Construct Spectrum SDK
Reference

)
1)
0
g
5
p))
m
D
)

Manual Order Number: SPV451-0301BW
This document applies to Construct Spectrum SDK Version 4.5 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers comments are welcomed. Comments may be addressed to the Documentation Department at the
address on the back cover or to the following e-mail address:
Documentation@softwareag.com

© Copyright Software AG 2003
All rights reserved
Printed in the Federal Republic of Germany

The name Software AG and/or al Software AG product names are ether trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

TABLE OF CONTENTS

PREFACE
Prerequisite Knowledge.o 14
Purpose and Structure of thisDocumentation.co i, 14
How to Use ThisDocumentationttt 16
CreateaWeb Application i 16
CreateaClient/Server Application e 17
Without Using the Client Frameworkt 17
OtNEr RESOUICES. . . .ttt e e e e e e 18
Related DOCUMENtatioNot e e 18
Construct Spectrum SDK 18
CONSIrUCt SPECITUM oo 19
Natural CONSIUCT.o ot e e et e et e 19
Other DOCUMENLAtioN i i et et et et 20
Related COUMSES. . . .o e e e 20

1. INTRODUCTION

What is CONStruct SPeCtrUmM?o e 22
Partner ProduCES.o 22
DataDictionary and REPOSITOIYttt e 22
Middlewareo 22
Programming LanguUages. oot e it 23
Multiple Development Environments.ot 23
Construct Spectrum Development Environments. 23
Construct Spectrum Administration Subsystem i 24
Construct Windows Interface 25
Visual BaSiC.t 26
Client/Server Applications e 26

Web ApPlICALIONS 27

Types of Construct Spectrum Applications. e 28
Architecture of Construct Spectrum Applications 29
Mainframe Server COMPONENES. oottt e e 30
SYStEM FUNCLIONS. o e 32
Windows COmMPONENTS.ottt e e et e e 33
Internet Information Server (I11S) Components.c.coiviiiienennn.. 35
Internet/Intranet CompPoNENtSottt 35
Overview of the Development Process. oot 36

Construct Spectrum SDK Reference

2. SETTING UP THE MAINFRAME ENVIRONMENT

Setting Up Predict Definitions.o
Field Headings. oo
Business Data Types (BDTS) v vt
Default GUI and HTML Controls.ot e
Verificalion RUIES oo
Default Primary Keysand Hold Fields. oo

DefineaDefault Primary Key o
DefineaDefault HOld Key e
Default Business Object DesCription.t
Descriptive Browse Fields.o

File Volume Information in Client/Server Applications.

Creating aDomain and Setting Up Securityot
Step 1: Definethe Steplib Chain.
Step 2: Definethe Domaint e
Step 3: Define Security fortheDomain

3. FEATURESOF THE WIZARDS
Using the Configuration Editor. e
Invoke the Configuration EQitor i e
Modify the Profile SEttings.o
CreateaNew Configuration Profile i
Modify the Path Settings. oo
Workingwith Code. oo
Implied User EXItS.o
Preserve Customizationsto Generated Codet
Regenerating ModUIES.t
Regenerate Individual Modules.
Regenerate Multiple ModUIESo
Regenerate External Files
Editing MOGUIESo
Generating and Reviewing REPOIS.ot
ACCESS REPOMS . . .ot e
Review aStored REPOIt.ottt
Specify Report Detail
Use Reports with aCode Comparison Tool
Using The Spectrum Cache. e
OV VI B . . e e e e e
Mark NodestobeRefreshed.
Remove Nodes Fromthe Spectrum Cache i,

Table of Contents

4. USING THE BUSINESS-OBJECT-SUPER-M ODEL

L0 YT 72
BEfOre YOU BegIN . . . oot 73
Check the Model Defaults. e e e e e 73
Set up Default ValuesinPredict. 73
Establish aNaming Convention i 74
Set Up the Application ENVironmentt 75
Generating Packages ot t 76
Step 1: Definethe Standard Parameters oot 77
Step 2: Define the General Package Parameters. oo 78
Step 3: Definethe Specific Package Parameters.t 79
Step 4: Create Another Package (Optional) 81
Step 5: Generatethe ModuleS oot 81
Generation SUDSYStEMot 82
TroubleShooting.ot e 83

5. USING ACTIVEX BUSINESSOBJECTS

L0 YT 86
Usingthe ABO Project Wizard.t e 87
Createthe ABO ProjeCt.ot e 87
Framework Components for the ABOProject, 91
Usingthe ABOWizardot e e e e 92
Customizingthe ABOo 98
Customize Properties Generated for the ABO it 98
OPt COlUMIN . L e e 99
Customizethe ABO withinUser EXitS oo 100
GetAppService_.SetMethodAndBlocks 100
ICSTBrowseObject_LogicalKeylnfo.Extra, 100
ICSTPersist_InstanceData.Get.Extra. 100
ICSTPersist_InstanceData.Let.Extra., 100
ICSTPropertylnfo_PropertyInfo.Get.Extra. oo, 101
<CounterPropertyName>.Get.NullList i, 101

6. USING THE SUBPROGRAM-PROXY MODEL

(07 T 104
Accessing System Files. oo 104
Generating a Subprogram ProXYo oo vttt 105
Step 1: Specify Standard Parameters. 106
Step 2: Specify the Number of OccurrencesReturned 108
Step 3 Add USer EXItS . ..o 109
Step 4: Generate the Subprogram ProxXy 110

Construct Spectrum SDK Reference

Generating Methodst 111
Accessthe Application Service Definitions 112
AddaMethod o 113

Step 1: CreatetheMethod. e 113
Step 2: Update the Application Service Definition 113
Step 3: UpdatetheLibrary ImageFile L. 114
Overridethe Steplib Chain fortheDomain. o i, 115

Overriding Block Handling.o e 116

Default Block Handling.o oo e 116
Maintenance Subprogram Blocks Sentto Server o 116
Maintenance Subprogram Blocks Returnedto Client 117
Browse Subprogram Blocks Sentto Server i 118
Browse Subprogram Blocks Returnedto Client. 118

SPECITY OVEITIOES . . .ot e e 118
Step 1: Define Block HandlingOn Server 118

DisableaBlock Unconditionally. it 118
Send Blocksto the Client Conditionally, 119
Step 2: Define Block HandlingOn Client.o .. 119

VErsioning SUPPOITo v vttt e ettt e e e e e e 120
Security ImpliCations.o 120

Debugging SUPPOITo o 120

7. USING BUSINESSDATA TYPES (BDTYS)

OV IV BV .« o et e e e e e e e e e 122
Understanding and USINg BDTS oo it e 123
Benefitsof USINg BDTSot 123
Relationship With Visual Basic Data Types.o 123
Composition of aBDT e 124
NI . . e e e 124
ConVErSION ROULINE.o e e e e e e e e e e 124
MO IS, o e e e e 124
Elements of aB DT e 125
BDT Controller e e 125
How the Client Framework UseSBDTS oo it 125
CoNVErSION ROULINES ot et e e e e e e e 126
ConvertToDisplay Methodt 127
ConvertFromDisplay Method 128
ConvertinPlace Method. o i e 128
CreateSampleString Method 129
MO IS . . o e e 129
Natural FOrmMaLS.ot e e e e e 130

Table of Contents

Handling Errors Returned from aBDT ConversionRoutine. 131
How Web ApplicationsUSeBDTS.ot e 132
BDTs Supplied With Construct Spectrumt 133
N = 133
BOOlEaN . . .o 133
T, L 134
NUMBIIC . .« e e e e e e e e e 134
CUITENICY . et e e e e e e 135
DA . . oot 136
Referencing BDTSINPredicl. oot 137
DefiNiNG BD TS . oottt e 138
NaME . L 138
MoOdIfIErS . . . 138
Natural FOrmats.o e 138
Variant Data TYPES . . o vttt e et e 139
Returning Conversion Error Information i 140
Handling RUNtIMe Errorst e 141
Creating and Customizing BDTS. oottt 141
BDTsand the Client/Server Framework oo i 141
Understanding the BDT Objects 141
Create BDT Conversion ROULINES.t 143
Register @B DT ..o e 145
Deregister aB DTo 146
Locate the Conversion RoutineforaBDT oo, 146
Create aNatural-to-BDT Mapper oot e 147
Other ConSIderations.ot e e e 148
Use One Conversion Routine with MultipleBDTs.t 148
Placement of theConversion Routine., 148
OverrideaSupplied BDT oo e 149
Reference BDTsin Your Application. 149
BDTsandtheWeb Framework. e 150
Implement BDTsintheWeb Framework o i it 151
Register BDTsintheWeb Framework. 151
Register BDT Classes Using the Windows Registry. 152
Explicitly Register BDT ClasSses.ot it 153

BDT Conversion ODJECEottt e e e e 154
Createthe BDT Classot e 156
Other BDT Controller Methods. e 157
Create aNatural-to-BDT Mappero o et e e 157
Create One BDT Classwith MultipleBDTS. 159

Construct Spectrum SDK Reference

8. DEBUGGING YOUR CLIENT/SERVER APPLICATION

CommMUNICALION EITOISo e e e e e
Communication Error Handling
Traditional Debugging ToOISt
Construct Spectrum Debugging ToolS
TYPES OF ENTOrS . .. oottt e e e e e e e
Visual BasiC RUNLIMEEITOrS.o e e
CommUNICALION EITOIS . ..o e e e i
Natural RUNLIME EITOrS.o e e
Construct Spectrum-Related Errors.t
Errorsthat Do Not Return an Error Message oo
Generating Debug Data.ottt e
Save Parameter and Debug Data.o
SEt Trace OPtiONSottt e e e
Trace OptioN(L)ottt
Create Debug Data.o e

Trace OptioN(2)ottt
Specify Whereto SaveDebugDatat
Accessthe Maintain User TablePanel i,
Running Spectrum Dispatch ServicesOnline. it
Usethe INPUT Statement asaDebugging Tool. oo,
Using Natural Debugging ToOISo e
Invoke Subprogram ProxiesOnline
Accessthelnvoke Proxy Function i
Debugging ToolsontheClientand Server. ...t
DiagnosticSWIindowo e
TrandationS Program.t
TroubleShOOtiNg.ottt e
REQISIY USAE.ttt e

S N e
SD G AP NI .« ot
Check for Necessary DLLS. oot e
Construct Spectrum Add-1n.
Useful SDC Properties e
Application Object.o
NaturalDataAreaObject
Dispatcher Object
RequestProperty Property e

Table of Contents

9. DEPLOYING YOUR CLIENT/SERVER APPLICATION
Transferring Data e
Data Transfer UtIlities. e
Construct Spectrum Administration Subsystem i
Distributing Your Application.t
Step 1: Createthe Executable File. i e
Step 2: Collect Files For Installation.cco i
Step 3: Install the Client Application i,
Step 4: Runthe Application e

10. USING THE SPECTRUM DISPATCH CLIENT

L0 Y T
Calling aNatural SUbProgram.ttt e
Step 1: Create Parameter Data Arealnstances. ... i,
Step 2: Assign ValuestotheFields. ... i
Step 3: Usethe CalINat MethodontheClient,
Step 4: Check the Successof the CALLNAT oo e
SUMIMEIY . . ot e e e e e e e e e e e
Spectrum Dispatch Client COmMpoNents.t
Natural Data Area SImulationttt
Data AreaDefinitions
Data AreaSimulation ObJECtS.ot
Application Object.
Create NaturalDataArea Objects. e
NaturalDataAreaClassot
CasE SENSITIVITY . . .o e
Alphanumeric Fields.
Fully Qualified Field Names. e
Redefined Fields
ErrorsWhen Compiling.
Read Arraysand SITUCIUIES. oot e e
RUNLIME EITOrS .. o e e
DataDefinitioNArea Classot
NaturalFieldDef Class.o
Client/Server CoOmmMUNICALION.ottt e e e
Level 1Block Optimizationot
Application Service Definitions
Dispatcher Objects and Dispatch Service Definitions.
ServiCe SEleCtioN
Remote Subprogram INVOCationt
Timeout, Retry, and ResumeHandling. i ...
Compression and ENCryption.t

191
191

Construct Spectrum SDK Reference

TECING. . .t ettt e e 224
Database Transaction Control e 224
Error REPOITING . . .o oo 225
User Identification and Authentication 226
Library ImageFilesand the Steplib Chain 227
AdvanCed FEaIUNES o e 228
FieldRef Property e 228
LV RS o e e 233

11. CREATING APPLICATIONSWITHOUT THE FRAMEWORK

Setting Up the Server ComponentS.ovi et e e e 236
Create or Select Application SErVICES. ...ttt e e e 236
NoTerminal 1/O e e 236
Subprogram Interface e 236

No Global Data Area(GDA)o 236
Parameter Data Area (PDA) DataSizeLimitation 237
Subprogram BEhaviort e 237
Externalize Parameterst e 237
TIMING ISSUBS. . . . ottt e e e e 237
Example of Creating a Simple Natural Subprogram........................... 238
Generating SUbProgram PrOXi€S oottt e 240
Subprogram-Proxy Model e 240
Application Service Definition 242
Creating the Library Image Files (LIFS) 244
Construct Spectrum Add-1n. 244
Before YOoU Starto 244
Download Definitions. 245
Developing the Client Applicationt e 248
Step 1: CreateaNew Project.o 249
Step 2: Add a Referenceto the SDC Object Library. ...t 249
Step 3: Write Code to InitializetheSDCo i 250
Step 4: CreatetheUser Interface. i e 251
Step 5: Write Codeto Call theSubprogram 252
Step 6: Runthe Application i e 253
APPENDIX A: GLOSSARY . .. 255
APPENDIX B: UTILITIES. e e 271
RESPONSE SUDPIOGram. ettt e e e e 272
Featuresand Benefits e 272
ResponseLength Limitation e 272
Supported Methods 272

~-10 -

Table of Contents

MeSSage ProtOCOl. oo 273
Cal Interface. 273
SPAREPLY Data Ar€aottt e e e e e e e 274
SPAREPM DataAr€ao vttt et e 276
Spectrum Interface SUbProgramt 278
Featuresand Benefitso 278
Broker Error Handling.o oo 278
Error LOOQiNg . .. oot et e e 278
Shutdown REQUESESo e 278
SErVEr TIMEOULS. . . . oottt e e e e e e 278
Command Handling.o oo e 279
SPUETB INterface. oot e e 279
DAl A ATES . . . ot 280
SPAETB DalaAr€a. . . . oottt e e et e e 280
ETBCB DAlAATA. . . . o o vttt e e e e e 285
SEND-BUFFER 285
RECEIVE-BUFFER e 285
RESERVED-AREA . . 286
CDPD A-M . 286
USINg SPUETB . ..o e e e e 286
CMD TRACE . . ot e e e 286
Valid KeYWOrS.o e 287

TraCE RESDONSEt e 288
TesttheTrace Facilityo e 288
CM D CALLNAT 288
Conversation Factory Utility. 289
Character Translation SUDProgram oot e 290
DetermineaCharacter Set.ot 290
Multi-Tasking Verification Utility e 291
Log ULIITIES. . oo oot e e e e 292
Spectrum Log Utilities o e 292
Construct Spectrum Control Record Log Utilities 293
Domain Log UtIlities. e 294
Spectrum Group Log Utilities.o 295
Application Service Definition Log Utilities i, 296
Spectrum Steplib Log Utilities 297
Userand Group Log Utilities e 298
INDEX . o 299

—-11 -

Construct Spectrum SDK Reference

12—

PREFACE

Welcome to Construct Spectrum SDK Reference, areference tool for devel opers using
the Construct Spectrum software devel opment kit (SDK). Thisprefacewill help you get
the most out of the documentation and find other sources of information about creating
Construct Spectrum applications.

The following topics are covered:

Prerequisite Knowledge, page 14

» Purposeand Structur e of this Documentation, page 14
+ How to Use This Documentation, page 16

» Other Resources, page 18

—13 -

Construct Spectrum SDK Reference

Prerequisite Knowledge

This documentation does not provideinformation about the following topics. We as-
sume that you are either familiar with the topics or have access to other sources of
information about them.

+ Natura Construct

* Microsoft Visual Basic

» Predict

« Natural programming language and environment
« Entire Broker

» Entire Net-Work

See Other Resour ces, page 18, for sources of information about Natural Construct and
Construct Spectrum.

Note: The examples used in this guide are from the Construct Windows interface.
For examples from the Generation subsystem, see the appropriate chapter in
Natural Construct Generation.

Purpose and Structure of this Documentation

Construct Spectrum SDK Reference is designed to help developers create client/server
and web applications and to customize, debug, and deploy applications. For informa-
tion about how to use this document, see How to Use T his Documentation, page 16.

The following table describes the information contained in each chapter:

Chapter Title Topics

1 Introduction, page 21 Describes the components of Construct
Spectrum and the architecture of the
applications you can create using the
software development kit (SDK).

2 Setting up the Describes the tasks you must perform on
Mainframe the mainframe before generating a client/
Environment, page 37 server or web application.
3 Features of the Introduces you to the Construct Spectrum
Wizar ds, page 49 Add-In tools used to build, customize,
and support Spectrum web and ABO
projects.

14 -

Preface

Chapter Title Topics (continued)

4 Using the Business- Describes how to generate multiple
Object-Super - Natural components using the Business-
Model, page 71 Object-Super-Model.

5 Using ActiveX Describes how to generate ActiveX
Business Objects, business abjects (ABOs) — Visual Basic
page 85 classes that wrap the Spectrum calls

required to communicate with Natural
subprograms exposed by subprogram
proxies.

6 Usingthe Describes the subprogram proxy, how to
Subpr ogram-Proxy generate proxies using the Subprogram-
M odel, page 103 Proxy model, and how to customize your

proxy.

7 Using Business Describes business data types (BDTs) as
Data Types they relate to client/server and web
(BDTSs), page 121 applications.

8 Debugging Y our Describes how to debug your Construct
Client/Server Spectrum-generated client/server
Application, page 161 applications.

9 Deploying Y our Describes how to deploy your Construct
Client/Server Spectrum-generated client/server
Application, page 189 applications.

10 Using the Spectrum Describes the Spectrum Dispatch Client,
Dispatch Client, which allows you to make callsfrom a
page 193 client to Natural subprogramsrunning on

aserver.

11 Creating Applications Describes how to create a Construct
Without the Spectrum application without using
Framework, page 235 Construct-generated components.

Appendix A Appendix A: Glossary, Contains aglossary of terms used
page 255 throughout the Construct Spectrum

documentation set.

Appendix B Appendix B: Utilities, Describes the utilities supplied with the

page 271

Spectrum Administration subsystem.

—15—

Construct Spectrum SDK Reference

How to Use This Documentation
Construct Spectrum SDK Reference providesinformation about core development tasks
that the majority of Construct Spectrum users perform, whether they are creating:
» Construct Spectrum web applications
» Construct Spectrum client/server applications
» Client/server applications without using the Construct Spectrum client framework

The following sections describe how to use this and related guides to perform these
types of tasks.

Createa Web Application
To use Construct Spectrum to create the components of aweb application, read:

» Introduction, page 21, for an overview of the product, development process, and the
applications you can develop.

» Setting up the M ainframe Environment, page 37, for detailed information about how
to define domains and security options to control what data users of your application
will access on the mainframe.

» Featuresof the Wizar ds, page 49, for information about setting configuration options
for the wizards, using the client-side cache, and modifying code frames.

» Using the Business-Object-Super-M odel, page 71, for detailed information about
how to use this model wizard to generate the Natural components of your application.

« Using ActiveX Business Objects, page 85, for detailed information about creating
ABOs and an ABO project to contain them using the wizards supplied with Construct
Spectrum.

» Construct Spectrum SDK for Web Applicationsfor detailed information about creating
the web components of your application.

To customize and regenerate application components, read:
» Using the Subprogram-Proxy M odel, page 103
« Using Business Data Types (BDTSs), page 121

—16 —

Preface

Create a Client/Server Application

To use Construct Spectrum to create a client/server application to run on Windows 95,
Windows 98, Windows 2000, or Windows NT, read:

» Introduction, page 21, for an overview of the product, development process, and the
applications you can develop.

« Setting up theMainframeEnvironment, page 37, for detailed information about how
to define domains and security options to control what data users of your application
will access on the mainframe.

» Construct Spectrum SDK for Client/Server Applicationsfor detailed information about
using the V B-Client-Server-Super-Model to generate your application components. It
explains how to set up aVisua Basic project and customize maintenance and browse
dialogs. Also refer to this guide if you want to move existing server-based applications
to the Construct Spectrum client/server architecture.

To customize and regenerate applications components, read:
« Using the Subprogram-Proxy M odel, page 103
» Using Business Data Types (BDTSs), page 121
« Debugging Your Client/Server Application, page 161
» Deploying Your Client/Server Application, page 189

Without Using the Client Framewor k

To create aclient/server application without using the Construct Spectrum client frame-
work, read:

« Introduction, page 21, for an overview of the product, development process, and ap-
plications you can develop.

» Usingthe Spectrum Dispatch Client, page 193, for detailed information about therole
of the SDC in client/server communication.

« Creating Applications Without the Framework, page 235, for step-by-step proce-
dures to create your application.

- 17 -

Construct Spectrum SDK Reference

Other Resources

This section providesinformation about other resourcesyou can useto learn more about
Construct Spectrum and Natural Construct. For more information about these docu-
ments and courses, contact the nearest Software AG office or visit the website at
www.softwareag.com to order documents or view course schedules and locations. Y ou
can also use the website to email questions to Customer Support.

