on the right. The need for visual tailoringis
especially evident when generating dial ogs that have many fields. For moreinformation
about tailoring forms, seeIntegrating a New Maintenance Dialog, page 128.

Unlike other Construct Spectrum models, the V B-Maint-Dial og model does not support
full regeneration capabilities and, therefore, suppliesfew user exits. Y ou can, however,
add your own user exitsto preserve hand-written code and to minimize the changes re-
quired after regenerating your dialogs.

Customizations made to Visual Basic forms are not preserved during regeneration. If
thisisan early iteration of the application, limit any modifications to those described in
the following table:

M odification Description
Correcting overflow Overflow conditions occur when there are more fields
conditions than can be displayed on adiaog. Unlessyou correct the

problem, these fields will be hidden. For more
information, see Over flow Conditions, page 144.

Resizing grid controls A grid control is atable with rows and columns that
displays related information on adialog. For example, a
list of line items on a purchase order dialog. Y ou can
adjust the size of agrid to suit your GUI layout. For more
information, see Resizing Grids, page 168.

Before regenerating a maintenance dialog, see Strategies for Customizing a Mainte-
nance Dialog, page 129, for information about saving customizations in your
maintenance dial og.

-122 -

Creating and Customizing Maintenance Dialogs

Y ou can use the VB-Maint-Dialog model in the Generation subsystem on the server or
use the model wizard in the Construct Windows interface. The following example
shows the Standard Parameters for the VB-Maint-Dialog wizard:

VB-MAINT-DIALOG Wizard [7] i

B st Standard Parameters
sondrd R T
Finish System: {DEMO
Title: |obiect Dislog
Descripkion: This Form is used to mainkain the Customer ___r__j
cysten|

WE-Maint-Chject: 3CL|STMCP'-.-' 1
Abbreviated object ilCust

description:

Window caption: ;Custumer

Yalidate i Cancel] « Back l Mexk = l Einish

VB-Maint-Dialog Wizard — Standard Parameters

TheModule, System, Title, and Description parameters are described in General M od-
el Specifications, page 169, Natural Construct Generation.

—-123 -

Construct Spectrum SDK for Client/Server Applications

The additional parametersin this window are:

Parameters

Description

VB-Maint-Object

Abbreviated object
description

Window caption

Name of the Visual Basic maintenance object. Click the
browse button to select amodule.

Used in naming GUI controls on aform generated by the VB-
Maint-Dialog model. For example, a GUI control for afield
named CUSTOMER-NUMBER in an object named Customer
might have a GUI control name of

txt_ CUST_CustomerNumber, where CUST represents the
abbreviated object description. The default value for the
abbreviated object description isthefirst four characters of the
module name.

Caption for the resulting maintenance dialog.

Once the required modules are generated, you can download them to your client.

Note: Ensure that all modules generated on the server are cataloged before down-
loading to the client.

—-124 -

Creating and Customizing Maintenance Dialogs

Downloading Client Modules

After generating all required maintenance modules, you must download the modules re-
quired on the client. The following table liststhe modul esthat are required on the client
and provides abrief description of their roles.

M odel Module Visual Basic Description
Suffix Extension
Object-Maint-PDA MSA n/a Encapsul ates abusiness object.

This parameter dataarea
definition is incorporated into
the library image file used by
the project.

Object-Maint-PDA-R MSR n/a Contains private data used by
the business object. This
restricted PDA definition is
incorporated into the library
image file used by the project.

Subprogram-Proxy MSP n/a Communicates information
between the Spectrum dispatch
service and an object
maintenancesubprogram. Also
updates the library image file
with application service
definitions containing
information about the
subprogram methods and data.

VB-Maint-Object MCPV .cls Communicates with the object
subprogram on the server on
behalf of the maintenance
dialog. Also implements
validations on the client.

VB-Maint-Dialog MCDV frm Provides the graphical
interface between the
maintenance application and
the user.

Note: The module suffixes listed in the table are suggestions only. However, when
generating with the super model, modules are given these suffix names auto-
matically.

—-125-

Construct Spectrum SDK for Client/Server Applications

» To download modules from the server to the client:

1 Open the Construct Spectrum project that you are updating.
For information about setting up a project, see Creating a Construct Spectrum
Proj ect, page 101.

2 Select Download Generated Modules from the Construct Spectrum Add-In.
The Download M odules window is displayed:

W Dowedoad M adaled

Libiaiy |L-L~.-m: peiL: 13 MR (2 List
M ol fuieE | e
Hare | Tree | el [Usw DT [

Duzimrbiia] pogy iy vochabin e picpicd dineciony: | \Frograsn Fle\COMSTRLUCT 5 pecin’ D\ Disecleg D
g

Do delwont nés Bleany i e Fiet\COM S TRUCT 5 pachum' D' D W5 et W i
e

0 modides babed (miodubes sebecied

Download Modules Window

3 Ensurethat you are pointing to the correct Natural library and FUSER system file on
the server.
If the default valuesin Library, DBID (database ID), and FNR (file number) do not
specify the server library from which you want to download, type the correct valuesin
these fields.

Tip: The project folder to which the modules will be downloaded and the name of the
library imagefile where definitionswill be updated are shownin text boxes at the
bottom of the window. To change either of these, select the corresponding
Change button.

4 Enter apattern (such as CUST*) in the M odule name text box to list al modules
matching that pattern.

5 Click List or press Enter.
A list of server modulesis displayed. The maintenance modules you generated will be
among them.

-126 -

Creating and Customizing Maintenance Dialogs

6 Select the maintenance modules you generated and click Download.
Y ou can identify the maintenance modules based on their module suffixes, which are
shown in the table at the beginning of this section.

The Visual Basic maintenance object and the maintenance dialog (.frm file) are auto-
matically added to your Construct Spectrum project.

For more information about downloading modules to the client and about setting up a
Construct Spectrum project, see Creating a Construct Spectrum Project, page 101.

For moreinformation about tailoring on the client, see Tailoring the M aintenance Di-
alog, page 147.

-127 -

Construct Spectrum SDK for Client/Server Applications

Integrating a New Maintenance Dialog

If you are creating a new maintenance dialog and want to add it to an existing Construct
Spectrum application, hand-code the object factory to link the maintenance dialog to
your application. Y ou need to hand-code the object factory only if you are adding anew
dialog to your application or you have changed the actions available for an existing
business object. An example of changing the available actions for a business object isa
situation where you add a maintenance action to a business object that had been avail-
able to the user only through a browse action.

Tip: To determine whether you need to hand-code the object factory, access the Open
dialog and select each object and its associated action. I f the sel ected object action
does not open or if the Open dialog does not display all of the object actions, do
some hand-coding to add the required object actions.

For information about hand-coding the object factory, see Customizing the Object
Factory, page 246.

—-128 -

Creating and Customizing Maintenance Dialogs

Strategies for Customizing a Maintenance Dialog

This section describes some strategies you can use to reduce the effort required to main-
tain your maintenance dialogs. These include:

» Doing the Predict data dictionary work up front

» Choosing the most appropriate place to add hand-written code
» Adding new user exits

« Making acopy of your changes

Doing the Predict Data Dictionary Work Up Front

Beforetailoring the dialog, ensure that your datadesign is sound. If your datadesignis
unstable, but you want to test the functionality of your dialog, consider postponing tai-
loring tasks such as creating calculated fields or rearranging the layout of your dialog
until your data design is stable.

Construct Spectrum has added new points of integration with Predict that make it pos-
sible to generate robust dialogs with minimal tailoring, provided you take the time to
enter the information into Predict. Following are some ways that you can enhance your
generated dialog by providing Predict information:

» Enter valuesfor Headerl, 2, and 3in thefield definitions. TheVVB-Maint-Dialog model
uses this information to generate meaningful label captions. For more information
about how |abel captions are derived, see Deriving Variable Names, page 132.

« Create and attach table status verifications to fields whenever you know thereisafinite
set of valid values. The model uses verificationsto decide what type of GUI control to
generate. If atable status verification is attached to the field, the model will create either
a ComboBox or aFrame and series of option buttons. The code that gets generated for
these types of controlsis different than the code generated for TextBox controls. For
information about using Predict verification rules, see Overriding GUI Contr ols, page
133.

» Supply GUI and BDT keywordsto help the model determine which type of GUI control
to useor to fine-tune the behavior of a TextBox control. For information about how Pre-
dict keywords affect GUI generation, see Overriding GUI Controls, page 133.

—-129 -

Construct Spectrum SDK for Client/Server Applications

Choosing an Appropriate Placeto Add Hand-Written Code

There are many places in a Construct Spectrum-generated application to place custom
code — like a Visual Basic maintenance object or in a separate Visual Basic module
that you add to the application. When adding custom code to a maintenance dialog, de-
termine if this code can be placed e sewhere and still work.

The primary reason for placing code in the dialog is to have the ability to respond di-
rectly to specific events. In such cases, you have no choice but to put codein the diaog.
However, rather than writing 10 or 20 lines of event code directly in the dialog, write
one line of code in the form that calls a routine in another module that can do the work
for you. The following examples illustrate the difference between these approaches.

Significant impact on dialog code

Private Sub txt_EMPL_Sal ary_Change()
‘my customcode - start
Dim Result As String
If CCur(txt_EMPL_Salary.Text) > 100000 Then
t xt _EMPL_Sal ary. BackCol or = vbRed
txt _EMPL_Sal ary. ForeCol or = vbYel | ow
Result = I nfornmAut horiti es(Enpl oyeeNane)
Sel ect Case Result
Case “Enpl oyeeHasAcknow edged”
Publ i shSal ar yAt PressRel ease Enpl oyeeNane
Case “Sal aryl sl ncorrect”
Beep
Case “Ter m nat eEnpl oyee”
PerformActi on “DELETE"
End Sel ect
End |f
‘my custom code -end

I f Det ect Changes Then
bj ect Changed = True
End |f
End Sub

Minimal impact on dialog code

Private Sub txt_EMPL_Sal ary_Change()
‘my customcode - start
CheckSal ary Enpl oyeeNane
‘my custom code -end

| f Det ect Changes Then
bj ect Changed = True
End I|f
End Sub

Using the second approach simplifies and minimizes the modifications that you must
re-implement if the dialog is regenerated.

-130 -

Creating and Customizing Maintenance Dialogs

Adding New User Exits

Unlike other Construct and Construct Spectrum models, the VB-Maint-Dia og model
comeswith few predefined user exits. Y ou can, however, add your own user exitsto the
dialog code. These user exits are saved when you regenerate your maintenance dialog
and, therefore, reduce the effort required to maintain your dialogs on an ongoing basis.

» To add new user exits to the maintenance dial og:

1 Definethe user exit.
Each custom user exit must be delimited with comment lines that indicate where your
custom code begins and ends. Use the standard * SAG DEFINE EXIT abc’ and ‘SAG
END-EXIT’ delimiters to mark the beginning and ending of your user exit. Providea
unique name for the user exit. A good convention to follow isto namethe user exit after
the code block in which it is found. For example, if you add custom code to the lost
focus event for the txt_ CUST_CustomerNumber GUI control, use the following
delimiters to block your custom code:

‘ SAG DEFI NE EXI T txt_CUST_Cust oner Nunber _Lost Focus
t xt _CUST_Cust omer Nunber . ForeCol or = vbGreen
*SAG END-EXI T
2 Upload, regenerate, and download the maintenance dial og.
Before regenerating the dialog, upload the dial og to the server to preserve your custom
coding changes. After regenerating, download the maintenance dial og.

Note: You cannot preservetailoring to the visual appearance of a maintenance dia-
log with user-defined user exits.

3 Reposition user exit code.
As part of the regeneration process, the user exits you created earlier are moved to the
bottom of the maintenance dialog’ s source area. Move each user exit code block to the
appropriate location in code. This should be an easy task if you have named the user
exits after the code blocksin which they belong.

Making a Copy Before You Regenerate

If many changes have been made to your data design, or other changes on the server
have had an impact on your dialog, decide whether to implement the changes by hand
or to generate a new copy of your form. If you generate a new copy of theform, you
must re-implement any tailoring you have done. This decision depends on which ap-
proach represents less work for you.

If you decide to generate a new copy of your diaog, save your old dialog with a differ-
ent name. Y ou can view the old dialog whiletailoring the new dialog. Additionally, you
can cut and paste code from one dialog to the other.

-131-

Construct Spectrum SDK for Client/Server Applications

Customizing on the Server

This section describes the mechanisms available on the server for customizing your
maintenance dial og.

Deriving Variable Names

When performing customizations to a maintenance dialog, it is useful to understand
how variable names are derived. This will help you maintain a consistent naming con-
vention and make it easier for you to determine what the codeis doing.

Deriving GUI Control Names

GUI control names are made up of three components. a GUI Control Identifier, an Ob-
ject Identifier, and aField Identifier. Each oneis separated by underscores. For
example, afield called CUSTOMER-NUMBER on a Customer file might be represent-
ed by a TextBox GUI control named txt_ CUST_CustomerNumber.

GUI Control Identifier

A GUI control identifier is athree-character abbreviation in the GUI control name that
uniquely identifies the GUI control type. Thefollowing table lists the different types of
GUI controls (along with their abbreviations) that are used in atypical Construct Spec-

trum project:

GUI Contral Abbreviation GUI Contral Abbreviation
CheckBox chk Label Ibl
ComboBox cho ListBox Ist
CommandButton cmd Menu mnu

Form frm OptionButton opt

Frame fra StatusBar sta

Grid grd, ddg TextBox txt

-132 -

Creating and Customizing Maintenance Dialogs

Object Identifier

Anobject identifier isafour-character abbreviation that uniquely identifiesthe business
object represented in the dialog. The object identifier is obtained from the Abbreviated
Object Description parameter of the VB-Maint-Dialog model. By default, this value
contains the first four characters of the dialog form (.frm file) name. Using the Object
Identifier as a component of the GUI control name is useful if you want to represent
more than one business abject in a single dialog.

Field | dentifier

A field identifier uniquely identifies afield within abusiness object. The nameis de-
rived from the Predict field name — converting the letters to mixed case and removing
any characters which areillegal in Visual Basic, such as hyphens. The field identifier
for grid controls that are derived from intra-object relationships are obtained from the
Predict relationship name.

Deriving Label Captionsfor GUI Controls

A label caption is aname that identifies a GUI control to the user. The label caption is
usually displayed to the left of an associated input GUI control, for example, atext box.
The caption for thelabdl is obtained from one of two places. First, the model |ooks for
header information stored in Predict’s Elementary Field definition. If noneisfound, the
label caption is derived from the field name in the same way the field Identifier is cre-
ated. Label captionsfor grid controlsthat arederived fromintra-object relationships are
obtained from the Predict relationship name.

Overriding GUI Controls

The VB-Maint-Dialog model must choose the appropriate GUI control to represent
your field asit isdefined in Predict. This includes representing complex data, such as
one-to-many relationships. To accomplish this, the model employs derivation logic
based on information such as afield’ s data type, the number of occurrences, whether it
isin arepeating group of fields, etc. Thefollowing stepsin this section describe the der-
ivation logic. Each topic isincluded in the same order in which the logic is applied by
the model.

In addition to this default derivation logic, the model provides several mechanisms for
you to override the default selection of a GUI control for a given field. These are de-
scribed in steps 1, 2, and 3.

-133 -

Construct Spectrum SDK for Client/Server Applications

Note: An asterisk (*) appended to any GUI control name in this section indicates
that the GUI control could also apply to acolumn of agrid, depending on the
cardinality of the associated field. Therefore, TextBox* can be read as Text-
Box or TextBoxColumn. For moreinformation about using GUI controlswith
grid columns, see Using the Grid, page 165.

Step 1: Search for GUI Keywordsin Field Definitions

The model starts by looking for specific keywords that begin with GUI in the Predict
field definition. The following example shows a hypothetical M-PROVINCE field be-
ing mapped to a ComboBox using the GUI_COMBOBOX keyword:

12:53: 21 *kxxk proedi ct 3.4.1 xEExx 02-01-28
- Mdify Field -

Field ID........ M PROVI NCE Modi fied: 97-01-16 at 09:32
FileID......... NCST- CUSTOMER by: DEVMI1
Keys .. GUI _COvVBOBOX Zoom N
Ty L Field name F Length Cce D U DB N NAT-I
* _ e e e e e e e e e — —— —— - K o e e e e e e e e e e - * ok _ * oo

2 M PROVI NCE A 20.0 X4 N

Nat ural attributes

Header1l Province
Header2 ...
Header3 ...
Edit mask .
Conmmrent s Zoom N
ED T: Owner: N Desc: N* Veri: N MORE Attr.: N

Predict Modify Field Panel

—134 -

Creating and Customizing Maintenance Dialogs

The model recognizes the following keywords:

GUI Control

Description

GUI_ALPHA
MULTILINE

GUI_CHECKBOX

GUI_COMBOBOX

GUI_NULL

GUI_OPTION
BUTTON

Generatesa TextBox™ control with the MultiLine property set
to True. This gives the GUI control the feel of a mini-word
processor. The control will word-wrap its contentsand provide
scroll bars as required.

Use this keyword to represent a repeating alphanumeric field
as asingle piece of information such as along description.

Generates a CheckBox* control. Thiskeyword can be used in
combination with afield of any format. If atable verification
with two or more values is attached to the data field, the first
value represents false and the second value represents true. If
no verification is attached to the field, the model derives true
and false values based on the field format. If the field is
alphanumeric, blank represents false and non-blank represents
true.

When updating the object PDA, the Visual Basic maintenance
dialog uses“ X" to represent true. If thefield is numeric, zero
represents false and non-zero represents true. When updating
the object PDA, the maintenance dialog uses 1 to represent
true.

Generatesadrop-down ComboBox* control. Thismodel looks
for atable-style verification. If one has been set up, the values
are used asthe entriesfor the combo box. If averification does
not exist, the model generates one dummy entry for the combo
box.

Generate adummy entry if the combo box is to be popul ated
with datafrom an external source such asaPC onyour LAN.
For information about populating a combo box with external
data, see Generate a ComboBox Control to Display
External Values, page 136.

Preventsthe generation of aGUI control definition for thefield
or any code pertaining to the field. Use this keyword if you
defined fields that should not be displayed in the dial og.

Generates aframe and a series of OptionButtons. The model
uses the table-style verification attached to the field. For this
keyword to work, you must attach values to the table-style
verification because each of the values maps to an option
button.

—-135-

(AJI\JHV

Construct Spectrum SDK for Client/Server Applications

GUI Control Description (continued)

GUI_PROTECTED Treats the associated field as read-only. The user cannot
modify the contents of the field. This keyword can be used in
conjunction with the other keywords described in this section
except when the GUI_NULL keyword is used.

Usethiskeywordif the contents of thefieldisto be determined
programmatically, as with a calculated field. For more
information about calculated fields, see Creating Calculated
Fields, page 145.

GUI_TEXTBOX Generates a TextBox*. Text box GUI controls can have BDT
(business data types) definitions attached to them. For more
information about using BD Tswith text box GUI controls, see
Step 3: Search for Business Data Type Keywordsin Field
Definitions, page 138.

Note: Option buttons are not supported in agrid contral. If the
GUI_OPTIONBUTTON keyword is attached to the field definition and the
field is part of arepeating group of fields (PE) or is a stand-alone repeating
field (MU), it is mapped to a ComboBox instead of OptionButtons.

Generatea ComboBox Control to Display External Values

Use the GUI_COMBOBOX keyword in Predict to force generation of a ComboBox
control that displays values from an external source (for example, aLAN database).
To set up aComboBox control to display values from an external source:

Set up afield definition for thefield in Predict.

Add the GUI_COMBOBOX keyword to the Predict field definition.

On the client, write code in the Form_L oad event for the dialog to populate the
ComboBox with values by reading the external source when the form is loaded.

- 136 —

Creating and Customizing Maintenance Dialogs

Step 2: Search for GUI Keywords on Verification Definitions

If the model did not derive a GUI control in Step 1, it looks next for a GUI keyword in
any attached table-style verifications. However, it only considers the
GUI_COMBOBOX and GUI_OPTIONBUTTON keywords as valid. Other keywords
areignored.

The following example shows a hypothetical VALID-PROVINCE verification being
mapped to a ComboBox using the GUI_COMBOBOX keyword:

13:12: 21 *kxxk proedi ct 3,41 xEExx 02-01-28
- Mdify Verification -
Verification ID . VALID PROVI NCE Modi fied: 97-01-28 at 13:11
Status Nat ural Construct by: DEVMI
Keys .. GUI _COVBOBOX Zoom N
Format * A Al phanuneric Modi fier Zoom N
Type * T Table of values
Message nr 1112

Repl acenent 1 ...
Repl acenent 2 ...
Repl acenent 3 ...
Message text

Conmmrent s Zoom N Val ues * Zoom N
British Col unbia BC

Al berta ALTA

Saskat chewan SASK

Mani t oba VAN

Ontario ONT

Quebec Q

New Brunswi ck NB
ED T: Omwner: N Desc: N* Rule: N

Predict Modify Verification Panel

Tip: Improvethe readability of averification value by adding its concise termin the
Comments field. Construct Spectrum displays the comment value in the drop-
down combo box or caption name of an option button. In the previous panel, the
full name of each province has been entered in the Comment field that corre-
spondsto its database verification value. If comment val ues are not supplied, the
database verification values are displayed.

Consider attaching a GUI keyword to a verification definition, rather than a field defi-
nition, to implement a standard GUI representation for any field using the same type of
verification. Thisalso eliminatesthe need to assign the keyword to each field definition.
Y ou can overridethe GUI keyword on the verification definition by supplying one for
the field definition. For more information, see the description for the
GUI_OPTIONBUTTON and GUI_COMBOBOX keywordsin Step 1: Sear ch for
GUI Keywordsin Field Definitions, page 134.

For more information about verifications, see Validating Y our Data, page 261.

—-137 -

Construct Spectrum SDK for Client/Server Applications

Step 3: Search for Business Data Type Keywordsin Field
Definitions

If the model could not derive a GUI control in Step 1 or 2, it next looks for a Business
DataType (BDT) keyword in the Predict field definition (shown in Step 1). Since you
can augment the standard set of supplied BDTs with your own BDTs, the model will
accept any keyword which begins with BDT.

If the model finds a BDT-prefixed keyword in the field definition, it usesa TextBox"
GUI control to represent the field. Additionally, the model looks in the keyword com-
ments for an actual BDT type and modifier. If aBDT existsin the comments, it is used.

Example of a BDT type with a modifier specified in the keyword comments

BDT=BDT_NUMERI C

MOD=" ZERO=CFF”

If no BDT or modifier isfound, the model usesthe BDT implied by the keyword itself.
If no modifier was specified withtheBDT, the BDT manager in the Construct Spectrum
client framework defaults a modifier.

Y ou can create your own BDT keywords which only exist on the server and map them
to combinations of BDTsand modifierson the client PC. For example, you could create
two BDT keywords, BDT_NUMERIC_ZERO and BDT_NUMERIC_ROUND.

Attach the BDT_NUMERIC_ZERO keyword to the field definition
The comments of the BDT_NUMERIC_ZERO keyword could contain
BDT=BDT_NUMERIC and MOD="ZERO=0N".

Attach the BDT_NUMERIC_ROUND keyword to the field definition
The comments of the BDT_NUMERIC_ROUND keyword could contain
BDT=BDT_NUMERIC and MOD="ROUND=0N".

- 138 -

Step 4: Use Default Derivation

If the model is unable to derive a GUI control in Step 1, 2, or 3, it usesitsbuilt-in GUI
derivation logic. Thislogic is described pictorially in the following diagrams.

Creating and Customizing Maintenance Dialogs

Key Use user mapping from User
. step1,2,0r3 Yes Mapping?
D Date - T Time (ensure it is valid) PPIng?
N Numeric P Packed
| Integer F Float No
A Alphanumeric
Group Field Type
No Yes
v @ v Data
Grid Frame
@<—No in Repeating
Group?
Yes
No Rep_eating Yes
Field?
Y Y
CheckBox Dropdown Grid,
Format L= Column CheckBox Column [€7E—\Format
D, T,N, P, D, T,N, P,
I, F,A I, F.A
Y
Dropdown
ComboBox Grid,
Verification? Yes—» o uimn ComboBox €S Verification?
Column
No No
A A : o v
Regular © Grid Columns ; Drop-down Grid 3 T'Dropdown Grid,
Column with : Columns Regular Column
BDT | | | T with BDT

Default Derivation of GUI Control — Part 1 of 2

—-139 -

Construct Spectrum SDK for Client/Server Applications

CheckBox

Label,
TextBox
with LDT

<€—No

Frame,
number of

Option Buttons

Repeating
Field?

nnns . 5 or more 5 or Number of dor___
© Scalar GUI v more occurances less
Controls Label,
"""""" ComboBox
Label, Grid, Label ber of X
CheckBox |«L abel, number o
Column @ CheckBoxes e Format
D,T,N,P,
Label, Grid, Label,
ComboBox number of
Column ComboBoxes
Key
D Date T Time | |aeeceeeceeee, |
N Numeric P Packed 1-Column) © GUI Control
| Integer F Float : Grid Controls : Label, Grid, . Label, number
A Alphanumeric Regular —fI | 000 of TextBoxes
Column with BDT with BDT

Default Derivation of GUI Control — Part 2 of 2

The previous diagram illustrates that the choice of GUI control(s) used to represent a
database field depends on several threshold variables. Y ou can control these threshold
points at a corporate level; that is, your default threshold values affect all Visual Basic
maintenance dialogs. This is accomplished by using Construct’ s corporate defaulting

mechanism.

—140-

Creating and Customizing Maintenance Dialogs

The corporate defaults that affect Construct Spectrum’s choice of aGUI control are de-
scribed in the following sections:

Repeating Field Threshold, page 142
Option Button Threshold, page 142
Foreign Field Threshold, page 142

To assign acorporate default:

Use the following code example as a guide to assigning a corporate default value.
The exampleillustrates how awork file number and column delimiter values are
defaulted.

Example of assigning corporate defaults

/*
/* Retrieve all nobdel constants that are stored using the standard
/* defaul ting method.
I NCLUDE CCDEFLTN ''' MAX- OPTI ON- BUTTON- COUNT' "'

' CUVDPDA. #MAX- OPTI ON- BUTTON- COUNT'
I NCLUDE CCDEFLTN "' ' MAX- MJ- COUNT' ' ' ' CUVDPDA. #MAX- MJ- COUNT'
| NCLUDE CCDEFLTN ''' MAX- DI ALOG-W DTH' "'

' CUVDPDA. #PDA- MAX- DI ALOG- W DTH
| NCLUDE CCDEFLTN ''' MAX- DI ALOG HElI GHT' "'

' CUVDPDA. #PDA- MAX- DI ALOG- HEI GHT'
I NCLUDE CCDEFLTN ''' FK- AS- COMBO THRESH- HOLD' "'

' CUVDPDA. #PDA- FK- AS- COVBO- THRESH HOLD
** Note that there are 3 separate | NCLUDE nenbers: one for nuneric
** defaults (CCDEFLTN), one for al phanuneric defaults (CCDEFLTA), and
** one for |ogical defaults (CCDEFLTL)
** Continue nornmal processing and the initial values may have been
** overridden by a corporate-supplied defaulting routine.

To apply the changes corporation-wide, you must add the initial variable name and its
initial value in the CSXDEFLT user exit routine.

Note: Theinternal defaulting mechanism may be affected when you use this default-
ing mechanism to initialize the specification panel default keyword. Use the
same keyword for both mechanisms. The specification panel default keyword
overrides the internal default keyword.

~141 -

Construct Spectrum SDK for Client/Server Applications

Repeating Field Threshold

A repeating field that is not in arepeating group of fieldsisrepresented either by aGUI
control array, such as an array of text boxes, or by a one-column Grid control.

The choice of GUI control depends on the MAX-MU-COUNT default value. If the
number of occurrences of arepeating field islessthan or equal to MAX-MU-COUNT,
the field will be represented with a GUI control array.

The VB-Maint-Dialog model copies the MAX-MU-COUNT default value into the
#MAX-MU-COUNT variable of themodel PDA (CUMDDPA) inthe model’ s pre-gen-
eration subprogram (CUMDPR).

Option Button Threshold

A scalar field that has atable verification attached to it isrepresented either by a Frame
and series of OptionButtons or by a L abel and ComboBox.

The choice of GUI control depends on the MAX-OPTION-BUTTON-COUNT thresh-
old default value. If the number of table verification values is less than or equal to
MAX-OPTION-BUTTON-COUNT, the field will be represented with a Frame and
OptionButtons.

The VB-Maint-Dialog model copies the MAX-OPTION-BUTTON-COUNT default
valueinto the #MAX-OPTION-BUTTON-COUNT variable of the model PDA (CUM-
DDPA) in the model’ s pre-generation subprogram (CUMDPR).

Foreign Field Threshold

If ascalar field represents aforeign field in another file, the maintenance dialog pro-
vides additional GUI controls to allow the selection of these foreign values. The
maintenance dialog will either provide a button that opens a modal browse dialog or
generate a ComboBox and populateit at form-load time.

The choice of GUI control depends partially onthe FK-AS-COMBO-THRESH-HOLD
default. If the number of foreign key valuesis less than or equal to FK-AS-COMBO-
THRESH-HOLD, thefield is represented with a ComboBox.

The VB-Maint-Dialog model copies the FK-AS-COMBO-THRESH-HOLD default
valueinto the #PDA-FK-AS-COMBO-THRESH-HOLD variable of the model PDA
(CUMDPDA) in the model’ s pre-generation subprogram (CUMDPR).

For more information about how foreign fields are represented with GUI controls, see
Integr ating Browse and M aintenance Functions, page 275.

— 142 -

Creating and Customizing Maintenance Dialogs

Setting Generation GUI Standards

Construct generation technology enablesyou to standardize your code. Construct Spec-
trum extends the benefits of standardization to the GUI realm. Default vaues for
properties of GUI controls, such as Font and ForeColor, are centrally established. This
means that if your company standard isto use a 10 pt. Arial font for all labels on GUI
screens, you need only change one line of code.

Construct Spectrum uses a series of utility Natural subprograms to control generation
of GUI diaogs. Collectively, these subprograms are known as the Visual Basic API.
For each type of GUI control supported, there is a property default subprogram which
is responsible for supplying default properties for that GUI control. The Visual Basic
APl aways calls the property default subprogram for a GUI control before generating
the definition for the GUI control. For example, the Visual Basic APl callnats CSVB-
DLBL, the property default subprogram for Label GUI controls, before generating the
definition for alabel. This subprogram sets the default Height of aLabel with thefol-
lowing line of code:

ASSI GN CSVALCTN. HEI GHT = 285

Thefollowing table lists the GUI controls supported by Construct Spectrum and the as-
sociated property default subprogram for the GUI control.

GUI Contral Subprogram GUI Control Subprogram
CheckBox CSVBDCHK ComboBox CSVBDCBO
CommandButton ~ CSVBDCMD Form CSVBDFRM
Frame CSVBDFRA Grid CSVBDGRD
Label CSVBDLBL ListBox CSVBDLST

OptionButton CSVBDOPT StatusBar CSVBDSTA

TextBox CSVBDTXT Timer CSVBDTMR

Y ou can change the default assignments made in any of the property default subpro-
gram standards through the Generated Maintenance classes API. For information, see
Utility Subroutines on the Client, page 373, Construct Spectrum Reference.

Note: Some properties, such as Top, Left, and Caption, are dependent on the data
field associated with the GUI control or the field' s relative position in a Pre-
dict file. Do not attempt to provide standardsfor thistype of control. The mod-
el controls the values for this type of property and will override any changes

you specify.

— 143 -

Construct Spectrum SDK for Client/Server Applications

Controlling the Size of a Maintenance Dialog

Y ou can control the maximum dimensions of generated dialogs by specifying corporate
default values. Generated dialogs will not exceed these dimensions. The maximum
height and width values are supplied in a unit of measurement known as TWIPS. The
following table shows the TWIP value equivalent of pixels for common monitor
resolutions.

Resolution In Pixels TWIPS— Small Fonts TWIPS— Large Fonts

(factor of 15) (factor of 12)
640 x 480 9600 x 7200 7680 x 5760
800 x 600 12000 x 9000 9600 x 7200
1024 x 768 15360 x 11520 12288 x 9216
1280 x 1024 19200 x 15360 15360 x 12288

Know the lowest resolution monitor your application will be used on and generate dia-
logs to fit that monitor. Y ou can set default values for the maximum height and width

of your dial og by using Construct’ s corporate defaulting mechanism. The default values
are MAX-DIALOG-HEIGHT and MAX-DIALOG-WIDTH.

The VB-Maint-Dialog model obtains these defaults in its pre-generation subprogram
(CUMDPR) and copies them into the #PDA-MAX-DIALOG-HEIGHT and #PDA-
MAX-DIALOG-WIDTH variables of the model PDA (CUMDPDA).

For information about changing acorporate default value, see Step 4: Use Default Der -
ivation, page 139.

Overflow Conditions

Overflow conditions occur when adialog cannot display all of itscontrols. Consider the
following scenario. Y ou are developing an application on a monitor with aresolution
of 9600 x 7200 TWIPS and you generate adial og that reachesa height of 10000 TWIPs.
When you open the dialog in the Visual Basic editing environment, a third of the GUI
controls extend off the bottom of the screen. Thisis known as an overflow condition.
The only way to work with the hidden GUI controls is to select the control from the
Properties panel and manually manipulate their Left and Top properties— not avisua
solution. For information about correcting overflow conditions, see Working with
Overflow Frames, page 148.

— 144 -

Creating and Customizing Maintenance Dialogs

Customizing on the Client

This section describes the different mechanisms available on the client platform for cus-
tomizing the generation results of aVisual Basic maintenance object and amaintenance
dialog.

Creating Calculated Fields

Creating GUI controlswhose values are based on the values of other GUI controlsis a
common customization task. Thistask involves modificationsto both the maintenance
dialog and the Visual Basic maintenance object.

For information about deriving valuesfrom aforeign field on amaintenance dialog, see
Supporting Multiple Descriptive Values and Derived Values, page 290.

Doesa GUI Control Exist for the Calculated Field?

Thefirst step in creating a calculated field is to ensure that a GUI control exists on the
maintenance dialog to hold the calculated value. If thefield isdefined in Predict, it will
already exist in the dialog. Make sure that the control is not enabled. If the control isa
scalar GUI control, such asa TextBox or ComboBox, set the control’ s Enabled property
to False. If the control isagrid, modify the code in the Load GridNameGrid (where
GridName is a unique variable) routine.

Tip: Addthe GUI_PROTECTED keyword to acalculated field in Predict. This key-
word can be added to both input and output-only fields.

If aGUI control does not exist to hold the cal culated value and it will not be stored in
the database, add the GUI control by hand. For information about adding a GUI control
by hand, see Adding a New Field by Hand, page 152.

Coding the Calculation

The calculation must be triggered whenever the value of one of the fields involved in
the calculation changes. Use the L ostFocus event to trigger such a calculation.

Note: The calculation should not be performed in the dialog code. Keep customized
code in the dialog to a minimum. Rather, add the calculation code to the Vi-
sual Basic maintenance object. The function call might look similar to thefol-
lowing example.

—145—

Construct Spectrum SDK for Client/Server Applications

Example of a function call in the maintenance dialog

txt _Enpl _Pay. Text = Internal Cbject. _

Cal c_Pay(CLng(txt_Enpl Rate. Text), CLng(txt_Enpl_Hours. Text))
The function can aso accept the parameters required to perform the calculation and re-
turn the result, such asin the following example.

Example of calculation code in the Visual Basic maintenance object

Publ ic Function Cal c_Pay(Rate As Long, Hours as Long) As Currency
Calc_Pay = Rate * Hours
End Function

| ntegr ating M aintenance and Browse Functions

When aforeign key field isincluded in a Predict defined file and you generate a main-
tenance diaog for the file, Construct Spectrum automatically includes browse
capabilities for the foreign field. A browse linked to a maintenance dialog can beim-
plemented as a drop-down list or as adialog.

For more information about how mai ntenance and browse functions areintegrated, see
Integr ating Browse and M aintenance Functions, page 275.

Validating Data Using the Visual Basic Maintenance Object

The Visual Basic maintenance object is an ideal placeto code simple business valida-
tions. The model providesthe CLIENT-VALIDATION user exit for this purpose.
Coding validations on the client reduces the number of data entry errorsin your dialog
before the data is transmitted across the network, thus enhancing the overall perfor-
mance of your application. Avoid coding validations in the Visual Basic maintenance
object that involve network cals; these could trigger anetwork call every timeyou
change focusfrom onefield to the next. For more information about validating your da-
ta, see Validating Your Data, page 261.

— 146 —

Creating and Customizing Maintenance Dialogs

Tailoring the Maintenance Dialog

This section describes how to tailor your maintenance dialog. It contains information
about tailoring the dialog’ s appearance, adding and removing fields, and working with
special types of fields. The most common tailoring task is altering the layout of GUI
controls as they were generated in the dialog. By default, GUI controls are generated in
two columns from top to bottom, with labels on the left and input controls on the right.
The following example shows atypica generated maintenance dialog:

Olicdesr Mursbess |'I_£|.-!I

Clickes Armosied |]

O Do ||.|1-'1-1-'.1-'

Customet Mumbed |1Ll.l.1 | MURHETHEM EABRICATIMNG

' ehouse bt 111 |TORONTO CENTRAL WaREHILSE =
Irvemice Mumber |E.-1;I§ll
[sy Irsstmactions: sk b clespssad] betwsers 1 and B PR
Prosciect
P"‘:’:"':'[Lt O il mirs | Qubnlip | Uit Ciatd | Tolal Casl =
1 INE CDOPER GLOYES 40 10001 /(] 4000 D
2 B SLA FLUOLH 10 42501 42500
3 1] L] 0=
4| | k
D laibadtian [11
Lot § § =
Emlﬂ:dlﬁ:-:ll Dt Amearil I_
i TC |05 =
210 1 50
i) L]
4 am =

Typical Generated Maintenance Dialog

When tailoring the dialog’ s appearance, the changes should enhance the usability of the
application. For example, group related fields so the user can easily see that they are
related. The user should be ableto move from field to field in away that coincides with
how they would logically perform their tasks.

There are many reasons to alter the appearance of your diaog, such as conforming to
layout standards used by your organization. For example, there may be users whose

monitor resolution is 640 by 400 pixels and your organization wants all applicationsto
run effectively on these users’ machines. For information on generating dial ogs based
on monitor resolution, see Controlling the Size of a Maintenance Dialog, page 144.

— 147 -

Construct Spectrum SDK for Client/Server Applications

Following are several suggestions on how to lay out your maintenance dial ogs so that
they meet your organization’ s requirements. Each suggestion contains a diagram that
depicts the layout. Each diagram is based on layout changes that were applied to the
generated maintenance dialog shown previously.

Note: Many of the procedures described in this section require you to perform tasks
specificto Visual Basic. For moreinformation, refer to the documentation that
comes with Visual Basic.