Related Documentation

This section lists other documentation in the Construct Spectrum and Natural Construct
documentation set.

Construct Spectrum SDK

« Construct Spectrum SDK for Microsoft .NET Framework
This guideis for developers creating Microsoft .NET Web servicesto invoke Natural
subprograms (business objects) over the Inter/Intranet viathe W3C SOAP standard.

« Construct Spectrum SDK for Web Applications
This documentation is for devel opers creating the web components of applications. It
describes how to use the Construct Spectrum wizards in Visua Basic to generate
HTML templates, page handlers, and object factory entries. It also contains detailed in
formation about customizing, debugging, deploying, and securing web applications.

» Construct Spectrum SDK for Client/Server Applications
This documentation is for devel opers creating client components for applications that
will run in aNatural mainframe (server) and Windows (client) environment.

« Construct Spectrum Messages
This documentation is for application devel opers, application administrators, and sys-
tem administrators who want to investigate messages returned by Construct Spectrum
runtime and SDK components.

—18 -

Preface

Construct Spectrum

Construct Spectrum Administration
Thisguideisfor administratorswho want to use the Construct Spectrum Administration
subsystem to set up and manage Construct Spectrum applications.

Construct Spectrum and SDK Vn Release Notes
These notes contain information on new features, enhancements, and other changesin
this version of Construct Spectrum.

Construct Spectrum Reference

This documentation is for application developers and administrators who need quick
access to information about Construct Spectrum application programming interfaces
(APIs) and utilities.

Construct Spectrum and SDK Installation Guide for Windows
This documentation describeshow to install and set up the Construct Spectrum runtime
and SDK components on the client.

Construct Spectrum and SDK Installation Guide for Mainframes
This documentation describeshow to install and set up the Construct Spectrum runtime
and SDK components on the mainframe.

Natural Construct

Natural Construct Installation Guide for Mainframes

This documentation provides essential information for setting up the latest version of
Natural Construct, which is needed to operate the Construct Spectrum programming
environment.

Natural Construct Generation
This documentation describes how to use the Natural Construct modelsto generate ap-
plications that will run in a mainframe environment.

Natural Construct Administration and Modeling
This documentation describes how to use the Administration subsystem of Natural
Construct and how to create new models.

Natural Construct Help Text
This documentation describes how to create online help for applications that run on
server platforms.

Natural Construct Getting Started Guide
Thisguideintroduces new usersto Natural Construct and provides step-by-step instruc-
tions to create several common processes.

—19 -

Construct Spectrum SDK Reference

Other Documentation
This section lists documents published by WH& O International:

» Natural Construct Tips & Techniques
This book provides areference of tips and techniques for developing and supporting
Natural Construct applications.

» Natural Construct Application Development User’s Guide
This guide describes the basics of generating Natural Construct modules using the sup-
plied models.

+ Natural Construct Study Guide
This guideis intended for programmers who have never used Natural Construct.

Related Courses

In addition to the documentation, the following courses are available from Software
AG:

» A sdf-study course on Natural Construct fundamentals
« Aningtructor-led course on building applications with Natural Construct

» Aningtructor-led course on modifying the existing Natural Construct models or creat-
ing your own models

—20-—

INTRODUCTION

This chapter describes the components of Construct Spectrum and the architecture of
the applications you can create with the software development kit (SDK). An overview
of the general stepsinvolved in developing applications will prepare you for the de-
tailed procedures in this and related guides.

The following topics are covered:

What is Construct Spectrum?, page 22

Types of Construct Spectrum Applications, page 28
Architecture of Construct Spectrum Applications, page 29
Overview of the Development Process, page 36

21—

Construct Spectrum SDK Reference

What is Construct Spectrum?

Construct Spectrum and the software development kit (SDK) comprise a set of middle-
ware and framework components, aswell asintegrated tools, that use the specifications
you supply to generate the components of a distributed application.

Construct Spectrum comprises two products:

» TheSDK isaset of tools, wizards, and framework components you can useto build cli-
ent/server and web applications.

» Construct Spectrum is amiddleware product that facilitates communication between
client and server.

Partner Products

Construct Spectrum works with several other products to help you build applications.
The following sections provide a brief overview of these products. For more informa-
tion about these products, consult the appropriate documentation.

Data Dictionary and Repository

Construct Spectrum works closely with Predict, a data dictionary and repository that
manages metadata about the information contained in the database your applications
use. Predict’s “views’ of data, and the relationships between data, help you definethe
business objects your applications access and maintain. Predict verification rules and
keywordsvalidate and format dataand itsfield definitions automatically select controls
for your applications. Y ou can also use Predict to define the defaults Construct Spec-
trum uses to generate your applications.

Middleware

Construct Spectrum uses Entire Broker, either with Entire Net-Work or configured to
use TCP/IP, to communicate between the client and server components of the
application.

Y our applications also use Construct Spectrum’s middieware components — the Spec-
trum Dispatch Client (SDC) and Spectrum dispatch service — to encapsulate calls to
Entire Broker on the client and server and to perform such functions as data translation,
encryption, and compression. When the client makes a communication request, the
SDC trandl ates the request into acompact, secure message and transmitsit to the server
via Entire Broker. On the server, the Spectrum dispatch service converts the incoming
processing request by the server application while enforcing multi-level security. Con-
struct Spectrum then uses a similar technique to return the processed result to the client.

—_22_

Introduction

Programming L anguages

Construct Spectrum applications incorporate Natural and Visual Basic code. Y ou can
also develop client/server applications using other OL E-compliant languages.

To present datadynamically for web applications, generated web pages use JavaScript
and HTML, including the supplied Construct Spectrum HTML replacement tags. For
information, see Usng HTML Replacement Tags, page 121, Construct Spectrum
SDK for Web Applications.

Multiple Development Environments

Besidesits own devel opment environments, Construct Spectrum providestoolsthat are
integrated with the Natural and Visual Basic development environments. This allows
you can take advantage of the functionality of each, such asthe Natural code editors or
the Visual Basic debugging facilities.

Thefollowing section providesinformation about the Construct Spectrum devel opment
environments.

Construct Spectrum Development Environments
As you develop applications, you will work in at least three environments:
» Construct Spectrum Administration subsystem
» Construct Windows interface
« Visua Basic, using the Construct Spectrum Add-Ins
The following sections describe these environments.

—_23—

Construct Spectrum SDK Reference

Construct Spectrum Administration Subsystem

Use the Construct Spectrum Administration subsystem on the mainframe to manage
system and application data for your applications:

BS MAIN ****x Construct Spectrum Adm nistration Subsystem ***** CDLAYMNL
Jul 30 - Main Menu - 10: 14 AM

Functi ons

SA System Administration
AA Application Adm nistration

? Hel p
Termi nate
Function -
Command
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit flip mai n

Consgtruct Spectrum Administration Main Menu

For information about the Construct Spectrum Administration subsystem on the
mainframe, see Construct Spectrum Administration.

—24 —

Introduction

Construct Windows I nterface

Usethe Construct Windows interface (CWI) on your PC to generate Natural and Visual
Basic modules for your application:

Hew Specification h EHE |

Create in Library: |SP'ECDEMO |

Packages |Natural I Wisual Basic I &l Models I

—B-CLIENT-SERVER -SUPER-MODEL

<7al
g BUSINESS-OBIECT-SUPER-MODEL

Generate many modules with just a Few simple ok
paramekers,

Cancel

New Specification Window — Construct Windows Interface

Thewizards available in the CWI are available as modelsin the Generation subsystem
in your Natural Construct mainframe environment. For details about the supplied
models, see Natural Construct Generation.

—25—

Construct Spectrum SDK Reference

Visual Basic
Use the Construct Spectrum Add-Insin Visual Basic to create projects, work with Vi-
sual Basic modules, and generate ActiveX business objects and web components.

Client/Server Applications

For aclient/server application, use the Construct Spectrum options on the Visual Basic
Add-Ins menu to:

» Download generated modules from the mainframe server
» Upload modules to the mainframe server
» Create anew project
» Set preferences
The following example shows the Construct Spectrum options on the Add-Ins menu:

Ciagrarn Tools Spectrurn | 4dd-Ins Window Help
N m | @ EI 3%' Yicual Data Manager. ..

add-In Manager. ..

Construck b Download Generated Modules. .

pload Modules. .,

Creake Mew Projeck, .,

Preferences. ..

Abouk

Construct Spectrum Options — Visual Basic Add-Ins Menu

— 26 —

Introduction

Web Applications

For aweb application, use the desktop Construct Spectrum project wizards to create
ABO and other projects. Use the options on the Spectrum menu in Visual Basic to:

Access wizards to generate web components

Regenerate modules

Define report options

Set configuration options

View the cache of server data

The following example shows the Spectrum menu options:

Taools | Spectrurn Add-Ins Window Help
Wizards Web Super Wizard. ..

Regenerate Mulkiple. .. Activer Business Object, .

HTML Template. ..

Reporks..,
= Page Handler. ..

Configuration. ..)
Cbject Fackary, .,

Wiew Cache. ..

About Conskruck Spectrum, ..

Spectrum Menu in Visual Basic

Y ou also work with an HTML editor of your choice, the Microsoft Management Con-
sole to manage your Microsoft Internet Information Server on Windows NT, and/or the
Personal Web Server (if you are using Windows to develop applications).

Information about how to access and use these environmentsis presented where re-
quired throughout this documentation.

- 27 —

Construct Spectrum SDK Reference

Types of Construct Spectrum Applications

Using Construct Spectrum SDK, you can create two kinds of applications.

» Client/server applications that run on Windows or Windows NT (client) and access Nat-
ural components and data on a mainframe (server).
Client/server applications are composed of Natural modules that encapsulate mainte-
nance and query functions on the server, Visua Basic components that function on the
client and present the user interface, and runtime components that communicate be-
tween client and server.

» Web applicationsthat run on 11S and can be accessed with Microsoft Internet Explorer
and Netscape Navigator.
Web applications are composed of Natural modules that encapsul ate maintenance and
guery functions on the server, ActiveX business objects that communicate between cli-
ent and server components, page handlers that manage the processing of HTML
templates, and HTML templates that present web pages.

This guide describes how to develop components and functionality that are common to
the different types of applications. Information specific to client/server applicationsis
contained in Construct Spectrum SDK for Client/Server Applications. Information spe-
cific to web applications created with Construct Spectrum is contained in Construct
Spectrum SDK for Web Applications.

28—

Introduction

Architecture of Construct Spectrum Applications

Thefollowing diagram shows the architecture of Natural character-based applications,
client/server applications, and web applications:

Windows ' Internet/ []Generated
GUI Dlalog Intranet Web Page DspeCtrUm

@ Il System

HTTP

Visual Basic Business Object

IS

Spectrum Dispatch Client

Entire Broker

Entire Net-Work or TCP/IP
Character Ul Spectrum Dispatch Client

E Entire Broker

Entire Net-Work or TCP/IP

Web Application

ActiveX Business Object

Mainframe Server

Entire Broker

Spectrum Dispatch Service Security Service

Subprogram Proxy

Spectrum
Administration

Dispatch
Service
Data

Natural Subprogram

Architecture of Construct Spectrum Applications

Thefollowing sections describe these components according to the platforms on which
they run: mainframe server, Windows, 11S, and internet or intranet.

—29—

Construct Spectrum SDK Reference

M ainframe Server Components

Component

Description

Natural
subprograms

Character Ul

Subprogram
proxy

Perform maintenance and browse functions on the mainframe
server. The same set of business objects can be accessed from
character-based Natural applications, client/server
applications, and web applications. This ensures that the
integrity of business datais preserved, independent of the
presentation layer.

Natural subprograms may be either generated by Construct
models or written by hand. The models that generate
subprograms and their parameter data areas (PDAS) are the
V B-Client-Server-Super-M odel, Busi ness-Obj ect-Super-
Model, Object-Maint-Subprogram model, and Object-
Browse-Subprogram model.

Natural subprograms can aso bewritten by hand if they follow
certain guidelines. For example, screen 1/0O functions are not
allowed, and records cannot be held between conversations.

Non-distributed Natural applications created with Natural
Construct accessing subprograms directly.

Acts as a bridge between a subprogram and the Spectrum
dispatch service. The subprogram proxy:

» Providesacommon interface so that the Spectrum dispatch
service can pass the same set of parameters to any
subprogram proxy

» IssuesaCALLNAT to the subprogram

» Converts the parameter data of the subprogram into a
format that can be transmitted between the client and server

» Supports optimization of the data passed through the
network so that only input parameters need to be sent to the
Spectrum dispatch service and only output parameters need
to be returned to the client

» Vadlidates the format and length of the data received from
the client

» Supports debugging features to help uncover
inconsistencies between the data sent by the client and the
data expected by the subprogram proxy

For more information, see Using the Subprogram-Proxy
Model, page 103.

—-30-—

Introduction

Component

Description (continued)

Spectrum dispatch
service

Dispatch service
data

Construct Spectrum
Administration
subsystem

Security service

Entire Broker

Provides a common interface and Entire Broker services for
Natural subprogramsin the application. The main functions of
the Spectrum dispatch service are to:

» Receivereguests from the client by way of Entire Broker

» Optionally decompress or decrypt (or both) and translate
the request message (see System Functions, page 32) from
the client’s character set (ASCII) to the server’s character
set (either ASCII or EBCDIC)

» Check security to ensure that the client is allowed to issue
such arequest

» Determine the name of the subprogram proxy that handles
the request

» Issuea CALLNAT to the subprogram proxy, passing the
received message as a parameter string

« Optionally compress, encrypt (or both) the message to be
returned (see System Functions, page 32)

« Sendinformation received from the subprogram proxy back
to the client application

Information defined and maintai ned in the Construct Spectrum
Administration subsystem and accessed by Spectrum dispatch
services anywhere on the network by way of Entire Broker.

Allows system administrators, application administrators, and
application developers to set up and manage system and
application environments. For more information, see
Construct Spectrum Administration.

Checks client requests against security settings defined in the
Construct Spectrum Administration subsystem. This stand-
alone service operates independently of any one Spectrum
dispatch service. Its independence allows the security service
to process, in one central location, the requests of severa
Spectrum dispatch services, which may be located on nodes
throughout the network.

For more information about security services and security
settings, see Construct Spectrum Administration.

Transfers messages between Windows or the web server and
the Natural environment. Entire Broker can be configured to
use either native TCP/IP or Entire Net-Work as the transport
layer.

31—

Construct Spectrum SDK Reference

System Functions

All Spectrum dispatch services defined in the Construct Spectrum Administration sub-
system have access to the following common system functions:

Function

Description

Return debugging
information

Encrypt and
decrypt data

Compress and

decompress data

Error handling

Message handling

Datatranglation

Ensures that all requested debugging information is generated
into the source area. Debugging information is requested by
setting a Trace-Option in the subprogram proxy. The
debugging information is stored as a source member that can
be examined or used to initiate the request locally on the
server, removing the client and the network from the test.

For more information about trace options, see Debugging
Your Client/Server Application, page 161.

Supplies an interface that can be called by the externa
(assembler or C) routines used to encrypt and decrypt data.

Supplies an interface that can be called by the external
(assembler or C) routines used to compress and decompress
data.

Manages the capturing of runtime errors, returning the errors
to the client. If possible, this function also restarts the service
that ended with the runtime error.

Returns a message string based on a message number and
substitution values. The function accepts and updates the data
used by the Spectrum dispatch service to return the message.

Translates data received from the client into EBCDIC or
ASCII, depending on the requirements of the server.

-32—

Introduction

Windows Components

Construct Spectrum client/server applications run on Windows or Windows NT. The

Windows components are:

Component

Description

Entire Broker

Spectrum Dispatch
Client (SDC)

Transfers messages between the client and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Component Object M odel (COM) middleware component that
enables Construct Spectrum applications to read from, and
write to, variablesin aNatural parameter dataarea (PDA) and
toissue CALLNAT statements to Natural subprograms.

The main functions of the SDC are;

Natural parameter data area simulation

The SDC defines the parameter data of Natural business
objectsasaseriesof Natural datafields, which may include
structures, arrays, and redefines. To call a business object,
the application must be able to assign values to these
parameter data fields before calling the business object and
thenread thefieldsafter the dataisreturned from the server.

Tofacilitatethis, the SDC simulates Natural parameter data
areas, allowing the application devel oper to create codethat
allocates a data area and reads and writes the fields in the
data area. The Construct Spectrum Add-In can download
Natural parameter dataareas (residing in alibrary on the
server) to the client. This lets the SDC know the structure
(field names and formats) of a parameter data area.
Parameter data areas are stored in the library image file on
the client and only need to be downloaded after creation or
whenever they change on the server.

CALLNAT simulation

The SDC allows an application to issuea CALLNAT to a
Natural subprogram. To allow this, specify thelogical name
of the subprogram to be called, and thelist of parameter
data areas to pass to the subprogram, in the client code.

Encapsulation of Entire Broker calls

The SDC uses Entire Broker callsto communicate with the
Spectrum dispatch service. These calls are not exposed
within the application layer, so the application developer
never needs to code Entire Broker calls.

— 33—

Construct Spectrum SDK Reference

Component

Description (continued)

Visual Basic
business object

GUI dialog

» Database transaction control
Often, two or more calls to subprograms occur within the
same database transaction such that an END
TRANSACTION statement can beissuedif al calls
complete successfully. Also, it is advantageous to have the
client application control the point at which the END
TRANSACTION or BACKOUT TRANSACTION
statement occurs. The SDC and the Spectrum dispatch
service cooperate to provide these capabilities.

For more information, see Using the Spectrum Dispatch
Client, page 193.

Visual Basic class that acts as an intermediary between a
dialog and the SDC. This class invokes the methods of
subprograms on behalf of dialogs and instantiates all the data
areas required to communicate with a subprogram. Visual
Basi ¢ business objectscan also perform local datavalidationto
provide immediate feedback to the user without involving a
network call.

GUI diaogs represent graphical interface screens that
communicate with the user and interact with the Visual Basic
business objects and other framework components to
implement business processes.

—34-—

Introduction

Internet Information Server (11S) Components
Web applications created with Construct Spectrum work with 11S. The l1S components

are:

Component

Description

Entire Broker

Spectrum Dispatch
Client

ActiveX Business
Object

Web application

Transfers messages between the web server and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Component Object M odel (COM) middleware component that
enables web applications to read from, and write to, variables
in aNatural parameter data area (PDA) and to issue
CALLNAT statements to Natural subprograms. Its main
functions are simulating PDAs and CALLNATS,
encapsulating Entire Broker calls, and controlling database
transactions. As the client counterpart of Spectrum dispatch
services, it isalso responsible for such things as data
marshaling, encryption, compression, error-handling, and al
Entire Broker communication.

For more information, see Using the Spectrum Dispatch
Client, page 193.

Object that encapsulates all communication with the SDC,
making it efficient to invoke Natural services from the client.
Each back-end business object isrepresented on the web server
as an ActiveX abject.

For more information, see Using ActiveX Business Objects,
page 85.

Consistsof framework components supplied with all Construct
Spectrum web projects and components that you generate
using Construct Spectrum wizards. Generated components are
HTML templates, page handlers, and object factory entries.

For more information, see Ar chitecture of a Web
Application, page 23, Construct Spectrum SDK for Web
Applications.

| nter net/I ntranet Components

Construct Spectrum-generated web applications support I nternet Explorer and
Netscape Navigator browsers at version 4 or higher. For additional functionality:

Internet Explorer V5 provides improved HTML rendering and the ability to bookmark

web pages in Frames mode.

Internet Explorer V5.5 and Netscape Navigator V6 support fly-out menus.

35—

Construct Spectrum SDK Reference

Overview of the Development Process

This section provides an overview of the stepsinvolvedin developing a Construct Spec-
trum application. For detailed information, see the following sources:

» For an overview of developing web applications, see Overview of the Development
Procedure, page 28, Construct Spectrum SDK for Web Applications

» For an overview of developing client/server applications, see Overview of the Devel-
opment Procedur e, page 30, Construct Spectrum SDK for Client/Server Applications

» For an overview of developing client/server applications without the Construct Spec-
trum framework components, see Creating Applications Without the FrameworKk,
page 235

» To develop a Construct Spectrum application:

1 Panyour application
Y ou will save time and effort by planning as completely as possible the purpose,
functionality, security, and user interface of your application.

2 Set up your application environment
Based on the functionality of your application, ensure that the file, field, and
relationship definitions in Predict support the business objects and business rules your
application will use. Also set up adomain and steplib chain in the Construct Spectrum
Administration subsystem so the application can access the appropriate data. Y ou may
also want to define users, groups, and security settings in this step.

3 Generate application components
Use the Construct Spectrum models and/or wizards to enter specifications for your
application components and generate them. For the first iteration, use the super model
wizards to create multiple components. For Natural modules and client/server Visual
Basic components, use either the model sin the Generation subsystem on the mainframe
or the model wizardsin the Construct Windowsinterface. To create aweb application,
also use the wizards Construct Spectrum adds to Visual Basic. This step also involves
creating new Visual Basic projects and populating them with components.

4 Customize, test, and debug the application
Customize the look and functionality of your application. Thisiterative process may
require you to regenerate modules using the individual supplied models.

5 Deploy the application
When your application is fully functional, you are ready to distributeit to users. This

step can involve creating an installation kit and deploying the Construct Spectrum
Administration subsystem.

— 36—

SETTING UP THE MAINFRAME
ENVIRONMENT

This chapter describes the tasks you must perform on the mainframe before generating
aclient/server or web application.

Note: Before performing the tasks described in this chapter, ensurethat all required
software isinstalled and configured on your server and client. For informa-
tion, see Construct Spectrumand SDK Installation Guide for Mainframes and
Construct Spectrum and SDK Installation Guide for Windows.

The following topics are covered:

Overview, page 38

Setting Up Predict Definitions, page 39

Creating a Domain and Setting Up Security, page 43

37—

Construct Spectrum SDK Reference

Overview

Before you can generate applications, you must compl ete some setup tasks to ensure
that your application can access the database recordsit needs and that userswill be able
to access the application. The following tasks are involved:

» Setupfileandfield definitionsin Predict. Y ou can also affect how field names and con-
trols are derived and how validations are performed by adjusting Predict settings.

» Create and associate a steplib chain and domain in the Construct Spectrum Administra-
tion Subsystem.

» Set up security privileges for the domain. Thisinvolves defining users and groups and
linking them to the domain in the Construct Spectrum Administration subsystem.

This chapter describes these steps in more detail.

—_38—

Setting up the Mainframe Environment

Setting Up Predict Definitions

With any application created with Natural Construct or Construct Spectrum, you must
set up fileandfield definitionsin Predict. Thisincludes setting up your application files
and defining their intra- and inter-object relationships.

For information about these tasks, see Design M ethodology, page 143, and Use of Pre-
dict in Natural Construct, page 697, Natural Construct Generation.

Predict features that have special implications for Construct Spectrum applications
include:

» Field headings

» Business datatypes

» Default GUI and HTML controls

» Veification rules

« Primary keys and hold fields

» Default business object description
» Descriptive browsefields

Tip: You can postpone the setup tasks described in this section until alater iteration of
your application. These tasks may be optional and, in all cases, Construct Spec-
trum appliesits own values for these setup items based on your existing Predict
file and field definitions.

Field Headings

If afield definition has a heading in Predict, the heading is used to derive the caption
for the control on the dialog or page. If no heading is coded in Predict, the caption is
generated by converting the field name to mixed case and changing special characters
(dashes and underscores) to spaces.

When creating a client/server application, you can change the captions on the form in
Visua Basic.

When creating aweb application, you can modify captions using the HTML Template
wizard in Visual Basic. For more information, see Creating and Customizing an
HTML Template, page 91, Construct Spectrum SDK for Web Applications

—39—

Construct Spectrum SDK Reference

Business Data Types (BDTYS)

Business data types (BDTs) associate additional formatting with datafieldsto help en-
surethat datais presented consistently and validated in your application. By default,
generated modules implement basic format and length-checking to ensure that all val-
ues stored on the client are of avalid format and length. BDTs extend this concept by
allowing the use of user-defined data types related to business representations of the da-
ta. For example, a numeric field might be intended to store a currency amount, anet
weight, adate, or aquantity. Each of these values might be presented to the user and
validated in adifferent way, although they are all defined as numeric fields. For exam-
ple, acredit card number could be stored on the database as a 16-digit value. However,
when thisvalue is placed on a page, it could be shown using the 9999-9999-9999-9999
format. Furthermore, the user could update the valuewith or without the dashes, and the
BDT will ensurethat the unformatted value is assigned back to the database.

To associate adatabase field with a BDT, assign aspecial BDT keyword to the field in
Predict. For more information, see Using Business Data Types (BDTs), page 121.

Default GUI and HTML Controls

Construct Spectrum applies complex derivation rulesto determine the most appropriate
control to represent adatabase field. Nevertheless, there may be times when the default
control isnot ideal for a particular application. In these cases, you can override the de-
fault control by assigning the database field aspecial keyword. If you are creating aweb
application, you can change some controls in the HTML Template wizard.

For more information, see Overriding GUI Controls, page 133, Construct Spectrum
SDK for Client/Server Applications, or Creating and Customizingan HTML Tem-
plate, page 91, Construct Spectrum SDK for Web Applications.

Verification Rules

Verification rules are used to force the application user to make a selection based on one
or more predetermined choices. For example, if your application hasafield whereaval-
id month must be entered, you can specify averification rule for the field so that only a
valid month will be accepted.

One criteriathat Construct Spectrum uses to determine the most appropriate GUI or
HTML control for aparticular field is the presence of verification rules attached to the
field. In the previous example of presenting valid months, Construct Spectrum would
attach a drop-down combo box to thefield in the dialog or page. The user could select
avalid value from the drop-down combo box.

For more information, see Overriding GUI Controls, page 133, Construct Spectrum
SDK for Client/Server Applications, or Creating and Customizingan HTML Tem-
plate, page 91, Construct Spectrum SDK for Web Applications.

—40 -

Setting up the Mainframe Environment

Default Primary Keysand Hold Fields

Predict keywords can also be used to designate default primary key values and logical
hold fields for a super model, which reduces the specifications the user must enter.

Define a Default Primary Key

To define adefault primary key, specify adescriptor name in the Sequencefield for the
filein Predict. Natural Construct observes the following priorities when defaulting a
primary key namefor afile:

1 If thevalue of the default Sequence field for the file is unique and avalid descriptor,
Natural Construct uses this value as the primary key.

2 If thevalue of thedefault Sequencefieldisnot unique, Natural Construct reads through
the file and uses a unique descriptor field value as the primary key.

3 If thefile does not have a unique descriptor field, but has only one descriptor field,
Natural Construct assumes the value is unique and uses it as the primary key.

Define a Default Hold Key

To define adefault logical hold field, attach the HOLD-FIELD keyword to thefield in
Predict. (Y ou may haveto first definethe HOLD-FIELD keyword in Predict using Key-
word Maintenance.) Natural Construct observes the following priorities when
defaulting a hold field name for afile:

1 If the HOLD-FIELD keyword is attached to afield that meets the format criteriafor a
hold field, Natural Construct usesthisfield asthelogica hold field.

2 If afield name contains any of the following strings:

— HOLDFIELD

— HOLD-FIELD

— HOLD_FIELD

— TIMESTAMP

— TIME-STAMP

- TIME_STAMP

— LOGCOUNTER

— LOG-COUNTER

— LOG_COUNTER

and the field meets the format criteriafor ahold field, Natural Construct uses thisfield
asthelogical hold field.

41 -

Construct Spectrum SDK Reference

Default Business Object Description

To specify adefault business object description, assign anameto thefile's Literal
Name attribute in Predict. This name is defaulted as the business object description
when using asuper model. Additionally, thisnameis displayed when thefileis refer-
enced in error messages.

Descriptive Browse Fields

When the user invokes a browse dialog attached to afield on a maintenanceform, it is
referred to as aforeign field browse. When invoked, a foreign field browse displays
only the foreign field values unless you designate other fields in the foreign file as de-
scriptive. For example, suppose you know that the warehouse number field in a
warehouse filewill bereferenced asaforeign field browse on anumber of maintenance
dialogs or pages. To help users select the correct warehouse when browsing, you can
designate another field, such as the Warehouse Name field, as descriptive. When users
browse for awarehouse number, the descriptive value (in this case, awarehouse name)
is displayed, along with the warehouse number.

A descriptivefield is designated in Predict by associating a special keyword with the
field. You can indicate that certain fields are descriptive in all situations, while others
are descriptive depending on the form or page that contains the foreign field.

For information about descriptive fields, see Displaying Descriptionsfor a Foreign
Field, page 289, Construct Spectrum SDK for Client/Server Applications, or Creating
and Customizing an HTM L Template, page 91, Construct Spectrum SDK for Web
Applications.

File Volume Information in Client/Server Applications

Y ou can supply information related to the size and stability of your files in Predict.
These values are used to determine the default behavior of a standalone browse dialog
and browse dial ogs linked to a maintenance dialog. For more information about linking
browse and maintenance functions, see | ntegrating Browse and M aintenance Func-
tions, page 275, Construct Spectrum SDK for Client/Server Applications.

—42 —

Setting up the Mainframe Environment

Creating a Domain and Setting Up Security

U 00 Vv

The application environment includes users, application libraries, business objects and
their associated modules. Users are combined into larger entities known as “groups’.
Application libraries, business objects and their associated modules are combined into
larger entities known as “domains’. Before creating an application with Construct
Spectrum, you must define adomain for the application. Before users can accessthe ap-
plication, you must grant access to the business objects and object methods within the
domain.

To create adomain and set up security:

Step 1: Define the Steplib Chain, page 43

Step 2: Definethe Domain, page 45

Step 3: Define Security for the Domain, page 47

The following sections describe each of these stepsin detail.

Step 1: Define the Steplib Chain

Thefirst step in setting up adomain is to define itssteplib chain. A steplib chain iden-
tifies where your application libraries reside on the server. To locate and execute
application modules, you must set up a steplib chain and link it to your application
domain.

When defining your steplib chain, keep the following tips in mind:

Beforeadding asteplib entry, determinethedatabase ID (DBID) and file number (FNR)
of the FUSER system file you are using.

Thelibrary in which the dispatch serviceis executing is checked before librariesin the
steplib chain; you do not haveto add this library to your steplib chain.

If you intend to use the default DBID and FNR values for the current FUSER system
file at runtime, you do not have to specify aDBID and FNR value for alibrary.

Ensure that you add your FUSER filein the SY STEM library to the steplib chain. Most
generated applications use the server framework components supplied with Construct
in thisfile (prefixed with “CD” or “CC”).

Any components required by your generated methods, such as subprograms, copycode,
or data areas, must be available in your application library or one of its steplibs.

Both the FUSER and FNAT system libraries are automatically added to your steplib
chain; you do not have to add these libraries to your steplib chain.

Tip: If youare new to Construct Spectrum, set up asample environment. For example,
set up asample application library and link it to your sample steplib chain. Use
the same name to identify your application library, steplib chain, and domain.

—43 -

Construct Spectrum SDK Reference

To access the Maintain Steplib Table panel:

Log onto the SY SSPEC library and enter “MENU"” at the Next prompt.
The Construct Spectrum Administration subsystem main menu is displayed.

Enter “AA” in the Function field.
The Application Administration main menu is displayed.

Enter “MM?” in the Function field.
The Application Administration M aintenance menu is displayed.

Enter “ST” in the Function field.
The Maintain Steplib Table panedl is displayed:

BSSD MP ***** Construct Spectrum Adm nistration Subsystem ***** BSSD 11
Aug 31 - Maintain Steplib Table - 10: 55 AM
*Action (A B, C D MN,P) _
Steplib Name............:

Y +

| Li brary DB FNR |

[LR LR |

| 1 |

| 2 |

| 3 |

| 4 |

| 5 |

| 6 |

| 7 |

| 8 |

Y +
Di rect Conmand:
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- -
confm help retrn quit flip pref nai n

Maintain Steplib Table Panel

Add up to eight application librariesto the steplib chain.

Record the name of the steplib chain.
Y ou will add the steplib chain to the application domain described in the following
section.

—44 -

Setting up the Mainframe Environment

Step 2. Define the Domain

Domains are used to group related business objects and services. Y ou can set up the
same business object in multiple domains. The services assigned to the object can be
different for each domain. For example, if you have a Customer object that isused in
two applications, an Accounts Receivable and a Sales application, the Customer object
in the Accounts Receivable application probably requires different services than a Cus-
tomer object in a Sales application. Consider setting up two domains, one for each
application. Assign servicesto the Customer object based on the business requirements
addressed by each application.

The following steps describe how to set up adomain and link it to the steplib chain de-
scribed in the previous section, Step 1: Definethe Steplib Chain, page 43. By default,
all business objects in the domain are accessed using the same steplib chain. Y ou can,
however, override the steplib chain for each business object and object method. For
more information, see Override the Steplib Chain for the Domain, page 115.

Tip: Specify asteplib chain as high in the application architecture hierarchy as possi-
ble. This prevents you from having to specify the steplib chainin many places. If
the steplib chain applies to an entire application, place it in the appropriate do-
main. If the steplib chain applies to one abject only, identify it in the header por-
tion of the application service definition. In this way, only exceptions need be
specified.

» To access the Maintain Domains Table panel:

1 Logonto the SYSSPEC library and enter “MENU” at the Next prompt.
The Construct Spectrum Administration subsystem main menu is displayed.

2 Enter “AA” in the Function field.
The Application Administration main menu is displayed.

3 Enter *“MM?” in the Function field.
The Application Administration M aintenance menu is displayed.

— 45—

© 00 N o O

Construct Spectrum SDK Reference

Enter “DO” in the Function field.
The Maintain Domains Table panel is displayed:

BSDO__MP Construct Spectrum Adm ni stration Subsystem BSDO 11
Jun 27 Mai ntai n Domai ns Tabl e 4:11 PM
Action (A B, C, D, MN,P) A

Domain Nane.............: SAWLE _

Description.............: Sanple Dongin

Steplibs................: SAWLE *

Conmand:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
confmhelp retrn quit flip pref nai n
Domai n SAMPLE added successful |y

Maintain Domains Table Panel

Type“A” inthe Action field.

Type the name of your domain in the Domain Name field.
Type a brief description of the domain in the Description field.
Type the name of your steplib chain in the Steplibs field.

Press Enter to add the domain.
Next, you will link the domain to user groups described in the following section.

Note: Specifying a steplib chain is optional. If no steplib is specified, the Spectrum
dispatch service attemptsto locate the business object from the current execu-
tion library and then from the FNAT SY STEM library.

— 46 —

Setting up the Mainframe Environment

Step 3: Define Security for the Domain

To make your application available to users, you must grant them security privileges.
To set up security, assign usersto groups. Groups identify userswho require similar ac-
cess privileges to your application. Y ou can then grant groups security privilegesto
your application domain. Granting access to adomain enables users to access the ob-
jects and methods within the domain.

Tip: You can postpone this task until after you have created and tested your applica-
tion. At that time, you can better determine what security privileges should be
granted to each group.

For each group granted access to a domain, you can further define security privileges
by granting access to selected objects and methods. For example, assume you have an
application domain called “Payroll” containing all of the objects and methods required
for your organization’s payroll application. Two types of users require access to the
payroll application: managers and dataentry personnel. Managers require access to the
entire application, while data entry personnel require access only to input hours, vaca
tion time, sick time, and so on. Y ou can set up one group for the managers and one for
the dataentry personnel. The Manager group is given accessto all objects and methods
inthe Payroll domain and the Data Entry group isgiven accessonly to those objectsand
methods required to do their job.

For information about defining users and groups, see Defining Groups and Users,
page 75, Construct Spectrum Administration. For information about defining security
for groups and domains, see Setting Construct Spectrum Security Options, page 95,
Construct Spectrum Administration.

—47 -

Construct Spectrum SDK Reference

—48 —

FEATURES OF THE WIZARDS

This chapter introduces you to the Construct Spectrum Add-1n tools used to build, cus-
tomize, and support Spectrum web and ABO projects. These tools include the
Configuration editor, which alows you to customize environmental settings, and the
Regenerate M ultiple function, which you can use to regenerate many modules. This
chapter also describes how to use implied user exits and the cst: PRESERVE tag to pro-
tect and preserve custom code as you generate and regenerate modul es. The remainder
of this chapter explains the Report and Cache Viewer functions.

The following topics are covered:

Using the Configuration Editor, page 50
Wor king with Code, page 58

* Regenerating Modules, page 59

Editing M odules, page 62

» Generating and Reviewing Reports, page 63
Using The Spectrum Cache, page 68

—49 —

Construct Spectrum SDK Reference

Using the Configuration Editor

The Configuration editor maintains the configuration profiles used in Construct Spec-
trum. Configuration profiles specify global settings, such as Spectrum services, and
generate parameters in your development environment. Y ou can set up a separate con-
figuration profilefor each environment you want to access.

Invoke the Configuration Editor

» Toinvoke the Configuration editor:

1 Select Configuration from the Spectrum menu.
The Configuration editor is displayed, showing the Configuration Profiles tab:

Configuration Editor E |

Configuration Profiles | Settings for Profile 'Spectrum ¢41° | Path Setkings I

Profile Date Modified Copy
g - Spectrum 441 05-Apr-02 11:55 AM
Remove
fdd
Rename
Bckive Profile: Spectrum 441 Set as pctive

Mokte:

Kl IL_

oK Cancel

Configuration Editor — Configuration Profiles Tab

—50 -

Features of the Wizards

This tab displays all available configuration profiles and the dates they were last mod-
ified. In the example, Spectrum 441 is the active profile.

The following options are available on the Configuration Profiles tab:

Option Description

Copy Makes areplica of the current profile and adds it to the Profiles list.
Y ou can then rename the profile and modify the default settings as
desired. For information, see Create a New Configuration Profile,

page 55.

Remove Removes the sel ected profile. When you select aprofileand click this
button, a confirmation window is displayed.

Tip: You cannot remove the active profile. Y ou can, however, designate
another profile asthe active profile and then removeit. To changethe
active profile, select another profile and click Set as Active.

Add Addsan unnamed profileto the Profileslist. Y ou can then renamethe
profile and modify the default settings as desired. For information,
see M odify the Profile Settings, page 52, and M odify the Path
Settings, page 57.

Rename Renamesaprofile. When you select aprofileand click thisbutton, the
profile is highlighted for you to type the new name.

Set as Active Designatesthe active (default) profile. When you select a profile and
click this button, the selected profile becomes the active profile.

In addition to the Configuration Profiles tab, the following tabs are available:

Settings for Profile ‘ profile name’ tab
Select thistab to display the configuration settings for the selected profile. For informa-
tion, see M odify the Profile Settings, page 52.

Path Settings tab
Select thistab to display the path settings. For information, see M odify the Path Set-
tings, page 57.

—-51—

Construct Spectrum SDK Reference

M odify the Profile Settings

The Settings for Profile ‘profile name’ tab in the Configuration editor allows you to
view and modify avariety of settings for your Spectrum ABO or web projects.

» To modify profile settings:
1 Sdlect the profile you want to change on the Configuration Profilestab.

2 Select the Settings for Profile tab.
The settings for the specified profile are displayed:

Configuration Editor E |

Configuration Profiles § Settings For Profile 'Spectrum 441 I Path Setkings I

-4 Global -
----- @ Work QOffline <Falsex

----- @ Source Compare Command <=
----- @ Source Compare Application <=
-5 Matural Environment

----- @ FUJSER <(1,1)=

----- O FhAT <(1,1)=

----- @ FDIC <(1,1)=

----- @ FCAT <(1,10=

----- @ F3PEL1 <(1,1)=

----- @ F3PEZ <(1,1)=

----- @ Steplibs <SPECDEMO SYSTEM{L, 1) SYSTEMIL, 1)
=% Snackenm ;I

oK Cancel

Configuration Editor — Settings for Profile ‘ Spectrum 441’ Tab

3 Select the setting you want to change.
The optionsfor that setting are displayed below the settings. For example, if you select
FUSER, the current DBID and FNR vaues are displayed for you to modify.

52—

Features of the Wizards

4 Change the settings as desired.
The following settings are available:

Natural Environment

FUSER
FNAT
FDIC
FCST
FSPE1
FSPE2

Steplibs

Spectrum

User ID

Dispatcher
Service

Conversation
Factory Service

Note:

Setting Description
Global
Work Offline Indicates whether to connect to the mainframe:
» Select Trueto work offline
» Select Falseto allow calls to the server
Source Compare Indicates the command used to invoke the source comparison
Command utility.
Source Compare Indicates the name of the code comparison application used.
Application This name is displayed on the status bar of the Generation

Status window when the utility is running.

Liststhe libraries in which Natural modules are stored. To
access modules in another file, specify the DBID (database
identification) and FNR (file number) for the FUSER, FNAT,
Predict, Spectrum secured, and Spectrum unsecured files.

Liststhelibrariesin the steplib chain. Usethedirection buttons
to reorder the libraries.

Displaysyour user ID. To changeyour user ID, typeanew ID.

Displays the dispatch service currently used to access the
mainframe server. Y ou can:

» Usethedrop-down list to change the dispatch service.

» Click Service Manager to open the Spectrum Service
Manager and copy, edit, add, delete, or ping services.

Displays the conversation factory currently used to access the
mainframe server. Y ou can:

» Usethe drop-down list to change the service.

» Click Service Manager to open the Spectrum Service
Manager and copy, edit, add, delete, or ping services.

For more information, see Spectrum Service M anager, page
113, Construct Spectrum Administration.

53—

Construct Spectrum SDK Reference

Setting Description (continued)

Wizards

ABO Wizard
LIF Definitions Displays the default settings for the library image file (L1F)
Module module.
Default Arbitrary Displays the default name for generated arbitrary subprogram
Class Name ABO classes.

Default Browse
Class Name

Default Maint.
Class Name

Code Frame
HTML Wizard

Default Browse
File

Default Maint
File

Code Frame
Page Handler Wizard

Default Class
Name

Code Frame
Object Factory
Code Frame

Misc

Displays the default name for the generated browse ABO
classes.

Displaysthe default namefor the generated maintenance ABO
classes.

Displays the default code frame settings.

Displays the default name for the generated browse HTML
templates.

Displays the default name for the generated maintenance
HTML templates.

Displays the default code frame settings.

Displays the default name for the generated page handler
classes.

Displays the default code frame settings.

Displays the default code frame settings.

Displays any notes for the selected profile.

5 Click OK to save the modified profile settings and close the Configuration editor.

—_54 —

Features of the Wizards

Create a New Configuration Profile
If you are creating multiple applicationswith different environmental settings, you may
want to have multiple profiles. One method of creating a new profileisto copy an ex-
isting profile and then modify the settings.
» To copy aprofile:
1 Select the profile you want to copy from the Configuration Profiles tab.