Working with Overflow Frames

Overflow conditions occur when a dialog cannot display all of its controls. When an
overflow condition is encountered by the VB-Maint-Dia og model, it responds by gen-
erating a Frame control that isthe same size asthe diaog itself. The frame overlaysthe
other GUI controlsin the dialog. The model then continues generating new GUI con-
trols in the Frame container control. If the first frame becomes filled, the model
generates another frame. The process continues until all thefieldsin the Predict file are
represented by a GUI control.

The following example shows what a dialog looks like when an overflow condition is
encountered:

N [=] £
Chematiena Froars 1

Fustdl Code |
Conkect |

Cracll Ratireg |

Cieclt Linskt |

Capamard Prscaniage: |

| Ciatian ¥ ' anathcn om [|

Dialog Overflow Conditions

When adialog generates overflow frames, rearrange the GUI controls using one of the
layouts described in this section. Thiswill largely be ajob of cutting and pasting GUI
controls from the overflow frame(s) onto the dialog itself.

— 148 —

Creating and Customizing Maintenance Dialogs

» To work with an overflow frame:

1

=

Open the Construct Spectrum project containing the dialog form (.frm) file you want to
modify.

Select the dialog form > View Form from the Project window.
Thedialog is displayed.

Make the dialog as large as you can and drag the frame to afree area of the screen.
All of the controls within the frame are moved as well. If the frame is blocking your
view of other controls, shrink the size of the frame.

Rearrange the GUI controls using one of the layouts described inthe following sections.

Multi-column Layout

Use a multi-column layout when your dialog contains a large number of fields. For ex-
ample, if adialog will be too long and can be wider.

To create a multi-column layout:
Drag some of your GUI controls over to create a second column of information.

If one or two fields are significantly wider than others and are impeding your attempts
to create asecond column, consider shrinking the width of these controls. Userscan still
type in large data val ues although they cannot see the entire value in the field.

The following example shows the same maintenance dial og presented at the beginning
of this section, thistime in atwo-column layout:

M Cuziome =]
Customes Mumber: | izt Al stirey |
Business Hamer: | Coeefil Limit |
Phiorw ik | Digciounl Paioantage |
Contact [wimehouse id |
Shmet | Sheet |
Gty | Ciy |
Proviece: | Fiance |
Postal Code: | Pkl Code |

Maintenance Dialog in a Multi-Column Layout

—149 -

Construct Spectrum SDK for Client/Server Applications

Tabbed L ayout

If your dialog is larger than you would like and thereis not sufficient room to create
multiple columns, consider placing some or most of the GUI controlsinside tab pages.
To create alayout with tab pages:

Using the Sheridan tab which comeswith Visua Basic Professional Edition, move GUI
controls to atab page by cutting them from the dialog (or overflow frame)

Select the tab control and paste the GUI controls onto the tab.
Y ou can now drag them to the appropriate location.

Tip: To place agroup of GUI controls on the same tab page, cut and paste all the con-
trols at the same time. The GUI controls will maintain there position relative to
one another. In general, do not place key field(s) on atab page. Key field(s)
should always be visible and easily accessible.

Thefollowing exampl e shows the same maintenance dialog presented at the beginning
of this section, thistime in atabbed layout:

N Cuzbomer M=1E3

l:uslw-trr-l-bﬂl

General Irfomation IH-ai-;.A:H:i:] Shipping Addiess |

Busia=zs Hame |

Prvana M [
Cantact I

Cesdi Alating [

Coedit Limit: |

Discount Pascantags |
Warehouse I [

Maintenance Dialog with Tab Pages

- 150 -

Creating and Customizing Maintenance Dialogs

State-Dependent Layout

A state-dependent layout is the most difficult type of layout to create. Use this layout
when many of the fieldsin the dialog are mutually exclusive (displayed and enabled
only when the dialog is in a specific state).

To create a state-dependent layout:

Add a State field to the dialog.
Thisfield is always visible and controls the current state.

Assign other fields in the dialog to a specific state.

Movethe GUI controls on the screen so that fields belonging to one state overlap those
in the other states.

Write code to make the fields from one state visible and the fields from the other states
invisible whenever the state field changes.

Tip: It may be easier to create two frames and place the state-dependent fields inside
the frames. M ake the frames visible or invisible depending on the current state.

In the following example, thereis anew GUI control called Address Toggle; its |abel
isPrimary Address. ThisGUI control isthe Statefield. It controlswhen to display Mail-
ing Address information and when to display Shipping Addressinformation:

N Custumer M=
Cuores Mumbs: | Ciacil Fiating [

Sunms Hama | Craci Lira —
PhreMabn [Dot Pacariige [

Dot [W aehoute id I_

Frinay Addxz o psBegaddiess T SReppee Atk

Gieet |

[aty |

Provnce |

Puartal Crc [

Maintenance Dialog with a State-Dependent Layout

—151 -

Construct Spectrum SDK for Client/Server Applications

Adding a New Field by Hand

If youadd anew field to your Predict file definition and have already generated adial og,
it may be more efficient to manually add the new field, rather than regenerating the di-
alog. Thisis especidly trueif you have already tailored the generated form.

The tasks required to add anew field to adialog by hand vary depending on the cardi-
nality of the field (whether thefield can display one, two, or more dimensions of
information). One-dimensional information is displayed within ascalar GUI control.
Information with two, three, or four dimensionsis displayed either inacolumninagrid
control or in acontrol array such as an array of text boxes.

Add a Scalar Field by Hand

A scalar GUI control represents one-dimensional information. Most controlsin adialog
are scalar; for example, a name, an address, or an order number are typically represent-
ed with scalar fields.

To add ascalar field:

Determine the type of GUI control to represent your new database field. GUI controls
for scalar datainclude:

TextBox

ComboBox

CheckBox

Frame with a group of OptionButtons.

Drag the desired type of GUI control onto the dialog from the Visual Basic tool box.
Add alabel and GUI control input name for the control.

Tip: Choose your names based on the naming conventions used by other Construct
Spectrum GUI controls. For information about Construct Spectrum naming con-
ventions, see Deriving Variable Names, page 132.

Follow the instructions provided in this section for the type of control you are adding.
These procedures contain information about creating event code blocks for the new
control and about adding code to some standard subroutines to implement the control.

A ComboBox control utilizes asingle drop-down list from which users can select aval-
ue. The user cannot, however, type additional values inthelist. The client framework
includes the ComboClass.cls, which is useful for populating ComboBox GUI controls
and Combo columns of agrid. The ComboClass allows you to define pairs of values: a
database value and a display value.

—-152 -

Creating and Customizing Maintenance Dialogs

If the new database field is arepeating field (MU field), create a control and use the
same techniques described in this section. Ensure that the code blocks use an Index pa-
rameter. Control arrays are zero-based whereas array information stored in the Object
PDA is one-based.

To add a TextBox GUI control for afield:

Add anew assignment statement to the CopyObjectToForm subroutine.
This copies the Object PDA field value to the GUI control. The following codeisa
sample assignment statement:

txt _CUST_NewFi el d. Text =
BDT. Convert ToDi spl ay(. Fi el d("NEW FI ELD"), _
Nat For mat Lengt h: =" A6")

Add anew case statement to the CheckRemoteError subroutine.

This statement enablesthe dialog to assign an error object to thefield if the maintenance
object subprogram on the server encountered avalidation error for the field. The
following code is a sample case statement:

Case "NEWFIELD': Set ErrControl = txt_CUST_NewFi el d

Add Change event code for the new GUI control.

Thiscodeindicatesto the dialog that the value of thefield has changed. It also indicates
that at least onefield in the business object has changed. Thefollowing codeisasample
Change event:

Private Sub txt_CUST_Newri el d_Change()
Val ueChanged = True
Obj ect Changed = True

End Sub

Add GotFocus event code for the new GUI control.
Thiscodedisplaysan error tip for thefieldif thereisan object error attached to thefield.
The following code is a sample GotFocus event:

Publ i ¢ Sub txt_CUST_Busi nessNanme_Got Focus()
Val ueChanged = Fal se
cst Sel ect Contents
CSTUtils.cstDisplayErrorTip Me

End Sub

- 153 -

Construct Spectrum SDK for Client/Server Applications

5 Add LostFocus event code for the new GUI control.
If the user changed the value of the control, this code removes any object errors from
the control and assignsthe control’ svalueto thefield in the Object PDA. If an error was
detected during the assignment, an object error isapplied to the control. The following
code shows an example of the L ostFocus event:

Publ ic Sub txt_CUST_NewFi el d_Lost Focus()
Di mValue As String
CSTWils.ErrorTip. Hi deErrorTip
I f Val ueChanged Then
ErrorMsg = ""
RempveUnneededControl Errors Me, _
t xt _CUST_NewFi el d, Val ueChanged
Val ue = txt_CUST_NewFi el d. Text
Val i dAssi gnment Val ue, Internal Object, _
"NEW FI ELD", ErrorMsg, Nat FormatLength: =" A"
t xt _CUST_NewFi el d. Text = Val ue
If ErrorMsg <> "" Then
ParseErrorString ErrorMg, ErrorNr, ErrorSrc
Set Obj ect Error Me, txt_CUST_Newrield, ErrorNr, _
ErrorMsg, ErrorSrc

End |f
End | f
End Sub

» To add aComboBox GUI control for afield:

1 AddcodetotheForm Load event toload andinitialize a ComboClass instance with the
valid values. The following code is a sample load/initialize statement:

ProvlLi st. Load cbo_CUST_Prov
ProvList.Addltem "British Col unbi a"

Note: If you areloading values from an external source, such as a PC connected to
your LAN, code the necessary logic to |oad these values now.

2 Add code to the CopyObjectToForm subroutine to update the ComboBox with values.
The update is accomplished by assigning a value from the ComboClass.cls to the
Listindex property of the ComboBox control. The following is a sample statement to
update the ComboBox with values:

cbo_CUST_Prov. Listlndex = ProvList. Getlndex(.Field("PROV"))

3 Add code to update the business object when the selected value of the ComboBox is
changed, as occurs when a Click event is triggered.
Thefollowing isasample statement executed on the client to update the business object
with anew database value:

Value = _

ProvLi st. DBVal ue(cbo_CUST_Prov. | tenDat a(cbo_CUST_Prov. Li st | ndex))
Val i dAssi gnnent Val ue, |nternal Object, "PROV', ErrorMsg, _

Nat For mat Lengt h: =" A20"

— 154 -

Creating and Customizing Maintenance Dialogs

1

2

3

4

For more information about using the ComboClass, see M aintenance Classes, page
205, Construct Spectrum Reference.

To add a CheckBox field:

Note: The sample code for this procedure assumes that the new database field is Al-
phanumeric.

Add anew assignment statement to the CopyObjectToForm subroutine.
This copies the object PDA’sfield value to the GUI control. The following codeisa
sample assignment statement:

chk_CUST_NewField.Value = 11f(.Field("NEWFIELD") <> ""
vbChecked, vbUnchecked)

Add anew case statement to the CheckRemoteError subroutine.

This statement enablesthe dialog to assign an error object to thefield if the object

mai ntenance subprogram on the server encountered avalidation error for thefield. The
following code is a sample case statement:

Case "NEWFIELD': Set ErrControl = chk_CUST_NewFi el d

Add Click event code for the new GUI control.

The functions performed in the Click event are to indicate that the field value has
changed, remove any object errors from the control, assign the new value to the Object
PDA (client’s version), set an object error for the control if an error was encountered
during the assignment, and finally display an error tip if an error is attached to the
control. The following code shows an example of the Click event:

Private Sub chk_CUST_Newri el d_dick()
DimErrorMsg As String

Publ i ¢ Sub chk_CUST_NewFi el d_Got Focus()
Val ueChanged = Fal se
cst Sel ect Contents
CSTUtils.cstDisplayErrorTip Me

End Sub

End If
NewFi el dNdx = | ndex
CSTW il s.cstDisplayErrorTip Me
End | f
End Sub

Add GotFocus event code for the new GUI control.
Thiscodedisplaysan error tip for thefieldif thereisan object error attached to thefield.
The following code is a sample GotFocus event:

Publ i ¢ Sub chk_CUST_NewFi el d_Got Focus(| ndex As I nteger)
Val ueChanged = Fal se
cst Sel ect Contents
CSTUtils.cstDisplayErrorTip Me

End Sub

—155 -

Construct Spectrum SDK for Client/Server Applications

Add a Regular Grid Column for a Field

Grid controls are used to represent two, three, or four-dimensional information. If the
field you are adding is part of agrid, you must perform modifications to the column in-
dexing values of some of the grid variables. For information about manipulating grid
controls, see Using the Grid, page 165.

Each column within agrid is associated with adatabase field. The grid code must know
the relative position of acolumn to identify its associated database field. Therefore,
when adding a grid column, you must adjust the column indices in the dialog code as
described in the following steps.

To add aRegular Grid Column for afield:

In the Global Declarations section, increase the MAX_GridName_COL S constant by
one.

Sample code before

Public I ncomeGid As New TrueGi dCl ass
Const MAX_NCSTORDERHASLI NES_COLS =8
Const MAX_NCSTORDERHASLI NES ROA5 = 30

Sample code after

Public I ncomeGid As New TrueGi dCl ass
Const MAX_| NCOVE_COLS =9
Const MAX_| NCOVE_ROWS = 30

In the CheckRemoteError sub section, increase the ErrColumn value in the case
statement for every field in the same grid with a higher column number than the new
column.

Sample code before

Case " SALARY"
Set ErrControl = IncomeGid
ErrColum = 4

Case " BONUS"
Set ErrControl = IncomeGid
ErrColum =5

Sample code after

Case " SALARY"
Set ErrControl = IncomeGid
ErrColum = 4

Case "NEW FI ELD"

Set ErrControl = IncomeGid
ErrColum =5

Case " BONUS"
Set ErrControl = IncomeGid

ErrColum =6

— 156 —

Creating and Customizing Maintenance Dialogs

3 Inthegrd _ObjectName_GridName_UpdateObject sub section (where ObjectName and
GridName are unique variabl es), increase the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

Sample code before

Case 4
Fi el dName = " SALARY(" & IncomeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " P9. 2"

Case 5
Fi el dName = "BONUS(" & | nconmeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " P9. 2"

Sample code after

Case 4
Fi el dName = " SALARY(" & IncomeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = "P9. 2"Case 5
Fi el dNane = "NEW FI ELD(" & | nconeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " A10"

Case 5
Fi el dName = "BONUS(" & | nconmeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " P9. 2"

4 IntheLoadGridNameGrid sub section, add acall to the ColumnAdd method. If the new
column is not to be modified, include the M odifiable:=Fal se parameter.

Sample code before

. Col umAdd "Product/ Suffix", BDT_ALPHA, "A2"
. Col uimAdd "Line/Description", BDT_ALPHA, "A40"

Sample code after

. Col umAdd "Product/ Suffix", BDT_ALPHA, "A2"
. Col umAdd "New Fi el d, BDT_ALPHA, "A5", Modifi abl e: =Fal se
. Col utmAdd "Line/Description", BDT_ALPHA, "A40"

5 Inthe CopyGridNameToForm subroutine, for each assignment statement within thefor
loop(s), increase the second index of the array variable on theleft side of the assignment
if the column number is higher than the new column.

Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new
field is defined on the database, add an assignment statement for the field.

- 157 -

6

Construct Spectrum SDK for Client/Server Applications

Sample code before

IncomeGrid. GidbData(i, 4) = _
BDT. Convert ToDi spl ay(. Get Fi el d(" SALARY", i),
Nat For mat Lengt h: ="P9. 2")
IncomreGid.GidData(i, 5 = _
BDT. Convert ToDi spl ay(. Get Fi el d("BONUS", i),
Nat For mat Lengt h: ="P9. 2")

Sample code after

IncomeGrid. GidbData(i, 4) = _
BDT. Convert ToDi spl ay(. Get Fi el d(" SALARY", i),
Nat For mat Lengt h: ="P9. 2")

IncomeGrid. GidbData(i, 5) = _
BDT. Convert ToDi spl ay(. Get Fi el d("NEW FI ELD", i),
Nat For mat Lengt h: =" A10")

InconeGid. GidData(i, 6) = _
BDT. Convert ToDi spl ay(. Get Fi el d("BONUS", i),
Nat For mat Lengt h: ="P9. 2")

In the grd_ObjectName_GridName_KeyDown section, increase the ColumnNumber
by oneif thereis an If or Elself statement, such as If CurrCol=ColumnNumber, where
ColumnNumber is greater than or equal to the number of the new column.

Sample code before

El self CurrCol = 5 Then
If KeyCode = ..

Sample code after

El self CurrCol = 6 Then
If KeyCode = ..

» To add aComboBox Grid Column for afield:

1

In the Form_L oad event, add code to populate the ComboClass object for the selection
list associated with the new field.

Sample code

NewFi el dLi st. Load NewFi el dCol um

NewFi el dLi st. Addl tem "CDN', "Canadi an Dol | ar"
NewFi el dLi st. Addl tem "USA", "Anerican Dol | ar"
NewFi el dLi st. Addl tem "CGER', " German Mark"
NewFi el dLi st. Addl tem "FRA", "French Franc"

In the Global Declarations section, declare avariable as type Column. This variable is
used in the Form_Load event and the Load_GridName_Grid sub. Also increase the
MAX_GridName_COLS constant by one.

— 158 —

Creating and Customizing Maintenance Dialogs

Sample code before

Public I ncomeGid As New TrueGi dCl ass
Const MAX_| NCOVE_COLS =8
Const MAX_| NCOVE_ROWS = 30

Sample code after

Public I ncomeGid As New TrueGi dCl ass
Const MAX_| NCOVE_COLS =9

Const MAX_| NCOVE_ROWE = 30

Private NewFi el dCol um As Col umm

In the CheckRemoteError sub section, increase the ErrColumn value in the case
statement for every field in the same grid which has a higher column number than the
new column.

Sample code before

Case " SALARY"
Set ErrControl
ErrColum = 4

Case " BONUS"

Set ErrControl
ErrColum =5

I nconeGrid

I nconeGrid

Sample code after

Case " SALARY"
Set ErrControl
ErrColum = 4

Case "NEW FI ELD"
Set ErrControl
ErrColum =5

Case " BONUS"

Set ErrControl
ErrColum =6

Inthegrd_ObjectName_GridName_UpdateObject sub section (where ObjectNameand
GridName are unique variabl es), increase the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

I nconeGrid

I ncomeGrid

I nconeGrid

Sample code before

Case 4
Fi el dName = " SALARY(" & IncomeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " P9. 2"

Case 5
Fi el dName = "BONUS(" & | nconmeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " P9. 2"

- 159 -

5

Construct Spectrum SDK for Client/Server Applications

Sample code after

Case 4
Fi el dName = " SALARY(" & IncomeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " P9. 2"

Case 5
Fi el dNane = "NEW FI ELD(" & | nconeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " A10"

Case 6
Fi el dName = "BONUS(" & | nconmeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " P9. 2"

In the LoadGridNameGrid sub section, add acall to the ColumnAdd method. If the new
column is not to be modified, include the Mbdi f i abl e: =Fal se parameter. In this
example, the Presentation argument is set to dbgSortedComboBox. It is this setting
which makes the column behave like a ComboBox.

Sample code before

. Col umAdd "Sal ary", BDT. Get BDT("P9.2"), "P9.2"
. Col utmAdd "Bonus", BDT. Get BDT("P9.2"), "P9.2"

Sample code after

. Col umAdd "Sal ary", BDT. Get BDT("P9.2"), "P9.2"

. Col umAdd "New Fi el d", BDT_ALPHA, "A10", _
Present ati on: =dbgSor t edConboBox

. Col umAdd "Bonus", BDT. Get BDT("P9.2"), "P9.2"

In the CopyGridNameT oForm sub section, for each assignment statement within thefor
loop(s), increase the second index of the array variable on theleft side of the assignment
if the column number is higher than the new column.

Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new
field is defined on the database, add an assignment statement for the field.

Sample code before

InconeGrid. GidbData(i, 4) = _
BDT. Convert ToDi spl ay(. Get Fi el d(" SALARY", i), _
Nat For mat Lengt h: ="P9. 2")
IncomreGid.GidData(i, 5 = _
BDT. Convert ToDi spl ay(. Get Fi el d("BONUS", i), _
Nat For mat Lengt h: ="P9. 2")

- 160 —

Creating and Customizing Maintenance Dialogs

Sample code after

IncomeGrid. GidbData(i, 4) = _
BDT. Convert ToDi spl ay(. Get Fi el d(" SALARY", i),
Nat For mat Lengt h: ="P9. 2")
IncomeGrid. GidbData(i, 5) = _
BDT. Convert ToD spl ay(. Get Fi el d("NEW FI ELD", i),
Nat For mat Lengt h: =" A10")
InconeGid. GidData(i, 6) = _
BDT. Convert ToDi spl ay(. Get Fi el d("BONUS", i),
Nat For mat Lengt h: ="P9. 2")

In the grd_ObjectName_GridName_KeyDown section, increase the ColumnNumber
by oneif thereisan If or Elself statement such as If CurrCol = ColumnNumber where
ColumnNumber is greater than or equal to the number of the new column.

Sample code before

El self CurrCol = 5 Then
If KeyCode = ..

Sample code after

El self CurrCol = 6 Then
If KeyCode = ..

To add a CheckBox Grid Column for afield:

In the Global Declarations section, declare constantsto represent true and fal se database
values. Thisvariableis used in the grd_GridName_UpdateObject and
CopyGridNameToForm subs. Also increase the MAX_GridName_COLS constant by
one.

Sample code before

Public I ncomeGid As New TrueGi dCl ass
Const MAX_| NCOVE_COLS =8
Const MAX_| NCOVE_ROWS = 30

Sample code after

Public I ncomeGid As New TrueGi dCl ass
Const MAX_| NCOVE_COLS =9

Const MAX_| NCOVE_ROWE = 30

Const NEWFI ELD FALSE_CONST = " AAA"
Const NEWFI ELD_TRUE_CONST = " BBB"

—-161 -

Construct Spectrum SDK for Client/Server Applications

2 Inthe CheckRemoteError subsection, increase the ErrColumn value in the case
statement for every field in the same grid which has a higher column number than the
new column.

Sample code before

Case " SALARY"
Set ErrControl
ErrColum = 4

Case " BONUS"

Set ErrControl
ErrColum =5

I nconeGrid

I ncomeGrid

Sample code after

Case " SALARY"
Set ErrControl
ErrColum = 4

Case "NEW FI ELD"
Set ErrControl
ErrColum =5

Case " BONUS"

Set ErrControl
ErrColum =6

3 Inthegrd _ObjectName_GridName_UpdateObject sub section (where ObjectName and
GridName are unique variabl es), increase the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

I nconeGrid

I ncomeGrid

I nconeGrid

Sample code before

Case 4
Fi el dName = " SALARY(" & IncomeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " P9. 2"

Case 5
Fi el dName = "BONUS(" & | nconmeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " P9. 2"

-162 -

Creating and Customizing Maintenance Dialogs

Sample code after

Case 4
Fi el dName = " SALARY(" & IncomeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " P9. 2"

Case 5
Fi el dNane = "NEW FI ELD(" & | nconeRow & ")"
Value = 11f(grd_EMPL_I ncone. Col ums(Col | ndex) . Val ue = _

TRUE_STRI NG, NEWFI ELD_TRUE_CONST, _
NEWFI ELD_FALSE_CONST)
Nat For mat Length = " A1Q0"
Case 6
Fi el dNane = "BONUS(" & InconmeRow & ")"
Val ue = grd_EMPL_I ncone. Col utms(Col | ndex) . Val ue
Nat For mat Length = " P9. 2"

In the LoadGridNameGrid sub section, add a call to the ColumnAdd method. In this
example, the BDT argument isset to BDT_BOOLEAN, regardless of the format of the
underlying databasefield. It is this setting which makes the column behave like a
CheckBox.

Sample code before

. Col umAdd "Sal ary", BDT. Get BDT("P9.2"), "P9.2"
. Col utmAdd "Bonus", BDT. Get BDT("P9.2"), "P9.2"

Sample code after

. Col umAdd "Sal ary", BDT. Get BDT("P9.2"), "P9.2"
. Col umAdd "New Fi el d", BDT_BOCLEAN, "A10"
. Col utmAdd "Bonus", BDT. Get BDT("P9.2"), "P9.2"

In the CopyGridNameToForm sub section, for each assignment statement within thefor
loop(s), increase the second index of the array variable on theleft side of the assignment
if the column number is higher than the new column.

Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new
field is defined on the database, add an assignment statement for the field.

Sample code before

InconeGrid. GidbData(i, 4) = _
BDT. Convert ToDi spl ay(. Get Fi el d(" SALARY", i), _
Nat For mat Lengt h: ="P9. 2")
IncomreGid.GidData(i, 5 = _
BDT. Convert ToDi spl ay(. Get Fi el d("BONUS", i), _
Nat For mat Lengt h: ="P9. 2")

- 163 -

6

Construct Spectrum SDK for Client/Server Applications

Sample code after

IncomeGrid. GidbData(i, 4) = _
BDT. Convert ToDi spl ay(. Get Fi el d(" SALARY", i),
Nat For mat Lengt h: ="P9. 2")
I f NEWFI ELD_FALSE CONST = 0 Then
IncomeGrid. GidbData(i, 5) = _
I1f(.CGetField("NEWFIELD", i) <>""
TRUE_STRI NG, FALSE_STRI NG)
El se
IncomeGrid. GidbData(i, 5) = _
I1f(.GetField("NEWFIELD", i) = NEWI ELD TRUE_CONST, _
TRUE_STRI NG, FALSE_STRI NG)
End If
InconeGrid. GidData(i, 6) = _
BDT. Convert ToDi spl ay(. Get Fi el d("BONUS", i), _
Nat For mat Lengt h: ="P9. 2")

In the grd_ObjectName_GridName_KeyDown section, increase the ColumnNumber
by oneif thereisan If or Elself statement such as If CurrCol = ColumnNumber where
ColumnNumber is greater than or equal to the number of the new column.

Sample code before

El self CurrCol = 5 Then
If KeyCode = ..

Sample code after

El self CurrCol = 6 Then
If KeyCode = ..

Removing a Field by Hand

The steps required to remove afield are the reverse of those for adding afield. To re-
move ascalar field by hand, see Add a Scalar Field by Hand, page 152, and reverse
the procedure. To remove agrid column field by hand, seeAdd a Regular Grid Col-
umn for a Field, page 156, and reverse the procedure.

— 164 —

Creating and Customizing Maintenance Dialogs

Usngthe Grid

Construct Spectrum supports business object datawith up to four dimensions. Business
objects with two or more dimensions are referred to as complex business objects. The
VB-Maint-Dialog model uses the True DBGrid control to present complex objectsin
dialogs. To the user, the grid is displayed as a table with each row displaying a unique
record, for example, acustomer order line. Each column in the grid displays aspecific
type of information, such asaname, aquantity, aprice, and so on. Theclient framework
comeswith the TrueGridClass.cls— aclass that encapsul ates the True DBGrid control
and shields the developer from many of the intricacies of using the grid.

Y ou can write your own code to use Construct Spectrum’s TrueGridClass.cls, you can
write code to directly manipulate the True DBGrid control, or you can customize the
TrueGridClass.clsto meet your specific needs. For information about the methods and
property interfacesof the TrueGridClass.cls, see M aintenance Classes, page 205, Con-
struct Spectrum Reference. For information about working with the True DBGrid
directly, refer to the TrueGrid folder located in Spectrum SDK.

Nested Grids

A single grid can only display datawhich has the same cardinality — that is, the same
number of dimensions. Therefore, if abusiness object contains both two and three-di-
mensional information, two grids are required to display al the data.

The demo application (described in Chapter 2) contains an Order Entry examplethat is
acomplex business object. The Order Entry example hastwo grids: one showing order
line detail s and one showing distribution detailsfor each order line. Using the Order En-
try as an example, consider the following diagram which shows the relationships
between the Order object files and the GUI controls.

/— various scalar GUI
controls

NCST-ORDER-HEADER “ '
o L

................................

Order Lines grid

(1.n) control

NCST-ORDER-LINES “—-—__,

A

(O]

Distribution grid

(Ln)

NCST-DISTRIBUTIONS «~

Relationship Between a Complex Business Object and GUI Controls In a Grid

- 165 -

Construct Spectrum SDK for Client/Server Applications

In this example, there is a one-to-many relationship between the Order Lines grid and
the Distributions grid. The Distributionsgrid is said to be nested within the Order Lines
grid. Becauseit isnested, it only displaysthe rowsthat arerelated to the row that is cur-
rently selected in the Order Lines grid.

Nested Drop-Down Grids

A drop-down grid is a specia type of nested grid that can be used to display nested in-
formation. Drop-down grids are used when thereis asingle repeating field (an MU
field) within a block of grid information. In the following data definition example, the
Address field maps to adrop-down grid.

01 EMPLOYEE- | NFQ(1: 10)

02 NAME(A10)

02 ADDRESS(A20/ 1: 3)

02 SALARY(P10.2)
Drop-down grids appear to drop-down out of a parent grid. The parent grid has a place-
holder column from which to invoke a drop-down grid. This column isreferred to asa
drop-down column. Drop-down columns are distinguished from other grid columns be-
cause each cell contains a down button from which drop-down datais accessed and
because drop-down datais prefixed with an occurrence number:

| nzomne:;
Currency | Annual Bonus L%
code galary

1|0k BEQ00 [1] BE2 b

2(U5 59000 (11900 Drop-down

3|COM 75000 (111200 column —

41T 5000 3178 | placeholder for
950 drop-down grid
1023
A\

\— Drop-down grid

for repeating
field (Bonus)

Drop-Down Grid

Nested drop-down gridsdiffer from regular gridsin two major ways. First, the GUI con-
trol name is prefixed with ddg rather than grd. Second, the size and position of the
nested drop-down grid is controlled by the code at runtime. Therefore, do not tailor the
Size and position of the drop-down grid.

- 166 —

Creating and Customizing Maintenance Dialogs

Note: Nested drop-down grids share the same container as their parent grid, that is,
the grid from which the nested drop-down grid is accessed.

Displaying Grids

When the VB-Maint-Dialog model generates agrid control in the dialog, it does not set
the grid’'s properties and, therefore, the grid does not appear properly formatted within
the Visual Basic design environment. The following example showswhat thegrid looks
likein the Visua Basic design environment:

Unformatted Grid

Instead, the model generates a subroutine, called LoadGridNameGrid, which is called
from the Form_L oad event at runtime. One load subroutine is generated for each grid
in the dialog. Each load subroutine is responsible for formatting agrid before it isdis-
played to the user. The load subroutine makes acall to the TrueGridClass.cls Load
method to initialize the grid. It then calls the class ColumnAdd method for each field
column to be added to the grid. When the L oad subroutine isfinished executing, thegrid
is displayed as follows:

Line Description Quantity | Unit-
1(187361 CAT MUGGETS 10 -
2
3 -
| | 3
Formatted Grid

For more information about the load and add methods, see M aintenance Classes, page
205, Construct Spectrum Reference.

- 167 —

Construct Spectrum SDK for Client/Server Applications

Resizing Grids

The load subroutine described in Add a Regular Grid Column for aField, page 156,
makes onefinal method call (SetWidth) to the TrueGridClass.cls to resize the width of
the grid based on the length and format of the fields represented in the grid. The True-
GridClass.cls makes the grid as wide as required to display all the columns of
information, unless it exceeds the right border of the dialog. In this case, a horizontal
scroll bar is displayed on the grid, allowing you to scroll the grid to see hidden fields.

Because the TrueGridClass.cls automatically resizes the grid, this can cause problems
when working on the layout of other GUI controls surrounding the grid. For example,
if you want to place GUI controlsto theright of the grid, it is difficult to determine at
design time whether the grid will overlap the controls at runtime.

Y ou can deal with this situation in two ways: resize the grid using the Grid Sizing In-
formation window or resize the grid manually. The first option involves working with
the automatic grid resizing feature. The second option involves disabling this feature
and sizing your grid manually. Use the second option when you require more control
over the width of your grid and do not requireall grid columnsto be visible at once.

To resize your grid using the Grid Sizing Information window:

Run the application.
Asthe dialog loads, the Grid Sizing Information window is displayed:

®] Grid Sizing Information

The fallowing information can be uzed to reszize the grid contralz on your
form in the YB design environment. The coordinates represent the width
and height required to dizplay each grid without scroll bars.

MOTE: To suppress dizplay of thiz informational dialog, remove the
DigplayGridSizinalnfo call in the form's Form_Activate event code.

Grid Mame "afidth Height -
ard_Ordid_MestOrderH aslines 172

ard_Ordbd_MestLineH azDistribution 305 2670

Grid Sizing Information Window

This modal window indicates how big to make grids on your form at design time so al
grid information isvisible and scroll bars are not necessary. Note this information and
stop the running application.

Re-enter the Visual Basic design mode and resize the grid(s) based on theinformation
you gathered from the Grid Sizing Information window.

Now you can determine where you can safely place other GUI controlsthat arein close
proximity to the grid.

- 168 —

Creating and Customizing Maintenance Dialogs

3 Suppress the display of the Grid Sizing Information window when you no longer need
this information.
To suppress the window, comment out the following event code in the Form_Activate
event:

If Not RepressGridSizingD splay Then
Di spl ayGi dSi zi ngl nfo
RepressGi dSi zi ngDi spl ay = True

End If

» Toresize your grid manually:

1 Disable automatic grid resizing by commenting out the SetWidth call in the load
subroutine.
Commenting out this call will not affect the calculated width of each column but will
keep the grid from resizing itself to make all columnsvisible.

2 Resize the height and width of the grid manually in the Visual Basic design
environment.

Tip: At runtime, if there are more columnsthan can be displayed in the specified
width, a horizontal scroll bar is displayed at the bottom of the grid. Users can
click the scroll bar to see the remaining columns.

3 Comment out the code that displaysthe Grid Sizing Information window (as described
in the previous procedure).

Adding Sound to Error Notifications

This section describes how to add sound support to your error notification information.
When afieldisin error, a Construct Spectrum application can notify the user in several
ways. Firgt, the background color of the field can be set to adifferent color such asred.
Second, when the user tabsinto the field, the application can display an error tip which
looks similar to aWindows tooltip. Construct Spectrum also gives you the option of in-
cluding sound information with an error.

A Construct Spectrum application can play an error sound file that you provide when
the user tabs into afield which isin error or when the user clicks on the sound icon in
an error tip. These options can be set by the user.

For more information about setting error notification preferences, see Using the Demo
Application, page 37.

Construct Spectrum uses the .wav file format for error sound files. Y ou can use the
Windows Sound Recorder application to record .wav files for your application errors.

- 169 -

Construct Spectrum SDK for Client/Server Applications

Note: If noerror sound file existsfor aspecific GUI control and error, no sound icon
isdisplayed in the error tip — even if the user has selected the sound icon as
an error notification preference.

Under standing How a Sound Fileis Associated With an Error

When an error sound is to be played, a Construct Spectrum application uses apre-de-
fined convention to associate a.wav filewith aspecific error. The componentsrequired
to create this association are outlined in the following table:

Error Component

Sour ce of Error
Component

Description

Sound File Path

Language Indicator

ERROR_SOUND _
PATH constant

Res.L anguage

-170-

Location of the .wav files. (declared
in CSTObjectConstants.bas). If the
constant is empty, the application
defaults to the value of App.Path.

Language indicator. By default,
Construct Spectrum applications use
the language indicators used by
Natural (for example, 1=English,
2=German, 3=French).

For alist of language indicators, refer
to System Variablesin the Natural
documentation.

Creating and Customizing Maintenance Dialogs

Error Component Sour ce of Error Description (continued)
Component
Error Source ObjectError. Error source. Construct Spectrum
MsgType applications recognize four distinct
error Sources.

» Business datatype (BDT) errors

» Spectrum Dispatch Client (SDC)
errors

» Loca business vaidation errors
(originating in aVisual Basic
maintenance obj ect)

« Server errors (originating in an
object subprogram)

Valid error source values are

represented by constants stored in

CSTObjectConstants.bas. These

constants are:

. ERROR_SOURCE_SDC
. ERROR_SOURCE _BDT

. ERROR SOURCE_VALIDATE
. ERROR SOURCE_SERVER

Error Number ObjectError. Error within the specified error
ErrorNr source.

Sound File Delimiter SOUND_FILE_ Character used to delimit the
DELIMITER components of an error sound file.
constant

These components are assembled as follows:

Sound File Path +\ + Language Indicator + Sound File Delimiter + Error Source +
Sound File Delimiter + Error Number + .wav

Thefollowing exampl e shows how the application attemptsto associate a.wav filewith
an error:

Example input

ERROR_SOUND_PATH = bl ank

Res. Language = 1

Obj ect Error. MsgType ERROR_SOURCE_SDC (1)
Obj ectError. Error Nr 522

SOUND _FI LE_DELIM TER = "-"

-171 -

Construct Spectrum SDK for Client/Server Applications

Example output

C.\Program Fi | es\ Construct Spectrum M/App\ 1-1-522. wav

Tip: Errorsthat originateinthe SDC, BDT, or local validation layers are raised using
Visual Basic’sErr object. Theerror number used when raising the error isderived
by adding the Visual Basic vbObjectError constant to a unique application-spe-
cific number. Look at the constantsdefined in CST Const.basfor examples. These
errorsare al handled in the ValidAssignment subroutine in the BDT Support.bas
module. To makethe error number more readable (adding vbObjectError produc-
esalarge, negative number), the subroutine subtracts vbObjectError from the er-
ror number. Therefore, the original, unique, application-specific number is used
to associate a .wav file with an error.

Multilingual Support for Maintenance Dialogs

Construct Spectrum provides support for multilingual applications. To set up amulti-
lingual application, create language specific resource files for the application.

The generated maintenance dialog and Visua Basic maintenance object have code that
looks for resources in the application directory in aresource file called App. For each
supported language, create App.* resource files (where * is the language code). The
generated dialogs will then use the resource files.

For more information about setting up multilingual applications, see I nternationaliz-
ing Your Application, page 295.

172 -

Creating and Customizing Maintenance Dialogs

Uploading Changes to the Server

Sometimes changes occur on the server, such as changesto the Predict fileand field def -
initions used by your maintenance dialog. It is often easier to regenerate the affected
modules than to implement the changes by hand. This includes modulesthat were gen-
erated for the client — specifically, Visua Basic maintenance objects.

If you havetailored a Visual Basic maintenance object or a maintenance dialog on the
client (for example, by adding user exit code), upload the client version of the Visual
Basic maintenance object or maintenance dialog to the server to preserve the user exit
code during regeneration. Once regeneration is complete, you can download the regen-
erated module(s).

Tip: Before regenerating a maintenance dialog, see Strategiesfor Customizing a
M aintenance Dialog, page 129, for information about saving customizationsin
your maintenance dialog.