2 Click Copy.
A copy of the profileis added to the Configuration editor:

Configuration Editor E |

Configuration Profiles | Settings for Profile 'Spectrum ¢41° | Path Setkings I

Profile | Drate Modified I
%Cupy of Spectrum 441 31-May-02 01:06 PM
B Spectrum 441 05-Apr-02 11:58 &M Remave
fdd
Rename

Mokte:

Bckive Profile: Spectrum 441 Set as pctive |
=l
el

oK | Cancel

Configuration Editor — Copy aProfile

3 Select the profile copy and enter a new name.

— 55 —

Construct Spectrum SDK Reference

4 Select the Settings for Profile profile name' tab or the Path Settings tab to specify
configuration settings for the new profile.
For information, see M odify the Profile Settings, page 52, and M odify the Path
Settings, page 57.

5 Click OK to savethe profile.

— 56—

Features of the Wizards

M odify the Path Settings

The Configuration editor allows you to view and modify the path settingsfor your Spec-
trum web or ABO projects.

» To modify path settings:

1 Sdlect the profile you want to change on the Configuration Profilestab.

2 Select the Path Settings tab.
The path settings for the specified profile are displayed:

Configuration Editor E |

—Configuration path locations:

Configuration Files:
IE:'I,Prcujects'l,SPE441'I,InstaIlaticun'l,InstallTree'l,web_sdk‘l,Cu:unFiu |

Zode Frames:
IC:'I,Dev'l,SF‘Edr"fl'I,CSTWizards'l,CDdeFrames . |

Project Templates:
IC:'I,DEV'I,SF‘E441'I,CST'-.-'-.-'izardManager'l,Pru:ujectTemplates |

Wizard Catalog:
IC:'I,DEV'I,SF‘E441'I,CSTWizardManager . |

Mote: You musk restart YWisual Basic andfor the Spectrum
add-In For these changes ko take effect,

oK Cancel

Configuration Editor — Path Settings Tab

3 Usethe browse buttons to change the path settings for the Configuration Files, Code
Frames, Project Templates, or Wizard Catalog locations.

For changes to take effect, restart Visual Basic or the Spectrum Add-In.

—_57—

Construct Spectrum SDK Reference

Working with Code

The following sections describe how to use implied user exits and the cst:PRESERVE
tag to protect and preserve custom code when regenerating modul es.

Implied User Exits

Implied user exits act as placeholders for user exits coded after generating a module,
ensuring the user exits are placed in the source code in exactly the same order as before
generation. However, implied user exits are not added to the generated code unless you
have coded them first. Consequently, you must add an exit line to preserve any hand-
coded changes during regeneration.

Implied user exits are easily recognized because they use astandard structure and nam-
ing convention. Their names are prefixed with the name of the function, subroutine or

property you are coding, and suffixed with alocation (start or end). For example, you

can add two user exitsto afunction caled Initidize: Initialize.Start and Initiaize.End.
The property procedures al so indicate the type of property in the name. For example, a
Property Get exit for CustomerNumber is:

' Cust orrer Nunber . Get. Start'

All subroutines have implied user exits at the beginning and end of the routine. For
example:
Private Sub PerformAction()

"<cst:EXIT Name=' PerformAction. Start' |nplied=True>
Dim sval as String

sval = LookupAction()

"<cst:EXIT Nane=' PerformAction. End' | nplied=True>
End Sub

Preserve Customizationsto Generated Code

Usethe cst:PRESERVE tag to protect your custom code during a regenerate. Place the
tag before and after whol e subroutines, entity groups, or between individual variables.
For example, to preserve code in the Class_Initialize subroutine, add the following
code:

' <cst: PRESERVE>
Private Class_Initialize()
Set m_ABO = Creat eObj ect (PROG_I D)
End Sub
' </ cst : PRESERVE>

— 58 —

Features of the Wizards

Regenerating Modules

This section describes how to regenerate individual and multiple modules. The regen-
eration process is performed in the background (without your input).

Regenerate Individual Modules

There are two ways to regenerate individual modules.

» To regenerate asingle module:
1 Do oneof thefollowing:

— Right-click the modulein the Project Explorer and select Regenerate from the short-
cut menu.

— Select the module in the Project Explorer and select Regenerate <module name>
from the Spectrum menu.

Note: Y ou canregenerateindividual modulesby clicking Edit <module name> with
<Wizard> from the Spectrum menu. Thisinvokesthewizard used to generate
amodule, allowing you to edit the specifications and regenerate the module.

For information about editing modules, see Editing M odules, page 62.

— 50 —

Construct Spectrum SDK Reference

Regenerate Multiple Modules

» To regenerate several modules simultaneously:
1 Open your project in Visual Basic.

2 Select Spectrum > Regenerate Multiple.
The Regenerate Multiple window is displayed:

Hegenerate Multiple E |

To select a component For regeneration, click its selection
box or press the spacebar when it is highlighted.

#- %5 ABOProject Add Files. ..
EI% WebaApplication _—
-+ [0 CFactory (Object Factory) Remave File

Lo O ProductBrowse {(AEC)

----- [ProducktBrovwsePH (Page Handler)
----- O ProduckMaintPH (Page Handler)
----- [warehouseBrowse (BB

i [0 WarehousetBrowssPH (Page Handler)
-2 External Files

Regenerakte

Close

Webapplication. ProductBrowsePH

Regenerate Multiple Window

This window contains both your project modules and any externad files you added to
your projects. If you do not have any modulesin aproject or folder, anicon isdisplayed.

In thiswindow, you can:

— Click Add Files to move external filesinto your project for regeneration. For infor-
mation, see Regenerate Exter nal Files, page 61.

— Click Remove Filesto move files you do not want to regenerate from this window.

— Expand thetreeto display theindividual project modulesyou want and any external
files you want to regenerate.

3 Select the modules you want to regenerate and click Regenerate.
A message indicates when the regeneration is complete.

— 60—

Features of the Wizards

Regenerate External Files

Y ou can also use the Regenerate Multiple window to add externd files you want to
regenerate.

» To add externa files:

1 Click Add Files in the Regenerate Multiple window.
The Add External Files window is displayed:

Add External Files HE|
Loak, i Ia Construct S pectrum 4.3 j |=j€| e 7=
[_1 ProjectT emplates CSTaddInk.cnt CSTUtils. dl
2 Tacks C5TaddIng. di CSTVBFWE. di
2 TruelGrid &P CSTAddInG hip C5 TwebLibG.di
EDTLibE.dI C5TCampLibs.di C5 TwizardM anagert
] Bruisy. avi CSTCHLIbG. oox C5 Twizardsh. dl
ML CacheEnginek. exe C5TGenServicesa. di Download. dat
] | 1
File name: || Open I
Files of type: I.-ﬁ-.ll Files [*.7] j Cancel |

Add External Files Window

2 Select the file(s) you want to regenerate and click Open.
Thefiles are added to the Regenerate Multiple window.

—61-—

Construct Spectrum SDK Reference

Editing Modules

» To edit amodule, either:

1
2

Select the module you want to modify in the Project Explorer.

Select Edit <module name> with <Wizard> from the Spectrum menu.
The wizard used to generate the module opens.

Modify the model specifications and regenerate it.
or
Right-click the module in the Project Explorer.

Select Edit with <Wizard> from the shortcut menu.
The wizard used to generate the module opens.

Modify the model specifications and regenerate it.
For more information about the ABO wizard, see Using the ABO Wizard, page 92.

For more information about the HTML Template wizard, see Creating and Custom-
izingan HTML Template, page 91, Construct Spectrum SDK for Web Applications.

For more information about the Object Factory wizard, see Updating and Customiz-
ing the Object Factory, page 137, Construct Spectrum SDK for Web Applications.

For more information about the Page Handler wizard, see Creating and Customizing
a Page Handler, page 75, Construct Spectrum SDK for Web Applications.

—-62 —

Features of the Wizards

Generating and Reviewing Reports

This section describes how to generate reports as you generate modules, and how you
can review these stored reports as you edit and regenerate modules. It also describes
how to use acode comparison tool to further determine the differences betweeninitial
and regenerated code.

A report is generated every time you use awizard to generate an ABO or web compo-
nent. Thesereportsare also stored, allowing you to review the generation process while
editing and regenerating modules. If you have a code comparison utility configured to
work with Construct Spectrum, you can invoke it from the Report window to examine
code differences between initial and regenerated modules. For more information, see
Use Reportswith a Code Comparison Tool, page 67.

Access Reports
There are two ways to access reports:

« Asyou generate.
Clicking Generateinthelast window of awizard generates both the module and areport
that details the specific actions that occurred during the generation process. This report
isautomatically stored, allowing you to review it asyou modify and regenerate modules
before saving them in your Visua Basic project. For information, see Review a Stored
Report, page 64.

» By reviewing stored reports.
It may be useful to review stored reports as you edit and regenerate your application
components using the Generate Report window. Y ou can also invoke your code com-
parison tool from this window to determine the differences between initial and
regenerated code. For information, see Use Reportswith a Code Comparison Tool,
page 67.

—-63-—

Construct Spectrum SDK Reference

Review a Stored Report

» To review astored report:

1 Select Reports from the Spectrum menu.
The Browse Generated Reports window is displayed:

Browsze Generate Beports E |
Fepaort Date | Report Descripkion | Open Repork
1999/058/26 11:55 Projects: ABQOProjeck; 2 Components [

| Projects: ABOProjeck; ¢ Components Close
1999/08/26 10:55 Projects: ABOProject; 2 Components
1999/058/26 10:52 Projects: ABOProjeck; 2 Components
1999/08/26 10:52 Projects: AEOProjeck; 2 Components
1999/0&8/26 10:51 Projects: ABOProject; 2 Components
1999/058/25 15:55 Projects: ABOProjeck; 5 Components
1999/05/25 15:54 Projects: ABEOProjeck; 1 Components
1999/08/25 15:54 Projects; AEOProject; 1 Components
1999/08/25 15:53 Projects: ABOProject; 2 Components
1999/05/25 15:51 Projects: ABOProjeck; 2 Components
1999/058/25 15:43 Projects: ABEOProjeck; 2 Components

| CiC5T431GenReportsiradD24a 1 xml

Browse Generated Reports Window

Thiswindow provides the generation date and the description of saved reports. Thisin-
cludes listing the names of projectsin the report and the number of components that
were included in the report.

—64—

Features of the Wizards

2 Select the report you want to open and click Open Report.
The Generate Report Window is displayed:

ﬂ Generate Heport k =] E3

Show messages for;

'.'I'.'I-Elr'thl:lUSEtE:rE"."'."_:EF'H ShDW QifFEI’EI'lEES 1 thiﬂrls. o 1
Messages:
Component i Message ; Relakiv. .. i Fecord Source

WarehousetBrows, . Processing REPLACE tag, name Page... 00:00.14 PHWizard. Genera
Processing REFLACE tag, name ABOP,,, 00:00.14 PHWizard.Genera
Processing REPLACE tag, name HTML.,, 00:00.14 PHWizard.Genera
Pracessing REPLACE tag, name Title, 00:00.14 PHWizard.Genera
Processing SPECIFICATION kag. 00:00.17 PHwizard.Genera
Module doesn't exist in project, Creat... 00:00.19 Merge. VEModule

1| |]
Dukput Location: Wwebapplication, WarehousetBrowsePH
Message: Processing REPLACE tag, name PageHandlerID,
ESDurce code is newly generated, EGenerate Started: 22-Sep-99 03:52 PM 4

Generate Report Window

Thiswindow displays any items that were added, removed, or changed, not only in the
current module, but also in any other modul es affected by the generation, such as LIF
definitions. It also displaysthe location of the component, the time the generate was ini-
tiated, and any messages.

Use the Show messages for drop-down list to select other components. The following
table outlines the components for which you can view messages:

Component Displays

All components Messages for the generation status of all module
components.

System Generic system process messages that are unrelated to a

specific component.

<Specific component> Messages for the generation of a specific component.

— 65—

Construct Spectrum SDK Reference

Note: All components may not be displayed as they may not beincluded in all gen-
erated modules.

Specify Report Detail

Y ou can specify the level of detail you want to seein your report and select other report
options and requirements.

To specify report options:

Click Optionsin the Generate Report window.
The Report Options window is displayed:

Heport Options |
Detail level: IM vI (a4
Shiowe Additional Columns Cancel

[~ Relakive Time
[+ Record source
v Cetail level

Report Options Window

Select the options you want.
For example, you can:

— Usethe Detail level drop-down list to select the level of detail you want the report
to display. Level 1 providesavery highlevel summary, whereasLevel 4 providesa
highly detailed report.

— Select Relative Timeto display exactly when various stages of the generation pro-
cess occurred.

— Select Record source to view the source of each message.

Click OK to return to the Generate Report window.
The window contains information in response to all of the options you specified.

— 66—

Features of the Wizards

Use Reportswith a Code Comparison Tool

(AJI\JHV

If you have a code comparison tool that is configured to work with Construct Spectrum,
you can click Show Differencesin the Generate Report window to view differences be-
tween an original and regenerated file. If you do not have acode comparison tool
installed or it is not properly configured to work with Construct Spectrum, the View
Differences button is disabled.

Use the Configuration editor to configure your code comparison tool with Construct
Spectrum.

To configure the code comparison tool:
Open the Configuration editor.
Select the Settings for Profile‘ profile name' tab.

Supply acommand in Source Compare Command.
For example:

"C:\ Program Fi | es\ BeyondConpar e\ beyond32. exe" "%" "9%" /noedit

Click OK.
To launch the comparison utility, click Show Differencesin the Reports Generate
window.

—67 -

Construct Spectrum SDK Reference

Using The Spectrum Cache

The Spectrum Cache is adynamic, hierarchical data structure that stores data returned
from the server. The cache allows you to quickly store and access values that are used
frequently but that take a long time to retrieve or derive. This section describes how to
use the Cache Viewer.

Overview

Thehierarchical tree structure of the Spectrum cache meansit can store complex values
such as Predict file definitions. The cache contains all the data used by the wizards dur-
ing the generate process. It aso contains information extracted from FUSER modules
and information about the generation environment. Use the Cache Viewer to display
datain the cache, mark nodes to be refreshed, or remove nodes to clean up the cache.
» Toinvokethe Cache Viewer:
1 Do oneof thefollowing:
— Select View Cache from the Spectrum menu.
— Click the Cache Viewer icon on any wizard.

- 68—

Features of the Wizards

The Cache Viewer window is displayed:

Cache Yiewer EH |

Click on the check boxes (or press the Spacebar) to mark entries that should
be refreshed, You may also delete entrigs from the cache i you no longer
need them

Rt = = |
=~ Matural System File (17,60)
. @0 SPECDEMO
=~ Matural System File {19,30)
- @0 SYSTEM
=1~ Predict (17,220
[0 NCST-CUSTOMER -- 9/17/99 05:57 PM
fo [0 NCST-PRODUCT -- 9/20499 12:33 PM

Delete | Ok Cancel

Cache Viewer Window

The CacheViewer displays ahierarchical structure of the system files, libraries, nodes,
and Predict views in your application. The lowest nodes are followed by the date they
were last refreshed.

— 69 —

M ar k

>
1
2
3
4

Construct Spectrum SDK Reference

Nodesto be Refreshed

Use the Cache Viewer to select the nodes you want refreshed.

To mark nodesto be refreshed:

Invoke the Cache Viewer.

Expand the tree to view individual nodes.
Select the node(s) you want to have refreshed.
Click OK.

When you mark anode, you also mark al of its children. When the wizards fetch data
from the cache, they recognize the nodes you specified to be refreshed and make the
appropriate call to the server. If the server call fails, existing data in the cache is used.

Remove Nodes From the Spectrum Cache

(AJI\JHV

Y ou can remove nodes that are no longer needed to clean up the cache.

To remove nodes:
Invoke the Cache Viewer.
Expand the node tree and sel ect the node(s) you want to delete.

Click Delete.
The nodes are removed from the cache.

—70 -

USING THE BUSINESS-OBJECT-SUPER-
MODEL

This chapter describes how to use the Business-Object-Super-Model to generate multi-
ple Natural components of a Construct Spectrum web or client/server application —
without using the Construct Spectrum client framework components.

The following topics are covered:
« Overview, page 72
» Before You Begin, page 73
» Generating Packages, page 76
« Troubleshooting, page 83

—71 -

Construct Spectrum SDK Reference

Overview

The Business-Object- Super-Model uses asingle, high-level model specification to gen-
erate all the required Natural components (modules) of aweb or other distributable
application. This model generates sets of modules, called “ packages’, for all the busi-
ness objectsin an application, such asthe object mai ntenance and browse subprograms,
proxies, and parameter data areas (PDA) for a Customer business object.

Typically, you will use the Business-Object-Super-Model to generate thefirst iteration
of your application. To generate these components, the super model executes theindi-
vidual model for each module. Asyou refine the application, you will likely regenerate
certain modules separately using the individual models. The following tablelists each

modulein atypical package and the model used to generate it:

Module

Model Name

Description

Object maintenance
subprogram,

Object PDA,
Restricted PDA

Object maintenance
subprogram proxy

Object browse
subprogram,
Key PDA,
Row PDA,
Restricted PDA

Object browse
subprogram proxy

Object-Maint-Subp

Subprogram-Proxy

Object-Browse-Subp

Subprogram-Proxy

Subprogram used to maintain a
business object. Thismodel also
generates the parameter data areaand
restricted PDA for the object.

Proxy used to communicate
information between the Spectrum
dispatch service and an object
maintenance subprogram.

Subprogram used to encapsulate access
to data on the server and return records
in rows and columns, and the PDAs
that communicate information to and
from the subprogram.

Proxy used to communicate
information between the Spectrum
dispatch service and an object browse
subprogram.

Y ou can also generate modules that allow users to browse business objects within a
package or linked through aforeign field relationship.

Tip: Although the super model does not support user exits, you can specify auser exit
by regenerating the Natural module using itsindividua model.

72—

Using the Business-Object-Super-Model

Before You Begin

Before generating application packages for a Construct Spectrum application, there are
several prerequisite tasks you must perform. Before completing any of these tasks, en-
surethat all required software has been installed and configured on both the server and
the client.

Before you begin:

Check the Model Defaults, page 73

Set up Default Valuesin Predict, page 73
Establish a Naming Convention, page 74

A WN P

Set Up the Application Environment, page 75
These tasks are described in the following sections.

Check the Modd Defaults

When the super model invokes individual models, it usesthe default values specified
for each model. Review and change (if necessary) the current defaultsfor these models.
To review the values, invoke each model used by the Business-Object-Super-M odel
and note the default values.

M odel Defaults

Object-Browse-Subp Usesthefirst four characters of the module nameto suffix
the object, key, and restricted PDAS.

Object-Maint-Subp Usesthefirst four characters of the module nameto suffix
the object and restricted PDAs.

Set up Default Valuesin Predict

The Business-Object-Super-Model generates specifications for all of the models used
to generate an application from asmall set of input parameters. To accomplish this, it
relies heavily on parameter defaulting. Y ou can add keywordsto your file and field def-
initionsin Predict to default various parameters. Customize parameter defaults by
linking Predict keywords and verification rules to your fields, files, and relationships.

For more information about Predict defaults and definitions, see Setting Up Predict
Definitions, page 39.

73—

Construct Spectrum SDK Reference

Establish a Naming Convention

Because the Business-Object-Super-Model generates multiple modules, it isimportant
to establish a naming convention. Locating the modules is easier when your naming
convention clearly identifies them.

When using the Business-Object-Super-M odel, you must supply afour-character prefix
to be used for all modul es within apackage. (1T you specify aprefix that isless than four
characters, it is padded with dashes.) The super model defaults the suffix, which iden-
tifies the module type, as follows:

Suffix

Module

MSO
MSA
MSR

MSP

BSO
BROW
BKEY
BPRI

BSP

Object maintenance subprogram
object PDA
restricted PDA

Proxy for the object maintenance subprogram

Object browse subprogram
row PDA

key PDA

restricted PDA

Proxy for the object browse subprogram

The following example illustrates the naming conventions for a generated module:

“CUST" for Customer “M” for Maintenance
“S” for Server
l_ “P” for Program

CUSTMSP
Four-character prefix Three-character suffix
assigned by you assigned by system

Naming Conventions for a Generated Module

—74 -

Using the Business-Object-Super-Model

Set Up the Application Environment

Before creating a Construct Spectrum application, you must set up and configure the
mainframe environment for your application as follows:

Define the steplib chain.
Define the domain.
3 Define security for the domain.
For more information, see Setting up the Mainframe Environment, page 37.

—75—

Construct Spectrum SDK Reference

Generating Packages

O 0000 Vv

Y ou can use the Business-Object-Super-Model in ether the Construct Windowsinter-
face or the Construct Generation subsystem. The parameter information you are asked
to specify is the same in both interfaces and there are the same number of input speci-
fication steps. In the Generation subsystem, there are three specification panels:
Standard Parameters, Package Parameters, and Specific Package Parameters. Similarly,
in the Construct Windows interface, there are three steps in which you can specify stan-
dard parameters, packages parameters, and new package parameters.

Thefollowing sections describe how to use the Business-Object-Super-Model to create
application packages. Examples are from the Construct Windows interface.

To generate application packages using the Business-Object-Super-Mode:

Step 1: Define the Standard Parameters, page 77

Step 2: Define the General Package Parameters, page 78

Step 3: Define the Specific Package Parameters, page 79

Step 4: Create Another Package (Optional), page 81

Step 5: Generate the Modules, page 81

Note: For information about invoking the super model, see Using the Generation
Subsystem, page 59, Natural Construct Generation, and Generating with
the Super M odel, page 86, Construct Spectrum SDK for Client/Server Appli-
cations.

—76 —

Using the Business-Object-Super-Model

Step 1. Define the Standard Parameters

The following example shows the standard parameters for the Business-Obj ect-Super-
Model:

BUSINESS-OBJECT-SUPER-MODEL Wizard BE

. Stark Standard Parameters
Standard
Paramekters deLIlE: EHCL ESPECDEMO an IDDD,IDDZ}
W Pakages System: |sPECDEMO
B NMew package
B packags Title: ISuper Spec for my module
Finish
De=scription: Specification :I

[T Message numbers

Yalidate | Cancel < Back. Mexk = Einish

Business-Object-Super-Model Wizard — Standard Parameters

» To define standard parameters for the package:

1 Typeanamefor the super model specificationsin Module.
This name identifies the package you are about to create. The name should be
descriptive so that you can easily identify the package later.

2 Typethe name or identification number of thelibrary where you want to generate the
modulesin System.
By default the name of the current library is displayed.

3 Typeabrief title for the package in Title.
4 Type abrief description of the package in Description.
5 Click Next.

The general package parameters are displayed.

77 -

Construct Spectrum SDK Reference

Step 2: Definethe General Package Parameters

Next, specify the name of the package for which you want to generate modules, aswell
as some basic package criteria that affect the entire application:

BUSINESS-OBJECT-SUPER-MODEL Wizard EE

B st Packages
|:I'.I_ ar

mo E
Parameters

D Packages
If package modules exist:

B New package {+ Regenerate them, preserving all custom code

Finish ™ Delete them and generate new copies

Yalidate Cancel < Back. | Mexk = | Einish

Business-Object-Super-Model Wizard — General Package Parameters

» To define general package parameters:

1 Provide the domain name for this application in Domain.
To display alist of domainsfor selection, click the Browse button.

2 Do oneof thefollowing:

— Mark Regenerate them, preserving all custom code (the default) to regenerate exist-
ing modules and save all custom code. Any modified parametersin the specification
are not used. However, the super model will keep user exits and apply updates from
Predict (such asanew field or BDT keyword) and from the model code frames.

— Mark Deleteit and generate a new copy to replace al existing modules.

3 Click Next.
The specific package parameters are displayed.

—_78 -

Using the Business-Object-Super-Model

Step 3: Define the Specific Package Parameters

All packages in your application are displayed on the navigation bar. To navigate be-
tween packages, click Next, Back, or select a package from the navigation bar:

BUSINESS-0OBJECT-SUPER-MODEL Wizard EE

Package prefix: [EHCU

PREDICT wigw: |NCST-CLISTOMER

Primary kew: |
Hald field: |
N Descripkion: | Add | Delete |
Finish
Package modules:
Module | Gen. | Miodel | fRJD | Library
EHCIUMSD [Object Maintenance Subprogram 7 ?
EHCUMSF O | Spectrumn Maintenance Proxy ? ?
EHCIUBSO [Object Browse Subprogram 7 ?
EHCUESP [l | Spectrum Browse Proxy 2 ?

Check
Yalidate Cancel < Back. | Mexk = | Einish |

Busi ness-Object-Super-M odel Wizard — Specific Package Parameters

» To define package parameters:

1 Specify aprefix for the package in Package prefix.
For more information, see Establish a Naming Convention, page 74.

2 Specify the view used by the browse and maintenance subprogramsin Predict view.
Thisview determines which business object will be used. Click Defaultsto retrieve the
defaults for the object.

3 Specify the primary key for the specified view in Primary key.
The key can be adescriptor, superdescriptor, or subdescriptor. If the key does not exist

in the corresponding Predict file, an error messageis displayed upon validation. This
value cannot be the same as that in the Hold field.

4 Specify the name of the field used to logicaly protect the record against intervening
Update or Delete actionsin Hold.

—79 -

Construct Spectrum SDK Reference

Type a brief description of your package file in Description.

Tip: Based on how the file is defined in Predict, the super model attemptsto provide

default field values. Y ou can overridethe defaults using Predict keywords. Rather
than typing the values directly, set up your Predict file definition to default the
required values. For information, see Setting Up Predict Definitions, page 39.

Select the package modules you want to generate from Package modules.
To select al the modules, right-click and select Select All Modules from the shortcut
menu. The following information is displayed in Package modules:

Modulelists all modules that can be generated by the super model. Each module is
identified by the package prefix, followed by the standard suffix for themodule type.
For more information, see Establish a Naming Convention, page 74.

Gen indicates which modules will be generated.

Model indicates the names of the individual models that the super model invokesto
generate the package modules.

G/R/O indicates one of the following:

G

Module does not currently exist in source form and will be generated and
saved in the current library.

Module currently existsin source form and will be regenerated and saved in
the current library. This status occurs when you select Regenerateit,
preserving custom codein Step 2.

Module currently existsin source form and will be overwritten and saved in
the current library. This status occurs when you select Delete it, and generate
anew copy in Step 2.

Library indicates one of the following for each module:

?

Click Check to determine if thereis existing source or object code.
Blank indicates that a check was made, but there is no existing code.

Indicates that source code exists. If the Sis black, the source codeisin the
current library. If the Sisred, the source codeisin another library. To view the
location of the source code, place the mouse pointer over the S.

Indicates that compiled (object) code exists. If the C is black, the source code
isinthecurrent library. If the C isred, the source codeisin another library. To
view the location of the source code, place the mouse pointer over the C.

—-80-—

Using the Business-Object-Super-Model

Step 4: Create Another Package (Optional)

Y ou can define the parameters for up to 12 packages.

» To create another package:
1 Click Next or Add.
2 Complete each additional package as described in previous steps.

Step 5: Generate the M odules

» To generate the modules:

1 Click Finish.
The Code window is displayed.

2 Select File > Generate or click the Generate icon on the toolbar.
The Generate window is displayed, showing the generation process.

Generate BUSINESS-OBJECT-SUPER-MODEL CUSTOMER Hi=] E3

Module [Tvpe | Status [Errar
CISTOMER Super Specification

Opening conneckion o server, ﬂ
Sending specification,

Skarting generate server,

IMITIATE aof Service COMSTRUCT-3ERYICE successful

e of
cancel |

| | SPECDEMOon 17,60

Generate Window

—-81-—

Construct Spectrum SDK Reference

The module status pane displays the names of the modules as they are generated and
stowed by the Business-Object-Super-Model. The messages pane provides a status re-
port of the generation process, including any error messages that may occur. When all
modul es have been generated and stowed, a confirmation message is displayed.

Note: Click Cancel to terminate the generation process at any time.

Generation Subsystem

In the Generation subsystem, you can either generatein batch or generate from the main
menu. (Generation is automatically done in batch in the Construct Windows interface.)

Tip: If you are generating multiple modules, generate in batch to avoid tying up sys-
tem resources.

» To generate the modules from the Generation main menu:

Note: If the super model specification is not currently in the Natural Construct edit
buffer, read it into Natural Construct and proceed.

1 Enter “G” inthe Function field.
The Business-Object-Super-Model specification is saved and the specifications for the
individual modules are created and saved.

» To generate modules in batch:

1 Savethe super model specification on the Natural Construct Generation main menu.

2 Invokethe NCSTBGEN utility.
For information about this utility, see M ultiple Generation Utility, page 753, Natural
Construct Generation.

3 Specify the name under which you saved your super model specification and the model
name: Business-Object-Super-Model.

4 Generate the modules.

-82—

Troubleshooting

Using the Business-Object-Super-Model

After using the Business-Object-Super-M odel to generate the modulesin a package, re-
view the generation status report to reconcile any errorsthat may have occurred. The
following table lists possible errors and solutions:

Error

Solution

A module was generated, but not
stowed because of a missing DDM.

A generation error occurred because
of amissing dependent module.

Generation errors affected several
modules.

Compilation errors in the super model-
generated code caused cycling.

Correct the error and regenerate the module
using its model specification.

Correct the error and regenerate the module
using its model specification.

Correct the errors and regenerate the
modules as follows:

1 Re-read the super model specification
into Construct Spectrum.

2 Mark the modules that require
regeneration.

3 Repeat the generation steps until all
modul es have been successfully
generated and stowed.

Ensure that the SYNERR parameter is set
to ON in your user profile NATPARM.

-83-—

Construct Spectrum SDK Reference

—84—

USING ACTIVEX BUSINESS OBJECTS

This chapter describes ActiveX business objects (ABOs). It contains step-by-step in-
structions to use the ABO Project wizard and ABO wizard. It aso describes how to
customize your generated ABOs.

The following topics are covered:
« Overview, page 86
» Using the ABO Project Wizard, page 87
+ Usingthe ABO Wizard, page 92
» Customizing the ABO, page 98

-85 —

Construct Spectrum SDK Reference

Overview

An ABOisaVisua Basic class. This class wraps the Spectrum calls required to com-
municate with a Natural subprogram exposed by a subprogram proxy. It exposes a set
of interfaces that provide a consistent and familiar interface to Natural componentsand
make the subprogram easy to use. You must generate an ABO for each of the Natural
subprograms used in your application.

An ABO project containsthe ABOs used by your application, as well asthe framework
components supplied by Construct Spectrum. Use the ABO Project wizard to generate
your ABO project and then use the ActiveX Business Object wizard to generate the
ABOs.

— 86—

Using ActiveX Business Objects

Using the ABO Project Wizard

This section describes how to use the ABO Project wizard to create an ABO project, as
well as the framework components Construct Spectrum adds to the project.

Createthe ABO Project

» To create the ABO project:

1 Start Visual Basic.
The New Project window is displayed:

Hew Project EH i

Mew ;Existingi Recent |

Q‘:- = 1 * -
] - % N W
> A
Standard EXE Activer EXE Activex DLL Activex Spectrum AED
Conkral Praject
2 o £ S L
2 3 A
NN N B B
Spectrum Web YEB Application B \Wizard Activer Arkivex
Project Wizard Manager Cocument Dl Document Exe
P 4 P 4 P 4 Fem P 4 ..I.j

Open

Cancel

i

Help

[T Don't show this dialog in the future

New Project Window

2 Select Spectrum ABO Project.

3 Click Open.
The ABO Project wizard is displayed.

—_87 -

Construct Spectrum SDK Reference

4 Click Next.
The Choose Project Directory window is displayed:

ABO Project Wizard a3 x|

Choose Project Directory

Please enter 4 project name and chooss the location where the project’s
Fibas will b stored.

Name: |»=Hopvcn'actl

Location: [Ci\SpectrumABORrojects|ABCProject J

Select Template Directory

|Spectrum 4.4.1 =l
Cancel | < fack | et = | Erish I

ABO Project Wizard — Choose Project Directory

5 Enter your project name and the location to store your project.
Store the project in the same directory in which your web applications are stored.

6 Click Next.
If you keep the default directory or specify adirectory that does not exist, thefollowing
window is displayed:

Construct Speckrum El

@ Path does not exisk: 'CSpeckrumABOProjects\ABOProject’, Do wou wish ko create it?

Yes Mo Zancel

Create New Directory

— 88 —

Using ActiveX Business Objects

7 Click Yesto create the new directory.
The Ready to Create New ABO Project window is displayed:

Ready To Create New ABO Project

'Fird Cam ok b oeizard o Dl i ol il Ot of
i praject. Simply sefect the desired wizand and ensune that
‘Irrwoke Wizand b checked.

Wizands:
AR Wezard

Click Finish bo generates your new ABD project.

Cancel | o« Barcki I et | E_Ei'_lﬂ_'i_

ABO Project Wizard — Ready To Create New ABO Project

8 Select the wizard.

Select Invoke Wizard.
This option launches the ABO wizard after the project is created.

— 89 —

Construct Spectrum SDK Reference

10 Click Finish.
The generated ABO project is displayed in Project Explorer:

o) ANOProject (AB0Project. vhp)
=28 Mgk
ey Eproes [Errors. bas)
sy Globak: (Giobas, bas)
Wty LIFDed inaicns L IFDalirdes Burs)
oy Uity (Lkilky has)

ABO Project in Project Explorer

—90 -

Using ActiveX Business Objects

Framework Componentsfor the ABO Project

The following table describes the Construct Spectrum framework components that are
included in the generated ABO project:

Component

Description

Errors.bas

Globals.bas

LIFDefinitions.bas

Utility.bas

Provides error-raising capabilities for the ActiveX component.

Contains definitions, variables, and hel proutines used by the
generated ABOs.

Is empty in anew ABO project. It becomes populated with
Natural data area definitions when ABOs are added to the project
using the ABO wizard.

Contains proceduresthat can be used in any type of Visual Basic
application. For example, Subst performs substitutions into a
string and is useful for developing international applications:

"This is the nessage that contains substitution

pl acehol der s.

"This message mght come froma resource file in the
case of a localized app.

smsg = "Value nmust be in the range %4 to %."

MsgBox Subst (snmsg, 100, 10000), vbExcl amation

—91—

Construct Spectrum SDK Reference

Using the ABO Wizard

After creating the ABO project, usethe ABO (ActiveX Business Object) wizard to gen-
erate an ABO for each Natural subprogram used in your application. Thiswizard is
installed asaVisual Basic Add-In. In addition to generating a new ABO, you can use
the ActiveX Business Object wizard to regenerate an existing ABO or display an exist-
ing ABO to examine its specifications.

» To generate an ABO and add it to the project:

1 Sedlect Wizards > ActiveX Business Object from the Spectrum menu.
The ActiveX Business Object Wizard is displayed:

Activer Businesy Obpac! Wirssd

Active Business Object Wizard

This mizard vl Quide: wous theowgh e process of creating
or rreodifying an Actived Business Dbdect [BE0).

ol carcal | | [Tt 1

ActiveX Business Object Wizard

—92 -

Using ActiveX Business Objects

2 Click Next.
The Select Subprogram Proxy window is displayed:

Actreek Businiees Ohgect Wi ard

Select subprogram proxy
Enkesr the nasmes of the Spesctnum subprogram prooy For this 480,
Sabprogram oy I :J
£ i SYSTEM{1 1}
S 1 SYSTEM1,1)
: —
o T Carecel I < Back. I b | |

ActiveX Business Object Wizard — Select Subprogram Proxy

Note: For information about using the Spectrum Cache viewer or Configuration ed-
itor, see Featur es of the Wizar ds, page 49.

3 Enter the name of the subprogram proxy for the ABO.
Y ou can also specify the name of a steplib.

4 Click Next.
The wizard performs the following processing:

— Readsthe **SAG lines of the subprogram to extract the model name
— Readsthelogical key names (for an object browse subprogram)

— Readsthe**SAG lines of the subprogram proxy to extract the domain, object, ver-
sion, subprogram name, and 1:V overrides

— Accesses the Spectrum files to retrieve the method names linked to this subprogram
proxy

— 03—

Construct Spectrum SDK Reference

The Confirm Details window is displayed:

Artives Dusness Dbgsct 'Wirsed

Canfirm details,

Hiid s U chabadd St thiie dsbyacde i eins Dol dislinctied]:

@ Library: SPEODEMOIL T, 600
@ Model: SLEPROGR AMPROEY

@ Object: CLSTOMER [1.1.1)
@ Methods: DELETE, EXISTS, GET, INITLALIZE, MEXT, STOSE, LR
= ES CUSTMSO (Subsgrogra)
@ Lbrary SPECDEMO)IT,E0)
O Fodal: OF ECT-MANT-SEP
@ Ttk Obiect ‘osbomes
@ Privary Ple: NCST-OUSTOMER
@ Privary Kirs: CUSTOMER -BUMBER:
i Tepel Dhisd maintenasnos SUDDMOQram

9 Tl Carcil I o Barcki Bt > | f]

ActiveX Business Object Wizard — Confirm Details

Thiswindow showsthe library, model name, title, domain, object, and methods for the
subprogram proxy, as well asinformation about the proxy’s subprogram.

Confirm that everything is correct.
To select adifferent proxy, click Back.

—94 -

Using ActiveX Business Objects

6 Click Next.
The Customize the ABO’ s Interface window is displayed:

AuptivelX! Buginesy Dbgesc! Wirssd

Customize the ABO"e imterface,

‘et misme wronbd you B bo uss For tre Vimosl Base class?
{ustomertsin

{Generabe inbo the projed: '-'f-i'-irtl

ok Customize Propesrties bo visy oF customizs the propartiss that vl
b grrerated

Cumbomes Propertis, .,

I Genershs [CSTPardst
W Ganer sk DOSTRy ope BrDnd o

98 e Carcil I « Barckl st

ActiveX Business Object Wizard — Customize the ABO’s Interface

7 Veify the default name supplied for the ABO and changeit if desired.

8 Verify that the ABO will be generated into the correct project.
To change the project, click Change and select a different project.

9 Click Customize Properties to customize the ABO'’s properties.
For more information, see Customizing the ABO, page 98.

10 Verify the status of the ICSTPersist option.
This option allows the ABO to save its instance data at runtime and restore it | ater.

— 05 —

11

12

Construct Spectrum SDK Reference

Check the status of the ICSTPropertylnfo option.

This option provides extended information about the properties exposed by the ABO.

This information can be accessed at runtime. It includes:

property name

VB datatype

number of decimal places for numeric property
length of the data

logical format

read-only or not read-only

number of dimensionsin an array

number of occurrences in each dimension

Click Next.
The Ready to Generate window is displayed:

Artives Dusness Dbgsct 'Wirsed

Ready to generate.

Rk thie Gl b Droitfon b0 i b sl Quisreir s, THis SlkSid y boc

s P bras Qeratibbad oo bifork USing Wi V8 propt.
& ompars regererated code tn the mrgnal mode,
w ‘Wi Ehie generate report.

Ohck Feish boiipedate yousr Wisual Basic praject.

Bfter e wizand b Rirdshisd, do v want bo restart it bo generabe
Snecdiesr ABOT

T W

&+ Ho

98 e cnul -:E.h:l-.l ; | E-rnh]

ActiveX Business Object Wizard — Ready to Generate

— 06 —

Using ActiveX Business Objects

13 Do one of the following:

— Click Generate to view the generation report.
If you have acode comparison utility installed and configured for use with Construct
Spectrum, you can also compare the newly generated code with code from an earlier
generation of the module. For information about using acode comparison utility, see
Use Reportswith a Code Comparison Tool, page 67. For information about the
generation report, see Gener ating and Reviewing Reports, page 63.

— Click Finish to complete the generation.
When generation is complete, a message window informs you of the success or fail-
ure of the operation. If there were problems with the generation, the window
prompts you to view the generation report.

14 Generate an ABO for each Natural subprogram used in your application.

97—

Construct Spectrum SDK Reference

Customizing the ABO

Y ou can customize the ABO’ s propertiesin the Customize Properties window or in the
supplied user exits. These options are described in the following sections.

Customize Properties Generated for the ABO

Y ou can customize or view the ABO interface before generating the ABO.

» To customize or view the ABO interface:

1 Click Customize Properties in the Customize ABOs Properties window.
The Customize Properties window is displayed:

Customize Propeiies

i | ey Froparty Mama ks Typs e pt, (&
= PARAMETHR LISTHL CLISTHSA
O] DUSTHSG
I S TOMER-HUMBER: (RS ¥ Cystomerfumber Loreg [T
D2 BLISINESS-NANE (A30] v Bugineseang ST [E
02 FHONE-MURBER. [MI0) ¥ | Phareshiumces Prione{ 793-7353-07493) ik it
0 PAATLING-ADDRESS
O3 W-5TREET [4z5) v HErest Frireg [k
0% W-CITY (A20) v Wiy e [A
0= H-PROYVINCE (A20] | HPTOEnCE 1N Gt
O3 H-POETAL-CO00E (B2 v | HPgshalCods Pkl oded 084053] iak Lk
2 EHIPFING-ADDRESS
O3 5-5TREET | &Z5) v SShrest Frirg Set ek
0% S-CETY (a2 ¥ | SOy S [
0% 5-PROWINCE (a230) v SProsEnce Serireg Gk ek
O3 5-POATRL-CODE (A v | SFnsteiCnds Poet sl ode 180903] [R
O COMTACT (830 v Ciondact S Cut ik
02 CREDIT-ROTING |53 v CreditRsting Fring [C_dE
K CREDLT-LIMIT (2112 ¥ Creditiimd Ciprancy (Gt Bk =l
ot | caen |

Customize Properties Window

By default, the wizard generates propertiesfor the fieldsin the object PDA for an object
maintenance subprogram and in the key and row PDA for an object browse subpro-
gram. For al other subprograms, the wizard generates properties for the entire PDA.

If the subprogram isan object mai ntenance subprogram, the wizard displaysthe method
names and their generated derivations, of which the method names can be customized.
If the subprogram is a browse subprogram, the wizard displays the logical key names.

08—

Using ActiveX Business Objects

Y ou can customize the derived property names, datatypes, and get/let (read/write) sta-
tus. Using the check boxes in the Generate column, specify which properties should be
generated. Any fields that have been changed from the default are highlighted.

The options in the Customize Properties window are:

Column Description
Field Name of thefield in the Natural data area.
Gen Indicates whether default properties are generated. Deselect the

properties you do not want to generate.

Property Name Name of the property generated for the Natural field.

DataType Native Visual Basic data type the property is declared as.
Get/Let Get returns the value of a property; Let sets a property vaue.
Opt Indicates whether added methods or properties are generated for

thearray. Thisoptionisapplicableto MUsand PEsonly. For more
information, see the following section.