» To upload changes to the server:

1 Open the Construct Spectrum project that contains the changes you are uploading.

2 Select Upload Generated Modules from the Construct Spectrum Add-In.
The Upload Modules window is displayed:

|:: Ll et I ol -

Libran: |:'E'-'I:I-!|E DIBIC: |"3 EMA: |2E-

i

Cancsl

Fileriame | Mame | Mode | Type [=
-@ CUSTELCRY CiustomerBiosse VE-BROWSE-DBJECT WH Clazs
59 CLUSTHMCDY fer CLUSTOMER WELMANT DEALOG B Foam
B CUSTMORY Cisshonie WELMAMTORIECT WV Clag:s
[EAD N T ot DideeDiowsa Wa-ER S E DR T WH Class
(2 ORD-MCOV fr_ORDER WE-MAUMT-ORSLOG WH Fam
B orD-mMory Dhder VE-MAUNT-ORIECT WH Clazs
ml"l'll:ll:: BHOPY FProductBnoavse VE-EROWWSE-DBIECT W Clams j

Upload Modules Window

Thelibrary name, DBID (database ID), and FNR (file number) default to the values en-
tered for the last open project. If necessary, type the library name, DBID, and FNR for
the server library to which you are uploading.

3 Click Upload.
The selected modules are uploaded to the server.

—173-

Construct Spectrum SDK for Client/Server Applications

—174 -

CREATING AND CUSTOMIZING BROWSE
DIALOGS

This chapter provides step-by-step instructions for generating the modul es required to
provide browse services from the client. It describes how to generate the necessary
modules, download the client modulesto your PC, integrate the new browse modules
into an existing Construct Spectrum project, and display server database information
from abrowse dialog. Also included isinformation about modifying the components so
that you can customize the features and functions of the resulting browse dial og.

The following topics are covered:

Overview of the Browse Dialog, page 176

Creating a Browse Dialog, page 180

Customizing on the Client, page 190

Understanding Browse Command Handlers, page 195

—175-

Construct Spectrum SDK for Client/Server Applications

Overview of the Browse Dialog

A browse dialog provides users with lists of data. Typically, this data is shown within
abrowse dial og and represents rows of information from a remote database table.
Browse dialogs can also be set up to display datathat is obtained locally — froma PC
server connected to your network, for example.

About Browse Dialogs

The underlying structure of a browse dialog is different from that of a maintenance di-
alog. Unlike maintenance dialogs, which use aunique Visual Basic form for each
maintenance object in your application, all generated browse dialogs use the same un-
derlying browse form that is supplied with the Construct Spectrum client framework.
This generic form communicates with other client framework components and with the
browse modules you generate to configure itself at runtime for a particular object
browse subprogram and to retrieve data. The browse dialog that is displayed to the user
isthe result of this process.

Although you cannot modify abrowse dialog directly, you can influence its behavior
based on:

» How the datafile(s) used in the browse are set up in Predict
» Options you choose when you generate browse modules

» Customized code you write to work with your generated browse modules and their re-
lated client framework components

The Browse Process

The browse dial og that a user works with is configured dynamically at runtime. Unlike
maintenance dial ogs, which have a unique form that corresponds to each dialog, there
is no unique form that corresponds to each browse dialog. Rather, abrowse dialogis
configured at runtime based on the interaction of the following:

» Object browse subprogram

» Object browse subprogram proxy
» Visual Basic browse object

» Client framework components

176 -

Creating and Customizing Browse Dialogs

Thefollowing diagram illustrates these components:

Server ' Client

Browse Browse Visual Basic Visual Basic
Object [€«—»|Subprogram|«—>»{ Browse |«—» Browse
Subprogram Proxy Object Dialog
A A
) 4 \ 4
Browse
Database Framework
Components

Components Included in the Browse Process

The features and functions of a particular browse dialog depend on how these compo-
nents are configured. Y ou can modify these components to influence the features and
functions of a browse diaog.

Browse Object Subprogram

The browse object subprogram reads database records on the server and returnsthem to
the client. Each browse subprogram can support multiplekeysto allow the user to sel ect
the most appropriate access path to retrieve the desired records.

Generate a browse object subprogram using the Object-Browse-Subp model. Y ou can
specify overridesto many of the default values sel ected by the model before generating
or regenerating. For example, you can specify the keys available for accessing records
displayed in your browse diaog.

The characteristics of your browse object subprogram depend on the rel ationships be-
tween the related database files and fields. Y ou can perform a number of modifications
to the metadata that describes these relationships using Predict. For more information,
see Under standing Browse Command Handler s, page 195.

177 -

Construct Spectrum SDK for Client/Server Applications

Browse Object Subprogram Proxy

A subprogram proxy isrequired to access the browse object subprogram from the client
application. The subprogram proxy calls an object subprogram that fulfills a data re-
guest on behalf of abrowse request. It is also responsible for converting data between
the network transfer format and the Natural variable used by the parameters of the
browse object subprogram.

Y ou can make anumber of changesto the subprogram proxy that affect the functioning
of your browse dialog. Most of these changes are related to how browse informationis
transmitted between the client and server. For information about customizing the sub-
program proxy, see Using the Subpr ogram-Proxy Model, page 103, Construct
Spectrum SDK Reference.

Visual Basic Browse Object

The Visual Basic browse object delivers information about the columns and keys sup-
ported by the browse subprogram to the client framework components.

TheVisual Basic browse object isgenerated by the V B-Browse-Object model for aspe-
cific databasefile. It usesthe BrowseBase classto interface with other parts of the client
framework and with the application. The Visual Basic browse object instantiates and
initializes a BrowseBase object. The initialization performed by the Visual Basic
browse object sets up definitions for:

logical search keys
formatting information for data columns
optionally, inserts data into the data cache for static lists

It also sets up a data cache area on the client to save the results of multiple requests to
minimize network congestion and speed up the re-display of previously fetched data.
The data cacheis an object inits own right.

Data Cache

The data cache is populated by the BrowseBase object Fetch method when a user spec-
ifies astarting value and presses the Get button. Thistriggers aremote CallNat that
reads records from a database and returns them to the client. Asrecords are received,
they are added to the data cache. From the data cache, they aretransferredto aListView
control on the browse dialog where the user sees the data. If the user requests the next
(contiguous) set of records, they are retrieved from the server and appended to the data
cacheand ListView. This process continues until the user repositionsthe view to a new
location in the file by selecting a new starting value or changing the key value. When-
ever the user repositions the view, the data cache and ListView are cleared and a new
list of rowsis presented.

—178-

Creating and Customizing Browse Dialogs

The data cache mechanism is significant for the following reasons:

It enablesthe user to scroll backward through previously viewed data without having to
reread this data from the server.

Because the data cache represents a copy of the data, it may not always reflect the cur-
rent state of data on the server. For example, if cached records are updated or deleted,
the user must issue a Refresh command to obtain the new values.

It is possibleto read server datainto the data cache and retrieve it programmatically,
without having to invoke abrowse dialog. For moreinformation, see Br owse Classes,
page 51, Construct Spectrum Reference.

The data cache can be saved in memory when a browse dialog is closed and restored
when the browse dialog is requested again. This alleviates the need to continually re-
trieve the same browse data from the server.

Framework Components

Severdl client framework components work together to provide browsing services at
runtime. These components are encapsulated in a single class, the BrowseM anager
class. This class provides an interface to perform common browsing activities, for ex-
ample, to get a specific row of information, get all rows of information, or display a
modal or MDI browse dialog.

Internally, the BrowseManager uses several framework components, the most impor-
tant of which is the browse dialog. There are two versions of the didog: a modal
(GenericBrowse.frm) and an MDI (GenericMDIBrowse.frm) dialog. Each dialog is dy-
namically configured at runtime to display specific browse data. This processis
described in Under standing Browse Command Handlers, page 195.

For more information about the BrowseManager class, seeBrowse Classes, page 51,
Construct Spectrum Reference.

—179-

Construct Spectrum SDK for Client/Server Applications

Creating a Browse Dialog

The following tasks are required to create a browse dialog. Once you have completed
these steps, you are ready to compile the application in Visual Basic and test the new
browse dialog.

» Review and optionally modify Predict set up
» Usethe Construct models to generate modules
» Download the modulesto the client using the Construct Spectrum Add-In
» Update the Construct Spectrum project
These tasks are described in detail in the following sections.

Setting up Predict for the Browse Dialog

Prior to generating the modules of your browse dial og, certain attributes can be defined
within Predict to extend the functionality of what is generated. Y ou can modify any of
these attributes in Predict and regenerate your browse modules to implement your
changes. For information about regenerating browse modules, refer to Construct Spec-
trum SDK Reference.

Business Data Types

Browses make use of business datatypes (BDTs) to format the data that is shown within
the ListView control of the browse dialog. If you want specia formatting of the browse
data, add business datatypesto the fields within Predict prior to generating the browse
components. For moreinformation, seeUsing BusinessData Types(BDTs), page 121,
Construct Spectrum SDK Reference.

Descriptive Fields

When a browseisinitiated from afield on a maintenance dialog, it isreferred to asa
foreign key browse. For example, the Construct Spectrum demo application has afor-
eign key browse set up for the Warehouse field |ocated on the Order maintenance
dialog. When aforeign key browseisinitiated, only the foreign key values (warehouse
numbersin this case) are displayed unless you designate other fields in the foreign file
as descriptive in Predict.

In the demo application, the WAREHOUSE-NAME field is designated as descriptive.
When you browse on the Warehouse field from the Order maintenance dialog, ware-
house numbers and their corresponding names are displayed so that users can easily
sel ect the appropriate warehouse. For more information about linking browse and main-
tenance functions, see Integrating Browse and M aintenance Functions, page 275.

- 180 -

Creating and Customizing Browse Dialogs

Using Modelsto Generate Browse M odules

Each module that a browse dial og requires can be generated with the VB-Client-Server-
Super-Model, or you can generate them one at atime using the individual models. Use
thefollowing guidelinesto determine which generation approach isappropriate for you.

» If you are creating a new application or a new abject, use the super model.

« If you changed the file structure of a previously generated application, use the super
model.

« If youwant finer control over the generation results, such as hand-coding user exits, use
the individual models.

This section describes how to generate a browse modul e from the individual models.
For information about using the super model, see Using the Super M odel to Gener ate
Applications, page 77.

Generating browse modules involves the following steps, which must be performed in
this order:

1 Usethe Object-Browse-Subp model to generate the object browse subprogram and
supporting parameter data areas (PDAS) on the server.

2 Usethe Subprogram Proxy model to generate a proxy that enables the client to access
the browse subprogram.

3 UsetheVB-Browse-Object model to generate aVisual Basic browse classthat supports
the generated browse subprogram.

4 Extend the application’s object factory to include references to the browse business
object.

5 Create acommand handler and link it to the object factory if the browse dialog is to
support record selection and action buttons.

These steps are described in more detail in the following sections.

Tip: Usethe samefour-character prefix to name all generated modules belonging to a
single object. This convention makesit easier to select modulesfor downloading.
For example, to download all client modulesrelated to a Customer object, type
“CUST*” (where“*” isthewildcard character) to narrow the list of available
items to those starting with CUST.

—-181 -

Construct Spectrum SDK for Client/Server Applications

Generating the Browse Subprogram and PDAs

A browse subprogram reads database records on the server and returns them to the cli-
ent. Each browse subprogram requires three application-specific parameter data areas
that contain information that is passed to, or received from, the subprogram. Each
browse subprogram can support multiple keys to allow the user to select the most ap-
propriate access path to retrieve the desired records.

The Object-Browse-Subp model is used to generate the object browse subprogram and
its three supporting parameter data areas. * BPRI, *BROW, and *BKEY, where * rep-
resents a prefix that you specify.

For adetailed description of thismodel, see Object-Br owse M odels, page 297, Natural
Construct Generation.

Generating the Subprogram Proxy

A subprogram proxy is required to access the generated browse subprogram (or any
other subprogram) on the server from the client application. The subprogram proxy is
responsiblefor converting data between the network transfer format and the Natural pa-
rameter dataformat used by the browse subprogram.

For information about generating a subprogram proxy, see Using the Subpr ogram-
Proxy Model, page 103, Construct Spectrum SDK Reference.

Generating the Visual Basic Browse Object

Each object browse subprogram that will be accessed by users requires a supporting
class generated using the VB-Browse-Object model. This classddivers information
about the columns and keys supported by the browse subprogram to the client frame-
work, which then populates the browse dialog with the requested information.

Y ou can use the VB-Browse-Object model in the Generation subsystem on the server
or the VB-Browse-Object wizard in the Construct Windows interface on the client.

-182 -

Creating and Customizing Browse Dialogs

The following example shows the standard parameters in the V B-Browse-Object

wizard:

VB-BROWSE-OBJECT Wizard [7] i

B stan

Standard
Parameters

Firish

Yalidate]

Standard Parameters

Module: iCLISTORD

Swskem: |DEMO
Title: ;'-.-'E Erowse Obiject|
Descripkion: Encapsulates Yisual Basic Browse services for ‘__r_j

customer system

Subprogram proy: ;CLISTEESF' oo ;

Ohject class: ;CustnmerEerse

[~ Compress network data

[T Encrypt network data

Cancel] < Back. l Mexk = l Einish

VB-Browse-Object Wizard — Standard Parameters

Standard parameters are similar for al model wizards. The common parameters (Mod-
ule, System, Title, and Description) are described in Gener al M odel Specifications,
page 169, Natural Construct Generation. The additional parameters are:

Parameter

Description

Subprogram proxy

Object class

Name of the subprogram proxy that communicates with the
object browse subprogram for this Visual Basic browse object.

Name for the generated browse classto be used within Visual
Basic.

-183 -

Construct Spectrum SDK for Client/Server Applications

Parameter Description
Compress network Indicates whether the parameters sent to the server are
data compressed to reduce transmission time. Compression is

typically not required for aVisual Basic browse object because
parameters sent to the server tend to be small. Enabling
compression in this situation may actually increase demands
on system resources because the overhead associated with
invoking compression routines is not offset by the reduced
volume of data being transferred.

Encrypt network Indicates whether the parameters sent to the server are

data

encrypted. Encryption is used to secure sensitive data.
Typically, this check box is not selected because browse data
requests sent to the server usualy do not contain sensitive
information.

Note:

The Compression and Encryption options apply only to data sent from the cli-
ent to the server. To enable compression and encryption for data sent from the
server to the client, select the Compression and Encryption options for the
Subprogram-Proxy model. For information, see Using the Subprogram-
Proxy Model, page 103, Construct Spectrum SDK Reference.

—184 -

Creating and Customizing Browse Dialogs

After supplying model parameters, you can customize the generation results by creating
user exit code for the module. The following example shows the User Exit List for the
V B-Browse-Object model:

User Exit List 7] i

Marne: | sample %F | Required iy | conditional
CHANGE-HISTORY Example
IMITIALIZE-SEARCH-KEYS Example
INSERT-ROWS Subprogram
Qo To e Close
User Exit List

For more information about user exits, see User Exitsfor the Generation Models,
page 419, Natural Construct Generation.

Defining Alter nate Browse Data Sour ces

TheVB-Browse-Object model is used to retrieve server database records by making re-
gueststo agenerated object browse subprogram. There may betimeswhen you want to
allow browsing of datathat is not defined in a server database file. Instead, you may
have data that is defined within files or hard-coded on a client. In such cases, you can
present this data to the user with an interface that is similar to the browse interface they
are familiar with.

To generate this type of browse dialog, use the VB-Browse-L ocal-Data-Object model
inthe Generation subsystem on the server or the V B-Browse-L ocal-Data-Object wizard
in the Construct Windows interface on the client.

—185—

Construct Spectrum SDK for Client/Server Applications

Thefollowing example shows the standard parametersfor the V B-Browse-L ocal-Data-
Object wizard:

VB-BROWSE-LOCAL-DATA-OBJECT Wizard [2] i

B stan Standard Parameters
Standard ;...
N —— Module: CLSTORD
Finish System: |DEMO
Title: ;Eruwse Province Data
Description: This Browse object supports browsing of ‘__r_j

hard-coded province data

PREDICT wiew: ;F‘RO'-.-'INCE-TABLE 000 1

Ohject class: ;F'rwinceEierse|

Yalidate] Cancel] < Back. l Mexk = l Einish

V B-Browse-L ocal-Data-Object Wizard — Standard Parameters

Standard parameters are similar for al model wizards. The common parameters (Mod-
ule, System, Title, and Description) are described in Gener al M odel Specifications,
page 169, Natural Construct Generation.

- 186 —

Creating and Customizing Browse Dialogs

The additional parameters are:

Parameter Description

Predict view Name of aPredict view (optional). The VB-Browse-Local-Data-
Object model alows you to define your file within Predict asa
means to document the required field names, field lengths, and
column headings. Be aware, however, that no physical fileis
required to support this model. If you do not want to create a
definition of your browse fields within a Predict file, you must
define your browse fields in the ADD-COLUMNS user exit asin
the following example.

Object class Name of the generated browse class to be used within Visual Basic.

Example of adding browse field definitionsin the ADD-COLUMNS user exit

DEFI NE EXI T ADD- COLUWNS

' AddCol utTm Name, Headi ng, Business Data Type, Format, Show by Default
AddCol unm " STATE- CODE", "State Code", "", "A2", True

AddCol unm " STATE", "State Nane", "", "A40", True

AddCol um "TAX", "Sal es Tax", BDT_PERCENT, "N2.2", False

END- EXI T

In the previous example, the browse dialog shows the State Code and State Name by
default; however, the user could modify the options to also display the Sales Tax col-
umn. A BDT has been associated with the Sales Tax column to provide special
formatting.

Additionally, you need to add code to the INSERT-ROWS user exit. This user exit de-
fines data that is to be shown in the browse by calling the AddData method as in the
following example.

Example of defining browse data in the INSERT-ROWS user exit

DEFI NE EXI T ADD- COLUWNS

' AddData Unique ID, State code, State, Sales tax

AddData "1", "ALBA"', "Al abama", 8.0

AddData "2", "AK"', "Alaska", 5.5

etc.

END- EXI T

In addition to the values to be displayed in the browse window, thefirst parameter of
the AddData method must contain a unique value that is used as an internal record

identifier.

—187 -

Construct Spectrum SDK for Client/Server Applications

Downloading the Client Modules

After generating al required browse modules on the server, you must download the cli-
ent modules. The following table describes which modules are required on the client:

M odel Module Visual Basic Description
Suffix extension

Object-Browse-Subp BKEY n/a Updates the library image file
BPRI with parameter definitions.
BROW

Subprogram-Proxy BSP n/a Updates the library imagefile

with application service
definitions describing the
object subprogram browse
method and datait requires.

VB-Browse-Object BCPV .cls Deliversinformation about the
columns and key fields
supported by the browse
subprogram to the client
framework components.

Note: The module suffix names listed in the previous table are suggested names
only. However, when you generate with the super model, modules are given
these suffix names automatically.

» To download modulesto the client:

1 Open the Construct Spectrum project that you are updating.
For information, see Creating a Construct Spectrum Pr oject, page 101.

On the Construct Spectrum submenu, click Download Generated Modules.
Ensure you are pointing to the correct library and FUSER on the server.

List the modules from the library you want to download by using wildcard notation (*)
in the File Download text box and then click List.
A list of modules on the server is displayed, showing the generated browse modules.

5 Select the modules you generated and click Download.
Y ou can identify browse modules based on their module suffixes, which are shownin
the table at the beginning of this section. The Visual Basic browse object is
automatically added to your Construct Spectrum project.

For more information on downloading modulesto the client and setting up a Construct
Spectrum project, see Creating a Construct Spectrum Project, page 101.

—188 —

Creating and Customizing Browse Dialogs

Updating the Proj ect

There may be times where you want to update the project using the extend object fac-
tory. The following discusses when you would need to hand-code the object factory,
and how to determineif you need to.

Extend Object Factory

Y ou must hand-code the object factory only if you are adding a new browse dialog to
your application or you have changed the actions available for an existing business ob-
ject. An example of changing the available actions for a business object is when you
add abrowse action to a business object that had been available to the user only through
amaintenance action.

Tip: To determinewhether you need to hand-code the object factory, invoke the Open
dialog and select each object and its associated action. I f the sel ected object action
does not display, do some hand-coding to add the required object actions.

For more information, see Customizing the Object Factory, page 246.

- 189 —

Construct Spectrum SDK for Client/Server Applications

Customizing on the Client

Although you cannot modify browse dialogs directly, there are customizations you can
make on the client to modify or enhance the behavior of abrowse dialog.

Adding Command Handlers

If the browse dialog isto support action buttons that perform specialized processing on
the selected records, define and create command handlers for these buttons.

For more information about adding command handlersfor your browse dialog, see Un-
der standing Browse Command Handler s, page 195.

Customizing the Generic Browse Dialog

The generic browse dialog is the dialog from which all browse dialogs are configured
at runtime. This dialog can be customized through the Browse Dialog API. For more
information, see Browse Classes, page 51, Construct Spectrum Reference.

Under standing the BrowseM anager Class

Every Construct Spectrum application contains a Visual Basic classcalled the Browse-
Manager. This class encapsulates the handling of browse servicesin a single class.
Application components use instances of this class as described in the following
sections.

Display the Browse Dialog

The BrowseManager creates abrowse dialog, links it to a specific browse data source,
and formats the dialog to display the data. The dialog can be a modal or an MDI child
dialog. Additionally, the dialog can be formatted to begin browsing with a specific key
field and key field value.

Support a Browse Command Handler

The BrowseManager can link a custom browse command handler to a browse dialog.
Browse command handlers add features to your browse form such as:

« Command buttons

Toolbar buttons enabled on the MDI frame
Actions for double-click or the Enter key

Menus that are activated by the right mouse button

—190 -

Creating and Customizing Browse Dialogs

Return a Specific Row of Data

The BrowseManager returns a specific browse row of datafrom a data source, based on
akey name and key vaue. An example of adata source isa Natural databaseresiding
on your server.

Return All Rows of Data
The BrowseManager returns all datarows in a specified table from a data source.

Using the BrowseM anager

Applicationsusethe global function, GetBrowser(tablename), to create instances of the
BrowseManager classfor aspecific database file. GetBrowser(), which islocated in the
object factory, creates, initializes, and returns areference to a BrowseM anager object.
The tablename parameter is alogical name that identifies which Visual Basic browse

object to use when it initializes the BrowseManager. For more information, seeUsing
the Object Factory, page 245.

Some of the application components that use the BrowseManager class are:
Object factory

Visual Basic browse object

Maintenance dialogs

Custom browse command handlers

—-191 -

Construct Spectrum SDK for Client/Server Applications

Thefollowing diagram shows how a Customer maintenance dialog can use the Browse-
Manager class.

M;ﬁg;ﬁge Object Browse Customer Browse Browse
Dialog Factory Manager Browse Object Base Dialog

1

v

F ¥

v

I nteraction Required to Display a Browse Dialog

Each numbered step in the diagram is described below:

The user requests a browse from the Customer maintenance dial og. In thisexample, the
user requests to browse alist of customers on the CUSTOMER file. The maintenance
dialog calls the GetBrowser function in the object factory with the parameter
“CUSTOMER”.

The object factory creates a CustomerBrowse Visua Basic browse object. This object
contains information unique to the Customer browse such as:

— Column names and captions
— Column formats and business data types (BDTs) used to format datafor display
— Key names and captions

Settings from the CustomerBrowse Visual Basic browse object are used to configure a
BrowseBase object.

The object factory instantiates a BrowseManager.

The BrowseM anager object isinitialized by setting its BrowseBase property to point to
the BrowseBase object created in Step 3.

A referenceto theinitialized BrowseM anager is returned to the Customer maintenance
dialog. At this point, the BrowseManager is configured to support the services of the
Customer browse.

-192 -

Creating and Customizing Browse Dialogs

7 Theuser'sinitia request to browse alist of customers can be fulfilled. Thelist of
customersis displayed in amodal dialog. To do this, the following command is sent
from the Customer maintenance dialog:

Br Myr . Modal Br owseFor m(" CUSTOMVER')

8 The BrowseManager configures and displays a modal browse dialog listing the
customers from the Customer file.

9 Any actions requested from the browse dialog are handled by the BrowseM anager. For
example, if the user selects a customer record and then selects the OK button, the
browse dialog is closed and the selected record is returned to the Customer maintenance
dialog.

Tip: You can customize the BrowseManager class to support new properties and
methods. However, do not modify theinterfaces of the current methods supported
by the BrowseManager.

The following diagram depicts the structure of the BrowseManager:

Key

Cones |

| BrowseManager ﬁ

[7 Property
_BrowseBase '

Method() Method

% CommandHandler g

BrowseByObjectKey() »{ BrowseDialog
MDIBrowseForm() »{ BrowseDialog
ModalBrowseForm() > BrowseDialog

GetRow()

Object

\4

GetAllRows()

»

Internal Structure of the BrowseManager Class

The BrowseM anager class bundles browsing functionality into several methods. These
methods are only enabled when the BrowseBase property has been set to an initialized
BrowseBase object. A command handler object isan optional property that can be used
to enhance the functionality of browse forms created by the BrowseManager class.

—-193 -

Construct Spectrum SDK for Client/Server Applications

BrowseM anager Methods
This table lists the methods or services offered by the BrowseM anager:

Service

Description

BrowseByObjectK ey

MDIBrowseForm

Moda BrowseForm

GetRow

GetAllIRows

Creates amodal browse dialog. The dialog's search key
value(s) are set to the values in a parameter referenceto a
Natural DataArea object, where the NaturalDataAreaisthe
key structure used by maintenance dial ogs.

If arow is selected, maps the key values in the row to the
Natural DataArea parameter and returns True.

Createsachild MDI (multiple-document interface) browse
dialog based on the GenericM DIBrowse.frm client
framework component. Optionally, links acommand
handler to the dialog. Returns areference to the dialog.

Creates amodal browse dialog based on the
GenericBrowse.frm client framework component.
Optionally, sets the form’s search key to akey specified in
aparameter. If arow is selected, returns areference to the
BrowseDataCache object.

Clears the data cache in the BrowseBase object unlessitis
a static browse (fixed number of rows). Setsthe
BrowseBase object search key to the key specified in a
parameter. If arow is successfully retrieved and stored,
returns a reference to the BrowseDataCache object.

Clearsthe data cache in the BrowseBase object. If all rows
are successfully retrieved from the data source, returns a
reference to the BrowseDataCache object.

For more information about BrowseM anager methods, see Br owse Classes, page 51,
Construct Spectrum Reference.

194 —

Creating and Customizing Browse Dialogs

Understanding Browse Command Handlers

Browse Command handlers are custom objects you create to handle commands origi-
nating from browse dialogs. They can be used to add command buttons to a browse
dialog, enable toolbar buttons on the MDI frame, set default actions for double-click
and the Enter key, and to display menus activated by the right mouse button.

All browse command handlers must implement certain public methods and properties.
These are supplied in a sample browse command handler class template you can copy
and use as a starting point to create your own browse command handlers.

Tip: Usethe browse command handler class template, BrowseCmdHandler.clslocat-
ed inthe Construct Spectrum client Framework directory asthe starting point for
creating your own browse command handler.

Thefollowing diagram illustrates how abrowse command handler object interactswith
other objects in your application:

. Command Browse Browse Browse
Object Factory Handler Manager Base Dialog
1
2
3
4
5
6
7
8
Other 9
Application
Components
I

Browse Command Handler Overview

Each numbered step in the diagram is described below:

1 The object factory creates a BrowseBase object which isinitialized with a specific
Visual Basic browse object. Interaction between the BrowseBase and browse objectsis
described in Using the Br owseM anager, page 191.

2 Theobject factory creates the browse command handler.

- 195 -

Construct Spectrum SDK for Client/Server Applications

Theobject factory createsaBrowseM anager object and linksit to the command handler
and the BrowseBase object.

BrowseManager creates the browse dialog.

BrowseManager initializes the command handler with areferenceto the browse dialog
and the BrowseBase object.

BrowseManager adds a command button, menu item or both for each supported
command handler command.

BrowseManager sets the default command if the command handler supports one. This
command is invoked by double-clicking or pressing Enter on a selected row.

When a user initiates acommand on the browse dialog that is handled by a command
handler, the command handler is notified.

The command is executed.
Other features you can implement with acommand handler include:

A browse dialog.
Users can drill down into more detailed information using a browse dialog.

A link to a maintenance dial og.

Users can invoke a maintenance dialog that is populated with arow selected from a
browse dialog. To view an example of this, refer to the Order browse window set upin
the demo application. From the Order browse window, users can select arow and then
select the Update button to open the Order maintenance window.

A delete function.

Users can del ete a database record from a browse dialog. The Order browse window in
the demo application al so includes an example of thisfunction. To deletearecord in the
demo application, the user selects arow and then the Delete button. The record corre-
sponding to that row is deleted. To accomplish this, the Order maintenance dialog
object isinvoked behind the scenes and used to delete the record.

- 196 —

Creating and Customizing Browse Dialogs

Creating Browse Command Handlers

The steps to create a browse command handler and link it to your application are de-
scribed below. Once you create the command handler, you must supply the code to
customize the command handler. Thisis described in Coding the Custom Browse
Command Handler, page 198.

» To create abrowse command handler and link it to your application:

1 CreateaVisua Basic class that implements the browse command handler.
Copy the sample BrowseCmdHandler.cls template in the client framework directory to
use as a starting point.

2 Makethe application aware of the browse command handler by copying and modifying
the following code in the GetBrowser() function.
The GetBrowser() function createsthe BrowseM anager object for the particular browse
dialog created at runtime and is part of the object factory.

Publ ic Function GetBrowser(Tabl eName As String) As BrowseManager
Di m Br Mgr As New Br owseManager

Return a browser object for the requested table.
Sel ect Case Tabl eNane
Case " NCST- ORDER- HEADER'
Set BrMyr.BrowseObject = New O der Browse
BrMgr. Caption = "Query Orders”
' Copy and Modify this block of code to hook in a browse command handl er
-- >>
Setting this property will attach the Order AsBrowseTar get object
to the BrowseManager to handl e any commands originating from
the browse.
Set BrMgr. CommandHandl er = New O der AsBrowseTar get

Now that you have created a custom command handler and linked it to your application,
see the following section.

—-197 -

Construct Spectrum SDK for Client/Server Applications

Coding the Custom Browse Command Handler

A command handler is an object that implements two specia public methods: Ul Com-
mandState() and UlCommandTarget(). These two methods are the hooks into the client
framework components that allow commands to be triggered, intercepted, and handled
throughout your application. These methods are described in more detail in Defining,
Sending, and Handling Commands, page 221.

When a command handler is linked to a browse dialog, the dialog notifies the applica-
tion framework that it needs to handle commands linked to the Command IDs in the
command handler. For example, the framework would be notified whenever the Print
toolbar button or menu command is clicked in the browse dialog.

If the command IDs of the browse command handler match any of those on the MDI
toolbar or menu, those commands are hooked by the browse dialog. When a user clicks
on the hooked toolbar button or selects the hooked menu item, the command in the
browse command handler is triggered.

Note: Commands that are to be hooked into the MDI toolbar or menu must already
exist on or be added to the MDI frame.

Enabling Commands on the Browse Toolbar and Menu

Animportant decision to make when coding the UlCommandState() and UlCommand-
Target() methods is whether or not you want the handled commands to be enabled by
the tool bar buttons and menu on the MDI frame. To enable these commands onthe MDI
frame, assign the proper command IDs to each command in your command handler.
The correct command ID is determined by matching it with the corresponding com-
mand ID assigned to the command you want to hook inthe MDI frame.

Thefollowing code sampl e shows how you would enable commands on the toolbar and
menu by assigning command IDs.

Sample code from the CommandHandler template that assigns command |1 Ds:

Private Sub Class_Initialize()

Initialize The commands supported by this command handl er.
CommandHandl ers(1).1 D = CVD_ACTI ONS_UPDATE
CommandHandl ers(1). Capti on = "Update..."
CommandHandl ers(2).1 D = CVD_ACTI ONS_DELETE
CommandHandl ers(2). Caption = "Del ete"

End Sub

—198 -

Creating and Customizing Browse Dialogs

Tip: If you want to internationalize your application, avoid hard-coding text strings
like Caption = *Updat e”. For more information, seelnternationalizing Y our
Application, page 295.

Coding the UlCommandTar get() M ethod

This method contains a Select statement, with a Case statement for every command 1D
that ishandled by the command handler. Y ou can add any code in these Case statements
to implement the handling of a specific command. Thefollowing exampleis an excerpt
from a command handler designed to update a data row:

Sample CommandHandler code to update a row (record)

Sel ect Case Cnd.ID
Case CWMD_ACTI ONS_UPDATE

For each selected rowin the cached data ...
For Sel Row = 1 To m Br owseBase. Cache. Sel ect edCount

Create and initialize a new Order Miint Object.
Set maintGbj = New Order
Set nmi nt Obj . Di spat cher = Oreat eDi spat cher ()

Initialize the Key in the Oder Maint Object from
sel ected row fromthe Visual Basic browse object's cached data.
mai nt Cbj . Fi el d(" ORDER- NUMBER") = _
m_Br owseBase. Cache. Get Val ue(" ORDER- NUMBER" ,
Sel Row, _

BR_SELECTED_DATA,
BR_RAW DATA)

Move the KeyData fromthe KeyPDA to the Object PDA
mai nt Cbj . MoveByNaneKey MOVE_DATA _TO KEY

Create a new Order Maint Form
Set frm = New frm O der

Link the Order object to the Order Form
Set frm I nternal Object = maint Qyj

Display this form

frm Show
Next

—199 -

Construct Spectrum SDK for Client/Server Applications

Marking Updated Rows Using the UpdateL istViewl cons M ethod

If your command handling changes affect the data displayed in the browse dialog when
the user executes the command, decide how to reflect the updated data in the browse
form. Y ou can use the State property of a BrowseDataRow to mark the row as being
updated. This property is used by the browse dialog when its Form_Activate event is
triggered.

Alternatively, you can programmatically refresh the browse diadlog's ListView with
small icons by calling the UpdateListViewlcons method in the browse form. If a State
ID hasbeen assigned to arow, the browse dialog checksto seeif thisisthe ID of asmall
icon in aglobal image list, found on the browse form. If the State ID matchesthe ID of
one of the small iconsin the image list, theicon is placed beside the row on the browse
dialog.

Example code for marking updated rows with small icons

Mark a row in the browse object as being "Updated" with a snall
i con.

m _Br owseBase. Cache. Rows. Sel ect edlten(I ndex) . State = _
BR_MARK_ROW UPDATED

Refresh the browse dialog' s listview to display small icons beside
rows that have been updat ed.
m _Br owseFor m Updat eLi st Vi em cons

— 200 -

MOVING EXISTING APPLICATIONSTO
CONSTRUCT SPECTRUM

This chapter describes how to move existing Natural Construct-generated server-based
applications to a client/server architecture using the Construct Spectrum models. To
move existing Natural applicationsto a client/server architecture without using the
models, see Creating Applications Without the Framework, page 235, Construct
Spectrum SDK Reference.

The following topics are covered:
« Overview, page 202
« Moving Natural Construct Object Applications, page 202
+ Moving Natural Construct Non-Object Applications, page 203

-201-

Construct Spectrum SDK for Client/Server Applications

Overview

There are two scenarios that you may encounter when moving your Natural Construct-
generated applications to Construct Spectrum:

« Moving applications created with the Natural Construct Object models (Object-Maint-
Subp and Object-Browse-Subp)

« Moving applications created without the Natural Construct Object models

The Object models enable you to generate encapsul ated applications. Applications cre-
ated with Construct Spectrum take advantage of this object approach.

Moving Natural Construct Object Applications

If you have existing Natural Construct applications devel oped with the object models
(Object-Maint-Subp and Object-Browse-Subp), much of the work involved in creating
aclient/server application has already been completed.

To create a Construct Spectrum client/server application from existing Natural Con-
struct Object applications, complete the following steps:

1 Set up your server environment.
For information, see Are You Ready?, page 103.

2 Set up Predict definitions (optional).
For information, see Setting Up Predict Definitions, page 39, Construct Spectrum
DK Reference.

3 Regenerate your Object-Maint-Subp modules and generate the remaining client/server
modules.
For information, see Using the Super M odel to Generate Applications, page 77.

4 Set up and run your Construct Spectrum project.
For information, see Creating a Construct Spectrum Pr oject, page 101.

- 202 -

Moving Existing Applications to Construct Spectrum

Moving Natural Construct Non-Object Applications

Y

(I I N I W

Natural Construct applications generated with the Maint and Browse models must be
modified to conform to the object-based structure required by Construct Spectrum.

To create a Construct Spectrum client/server application from non-object Natural
Construct applications:

Step 1: Set Up Your Server Environment, page 203

Step 2: Evaluate Your Application Data, page 203

Step 3: Set up Predict Definitions (Optional), page 204

Step 4: Generate the Client/Server Modules, page 204

Step 5: Update Object Subprograms with Business Rules, page 205

Step 6: Set Up and Run Your Construct Spectrum Project, page 206

The following sections describe these steps.

Step 1. Set Up Your Server Environment

Before moving your application, ensure that your server is set up so that you can create
and use client/server applications with Construct Spectrum.

To set up your server, perform the steps outlined in Are Y ou Ready?, page 103.

Step 2: Evaluate Your Application Data

Determine whether the files and fields that define your application data conform to an
object-based relational database structure. If they do not, modify them to conform to
this structure to take advantage of the Object-Maint models. For example, you must de-
termine which database files should logically be grouped into business objects and
establish relationships between related files and fields.

For information about organizing your database files in an object-based and relational
manner, see Design M ethodology, page 143, and Use of Predict in Natural Con-
struct, page 699, Natural Construct Generation.

- 203 -

Construct Spectrum SDK for Client/Server Applications

Step 3: Set up Predict Definitions (Optional)

Some Predict set up tasks relate specifically to Construct Spectrum. For example, you
can attach special keywordsto afield to defineits corresponding GUI control on the
client dialog. Thesetasksare optional because Construct Spectrum appliesdefault logic
to determine how each field will be implemented on the client.

For information about these tasks, see Setting Up Predict Definitions, page 39, Con-
struct Spectrum SDK Reference.

Tip: Postpone these optional tasks until you have created and tested at least a first it-
eration of your client/server application and are ready to fine-tune it.

Step 4. Generatethe Client/Server M odules

To get an iteration of your client/server application up and running quickly, use the su-
per model to generate modulesfor your client/server application. Generate modulesfor
each business object, such as a Customer object and an Order object.

Generate the modules by selecting the models listed in the following table. Thefirst
four models generate the modules required for maintenance services, such as updating
or adding Customer records. Theremaining three model sgeneratethe modul esrequired
for browse services, such as looking up and selecting a customer record for an action.

M odel Module Source Type

Object-Maint-Subp Object maintenance subprogram Natural subprogram
and required PDASs

Subprogram-Proxy Object maintenance subprogram Natural subprogram
proxy

VB-Maint-Object Visual Basic maintenance object Visual Basic class

VB-Maint-Dialog Visual Basic maintenance dialog Visual Basic form

Object-Browse-Subp Object browse subprogram and Natural subprogram
required data areas

Subprogram-Proxy Object browse subprogram proxy Natural subprogram

VB-Browse-Object Visua Basic browse object Visual Basic class

The modules must be generated in the order shown.

— 204 -

Moving Existing Applications to Construct Spectrum

Tip: Although you can generateall of the modelslisted in the previoustable separate-
ly, use the super model to quickly create afirst iteration of your application. The
super model automatically generates these models in the correct order.