Opt Column

To view additional properties for MUs and PEs:

Click the Opt cell for thefield.
The Browse button is displayed.

Click Browse.
The Options window is displayed:

ptions |

Method or Property |Gen. | Mame |
g Insert_MsgData

Delete_MsgData

Clear_MsgData

MsgData_Counter

MsgData_Long

Cloze |

Options Window

—99—

Construct Spectrum SDK Reference

Extra properties are generated for the ABO class by default. You have the option of

manually renaming each method or property name. The Multi-line text block property
isonly available for alphanumeric MUs. This alows usersto edit all the elements of an
array at onetime, in one continuoustext string. For moreinformation, see Customizing
HTML Before Generation, page 103, Construct Spectrum SDK for Web Applications.

Customizethe ABO within User Exits

Y ou can also customize the ABO within user exits. The following user exits are sup-
plied in the generated ABO.

GetAppService .SetM ethodAndBlocks

Usethis exit to override the default method names and block numbersin the
GetAppService_ procedure.

| CSTBrowseObject_L ogicalKeylnfo.Extra

This exit resides in the Property Get LogicalKeylnfo procedurein the ICSTBrowseOb-
ject interface. The procedure provides information at runtime about the logical keys
supported by the ABO. Use thisexit to define additional logical keysthat you have add-
ed to the ABO manually.

Note: Thisexitisonly availablein browse ABOs.

|ICSTPersist_InstanceData.Get.Extra
Use this exit to persist additional module-level variables.

Note: Thisexitisonly availableif you generate the ABO with the ICSTPersist in-
terface.

ICSTPersist_InstanceData.L et.Extra

Use this exit to restore the additional module-level variables that were persisted in the
ICSTPersist_InstanceData.Get.Extra user exit.

Note: Thisexitisonly availableif you generate the ABO with the ICSTPersist in-
terface.

—100 -

Using ActiveX Business Objects

| CSTPropertylnfo_Propertylnfo.Get.Extra

This exit resides in the Property Get Propertylnfo procedurein the ICSTPropertylnfo
interface. This procedure provides information at runtime about the propertiesin the

ABO’s class. Usethis exit to define additional properties that you added to the ABO

class manually.

Note: Thisexitisonly availableif you generate the ABO with the | CSTPropertylnfo
interface.

<Counter PropertyName>.Get.NullList

Thisisadynamically generated user exit. Every array counter property procedure that
is generated will have this user exit.

Array counter property procedures contain code that determines the number of array oc-
currences that are used. This code examines each occurrence of the array and checks
whether certain fields are empty. If one of these fieldsis not empty, the code considers
the array occurrence to be used.

Use this exit to specify thefields that should be checked and the values that the fields
should haveto be considered empty. Thewizard always generates sample codeinto this
exit consisting of the field names and the empty values. Y ou can change the sample
code after generating.

Tip: Because coded user exits are always preserved when regenerating, delete the ex-
isting exit if you want the wizard to regenerate the sample.

-101 -

Construct Spectrum SDK Reference

-102 -

USING THE SUBPROGRAM-PROXY MODEL

This chapter describes the subprogram proxy, how to generate proxies using the Sub-
program-Proxy model, and how to customize the proxy. It also contains information
about adding a method to an application service definition, overriding block handling,
versioning, and debugging.

The following topics are covered:
« Overview, page 104
» Generating a Subprogram Proxy, page 105
« Generating M ethods, page 111
« Overriding Block Handling, page 116
« Versioning Support, page 120
« Debugging Support, page 120

-103 -

Construct Spectrum SDK Reference

Overview

Typically, you will use the Subprogram-Proxy model when tailoring an existing appli-
cation. The major functions of this model are to generate:

» A subprogram proxy that interacts with the Spectrum dispatch service and the target
Natural subprogram.

« The application service definition entry needed in the Construct Spectrum Administra-
tion subsystem.

The subprogram proxy acts as a bridge between the Spectrum dispatch service and a
specific subprogram. When arequest isinitiated from adialog or web pageto the server
(for example, when a user updates a customer record), information is sent from the cli-
ent to the subprogram proxy on the server. The subprogram proxy then calls the
appropriate object subprogram to fulfill the request.

The subprogram proxy is aso responsible for converting data between the network
transfer format and the native Natural dataformat used in the subprogram’s PDA. It
also provides optimized data block handling and creates application service definitions.

Y ou must generate a subprogram proxy for each subprogram included in your applica-
tion. Y ou can create subprogram proxies using the VB-Client-Server-Super-M odel, the
Subprogram-Proxy model, or the Business-Object-Super-Model.

If you are creating a new application or have performed extensive changes to your ap-
plication file relationships, use the super models to generate your application. The
Business-Object super model generates object maintenance and browse subprograms,
their PDASs, and subprogram proxies. For more information, see Using the Business-
Object-Super-M odel, page 71.

The VB-Client-Server-Super-Model generates the same Natural modules as the Busi-
ness-Object super model, as well as the Visual Basic modules needed by client/server
applications.

Accessing System Files

To generate a subprogram proxy, the Subprogram-Proxy model requires access to the
unsecured data in the Construct Spectrum Administration subsystem files. It usesthis
datato provide an active help listing for the Domain field in Standard Parameters. Ad-
ditionally, this model creates or updates the application service definition for the
specified object subprogram.

The subsystem file containing the unsecured data must be available either through an
LFILE designation in your Natural startup or through the Natural nucleus used in the
session in which you are generating (NT-FILE parameter must be specified).

—104 -

Using the Subprogram-Proxy Model

Generating a Subprogram Proxy

U000 Vv

This section describes how to generate a subprogram proxy and considerations to be
aware of when generating the proxy.

To generate a subprogram proxy:

Step 1: Specify Standard Parameters, page 106.

Step 2: Specify the Number of Occurrences Returned, page 108.
Step 3: Add User Exits, page 109.

Step 4: Generate the Subprogram Proxy, page 110.

Before using the Subprogram-Proxy model, consider the following:

Maintain one application service definition for each business object

An application service definition specifiesthe methods and the subprogram from which
each method is executed for a business object. The application service definition is cre-
ated or updated when you generate a subprogram proxy.

To maintain one application service definition for each business object, ensure that the
domain name, object name, and version number are the same when you generate each
subprogram proxy for the business object. For example, if you have a Customer busi-
ness object that has both a maintenance and a browse function, generate one
subprogram proxy for the maintenance function and one for the browse function. To en-
surethat only oneapplication service definition is created for both the maintenance and
browse functions, specify the same domain, object, and version when you specify the
model parameters for each subprogram proxy.

For more information, see Generating M ethods, page 111.

Define 1.V Variables

When generating a subprogram proxy, pay specia attention to subprograms that have
1:V variables (such as object browse subprograms). Subprograms use the Natural 1:V
notation to define the row parameter that allows an arbitrary number of records to be
returned to the client. To minimize the number of callsto the server, you normally want
as many records as possible returned for each server request. However, the more
records requested, the longer it takes to satisfy each request. Also ensure you do not
specify more occurrences than will fit within the maximum 32K communication area
available for each request.

- 105 -

Construct Spectrum SDK Reference

Step 1: Specify Standard Parameters

» To specify standard parameters for the subprogram proxy:
1 Invoke the Subprogram-Proxy wizard.
2 Select Standard Parameters:

SUBPROGRAM-PROXY Wizard EH

. Skark Standard Parameters

Standard
Parameters Module:; CLISTMSP [SPECDEMO on 17,600

Firniish System: [DEMO

Title: |Su|:u|:uru:ugram prioey For Cust

Description: [This subprogram prosy supports the customer J
order mainkenance system

[

Subprogram: [CUSTMSO Edit 1:4
Overrides
Damain: DEMO

Object name: [CUSTOMER

Version: 1.1.1

[Generate trace code
[Compress network data
[Encrypt netwaork data

Yalidate Zancel < Back | Mext = | Finish

Subprogram-Proxy Wizard — Standard Parameters

Thiswindow issimilar for all model wizards. For information about the parameters and
options, see the online help.

Note: The parameters and options availablein the Construct Windows interface and
the Generation subsystem are identical. For information, see Using the Sub-
program-Proxy Model, page 103, Natural Construct Generation.

- 106 -

Using the Subprogram-Proxy Model

Tip: Follow the Construct Spectrum naming conventions and use “M SP” for the last
three characters of a maintenance subprogram proxy or “BSP” for the last three
characters of abrowse subprogram proxy. Thiswill makeit easier to identify the
subprogram proxy when listing modul es.

Specify the following parameters for the subprogram proxy:

Parameter

Description

Subprogram

Domain

Object name

Version

Note:

Generate
trace code

Compress network
data

Encrypt network
data

Name of the subprogram for which the proxy is being
generated. For example, to generate a subprogram proxy for
the ORDM SO Customer Order subprogram, enter
“ORDMSO".

Name of the domain. To set up security for your applications,
link selected groups of usersto each domain.

Name of the business object. For example, a customer
information business object can be called “ Customer” . For
more information, see Versioning Support, page 120.

Version level of your package. This number consists of three
parts: version, release, and SM level.

One application service definition is created for both a
maintenance and a browse dialog if the domain, object, and
version values are identical on this panel for their respective
subprogram proxies.

Usethisoption if you are devel oping an early iteration of your
application or if runtime errors are occurring in the application.
This option adds code to the proxy that can help you determine
the cause of a parameter format error.

If your application is stable, do not generate trace code. This
improves the performance of your subprogram proxy and
reduces the amount of generated code.

Usethisoption if the proxy transmitslarge volumes of datato
the client. If you are generating a browse subprogram proxy
and alargevolume of dataisbeing sent to the client, select data
compression.

Use this option if the proxy transmits sensitive datato the
client.

-107 -

Construct Spectrum SDK Reference

Note: The Compression and Encryption parameters apply only to data sent to the cli-
ent. If you are creating aclient/server application, you can enable compression
and encryption for data sent from the client to the server. Mark the Compress
network data and Encrypt network data check boxes in the Standard Parame-
terswindow of the VB-Maint-Object model or V B-Browse-Object model (de-

pending on the type of dialog you are creating).

Step 2: Specify the Number of Occurrences Returned

Next, specify the maximum number of 1:V arraysthat can be returned to the client for
each request. A 1:V array can consist of either one-dimensional data, such as alist of

repeating values, or two-dimensional data, such asarow of record data.

For maximum efficiency, specify 20 occurrencesfor each subprogram structure (PDA).

» To specify the maximum number of occurrences to return for each request:

1

Click Edit 1:V Overrides in the Standard Parameters window.

If no fields in the target subprogram use the 1:V notation, a message is presented

indicating this. Otherwise, the model determines these values and displays a window

listing their names. For example:

Edit 1:¥ Ovemdes

#

Skruckture

|Field

OCCUrrences

1

CUSERR.CWY

Refresh |

(RO

Cancel

Edit 1:VV Overrides Window

- 108 -

Using the Subprogram-Proxy Model

Note: If you are using the Subprogram-Proxy model in the Generation subsystem to
generate your subprogram proxy, press PF5 (1:V) on the Standard Parameters
panel to access the 1:V Overrides panel.

2 Specify the maximum number of occurrences that can be returned to the client with
each call to the server.
Click Refresh to update the information by making another call to the server.

3 Click OK to return to the Standard Parameters window.

Step 3. Add User Exits

After supplying model parameters, you can customize the generation results by creating
user exit code for the module. For example, you can use user exits to modify block han-
dling or add block handling for new methods.

» To add user exits:

1 Click Finish in the Standard Parameters window.
The user exits available for the Subprogram-Proxy model are displayed:

=+ SUBPRDGRAM-PROXY CUSTORD

|CHANGE-HISTORY -
LOCAL-DATA
OH-ERROR-M3G-HE
START-0F-FROGRAM
1SER-TRACE - COMMAND S
EEFORE-CALL-0OEJECT
WFTER-CALL-0BJECT
SET-DATA-LENGTH
BEFORE -EXPAND - INFUT
& FTER-EXFAND-INPUT —
SET-FETURN-ELOCES
EEFORE - COMPRE S S - OUTEUT
\LFTER- COMPRESS - OUTPUT
ISCELLANE TS - SUBROUTINES
ND-0F- FROGRAN

R e e e s
SR NN ONR RN

s
ALY

ek
AN

B e L |
T T e T b

Line 1 Col1 CHAMGE MCSTDEMO on 1000,1002 2

User Exits for the Subprogram-Proxy Model

—109 -

Construct Spectrum SDK Reference

Theicon on the left indicates whether sample codeis generated for the user exit.
Right-click the user exit and select Generate Sample from the shortcut menu.
Modify the code as required.

Y ou can also generate sample code from the user exit list by selecting User Exit List
from the View menu or clicking the View button.

To generate sample code:

Select the user exit.

Click Generate sample.

Note: You can also add new user exits and write code for them. For information, see
Invoke User Exit Editor Function, page 69, Natural Construct Generation.

Step 4. Generate the Subprogram Proxy

» To generate the subprogram proxy:

1

Select Generate from the File menu or click the Generate button on the toolbar.
The Generate window is displayed, showing module and status information.

When generation completes successfully, select Stow <Module name> from the File
menu.

Once generation has completed, the following two items exist:
The generated subprogram proxy.

The application service definition in the Construct Spectrum Administration
subsystem.

-110-

Using the Subprogram-Proxy Model

Generating Methods

The subprogram proxy generates a method for each of the actions supported by an ob-
ject subprogram. The application service definition includes the following methods:

Object Method

Maintenance Delete
Exists
Get
Initialize
Next
Store
Update

Browse Browse

Any other type Default

If asubprogram proxy is generated using the same domain, business object, and version
asanother subprogram proxy, the new methods are al so added to the application service
definition. This alows a single application service definition to access both the mainte-
nance and browse functions of a business object.

-111 -

Construct Spectrum SDK Reference

Accessthe Application Service Definitions

» To view application service definition records:

1
2

Invoke the Construct Spectrum Administration main menu.

Enter “AA” in the Function field.
The Application Administration main menu is displayed.

Enter “MM?” in the Function field.
The Application Administration M aintenance menu is displayed.

Enter “AS’ in the Function field.
The Maintain Application Service Definitions panel is displayed:

BSI F__MP Construct Spectrum Adm ni stration Subsystem BSIF__11
Jan 30 Mai ntain Application Service Definitions 3:15 PM

Action (A B, C,D,MN,P)

Domain..................: DEMO ___ *
Object..................: PRODUCT
Version.................: 01/ 01/ 01
Description.............: PRODUCT
Def aul t subprogram proxy: PRODVSP_
Steplibs................: *
Subpr ogram
01 Met hod Nane Pr oxy Steplibs *
1 BROWSE PRODBSP
2 DELETE
3 EXI STS
4 CGET
5 I NI TI ALI ZE
Cormmand:
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
confmhelp retrn quit flip pref bkwd frwd mai n

Appl Srvc Definition DEMD> PRODUC di spl ayed successfully

Maintain Application Service Definitions Panel

Use this panel to add a method.

-112 -

Using the Subprogram-Proxy Model

Add aMethod

(AJI\JHV

Y ou can add custom methods to a maintenance or browse object. For example, if your
maintenance object requires special processing that isnot provided by one of the sup-
plied methods, you can add a new method to implement the processing.

To add a new method:

Step 1: Createthe Method, page 113.

Step 2: Update the Application Service Definition, page 113.

Step 3: UpdatetheLibrary ImageFile, page 114.

Optionally, you can transmit only the data required for the custom method when the
method isinvoked. For moreinformation about optimizing the handling of datafor cus-
tom method, see Overriding Block Handling, page 116.

Step 1: Create the Method

To create the method:

Define the method in the USER-DEFINED-FUNCTIONS user exit for the subprogram
and save your changes.

If the subprogram does not currently include this user exit, regenerate it using the
Object-Maint-Subp model and select the USER-DEFINED-FUNCTIONS user exit.

For information about using the Object-Maint-Subp model and user exits, see Object-
Maint M odels, page 345, Natural Construct Generation.

Step 2: Update the Application Service Definition

To update the application service definition:
Type“M” in Action.

Type the domain, object, and version of the application service definition you are
updating in the appropriate fields.

Type the name of the method in Method Name.
Use the name that was specified when the method was created and added to the
mai ntenance subprogram user exit.

If the subprogram proxy for this business object’s method is different from the default
subprogram proxy specified for the business object, type the new subprogram proxy
name in Subprogram Proxy; otherwise, leave the field blank.

If the steplib for this business abject’ s method is different from the default steplib
specified for the domain, provide the new steplib name in Steplibs.

Press Enter.
The method is added to the application service definition.

-113 -

=

Construct Spectrum SDK Reference

Step 3: UpdatetheLibrary Image File

Thelibrary image file (L1F) resides on your client and must be updated with the valid
methods for a business object. To update the LIF, download the subprogram proxy to
the Visual Basic project for the application and Construct Spectrum automatically adds
the new method.

To update the library image file with the method:
Open the project for your application in Visual Basic.

Select Download Generated Modules from the Construct Spectrum Add-1n menu.
For more information, see Downloading the Generated M odules, page 107,
Construct Spectrum SDK for Client/Server Applications

Download the subprogram proxy definition to your project.
A maintenance subprogram proxy has the suffix “M SP" and a browse subprogram
proxy has the suffix “BSP”.

Save your changes and run the project.
The new method is available for use in your application.

For web applications, you must regenerate the ABO, page handler and HTML template.
For more information, see Creating and Customizing a Page Handler, page 75, and
Creating and Customizingan HTML Template page 91, Construct Spectrum SDK
for Web Applications.

~114 -

Using the Subprogram-Proxy Model

Overridethe Steplib Chain for the Domain

All business objects in an application service definition share the same domain. All
business objects within a domain are accessed using the domain’s steplib chain. You
can, however, override the steplib chain for each business object or method defined in
your application service definition.

» To override the steplib chain for the domain:
1 Accessthe Maintain Application Service Definitions panel:

BSI F__MP Construct Spectrum Adm ni stration Subsystem BSIF__11
Jan 30 Mai ntain Application Service Definitions 3:15 PM

Action (A B, C,D,MN,P)

Domain..................: DEMO ___ *
Object..................: PRODUCT
Version.................: 01/ 01/ 01
Description.............: PRODUCT
Def aul t subprogram proxy: PRODVSP_
Steplibs................: *
Subpr ogram
01 Met hod Nane Pr oxy Steplibs *
1 BROWSE PRODBSP
2 DELETE
3 EXI STS
4 CGET
5 I NI TI ALI ZE
Command:
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
confmhelp retrn quit flip pref bkwd frwd mai n

Appl Srvc Definition DEMD> PRODUC di spl ayed successfully

Maintain Application Service Definitions Panel

For more information about this panel, see Access the Application Service Defini-
tions, page 112.

Display the application service definition you want to modify.
Type“M” in Action.

For each method or business object that requires aspecia steplib, specify the steplib
namein Steplibs.

5 Press Enter to update the application service definition.

-115-

Construct Spectrum SDK Reference

Overriding Block Handling

The subprogram proxy optimizeslevel 1 parameter block handling for the default meth-
ods provided with your object maintenance and object browse subprograms. This
optimization ensures that only the required datafor a particular method is sent from the
server to the client. This section describes the default block handling provided with the
subprogram proxy and how to override this block handling, if necessary.

Default Block Handling

The following tables define which level 1 blocks are sent for each default method in
your maintenance and browse subprograms.

M aintenance Subprogram Blocks Sent to Server

Function Business Business Restricced CDAOBJ2 CDPDA-M
Object Object Data (function) (message)
Data Key

DELETE X X X

EXISTS X X

GET X X

INITIALIZE X

NEXT X X

STORE X X

UPDATE X X X

-116 -

Using the Subprogram-Proxy Model

M aintenance Subprogram Blocks Returned to Client

Function Business Business Restricced CDAOBJ2 CDPDA-M
and Flags Object Object Data (function) (message)
Data Key

DELETE and

(Error = True or X X
Return Object =

False)

DELETE and
(Clear After = X X X
False)

GET and X X
Exists = False

EXISTS X X

NEXT and X X
Exists = False

STORE and

(Error = True or X X
Return Object =

False)

STORE and

(Clear After = X X X
False and

Derived Data =

False)

UPDATE and

(Error = True or X X
Return Object =

False)

UPDATE and

(Clear After = X X X
Falseand

Derived Data=

False)

All Other X X X X
Combinations

-117 -

Construct Spectrum SDK Reference

Browse Subprogram Blocks Sent to Server

Function Key Data Row Data Restricced CDBRPDA CDPDA-M
Data (function) (message)
BROWSE X X X

Browse Subprogram Blocks Returned to Client

Function Key Data Row Data Restricced CDBRPDA CDPDA-M
Data (function (message)
BROWSE X X X X X

Specify Overrides

=

Y ou can override the default block handling rules listed in the previous tables and pro-
vide your own rules. For example, if you add a new method, you can specify which
blocks are sent to the client. By default, custom methods transmit all data blocks.

To override the default block handling:

Define the custom block handling on the server.

Define the custom block handling on the client.

Step 1: Define Block Handling On Server

Y ou can set block handling overridesfor every level 1 datablock in asubprogram’ s pa-
rameter data. Define these overrides in the SET-RETURN-BLOCKS user exit for the
subprogram proxy and regenerate the proxy. For information about regenerating, see
Generating a Subprogram Proxy, page 105.

Disable a Block Unconditionally

To disable a block unconditionally so that it is never sent to the client:
Select the SET-RETURN-BLOCKS user exit for the subprogram proxy.

Reset any block indicator that is not to be sent to the client.
Block indicators identify a data block and are named #PDA .#RB-blockname, where
blockname is the name of the level 1 variable that defines the block.

Note: Code the statements in this user exit as part of aDECIDE FOR statement.

-118 -

Using the Subprogram-Proxy Model

3 Addthefollowing code:

WHEN #SPC- TRUE
RESET #PDA. #RB- BLOCKNAME/ * Uncondi ti onal assi gnnent

Send Blocksto the Client Conditionally

» To conditionally send blocks to the client:

In the SET-RETURN-BLOCKS user exit of the subprogram proxy, add a DECIDE
clause that resets certain block selectors based on a condition. For example:

**SAG DEFI NE EXI T SET- RETURN- BLOCKS
/* Do not return restricted data on a delete
WHEN CDAOBJ2. #FUNCTI ON = CDLMVETH. DELETE

RESET #PDA. #RB- CUSTMSR
/* Do not return object or restricted data on existence check
WHEN CDAOBJ2. #FUNCTI ON = CDLMVETH. EXI STS

RESET #PDA. #RB- CUSTMSA

#PDA. #RB- CUSTMSR
**SAG END- EXI T

Adhere to the following guidelines when assigning the blocks:

« Know the name of each block you are assigning.
Theformat is#PDA #RB-blockname, where blockname isthe name of thelevel 1 field.

» Reset only those blocks that are not to be returned to the client.

Step 2: Define Block Handling On Client

For information about defining block handling on the client, see Step 3: Updatethe
Library ImageFile, page 114.

-119 -

Construct Spectrum SDK Reference

Versioning Support

Y ou can create new versions of a subprogram proxy without affecting older versions.
The version number specified when entering the model input parametersis part of the
key used to store the associated application service definition. Versioning allowsyouto
maintai n a system without affecting existing applications. Each request issued from the
client includes its required version number.

Note: When creating anew version of a subprogram proxy, use a new name. Other-
wise, the existing version is overwritten.

Security Implications

Security definitionsdo not include the version number. Thismeansthat if theonly thing
about the subprogram proxy that changesisthe version number, it will automatically be
included in existing security definitions for the domain and business object name spec-
ified. If it requires anew security definition, the subprogram proxy domain or business
object name should be changed to force the creation of a new application service defi-

nition. This new application service definition can then be secured as necessary.

Debugging Support

Subprogram proxies automatically support the DATASIZES and INITIALIZE trace
options. These options return the size of the data blocks and their initialized values and
are useful when debugging an application. You can add additional trace options in the
USER-TRACE-COMMANDS user exit for the subprogram proxy.

For more information, see Debugging Your Client/Server Application, page 161.

-120 -

USING BUSINESS DATA TYPES (BDTS)

This chapter describes business datatypes (BDTS) as they relate to client/server and
web applications. It describes the composition of BDTsand how to create and usethem.

The following topics are covered:
« Overview, page 122
+ Understanding and Using BDTSs, page 123
« Creating and Customizing BDTs page 141

-121 -

Construct Spectrum SDK Reference

Overview

Thefirst section of this chapter is of particular interest to users of BDTS. It discusses
the concept of BDTsin general terms and gives you agood understanding of the bene-
fits of using BDTs and how they work. The second section is of interest to authors of
BDTs. It discusses how to create and customize BDTsin both the client/server and web
framework components.

BDTs provide away to present datato the user in aformat that is consistent and based
on business conventions rather than on programming |anguage conventions. For exam-
ple, aBDT can format a phone number with dashes (-) or some other delimiter value so
that it is easily recognized by the user as a phone number.

To accomplish this, BDTs convert data val ues between simple internal Visual Basic
data types (such as String, Long, Currency, Date, and Boolean) and values that are dis-
played to the user in a browse or maintenance dial og.

Construct Spectrum also uses BDTs to create sampl e strings to calculate the length of
GUI controls.

-122 -

Using Business Data Types (BDTS)

Understanding and Using BDTs

There is some commonality between BDTsthat are used in client/server applications
and web applications. The following sections discuss BDTs as they relate to both the
client/server and web framework components.

Benefitsof UsngBDTs

Using business data types offers three primary benefits:

« Consistency
BDTs ensure that a specific datatype is displayed in the same format throughout the
application.
» FHexibility
BDTSs recognize avariety of input formats which makes using the application easier.
« Accuracy

BDTscentralize the validation code for adatatype and provide a consi stent mechanism
for returning validation error messages.

Relationship With Visual Basic Data Types

The relationship between Visual Basic data types and business datatypes is many-to-
many. That is, aVisual Basic Double variable can represent more than one BDT, such
as Phone Number, AMEX Number, or Currency. Conversely, a Phone Number BDT
could be mapped to Visual Basic String, Double, or Float variables. The Visua Basic
datatypestowhichaBDT can be applied depend on the considerations written into the
BDT’s conversion routine.

Byte Phone Number
String Date
Long Currency
Visual Basic BDT‘ Business Data | __|
Double Data Type Clgngifggn Type AMEXNumber
Float Postal Code
Integer SSN

Relationship Between Visual Basic Data Types And BDTs

-123 -

Construct Spectrum SDK Reference

Construct Spectrum includes a set of standard BDTSs. Y ou can usethese BDTs as they
are or you can customize them. Y ou can also write your own BDTs. If there is a piece
of information whose format you are constantly validating, consider writing a BDT to
handle it. Once aBDT has been created, you can useit in other applications.

Composition of aBDT

A BDT iscomposed of aname, aconversion routine, and thelist of modifiersit can use.

Name

Applications need only the name of the appropriate BDT to perform the conversion to
and from adisplay value.

Conversion Routine

The conversion routine converts data between an internal Visual Basic datatype and a
displayable format.

The BDTConversion object is used internally by BDT conversion routines. When the
application callsoneof the BDT controller’ s conversion methods, the controller creates
aBDTConversion object and initializes it with detail s about the conversion requested.
For example, the BDT controller will supply the BDT name, any modifiers associated
with it, and any Natural format provided. The BDT controller then calls the conversion
routine for the specified BDT, passing the BDTConversion object as a parameter.

The conversion routine uses the properties of the BDTConversion object to determine
what type of conversion to perform (convert to display, convert from display, or create
sample string), to get information about the modifiers used, the Natural format speci-
fied, and to return the converted value.

M odifiers

Use modifiers to override the default conversions that are performed by aBDT's con-
version routine.

—124 -

Using Business Data Types (BDTS)

Elementsof aBDT

Each time an application uses a business data type, it involves a number of elements.
The following sections describe these elements and how they relateto BDTSs.

BDT Controller

TheBDT controller knows about all the BDTsthat the application uses. Thisis because
the application registers all of its BDTswith the BDT controller when the application
isstarted. Whenever an application usesaBDT, it relieson the BDT controller to locate
and call the associated conversion routine as follows:

1 Theapplication callsthe BDT controller and passes it all the necessary parameters,
including the name of the BDT and the value to be converted.

The BDT controller locates the conversion routine for the BDT.

3 TheBDT controller calls the conversion routine, forwarding the parameters from the
application.

The conversion routine doesthe conversion and returnsthe result to the BDT controller.
The BDT controller returns the result to the application.

Theapplication needs only the name of the BDT to accomplish therequired conversion.
The BDT controller is declared in the client/server framework as follows:

Publ i c BDT As New BDTControl | er

In the web framework, the BDTController object isaglobal multi-use object, meaning
that you caninvoke properties and methods of thisclassasif they were global functions.
Y ou do not have to create an instance of this class first because one will automatically
be created.

How the Client Framework UsesBDTs

The client framework use BDTs to display values read from a NaturalDataArea object
on the client. The values are then displayed in GUI controls. The following diagram
shows the process of reading avalue from a NaturalDataArea object on the client, dis-
playing it in aGUI control where the user can modify the value, and copying the new
value back to Natural DataAreaon the client. Once the valueis copied back tothe client,
it can be sent to the server. The BDT in the following diagram is named DATE and is
applied to the BIRTH-DATE field:

—-125-

Construct Spectrum SDK Reference

Date 1: Read BIRTH-DATE file
F Variant <—|
) 2: Convert to Natural Data Area
Display 01 CUSTOMER

Date
Displayed in
Text Box

02 NUMBER(N6)
Date BDT 02 NAME(A30)

- 02 BI RTH- DATE(D)
Conversion 02 .

Routine

3: Read from 4: Convert From Date 5: Write
Variant B

TextBox.Text Display IRTH-DATE field

Processing Date BDT Applied to BIRTH-DATE Field

1 Reading thefield value from the Natural data area returns a Visual Basic Variant data
type.

2 Thisvalueisformatted for display by the Date BDT’ s conversion routine through acall
to ConvertToDisplay. Theresult is a String value.

3 Thestring isdisplayed on aform by assigning it to a GUI control. The value displayed
in the text box can be edited by the user.

4 Whentheuser isfinished editing, the edited value isread from the Text property for the
TextBox control.

5 Thisstringisconverted back to avariant by the Date BDT’ s conversion routine through
acall to ConvertFromDisplay. If the string does not contain avalid date, or the
conversion routine cannot interpret the user’ s value correctly, an error is returned.

6 Thenew valueisassigned back to thefield in the Natural data area, which can then be
sent to the server, for example, in the case of an update to the server database.

In aweb application, BDTs are implemented internally. To change the BDT used by a
field, you can define a user exit. For information, see Customizing a Page Handler,
page 84, Construct Spectrum SDK for Web Applications.

Conversion Routines

When an application usesaBDT, the BDT controller callsthe conversion routine. The
conversion routine offers three services that affect the appearance of data:

« Convertsthevaluein aVisual Basic datatype to display in business format.
« Converts the value from its business format display to a Visual Basic datatype.

» Creates asample display valuethat is representative of the display values produced by
the BDT.

In applying the second service, the conversion routine returns an error messageif anin-
appropriate value is passed to it.

-126 -

Using Business Data Types (BDTS)

ConvertToDisplay Method

The ConvertToDisplay method converts avalue from a Visual Basic datatype to adis-
play format. This method takes the value, and either the name of aBDT or a Natural
format, and returns a string that is formatted for display. The syntax is:

Function ConvertToDi spl ay(RawbData As Variant, _
Opti onal BDTNanme As String, _
Optional Nat FornmatLength As String _
) As String

For example, in aclient/server application:

txt Bi rt hDat e. Text = BDT. Convert ToDi spl ay(cust pda("BI RTH DATE"), _
"Date")

Y ou can specify aBDT name, a Natural format, or both. If you do not specify aBDT
name, the BDT controller uses the Natural format (for example, N6) to choose an ap-
propriate BDT first, and then calls that BDT’ s conversion routine.

If you do specify aBDT name, that BDT’ s conversion routine can use the optional Nat-
ural format to further refine how it performs the conversion or interprets the data. For
example, the Numeric BDT uses the Natural format to determine how many decimal
places to display. The Date BDT uses the Natural format as follows:

If the Natural format is D, interpret the variant data as a date.

If the Natural format is N6, P6, or A6, interpret the variant data as a datein the format
YYMMDD.

If the Natural format is N8, P8, or A8, interpret the variant data as a datein the format
YYYYMMDD.

-127 -

Construct Spectrum SDK Reference

ConvertFromDisplay Method

The ConvertFromDisplay method converts a value from adisplay format to a Visual
Basic data type. This method takes the display value, and either the name of aBDT or
aNatural format, and returns a variant value that can be manipulated further by the ap-
plication. The syntax is:
Function Convert FronDi spl ay(FormattedData As String, _

Opti onal BDTNane As String, _

Optional NatFornmatLength As String _
) As Variant

For example, in aclient/server application:

cust pda(" Bl RTH DATE") = BDT. Convert FronDi spl ay(txtBirthDate. Text, _
"Date")

Y ou can specify aBDT name, a Natural format, or both. Using these optional parame-

ters has the same result asin ConvertToDisplay.

ConvertlnPlace Method

The ConvertlnPlace method allows you to validate and reformat avaluein a GUI con-
trol, such asin aLostFocus event. This method takes a formatted val ue by reference,

internally calls ConvertFromDisplay, and then passes the result back to ConvertToDis-
play which returns the new formatted result. For example, in aclient/server application:

Private Sub txtBirthDate_LostFocus()
Dim stenp As String

stenp = txtBirthDate. Text
BDT. Convert I nPl ace stext, "Date"
txtBirthDate. Text = stenp

End Sub

When the user moves out of the field, the field value is validated and, if valid, isrefor-
matted according to the date format used by the BDT. For example, if auser enters*feb
5", theinput is reformatted to the date format chosen, such as 2/5/1999, when the user
leaves thefield. The syntax is:
Function ConvertlnPl ace(ByRef FormattedData As String, _

Opti onal BDTNane As String, _

Opti onal NatFornatLength As String _

) As Variant

Y ou can specify aBDT name, a Natural format, or both. Using these optional parame-
ters has the same result as in ConvertToDisplay.

Thereturned value isthe value returned by theinternal call to ConvertFromDisplay, so
you can perform additional processing on the value entered by the user.

—-128 -

Using Business Data Types (BDTS)

CreateSampleString Method

The CreateSampl eString method creates a sample displayable valuefor eachBDT. This
sample value can be used as atemplate to determine the dimensions of the associated
control or to determine how wide a column in abrowse dialog must be to display the
BDT value. The syntax is:

Function CreateSanpl eString(Opti onal BDTNane As String, _
Optional NatFornmatLength As String _
) As String
Y ou can specify aBDT name, a Natural format, or both. Using optiona parameters al-
lows you to further refine how the BDT performs the conversion or interprets the data.

Y ou can usethereturned valueto calcul ate the required width of aListView control col-
umn or a TextBox control used to display this business datatype.

Modifiers

The processing performed by aBDT can be refined using special modifiers. Each busi-
ness data type defines its own set of modifiers to provide theflexibility it needs.

Individual modifiers are separated by commas, and each modifier must be introduced
by aname. Modifiers have names such as TRIM, CASE, DEC, and ROUND.

In callsto the conversion routines, use the format nane=val ue, where nane is the mod-
ifier you want to use andval ue controlsthe behavior of the conversion routine for the
given modifier. Append modifiers to the BDT name parameter with commas. The fol-
lowing codeinvokesthe Numeric BDT’ sconversion routine and usesthe DEC modifier
to specify that two decimal places should be displayed in the value and the ZERO mod-
ifier to suppress display of the value when it is 0.

For example, in aclient/server application:

t xt Hour s. Text = BDT. Convert ToDi spl ay(dbl Hours, _
"Numer i ¢, DEC=2, ZERO=OFF")

For more information about the modifiers supported by each BDT, see BDTs Supplied
With Construct Spectrum, page 133.

—-129 -

Construct Spectrum SDK Reference

Natural Formats

When you omittheBDT namein callsto the ConvertToDisplay, ConvertFromDisplay,
ConvertlnPlace, or CreateSampleString method, you must provide the Natural format.
TheBDT controller usesthisformat to choose which BDT to use for the conversion. It
doesthis by calling aNatural-to-BDT mapper function. Thisfunction providesthe most
appropriate BDT to usefor each Natural format.

The mapper function must be registered with the BDT controller. In the client/server
framework, the mapper is implemented as a method of the StandardBDTs classand is
registered in its SelfRegister method. For moreinformation, seeRegister aBDT, page
145.

For information about registering BDTsin the web environment, see Register BDTsin
the Web Framework, page 151.

-130 -

Using Business Data Types (BDTS)

Handling Errors Returned from aBDT Conversion
Routine

The BDT controller has four properties that return error information from the conver-
sion routines. These properties can be examined after a call to ConvertFromDisplay or
ConvertinPlace. The BDT conversion routines place information in these properties if
aconversion error occurs. The application can then examine the properties on return
from the call and display the error to the user:

Property Contents

ErrorCode Numeric error code. Each BDT can define itsown error codes. The
application makes program flow decisions based on this value.

ErrorMsg Error message. This message should provide useful information.
ErrorPos Position of thefirst invalid character.

ErrorLen Number of invalid characters.

To show the user whereinvalid characters are, an application can use the ErrorPos and
ErrorLen properties to set the Sel Start and SelLength properties of a TextBox control.

Example code using error information propertiesin a client/server application

Private Sub txtBirthDate_LostFocus ()
Dim sdate As String

sdate = txtBirthDate. Text

BDT. Convert I nPl ace sdate, "Date"

| f BDT. Error Code Then
txtBirthDate. Sel Start = BDT. Error Pos
txtBirthDate. Sel Lengt h = BDT. ErrorLen
MsgBox BDT. Error Msg, vbExcl amation
t xt Bi rt hDat e. Set Focus

El se
txtBirthDate. Text = sdate

End |f

End Sub

Warning:
A conversion routine may set ErrorPos, but not ErrorLen. In the sample code above, it
will not cause problems.

-131-

Construct Spectrum SDK Reference

How Web Applications Use BDTs

Construct Spectrum web applications use BDTs as away to format and validate user
input for display on web pages. No formatting or validation is donein the web browser,
instead the work is done on the web server inside of the Spectrum web application com-
ponent, ABOIlnterface. To determine what BDTs to use, the page handler queries the
ABO at runtimefor thelogical format each property provides. Theselogical formatsare
translated into BDT names. Y ou can override the translation and logical formats of
propertiesin the BDT.Overrides user exit.

For example, in a page handler:
Private Sub | CSTPageHandl er_Initialize(...)

Wth m ABO nterface
Set . ABOObj ect = m ABO

.Init ERR_SESSI ON_KEY, m Request Dat a. Sessi on, m Request Dat a. Request
"<cst: EXIT Nanme="BDT. Overri des" >
For the CustonmerPhoneNunber property use a phone BDT.

. BDT(" Cust oner PhoneNunber") = " Phone"
Use an al pha BDT for the | ogical format Postal Code.
. Logi cal For mat BDT(" Post al Code") = "Al pha”
"</cst:EXIT>
End Wth
End Sub

When amaintenance or browse HTML templateisparsed and FIEL D tags are detected,
the value to be displayed is formatted using the correct BDT.

When a user submits aweb page that includes properties on an HTML form to be up-
dated, the ABOInterface component is used to update these properties. Part of the
process includes validating the dataincluded on the form before updating the property.
If aBDT validation error occurs, the property is flagged for an error and the user's ac-
tion is cancelled. When the web page s returned to the user, the propertiesin error are
highlighted in red (Internet Explorer) or an error graphic is displayed next to the field
(Netscape Navigator) and the error messages are displayed at the bottom of the page.

For moreinformation, see Customizing a Page Handler, page 84, Construct Spectrum
SDK for Web Applications.

-132 -

Using Business Data Types (BDTS)

BDTs Supplied With Construct Spectrum

This section describes the standard BDTs supplied with Construct Spectrum. The fol-
lowing sections describes each BDT, liststhe modifiersit supports, and describes what
each modifier does.

Alpha
Apply the AlphaBDT to alphanumeric data.

M odifier Description

TRIM=L|T|LT Trims leading spaces (L), trailing spaces (T), or leading and
trailing spaces (L T). Default is no trimming. This affects
ConvertToDisplay and ConvertFromDisplay behavior.

CASE=U|L Forces the text into uppercase (U) or lowercase (L). Default is to
not change the case. This affects ConvertToDisplay and
ConvertFromDisplay behavior.

Boolean
Apply the Boolean BDT to datathat can have a value of either False or True.

M odifier Description

EM=<False>|<True> Displays the <False> string for False and the <True> string
for True. Default is EM=False|True. ConvertFromDisplay
compares the formatted datato the <False> and <True>
strings and recognizes a match if the value matches
unambiguously to the beginning of either string. Thisis not
case-sensitive.

The following examples show various types of edit mask
values, user input, and each result.

EM Vaue Formatted Value Raw Value
EM=False|True T True

t True

tr True

TRU True

F False

false False

yes Error: Invalid

<blank> Error: Invalid

-133 -

Construct Spectrum SDK Reference

M odifier

Description (continued)

EM=True|False true False

F True
EM=0ff|On off False

on True

o] Error: Ambiguous
EM=|X X True

<blank> False

XX Error: Invaid

Time

Apply the Time BDT to any time value. The Time BDT supports the following Natural

formats:

Natur al Visual Basic Description

Format Data Type

T Date, Variant If thevalueis Null, ConvertToDisplay returns

an empty string.
N7 or P7 Long, Single, Double, Numeric valueisinterpreted as HHMMSST.
or Currency

A7 String Alphavaueisinterpreted as HHMMSST.

Numeric

Apply the Numeric BDT to any numeric data.

M odifier

Description

DEC=n

ROUND=nN

GS=OFF|ON

Forces the display of n decimal places. Default isto display as
many decimal places as there are significant decimal digits when
the Natural format is not provided, or to use a fixed number of
decimal placesif the Natural format is provided. Inthislatter case,
use DEC=-1to ignore the Natural format and display significant
decimal digits only.

Roundsthe value to n decimal places. If nisnegative, it roundsto
the left of the decimal place. Default is no rounding.

Used to suppress (OFF) or display (ON) group separators
(thousands separators). Default is GS=OFF.

—134 -

Using Business Data Types (BDTS)

Modifier Description (continued)

ZERO=0OFF|ON Suppresses (OFF) or displays (ON) zero values. Default is
ZERO=0OFF.

SIGN=OFF|ON Suppresses (OFF) or displays (ON) the sign for positive numbers.
Default is SIGN=OFF.