For information about using the super model, see Using the Super M odel to Gener ate
Applications, page 77.

Step 5. Update Object Subprogramswith Business Rules

Y ou must update your newly generated object mai ntenance modules with any business
rules from your previous applications — those applications that were created without
the Object Maintenance model. Y ou must compare the business rules, which are con-
tained in the user exits, in your previous application and decide how they should be
incorporated into the user exits in your new application.

Asyou complete the procedure described below, see Object-M aint M odels, page 347,
Natural Construct Generation. This chapter contains information about generating an
object maintenance subprogram and working with its user exits.

To update your object maintenance subprogram with businessrules:

Regenerate the mai ntenance subprogram using the Object-Maint-Subp model.
Update the user exits with your business rules.

Compile the subprogram.

(AJI\JHV

Considerationsfor | mplementing Business Rules

When you have a working client/server application and are ready to refine your appli-

cation, pay specia attention to the procedures devoted to refining the implementation

of your business rules. For information about implementing businessrules, see Validat-
ing Your Data, page 261.

Because your client/server application wasinitially a non-object application, you prob-
ably have all of your business rules coded in the Maint model user exits. Consider
placing as many of these rules as possible in other locations, such as:

« ThePredict verification rules linked to your field definitions
» TheVisua Basic maintenance object user exits
» The object maintenance subprogram user exits

For example, some verification rules can be implemented or duplicated on the client
through the Visual Basic maintenance object. Business data types can aso be used to
validate data. These techniques improve the performance of your application because
validations occur on the client, therefore, avoiding a call to the server.

— 205 -

Construct Spectrum SDK for Client/Server Applications

Note: If users can access your application from anon-GUI environment, such as a
character-based display terminal, validations set up on the client should also
be implemented on the server. This ensures that validations are consistent no
matter where the application is accessed from.

Step 6: Set Up and Run Your Construct Spectrum Project

Onceyour client and server modules have been generated on the server, set up a Con-
struct Spectrum project on the client using the Construct Spectrum Add-In. Then
download the client modules to your project, run the project, test it, and modify it as
required. For information, see Creating a Construct Spectrum Project, page 101.

— 206 —

UNDERSTANDING AND CUSTOMIZING THE
CLIENT FRAMEWORK

This chapter describes how to customize the client framework supplied with Construct
Spectrum. It describes what each framework component is, where you use it, a concep-
tual overview of how it works, and procedures for customizing the component.

The following topics are covered:
« Introduction to the Client Framework, page 208
« About Box, page 210
« Application Preferences, page 212
» Application Settings, page 213
« Browse Support, page 215
» Internationalization Support, page 217
« Maintenance Classes, page 218
 Menu and Toolbar Support, page 219
« MDI (Multiple-Document I nterface) Frame Form, page 242
» Object Factory, page 243
» Spectrum Dispatch Client Support, page 256
« Utility Procedur es, page 259

- 207 -

Construct Spectrum SDK for Client/Server Applications

I ntroduction to the Client Framework

When you select Create New Project from the Construct Spectrum Add-In menu, Con-
struct Spectrum adds the client framework components to a standard Visual Basic
project. The client framework is made up of many files that display in your applica-
tion’s project window. Each component consists of one or more Visual Basic forms,
modules, or classes. The following example shows the client framework components
for a Spectrum project:

iew Form Yiew Code i
. About.frm frrsbowt
9. BrowseDialogOptions.frm frmBrowzelialogd ptions
5. EnmorPreferences_frm frmE rrorPreferences
5 EnmorTip_frm frmErmorTip
. GenericBrowse. frm frmGenencBrowse
t; GenericMDIBrowse_ frm frmGenenckdDIBrowse
5 GrndSizelnfo.frm frmGndSizelnfo
4 Main.frm frrabd air
9 Open.frm frm0pen
5. SDCDialog.frm frmSDCDialog
E TraceOptions. frm frm T race0ptions
[&] BrowseBase.cls BrowseB asze
@ BrowszeDialogB aze._cls BrowzelDialogl aze
@ BrowszeManager.cls Browszeh anager
[&] CustomBDTs.cls CustomBDT s
[&] StandardBDTs._cls StandardBD T =
[&] TrueGridClass.cls TruelGndClass
u’% AppSettings_bas AppSettings
u’% BDTSupport_bas BOTSupport
a% C5TConst.bas ConstructConstants
a% C5TObjectConstants.bas ConstructdbjectConztants
u’% C5TUtils.bas C5TUtils
u’% OFactory.bas ObjectFacton
a% SDCSupport_bas SOCSupport
a% Startup.bas Startup
u’% UlCommandConstantz.bas UICarmmandConstants

Client Framework Components for a Construct Spectrum Project

— 208 -

Understanding and Customizing the Client Framework

Thesefilesare grouped into logical client framework components. The componentsare
described in this chapter and referred to throughout the Construct Spectrum
documentation.

Additional client framework components are provided in an OLE automation server
(CSTVBFW.dII) as classes. Y ou can browse these OLE classes by selecting Object
Browser fromthe View menu in Visual Basic.

Each component is described in more detail in the following sections.

Note: For information about creating a new project, see Creating a Constr uct
Spectrum Project, page 101.

— 209 -

Construct Spectrum SDK for Client/Server Applications

About Box

The client framework includes a standard About box form. Thisform contains an icon,
application title, application version information, licensed user and company name, se-
rial number, copyright notices, and a System Info button to invoke the standard
Windows system information applet.

The user invokes the About box by selecting the About command on the Help menu:

(@] Ahout _ O] x|

............ |bILizensedOwner

............ |bILizensedCompany

............ Seral Mumber: bl enalMumber

Default About Box Supplied with the Construct Spectrum Client Framework

Y ou can customize the About box as desired. For example, you can include your appli-
cation’ s icon, product name, company name, trademark, or copyright notices.

Component Description

About.frm Contains the About box form.

The |bIMessagesArray, |blLicensedOwner, IblLicensedCompany, |bl Serial Number,
and IblWarning values are place holders for custom messages you code in the L oad
event for About.frm.

-210-

Understanding and Customizing the Client Framework

Customizing the About Box

Y ou can customize the About box for each of your applications.

Tip: To customizethe About box, edit the default About box and use the Save As com-
mand on the File menu to save the tailored About box to your project directory.

Y ou can customize the following features:

To Change

Follow this Procedure

Application name
or window title

Copyright notice

Note:

Icon

Licensed owner,
Company, or
Serial Number

Note:

Version text

Note:

1 Open the AppSettings.basfile.

2 Change the gAppSettings.ApplicationName variable to
change the application namethat is displayed at the top of
the dialog.

1 Open the Form_Load event file.

2 Change the IblM essages variable by adding one or more
lines of text to change the copyright notice.

The dialog automatically grows vertically to accommodate
any amount of text assigned to this variable.

1 Open the Form editor.

2 Load adifferent bitmap into the Picture property of the
imgA pplicationBitmap control to change the icon that is
displayed in the upper left corner of the About box.

1 Open the Form_Load event file.

2 Change thetext assigned to the IbILicencedOwner,
IblLicensedCompany, and Ibl SerialNumber label controls.

The client framework does not provide any specific
functionality for licensing your applications. These |abel
controls are informational only.

1 Open the Form_Load event file.

2 Change the IblM essages variable by adding one or more
lines of text to change the version text.

The dialog automatically grows vertically to accommodate
any amount of text assigned to this variable.

-211 -

Construct Spectrum SDK for Client/Server Applications

Application Preferences

The application preferences client framework components are made up of agroup of
classes that allow you to define the settings of each of your applications. Use these
classes to add, read, and update user or application preferences.

Applications frequently require the ability to maintain persistent settings over multiple
executions of an application. For example, you may want your application to save win-
dow positions when a user shuts down the application. When the user restarts the
application, the windows appear in the same place on the desktop. Y ou may also want
your application to save internal configuration information, such as directory names or
timeout values.

The application preferences provide ahigh-end interface for defining the metastructure
of persistent settings and for reading and writing setting values. Y our preferences sep-
arate settingsinto two logical categories: user-specific settings and application settings.
Each user ID that logs on to Windows has its own copy of the user-specific settings.
Application settings are constant for al users.

The metastructure for settings can aso be hierarchical, similar to a directory tree on a
disk. Each node on the settings tree structure can contain any number of settings or sub-
nodes (analogous to files and sub-directories, respectively). A sub-node itself can con-
tain settings and sub-nodes. This makes it easy to group settingsinthe most appropriate
structure.

The application preferences use the Windowsregistry to store the metastructure and the
values of al the settings. The Windows registry is encapsulated in the implementation
of the application preferences and is not exposed through the public interfaces of the
settings’ classes. This insulates the application from the specific requirements of read-
ing and writing to a specific storage medium.

Thefollowing table describesthe application preferences client framework components
supplied with CSTVBFW.dII.

Component Description

Setting Creates and manipulates an individual setting

SettingList Creates and manipulates a SettingList, which is an aggregation of
SettingLists and Settings objects

SettingLists Contains a collection of SettingLists

Settings Contains a collection of Settings

For more information about customizing application preferences, see Under standing
Application Preferences, page 27, Construct Spectrum Reference.

-212 -

Understanding and Customizing the Client Framework

Application Settings

The application settings client framework components allow you to specify your appli-
cation’s window title and other values that control how the application starts. These
values are used by other client framework components, including the About box, the
Spectrum Dispatch Client, and the Construct Spectrum Add-In.

Component Description

AppSettings.bas Contains the application-specific settings, such as the
application name, main library, and whether to force the user
to logon at application startup.

Startup.bas Contains the Sub Main procedure and other global variables.
Every Construct Spectrum application has one Sub Main
procedure which isthefirst procedure that gets executed when
your application starts running.

For more information, see:

About Box, page 210

Spectrum Dispatch Client Support, page 256
Overview of the Development Procedure, page 30.

-213 -

Construct Spectrum SDK for Client/Server Applications

Customizing the Application Settings

The InitAppSettings procedure in the AppSettings.bas file contains settings that deter-
mine the name of the application, how the application starts up (whether the Logon
form is displayed), and where application preferences are stored.

Y ou can change the I nitA ppSettings by editing this procedure.

Example of a customized I nitAppSettings procedure

Public Sub InitAppSettings()

Wth gAppSettings
. ApplicationName = "Construct Dermo Application”

. ForceLogonAt Startup = Fal se
. Renenber User I D = True

. Regi stryKey = "Sof t war e\ Sof t war eAG CST"

Add-In Defaults
. Defaul tLibrary = "CSTDenn"

.DBID = 17
.FNR = 38
End Wth

End Sub

where:

ApplicationName Is the name displayed in the MDI frame form’ stitle bar
and the About box.

ForcelL ogonAtStartup If True, theLogon dialog isdisplayed when the application
starts. This option is useful when more than one person
uses the same PC and you want to ensure that each person
uses their own user ID.

RememberUser|D If True, theclient framework savesthe most recent user ID
intheWindows Registry and recallsit when displaying the
Logon didog.

RegistryKey Is the root node in the Windows Registry where

application preferences are saved. These preferences are
saved in HKEY_CURRENT_USER under this key.

—214 -

DefaultLibrary

DBID, FNR

Browse Support

Understanding and Customizing the Client Framework

Is the name of the main Natural library with which this
application is associated. Construct Spectrum uses this
setting to derive the name of the primary library imagefile
containing the Natural data area and application service

definitions used by the application.

Isthe default database ID and file number for the

Construct Spectrum download and upload functions.

The browse support client framework components are used to implement the browse di-
alog, a generic browse form used to display all browses.

The following table describes the browse support components supplied with Construct
Spectrum. All of these components are stored in the CSTVBFW.dII, with the exception
of classes (.cls), dialogs (.frm), and standard modul e files (.bas) which are included as
part of the client framework in your application’s project window.

Component

Description

ApplicationControl

ApplicationControls

BrowseBase.cls

BrowseDataCache
BrowseDataColumn
BrowseDataColumns
BrowseDataRow
BrowseDataRows

BrowseDialogBase.cls

Containsthe references to the browse dialog’ s button,
including its tag, index, command handler, caption,
and button.

Contains a collection of browse dialog's application
control objects.

Containsall of the code common to generated browse
objects and isaclient component accessiblein source
code format in the project window.

Stores browse data.

Contains definitions of atable column.
Contains a collection of columns.

Contains definitions and values of atable row.
Contains a collection of rows.

Contains all of the code common to both the MDI
child and standalone versions of the browse dialog and
isaclient component accessiblein source code format
in the project window.

—-215-

Construct Spectrum SDK for Client/Server Applications

Component

Description (continued)

BrowseDialogOptions.frm

BrowseManager.cls

ColumnDisplay

ColumnsDisplay

Fieldkey
Fieldkeys

GenericBrowse.frm

GenericMDIBrowse.frm

KeyMatch

KeyMatches

L ogicalCombo

LogicalKey
LogicalKeys

Allows users to customize the appearance of the
browse dialog. It isaclient component accessiblein
source code format in the project window.

Simplifies using the browse dialog for common
functions such as selection of aforeign key value.

Contains definition datafor a displayed column,
including ColumnName, ColumnCaption,
ColumnWidth, and Visible.

Contains acollection of browse dialog's
ColumnDisplay objects.

Defines afield used as a component in alogical key.
Contains a collection of field keys.

Contains the standal one version of the browse dialog
and is a client component accessible in source code
format in the project window.

Containsthe MDI child version of the browse dialog
and is a client component accessible in source code
format in the project window.

Defines asearch key’ s associated text box attributes,
including FieldName, Columnindex, Controllndex,
Visible, Enabled, Locked, Validated, and Fixed.

Contains a collection of KeyMatch objects.
Defines an internal combo box object.
Defines akey used to browse a database table.

Contains a collection of logical keys.

For moreinformation, see Over view of the Browse Dialog, page 176, in this documen-
tation, and Browse Classes, page 51, Construct Spectrum Reference.

-216 -

Understanding and Customizing the Client Framework

| nternationalization Support

The internationalization support client framework components make it easy to create
applications that will be deployed in more than one language. These internationaliza-
tion components enable you to devel op internationalized applications.

Thefollowing table describes the internationalization support client framework compo-
nents supplied with CSTVBFW.dII:

Component Description
Resource Reads resources from resource files.
ResourceGroup Returns alist of resources in aresource group.

These client framework components provide you with the ability to store text and
graphics used throughout the application separate from the compiled executable. This
allows you to change them without accessing the source code of the application. Forms
are designed to contain as little code as possible to provide this feature.

Tip: Youdo not need to build internationalization components into your design when
creating small applications or applications that will only ever be used in one lo-
cale. These internationalization components are optional.

For moreinformation about internationalization support, seel nternationalizing Using
the Client Framework, page 297.

-217 -

Construct Spectrum SDK for Client/Server Applications

M al ntenance Classes

These client framework components allow you to manipulate items in combo boxes us-
ing the key and description, aswell as use the grid to change the look of your generated
maintenance dialogs. The following components are supplied with Construct Spectrum:

Component Description

ComboClass Contains akey list and a descriptive list that map to a combo
box. It includes methods which allow you to access their
information, including the Add and L oad methods.

GridSizelnfo.frm Helps the application devel oper size the grid columns to the
best width. Thisform is displayed from a generated
maintenance dialog’s Activate event.

TrueGridClass.cls Simplifies the use of TrueDBGrid control in unbound mode.

For more information, see Strategies for Customizing a Maintenance Dialog, page
129, in this documentation, and M aintenance Classes, page 205, Construct Spectrum
Reference.

Grid Support

Todisplay array dataand datafrom secondary and tertiary files, generated maintenance
dialogs use the Apex TrueDBGrid custom control. The grid client framework compo-
nents centralize some of the code required by TrueDBGrid so you do not haveto repeat
code in each generated maintenance dialog.

The client framework provides a TrueDBGrid helper class containing most of the mun-
dane code required to use this control in unbound mode, significantly reducing the
amount of code you must provide with the form.

Note: UsingaTrueDBGrid control in unbound mode usually requires many lines of
event code to handle displaying and editing data, inserting and deleting rows,
and setting cell-level attributes such as color.

At design time, you only need to instantiate this class for each TrueDBGrid control on
the form and delegate the important events (such as UnboundReadData,
UnboundWriteData, and FetchCell Style) to the equivalent methods in the class. At
runtime, you can load the helper class instance with datathat will be displayed in the
cells of the grid. For more information, see Strategies for Customizing a Mainte-
nance Dialog, page 129, in this documentation, and M aintenance Classes, page 205,
Construct Spectrum Reference.

-218 -

Understanding and Customizing the Client Framework

Menu and Toolbar Support

The menu and toolbar client framework components allow you to dynamically change
their states between enabled and disabled, and checked and unchecked. The menu and
toolbar command classes provide a robust mechanism for locating and calling the code
that will execute when the user selects amenu command (such as File> Open) or clicks
atoolbar button.

In amultiple-document interface (M DI) application, thereis only one menu bar on the
MDI frame window with typically one or more toolbars. In the Construct Spectrum cli-
ent framework, the MDI frame window “owns” the menu bar and toolbars. It contains
the code that is executed when the user selects amenu command or clicks atoolbar but-
ton. However, what the executing code does often depends on what type of MDI child
window isactive. Often youwill find it more appropriate to have the MDI child window
itself contain the code that does the actual processing of the command. Thisalowsthe
MDI framewindow to be generic and contain only processing that isindependent of the
active MDI child window.

This client framework component allows you to design the menu and toolbar structure
of an application on the MDI frame form, and then program each MDI child window to
“hook into” the menu commands and toolbar buttons it wants to processitself. Thisim-
proves functionality for the user and reduces your maintenance.

The menu and toolbar command-handling framework components implement a mech-
anism that centralizes the code required to determineif a menu command needsto be
enabled or disabled, and checked or unchecked. The following table describes the sup-
plied menu and toolbar client framework components:

Component Description

UlCommands Class that implements menu and toolbar command
handling. UICommandsis stored in CSTVBFW.dII.

UlCommandConstants.bas File that defines the command IDs used to uniquely
identify an end-user function in the application.

UlCmd Class containing information about asingle command.
UICmd is stored in CSTVBFW.dII.

—-219 -

Construct Spectrum SDK for Client/Server Applications

Under standing Menu and Toolbar Command Handling

This section provides a conceptual overview of the command handlers that you need to
understand before beginning to customize your application’s menu and toolbar. The
following section describes the steps to take to customize your menu and toolbar using
the client framework.

The client framework classes that allow menu controls and toolbar buttons to be pro-
grammed to send application-specific commands such as FileOpen, EditPaste, or
GridinsertRow are described in this section. These commands are intercepted by com-
mand handlers, which can be any form or object in the application. The command
handler can also automatically update the enabled or disabled state and checked or un-
checked state of menu commands and toolbar buttons.

The MDI frame, browse dialog, and generated maintenance dialogs all use this com-
mand handling to process menu and toolbar button clicks in asingle, unified fashion.

This section:
» Provides asummary of the classes
» Describes how to define, send, and handle commands
» Describes how to update user-interface controls
» Describes additional methods for command handling

For more information about menu and toolbar support, see Menu and Toolbar Sup-
port, page 219.

For more information about using a command handler to customize your browse dia-
logs, see Understanding Browse Command Handlers, page 195.

- 220 -

Understanding and Customizing the Client Framework

Class Summary
This section illustrates the classes that implement the command handler.

SendCommand Key

HookCommand 7
UlCommands Ii UnHookCommand Object

ReleaseHooksByObject
AL Property Property

ReleaseHooksByCommand
StartUpdateCycle Method() Method
EndUpdateCycle
UpdateCyclelD

ID

Enabled
A

DisabledReason

GetCurrentState

UlCommandTarget
Command Handler I/ UlCommandState

Classes in the Command Handler

Thefollowing sections describe many of the classes and their associated methods used
to tailor the menu controls and toolbar buttons using the command handler.

Defining, Sending, and Handling Commands

This section describes how these application-specific commands are defined, how
menus and tool bars are programmed to send the commands, and how they are intercept-
ed by command handlers.

To define, send, and handle menu and toolbar commands:

Step 1: Declare a Global Instance of the UlCommands Class, page 222

Step 2: Define the Commands, page 222

Step 3: Code M enu and Toolbar Eventsto Send the Commands, page 223

Step 4: Code the Command Handlers, page 224

Step 5: Link the Commands to the Command Handler s, page 224

These steps are described in the following sections.

(I I R N IR 4

—-221 -

Construct Spectrum SDK for Client/Server Applications

Step 1: Declare a Global Instance of the UlCommands Class

Declareaglobal variable of the UICommands class. This classisthe primary interface
to this command-handling client framework component. This variable will be used by
various client framework components of the application.

Example of declaring a global variable

Public gU Cnds As New U Commands

Note: The UlCommandConstants.bas client framework component declares this
variable.

Step 2: Definethe Commands

Define the application-specific commands your menu items and toolbar buttonswill be
sending. Y ou will define these commands by defining named constants:
Public Const CVD_FILE_NEWAs String = "Fi | eNew'

Public Const CVMD_FILE _OPEN As String "Fi | eOpen”
Publ ic Const CMD_FILE_SAVE As String "Fi |l eSave"

These constantsare called command IDs. Their values are entirely up to you; your code
will never refer to the values directly, only the constant names. Define one command
ID for each unique menu and toolbar command.

-222 -

Understanding and Customizing the Client Framework

S L 4

Step 3: Code Menu and Toolbar Eventsto Send the Commands

Beforeyou begin this step, ensurethat your application hasamenu or atoolbar structure
from which you intend to send commands.

To code menu events to send commands:
Write Click events for the menu controls.

To code toolbar events to send commands:
Write ButtonClick events for the toolbar controls.

Example of coding the menu and toolbar eventsfor three commands

Private Sub mmuFi | eNew_Cli ck()
gU Crds. SendConmmand CVD_FI LE_NEW
End Sub

Private Sub mmuFi | eOpen_d i ck()
gU Crds. SendCommand CVD_FI LE_OPEN
End Sub

Private Sub mmuFi | eSave_d i ck()
gU Crds. SendConmand CNVD_FI LE_SAVE
End Sub

For tool bar buttons, use the Tag property to store the
command | D you want the button to send.

Private Sub Form Load()
Wth tbrMin
.Buttons("NEW).Tag = CVD_FI LE_NEW
.Buttons("OPEN').Tag = CMD_FI LE_OPEN
.Buttons("SAVE").Tag = CMD_FI LE_SAVE
End Wth
End Sub

Private Sub tbrMiin_Buttondick(ByVal Button As Button)

If Button.Tag <> "" Then

gU Cmds. SendConmand Butt on. Tag

End |f
End Sub
Asyou can see from this example, you can easily send the same command from both a
menu control and atoolbar button. The event code uses the SendCommand method of
the UlCommands class to send a specific command ID from each control. In the follow-
ing step, define the command handlers that receive these commands.

— 223 -

Construct Spectrum SDK for Client/Server Applications

Step 4: Code the Command Handlers

Provide the code that will be executed for each command. This code will residein a
command handler object, which can beaVisual Basic form, aVisua Basic class, or an
OLE object. The only requirement for this object is that it must have a public method
called UlCommandTarget with the following declaration:

Publ i ¢ Sub Ul CommandTar get (Cnd As Ul Cnd, ByRef Forwar dToNext As Bool ean)

When amenu control or toolbar button’s click event calls SendCommand, the UICom-
mands class eventually callsthe UlCommandTarget method. I nto this method is passed
aUlCmd object which contains information about the command received.

UlCommandTarget usually has a Select Case Cmd.ID statement so it can handle more
than one command and perform specific processing for each command.

Example of coding a command handler

Sel ect Case Cnd. 1D
Case CMD_FI LE_NEW
Processing for the File| New conmand.

Case CMD_FI LE_OPEN
Processing for the Fil el Open comand.

Case CMD_FI LE_SAVE
Processing for the File| Save comand.

End Sel ect

Step 5: Link the Commandsto the Command Handlers

Next, tell the UlCommands class what the command handler is for each command ID.
Thisaction is called hooking acommand. When you hook acommand, specify the com-
mand handler object and alist of command IDs.

Example of linking the command handler to the command 1D

Wth gUl Crds
. HookCommand frnVDI Frame, CMD_FILE_NEW CMD FILE_OPEN, _
CMD_FI LE_SAVE ...

End Wth

The HookCommand method of the UlCommands class linksthe command handler with
one or more command IDs. This method can be called any time during the execution of
the program. Once acommand has been hooked by a command handler, thelink ises-
tablished between the GUI control that sends the command and the code that receives
and processes the command.

—224 -

Understanding and Customizing the Client Framework

More than one object can hook a given command ID. The UICommands class stores a
list of command handlers for each command 1D (the command handler list). The last
command handler to be hooked to acommand ID is called first. If this command han-
dler decides not to perform the processing for the command, it can set the
ForwardToNext output parameter to True before returning, to tell the UlCommands
classto send the command to the next command handler (the one that hooked the com-
mand second last). This sequence continues until ForwardToNext is set to False (the
default) or all command handlers in the list have been called.

If acommand handler is hooked to a command 1D and HookCommand is called again
for the same command handler and command 1D, the command handler will be moved
to the front of thelist, instead of being in the list twice.

The SendCommand method in the UICommands is actually implemented as shown in
the following pseudocode.

Pseudocode demonstrating how the SendCommand method works

Sub SendConmand(Cndl D As Vari ant)
Look up the command handler list for the given Cndl D
For each object, cndtarget, in the |ist
Set ForwardToNext to Fal se
Cal | cmdt ar get. U CommandTar get (Cmd, Forwar dToNext)
I f ForwardToNext is Fal se
Exit the | oop
End | f
End For
End Sub

When an object no longer wants to hook a command 1D, you can call the
UnHookCommand method of UlCommandsto break thelink between thecommand ID
and the command handler. UlCommands will remove the object from the command
handler list.

Example of unlinking the command 1D and the command handler

Wth gUl Crds
. UnHookConmand frn\DI Frame, CVD_FILE_NEW CMD FILE OPEN, _
CMD_FI LE_SAVE ...
End Wth

— 225 -

Construct Spectrum SDK for Client/Server Applications

Updating User Interface Controls

U000 Vv

When auser opens amenu, the menu commands that are not currently valid are visibly
disabled. The object that processes a command (the command handler object) also de-
cides whether or not the command is valid. The UICommands class implements a
mechanism whereby it asks the command handler object whether a given command is
valid or not. Modify the event code to customize the actions that are performed when
the user selects amenu item or clicks atoolbar button.

To update user interface controls:

Step 1: Code Eventsto Updatethe Menu Controls, page 227

Step 2: Codethe Logic that Deter minesthe State of a Command, page 228

Step 3: Code Eventsto Updatethe Toolbar Buttons, page 229

These steps are described in the following sections.

— 226 —

Understanding and Customizing the Client Framework

Step 1: Code Eventsto Update the Menu Controls

Write event code that enables or disables the menu items just before the menu is dis-
played to the user. Take advantage of the Click event of amenu control, such asthe File
menu or Edit menu, as a place to include your event code. Visual Basic calls this event
just before displaying the menu to the user.

Example of updating menu controls before the menu is displayed to the user

Private Sub mmuFile_Click()
Set MenuSt at e muFi | eNew, CMD_FI LE_NEW
Set MenuSt at e nmuFi | eCpen, CMD_FI LE_OPEN
Set MenuSt at e muFi | eSave, CMVD_FI LE_SAVE

End Sub
Private Sub Set MenuState(mmu As Menu, Cndl D As Vari ant)

Wth gUl Cnds. Conmand(Crdl D)
.CGetCurrent State

mu. Enabl ed = . Enabl ed
mu. Checked = . Checked
End Wth
End Sub
where:
Command Returns a UICmd object that contains information for agiven
CmdID. Thisisthe same UICmd object that was passed to
UlCommandTarget.
GetCurrentState Causes UlCommands to call the command handler object

again, but this time the command handler will not process the
command, but will return whether or not the command isvalid
and whether or not it should be checked. These settings can
then be read from the Enabled and Checked properties when
GetCurrentState returns.

If you disable amenu control inits parent’ s Click event (the parent is the submenu that
contains the menu control), Visual Basic disables the menu control when the menu is
displayed. Y ou can do the same thing with the Checked property for the menu control.

- 227 -

Construct Spectrum SDK for Client/Server Applications

Step 2: Codethe Logicthat Determinesthe State of a Command

Thelogic that determines whether acommand is enabled or disabled and checked or
unchecked resides in the command handler in a public method called
UlCommandState. It must have the following declaration:

Public Sub U CommandSt at e(Cmd As U Cnd, ByRef ForwardToNext As Bool ean)

The UlCommandState method is called by UICommands whenever GetCurrentStateis
called as shown in the following example:

Example of using the Ul CommandState method

Wth Cnd
Sel ect Case .I1D
Case CMD_FI LE_NEW
Code that determines if this command is valid.
. Enabl ed = sone condition
Case CMD_FI LE_OPEN
Code that determines if this command is valid.
. Enabl ed = sone condition
Case CMD_FI LE_SAVE
Code that determines if this command is valid.
If some condition Then
. Enabl ed = True

El se
. Enabl ed = Fal se
. Di sabl edReason = "the document has not changed since” & _
“it was saved"
End | f
End Sel ect
End Wth

In the previous example, the Select Case Cmd.ID statement enabl es the method to han-
dle more than one command and provide specific processing for each command. The
Enabled property can be set to True or False. If Enabled is set to False, you can also set
the DisabledReason property to provide a message to the user explaining why the com-
mand is not available. Y ou a so have the option of setting the Checked property to True
or False.

Similar to UlCommandTarget, if the command handler object is not required to deter-
mine the state of the command, it can set the ForwardToNext parameter to True before
returning, instructing Ul Commands to invoke the next object in the command handler
list.

If acommand has at least oneobject inits command handler list, the object will be En-
abled and Unchecked. Y ou only need to provide handling in UlCommandState when
you want to disable or check acommand. If acommand’scommand handler list isemp-
ty, GetCurrentState will return Disabled and Unchecked.

— 228 -

Understanding and Customizing the Client Framework

Step 3: Code Eventsto Update the Toolbar Buttons

Add code to enable or disable toolbar buttons. There are several different waysto
present disabled toolbar buttons to the user:

Display amessage. When the user clicks the button, either awindow with amessageis
displayed or the message is displayed on the status bar.

Show atoolbar button with a disabled bitmap so that the user can immediately seethe
button is disabled. The client framework uses this approach.

Displaying a Disabled Bitmap

If you decide to display adisabled bitmap, you must continually update the button im-
age. To update the button image, use a Timer control on the form and include the event
code as indicated in the following example:

Example of adding a Timer control to update the Button image

Private Sub tnrTool bar Update_Ti ner ()
Dimi As Integer
Dim btn As Button

For Each btn In tbrMin.Buttons
If btn.Tag <> "" Then
Wth gU Crds. Conmand(bt n. Tag)
. CGetCurrent State

bt n. Enabl ed = . Enabl ed

If btn.Style = tbrCheck Then
btn.Value = 11f(. Checked, tbrPressed,

t br Unpr essed)
End If
End Wth
End | f
Next

End Sub

The previous example updates all the toolbar buttons that have command IDs assigned
to them by the Tag property. Set thetimer interval so that thisevent executesfrequently.
Aninterval of 250 msensures that the toolbar button bitmaps do not lag too far behind
the application’ s state. Timer events are only triggered when the application becomes
idle. Thisis advantageous because it does not take away processing time from the run-
ning application to update the toolbar buttons, but it is disadvantageous because it
continues to update the toolbar button bitmaps when your application isidle.

— 229 -

Construct Spectrum SDK for Client/Server Applications

Displaying a M essage

If you decide not to update the toolbar button bitmaps continually, leave the buttons en-
abled and instead display a message when the user clicks on a disabled button.

Example of displaying a message after the Click event on a disabled menu item

Private Sub tbrMiin_Buttondick(ByVal Button As Button)
Dim snsg as string
If Button.Tag <> "" Then
Wth gU Cnds. Conmand(But t on. Tag)
.CetCurrent State
If . Enabl ed Then
gUl Cmds. SendCommand Button. Tag

El se
smsg = "This command is not avail abl e"
If . Disabl edReason <> "" Then

snmeg = snsg & " because " & . Di sabl edReason

End If
Di spl aySt at usBar Message snsg

End |f

End Wth
End |f
End Sub

When the user clicks atoolbar button, the code determines whether or not the buttonis
valid. If itisvalid, it executes the event code. If it isnot valid, it displays a message on
the status bar, explaining to the user why the button is disabled.

Update Cycles

When the GetCurrentState method is called repeatedly for each menu item on amenu
or for each button on atoolbar, the application’ s state does not change between thefirst
call and thelast call to GetCurrentState because the only thread of executionisbusy. If,
however, one of the UICommandState methods yields the CPU with a DoEvents or
calls aWindows function that yields, for example, with ablocked DDE request, the
Construct Spectrum application could be re-entered allowing its state to change.

Assuming that the UlCommandState methods do not act in thisway, itis possible to
optimize the code that executes within these methods by using the concept of an update

cycle.

During an update cycle, it is known that the application’ s state will not change. There-
fore, at the beginning of an update cycle, you can look up all of the information about
the application’s state that the Ul CommandState methods will need. Instead of looking
thisup for each command 1D that needs the information, you can look it up once, store
the information in Static variables, and useit several times.

For example, the validity of the Edit menu commands Undo, Cut, Copy, Paste, Delete,
and Select All, al depend on the control that currently has focus. Y ou could write the
following code to determine the state of each of these commands at once.

- 230 -

Understanding and Customizing the Client Framework

Example of code that determines the state of multiple commands simultaneously

bcanundo = Fal se
bcancut = Fal se
bcancopy = Fal se
bcanpaste = Fal se
bcandel ete = Fal se
bcansel ectall = Fal se

Set ctl = Screen. ActiveControl
If Not (ctl Is Nothing) Then
Sel ect Case TypeNane(ctl)
Case "TextBox", "MaskEdBox"
bcanundo = (SendMessage(ct!l.hwnd, EM CANUNDO, 0, ByVal 0& <> 0)
bcancut = (ctl. SelLength > 0)
bcancopy = bcancut
bcanpaste = Cli pboard. Get For mat (vbCFText)
bcandel ete = bcancut
bcansel ectall = (ctl.Text <> "")
End Sel ect
End If

Y ou may only want to run this code at the beginning of each update cycle because dur-
ing the update cycle the application’s state will not change. To set the update cycle,
bracket the calls to GetCurrentState with a call to StartUpdateCycle and a call to End-
UpdateCycle as shown in the following example:

Example of setting the update cycle

Private Sub muEdit _Click()
gUl Cnds. St art Updat eCycl e

Set MenuSt at e nMmuEdi t Undo, CMD_EDI T_UNDO

Set MenuSt at e muEdi t Cut, CMVD_EDI T_CUT

Set MenuSt at e nmuEdi t Copy, CMD_EDI T_COPY

Set MenuSt at e MuEdi t Paste, CMD_EDI T_PASTE
Set MenuSt at e muEdi t Del ete, CVD_EDI T_DELETE

Set MenuSt at e muEdi t Sel ect Al I, CVD_EDI T_SELECT_ALL
gUl Cnds. EndUpdat eCycl e
End Sub

StartUpdateCycle assigns an update cycle ID (a32-bit integer), which will be constant
until the call to EndUpdateCycle. The code that determines the state of the edit com-

mands will now only be executed when the update cycle 1D changes, as shown in the
following example:

—-231-

Construct Spectrum SDK for Client/Server Applications

Example of changing the update cycle I D

Dimctl

As Contr ol

Static |lastupdateedit As Long

Static b
Static b
Static b
Static b
Static b
c

Static b

Wth Cmd
Sel e

Case

End
End Wth

canundo As Bool ean
cancut As Bool ean
cancopy As Bool ean
canpaste As Bool ean
candel ete As Bool ean

cansel ectall As Bool ean

ct Case .ID

CMD_EDI T_UNDO,
CMD_EDI T_CUT, _
CMD_EDI T_COPY, _
CMD_EDI T_PASTE, _
CMD_EDI T_DELETE,

CVD_EDI T_SELECT_ALL

If |Ilastupdateedit <> gUl Cnds. Updat eCycl el D t hen
Il astupdat eedit = gUl Cnds. Updat eCycl el D

bcanundo = Fal se
bcancut = Fal se
bcancopy = Fal se

bcanpaste = Fal se

bcandel et e = Fal se
bcansel ectal | = Fal se
Set ctl = Screen. ActiveContro

If Not (ctl Is Nothing) Then
Sel ect Case TypeNane(ctl)

Case "Text Box",

" MaskEdBox"

bcanundo =(SendMessage(ctl. hwnd, EM _CANUNDO,

0, ByVval

bcancut = (ctl. Sel Length > 0)
= bcancut

bcancopy

bcanpaste = d i pboard. Get For mat (vbCFText)

bcandel et e = bcancut

bcansel ect al

End Sel ect
End If

End If
Sel ect Case .ID
Case CMD_EDI T_UNDO
Case CMD_EDI T_CUT:
Case CNVD_EDI T_COPRY:
Case CMD_EDI T_PASTE:
Case CVD_EDI T_DELETE:

Case CVD_EDI T_SELECT_ALL:

End Sel ect
Sel ect

- 232 -

. Enabl ed
. Enabl ed
. Enabl ed
. Enabl ed
. Enabl ed
. Enabl ed

= (ctl.Text <> "")

bcanundo
bcancut
bcancopy
bcanpaste
bcandel et e
bcansel ect al

08 <> 0)

Understanding and Customizing the Client Framework

Additional Methods For Command Handling

This section describes other methods of UlCommands you can use with your
application.

Unhooking Commands

To remove an object from all command handler lists, regardless of command ID, you
must release all references to it. The UlCommands class provides the
ReleaseHooksByObject method as illustrated in the following syntax example.

Syntax of the ReleaseH ooksByObject method

Sub Rel easeHooksByOhj ect (HookObj ect As Obj ect)

Pseudocode showing how the ReleaseH ooksByObject method works

For all conmmands
If HookObject is in this command' s command handl er |i st
Rermove it fromthe |ist
End If
End For
To empty the command handler list for a given command, use the Rel easeHooksBy-

Command method provided with the UlCommands class:

Sub Rel easeHooksByConmand(Cdl D As Vari ant)
where:

CmdID AsVariant Is replaced with one of the previously-defined command IDs
(for example, CMD_EDIT_UNDO).

Customizing the Menu and Toolbar in the Client Framework

This section describes how to tailor the menu items and the toolbar buttons. Y ou will
learn how to model your changes on the code in the client framework’ s multipl e-docu-
ment interface (MDI) frame form.

For more information about tailoring the menu items, see Changing the Menu Struc-
ture, page 234.

For more information about tailoring the buttons on the toolbar, see Changing the
Toolbar Structure, page 240.

For information about how to change the states of the menu items and the toolbar be-
tween enabled and disabled, and checked or unchecked, see Under standingM enu and
Toolbar Command Handling, page 220.

— 233 -

Construct Spectrum SDK for Client/Server Applications

Changing the Menu Structure

The multiple-document interface (MDI) frame formin the client framework has a pre-
defined menu structure. Y ou may change this menu structure by following the pattern
used in the MDI frameform.

For more information about the MDI frame form, the command I1Ds, command han-
dlers, and update cycles, see Understanding M enu and Toolbar Command
Handling, page 220.

The pattern supplied with the MDI frame form isimplemented with the following code
requirements:

» Each menu item control sends acommand ID through event code. The event code for
all menu item controlsisidentical except for the command ID constant.

Example of event code for three commands on File menu and two commandson Edit
menu

Private Sub mmuFi | eOpen_d i ck()
gU Crds. SendConmand CVD_FI LE_OPEN
End Sub

Private Sub mmuFi | ed ose_Cli ck()
gU Crds. SendConmand CMD_FI LE_CLOSE
End Sub

Private Sub mmuFileExit_dick()
gU Crds. SendCommand CVD_FILE EXI T
End Sub

Private Sub muEdit Cut_Click()
gUl Cmds. SendConmand CMVD_EDI T_CUT
End Sub

Private Sub mmuEdit Copy_d i ck()
gU Crds. SendConmand CVD_EDI T_COPY
End Sub

+ Thecommand IDsareall defined in agloba module called UlCommandConstants.bas.

Example of UlCommandConstants.bas where all command | Ds are defined

Publ i ¢ Const CMD _FI LE_OPEN = "Fi | eCpen"
Public Const CVMD_FILE_CLOSE = "Fil eCl ose"
Public Const CMD FILE EXIT = "FileExit"

Publ i ¢ Const CMD_EDIT_CUT = "EditCut"
Publ i ¢ Const CMD_EDI T_COPY = "Edit Copy"

« When the MDI frame formis loaded, the command IDs are hooked into the command
classes.

—234 -

Understanding and Customizing the Client Framework

Example of hooking the commands | Ds into the command classes

Private Sub MD Form Load ()
Wth gU Cds
. HookCommand Me, CMD_FI LE_OPEN, _
CMD_FI LE CLOSE, _
CMD_FILE_EXIT
. HookConmand Me, CMD_EDI T_CUT, _
CMD_EDI T_COPY
End Wth
End Sub

Note: Although you can hook all command IDswith one call to the HookCommand
method, the previous example illustrates how to group the command 1Ds by
category — File commands and Edit commands.

Each menu item has aparent menu control. This control’ sClick eventistriggered when
the user chooses the menu. Use the Click event to enable or disable and check or un-
check each menu item.

Example of using the Click event to control menu items

Private Sub mmuFile_Click()
gUl Cnds. St art Updat eCycl e
Set MenuSt at e nmuFi | eOpen, CMD_FI LE_OPEN
Set MenuSt at e muFi | eCl ose, CMD_FI LE_CLOSE
Set MenuSt ate muFi l eExit, CVD_FILE_EXIT
gUl Cmds. EndUpdat eCycl e

End Sub

Private Sub muEdit _Click()
gUl Cnds. St art Updat eCycl e
Set MenuSt at e muEdi t Cut, CMVD_EDI T_CUT
Set MenuSt at e nmukEdi t Copy, CMD_EDI T_COPY
gUl Cmds. EndUpdat eCycl e

End Sub

The previous example calls SetM enuState for each item on the menu. These calls are
bracketed by StartUpdateCycle and EndUpdateCycle.

Finally, you must code the UlCommandTarget and UlCommandState procedures in
each form that will be receiving these command IDs. Y ou can model your procedures
on the procedures used by the MDI frame form and Visual Basic maintenance objects
generated with Natural Construct.

—235-

Construct Spectrum SDK for Client/Server Applications

Example of UlCommandTarget and Ul CommandState procedures used by MDI
frame form

Publ ic Sub U CommandTarget (Cnd As Ul Cnd, Forwar dToNext As Bool ean)
Sel ect Case Cnd.ID

Case CMD_FI LE_OPEN

fr mOpen. Show vbModal
Case CMD_FI LE_CLOSE

Unl oad Screen. Acti veForm
Case CMD _FILE EXIT

Unl oad Me

Case CMD_EDI T_CUT
Wth Screen. Acti veControl
Cl i pboard. Set Text . Sel Text
.Sel Text = ""
End Wth
Case CMD_EDI T_COPY
Cli pboard. Set Text Screen. ActiveControl. Sel Text

End Sel ect
End Sub

Public Sub U CommandState(Crd As Ul Cnd, ForwardToNext As Bool ean)
DmfrmAs Form
Dimctl As Control

Static |l astupdateedit As Long
Stati c bcancut As Bool ean
Stati c bcancopy As Bool ean

Wth Cd

Sel ect Case .ID

Case CVD_FI LE_CLCSE
. Enabl ed = Fal se
. Di sabl edReason = "there are no child w ndows open"
Set frm = Screen. ActiveForm
If Not (frmls Nothing) Then

. Enabl ed = IsMDI Child(frm

End | f

Case CVD_EDI T_CUT,
CMD_EDI T_COPY
If Ilastupdateedit <> gU Cnds. Updat eCycl el D Then
Il astupdat eedit = gUl Cnds. Updat eCycl el D
bcancut = Fal se
bcancopy = Fal se

Set ctl = Screen. ActiveControl
If Not (ctl I's Nothing) Then
Sel ect Case TypeNane(ctl)
Case "TextBox", "MaskEdBox"
bcancut = (ctl. Sel Length > 0)
bcancopy = bcancut
End Sel ect
End If
End |f

— 236 —

Understanding and Customizing the Client Framework

Sel ect Case .I1D

Case CVMD_EDI T_CUT: . Enabl ed = bcancut
Case CVD_EDI T_COPY: . Enabl ed = bcancopy
End Sel ect
End Sel ect
End Wth

End Sub

Example of Changing the Menu Bar and ItsMenu Items

The following example adds a new menu called View to the menu bar and includes
commands that alow you to toggle the toolbar and status bar on and off.

» Toadd aView menu to the menu bar with the menu items Toolbar and Status Bar:

1 UseVisua Basic's menu editor to add the following menu controls to the MDI frame
form.

Menu Caption Menu Control Name

View mnuView
Toolbar mnuViewToolbar
Status Bar mnuViewStatusBar

Note: Therest of this example assumes the previous menu structure has been added.

- 237 -

Construct Spectrum SDK for Client/Server Applications

Caption: I&Status Bar] 4

i

M ame: I raruiewStatusB ar Cancel

Index: I Shartcut: I[N-:une]
HelpCaontextD: II] MegotiatePosition: |0 - Hone

[Checked [® Enabled [X Wisible [T windowlist

ﬂ ﬂﬂ ‘_ﬂe:-:t I| Inzert || Delete I

e

bl ngert Fow
~Deklete Bow

" |sview
New View menu '“&TDD":Iar

Fadctions
< EBrowse
- wClear

o hSelect All Chrl+&, +

Example of the New Menu View Added to the Menu Bar

2 Define command IDs in UlCommandConstants.bas:
Publ i ¢ Const CMD_VI EW TOOLBAR = "Vi ewTool bar"

Publ i c Const CVD_VI EW STATUSBAR = "Vi ewSt at usBar "

The names of these constants and their values can be anything you choose, but try to

follow the conventions established in the code.
3 Code the event handlers for the menu controls:

Private Sub mmuVi ewTool bar _Cli ck()
gU Crds. SendConmand CVD_VI EW TOOLBAR
End Sub

Private Sub mmuVi ewSt at usBar _Cl i ck()

gU Crds. SendConmand CVD_VI EW STATUSBAR
End Sub

— 238 -

Understanding and Customizing the Client Framework

4 Hook the command IDs into the command classes:

Private Sub MD Form Load ()
Wth gU Cds
. HookCommand Me, CVD_VI EW TOOLBAR, _
CNVD_VI EW STATUSBAR

End Wth
End Sub

5 Add codeto the Click event of the menu control on the menu bar to update the state of
the menu controls:

Private Sub muVi ew_Click()
gUl Cnds. St art Updat eCycl e

Set MenuSt at e rMmuVi ewTool bar, CMD_VI EW TOOLBAR
Set MenuSt at e MuVi ewSt at usBar, CMVD_VI EW STATUSBAR

gUl Cnds. EndUpdat eCycl e
End Sub
6 Lastly, add code to the UICommandTarget and UlCommandState procedures in the
MDI frame form to handle these two new command IDs:

Publ ic Sub U CommandTarget (Cnd As Ul Cnd, Forwar dToNext As Bool ean)
Sel ect Case Cnd.ID

Case CMD_VI EW TOOLBAR

tbrMain.Visible = Not tbrMin. Visible
Case CMD_VI EW STATUSBAR

sbrMain. Visible = Not sbrMin. Visible

End Sel ect
End Sub

Public Sub U CommandState(Crd As Ul Cnd, ForwardToNext As Bool ean)
Wth Cd
Sel ect Case .ID

Case CVD_VI EW TOOLBAR

. Checked = tbrMin.Visible
Case CVD_VI EW STATUSBAR

. Checked = sbrMin. Visible

End Sel ect

End Wth
End Sub
By using the command handler, you do not need to set the menu controls' Checked
properties when you toggle the visibility of the toolbar or status bar. Instead, read the
current visibility state in the UlCommandState method. 1f another piece of code chang-
es the visibility state, that other code is not required to toggle the menu’s Checked
property.

— 239 -

Construct Spectrum SDK for Client/Server Applications

Changing the Toolbar Structure

Thetoolbar followsthe structure defined by the M DI frameform, just asthe M enu does.

For more information about the MDI frame form structure, see Under standing M enu
and Toolbar Command Handling, page 220.

Thetoolbar isa control of type Toolbar, from the Windows Common Controlslibrary,
with the name tbrMain.

The button arrangement is defined at design time using the Toolbar Control Properties
window. The images on the buttons are stored in the ilstMain image list control on the
MDI frameform. Each toolbar button islinked to a specific numeric index in theimage
list.

The Tag property of each toolbar button contains the command ID that is sent by that
button. The command IDsmay be the same as or different from those used on the menu.
These Tag properties are set up with the following codein the form’s Load event:

Example of Tag properties defined in the Load event

Wth tbrMin
.Buttons("OPEN').Tag = CVD_FI LE_OPEN
.Buttons("CUT").Tag = CMD_EDI T_CUT
End Wth

The previous example uses a string key to uniquely identify each toolbar button. This
key makes it easy to get areferenceto a specific toolbar button.

Note: Another way to setthe Tag property isby using the Toolbar Control Properties
window, although this solutionis less desirable. First, in the Toolbar Control
Properties window, specify a hard-coded value in the dialog (in code you
would useanamed constant). Second, if you hand codethe valuein thedialog,
you cannot use Visual Basic's search function to search for it, making your
code more difficult to review, change, and scan for dependencies.

When atoolbar button is clicked, the ButtonClick event checks whether the button
should be enabled or not, and then sends the command ID if it is enabled. Thiscodeis
generic and does not have to be changed if the buttons on the toolbar are changed.

The following example uses the ButtonClick event to check whether the button is en-
abled or not and sendsthe command ID if it is enabled.

— 240 -

Understanding and Customizing the Client Framework

Example of checking the button’ s state

Private Sub tbrMiin_Buttondick(ByVal Button As Button)
Dim snsg As String

If Button.Tag <> "" Then
Wth gU Cnds. Conmand(But t on. Tag)
.GetCurrentState
If .Enabl ed Then
gUl Cnds. SendConmmand But t on. Tag

El se
smsg = "This command i s not avail abl e"
If .Disabl edReason <> "" Then

snmeg = snsg & " because " & .Disabl edReason

End If
Di spl aySt at usBar Message snsg

End |f

End Wth
End I|f
End Sub

Example of Adding Buttonsto the Toolbar

In this example, two new buttons are placed on the toolbar to correspond to the menu
commands Insert Row and Delete Row on the Edit menu. These commands already
have command IDs and command handlers.

For more information about defining command ID constants and command handlers,
see Example of Changing the Menu Bar and Its Menu Items, page 237.

» To add two buttons to the toolbar:

1 Display the Image List Control Properties window for the image list control called
ilstMain and add the bitmaps of your choice to the two new buttons. M ake a note of the
numeric index of these bitmaps.

2 Display the Toolbar Control Properties window and add the new buttons. Give each
button a string key, Tool Tip text, and assign the image number from thefirst step.

3 Set the buttons' Tag propertiesin the MDI frame form’'s Load event. The
mnuEditlnsertRow and mnuEditDeleteRow controls in the Click event send the
command IDsCMD_EDIT_INSERT_ROW and CMD_EDIT_DELETE_ROW,
respectively. Use these command I1Ds when assigning the Tag properties:

Wth tbrMin

. Buttons("l NSERT_ROW) . Tag
. Buttons("DELETE_ROW) . Tag

CMVD_EDI T_I NSERT_ROW
CMD_EDI T_DELETE_ROW

End W t h
There are now two new buttons on the toolbar that behave identically to the Insert Row
and Delete Row commands on the Edit menu.

—241 -

Construct Spectrum SDK for Client/Server Applications

MDI (Multiple-Document Interface) Frame Form

Construct Spectrum supplies the MDI (Multiple-Document Interface) frame form,
which includes a standard menu bar, toolbar, and status bar for your application. Use
the MDI frame form as a starting point for creating your own menu or tailoring your
toolbars. Y ou can customize the menu and toolbars for each application — or use the
MDI frameformasis.

All generated maintenance dialogs are displayed as child windows within the MDI
frame form. The following table describes the components of the MDI frame form:

Component Description

MDIFrame.frm Contains the MDI frame form, which includes the following:

Menu Bar Contains File, Edit, Actions, Window, and Help menus, each
containing the standard menu commands.

Toolbar Contains buttons that correspond to most of the menu commands
and can be customized by the user.

Status Bar Contains panels for amessage, various status indicators, and the
current date and time.

For more information, see M ultiple-Document Interface (MDI) Applicationsin the
Microsoft Visual Basic documentation.

—242 -

Understanding and Customizing the Client Framework

Object Factory

The object factory client framework components are used by many of the generated

Construct Spectrum modules, as well as by other client framework objects and forms.
The purpose of the object factory isto makethe client portion of your application aware
of al of its Visual Basic business abjects and their associated actions. The Open dialog
usesthe object factory to display alist of all available Visual Basic business objects for

selection.

The following table describes the object factory and Open dialog components supplied
with Construct Spectrum:

Component Description

Open.frm Contains the Open dialog.

OpenAction Describesasingle action of a Visual Basic business object in your
application.

OpenObject Describes asingle Visual basic business object in your application.

OpenObjects Contains all Visual Basic business objects in your application.

OFactory.bas Contains the object factory.

The objects and actions are displayed in the Open dialog. The user sel ects an object, se-
lects one of the actions for that object, and then clicks OK to display the form.

(@] Select a Dialog O] x|
CObjeeter - oDl Chmtions
. |lztObjects | lstéctions

p LA ¢ S0 e 000 s 00cconeooe ot TER B B

Default Open.frm Supplied with your Construct Spectrum Project

— 243 -

Construct Spectrum SDK for Client/Server Applications

Under standing the Open Dialog

The Open dialog provides the user with a convenient method of selecting the type of
window he or shewould like to open. The Open dialog displaystwo lists: one showing
the main business objects, such as customers, accounts, and orders, and the other show-
ing the actions available for the business object selected in thefirst list. For example, if
Ordersis selected in the first list, then Maintain, Browse, Show pending orders, and
Print end-of-day report may appear in the second list. Each item may also have a short
description, which is shown when the user selects the item.

Y ou do not modify the Open dialog. Instead, update the object factory by providing the
list of objects for the first list and the associated actions for the second list, and then
writing the codethat is executed when each object and action combination is selected.
This code will load and display a form generated by Natural Construct.

The Open dialog uses the object factory for two purposes:
To determine which objects and actions are supported by an application
To instantiate aform

For more information, see Customizing the Object Factory, page 246, and Custom-
izing the Menu and Toolbar in the Client Framework, page 233.

Under standing the Object Factory

Every Construct Spectrum application contains an object factory. The object factory is
the central repository in your application where instances of Visual Basic business ob-
jectsare created for use by other portions of the application. The super model generates
theinitial object factory based on the objects defined to the model. As new objects are
added, the object factory is typically extended by hand-coding new object references.

Because all Visual Basic business objects are created in the object factory, all other ap-
plication components that use the services of these objects can compile and execute,
even if the business objects they interact with have not been added to the application.
For moreinformation about using the object factory to instantiate Visual Basic business
objectsthat have not yet been added to your application, see Example of Usingthe Ob-
ject Factory, page 246.

Application components that use the services of the object factory include:
Construct Spectrum client framework components:
— Opendiaog

— BrowseManager class
For more information, see Using the BrowseM anager, page 191, and Under stand-
ing Browse Command Handlers, page 195.

—244 -

Understanding and Customizing the Client Framework

» Visua Basic maintenance business object
For more information about the forms and classes generated by the V B-Maint-Object
model, see Creating and Customizing M aintenance Dialogs, page 113. For morein-
formation about the forms and classes generated by the VB-Maint-Dialog model, see
Strategies for Customizing a Maintenance Dialog, page 129.

» Visual Basic browse business object
For more information about the forms and classes associated with Visual Basic browse
business objects, see About Browse Dialogs, page 176 and Under standing Browse
Command Handlers, page 195.

* Custom-created modules such as browse command handlers
For information, see Under standing Browse Command Handlers, page 195.

Application components that require a specific form or object to implement a service
(for example, creating a browse dialog that allows your usersto browse customer
records) usethe object factory. Instead of each component creating its own instances of
these objects, components send a request to the object factory to create the objects and
return areference.

Using the Object Factory

The object factory exposes four procedures (functions and subroutines) that are global
to your application. As you create your application, use these procedures to:

» Makethe application aware of all itsVisual Basic business objects.
» Create instances of Visual Basic business objects (forms or objects).
» Query the availability of Visual Basic business objects.

The following table describes the procedures in the object factory:

Service Description

InitializeOpenDialog() Creates alist of the application’s Visual Basic
business objects and the actions they support. The
Open dialog uses this service.

CreateForm(formlD) As Form Createsaform to support aVisual Basic business
object (either a Visual Basic browse or
maintenance object) and returns areferenceto the
form. The Open diaog uses this service.

BrowserExists(TableName) As Confirms with True or False whether aVisual

Boolean Basic browse object exists for a database table.
GetBrowser(TableName) As Creates a specific Visual Basic browse object for
BrowseManager adatabasetable. Next, the specified browse object

creates and initializes a browse base object.
Finally, the object factory returns areference to
the BrowseM anager object.

— 245 -

Construct Spectrum SDK for Client/Server Applications

Example of Using the Object Factory

An Order Maintenance form can invoke an Order Browseform. To accomplish this, the
Order Maintenance form uses the services of the Order Browse object.

If an Order Maintenance form directly instantiates an Order Browse object (instead of
using the object factory), it could not be compiled without including the Order Browse
object as part of the application. However, by conditionally creating an Order Browse
object with the object factory, you will be able to compile the form, even if the Order
Browse object has not yet been added to the application.

At execution time, the Order Maintenance form uses a global function,
BrowserExists(tablename), exposed by the object factory, to determineif the object fac-
tory can create an instance of the Order Browse object. Only if the object factory returns
True to this request does the form enable the features supported by the Order Browse
object.

The TableName parameter used with the BrowserExists() function is the name of the
database table implemented by a Visual Basic business object.

Customizing the Object Factory

When you add new business objectsto your application, such as maintenance forms or
browse objects, you must update the object factory to make the application aware of
these new objects. Y ou must either add code manually to the standard object factory
module or generate a new object factory using the super model.

If you generated and downloaded the object factory (OFACTORY/, athough you may
havegiven it adifferent name), you should be ableto run your application, choose Open
on the File menu, and see the objects and actions you generated.

Downloaded forms are added to your Construct Spectrum project. However, if you did
not generate the object factory or if you are adding aform to an existing project, you
must write asmall amount of code by hand to link each new form to the client frame-
work. Once linked, the Open dialog is ableto load, initialize, and display theform. The
following sections describe how to code the object factory by hand.

— 246 —

Understanding and Customizing the Client Framework

Setting Up Object/Action Combinations and Forms

The client framework uses an object-action metaphor to select a particular form to dis-
play. As the application devel oper, you must decide which types of objects can be
manipulated by the application, such as Customers, Orders, and Inventory. Next you
must decide which actionswill be supported for each object, such as Maintain, Browse,
or Show Delinquents. Each object-action combination will have aform associated with
it, either generated or created by hand.

Y ou must write code to define all of the objects, the actions for each abject, and which
form to load and initialize for each object-action combination. All of the code resides
in amodule called OFactory.bas in your Construct Spectrum project.

+ Clbapiei UF s b

Object | [Geneial) ;| B |ImitialienDpenDialoyg j

Publics Sub Inicializedpenbialogd)

ekcEd & globkl collection of business phcEncgs descripblons.
ESChH BusinEas pacEsGas degcripbion ntein® the packags's name,
1 descripoive commeic, aid a liat of accilons supporced by the packode.
POEmch snteEy in che list of saupported segvices, contelns che secvice
' nampe, & desoriptcion; and an ID vhich unigu=ly idencifie= The
' HERVICE RILhAER LhE EnLaEe -|:-'- LTS n.
Pim obj A= Openlbi=ch

' Cremcs A p=v global inscance of the Jpenlbjects ooll=ocion —
=&t glpanUbleacisE & Neew Openplnjecks

' Adcd = nEw bumip=s= packmps to the Op=nfhj=cteE collection,
k sopmbOE Yeces , RAAd "Cuscamee ™, YCustomeEc"|

Pohdd ehe meryvicer supparted by thiza buminegs pachkage,

Y
'oivy. hdd "Hailnteonance™, "Cuzcamsr Halocenance", "usacower BL"
'oid.Add "DoowssT, "Brpowss Cystopercs”, "Customsc B1Y

' To mdd & p=v busine=s package! (1] CTopy this pode blogk --—-—-—=———==
il UncommEnt mnd modify Ehe in== in Lhi® cods b :E mE regaiced,
'O Rdd & new busipEas chijecc o che Opendbijecta callecciob.

'Sat oy = gupenlhj=cts, Add(P<oblsct namesT, Tdohject deEEcrciptionsT)

' Add che secvices supported by chis business package.
' ¢ 2 YOectionl neeesY, "JZacEionl descpiption:®, "iac nl =™
' i ioKBE nos A 12 deacriprioBr" Aot ion? I

End Euln

4 | Llll

Default Code in the OFactory.bas

— 247 -

Construct Spectrum SDK for Client/Server Applications

The relationship between the Open dialog, the proceduresin the OFactory.basfile, and
the newly-created form are important to understand as you plan the customi zation of the
object factory. The following diagram clarifies these relationships:

Open Dialog
L |
1 Get object/action details 3 Get new form instance 5 Display form
InitializeOpenDialog CreateForm || Newly-Created Form
2 User selects an object/action 4 Load and initialize form

combination

Interaction Between Open Dialog, Procedures in OFactory.bas,
and Newly-Created Form

— 248 -

Understanding and Customizing the Client Framework

Example of the default OF actory.bas client framework component

Option Explicit

Public Sub InitializeOpenDial og()
Di m obj As QpenObj ect
Set gQpenhj ects = New Open(hj ects

Set obj = gOpenObj ects. Add(" Custoner”, "These are our custoners.")
obj . Add "Maintai n", "Custoner naintenance", "CUSTMAlI NT"
obj . Add "Browse", "Display a list of all custoners.", "CUSTBROASE"

Set obj = gOpenCbjects. Add("Order"”, "These are our orders.")
obj . Add "Mai ntain", "Order nmmintenance", "ORDERMAI NT"
obj . Add "Browse", "Display a list of all orders.", "ORDERBROABE"

End Sub

Public Function CreateForn(Formi D As Variant) As Form
DmfrmAs Form

Sel ect Case Form D
Case " CUSTMAI NT"
Set frm = New frnCustonerMi nt

Case " CUSTBROWSE"
Set frm = New frnCustonerBrowse

Case " ORDERMAI NT"
Set frm = New frnOrder Mai nt

Case " ORDERBROASE"
Set frm = New frnOrder Browse

' Add additional formvariants here.
'Case ...
Case El se
ASSERT Fal se, "The hject Factory was passed an " & _
"unknown formID: " & Forml D
Exit Function
End Sel ect
Set CreateForm = frm

End Function

— 249 —

Construct Spectrum SDK for Client/Server Applications

Making Your Application Aware of New Business Objects

I W W WA 74

When you add new business objectsto your application, such as maintenance forms or
browse objects, you must update the object factory to make the application aware of
these new objects. Y ou must either add code manually to the standard object factory
module or generate a new object factory using the super model.

For moreinformation about creating the object factory using the super model, seeUsing
the Super Model to Generate Applications, page 77.

If you choose to update the object factory manually, you will have to update each of the
associated object factory procedures. The steps outlined bel ow describe how to update
these procedures.

To link your object factory module with the client framework:

Step 1: Update the I nitializeOpenDialog Procedure, page 250

Step 2: Update the CreateForm Procedur e, page 252

Step 3: Update the GetBrowser Procedure, page 253

Step 4: Update the Browser Exists Procedur e, page 255

These steps are described in the following sections.

Step 1: Updatethe InitializeOpenDialog Procedure

The purpose of this procedureisto create alist of all the Visual Basic business objects
known to the application. Thislistisimplemented as a Visual Basic collection of Ope-
nObjects types, and the objects contained in this collection are of OpenObject types.
Both of these class definitions are supplied with the Construct Spectrum client frame-
work. Y ou can use the Object Browser in Visual Basic to view the public methods and
properties of these objects.

For more information, refer to Construct Spectrum Reference.

— 250 -

Understanding and Customizing the Client Framework

=

Example of the InitializeOpenDialog procedure

Public Sub InitializeOpenDial og()
Di m obj As QpenObj ect

Create a new gl obal instance of the QpenOhjects collection.
Set gQpenhj ects = New OpenOhj ects

Add the Custoner business object and its actions.
Set obj = gOpenCbj ects. Add(" Custoner”, "Custoner")
obj . Add " Mai ntenance", "Custonmer Mintenance", "Custoner_M"
obj . Add "Browse", "Browse Clients", "dient_B1l"

Add the Order business object and its actions.
Set obj = gOpenChjects. Add("Order"”, "Order")
obj . Add " Mai ntenance", "Order Mintenance", "O der_ML"
obj . Add "Browse", "Browse Orders", "Order_B1"

To add a new busi ness object copy this code bl ock and

uncomment and nodify lines as required ---------------------- >>
'Set obj = gOpenObj ects. Add("<obj ect nane>", "<description>")
'obj.Add "<actionl nanme>", "<description>", "<actionl |ID>"
'obj.Add "<action2 nanme>", "<description>", "<action2 |ID>"
e m m m m e
End Sub

In the above example, there are two Visua Basic business objects known to the appli-
cation — Customer and Order.

To add anew object to the application:

Copy the commented lines delimited by the arrows (shown in bold above).

Uncomment the line to add a new business object to the OpenObjects collection.
Change the object name and description to pertain to your Visual Basic business object.

For each action supported by your Visual Basic business object (such as Maintenance,
Browse, or Reports), copy and uncomment alineto add the action.

— Change the action name and action description to pertain to the specific action.
— Changetheform ID to uniquely identify the action within the entire application.

- 251 -

Construct Spectrum SDK for Client/Server Applications

Step 2: Update the CreateForm Procedure

This function takes aform ID as a parameter and returns a reference to a Construct
Spectrum form that implements the requested business action. To handle the creation
of the Visual Basic form that implements the action, add a new case statement for each
form ID you have added to your InitializeOpenDial og procedure.

Example of the CreateForm procedure

Public Function CreateForn(Formi D As Variant) As Form

DmfrmAs Form
Di m Br Mgr As Br owseManager

For every possible action supported by the business objects in
the application, instantiate a formto service the action.

Sel ect Case Form D

Copy this case for each new mai ntenance form---------------- >>
Case "Custoner_ML"
Create a new Custoner mai ntenance form
Set frm = New frm Custoner

Copy this case for each new browse form--------------------- >>
Case "Custoner_B1"

Create a new Browse Manager object for the Custoner Browse
hj ect .

Set BrMgr = GetBrowser (" NCST- CUSTOVER')
Ask the Browse Manager object to create a new Custoner
Browse form

Set frm = BrMgr. MDl Browser Form

Case El se
ASSERT Fal se, "The hject Factory was passed an " & _
"unknown formID:. " & Form D
Exit Function
End Sel ect

Set CreateForm = frm

End Function

» To add support for anew Visual Basic maintenance business object action:

1

Copy the commented code block delimited by the arrows for the maintenance action (as
shown in bold above).

Modify the line to add a case statement for the action. Change the FormID in the Case
line to match the ID of the Visual Basic maintenance business object’s action.

Modify the line that creates a maintenance form. Change the name of the form to the
name of the form generated by the VB-Maint-Dialog model for the new Visual Basic
business object.

- 252 -

Understanding and Customizing the Client Framework

» To add support for anew Visual Basic browse business object action:

1 Copy the commented code block delimited by the arrows for the browse action (as
shown in bold italics above).

2 Uncomment the line that adds a case statement for this action. Change the FormID in
the case statement to match the form ID of the Visual Basic browse business object’s
action.

3 Uncomment the line that uses the GetBrowser(TableName) function to return a
referenceto aninitialized BrowseM anager object. Change the TableName parameter to
the name of the database table for which the Visual Basic business object was
generated.

4 Uncomment the line that uses the MDIBrowser method of the BrowseM anager object
to return areference to an MDI browse form.

Step 3: Update the GetBrowser Procedure

When you add a new Visual Basic business object that supports a browse action, you
must add a new case statement to thisfunction to initialize and return a BrowseM anager
object. Use the GetBrowser procedure to return areference to an initialized BrowseM -
anager object. Client framework components use this function to request areferenceto
a BrowseM anager object used to request browse services (such as displaying aMDI
browse or modal browse form or performing alookup request).

For more information about the BrowseManager, see Customizing the Generic
Browse Dialog, page 190.

— 253 -

Construct Spectrum SDK for Client/Server Applications

Example of the GetBrowser() function

Publ ic Function GetBrowser (Tabl eName As String) As Browser
Di m Br Mgr As New Br owseManager
Return a browser object for the requested table.
Sel ect Case Tabl eNane

Copy this code block to add support for a new Browse ------ >>
Case " NCST- CUSTOVER"

Create a New Custoner Browse bject.
Di m Cust oner Browse As New Cust oner Browse

Set the BrowseManagers base object to the Custoner
Browse Object's Basehject.
Set BrMyr.BrowseObject = Custoner Browse. BaseObj ect

Assign the Caption property of the BrowseManager.
Br Mgr. Caption = "Query Custoners”

Case " NCST- ORDER- HEADER'
Set BrMyr.BrowseOhject = New O derBrowse
BrMgr. Caption = "Query Orders”
End Sel ect
Set CetBrowser = Br Myr
End Function

» To add support for anew Visual Basic browse business object action:

1
2

Copy the commented code block delimited by the arrows (as shown in bold above).

Modify the line that adds the new case statement. Change the name of the table to the
name of the database table implemented by the new Visual Basic browse business
object.

Modify the line that creates the new specific browse object. Change the instance name
and class name of the specific browse object to the name of the class that was generated
by the VB-Browse-Object model for the new business object. Thisis the class that
initializes a generic base browse object, with for example the column names, formats,
captions, and key names specific to aparticular Visual Basic browse business object.

Modify the line that sets the BrowseManager’ s BaseObject property to the BaseObject
property of the specific browse. Change the specific browse object name to the class
name of the specific browse object generated by the VB-Browse-Object model for the
new Visua Basic browse business object.

Modify the line that assigns BrowseManager’ s Caption property.
Change the caption to describe the Visual Basic browse business object.

If your application supports multiple languages at runtime, see | nternationalizing
Using the Client Framework, page 297, for more information about how you can
internationalize the caption.

— 254 —

Understanding and Customizing the Client Framework

Step 4: Update the Browser Exists Procedure

When you add anew Visual Basic business object that supports a browse action to your
application, you must add a new case statement to the BrowseExists procedure to make
the browse known to all the other componentsin your application.

Other application components never refer directly to a specific Visual Basic browse
business object. Instead, they refer to the browse via the tablename for which the spe-
cific Visual Basic browse business object has been implemented. This allows
application components that use the services of browse objectsto compile and execute
even if the browse objects have not yet been added to your project.

Example of the BrowserExists procedure

Publ ic Function BrowserExi sts(Tabl eName As String) As Bool ean
Optimstic
Browser Exi sts = True

Check if there is a browse object for the requested table nane.
Sel ect Case Tabl eNane

Copy this line to add support for a new browse ---- >>
Case " NCST- CUSTOVER"

Case " NCST- ORDER- HEADER"
Case El se

Browser Exi sts = Fal se
End Sel ect

End Function

Note: Table names used in this function must match those in the GetBrowser func-
tion. Table names must be the view names documented in Predict.

To add support for a new browse:
Copy the code block delimited by the arrows (as shown in bold above).

Modify the line that adds a new case statement. Change the database table name to the
name of the table implemented by the Visual Basic business object. Make sure that this
is the same table name that isreferred to in the GetBrowser() function for this Visual
basic browse business object.

— 255 -

Construct Spectrum SDK for Client/Server Applications

Spectrum Dispatch Client Support

The Spectrum Dispatch Client (SDC) client framework components provide function-
ality that integrates the rest of the client framework and the generated code with the
Spectrum Dispatch Client. Consider these client framework components to be helper
components that simplify using the Spectrum Dispatch Client.

The Spectrum Dispatch Client uses one generic dialog to display varying information
based on need. A Construct Spectrum application uses the dialog in three distinct ways:

» To prompt the user for a Construct Spectrum user ID and password when a remote
CallNat returns a security error

« Todisplay communication error messages to your user
» To prompt the user to specify adispatch service for the application
These components are described in the following sections.

The following table describes the Spectrum Dispatch Client dialog client framework
components supplied with Construct Spectrum:

Component Description

SDCDialog.frm Prompts the user for logon credentials, selects dispatch
services, and displays errors arising in the Spectrum Dispatch
Client.

TraceOptions.frm Setstrace optionsfor aremote call. For more information, see

Debugging Your Client/Server Application, page 161,
Construct Spectrum SDK Reference.

SDCSupport.bas Encapsul ates common Spectrum Dispatch Client procedures.

— 256 —

Understanding and Customizing the Client Framework

(=] Subprogram Proxy Trace Options _ O] x|
-~ Trace Option 1; S ave data tranzmitted between client and server - 0k I:
= 0-Mone e :

_ - Cancel |

£~ 1 -Data zent to subprogram prozy will be saved C—

= 2 -Data received from subprogram prozy will be saved B,

£~ 3 -Data zent to and received from subprogram prozy will be saved

= 4 -Data will be zaved only if an erar occurs B,

= 5-Data generated by application code will be saved

-~ Trace Option 2 Subprogram proxy Conyersion emors—————————————« « -« « .+« + . .
= 0- Return az NATURAL run-time erars e
= 1 - Return az Interface erars with full details

- Ressttiace optionsaftercall o

T biPrompt

Lot e e e ——

Lo e e e e e e .
. Cancel | .
: EEWICE - ICbDSEWiCE =iloccacaaaaas -

SDCDialog.frm supplied with Construct Spectrum Client Framework

The client framework uses the SDCDiaog.frm to supply al three of these features.

— 257 -

Construct Spectrum SDK for Client/Server Applications

L ogon Dialog

The Logon dialog provides aconvenient way of obtaining auser D and password from
the current user. The user ID and password are required for all callsto back-end Natural
services to ensure that the user is authorized to access each service.

By default, the Logon dialog displays when the application starts and whenever a“No
Permission to Execute Function” error occurs.

Error Messages

Error messages returned by the Spectrum Dispatch Client are displayed by the client
framework using the SDCDialog form. For information about messages, refer to Con-
struct Spectrum Messages.

Dispatcher Selection Window

Theclient framework displaysthe Dispatcher Sel ection window to allow usersto select
which dispatcher to associate with their current application.

For more information about the Spectrum Dispatch Client, see Spectrum Dispatch
Client Components, page 197, Construct Spectrum SDK Reference.

— 258 —

Utility Procedures

Understanding and Customizing the Client Framework

The utility procedures in the client framework are functions and subroutines accessed
by many other components of the client framework. For example, client framework
components access the utility procedures to center a form on the screen, parse strings,
calculate minimum and maximum val ues, test assertions, and set the mouse pointer

appearance.

CSTUtils.basisthe client framework component containing the utility procedures and
global constants. The following table provides a brief description of each procedure:

Utility

Description

AppendSlash

ArrayDimensions
ASSERT
CenterForm

CreateArray
CreateStringArray
CSTFormat

Message

CSTSelect
Contents

CSTSubst

FileExists
FindFirst

FixupRTF

GetPrivateProfile
StringV B

Appends a backslash to the end of a directory name, if
necessary.

Returns the number of dimensionsin an array.
Tests an assertion.
Centers aform relative to the screen or to another form.

Creates and returns aone-, two-, or three-dimensional array of
variants.

Creates and returns aone-, two-, or three-dimensional array of
variants, but creates an array of strings.

Formats a messagein a CDPDA-M or CSASTD data area by
performing the substitutions.

Highlights the contents of a TextBox control by setting the
Sel Start and SelLength properties. This procedure can be
called in the GotFocus event for the TextBox to simulate
Windows behavior of selecting text when you Tab to afield.

Substitutes values into a string marked with the Construct :n:
substitution place holders.

Testsif afile exists by attempting to open thefile.

Searches astring for thefirst occurrence of a character in aset
of characters.

Changes any embedded backslash charactersin astring to two
backslashes so that the string can be displayed properly ina
RichTextBox control.

Reads a string value in a Windows .INI file. This procedureis
aVisual Basic wrapper around the Windows
GetPrivateProfileString function.

— 259 —

Construct Spectrum SDK for Client/Server Applications

Utility Description (continued)

GetWindows Returns the name of the Windows directory. This procedureis

DirectoryVB awrapper around the Windows GetWindowsDirectory
function.

IsForeground Returns True if the application is currently the foreground

Application application and False if not. Use thisfunction to execute code
only if the application is currently active.

IsMDIChild Returns whether or not aform isan MDI child window.

Max Returns the maximum of two values.

Min Returns the minimum of two values.

MoveFormSafely Moves anon-MDI child form to anew location on the screen,
ensuring that the entire form is displayed.

PadL eft Pads a string on the left with spaces or any character to a
specified width.

PadRight Pads a string on the right with spaces or any character to a
specified width.

ResizeForm Resizesaform sothat itsclient areaisthe specified size. If you
know how big the client areaneedsto be, call this procedureto
resize theform.

SetUppercaseStyle Sets the Windows style hit for a TextBox control so that the

control converts all text to upper case.

For more information about the utility procedures, see Utility Subroutines on the Cli-
ent, page 373, Construct Spectrum Reference.

— 260 —

VALIDATING YOUR DATA

This chapter outlines the data validation facilities provided with Construct Spectrum.
The following topics are covered:

« Overview, page 262

« Client Validation, page 264

« Creating Verification Rulesin Predict, page 269

» Order of Precedencein Data Validation, page 271

« Validation Error Handling, page 272

- 261 -

Construct Spectrum SDK for Client/Server Applications

Overview

Construct Spectrum-generated applications provide aframework for data validation de-
signed to ensure the integrity of your information. Construct Spectrum applies four
levels of data validation. Before adding or changing any data, Construct Spectrum ap-
plies basic data type checking, business data type checking, local business validation,
and business object validation.

Errors arising from any of these data validation levels are displayed on the client.

Basic Data Type Validation

The Spectrum Dispatch Client performs basic data type validation. It uses the format
and length associated with each field in your object PDA to ensure that the value being
assigned to afield will not result in atype mismatch, an overflow condition, or an un-
derflow condition.

Business Data Type Validation

The second level of validation isbusinessdatatype (BDT) validation. BDTsallow data
to be displayed in aformat that is based on business language conventions rather than
on programming language conventions. For example, a variable with aVisual Basic
data type of Double will display as a phone number if it is assigned the BDT named
BDT_PHONE.

BDT validation ensures that the user input conforms to the Visua Basic data type and
to the business semantics attached to the BDT. In the example above, BDT validation
checks that the user input makes sense as a phone number.

L ocal Business VValidation

Local business validation applies simple businessrulesto data. Thislevel of validation
is coded within the Visual Basic maintenance object and is performed on the client.
Typical local business validationsinclude range checking, domain checking, and calcu-
lating required values. Database accessis not recommended within local business
validations.

— 262 -

Validating Your Data

Business Object Validation

Business Object Vaidation is performed in the object maintenance subprogram on the
server. This subprogram ensures that the data entered by a user is correct beforeit is
committed to the database. Any local business validation should also be coded in the
object mai ntenance subprogram. Coding on both client and server iscrucid if client ap-
plications written for another environment (for example, a character-based interface)
share the same object maintenance subprogram for data access.

Form code

Step 1 Sub PerformAction

On the client, the user invokes the update method, N

triggering transmission of the object to the server. Case ACTION_UPDATE

InternalObject.InvokeMethod "UPDATE", iflags

Sub CheckRemoteError

Step2 Case "CUSTOMER-NUMBER"

The object maintenance subprogram validates the Set ErrControl = tt_CUST_CustomerNumber

object before actually performing an update to the

database. If errors are encountered, the database is
not updated and an error message is returned to the Object Maintenance subprogram
client.

DEFINE SUBROUTINE HOLD-OBJECT

PERFORM EDIT-OBJECT /* Pre-edit object header
PERFORM CHECK-AND-UPDATE-OBJECT /* Check and update children
DECIDE ON EVERY VALUE CDAOBJ2#FUNCTION
VALUE 'UPDATE'
ASSIGN NCST-CUSTOMER.CUSTOMER-TIMESTAMP =*TIMX
UPDATE(HOLD-PRIME.)

Step 3

If an error was raised by the object maintenance
subprogram, the form creates an object error and
attaches it to the appropriate GUI control

Y

Typical Client Validation Cycle

Y ou can write custom validation code in user exits for the object maintenance subpro-
gram or you can attach Predict verification rules that the Object-Maint-Subp model will
include in the generated module. For more information, see Creating Verification
Rulesin Predict, page 269.

Tip: If you have both GUI and character dial ogs, both can use the object maintenance
subprogram to access database information. Ensure that any client validationsare
replicated in the subprogram.

— 263 -

Construct Spectrum SDK for Client/Server Applications

Client Vaidation

Data assignment from the form to the client’s copy of the object PDA triggers three
typesof client validation: basic datatypevalidation, BDT validation, and local business
validation. It is the attempt to update the object PDA that triggers the validations. The
form keeps the client’ s object PDA up to date by attempting to update its data when:

« A LostFocus event occurs on a TextBox
« A Click event occurs on a CheckBox, ComboBox, or OptionButton
» An AfterColumnEdit event occurs on agrid column

— 264 -

Validating Your Data

The following example illustrates the data validation logic initiated when one of these
eventsis triggered:

The text box GUI control has an
associated FieldName and BDTName.

»

P If an error occurs in step 2, 3, or 4, the form

Customer Number: [1234 D attaches an ObjectError to the GUI control,

)) ACME Consultin cgusing a pop-up validation message to be
Business Name: | g displayed to the user.

LostFocus event in generated maint. form
D m Text BoxVal ue As String

Step 1 — Read textentered by user —_ | Text BoxVal ue = Text Box. Text
into a string variable and start the Val i dAssi gnnent Text BoxVal ue, BDTNane, ErrorMessage

validation process.

: ValidAssignment in module BDT Support.bas
Step 2 — Convert value to an internal : D mvnt As Variant

Visual Basic qata type by calling the \'\A vnt = BDT. Convert FronDi spl ay(Text BoxVal ue, BDTNane)
BDT conversion routine. :

Step 3 — Assign the value to the field /

in the generated maintenance object, : Field property procedure in generated VB maint. object

Mai nt Obj ect . Fi el d(Fi el dNane) = vnt

triggering local business validations.

Val i date Fi el dNane, Val ue

Validate procedure in generated VB maint. object

Sel ect Case Fiel dNane
Case " CUSTOMER- NUMBER"
If Value < 1000 O Value > 3999 Then
Err. Rai se csterrVal ueMist Bel nRange, _
CBJECT_PDA NAME, _
"The custonmer nunber nust be in the " &

Step 4 — Assign the value to the field End 11 “range 1000 to 3999."
in the object PDA, triggering SDC ; :

validations. \
Step 5 — Read the value from the 3

|0bj ect PDA. Fi el d(Fi el dName) = Val ue
field in the object PDA, to get any
conversions the SDC applies to the

value, such as rounding, and retum T Unt = Nai nt Cbj ect. Fi el d(Fi el dhame)
the value to the form. :

Step 6 — Convert the value back to a //'
display format by calling the BDT :
conversion routine.

Step 7 — Assign the value back to the _»
TextBox control so the user can see it.

Text BoxVal ue = BDT. Convert ToDi spl ay(vnt, BDTNane)

Text Box. Text = Text BoxVal ue

Triggering Validation in the Form

— 265 -

Construct Spectrum SDK for Client/Server Applications

Validation in Maintenance Dialogs

All validation istriggered from the form. Form codeisresponsiblefor linking BDT val-
idations to specific GUI controls and for responding to validation errors.

Using BDTs

TheVB-Maint-Dialog model generates default BDT assignments for each GUI control
on your form. Y ou can override these assignments by attaching your own BDT key-
words to Predict field definitions. For details on linking BDTs to GUI controls within
Predict, see Customizing on the Server, page 132.

Y ou can override BDT assignments directly in the generated form. However, this meth-
od is not recommended. Overriding BDTs within the form is a customization that will
be lost when you replace the existing form with anewly generated version.

If there are no BDTSs that provide the business semantics your application needs, you
can create a custom BDT. For information on creating custom BDTSs, see Using Busi-
ness Data Types (BDTSs), page 121, Construct Spectrum SDK Reference.

Hand-Coded Validationsin Generated Dialogs

If you have specialized validations that must be executed immediately in responseto an
event, write the code in a maintenance dialog to perform the validations.

If you write hand-coded validations, you can still take advantage of theform’ s standard
error handling technique. For information, seeValidation Error Handling, page 272.

Note: Hand-coding validations is not recommended under most circumstances.
These customizationswill belostif you replace the existing form with anewly
generated version. To keep your validations after regeneration, write valida-
tion code in the user exit.

The maintenance dialog invokesaV alidate method in the Visual Basic maintenance ob-
ject every timeaGUI control attemptsto update avalueinthe client’ s copy of the object
PDA. Writing validation code in the VValidate method rather than directly in the form
should meet most of your validation requirements. The dialog also contains standard
code which checks for validation errors raised in the Visual Basic maintenance object.

— 266 —

Validating Your Data

Validation in Visual Basic Maintenance Objects

Y ou can codelocal businessvalidationsin Visual Basic maintenance objects. Eachtime
the maintenance dial og attempts to update avalue in the Visual Basic maintenance ob-
ject, it invokes a standard validation subroutine (Validate) in the Visual Basic
maintenance object. Y ou can hand-code validationsin the CLIENT-VALIDATIONS
user exit of the Validate subroutine, or you can use Predict verification rulesto validate
data.

Regardless of how it getsinto the Validate subroutine, there are two basic components
to the validation:

» A case statement indicating thefield requiring validation. This statement includes the
test for a particular condition.

o Codethat raises an error if thefield value failsthe validation.

Adding Validationsin the CLIENT-VALIDATIONS User Exit

Usethe CLIENT-VALIDATIONS user exit located in the Validate subroutine for the
VB-Maint-Object model to write custom validations. Although this custom code can be
added to the user exit on the server, you can also use Visual Basic's GUI editing envi-
ronment to supply your code. The following illustration shows atypical entry in the
CLIENT-VALIDATIONS user exit:

Example of validation code in the CLIENT-VALIDATIONS user exit

' SAG DEFI NE EXI T CLI ENT- VALI DATI ONS
Case " CUSTOVER- NUVBER"
If Value = 1010 And _
m Chj ect Data. Fi el d("CREDI T-LIM T") > 1000 Then
Err.rai se Nunber: =csterrCustonmer OnProbation, _
Description:= "Credit limt too high, on probation", _
Sour ce: =OBJECT_PDA_NAME
End | f
"SAG END-EXI T
End Sel ect

Inthis example, the valuefor thefield to be updated in the client’ s object PDA is stored
in the Value variable. If you require the values from other fields in the object PDA for
your validation, use the Spectrum Dispatch Client’ s Field or GetField methods asillus-
trated in the previous code example.

- 267 —

Construct Spectrum SDK for Client/Server Applications

Warning:

If your validations require remote database access, it is strongly recommended that you
do not code these validationsin the Visual Basic maintenance object. A Construct Spec-
trum application operatesin asynchronous manner, which means the user must wait for
validationsin the Visual Basic maintenance object to compl ete execution before control
returns to the dialog for further interaction.

Validations from Predict

Generated validationsthat are based on Predict verification rules are checked immedi-
ately after your hand-written validationsin the CLIENT-VALIDATIONS user exit.
These generated validations use the same structure asis shown in the hand-written code
exampleearlier inthis chapter. For moreinformation, see Creating Verification Rules
in Predict, page 269.

— 268 —

Validating Your Data

Creating Verification Rules in Predict

Verification rules that you create in Predict to use with applications generated by Con-
struct Spectrum follow the same guidelines that traditional Natural Construct
applications use. For example, all verification rulesintended for use during generation
must be of type N.

Note: To set verification rules to type N in Predict, use the GEN CST command in
the Predict rule editor.

For acomplete discussion on using verification ruleswith traditional Natural Construct
applications, see Use of Predict in Natural Construct, page 699, Natural Construct
Generation.

Construct Spectrum uses verification rules to generate GUI control definitions as well
asto generate business validationsthat might beimplemented in either the maintenance
object (in Visua Basic), the object maintenance subprogram (in Natural), or in both.
The validations are duplicated to provide immediate feedback on the client and to have
acentralized implementation of validations on the server.

When creating Predict verification rules for applications using Construct Spectrum,
take advantage of new syntax that makes your verification rules easier to reuse and eas-
ier to define in Predict.

Deciding Where To Implement a Validation Rule

Conventionally, validation rules are kept together in a single module. However, since
sending the client’s object datato the server for validation takestime, validating arule
on the client can save transmission time.

Y ou canimplement avalidation rulein the object mai ntenance subprogram only, or you
can implement it both in the object maintenance subprogram and in the Visual Basic
maintenance object. To decide on which of these two option to choose, determine what
types of information arule requiresto do itsvalidation. Use thefollowing guidelinesto
help you decide:

« If therule needsto look up dataon aforeign file, implement the rule in the object main-
tenance subprogram for ready access to the foreign file.

« If therule performs calculations on data within the object’ sdata, it may be more effi-
cient to perform this validation in the Visual Basic maintenance object.

Include the rules placed in the Visual Basic maintenance object in the object mainte-
nance subprogram for use by character interface applications.

— 269 -

Construct Spectrum SDK for Client/Server Applications

Coding User Type Rules

Construct Spectrum introduces anew syntax convention for coding type U (User) rules.
This convention allows asingleruleto contain aVisual Basicimplementation or aNat-
ural and Visual Basic implementation.

Rules defined in Visual Basic are delimited by code blocks. Use the following syntax
in the Predict rule editor to create a code block for aVisua Basicrule:

Example of code block for a Visual Basic rule

>>BEG N RULE VB
Vi sual Basic inplenmentation of the VE rule here.

>>END- RULE

Any rule code that is not delimited within alanguage-specific code block will be as-
sumed to be arule coded in Natura, since Natural rules do not require code block
delimiters. To keep code looking consistent, Naturd rules can aso be delimited.

Example of code block for a Natural rule

>>BEG N RULE NATURAL
Natural inplenentation of the VE rule here.
>>END- RULE

A rule can consist of several code blocks for both Visual Basic and Natural.

Example of code blocks for using both Visual Basic and Natural

>>BEG N RULE VB

15t part of Visual Basic inplementation of the VE rule.
>>END- RULE

>>BEG N RULE NATURAL

1St part of Natural inplenentation of the VE rule.
>>END- RULE

>>BEG N RULE VB

2"d part of Visual Basic inplementation of the VE rule.
>>END- RULE

** By default, this code is Natural code because it is
** not delimted by a | anguage-specific code bl ock.

3"d part of Natural inplenmentation of the VE rule.

— 270 -

Validating Your Data

When combining Visual Basic and Natural rules, you cannot use nested |anguage-spe-
cific code blocks. For example:

UseThis: NOT This:

>>BEG N RULE VB >>BEA N RULE NATURAL VE rule...

1St part of Visual Basic rule... >>BEG N RULE VB

>>END- RULE This VB code block is invalid
>>END- RULE

>>BEG N RULE NATURAL >>END- RULE

15t part of Natural rule...

>>END- RULE

Order of Precedence in DataValidation

Datavalidation is triggered under two conditions: attempted assignment to theclient’s
copy of theobject PDA and attempted database update using the Update or Add method
of the object maintenance subprogram.

Each of these conditions triggers different layers of the Construct Spectrum data vali-
dation model:

« Dataassignment to the client’ s object PDA.
In this stream of data validation, the order of validation is executed as follows:

— BDT validation
— local business validation
— basic datatype validation

» Database update using the object maintenance subprogram.
In this stream of data validation, only Business Object Validation is executed.

For clarification, see theillustrations in Business Object Validation, page 263.

—271-

Construct Spectrum SDK for Client/Server Applications

Validation Error Handling

Client validation is always initiated with acall to the generic ValidAssignment subrou-
tine. This call occurs in an event code block (usually alost focus event) that assigns a
GUI control’ s value to the client’s object PDA. There are anumber of stepsto follow
for each assignment.

» Toassign aGUI Control’s value to the client’s object PDA:

1 Hideany error tips that may be attached to this GUI control.
Thisis accomplished by calling the HideErrorTip subroutinein CSTUTILS.

2 Remove any Error Objects from the GUI control.
Thisis accomplished by calling the RemoveUnneededControl Errors subroutine.

3 Initiatelocal data validation and assign the value to the client’s object PDA.
Thisis accomplished by calling the ValidAssignment subroutine.

4 Test to seeif any validation errors occurred during the assignment attempt.
Thisis accomplished by checking whether ErrorMsg contains avalue. If errors
occurred, attach an Object Error to the GUI control by calling the ParseErrorString and
SetObjectError subroutines.

Framewor k Components

Thevalidation error handling framework components are used to implement the mech-
anism that displays pop-up validation errors in browse and maintenance dialogs.

For example, when the user entersdata into afield and cursorsto the next field, the data
ischecked to ensureit isvalid. If the datais not valid becauseit violates abusinessrule
or cannot be interpreted properly (such as when non-numeric datais entered into anu-
meric field), thefield that containsthe error is highlighted with an error color and apop-
up message is displayed next to thefield. The user is not locked into the field until the
error iscorrected and can continue entering or editing datain other fields. At any point,
the user can return to the highlighted field or fields and correct the errors.

Thefollowing table describesthevalidation error handling componentsin the Construct
Spectrum client framework:

Component Description

ErrorPreferences.frm Allows users to customize how validation errors are
presented.

ErrorTip.frm Displays the pop-up validation error message.

—272-

Validating Your Data

Component Description

ObjectError Keeps track of the information for asingle validation
error on aform.

ObjectErrors Tracks the validation errors on a generated
maintenance form; each generated maintenance form
declares one instance of this class.

Handling Business Object Validation Errors

Business Object Validation errors are returned to the form in the message PDA, CDP-
DA-M. If an error was returned from the server, the CheckRemoteError subroutine in
the form tests the value of the ERROR-FIELD variable to match it up with aGUI
control.

If thefield is associated with a GUI control, an Object Error is attached to the GUI con-
trol. Otherwise the form displays a message box showing the description of the general
error.

The following code illustrates this process:

Sel ect Case | nternal Object. Msg. Fi el d(" ERROR- FI ELD")
Case " BUSI NESS- NAME"

Set ErrControl = txt_CUST_Busi nessNane
Case " PHONE- NUVBER"

Set ErrControl = txt_CUST_PhoneNunber

End Sel ect
If ErrControl Is Nothing Then
MsgBox cst For mat Message(| nt er nal Obj ect. Msg), vblnformati on
El se
Wth Internal Cbject. Mg
Set Obj ectError Me, ErrControl, .Field("MSG NR"), ErrMsg, _
ERROR_SOURCE_SERVER, ErrCol umm, _
. Fi el d("ERROR- FI ELD- | NDEX1"), _
. Fi el d("ERROR- FI ELD- | NDEX2"), _
. Fi el d("ERROR- FI ELD- | NDEX3")
End Wth
End If

—273-

Construct Spectrum SDK for Client/Server Applications

—274 -

INTEGRATING BROWSE AND MAINTENANCE
FUNCTIONS

This chapter explains how browse and maintenance functions areintegrated. It includes
information about linking and using browses from a maintenance dial og.

The following topics are covered:
» Overview, page 276
» Design Objectives, page 280
« Overview of Foreign Key Field Relationships, page 282
» Foreign Field Support in Maintenance Dialogs, page 285

—275-

Construct Spectrum SDK for Client/Server Applications

Overview

Drill-

Providing applicationswith tightly integrated browse and mai ntenance functions makes
it easier for users to navigate through an application and to find the information they
need. The two main benefits that integrated browse and maintenance functions provide
are:

Drill-down capabilitiesfrom a browse dialog. For example, to invoke amaintenance di-
alog or another browse from within abrowse dialog.

Active help from maintenance dialogsto aid in selection of primary and foreign fields.
These topics are discussed in the following sections.

Down Capabilitiesfrom a Browse Dialog

Users commonly use browse dialogs to navigate within an application. For example, a
user might select a customer from a Customer browse dialog, drill-down to another
browse dialog to see outstanding orders for the customer, select an order, and drill-
down to a maintenance dialog to update the order.

Y ou can support this functionality with Construct Spectrum by hand-coding abrowse
command handler to define the commands supported by a particular browse dial og.

Y ou must also add code to the target of these commands, which are typically other ap-
plication components such as a maintenance dialog or a Visual Basic maintenance
object.

For information about creating Browse Command Handlers, see Under standing
Browse Command Handlers, page 195.

Tip: To seesomeexamples of browse command handler source code, refer to the Cus-
tomerBrowseCommands.cls and OrderAsBrowseTarget.cls files in your Con-
struct Spectrum Order Entry demo application.

— 276 -

Integrating Browse and Maintenance Functions

Active Help on Maintenance Dialogs

Users can select valid values from dialog fields that are enabled with active help. Con-
struct Spectrum maintenance dial ogs provide built-in support for two types of active
help: primary key field and foreign key field active help.

Primary Key Field Active Help

Primary key field active help isavailablefor all business objectsfor which maintenance
and browse dialogs were generated. When a maintenance dialog is opened, it verifies
whether abrowse was generated for its primary key field. If onewas, it enables the
browse toolbar button and browse menu command on the MDI frame. When a user
clicksthe browse toolbar button or selects the browse menu command, amodal browse
window for the business object is displayed:

®] Customer Browse
Cuztomer Mumber i Buzinezs Mame i Phone Numl:ueri Ai
A0004 ACME RESOURCES [519] 623-6350
A0005 ACME LAMD [519) 740-3064 -]
A000& ACME SURVEY [519) 740-3064
A0007 ACME RESEARCH [519) 740-3064
A001z2 ACME COMSULTING [519] B23-6850 =
4| | »
Selection Key Fange Filter
;Eustumer Murmber :_j ;>= :_j O ptionz i et i
Cuztomer Humber
;33333
(] Cancel
Records digplaved: 10 EOD

Moda Browse Window

Thewindow displays alist of existing records in the database. Users can maintain a
record by double-clicking the record or by highlighting a row and clicking OK.

—277 -

Construct Spectrum SDK for Client/Server Applications

Foreign Field Active Help

Most maintenance dialogs are linked by foreign relationships. These relationships, also
known asinter-object relationships, link afield in adialog to the primary field of anoth-
er dialog. In the demo application, for example, the Order dialog has a Customer
Number field. To bevalid, the Customer Number must exist on the Customer database
table. Thisrule is defined by an inter-object relationship that specifies the two tables
involved (Order and Customer), the linked fields, the cardinality, and other optional
information.

Maintenance dialogs automatically support active help for foreign fields in the follow-
ing ways:

By providing abutton beside the text box.
When a user clicks the button, a window is displayed to select foreign values:

N de M amiznance - E.3
Dl Msinbes I
Ducled Apsinand
I U Cuatemm Arcwman [_ 6] =]
[ucled Crmde I
i zarem P il [Bcra s hiara I Py =
Lisstorees Hursbes | M —| CAMBRIDEE T STERED [514)
[T | |7 F IOURREYHEHR FARRICAT 1514)
100K INPRME YHE H FABRICAT 1514]
IrreTcm hiurmbe I 10007 LES FVERS CLE TOM Fil (kD
[iwlremsy Incesciion | X I _ILI
L] L3
Sabendion Lay Fearge Flle
[' sobmrnss Hurmba 3 T o Oipkars | Gel J
Dol o Hursbn
Product |
||'.-.;.¢,..|;| Id Lires Lrmsonph
o [Canosl
i Recoh diplapsd 20
JN [|

Active Help From a Foreign Field

Descriptive information can also be returned with the selected value. For example, the
customer’ s name can be returned with the customer number.

For more information about returning descriptions with foreign fields, see Displaying
Descriptionsfor a Foreign Field, page 289.

— 278 -

Integrating Browse and Maintenance Functions

By automatically refreshing aforeign field description when a user types aval ue direct-
ly into aforeign field.

When the LostFocus event occursin thefield, the foreign field islooked up and the de-
scription is updated in the maintenance dial og.

By retrieving all of the values and descriptions for a foreign field that are in the data-
base.

This method is used by the maintenance dialog to create a drop-down list of al theal-
lowed values for aforeign field. This feature isused only if the foreign file contains a
small set of stable records.

Warehouse |d: |1'|1 |TEIF|EINTEI CENTRAL WAREHOLSE j
[revoice Mumber: 232mM EF?ES?:EIJFE[EEEEEPF?[TD =

' . WATERLOD WAREHOUSIMNG LTD.

Deliven Instructions: Muzt be KITCHENEE S aATERLOD WAREHOUSE

BRAMT WAREHOUSING AMD STORAGE

Frrrsr CEMTRAL WaAREHOUSE

Praduct: A8, SMITH LIMITED ez
| ||:~,,:,,:|u,3t D& FOOD IMC,

(]

Active Help From a Drop-down List

— 279 -

Construct Spectrum SDK for Client/Server Applications

Design Objectives

Construct Spectrum meets two design objectives that simplify the integration of main-
tenance and browse components:

« Application component independence
« Simplified generated components
These objectives are discussed in the following sections.

Application Component I ndependence

An important design objective when integrating discrete application objects like main-
tenance and browse dialogsisto limit the impact this has on existing application
objects. To achieve this, there must be a minimal amount of coupling between applica-
tion components. L ess coupling means that changes to one application component are
lesslikely to affect the other.

To achieve minimal coupling, Construct Spectrum uses the object factory asthe single
integration point for all new application components. Only the object factory needs to
be aware of new application objects. As new business objects are added to your appli-
cation, they are published as available for use by other business objects through the
object factory interface.

For more information about the object factory, see Object Factory, page 243.

Tip: To view the source codefor the demo application’s object factory, refer to the
OFACTORY .basfile.

Maintenance dialogs request browsing servicesthrough the object factory interface. Us-
ing parameters such as table names or relationship names, the maintenance dialog
specifieswhich fileisrequired for the browse. If thefile is not available, the object fac-
tory informsthe requesting maintenance dialog, allowingit to disablethat functionality.
This architecture allows an application to be developed incrementally so that you can
test it throughout the development cycle.

To view an example of how this code works, refer to the code for the EnableForeign-
Keys subroutine in the CUSTMCDV .frm maintenance dialog formin the demo
application.

— 280 -

Integrating Browse and Maintenance Functions

Simplified Generated Components

Another objectiveis to reduce the complexity of generated components, making them
easier to customize. The amount of code required to integrate maintenance and browse
processesis greatly reduced by using the BrowseM anager framework class. It encapsu-
lates most of the common functionality involved in using browse processes.

To see how the BrowseM anager has been implemented, refer to the codein the Browse-
Manager.cls client framework class. For more information about the BrowseM anager,
see Under standing Browse Command Handlers, page 195.

—-281 -

Construct Spectrum SDK for Client/Server Applications

Overview of Foreign Key Field Relationships

A foreign key field with an update constraint isafield in amaintenance dial og that must
be set to avalue that already exists in aforeign file. Thisfield is the foreign file's pri-
mary key field.

A foreign key field relationship links two independent files, such as an Order and Cus-
tomer file. Thisisalso called an inter-object relationship. Conversely, intra-object

rel ationships define relationshipswithin afile, for example, arelationship between two
fieldsin a Customer file.

Foreign key field relationships are businessrules that can define both update and delete
constraints. However, with respect to integrating maintenance and browse functions,
only foreign key field relationships that define update constraints are important.

For more information on inter-object and intra-object relationships, see Design M eth-
odology, page 143, Natural Construct Generation.

Fieldsthat can be Used in a Foreign Key Relationship

This section describes the foreign field relationships supported by the Object-Maint-
Subp model. Relationships supported by Construct Spectrum are also noted.

Simple Field

Thisis the simplest type of foreign field relationship in which the format and length of
the fields on both sides of the relationships are equal and the fields are not repeating.
Simplefield relationships are supported by Construct Spectrum.

File: Order , CN1 File: Customer
Field: Order-Customer-Number N Field: Customer-Number

Simple Field Relationship

The relationship shown in this diagram is between an Order and a Customer file. The
update constraint is placed on the order. The business rule says each order must have
exactly one customer number to beavalid order, and a customer number can be refer-
enced by zero or many orders.

— 282 -

Integrating Browse and Maintenance Functions

Repeating Field

Thisisarelationship between aone-dimensional repeating field and either ascaler field
or another one-dimensional repeating field. Repeating field relationships are supported
by Construct Spectrum.

File: Course CN:.C File: Instructor
Field: Instructor-ID(1:5) Field: ID-Number

gaN

Repeating Field Relationship

The relationship shown in this diagram is between a course and an instructor file. The
update constraint is placed on the course. The businessrule saysacourse can have zero
to fiveinstructors. An instructor can teach zero or many courses.

Note: Theformat and length of the relationship fields must be the same on both sides
of the relationship.

When Not to Usea Foreign Field Relationship

This section describes situations where defining aforeign field relationship is not a
good solution. For each situation described, a better alternativeis given.

Do not use foreign field relationships to enforce valid values when:
thelist of valuesis static

the list of valuesis small

there are only two choices

List of Valuesis Static

In most foreign relationships, both files involved in the relationship are dynamic. It is
not agood solution to create afile for the sole purpose of enforcing that valid values are
entered from a static list. For example, you would not create a Provincefileto contain
alist of valid provinces that could be entered on an order as shown in the following
diagram:

File: Order-Header CN:1 File: Provinces
Field: Order-Province Field: Province

gaN

An Unlikely Foreign Field Relationship

— 283 -

Construct Spectrum SDK for Client/Server Applications

A better solution is to attach atable verification rule to the Order-Province field. Con-
struct Spectrum generates a drop-down list for the Order-Province field and popul ates
it with the valid provinces in the verification rule.

Theremay bevalid reasonsto create aProvincefile. For example, to maintain province-
specific business rulesfor calculating salestax. In this case, aforeign field relationship
is appropriate.

List of Valuesis Small

Another case where you would not use aforeign field relationship isto enforce asmall
set of values for afield. For example, a Payment-Type field might only have possible
values of Cash, Check, MC, Visa, or AMEX.

Again, defining atable verification rule is amore appropriate solution. Using the veri-
fication rule, Construct Spectrum would generate option buttons for this field.

List of Values Contains Two Choices Only

If there are only two choicesfor agivenfield, do not define aforeign field relationship.
Instead, link averification rule to the field. Construct Spectrum generates either option
buttons or a check box for the field.

— 284 -

Integrating Browse and Maintenance Functions

Foreign Field Support in Maintenance Dialogs

This section describes the foreign field support provided by maintenance dial ogs gen-
erated with Construct Spectrum.

Two main objectives of linking foreign field lookup support into maintenance dial ogs
areto:

» Provide away for usersto select valid values for aforeign key field in a maintenance
dialog.
When afield value is selected, it must be returned and displayed in the dialog, option-
ally, with other descriptive fields.

« Provide away for updating the maintenance dialog with descriptive information asso-
ciated with the foreign field.
When aforeignfield valueis entered in a mai ntenance dia og without using the browse
mechanism (for example, by typing directly into atext box), any values associated with
theforeignfield, such asadescriptivefield, must be updated in the maintenance dialog
automatically.

GUI Control Representations of Foreign Fields

This section describes the GUI controls Construct Spectrum uses to represent foreign
field relationshipsin maintenance dial ogs. Construct Spectrum dealswith foreignfields
differently depending on whether theforeign field islocated in the primary part of the
maintenance dialog or on asecondary, tertiary, or quaternary part of the dialog. Second-
ary, tertiary, and quaternary information is always represented on a grid control in a
maintenance dialog. This section describes how foreign fields are represented in each
case.

Foreign Fieldsin the Primary Part of a Maintenance Dialog

The primary part of amaintenance dialog isany locationin the dialog that is not part of
agrid. A foreign field on the primary part of a maintenance dialog that hasalink to a
foreign file can be of any datatype.

All foreign fields in the primary part of a maintenance dialog can be represented by a
single text box type GUI control. Any GUI Control override keywords that have been
specified in Predict to force the type of control that should represent afield areignored
if thefield islinked to aforeign file.

For more information, see Overriding GUI Controls, page 133.

Tip: Construct Spectrum does not generate browse support for Boolean fieldsin a
maintenance dialog. Validations for Boolean fields are better handled with veri-
fication rules or by adding validation code to the Visual Basic maintenance ob-
ject.

— 285 -

Construct Spectrum SDK for Client/Server Applications

To provide users with amethod to look up valid values for foreign fields from amain-
tenance dialog, use abutton or drop-down list. The following example shows aforeign
field using a button:

Customer Murnber: I‘l 1N j

Foreign Field as Text Box and Lookup Button

When a user clicks the button, a browse window listing the foreign field valuesisdis-
played. If adescriptivefield is associated with the foreign field, a description is also

displayed:

Customer Humber: I'I'I'I'I1 j QUAKER DATS

Foreign Field as Text Box, Lookup Button, and Description

The following example shows aforeign field with a drop-down list:

Wwarehouse |d: ARR T

Foreign Field as a Drop-Down List

Thedrop-down list containsalist of theforeign field valuesor descriptions. If adescrip-
tivefield is associated with the foreign field, the list contains the descriptions:

s [{555 |DONS GOLD CEPDT [|

Foreign Field as a Text Box With Descriptions In Drop-down List

— 286 —

Integrating Browse and Maintenance Functions

GUI Controlsin a Grid

Gridsin amaintenance dialog display secondary, tertiary, and quaternary information.
Consider an Order business object that is normalized by linking an Order Header file
record to 1to 30 Order Linefilerecords, creating acomplex business object. The Order
Linespart of thisbusiness object isrepresented by agrid control inthe dialog. A foreign
field relationship can be defined between the Order-Line-Product-Id field in the Order
Linefile and the primary field, Product-1d, in the Product file. This discussion aso ap-
pliesto foreignfield relationshipsthat are linked with repeating fields, sincethesefields
are represented as grid controls.

When acolumn in agrid represents aforeign field value, a button is placed in the grid
to support looking up new values. Either anew value can be typed directly into thegrid
cell or the button can be clicked to invoke a modal browse window:

Jﬁmﬂ:ﬂ Line: Dhescriplion l G usarting | L=
1851 _;ll'ﬁl MLUzE TS 11

1) =
2
3 -
i | o[|
Foreign Field in a Grid with Lookup Button Displayed

Note: Currently, drop-down lists for foreign field values are not supported in grids.
Description fields are also not supported for foreign fieldsin agrid.

— 287 -

Construct Spectrum SDK for Client/Server Applications

How Construct Spectrum Deter mines Which GUI Control to
Use

Foreign fields within agrid control are always represented with alookup button that
opens amodal browse window when clicked.

When generating a GUI control to represent aforeign field in a maintenance dialog,
Construct Spectrum searches for special properties of the foreign file to determine the
type of control to use. Depending on these properties, either adrop-down list or alook-
up button is used.

A drop-down list is generated for aforeign field if both of these conditions are met:

The data dictionary specifies that the average record count property for the foreign file
containson average X records, where X isbelow thethreshold determined by the model
to bethelimitfor adrop-down list. The default is50 records. A value of zeroisignored.

Tip: To change the default value, change the FK-AS-COMBO-THRESH-HOLD val-
uein the Natural Construct CSXDEFLT model defaulting subprogram. The VB-
Maint-Dialog model copiesthe FK-AS-COMBO-THRESH-HOLD default value
to the #PDA-FK-AS-COMBO-THRESH-HOLD variable of the model PDA
(CUMDPDA) in the model’ s pre-generation subprogram (CUMDPR).

The data dictionary specifies that the file volatility property of the foreign fileis either
Stable or Fixed.

If both of these conditions are not met, or you have not set these file properties, or you
areusing aversion of Predict that isprior to 3.3.2, alookup button isgenerated instead.
A lookup button displays amodal browse window when it is clicked.

— 288 —

Integrating Browse and Maintenance Functions

=

Displaying Descriptions for a Foreign Field

At generation time, the VB-Maint-Dialog model searchesfor a descriptive field associ-
ated with any foreign field. If adescriptive field isfound, it is displayed in the dialog
withtheforeignfield. To find out how theV B-Maint-Dialog model displaysdescriptive
fields, see Foreign Fieldsin the Primary Part of a Maintenance Dialog, page 285.

Note: Construct Spectrum can generate only one descriptive field value for each for-
eign key value in a maintenance dialog.

Y ou can designatethat afield be descriptive whenever it isreferenced in aforeign file
relationship, or you can designate the field as descriptive only when it is referenced by
aparticular file. Thisis useful when different descriptions are needed for different for-
eign field relationships.

Note: Descriptive fields are not available for foreign fields in agrid.

To make afield descriptivein al situations:

Access Predict.

Attach the DESCRIPTION keyword to the field in the foreign file.

All such fields are displayed whenever thefile is referenced in aforeign field browse.
To make afield descriptive only when referenced by aparticular file:

Access Predict.

Attach akeyword to the field that matches the name of thefile.

For example, to make the WAREHOUSE-NAME field descriptive only when a user
browses from adialog that was generated for the ORDER file, link the ORDER
keyword to the WAREHOUSE-NAME field in the foreign file.

Note: These keywords must be defined in Predict before you can attach them to a
descriptive field.

Examples of Descriptive Fields

Suppose your application contains a CUSTOMER file with the following fields:
CUSTOMER- | D(N6)
CUSTOVER- NAVE(A20)

PHONE- NUMBER(N10)
ADDRESS(A50)

— 289 —

’

1

Construct Spectrum SDK for Client/Server Applications

Whenever the CUSTOMER-ID fieldisusedin aforeignfield browse, you want to show
the customer name to help identify the customer. To do this, link the DESCRIPTION
keyword to the CUSTOMER-NAME field. The CUSTOMER-NAME field is now set
up as adescriptive field whenever CUSTOMER-ID is used as aforeign field.

Suppose the CUSTOMER-ID field isaforeign field in the ORDER file. When the cus-
tomer ID is entered for an order, you want to display the addressinstead of the name.
To do this, add the ORDER keyword to the ADDRESS field. The ADDRESS fidldis
now descriptive only when referenced by the ORDER file.

Supporting Multiple Descriptive Values and Derived Values

Y ou can retrieve multiple values with aforeign field lookup. For example, you may
want to retrieve additional descriptive information or you may need to derive or calcu-
late values in other fields in the maintenance dialog based on valuesin the foreign file.

Construct Spectrum enables you to do this because each foreign field lookup returns a
reference to the BrowseDataCache object containing the row that was selected through
the foreign field lookup.

To retrieve additional values with aforeign field lookup:

Add some code to extract the descriptive value from the BrowseDataCache object.
Base your code on the samplein the grd_OrdM_NcstOrderHasLines ButtonClick
event procedure on the Ord-Mcdv.frm maintenance form in the demo application.

To derive or calculate values in your maintenance dialog based on the foreign lookup
information:

Add codetothe AFTER-FOREIGN-KEY -L OOKUP user exit for the V B-M aint-Obj ect
model to code the updatesto your business object.

This ensures that the cached copy of your business object’ s data that is maintained on
the client reflects what is displayed in the maintenance dialog. Base your code on the
samplein the AFTER-FOREIGN-KEY -LOOKUP user exit in Ord-Mcpv.clsin the
demo application.

—290 -

Integrating Browse and Maintenance Functions

How Foreign Field Descriptions Are Refreshed

Any control in amaintenance dialog affected by a changein value of aforeign field
needs to be refreshed when a Get or Clear action occurs. Thisincludes foreign field de-
scriptions as well as any field whose value is derived from aforeign field.

Generated maintenance dialogs include a function called RefreshForeignKeys. This
function refreshesthe foreign field description when a Get or Clear action occurs. The
RefreshForeignField function calls the server and retrieves a description each time a
Get or Clear action occurs. Thisreducesapplication performance slightly. To avoid this
extracall, you can do hand-coding to have the description returned directly from the ob-
ject subprogram when a Get or Clear action occurs.

To refresh aforeign field descriptions without an extra call to the server:

In the object subprogram, add code to the PARAMETER-DATA user exit to definean
extra parameter dataarea (PDA). Within this PDA, add a parameter for each foreign
field that requires a description.

In the object subprogram, add code to the EXTENDED-RI-VIEWS user exit to define
the views of the foreign file.

To view an example of this code, refer to the ORD-M SO abject subprogram in the
SPECDEMO Natural library.

In the object subprogram, add code to the AFTER-GET user exit to populate the
parameter you added in Step 1 with foreign field descriptions after a Get action occurs.

In the Visual Basic maintenance object, specify the name of the extra parameter data
areathat you added in Step 1 in the Extra PDA parameter.

To view example code that uses the Extra PDA parameter, refer to the code supplied in
the Visual Basic maintenance object (Ord-Mcpv.cls) inthe demo application. Inthisex-
ample, the extraPDA, ORD-XPDA is defined.

In the maintenance dialog form (.frm file), add code to the RefreshForeignK eys
subroutine to extract the description values from the Visual Basic maintenance object
when the user selects a Get or Clear action occurs.

The following code example is taken from the Ord-Mcdv.frm Order dialog in the Con-
struct Spectrum demo application. In thefollowing example code, the dialog is updated

with the description of the Customer Number foreign field when a Get or Clear action

occurs. The name of the Customer Number field is NcstCustomerOrderHeader and the

name of the description field is ORDER-BUSINESS-NAME.

Note: The Order diaog has another foreign field, the Warehouse ID field (Ncst-
Warehouseorderheader). Becausethisfield is set up as adrop-down ComboB-
ox, both the warehouse | D and warehouse description values already exist on
the client. Therefore, no hand-coding is required to avoid a call to the server
for aGet or Clear action.

—-291 -

Construct Spectrum SDK for Client/Server Applications

Example of updating a foreign field description after a Get or Clear action

Private Sub RefreshForei gnKeys()
Ref r eshNcst Cust orer or der header
Ref reshNcst War ehouseor der header

Post generate code ----------------- >>
" This code is added to optinmize foreign key description
handl i ng.

Wth Internal Object

' Custoner Business Name
I bl _OrdM Ncst Cust omrer Or der Header . Caption = _
BDT. Convert ToDi spl ay(. Get Fi el d(" ORDER- BUSI NESS- NAME"), _
BDT_ALPHA, "A30")

End Wth
Post generate code ----------------- <<

End Sub

Note: The RefreshNcstCustomerorderheader sub is still used on a lost-focus event
for the Customer Number field to lookup a new Customer Number field de-
scription.

Supporting Code for Drop-Down Lists

This section describes how Construct Spectrum supports a drop-down list for foreign
fieldsin amaintenance dialog. Read this section before hand-coding foreign field drop-
down lists.

Initializing a Drop-Down List

Maintenance dialogs that use drop-down lists to support foreign field lookups use in-
stances of a Construct Spectrum framework class called the ComboClass class. One
instance of thisclassisinstantiated for each foreign field drop-down list used to support
aforeign field. A ComboClass object contains val ue description pairs. Each pair holds
the foreign field value and its corresponding description.

For more information on the ComboClass class, see M aintenance Classes, page 205,
Construct Spectrum Reference.

Codeis generated in the dialog’ s Load event to read all the rows from each referenced
foreign file. The Load event usesthe Visual Basic browse object to read the rows. The
L oad event then popul ates each drop-down list with the foreign field descriptionsor for-
eign field values.

- 292 -

Integrating Browse and Maintenance Functions

Note: Each referenced foreign file must have a corresponding Visua Basic browse
object or the dialog's Load event cannot read records from the file.

Populating the foreign field drop-down lists in this way delays theinitial opening of a
dialog until all foreign field records are retrieved from the database. However, the ob-
ject factory is optimized to read the remote database only thefirst timeit is requested
by the application. Thereafter, the datais cached globally, so that thereisno delay when
the dialog is opened again and the same dataiis required.

A VB-Browse-Object, generated for the foreign filethat is intended to be looked up,
must be available in order to support lookups. Since an application can be built incre-
mentally, thereis a possibility that arequired VB-Browse-Object is not yet available.
In this case, such alist will be disabled.

Support for Value Selection

Event code is generated to support selecting foreign field values from either the drop-
down list or by typing anew value. In both cases, the list and the text box controls are
synchronized with the choice made. For example, clicking on adescriptionin aforeign
field drop-down list updates the contents of the foreign field text box to match thefield
value for the selected description. Likewise, typing anew valueinto theforeign field
text box will, on a LostFocus event, cause the corresponding description to display in
thelist.

If you enter an invalid value when typing in the foreign field text box, thelist displays
ablank indicating that this value is not in thelocal cache of valid values. Subsequent
edit checksin the server object subprogram when the user selects the Update action will
either pass or fail the value based on a live check of the foreign file' s database.

— 293 -

Construct Spectrum SDK for Client/Server Applications

Supporting Code for Command Buttons

This section describes how Construct Spectrum supports command buttons for foreign
fieldsin amaintenance dialog. One situation where you may want to add command but-
tonsfor aforeign field is when other fields in the dialog derive their values from the
foreign field. Y ou could add a command button to allow usersto update derived fields
when aforeign field value changes. Read this section before hand-coding command
buttons for foreign fields.

Initializing a Command Button

Themaintenancedialog’s Load event enables all the foreign field lookup command but-
tonsin thedialog. This code verifiesthat aVisual Basic browse object existsto support
each foreign field lookup button in the dialog. With incremental development, it is pos-
sible that some required Visual Basic browse objects are not available in the
application. If arequired browse object is not found, the button is made invisible.

Click Events on the Command Button

If amaintenance dialog contains aforeign field lookup button, it also contains event
code to handle the button’ s click event. This code invokes the BrowseByForeignKey
method of the Visual Basic maintenance object, passing the name of the foreign field
relationship as a parameter.

A Visual Basic maintenance object handlesall the logic required to work with abrowse
dialog linked to aforeign field. For example, when a user selects a new foreign field
valuefrom aforeign field browse window, the selected valueis updated by the mainte-
nance object initsinternal Natural PDA. A referenceis passed back to the
BrowseDataCache object. If the user does not select avalue, BrowseDataCache is set
to Nothing.

Methods exposed by the BrowseDataCache object and its dependent objects are used
by the maintenance dialog code in the Click event following the BrowseByForeignK ey
call to retrieve the newly selected foreign field descriptions and update these in the
dialog.

—294 —

INTERNATIONALIZING YOUR APPLICATION

This chapter describes the tools provided by Construct Spectrum to help you writein-
ternationalized applications. It also describes how to use each tool. Preparing
applications so they readily translate into different languages ultimately saves devel op-
ment time.

The following topics are covered:
« Planning Your Internationalized Application, page 296
« Internationalizing Using the Client Framework, page 297
» Resour ce File Syntax, page 300
« Using thelnter nationalization Components, page 302
« Hintsfor Developers, page 308
For related information, see:
» Resour ce Classes, page 289, Construct Spectrum Reference

— 295 -

Construct Spectrum SDK for Client/Server Applications

Planning Y our Internationalized Application

Whether you are creating your Construct Spectrum application in two or more languag-
es or considering transl ating the application in the future, design the application to take
advantage of the internationalization client framework components supplied with Con-
struct Spectrum.

Tip: Youdo not need to build internationalization components into your design when
creating small applications or applications used in one location only. These inter-
nationalization components are optional.

To writeinternationalized applications, identify all text strings and graphicsin the ap-
plication that must be translated. These text strings and graphics include:

« window titles

» labelsand prompts

* menu commands

» messages displayed to the user

« formatting strings for dates, times, and currency values
« toolbar button bitmaps

« icons

Organizing the text strings and graphics and copying them to external filesis the first

stepin preparing an application for internationalization. Y ou can then write code to load
thefilesinto the application at runtime. Translating the filesinto the required language
localizes the application. Using this approach to localization means you alter the appli-
cation’ s executable file only when adding another language option.

— 296 —

Internationalizing Your Application

Internationalizing Using the Client Framework

A Construct Spectrum project supplies internationalization client framework compo-
nents, making it easy to create applications you can deploy in more than one language.
Theclient framework storestext and graphics for an application separate from the com-
piled executable code. This allows you to change these attributes without accessing
source code for the application. To provide thisfeature, forms are designed to contain
aslittle code as possible.

The two internationalization client framework components included with your Con-
struct Spectrum project are:

» Resource, which reads resources from resource files.
» ResourceGroup, which returns alist of resources in aresource group.
Thefollowing list describes the components and how to use them:

» Text strings and graphics copied into externa files are referred to as resources, the ex-
ternal filesas resourcefiles. To localize an application, translate the resource files into
the required language.

» Eachresourceisidentified by aresourceidentifier (RID) and hasatype (string or bina-
ry) and value.

» Resources are collected into resource groups. Assign each resource group aresource
group identifier (RGID).

« Both resource groups and their resources are defined in resource files. Each resource
file has a name, which is the same as the file name without the path or extension. For
example, aresource file may have a file name such as the following:

c:\ MyProj ect s\ Spect runDeno\ For ns. 1
where:

C.\ WyPr o ect s\ Spect runDeno is the path.
For s is the file name.

. 1 isthe extension.

Note: Resource files have a proprietary format. They are coded differently from
Windows resource files maintained in a Windows resource editor.

» Resourcefiles are organized in language sets. Thereis one language set for each user
language (such as English, German, or French) the application supports. Each set con-
tains one or more resource files. Each user language is identified with a 1-, 2-, or 3-
character language code that is also used for the file name extension. All the resource
files in alanguage set have the same file name extension.

- 297 -

Construct Spectrum SDK for Client/Server Applications

An application uses only one language set at atime. The current language setting deter-
mines which language set the application uses. Y ou can specify to use the same
language codes as Natural (1=English, 2=German, 3=French...).

Language sets, resource files, resource groups, and resources form afour-level hierar-
chy, as shown in the following example:

Example Type
Engl i sh (1 anguage code “1") Language set
Framework. 1 File
frmOpen G oup
I bl Obj ects. Caption Resour ce
I bl Acti ons. Caption Resour ce
cmdOK. Caption Resour ce
cmdCancel . Caption Resour ce
frmBr owseDi al ogOpti ons G oup
| bl Logi cal KeyPronpt. Caption Resour ce
f r mbout G oup
i mgAppl i cati onBi t map. Picture Resour ce
Gener at edForns. 1 File
f r mCust oner G oup
| bl Cust omer Nane. Capti on Resour ce
frnOrder G oup
I bl Or der Nunber . Capti on Resour ce
Messages. 1 File
Gener al G oup
EndCf Dat a Resour ce
Actionlnvalid Resour ce
German (|l anguage set with | anguage code “2") Language set
Framewor k. 2 File
frmOpen G oup
I bl Obj ects. Caption Resour ce
I bl Acti ons. Caption Resour ce
cmdOK. Caption Resour ce
cmdCancel . Caption Resour ce
frnBrowseDi al ogOpti ons G oup
| bl Logi cal KeyPronpt. Caption Resour ce
f r mbout G oup
i mgAppl i cati onBi t map. Picture Resour ce
Gener at edFor s. 2 File
frmCust oner G oup
| bl Cust omer Nane. Capti on Resour ce
frnOrder G oup
I bl Or der Nunber . Capti on Resour ce
Messages. 2 File
Gener al G oup
EndCf Dat a Resour ce
Actionlnvalid Resour ce

French (1 anguage set with | anguage code “3") Language set

The client framework uses aresource file path (similar to a DOS file search path) to
search for resource files. The path is specified in the application startup code.

— 298 —

Internationalizing Your Application

Instead of providing atype and avalue for aresource, you can link it to another re-
source. When the resource is accessed, the application gets the type and value by
following the link. The type and value can link to another resource with its own type
and value, and so on.

Links allow you to specify the value for aresource once and usethat valuein many lo-
cations. For example, if you have OK and Cancel buttonsin many different dialogsand
you want to change the captions on these buttonsin al dialogs, you could define two
resources that provide the captions and link to them from all the dialogs.

Links must terminate in atype and value pair. Circular links are not allowed.

— 299 -

Construct Spectrum SDK for Client/Server Applications

Resource File Syntax

Resource files are text files that use a syntax identical to Windows INI files. Resource
groups are specified like INI file sections, and resources are specified like INI file keys.

Specify resource IDsto theleft of theequal sign, and specify resource valuesto theright
of the equal sign.

Text Values
Specify text values with quotation mark delimiters, for example:

EndCf Dat aMsg="There are no nore records that match the search criteria."

To include non-printing characters in text values, specify them with one of the escape
sequences listed below. Note that these escape sequences are case-sensitive:

Escape Sequence Non-printing Char acter

\nl CR-LF character combination (ASCII 13,4310,()
\cr CR character (ASCII 13,()

\If LF character (ASCI1 104)

\th Tab character (ASCII 9,¢)

\nnn Character corresponding to ANSI code nnnyq

Note: The*10" notation above indicates decimal numbering.

\\ Backslash character.

Binary Values

Specify binary values as either a sequence of hex characters or asareferenceto an ex-
ternal file. For a sequence of hex digits, usethe value "BIN:" followed by the byte
values. For an external file, use the value "FILE:" followed by the file name and an op-
tional hex starting position and hex length, for example:

I magel=BI N: 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF 10
| mage2=FI LE: Fi | eOpen. brp
I mage3=FI LE: | cons. dat, 1F00, 0300

Note: External files must reside in the same directory as the resource file.

—300 -

Internationalizing Your Application

Links

A resource value may be linked to another resource. To create alink, specify “LINK:”
followed by the name of the resourcefile (optional), the resource group (optional), and
the resource ID. Use commas to separate the names of the resource file, group and 1D,
for example:

cmdOK. Capti on=LI NK: @ obal , GQUI Control s, OKBut t on
The commas must be included even if you omit an optiona name, for example:
| bl Header (1) . Caption=LINK:,, | bl Pronpt (1). Caption

If you omit the resource group, the resource file must be omitted too. In this case, the
resource ID is assumed to bein the same resource file and group. If theresourcefileis
omitted, but the resourcegroup is provided, theresource ID isassumed to beinthe same
resource file, for example:

I bl Pronpt (1). Capti on=LI NK: , f r mCust onmer Browse, | bl Pronpt (1) . Caption

-301 -

Construct Spectrum SDK for Client/Server Applications

Using the Internationalization Components

The Resource class provides methods to read resources from resource files and to re-
duce the effort needed to localize an application.

The Construct Spectrum client framework declares and initializes an instance of this
classin Startup.bas, for example:

Public Res As New CST. Resource

For more information about these methods and properties, see Resour ce Classes, page
289, Construct Spectrum Reference.

M ethods

The Resource class uses the following methods to localize applications:
« GetResourceGroup
» LocalizeForm
» LoadBinaryResource
» LoadStringResource
+ Message
* MessageEx
» SetDefaultM essageGroup

GetResourceGroup

This method creates a ResourceGroup aobject that returns alist of the resources in are-
source group.

The syntax is:

Set result = object. Get Resour ceG oup(ResourceFil e, ResourceG oup)

If the resource file does not exist or if the resource group does not exist in the resource
file, this method returns “Nothing”.

-302 -

Internationalizing Your Application

L ocalizeForm

This method localizes aform by iterating through all of the resources in the specified
resource group and loading each resource into a corresponding control property.

The syntax is:

Sub Local i zeForm(Form As Form _

ResourceFile As String, _

Resour ceGroup As String)
This method works with text and graphic properties. For example, the resources might
look like this:

Form Capti on="Construct Denp Application"
muFi | e. Capti on="&Fi | e"

muFi | eOpen. Capti on="&pen..."

i mgAppl i cati onBit map. Pi cture=FILE: App.ico

This method isvery powerful; one line of code in your form will localize all the visual
GUI controls on your form. To use this method, cal it from your form’s Load event.
The following example uses aresource file called Forms which contains resource
groups with the same names as the forms in your application (Me.Name):

Private Sub Form Load ()
Res. Local i zeForm Me, "Forms", Me. Nane
End Sub

L oadBinaryResour ce

This method loads the specified resource and returns it as a Byte array. It returns Null
if the resource cannot be found.

The syntax is:

Functi on LoadBi naryResource(ResourceFile As String, _
ResourceG oup As String, _
Resourcel D As String) As Variant

L oadStringResour ce

This method loads the specified resource and returnsit as a string. It returns an empty
string if the resource cannot be found.

The syntax is:
Function LoadStri ngResource(ResourceFile As String, _

ResourceG oup As String, _
Resourcel D As String) As String

-303 -

Construct Spectrum SDK for Client/Server Applications

M essage

This method returns aresource identified by a resource ID. The resource file and re-
source group are not specified in this method; they are specified by calling the
SetDefaultM essageGroup method.

The syntax is:

result = object.Message(Resourcel D, Default Message, Substitutions...)

Before using this method, you must set the default resource file and resource group by
calling the SetDefaultM essageGroup method. Once you have set the default resource
file and group, you can call the Message method repeatedly without having to specify
the resource file and resource group each time.

The Substitutions argument is optional. Use it to pass as many substitution parameters
as are required by the message. If you do not pass enough substitution parameters, the
remaining ones in the message will be replaced by “***”.

M essageEx

This method returns aresource identified by a resource file, resource group, and re-
source ID.

The syntax is:

result = object.MessageEx(ResourceFile, ResourceG oup, ResourcelD, _
Def aul t Message, Substitutions...)

The Substitutions argument is optional. Use it to pass as many substitution parameters
as are required by the message. If you do not pass enough substitution parameters, the
remaining ones in the message will be replaced by “***”.

SetDefaultM essageGroup

This method sets the default resource file and resource group used by the Message
method when |oading resources.

The syntax is:

obj ect . Set Def aul t MessageG oup ResourceFil e, ResourceG oup

~304 -

Internationalizing Your Application

Properties
This section discusses the properties of the Resource class used in localizing an appli-
cation. These properties include:
« Language
» LanguageRegistryKey
» LanguagelNIKey
» ResourceFilePath

Specifying Language, L anguageRegistryK ey, and Languagel NIK ey properties setsthe
language code used for all resource lookups. The most recently set of these three prop-
ertiesoverridesthe settings of the other two properties. Use ResourceFilePath to specify
asearch path for resources.

L anguage
This property sets the language code used for all resource |ookups.
The syntax is:

Language As String

Y ou must define a mapping between language codes and user languages. For example,
you could choose to use the same language codes that Natural uses (1 for English, 2 for
German, 3 for French...).

When accessing a resource, the Resource class uses this language code as afile name
extension to obtain thefile name of the resourcefile. For example, if Language contains
“1” and you use the following method:

strResource = Res.LoadStringResource(“Forms”, “frnOpen”, “Caption”)
the resource class looks for afile called “Form.1” in the resource path.

Read this property to obtain the current language setting if either LanguageRegistryKey
or Languagel NIKey has been used to specify the language setting.

- 305 -

Construct Spectrum SDK for Client/Server Applications

L anguageRegistryK ey

The language code is automatically read from this Windows Registry key.

The syntax is:

LanguageRegi stryKey As String

Use LanguageRegistryKey to specify avalid registry key, beginning with one of:
HKEY_CLASSES ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

and ending with avalue name. For example:

. LanguageRegi stryKey = "HKEY_CURRENT_USER\" & _

"Software\" & _

"SoftwareAG " & _

"CST Franeworks\" & _

"Language"
For every call to LocalizeForm, LoadStringResource, or L oadBinaryResource, the cur-
rent value of this setting will be read to determine which language set to use.

L anguagel NI K ey

This property is similar to LanguageRegistryKey, but the language setting is automati-
caly read from this.INI key.

The syntax is:

Languagel Nl Key As String

Use Languagel NIK ey to specify avalid .INI file, section, and key name, each separated
by a Tab character. For example:

. Languagel Nl Key = "C:\W ndows\ CST411.INI" & vbTab & _
"Settings" & vbTab & _
"Language"

— 306 -

Internationalizing Your Application

Resour ceFilePath
This property sets the resource file path used to search for resourcefiles.

The syntax is:

ResourceFil ePath As String
Paths are separated by the semicolon character. For example:

. ResourceFi |l ePath = "\\ SERVER\ Resources;" & _
"C:\ Program Fi | es\ Denps\ Denpnl"

Setting the ResourceFilePath property allows resource files to residein multiple loca-
tions. Y ou will want to store resource files used by many different applications on a
shared network resource and store appli cation-specific resource files in that applica
tion’s directory.

- 307 -

Construct Spectrum SDK for Client/Server Applications

Hints for Developers

The following sections provide information to help you use Construct Spectrum’sin-
ternationalizing features to the maximum advantage.

Setting the Language Automatically

The Resource class reads the current language setting and uses that information to ac-
cess the language set. This choice is made before the Resource class loads any
resources. This structure allows you to centralize the language setting and have changes
to that setting automatically reflected across all applications.

To set language automatically, ensure that all applications using the Resource class
share a standard LanguageRegistryKey or Languagel NIKey. If all applications stan-
dardize on a specific Registry key or .INI file key to store the current language, then
changing the language in one application sets the language in al applications.

Strategy for Using Resour ce Filesand Groups

To organize resource files and groups efficiently, use one resource file for each mgjor
component (or layer) of the application being localized. For example, you might sepa-
rate your resources into the following files:

» resources used by all framework components
» resources used by all application-specific components

» resourcesshared by all application componentsand layers, for example, OK and Cancel
button prompts. Link other resources to the resourcesin thisfile.

Within each resource file, consider using one resource group for the GUI controls of
each form. This approach makes it easy to usethe LocalizeForm method. Then use an-
other resource group for messages and other resources that are not necessarily linked to
GUI control properties, for example, .Caption or .Text.

Construct Spectrum supplies two resource files that implement internationalization of
framework components and shared application components. These files are called
Fwk.* and Global.* respectively.

The Visual Basic maintenance models (VB-Maint-Dialog and VB-Maint-Object) are
designed to generate code that looks for resourcesin aresourcefile called App.*. Par-
tition the resources for your application using this scheme.

By default, the Construct Spectrum framework looks for resource files in the applica-
tion directory. If you are developing an international application, you will need to
ensurethat all necessary resourcefilesreside in the application directory. If you follow
the recommended partitioning of resources described above, you need to copy the
Fwk.* and Global.* resource files from the Framewrk directory to your application di-
rectory. Next, you need to create App.* resourcefiles and create resources for your
application-specific forms and messages.

- 308 -

Internationalizing Your Application

Starting an Application in a Specific Language

Construct Spectrum applications provide the ability to start in a specific language. By
interrogating the Windows locale setting and mapping it to alanguage code, you can
specify alanguage other than English.

When each form in the application is loaded, its Form_Load event callsaLocalize
method. The Localize method convertsthe form so it isdisplayed in the language indi-
cated by the Windows local e setting.

Tip: Youmay want to test your application with adifferent Windows local e setting to
ensure that all captions on the application forms are properly formatted.

» To change your Windows locale setting:

1 Select Settings > Control Panel from the Start menu.
The Control Panel window is displayed.

2 Select Regional Settings.
The Regional Settings Properties window is displayed:

- 309 -

Construct Spectrum SDK for Client/Server Applications

Reqional Seftings Properties [2] !
Regional Settings INumberI Eurrenc_l,ll Time I Date I [ript Lu:u:alesl

b any programs support intermational zettings. Changing the Regional
Settings affects the way these programs dizplay and sort dates, times,
currency, and numbers,

Er‘u|i:§:h [United St

[Set as sypstem default locale

| ok, I Cancel Ll

Specifying the Language in the Regional Settings Properties Window

3 Select the desired locale from the drop-down list in the Regional Settings tab.

Associating Windows L ocale Setting with a L anguage

The Windows local e setting is mapped to alanguage code by the GetUserDefaultNAT-
LangCode function (located in CSTUtils.bas). This function returns a Language code,
using the same language codes as Natura (for example, 1=English and 2=German)
based on the Windows local e setting. Use this valueto set Res.Language, where Resis
aglobal referenceto the Resource class. The mapping of local e setting to language code
is implemented with the MAPPING constant, as depicted in the following code
example:

-310-

Internationalizing Your Application

Example of using the MAPPING constant

Publ i ¢ Function Get User Def aul t NATLangCode() As | nteger

Thi s constant defines the mappi ng bet ween W ndows | anguage | Ds and

Nat ural | anguage codes. Entries have the format nn=ww, where nn is

the Natural |anguage code and w i s the W ndows | anguage |ID.
Const MAPPI NG = "01=09, 02=07, 03=12, 04=10, 05=16, 06=19, 07=31, ..."

End Function

Changing Language at Runtime
To support changing the user language at runtime;

» Theuser interface must include afunction to change the language, for example, amenu
command, keystroke combination, or button.

» Each form must implement alocalization procedure that localizes the form, perhaps by
calling the L ocalizeForm method.

» Thelocalization procedure must be called both when the form loads and whenever the
user changes the language at runtime. To implement changing the language at runtime,
declare the localization procedure as public. When the user changes the language, the
event code iterates through all loaded forms and calls their localization procedures, as
shown in the following example:

Publ ic Sub Locali zeAl | LoadedFor ns
Cal | ed whenever the user changes the | anguage at runtine.
Dmfrm As Form
For Each frmIn Forns
Use an error handler in case the form doesn't have a
Local i ze procedure.
On Error Resune Next
frmLocalize
On Error Goto O
Next
End Sub

Note: Theclient framework includes the LocalizeAllL oadedForms procedure and
all generated forms support the L ocalize method. However, you must codethe
user interface command to invoke this procedure if you are developing an ap-
plication that can change language at runtime.

-311-

Construct Spectrum SDK for Client/Server Applications

-312 -

APPENDIX A: MODIFYING CONSTRUCT
SPECTRUM MODELS

This appendix provides a guideline to follow when creating new models based on the
VB-Maint-Dialog model. Use this appendix to learn about the relationships among the
components used to generate maintenance dialogs.

The following topics are covered:
« VB-Maint-Dialog M odel, page 314
« VB API, page 316
+ How theVB API Works, page 317
« GUI Controlswith the VB API, page 319
« Parameter Data Areas (PDAS) Used, page 324

-313 -

Construct Spectrum SDK for Client/Server Applications

VB-Maint-Dialog Model

A variety of components participatein the generation of Visual Basic maintenance di-
alogs. Theillustration of the mode! architecture for the VB-Maint-Dialog model shows
the relationships among these components. Use this illustration as a guide if you plan

to change the VB-Maint-Dialog model or create your own GUI models:

CMDA9

'7 (code frame)

y

v v

Architecture of the VB-Maint-Dialog Model

CUMDNKY CUMDPR CUMDN1
(driver - key (pre-gen) (driver)
generation)
; !
CUMDN3
(driver for gpgct)iﬁ
redi
CPUXPAND) (Predict AP1) CUMDNS
v »{ (grid event
CPUXPAND l code driver)
CUMDNA
(build grid
v array) i
CUMDN5 CPU-0BJ2
(driver for (Predict API)
CUMDN?2)
v v v v v v v I v
CPU-0BJ2 CUMDNE CUMDNJ CUMDND CUMDNI CUMDN9 CUMDNB CUMDNH CUMDNG CUMDNO
(Predict API) | | (change label) | | (focus ongrid | | (validate grid | | (highlight grid | | (grid variable | | (grid actions) (obtain grid (grid event (grid event
error cell) action) error cell) declaration) column info) code) code, contd.)
I
l ¢ ¢ ¢ | M\ | M g |
CUMDNR CUMDN4 CUMDN7 CUMDNN CUMDNL N L
(driver for (copy object to (control event (MU (Option Button —
CUMDN?2) form) logic) declarations) declarations) f
CUI\;I'DNG CUI\‘/I'DNB CUI\;ITZ)NK CUI\;E)NM CUMDNC CUMDNF
rid utility - rid utility -
vy v (check remote (combobox (call Combo (set Option (gfonNar[t‘y (%ackwa%
CUMDN2 error) population) Load) Button values) recurse) recurse)
(GUI defns) I [¢ I]
CSVUDERV
»{ (GUI control
derivation)
Y i
CUMDNTYP + VBAPI.
(VB API driver)t - - - - - - - 4 »

Astheillustration shows, many of the routines are called by CPU-OBJ2. CPU-OBJ2
accepts a Predict file name and a subprogram name. CPU-OBJ2 calls this subprogram
for each field in the Predict file. The subprograms generate segments of code based on
the Predict information that i s passed by CPU-OBJ2. For example, CUMDN4 generates
Visual Basic codethat copies the contents of each field to arelated GUI control.

—314-

Appendix A: Modifying Construct Spectrum Models

Example of generated code

Private Sub CopyObj ect ToForm

I nhi bitValidations = True
On Error GoTo For mAssi gnment Error
Wth Internal Object
t xt _Enpl _Personnel I d. Text = _
BDT. Convert ToDi spl ay(. Fi el d(" PERSONNEL-|D"),
Nat For mat Lengt h: =" A8")
t xt _Enpl _FirstNane. Text = _
BDT. Convert ToDi spl ay(. Fi el d(" FI RST- NAME") ,
Nat For mat Lengt h: =" A20")

-315-

Construct Spectrum SDK for Client/Server Applications

VB API

TheVB-Maint-Dialog model uses a series of Natural subprogramsthat generate Visual
Basic definitions into the source area. Collectively, these Natural subprograms are
caledtheVB API. TheVB-Maint-Dialog model usesthe VB API to generate the visual
definition — the various GUI controls— of aVisual Basic maintenance dialog. If your
models generate Visual Basic forms, they can also usethe VB API.

Components of the VB API

Three components exist for each type of GUI control supported by the VB API:
» A subprogram to assign user-defined default values for the properties of a GUI control.
+ An LDA to store the Visua Basic default values for the properties of a GUI contral.
» A subprogram to write the GUI definition to the source area.

A series of PDAS store property information for GUI control definitions. GUI control
properties are grouped by function into different PDAs. For example, al GUI control
properties related to font are stored in the CSVAFONT PDA. Any GUI control that im-
plements font properties declares the font PDA, CSVAFONT.

To seethelist of GUI controls supported by the VB API, see GUI Controlswith the
VB API, page 319. For each GUI control, the table in this section indicates:

» The subprogram responsible for assigning user defaults.
» The subprogram responsible for writing the GUI definition to the source area.
» ThePDAs that must be passed to these subprograms.

- 316 -

Appendix A: Modifying Construct Spectrum Models

How the VB APl Works

» Yo usethe VB APl with amodel you create:

1 Call the user default subprogram.
The user default subprogram assigns your organization’s defaults for GUI control
properties. With this subprogram, you can write code to assign default values once —
not in every subprogram that usesthe VB API. For example, suppose your organization
requires the field captionsin all dialogsto bein an eight-point MS Sans Serif font.
Writing thefollowing code in the user default subprogram CSVBDLBL (for Label GUI
controls) assigns the organization’ s required values.

Example of codein the user default subprogram

COVPRESS #DOUBLE- QUOTE ' MS Sans Serif' #DOUBLE- QUOTE
I NTO CSVAFONT. FONT_NAME LEAVI NG NO SPACE
ASSI GN CSVAFONT. FONT_SI ZE = 8

For more information, see Setting Generation GUI Standards, page 143.

2 Assign any GUI control properties that are appli cation-specific.
For example, the Caption property of the Label GUI control varies becauseit is based
on the name of the database field with which it is associated. Therefore, you would not
want to assign this type of GUI control property in the control’ s default subprogram.

Example of assigning a value to the Caption property

CSVAFRMT. CAPTI ON : = CPA- ODAT. FI ELD- NAME

For another example, refer to the CUMDNTY P driver program for the VB-Maint-Dia-
log model.

3 Call the Create subprogram that writes the GUI definition to the source area.
The Create subprogram compares the value assigned to a particular GUI control
property with the default value used by Visual Basic. If the assigned value differs from
the Visual Basic default value, the Create subprogram generates the property
assignment into the source area. However, if the assigned value matches the Visual
Basic default value, the Create subprogram saves source area space by suppressing
generation of the property assignment.

Consider the FONT_NAME and FONT_SIZE properties set in the earlier example. Vi-
sual Basic’'s default property values for aLabel GUI control are an eight-point font and
aMsS Sans Serif font. The Label GUI control definition (generated by CSVBCLBL)
shown below does not include assignments for the font name and size.

-317 -

Construct Spectrum SDK for Client/Server Applications

Example of using default values

Begi n VB. Label |bl_Enpl _Personnel I d
Caption = "Personnel /id:"
Aut 0Si ze = -1

Left = 100
Top = 295
Hei ght = 285
Wdth = 1073
End

- 318 -

Appendix A: Modifying Construct Spectrum Models

GUI Controlswith the VB API

Thefollowing table lists the GUI controls the VB-Maint-Dialog model uses. Also in-
cluded are the subprogram names and parameter data areas (PDA) associated with each
GUI control:

GUI Control User Default Create PDAs

CheckBox CSVBDCHK CSVBCCHK CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

3DCheckBox CSVBD3CH CSVBC3CH CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

ComboBox CSvBDCBO CSVBCCBO CSVACMBO
CSVACOMN
CSVAFOCS
CSVAFONT
CSVALBOX
CSVALCTN
CSVAMOUS
CSVATBOX
CSASTD

CommandButton CSVBDCMD CSVBCCMD CUMDATYP
CSVACOMN
CSVABUTN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSASTD

-319-

Construct Spectrum SDK for Client/Server Applications

GUI Control User Default

Create

PDAs (continued)

3Dcommand CSVvBD3CD

Button

Form CSVBDFRM

Frame CSVBDFRA

3DFrame

CSVBD3FR

L abel CSVBDLBL

CSVBC3CD

CSVBCFRM

CSVBCFRA

CSVBC3FR

CSVBCLBL

-320 -

CUMDATYP
CSVALCTN
CSVACOM
CSVA3CMD
CSASTD

CUMDATYP
CSVACOMN
CSVADDE
CSVAFONT
CSVAFORM
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

CUMDATYP
CSVASDI
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSASTD

CUMDATYP
CSVACOMN
CSVADDE
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALABL
CSVALCTN
CSVAMOUS
CSASTD

GUI Control

User Default

Create

Appendix A: Modifying Construct Spectrum Models

PDAs (continued)

ListBox

MDIForm

Menu

OptionButton

3DOptionButton

CSVBDLST

CSVBDMFM

CSVBDMNU

CSVBDOPT

CSvBD30OP

CSVBCLST

CSVBCMFM

CSVBCMNU

CSVBCOPT

CSVBC30P

-321 -

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVALBOX
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFRMT
CSVALCTN
CSVAWNDW
CSASTD

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFRMT
CSVAMENU
CSASTD

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

Construct Spectrum SDK for Client/Server Applications

GUI Control

User Default

Create

PDAs (continued)

StatusBar

TextBox

Timer

3DPanel

TrueDBGrid

CSVBDSTA

CSVBDTXT

CSVBDTMR

CSVBD3PN

CSVBDGRD

CSVBCSTA

CSVBCTXT

CSVBCTMR

CSVBC3PN

CSVBCGRD

-322 -

CUMDATYP
CSVACOMN
CSVASDI
CSVAFOCS
CSVALCTN
CSVASTAT
CSASTD

CUMDATYP
CSVACOMN
CSVADDE
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATBOX
CSVAWNDW
CSASTD

CUMDATYP
CSVACOMN
CSVALCTN
CSVATIME
CSASTD

CUMDATYP
CSVASDI
CSVASDPN
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALABL
CSVALCTN
CSVAMOUS
CSASTD

CUMDATYP
CSVACOMN
CSVALCTN
CSVAFOCS
CSVAGRID
CSASTD

Appendix A: Modifying Construct Spectrum Models

GUI Control User Default Create PDAs (continued)

Toolbar CSvBDTLB CSVBCTLB CUMDATYP
CSVASDI
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAMOUS
CSVATOOL
CSASTD

-323 -

Construct Spectrum SDK for Client/Server Applications

Parameter Data Areas (PDAS) Used

Thefollowing tableliststhe PDAs used with the VB-Maint-Dialog model. Included are
the properties associated with each PDA and the GUI controlsthat use the PDA. These
PDAsare also cross-referenced by GUI control and subprogram in GUI Controlswith
the VB API, page 319.

Some of the properties are identified with superscript numbers. When a GUI control is
shown with a superscript number, the corresponding property isnot used. For example,
the first PDA in the following table has a BackColor property identified with a super-

script number of 1. The GUI control 3DCheckBox field also has a superscript value of
1. This means that the 3DCheckBox field does not use a BackColor property.

PDA Name Properties Used By GUI Contral
CSVACOMN ' BackColor! CheckBox
(common information) Enabled? 3DCheckBox?
3 ComboBox
Index 4 CommandButton
Name 3
5 Form
Teg Frame
Visible® 3DFrame!
Label
ListBox
MDIForm®-36
Menu

OptionButton
3DOptionButton'
StatusBar 123456
TextBox

TimerL:6

3DPanel

TrueGridPro
ToolBar

~324-

Appendix A: Modifying Construct Spectrum Models

PDA Name Properties Used By GUI Contral

(focus information) Tabindex? 3DCheckBox
3 ComboBox
TabStop CommandButton

MDIForm? 3

Menu? 3
OptionButton
3DOptionButton

StatusBart3
TextBox

3DPanel®
TrueGridPro

ToolBar? 3

CSVATOGL Vaue CheckBox

(toggle information) 3DCheckBox
OptionButton
3DOptionButton

CSVAFRMT Alignment? CheckBox?
(text formatting BorderStyle? 3DCheckBox?
information) .3 1,2
Caption CommandButton™
Form?!
Frameb

3DFrame?
L abel

MDIForm®?
Menul2
OptionButton?
3DOptionButton?
TextBox®
3DPanel?
TrueGridPro®3

2

—-325-

Construct Spectrum SDK for Client/Server Applications

PDA Name

Properties

Used By GUI Contral

CSVAMOUS

CSVAFONT
(font information)

Draglcont
DragMode?
M ousePointer3

FontBold?!
Fontltalic?
FontName®
FontSize*
FontStrikethru®
FontTransparent®
FontUnderline’
Font3D8
ForeColor®

- 326 —

CheckBox
3DCheckBox
ComboBox
CommandButton

Form®2

Frame

3DFrame

Label

ListBox
OptionButton
3DOptionButton
TextBox

3DPanel
TrueGridProToolBar

CheckBox®?
3DCheckBox®
ComboBox®88
CommandButton
Form®

Frame®8
3DFrame®
Label®8
ListBox58
OptionButton®?
3DOptionButton®
TextBox88
3DPanel®
TrueGridPro®8
ToolBar®82

6,8,9

Appendix A: Modifying Construct Spectrum Models

PDA Name Properties Used By GUI Contral
CSVALCTN Left! CheckBox
(location information) LeftDerive 3DCheckBox
Top? gombOBgl)é tt
- ommandButton
TopDeglve Form
Height” Frame
HeightDerive 3DFrame
Width* Label
WidthDerive ListBox
MDIForm
OptionButton
3DOptionButton
StatusBar
TextBox
Timer34
3DPanel
TrueGridPro
CSVADDE Linkitem? Form®3
(DDE information) LinkM ode? L abel TextBox
LinkTimeout®
CSVAFORM AutoRedraw Form
(form control Control Box
information) DrawMode
DrawStyle
DrawWidth
FillColor
FillStyle
KeyPreview
MaxButton
MDIChild
MinButton
Picture
(abel control BackStyle? 3DPanel?3
information) 3
WordWrap
CSVAMENU Checked Menu
(menu control ShortCut WindowL.ist
information)

- 327 -

Construct Spectrum SDK for Client/Server Applications

PDA Name Properties Used By GUI Control
CSVABUTN Cancel CommandButton
(command button Default
control information)
(listbox control , 2 ComboBox12
information) MUItISfeCt
Sorted
CSVASTAT _Version StatusBar
(status bar _ExtentX
information) _ExtentY
_StockProps
SimpleText
(textbox control 2 ComboBox 1234
information) M axL gngt;
MultiLine
PasswordChar
Text®
CSVATIME Interval Timer
(timer control
information)
CSVACMBO Style ComboBox
(combobox control
information)
CSVA3DI Align* 3DPanel*
(3D information) outline? 3DFrame'?
ShadowColor® Toolbar®*
ShadowStyle®
CSVAWNDW ClipControlst Form®
(window information) lcon? Frame?3:4
Scrollbars® MDIForm?
WindowState® TextBox124

- 328 -

Appendix A: Modifying Construct Spectrum Models

PDA Name Properties Used By GUI Control
CSVA3DPN Bevellnner 3DPanel
(3D panel information) BevelOuter

BevelWidth

BorderWidth

FloodColor

FloodPercent

FloodShowPct

FoodType

RoundedCorners
CSVAGRID OLEObjectBlob Grid
(TrueDBGrid control
information)
CSVA3CMD

-329 -

Construct Spectrum SDK for Client/Server Applications

- 330 -

INDEX

A

Active help
drop-down list
diagram, 279
for maintenance dialogs, 277
foreign field help, 278
primary key help, 277
Adding anew field by hand
on maintenance dialog, 152
Add-Ins Menu
options, 25
Appendix
See Modifying Spectrum models
AppendSlash
utility procedure, 259
Application interface
demo project, 50
Application settings
AppSettings.bas
definition, 213
customizing, 214
Startup.bas
definition, 213
understanding, 213, 215
ApplicationName
description, 214
AppSettings.bas
description, 106
See also application settings, 213
Architecture
Construct Spectrum applications, 26
ArrayDimensions
utility procedure, 259
ASSERT
utility procedure, 259
Assigning
corporate defaults, 141

-331-

B

BDT_PHONE
business data type, 262

Browse

modules
downloading to project, 188

support
ApplicationControl, 215
ApplicationControls, 215
BrowseBase.cls, 215
BrowseDataCache, 215
BrowseDataColumn, 215
BrowseDataColumns, 215
BrowseDataRow, 215
BrowseDataRows, 215
BrowseDialogBase.cls, 215
BrowseDialogOptions.frm, 216
BrowseM anager.cls, 216
ColumnDisplay, 216
ColumnsDisplay, 216
FieldKey, 216
FieldKeys, 216
GenericBrowse.frm, 216
GenericMDIBrowse.frm, 216
KeyMatch, 216
understanding, 215

Browse Command handlers
coding, 198
enabling browse commands, 198
example of code to assign command
IDs, 198
example of code to mark updated
rows, 200
example of code to update, 199
creating, 197
diagram of Browse Command handler
interaction, 195
drill-down capabilities, 276

Construct Spectrum SDK for Client/Server Applications

Browse dialogs
browse object subprogram, 177
browse object subprogram proxy, 178
components of
client framework components, 176
object browse subprogram, 176

object browse subprogram proxy, 176

Visual Basic browse object, 176
creating with individual models, 175
diagram of components, 177
drilling down from, 276
framework components, 179
integrating with maintenance dialogs,
275

see also integrating browse and

maintenance dialogs
modules required for, 84
prerequisites for generating with
individual models, 181
purpose, 176
Visual Basic browse object, 178

data cache, 178

Browse object
See also Visual Basic browse object
see Visual Basic browse object
subprogram

generating, 182

Browse subprogram proxy
generating, 182
BrowseM anager class
BrowseManager methods
list of services, 194
BrowserExists procedure
(TableName) As Boolean, 245
example code, 255
updating, 255
Browsing for business objects
customizing browse options, 71
demo project, 68
Business data types
demo project, 63
setting up in Predict
example code for, 138

C

Calculated fields
code examples, 145
creating, 145
CenterForm
utility procedure, 259

CheckBox field
adding to maintenance dialog, 155
CheckBox grid column
adding to maintenance dialog, 161
Checklists
Construct Spectrum project, 103
creating browse dialogs with individual
models, 181
creating maintenance dialogs with
individual models, 116
moving non-object based applicationsto
Construct Spectrum, 203
moving object-based applications to
Construct Spectrum, 202
super model generation, 80
Client framework
customizing
application settings, 214
menu and tool bar
See menu and toolbar, 233
object factory, 246
diagram of components, 208
internationalizing
See Internationalizing, 302
introduction, 208
multiple-document interface, 242
object factory, 243
Resource class, 302
initializing an instance, 302
understanding and customizing, 207
utility procedures, 259
Client modules
generation overview, 35
Client/server applications
architecture, 26
CLIENT-VALIDATIONS user exit
validating data, 267

Index

ComboBox GUI control

adding to maintenance dialog, 154
Command buttons

foreign field support, 294
Command handlers

browse

drill-down capabilities, 276

Commands

defining, sending, and handling, 221
Compressing data

enabling for client to server

transmissions, 119-120, 184

Construct Spectrum
creating your application, 34
description, 22
documentation, 19
moving Natural Construct applications
to, 16
Construct Spectrum Add-In
overview, 42
Construct Spectrum applications
diagram of architecture, 26
Construct Spectrum project
creating, 104
downloading generated components to,
107
prerequisites, 103
setting up, 101
Construct Spectrum SDK
documentation, 18
documentation and course information,
18
Conventions
typographical
used in this guide, 17
Corporate defaults
assigning, 141
Courses
related Natural Construct, 20
Create a New Project window
description, 104
CreateArray
utility procedure, 259

CreateForm procedure
description, 252
example code, 252
updating, 252

- 333 -

CreateStringArray
utility procedure, 259
Cresating
applications, 34
calculated fields, 145
Construct Spectrum applications, 16
Construct Spectrum Project, 104
CSTFormatM essage
utility procedure, 259
CST SelectContents
utility procedure, 259
CSTSubst
utility procedure, 259
CSTUtils.bas
utility procedures, 259

CsTVBRW.dII
customizing client framework
components, 209
CSXDEFLT
changing values in model default
subprogram, 288
Customizing
application and environment, 36
browse dialog
display options, 71
recommendations for a new
application, 190
browse dialogs, 195
BrowseM anager methods, 194
diagram of internal structure, 193
on the client
See Customizing on the client, 195
on the server
See Customizing on the server, 195
understanding Browse Command
handlers
See Browse Command handlers,
195
using BrowseManager class, 192
business data types, 180
descriptive fields, 180
maintenance dialog
overriding default GUI control
selection, 133
server options, 131
server tasks, 132
strategies for, 129
user-defined user exits, 131

Construct Spectrum SDK for Client/Server Applications

Customizing browse dialogs
using the BrowseManager class, 191
diagram of interaction to display a
browse dialog, 192
Customizing on theclient
understanding the BrowseM anager class
displaying the browse dialog, 190
returning a specific row of data, 191
returning all rows of data, 191
supporting a browse command
handler, 190
Customizing on the server
browse object Predict setup, 195

D

Data compression
enabling for client to server
transmissions, 119-120, 184
Data encryption
enabling for client to server
transmissions, 120, 184
Data sources
defining alternate, 185

Database ID

specifying in anew project, 104
DBID

description, 215

number

specifying in a new project, 104

Debugging

client/server applications, 36
Default GUI derivation logic, 137, 139

diagram, 139-140
DefaultLibrary

description, 215
Defaults

used by super model, 80
Defining

alternate browse data sources, 185

example code, 187

general package parameters, 95

specific package parameters, 97
Demo application

application interface, 50

browsing for business objects, 68

business data types, 63

~334-

customizing browse options, 71
drop-down grids, 66
foreign fields on amaintenance dialog,
69
generated modules, 45
grids, 64
mai ntai ning a business object, 61
making the .EXE file, 49
nested grids, 65
opening a business object, 57
overview, 38, 43
remote dispatch service options, 55
running, 47
troubleshooting, 75
validations, 62

Dependencies between models, 85

Deploying

procedure, 36
Deploying applications

overview, 36
Derivation logic

GUI controls, 132
Descriptions

foreign fields, 289

refreshing, 291

Developing Client/Server Applications
how to use guide, 16
layout, 14
Development environments
description, 23
Development process
stepsinvolved in developing an
application, 30
Dialogs, browse
see Browse dialogs
Dialogs, maintenance
see Maintenance dialogs
Dispatch service data
role on mainframe server, 27
Dispatch services
options, 55
Dispatcher
Selection window
See Spectrum Dispatch Client, 258
Dispatcher Selection window
customizing client framework
components, 258

Index

Displaying
grids, 167
Documentation
related Construct Spectrum, 19
related Construct Spectrum SDK, 18
related Natural Construct, 18-19
Domains
setting up application environment, 33
specifying in super model, 95
Downloading
browse modulesto the client, 188
Download Generated M odules window,
107
Downloading M odules window, 126
generated components to project, 107
maintenance modules to the client, 125
Drilling down from a browse dialog, 276
Drop-down grids
demo project, 66
Drop-down list
representing aforeign field, 286
dialog, 286
Drop-down lists
active help from
diagram, 279
foreign field support, 292

E

Encrypting data
enabling
client to server transmissions, 120,
184
Entire Broker
role on mainframe server, 28
Error notifications
adding support for sound, 169
ErrorPreferences.frm
description, 272
ErrorTip.frm
description, 272
EXEfile
making for demo project, 49
Existing applications
moving to Construct Spectrum, 201

—-335-

External data

accessing with VB-Browse-Local-Data-

Object model, 185

displaying in a generated combo box,
136

example code for accessing, 187

F

Field help
active help, 277
File number
specifying in anew project, 104
FileExists
utility procedure, 259
FindFirst
utility procedure, 259
FixupRTF
utility procedure, 259
FK-AS-COMBO-THRESH-HOLD
changing default value, 288
FNR
description, 215
FNR number
specifying in anew project, 104
Forcel ogonAtStartup
description, 214
Foreign fields
active help, 278
case for not using, 283
diagram, 283
corporate default threshold, 141
default GUI controls, 288
demo project, 69
displaying descriptions, 289
GUI controls used to represent, 285
multiple descriptive values, 290
refreshing descriptions, 291
repeating relationships, 283
diagrams of, 283
representing in
drop-down lists, 286
grids, 287
lookup buttons, 286
supported relationships, 282
diagram, 282
supporting code
command buttons, 294
drop-down lists, 292

Construct Spectrum SDK for Client/Server Applications

G

G/R/O

in super model wizard, 92
Generated code

transferring to the project, 35

Generating
browse subprogram proxy, 182
individual models, 34
maintenance dialog, 122
maintenance subprogram proxy, 117
object factory
considerations for, 82
super model, 93, 98
diagram of, 78
new package, 90
overview, 78
packages and object factory, 88
specific packages, 90
super model wizard
Standard Parameters window, 87
Visual Basic browse object, 182
Visual Basic maintenance object, 118
Generation process
overview of server/client modules, 34
GetBrowser
TableName As BrowseManager, 245

GetBrowser procedure
example code, 254
updating, 253
GetPrivateProfileStringV B
utility procedure, 259
GetWindowsDirectoryVB
utility procedure, 260
Grid
representing aforeign field, 287
diagram, 287
Grids
column
adding to maintenance dialog, 156
demo project, 64
diagram
formatted grid, 167
unformatted grid, 167
displaying, 167
Grid Sizing Information window, 168

- 336 -

keyboard shortcuts, 67
resizing, 168
using, 165
GUI
generation standards
defining, 143
GUI controls
default controls for foreign fields, 288
default derivation logic, 137, 139
diagram, 139-140
derivation logic, 132
keywords, 135
naming conventions, 132
overriding default selection, 133
representing foreign fields, 285
GUI dialog
role on Windows platform, 29
GUI_ALPHA MULTILINE keyword
description, 135
GUI_CHECKBOX keyword
description, 135
GUI_COMBOBOX keyword
description, 135
GUI_NULL keyword
description, 135
GUI_OPTION BUTTON keyword
description, 135
GUI_PROTECTED keyword
description, 136
GUI_TEXTBOX keyword
description, 136

H

Help
See online help, 31
HKEY_CLASSES ROOT
language registry, 306
HKEY_CURRENT_USER
language registry, 306
HKEY_LOCAL_MACHINE
language registry, 306
HKEY_USERS
language registry, 306

Index

| IsForegroundApplication

. utility procedure, 260
Individual models IsMDIChild

when to use, 34 utility procedure, 260
[nitAppSettings procedure

example, 214
InitializeOpenDialog procedure K
code example, 251 Key field active help, 277
Sgicartliaté?rz]’sgdfs’ 20 Keyboard shortcuts for grids, 67
Integrating browse and maintenance Keyvvprds
dialogs, 275 business data type, 138

GUI control, 135

design objectives, 280 verification rule, 137

drilling down from abrowse dialog, 276
overview, 276, 280, 282

see also Foreign fields, 275 L
Interface '
demo project, 50 L abel captions
Internationalizin GUI controls, 133
o Language sets

generated applications, 295

hints for developers, 308 resource files, 297

automatically setting the language, LanguageRegistryKey

308 description, 306

changing language at runtime, 311 HKEY_CLASSES_ROOT, 306

using resource files and groups, 308 HKEY_CURRENT_USER, 306
maintenance dialogs, 172 HKEY_LOCAL_MACHINE, 306
methods, 302 HKEY_U SERS, 306

GetResourceGroup, 302 Library imagefiles

LoadBinaryResource, 302 role on Windows platform, 29

L oadStringResource, 302 L oadBinaryResource method

L ocalizeForm, 302-303 description, 303

Message, 302 L oadStringResource

M essageEx, 302 description, 303

SetDefaultM essageGroup, 302
planning considerations, 296

list of translatable items, 296
properties, 305

Logon dialog
description, 258
See also Spectrum Dispatch Client, 258

L ookup button
t?gﬂ%gl S?Iiey 306 representi ng aforeign field, 286
LanguageRegistryK ey, 306 diagram of, 286
ResourceFilePath, 307
related client framework components M
Resource, 297
ResourceGroup, 297 Maintaining a business object
using the client framework, 297 demo project, 61
where to find related information, 295 Maintenance dialogs
Invoking abbreviated object description, 133
super model, 86, 94 active help for, 277

adding new field by hand, 152
controlling default size, 144

- 337 -

Construct Spectrum SDK for Client/Server Applications

customizing on the server, 132
integrating with browse dialogs, 275
see also Integrating browse and
maintenance dial ogs
internationalizing, 172
model
using, 122
modules required for, 83
object identifier, 133
prerequisites for generating with
individual models, 116
Maintenance modules
relationships between, 114
to download to project, 125
Maintenance object
see

Maintenance object subprogram
generating, 116

Maintenance subprogram proxy
generating, 117

Max
utility procedure, 260

MDI
See multiple-document interface, 242

MDIFrame.frm
description, 242
Menu
bar
definition, 242
structure
See menus and toolbars, 234

Menus and toolbars

command handling
class summary, 221
coding, 224
defining, sending, and handling, 221
linking commands, 224
understanding, 220
unhooking commands, 233
user interface controls, 226

customizing, 233
menu bar example, 237
menu editor window, 238
menu structure, 234
toolbar button example, 241
toolbar structure, 240

demo application, 51

- 338 -

support
ulCmd, 219
UlCommandConstants.bas, 219
UlCommands, 219
M essage method
description, 304
M essageEx method
description, 304
Methods
coding the UICommandTarget(), 199
internationalizing
See also Internationalizing, 302
marking updated rows, 200
Min
utility procedure, 260
Modal browse window
example, 277
Models
deciding which to use, 34
dependencies between, 85
Modifying
Spectrum models, 313
example of generated code, 315
GUI controls with VB API, 319
how the VB API works, 317
parameter data area (PDA) used, 324
VB API, 316
components
Seealso VB AP
VB-Maint-Dialog model, 314
VB-Maint-Dialog model architecture,
314

Modules

custom-created, 245

deciding which to generate with super

model, 82

naming conventions, 80

diagram, 80

to download to project, 108

uploading changes to the server, 129
Monitor resolution

effect on dialog size, 144
MoveFormSafely

utility procedure, 260
Multi-column layout

creating on dialog, 149

example, 149

Index

Multilingual support
See Internationalizing, 172
Multiple descriptive values for aforeign
field, 290
Multiple Generation utility
using with super model, 93
Multiple-document interface
MDIFrame.frm, 242
Menu Bar, 242
Status Bar, 242
Toolbar, 242
understanding, 242

N

Naming conventions
GUI contrals, 132
super model, 80
diagram, 80
Natural Construct applications
moving to Construct Spectrum, 16

Natural subprogram
role on mainframe server, 27
Nested grids
demo project, 65
diagram of relationships, 165
drop-down
diagram, 166
using, 166
using, 165
Non-object based applications
moving to Construct Spectrum, 203

O

Object browse subprogram, 182
description, 84
key PDA description, 84
restricted PDA description, 84
row PDA description, 84
Object browse subprogram proxy
description, 84
Object factory
considerations for generating, 82
customizing, 246
new business abjects, 250
OFactory.bas, 243
code, 249
OFactory.bas window, 247

- 339 -

Open dialog
understanding, 244
Open.frm
definition, 243
OpenAction, 243
OpenObject, 243
OpenObjects, 243
procedures
BrowserExists(TableName) As
Boolean, 245
CreateForm(formID) As Form, 245
GetBrowser(TableName) As
BrowseM anager, 245
InitializeOpenDialog(), 245
relationship diagram, 248
selecting to generate in super model, 95
selecting to generate in super model
wizard, 88
understanding, 243-244
using, 245
example, 246
Object maintenance subprogram
description, 83
see Maintenance object subprogram,
116
Object maintenance subprogram proxy
description, 83
Object-based applications
moving to Construct Spectrum, 202
Object-Browse-Subp model
description, 84
ObjectError
description, 273
ObjectErrors
description, 273
Object-Maint-Subp model
description, 83
OFactory.bas
description, 106, 243
example, 247
OLE automation server
customizing client framework
components, 209
Online help
context-sensitive, 31
providing in client/server applications,
31
task-oriented, 31
window-level, 31

Construct Spectrum SDK for Client/Server Applications

Open didog
overview, 243
relationship diagram, 248
understanding, 244
Open.frm
definition, 243
example, 243
OpenAction
description, 243
Opening a business object
demo project, 57
OpenObject
description, 243
OpenObjects
description, 243
Option button threshold
corporate default, 141
Overflow conditions
correcting, 144, 148
correcting in adialog, 122
example, 148
working with overflow frames, 149
Overriding default GUI control selection,
133

P

Packages
generating with super model, 82
specifying parameters
general, 88
general parameters, 95
specific parameters, 90, 97
specifying prefix in super model wizard,
91
PadL eft
utility procedure, 260
PadRight
utility procedure, 260
Parameter data areas
generating for browse object
subprogram, 182
generating for maintenance object
subprogram, 116
Planning your application
consistent style, 32
content of windows, 32

—340 -

deciding what to show users, 31
number and structure of windows, 32
planning code, 32
setting up your project, 35
simple window design, 32
trandation issues, 33
Predict definitions
setting up application environment, 33
Predict Modify Verification panel
description, 137
Predict set up tasks
default GUI controls, 129
headers, 129
keywords, 129
Prerequisites
Construct Spectrum project, 103
demo application, 39
developing client/server applications, 14
super model, 80
Preserving
user exits, 129
Primary keys
active help for, 277
Product integration
Adabas, 22
Construct Spectrum, 22
DB2, 22
Entire Broker, 22
Naturdl, 22
Predict, 22
VSAM, 22
Projects
opening the demo, 40
see also Construct Spectrum project,
101
Prompt to Open New Project window
description, 105

R

Regenerating existing modules

using super model, 96

using super model wizard, 89
RegistryKey

description, 214
Relationships

between maintenance modules, 114

Index

RememberUser|D
description, 214
Remote dispatch service options
demo project, 55
Removing field
by hand from maintenance dialog, 164

Repeating field threshold
corporate default, 141
Repeating foreign fields
represented in agrid, 287
diagram, 287
supported relationships, 283
diagram of, 283
Replacing existing modules
using super model, 96
using super model wizard, 89
ResizeForm
utility procedure, 260
Resizing
grids, 168
Resizing grids
controlsin adialog, 122
Resourcefiles
composition, 297
creating links, 301
filename example, 297
path
purpose, 298
specifying binary values, 300
specifying text values, 300
how to include non-printing
characters, 300
syntax, 300
Resource groups
identifiers (RGID), 297
purpose, 297
Resource identifiers (RID)
composition, 297
Resources
linking, 299

S

Scalar field

adding to maintenance dialog, 152
SDC

See Spectrum Dispatch Client, 256

—341 -

SDCDiaog.frm
description, 256
dialog, 257
Security
considerations for a new application,
111
setting up domains, steplibs, users, and
groups, 33
Server
customizing maintenance dialogs, 132
Server modules
generation overview, 34
Server-based applications
moving to Construct Spectrum, 201
SetDefaultM essage method
description, 304
Setting up
Construct Spectrum project, 101
Predict file definitions, 133
SetUppercaseStyle
utility procedure, 260
Shortcuts
keyboard shortcuts for grids, 67
Simple foreign field relationships, 282
diagram, 282
Sound
adding to error notifications, 169
support for error notifications, 169
Sound support
overview, 170
Spectrum administration
role on mainframe server, 27
Spectrum Dispatch Client
client framework support, 256
error messages, 258
SDCDialog.frm, 256
example dialog, 257
SDCSupport.bas, 256
TraceOptions.frm, 256
example dialog, 257
Spectrum Dispatch Client (SDC)
overview, 22
Spectrum dispatch service
overview, 22
role on mainframe server, 27
Spectrum security services
rolein Construct Spectrum applications,
28

Construct Spectrum SDK for Client/Server Applications

Startup.bas
See application settings, 213
State-dependent layout
creating on dialog, 151
example, 151
Status bar
definition, 242
demo application, 54
Steplib chains
setting up application environment, 33
Strategies for customizing maintenance
dialogs, 129
Sub Main procedure
customizing client framework
components, 213
Subprogram proxies
generating for abrowse dialog, 182
generating for a maintenance dialog,
117
Subprogram proxy
role on mainframe server, 27
Subprogram-Proxy model
description, 83-84
Super model
defaults, 80
defining general package parameters, 95
defining specific package parameters,
97
General Package Parameters panel, 95
generating
in batch, 93
using wizard, 93
generating application modules, 34
generation function, 98
generation overview, 78
diagram of, 78
invoking, 86, 94
invoking the model wizard, 86
Package modules grid in wizard, 91
prerequisites, 80
regenerating existing modules, 89
replacing existing modules, 89
Standard Parameters panel, 94
troubleshooting, 100
using message numbers, 87
when to use, 78
which modules to generate, 82

—342 -

Super model wizard
New Package window, 90
Packages and Object Factory window,
88

T

Tabbed layout
creating on dialog, 150
example, 150
Testing applications
recommendations for testing new
application, 110
TextBox GUI control
adding to maintenance dialog, 153
Thresholds
foreign field, 142
option button, 142
repeating field, 142
Toolbar
buttons, 229
customizing
See menus and toolbars, 240
definition, 242
demo application, 51
TraceOptions.frm
dialog, 257
example, 257
Transferring
generated code to the client, 35

TWIPS monitor values
description, 144

Typographical conventions
used in this guide, 17

U

ulCmd
definition, 219
UlCommandConstants.bas
defining commands, 238
definition, 219
UlCommands
class, 222
definition, 219

Index

Uploading
changes to the server, 129
Uploading Modules window, 173
User exits
preserving changes by uploading to the
server, 129
user-defined for maintenance dialog,
131
User Exits panel
V B-Browse-Object model, 185
User typerules
coding, 270
example of code for Natura rule, 270
example of code for Visual Basic rule,
270
example of code using Visual Basic and
Natural, 270
Utility procedures
AppendSlash, 259
ArrayDimensions, 259
ASSERT, 259
CenterForm, 259
CreateArray, 259
CreateStringArray, 259
CSTFormatM essage, 259
CSTSelectContents, 259
CSTSubst, 259
CSTUtils.bas, 259
description, 259
FileExists, 259
FindFirst, 259
FixupRTF, 259
GetPrivateProfileStringV B, 259
GetWindowsDirectoryVB, 260
IsForegroundA pplication, 260
IsMDIChild, 260
Max, 260
Min, 260
MoveFormSafely, 260
PadL eft, 260
PadRight, 260
ResizeForm, 260
SetUppercaseStyle, 260

Vv

Validating data
creating Predict verification rules, 269
diagram of avalidation cycle, 263
examples in demo project, 62

~343-

in maintenance dial ogs, 266
hand-coding in generated dialogs, 266
using BDTs, 266

in Visua Basic maintenance objects,

267
using CLIENT-VALIDATIONS user
exit, 267
using Predict, 268

on the client
diagram of triggering validation, 265

order of precedence, 271

typed of validations, 262

types of data validation
business data type, 262
business abject, 263
local business, 262

Validation error handling

ErrorPreferences.frm, 272

ErrorTip.frm, 272

ObjectError, 273

ObjectErrors, 273

Validation errors

in business object validations, 273
example of code, 273

on the client, 272

Variable names
deriving, 132
VB API

components, 316
LDA storing Visua Basic default
values, 316
PDAsfor GUI control definitions, 316
subprogram to assign default values,
316
subprogram to write GUI definition,
316

description, 316

GUI controls, 319
3DCheckBox, 319
3Dcommand Button, 320
3DFrame, 320
3DOptionButton, 321
3DPanel, 322
CheckBox, 319
ComboBox, 319
CommandButton, 319
Form, 320
Frame, 320
Label, 320
ListBox, 321

Construct Spectrum SDK for Client/Server Applications

MDIForm, 321
Menu, 321
OptionButton, 321
StatusBar, 322
TextBox, 322
Timer, 322
Toolbar, 323
TrueDBGrid, 322

PDAs

CSASTD, 319

CSVA3CMD, 320

CSVA3DI, 320

CSVASDPN, 322
CSVABUTN, 319
CSVACMBO, 319
CSVACOMN, 319
CSVADDE, 320

CSVAFOCS, 319
CSVAFONT, 319
CSVAFRMT, 319
CSVAGRID, 322
CSVALABL, 320
CSVALCTN, 319
CSVAMENU, 321
CSVAMOUS, 319
CSVASTAT, 322
CSVATBOX, 319
CSVATIME, 322
CSVATOGL, 319
CSVATOOL, 323
CSVAWNDW, 320
CUMDATYP, 319

using with a custom model, 317
example of code in user default
subprogram, 317

example of code to assign valueto
Caption property, 317
example of code using default values,
318

VB-Maint-Object model
description, 83
Verification rules
keywords, 137
Predict, 269
where to implement, 269
coding user typerules, 270
Visual Basic browse object
adding support, 253-254
business object, 245
description, 84
generating, 182
Visual Basic business objects
role on Windows platform, 29
Visual Basic maintenance object
business object, 245
description, 83
generating, 118

W

Windows platform
role of Entire Broker, 28
Working environment
Construct Spectrum, 22

VB-Browse-L ocal-Data-Object model
accessing alternate data sources with,
185, 187
Standard Parameters, 186

V B-Browse-Object model
description, 84

VB-Maint-Dialog model
description, 83

— 344 -

	Table of Contents
	Preface
	Prerequisite Knowledge
	Structure of this Documentation
	How to Use this Documentation
	To Create a New Client/Server Application
	To Move an Existing Application to a Client/Server Architecture

	Document Conventions
	Other Resources
	Related Documentation
	Construct Spectrum SDK
	Construct Spectrum
	Natural Construct

	Other Documentation
	Related Courses

	Introduction
	What is Construct Spectrum?
	Development Environments

	Architecture of a Client/Server Application
	Mainframe Server
	Windows

	Overview of the Development Procedure
	Step 1: Plan Your Application
	Decide What to Show the User
	Keep Window Design Simple
	Number and Structure of Windows
	Content of Each Window

	Plan Your Code
	Use a Consistent Style
	Anticipate Translation Issues

	Step 2: Set Up Your Mainframe Environment
	Predict Definitions
	Steplib Chains and Domains
	Security for Domains, Steplibs, Users, and Groups

	Step 3: Generate Application Components
	Using the Super Model
	Using Individual Models
	Deciding Which Modules to Generate
	Generation Process
	Server Modules
	Client Modules

	Setting Up Your Project
	Transferring Your Generated Code to the Project

	Step 4: Customize Your Application and Environment
	Step 5: Test and Debug Your Application
	Step 6: Deploy Your Application

	Using the Demo Application
	Overview
	Setting Up Prerequisites
	Opening the Construct Spectrum Demo Project
	Understanding the Construct Spectrum Add-In
	Understanding the Demo Project
	Framework Components
	Generated Modules

	Running the Demo Application
	Application Interface
	Menu Options
	Toolbar Options
	Application Workspace
	Status Bar

	Additional Options
	Error Notification Options
	Remote Dispatch Service Options

	Tour of the Demo Application
	Opening a Business Object
	Maintaining a Business Object
	Validations
	Business Data Types (BDTs)
	Grids
	Nested Grids
	Nested Drop-Down Grids
	Keyboard Shortcuts for Grids

	Browsing For a Business Object
	Select Data From a Browse Window
	Open a Browse Window from the File Menu
	Open a Second Order
	Open Foreign File Information

	Specify Browse Customization Options
	Specify Selection Options
	Specify Display Options

	Troubleshooting

	Using the Super Model to Generate Applications
	Overview
	Before You Begin
	Establish a Naming Convention
	Understand the Object Factory
	Which Modules to Generate
	For a Maintenance Dialog
	For a Browse Dialog
	Dependent Models

	Generating with the Super Model
	Construct Windows Interface
	Step 1: Invoke the Super Model Wizard
	Step 2: Define General Package Parameters
	Step 3: Define Specific Package Parameters
	Step 4: Generate the Modules
	Generating Modules from the Model Wizard
	Generating Modules in Batch

	Generation Subsystem
	Step 1: Invoke the Super Model
	Step 2: Define General Package Parameters
	Step 3: Define Specific Package Parameters
	Step 4: Generate the Modules

	Troubleshooting
	Transferring Your Application to the Client

	Creating a Construct Spectrum Project
	Overview
	Are You Ready?
	Creating the Project
	Prior to Downloading

	Downloading the Generated Modules
	Hand-Coding the Object Factory

	What’s Next?
	Modify the Dialogs
	Test the Application
	Deploy the Application
	Setting Up Security

	Creating and Customizing Maintenance Dialogs
	Overview of the Maintenance Dialog
	Ways to Generate Maintenance Dialogs

	Prerequisites
	Using Individual Models to Generate Maintenance Modules
	Generate the Object Maintenance Subprogram and PDAs
	Generate the Maintenance Subprogram Proxy
	Generate the Visual Basic Maintenance Object
	Add Business Validations
	Add Browse Functions

	Generate the Maintenance Dialog

	Downloading Client Modules
	Integrating a New Maintenance Dialog
	Strategies for Customizing a Maintenance Dialog
	Doing the Predict Data Dictionary Work Up Front
	Choosing an Appropriate Place to Add Hand-Written Code
	Adding New User Exits
	Making a Copy Before You Regenerate

	Customizing on the Server
	Deriving Variable Names
	Deriving GUI Control Names
	GUI Control Identifier
	Object Identifier
	Field Identifier

	Deriving Label Captions for GUI Controls

	Overriding GUI Controls
	Step 1: Search for GUI Keywords in Field Definitions
	Generate a ComboBox Control to Display External Values

	Step 2: Search for GUI Keywords on Verification Definitions
	Step 3: Search for Business Data Type Keywords in Field Definitions
	Step 4: Use Default Derivation
	Repeating Field Threshold
	Option Button Threshold
	Foreign Field Threshold

	Setting Generation GUI Standards
	Controlling the Size of a Maintenance Dialog
	Overflow Conditions

	Customizing on the Client
	Creating Calculated Fields
	Does a GUI Control Exist for the Calculated Field?
	Coding the Calculation

	Integrating Maintenance and Browse Functions
	Validating Data Using the Visual Basic Maintenance Object
	Tailoring the Maintenance Dialog
	Working with Overflow Frames
	Multi-column Layout
	Tabbed Layout
	State-Dependent Layout

	Adding a New Field by Hand
	Add a Scalar Field by Hand
	Add a Regular Grid Column for a Field

	Removing a Field by Hand
	Using the Grid
	Nested Grids
	Nested Drop-Down Grids
	Displaying Grids
	Resizing Grids

	Adding Sound to Error Notifications
	Understanding How a Sound File is Associated With an Error

	Multilingual Support for Maintenance Dialogs

	Uploading Changes to the Server

	Creating and Customizing Browse Dialogs
	Overview of the Browse Dialog
	About Browse Dialogs
	The Browse Process
	Browse Object Subprogram
	Browse Object Subprogram Proxy
	Visual Basic Browse Object
	Data Cache

	Framework Components

	Creating a Browse Dialog
	Setting up Predict for the Browse Dialog
	Business Data Types
	Descriptive Fields

	Using Models to Generate Browse Modules
	Generating the Browse Subprogram and PDAs
	Generating the Subprogram Proxy
	Generating the Visual Basic Browse Object
	Defining Alternate Browse Data Sources

	Downloading the Client Modules
	Updating the Project
	Extend Object Factory

	Customizing on the Client
	Adding Command Handlers
	Customizing the Generic Browse Dialog
	Understanding the BrowseManager Class
	Display the Browse Dialog
	Support a Browse Command Handler
	Return a Specific Row of Data
	Return All Rows of Data

	Using the BrowseManager
	BrowseManager Methods

	Understanding Browse Command Handlers
	Creating Browse Command Handlers
	Coding the Custom Browse Command Handler
	Enabling Commands on the Browse Toolbar and Menu
	Coding the UICommandTarget() Method
	Marking Updated Rows Using the UpdateListViewIcons Method

	Moving Existing Applications to Construct Spectrum
	Overview
	Moving Natural Construct Object Applications
	Moving Natural Construct Non-Object Applications
	Step 1: Set Up Your Server Environment
	Step 2: Evaluate Your Application Data
	Step 3: Set up Predict Definitions (Optional)
	Step 4: Generate the Client/Server Modules
	Step 5: Update Object Subprograms with Business Rules
	Considerations for Implementing Business Rules

	Step 6: Set Up and Run Your Construct Spectrum Project

	Understanding and Customizing the Client Framework
	Introduction to the Client Framework
	About Box
	Customizing the About Box

	Application Preferences
	Application Settings
	Customizing the Application Settings

	Browse Support
	Internationalization Support
	Maintenance Classes
	Grid Support

	Menu and Toolbar Support
	Understanding Menu and Toolbar Command Handling
	Class Summary
	Defining, Sending, and Handling Commands
	Step 1: Declare a Global Instance of the UICommands Class
	Step 2: Define the Commands
	Step 3: Code Menu and Toolbar Events to Send the Commands
	Step 4: Code the Command Handlers
	Step 5: Link the Commands to the Command Handlers

	Updating User Interface Controls
	Step 1: Code Events to Update the Menu Controls
	Step 2: Code the Logic that Determines the State of a Command
	Step 3: Code Events to Update the Toolbar Buttons
	Displaying a Disabled Bitmap
	Displaying a Message
	Update Cycles

	Additional Methods For Command Handling
	Unhooking Commands

	Customizing the Menu and Toolbar in the Client Framework
	Changing the Menu Structure
	Example of Changing the Menu Bar and Its Menu Items
	Changing the Toolbar Structure
	Example of Adding Buttons to the Toolbar

	MDI (Multiple-Document Interface) Frame Form
	Object Factory
	Understanding the Open Dialog
	Understanding the Object Factory
	Using the Object Factory
	Example of Using the Object Factory
	Customizing the Object Factory
	Setting Up Object/Action Combinations and Forms
	Making Your Application Aware of New Business Objects
	Step 1: Update the InitializeOpenDialog Procedure
	Step 2: Update the CreateForm Procedure
	Step 3: Update the GetBrowser Procedure
	Step 4: Update the BrowserExists Procedure

	Spectrum Dispatch Client Support
	Logon Dialog
	Error Messages
	Dispatcher Selection Window

	Utility Procedures

	Validating Your Data
	Overview
	Basic Data Type Validation
	Business Data Type Validation
	Local Business Validation
	Business Object Validation

	Client Validation
	Validation in Maintenance Dialogs
	Using BDTs
	Hand-Coded Validations in Generated Dialogs

	Validation in Visual Basic Maintenance Objects
	Adding Validations in the CLIENT-VALIDATIONS User Exit
	Validations from Predict

	Creating Verification Rules in Predict
	Deciding Where To Implement a Validation Rule
	Coding User Type Rules

	Order of Precedence in Data Validation
	Validation Error Handling
	Framework Components
	Handling Business Object Validation Errors

	Integrating Browse and Maintenance Functions
	Overview
	Drill-Down Capabilities from a Browse Dialog
	Active Help on Maintenance Dialogs
	Primary Key Field Active Help
	Foreign Field Active Help

	Design Objectives
	Application Component Independence
	Simplified Generated Components

	Overview of Foreign Key Field Relationships
	Fields that can be Used in a Foreign Key Relationship
	Simple Field
	Repeating Field

	When Not to Use a Foreign Field Relationship
	List of Values is Static
	List of Values is Small
	List of Values Contains Two Choices Only

	Foreign Field Support in Maintenance Dialogs
	GUI Control Representations of Foreign Fields
	Foreign Fields in the Primary Part of a Maintenance Dialog
	GUI Controls in a Grid
	How Construct Spectrum Determines Which GUI Control to Use
	Displaying Descriptions for a Foreign Field
	Examples of Descriptive Fields
	Supporting Multiple Descriptive Values and Derived Values

	How Foreign Field Descriptions Are Refreshed

	Supporting Code for Drop-Down Lists
	Initializing a Drop-Down List
	Support for Value Selection

	Supporting Code for Command Buttons
	Initializing a Command Button
	Click Events on the Command Button

	Internationalizing Your Application
	Planning Your Internationalized Application
	Internationalizing Using the Client Framework
	Resource File Syntax
	Text Values
	Binary Values
	Links

	Using the Internationalization Components
	Methods
	GetResourceGroup
	LocalizeForm
	LoadBinaryResource
	LoadStringResource
	Message
	MessageEx
	SetDefaultMessageGroup

	Properties
	Language
	LanguageRegistryKey
	LanguageINIKey
	ResourceFilePath

	Hints for Developers
	Setting the Language Automatically
	Strategy for Using Resource Files and Groups
	Starting an Application in a Specific Language
	Associating Windows Locale Setting with a Language

	Changing Language at Runtime

	Appendix A: Modifying Construct Spectrum Models
	VB-Maint-Dialog Model
	VB API
	Components of the VB API

	How the VB API Works
	GUI Controls with the VB API
	Parameter Data Areas (PDAs) Used

	Index