MULT=n ConvertToDisplay multiplies the raw value by n.
ConvertFromDisplay divides the value by n before returning the
raw value. n can be any positive or negative numeric value except
zero. Defaultis MULT=1.

SCIENTIFIC= Displays the value in normal (OFF) or scientific notation (ON).

OFF|ON Default is SCIENTIFIC=OFF.

EM=xxx Any format string understood by the Visual Basic Format function.
ConvertToDisplay uses the Format function to format the value
according to that format string.

STRICT= Used by ConvertFromDisplay to determine how to deal with non-

OFF|ON numeric characters in the formatted value. OFF quietly discards
non-numeric characters and ON generates an error if the value
contains non-numeric characters. ThedefaultisSTRICT=0ON. Has
no effect on ConvertToDisplay.

Currency

Apply the Currency BDT to any currency values.

M odifier Description

ZERO=OFF|ON Suppresses (OFF) or displays (ON) zero values. Default is

ZERO=0ON.

—-135-

Construct Spectrum SDK Reference

Date

Apply the Date BDT to any date value. The Date BDT supports the following Natura

formats.

Natur al Visual Basic Description

Format Data Type

Dand T Date, Variant If thevalueisNull, ConvertToDisplay returns

an empty string.

N6 or P6 Long, Single, Double, Numeric valueisinterpreted asYYMMDD.
or Currency

N8 or P8 Long, Single, Double, Numeric valueisinterpreted as
or Currency YYYYMMDD.

A6 String Alphavaueisinterpreted asYYMMDD.

A8 String Alphavalueisinterpreted asYYYYMMDD.

- 136 —

Using Business Data Types (BDTS)

Referencing BDTsin Predict

You can attach aBDT nameto afield in Predict by adding a keyword with the same
nameasthe BDT and prefix it with ‘BDT_’. For example, to cause an N8 field to be
treated as a date value when displayed on a browse or maintenance dialog, add the
BDT_DATE keyword to thefield.

Thefollowing table lists the BDT keywords |oaded into Predict during installation:

BDT Predict Keyword
Alpha BDT_ALPHA
Boolean BDT_BOOLEAN
Currency BDT_CURRENCY
Date BDT_DATE
Numeric BDT_NUMERIC
Phone BDT_PHONE

PostalCode ~~ BDT_POSTALCODE
Time BDT_TIME
ZipCode BDT_ZIPCODE

—-137 -

Construct Spectrum SDK Reference

Defining BDTs

One of the most powerful things about BDTs s that you can customize existing BDTs
or create your own. If there isinformation whose format you are constantly validating,
consider writing aBDT to handleit. A perfect case for a customized BDT might be an
organi zati on-specific account number.

To defineaBDT, you must provide the following:
* Namefor theBDT
« List of modifiersit will support
» Display format it will use
« Natura formats it will support
« Variant datatypesit will support

Tip: To maintain consistency, follow the naming convention used in the Construct
Spectrum client framework: use short names consisting of one or two words and
mixed case (capitalize the first letter of each word).

Name

A BDT name can be any consecutive string of characters except commas. Leading and
trailing spaces are ignored, and uppercase and lowercase are considered identical.

Modifiers

Individual modifiers are separated by commas and each modifier isintroduced by a
name. Modifiers have names such as TRIM, CASE, DEC, and ROUND. Modifier
names can be any consecutive string of characters except commas or equal signs. Lead-
ing and trailing spaces are ignored; uppercase and lowercase are considered identical.

Natural Formats

In addition to modifiers, all BDT handlers can be passed the format and length of the
Natural variablethat will receive the contents of the converted strings. For example, the
BDT handlers can usethis information to apply truncation rules or insert defaults.

When you omit the BDT name in cals to ConvertToDisplay, ConvertFromDisplay,
ConvertlnPlace, and CreateSampleString, you must provide the Natural format. The
BDT controller usesthe Natural format to choosewhich BDT to usefor the conversion.
It does this by calling a Natural-to-BDT mapper function supplied in the Construct
Spectrum client framework. The mapper function must also beregistered withthe BDT
controller.

- 138 -

Using Business Data Types (BDTS)

Variant Data Types

When converting from formatted datato raw data, decide what type of variant to use for
the raw data. Using a phone number BDT, for example, you can return the phone num-
ber as aVisual Basic Double, String, Currency, or an array. As all of these data types
have enough precision to storeal digits of a phone number, choose adatatype that is
convenient for an application programmer.

Thereturned datatype may also depend on the Natural format passed to the conversion
routine. For example, a seven-digit telephone number with area code can be stored in
an A10 field or an N10 or P10 field. The conversion routine can return a String variant
if the Natural format is A and aDouble variant if the Natural format isN or P.

—-139 -

Construct Spectrum SDK Reference

Returning Conversion Error Information

Conversion routines return conversion error information to the BDT controller in the
error properties of the BDTConversion object. The BDT controller copies these prop-
ertiesto its own properties having the same names. The client application examinesthe
error properties of the BDT controller to determineif an error occurred.

When returning error information, the most important property to set in the conversion
routineis ErrorCode. If this property isnot set, the BDT controller and the client appli-
cation do not know that an error has occurred because they make program flow
decisions based on ErrorCode.

If you set ErrorCode, also set ErrorMsg, giving the client application a message to dis-
play to the user. To provide the most information to the client application, set ErrorPos
and then optionally set ErrorLen.

When converting from formatted data to raw data, your conversion routine can range
from very forgiving in the input allowed to very strict. For example, aforgiving conver-
sion routine may throw away any non-numeric charactersin a numeric BDT without
returning an error, while a strict conversion routine might require the input to match a
rigid format to be converted without error.

A forgiving conversion routine is easier to code because it contains comparatively few
validations. Coding a strict conversion takes more time and may be more difficult to if
the routine must examine the input character-by-character to determine if it isvalid.
However, your error messages can be more informative.

—140-

Using Business Data Types (BDTS)

Handling Runtime Errors

Y our conversion routine should use Visual Basic runtime error handling to trap any
runtime errorsthat may occur. If they are not trapped by the conversion routine, Visual
Basic transfers the error up the call chain to thefirst enabled error handler. The BDT
controller that called the conversion routine has an enabled error handler and converts
the error into & H80040206 — An unhandled runtime error occurred when calling the
method %1 in object %2:Error %3, %4.

The client application is typically not prepared to handle aruntime error that occursin
aconversion routine that it called indirectly. Therefore, it is imperative that Visual Ba-
sic runtime errors are trapped in the conversion routines and translated into BDT-
specific errors that are documented and returned in the error properties of
BDTConversion.

Creating and Customizing BDTs

This section discusses how to create and customize BDTs. The client/server and web
frameworks use an open architecture that allows you to add business data typestailored
to your application specifications.

BDTsand the Client/Server Framewor k

This section discusses how the client/server framework uses BDTs. For information
about creating BDTs for the web framework, see BDTs and the Web Framework,
page 150.

Understanding the BDT Objects

The Construct Spectrum client framework has two objects that support BDTs. BDT-
Controller and BD T Conversion. The properties and methods of these objectsare shown
in the following diagram:

- 141 -

Construct Spectrum SDK Reference

Key
[

Object
Poery
Method

RegisterBDT ConvertToDisplay

DeregisterBDT ConvertFromDisplay

}_ GetBDTRoutine ConvertinPlace
RegisterNaturalBDTMapper | CreateSampleString

BDTController

GetBDT ErrorCode
ErrorMsg
ErrorPos
ErrorLen
Conversion FormatLength
BDTConversion FormattedData Format
RawData Length
Modifiers Decimals
Modifier BDTName
HasModifier SetBDTName
ErrorCode ErrorPos
ErrorMsg ErrorLen

Properties and Methods of the BDT Objects

The BDTController object is used by the application to register its BDTs (the startup
code in the Construct Spectrum client framework does this for you) and to call BDT
conversion routines.

Each of the ConvertToDisplay, ConvertFromDisplay, ConvertlnPlace, and CreateSam-
pleString methods and the ErrorCode, ErrorMsg, ErrorPos, and ErrorLen error
properties are discussed in separate sectionsin this chapter. The remaining methods are
related to registering BDTs, which is described in Register a BDT, page 145.

—142 -

Using Business Data Types (BDTS)

Create BDT Conversion Routines

BDT conversion routines must be implemented as public methods of an OLE automa-
tion object. This object can reside in an in-process server, an out-of-process server, or
asaclassin the Visual Basic project.

All BDT conversion routines must have the following syntax:
Publ i c Sub xxx(BDTC As BDTConver si on)
where xxx can be any name.

Thefollowing table describes all of the properties and methods of the BDTConversion
object for the client/server framework. For the examples, assumethefollowing call was
made:

strHours = BDT. Convert ToDi spl ay(dbl Hours, _
"Numer i ¢, ZERO=COFF, ROUND=2, STRI CT=ON", _

"N3. 2")
Property or Method Description
Conversion Tells the conversion routine what type of conversion to

perform. Can be one of the following constants:

bdt Convert ToDi spl ay
bdt Convert FronDi spl ay
bdt Cr eat eSanpl eSt ri ng

FormattedData and Is one of the following:

RawData « When Conversion = bdtConvertToDisplay, the
conversionroutinereadsthevaluein RawData, formats
it for display, and assigns the formatted string value to
FormattedData.

» When Conversion = bdtCreateSampleString, the
conversion routine assigns a sample string to
FormattedData. For example:

Wth BDTC
Sel ect Case . Conversion
Case bdt Convert FronDi spl ay
. RawbDat a = cvt ToRaw(. For nat t edDat a)
Case bdt Convert ToDi spl ay
.FormattedDat a = cvt ToDi sp(. RawDat a)
Case bdt Creat eSanpl eString
.Formatt edDat a = creat eSanpl e()
End Sel ect
End Wth

Modifiers Returnsthe number of modifiers specified by thecaller. In
the example, Modifiers returns 3.

—143-

Construct Spectrum SDK Reference

Property or Method

Description (continued)

Modifier

Note:

HasM odifier

FormatL ength

Format, L ength, and
Decimals

BDTName

Note:

SetBDTString

ErrorCode, ErrorMsg,
ErrorPos, and ErrorLen

Returns the value of a specific modifier or can be used to
enumerate the modifiers used. In the example:

Wth BDTC
Print . Mdifier("ZERO") " Prints "OFF"
Print . Mdifier(1l) " Prints "ZERO'
Print . Mdifier(2) " Prints"ROUND"

Print .Mdifier(.Mdifier(1l))' Prints "OFF"
End Wth

Modifier names, such as ZERO or ROUND, are passed to
the BDT conversion routinein uppercase. Y ou do not have
to use case-sensitive string comparisons when checking
which modifiers were used.

Returns Trueif a specified modifier was used and False if
not. In the example:

Wth BDTC
Print .HasMdifier("ZERO") " Prints True
Print .HasModifier("ROUND') ' Prints True
Print .HasMdifier("DEC") " Prints False
Print .HasModifier("#$%&"') ' Prints Fal se
End Wth

Returns the Natural format string used in the call. In the
example, FormatL ength returns N3.2.

Returns the format, length, and decimal portions,
respectively, of the Natural format string used in the call.
In the example, Format containsN, Length contains 3, and
Decimals contains 2.

Returnsthe nameof theBDT fromthecall. Inthe example,
BDTName contains Numeric.

BDT names are passed to the BDT conversion routine
with the capitalization used when the BDT was registered.
For example, if RegisterBDT was called to register the
BDT mixEdCase, and then ConvertToDisplay was called
for the BDT MixedCase, BDTC.BDTName contains
mIxEdCase.

Changes the BDT name and modifiersin the
BDTConversion object.

Contain error information. The conversion routine should
assign values to these propertiesif a conversion error
occurred.

—144 -

Using Business Data Types (BDTS)

To see how these properties and methods are used in BDTSs, examine the conversion
routines in the StandardBDTs.cls and CustomBDTs.cls modules.

Register aBDT

To makeaBDT available to an application, the BDT controller needs to know about
the BDT. Thisisdone by registering the BDT with the BDT controller. To register the
BDT, tell the BDT controller the name of the BDT and provide a pointer to the conver-
sion routine. Conversion routines must be implemented as methods of an OLE
automation object. To invoke a method, you must have areference to the object in an
object variable. The pointer tothe BDT conversion routine consists of areferenceto an
object and the name of a public method in that object.

The registration process is shown in this example from the Construct Spectrum client
framework. This code creates the BDT controller and instantiates the objects that con-
tain the BDT conversion routines:

Publ ic BDT As New BDTController
Private Sub InitializeBDTs()

Di m St andar dBDTs As New St andar dBDTs
Di m Cust onBDTs As New Cust onmBDTs

St andar dBDTs. Sel f Regi ster BDT
Cust onBDTs. Sel f Regi ster BDT

End Sub

The registration actually occursin the SelfRegister methods. The following example
shows registration within the StandardBDTs class.

Publ ic Sub Sel f Regi ster (BDT As BDTController)
BDT. Regi st er BDT "Al pha", Me, "Convert_Al pha"
BDT. Regi st er BDT "Bool ean", M, "Convert_Bool ean"
BDT. Regi ster BDT "Nuneric", M, "Convert_Nuneric"
BDT. Regi ster BDT "Currency", M, "Convert_Currency"
BDT. Regi st er BDT "DateTi me", M, "Convert_DateTi ne"
End Sub
Inthe RegisterBDT method, the first parameter is the name of the BDT, the second pa-
rameter isthe object reference, and the third parameter is the name of a conversion

routine in the object (a public method).

The BDT controller maintains alist of al BDT names internally along with the object
reference and method to call for each.

— 145 -

Construct Spectrum SDK Reference

Deregister aBDT
To deregister one or more BDTSs, call the DeregisterBDT method as follows:

BDT. Der egi st er BDT ' Deregisters all BDTs.

BDT. Der egi st er BDT Me ' Deregisters only the BDTs in the
speci fi ed object.

BDT. Der egi st er BDT Me, "Numeric" ' Deregisters only the Numeric BDT in

the specified object.

Deregistering BDTs is useful if you need to release al references to an object so that
the object can be destroyed. Y ou can then recreate the object and re-register all BDTs
it implements.

L ocate the Conversion Routinefor aBDT

To locatethe conversion routinefor agiven BDT, use the GetBDTRoutineto return the
object reference and method name of the conversion routine. The syntax is:

Sub Get BDTRouti ne(BDTNanme As String, _
ByRef Handler As Object, _
ByRef ProcNane As String)

If the BDT name has not been registered, Handler will contain Nothing and ProcName
will contain an empty string on return.

— 146 —

Using Business Data Types (BDTS)

Create a Natural-to-BDT M apper

TheBDT controller callsaNatural to BDT mapper function when the application uses
aconversion function and a Natural format is provided, instead of the name of a BDT.
The mapper provides the most appropriate BDT to use for each Natural format.

A mapper function must be registered with the BDT controller just as BDTs are regis-
tered. In Construct Spectrum, the mapper is implemented as a method of the
StandardBDTs class and is registered in its SelfRegister method as follows:

Public Sub Sel f Regi ster(BDT As BDTController)
BDT. Regi st er Nat ur al BDTMapper Me, "Natural BDTMapper"
End Sub
Publ i ¢ Function Natural BDTMapper (Format As String,
Length As Long, _
Decimals As Integer) As String
Dim shdtstring As String

BDT name was not provided. Pick a default BDT nanme based on the
Nat ural format.

Sel ect Case For nat

Case "A": sbdtstring = BDT_ALPHA & ", TRI MELT"
Case "B": sbdtstring = BDT_ALPHA
Case "D': shdtstring = BDT_DATE
Case "F": sbdtstring = BDT_NUMERI C
Case "I1": sbdtstring = BDT_NUMERI C
Case "L": sbdtstring = BDT_BOOLEAN
Case "N': sbdtstring = BDT_NUMERI C
Case "P": sbdtstring = BDT_NUMERI C
Case "T": sbhdtstring = BDT_TI MVE
End Sel ect

Nat ur al BDTMapper = sbhdtstring

End Function

The GetBDT method of the BDT controller returns the name of the BDT used for the
given Natural format. Using the mapper in the previous example:

Print BDT. Get BDT("D") " Prints "Date"

Print BDT. Get BDT("L") " Prints "Bool ean”
Print BDT. Get BDT("N6") " Prints "Nuneric"
Print BDT.GetBDT("N6.2") ' Prints "Numeric"

— 147 -

Construct Spectrum SDK Reference

Other Considerations

The following sections contain other considerations when creating BDTSs.

Use One Conversion Routine with Multiple BDTs

When you register aBDT, you can use the same function pointer for multiple BDTs.
For example:

BDT. Regi st er BDT " Account Number"”, Me, "Convert_Nunbers"

BDT. Regi st er BDT "Dept Nunber", Me, "Convert_Nunmbers"

BDT. Regi ster BDT "G oupNunmber", Me, "Convert_Nunbers"

BDT. Regi sterBDT "Fi |l eNunber”, Me, "Convert_Nunmbers"

When the application uses the BDT, the conversion routine checks the BDT name to
determine what conversion to perform:

Public Sub Convert_Nunbers (BDTC As BDTConversi on)
Sel ect Case BDTC. BDTNane
Case " Account Nunber"

Case "Dept Nunber", "G oupNunber"
Case. i:i | eNunber"

End Sel ect
End Sub

Placement of the Conversion Routine

When you create anew BDT conversion routine, you can add it to an existing class or
you can create a new class. Using the client framework, adding the conversion routine
to the existing StandardBDTs or CustomBDTs modul e requires the fewest changes to

the code. Y ou need only add a method and then change the SelfRegister method to reg-
ister the new BDT.

Warning:

When you save the updated version of the class, ensure that you do not overwrite the
version in the Construct Spectrum client framework directory, unless you want the up-
date to affect all existing and new projects that point to that class.

If you create anew class, changethe InitializeBDTs procedurein the Startup module to
instantiate the class and call its SelfRegister method.

— 148 -

Using Business Data Types (BDTS)

Overridea Supplied BDT

When the same BDT name s registered with the BDT controller more than once, the
last one registered is used. This feature can be used if you want to replace a supplied
BDT (conversion routine) with your own. Aslong asyou register your BDT conversion
routine last, it will be called instead of the supplied one.

If you are replacing asupplied BDT routine with your own, you can use the GetB-
DTRoutine method to get the pointer to the current BDT routine before registering your
own and call the original BDT routine in certain cases:

Private m O dHandl er As Obj ect
Private m O dProcNane As String

Publ ic Sub Sel f Regi ster(BDT As BDTController)

Save the pointer to the old routine.
BDT. Get BDTRouti ne "Currency”, m O dHandl er, m O dProcNane
BDT. Regi ster BDT "Currency", Me, "Convert_Currency"

End Sub
Public Sub Convert_Currency(BDTC As BDTConver si on)

Wth BDTC
Sel ect Case . Conversion
Case bdt Convert ToDi spl ay
Custom conver si on.

Case. I.EI.se
Call the old routine.
I nvokeMet hod m O dHandl er, m A dProcName, Array(BDTC)

End Sel ect
End Wth

End Sub

This example uses the InvokeM ethod procedure in the Construct Spectrum client
framework. The InvokeM ethod procedure can call any public method of any object by
passing in areference to the object and the name of the method in a string.

Reference BDTsin Your Application

Each BDT inthe StandardBDTs and CustomBDTs classes of the client framework has
an associated named constant in BDT Support.bas. The name of the constant isthe same
asthenameof the BDT except it isin uppercase and prefixed with“BDT_". Instead of
using the BDT name directly through the application, use the named constant. This al-
lows the Visual Basic compiler to check that the BDT is defined in the framework.
When you create your own BDTSs, ensure that you add the named constants to
BDTSupport.bas.

—149 -

Construct Spectrum SDK Reference

BDTsand the Web Framewor k

The Construct Spectrum web framework uses objectsin the BDTLib6 object library to
support BDTs. The following diagram shows these objects, as well astheir properties

and methods:
ConvertFromDisplay RegistryRootKey
ConvertToDisplay ErrorCode
ConvertinPlace ErrorMsg
k CreateSampleString ErrorPos
N N CreateSortableString ErrorLen
RegisterBDT DeregisterBDT
RegisterNaturalBDTMapper GetBDT
GetBDTRoutine
BDTName Reset
Conversion SetBDTName
BDTConversion @7 FormattedData | FormatLength
RawData Length
Format Decimals Key

Modifier Object
Count
BDTModifiers Clear Property
Add

Method
Remove
Item
;ﬁ BDTModifier @7 Name
Value
‘ IBDT bﬁ Convert
SelfRegister
‘ IBDTMapper @—{ NaturalBDTMapper

M ethods and Properties for the Web Framework Objects

- 150 -

Using Business Data Types (BDTS)

Implement BDTsin the Web Framework

In the Construct Spectrum web framework, BDT conversion routinesresideinsideaVi-
sual Basic class module that implementsthe |IBDT interface. Thistype of Visual Basic
classiscalled aBDT class, which:

« Implementsthe IBDT interface
« ContansaBDT conversion routine
The IBDT interface has two methods:

Method Description

Convert The BDT controller calls this method to perform a conversion. It
passes in aBDTConversion object that contains details about the
conversion to be performed.

SelfRegister In thismethod, the BDT class must tell the BDT controller the names
of the BDTsthat it implements.

The following sections describe the steps to implement a BDT in aweb framework.

Register BDTsin the Web Framework

When an application needsto use aBDT, it callsthe BDT controller and specifies the
name of the BDT it wants to use (such as Boolean). The BDT controller knows how to
locate and call the BDT conversion routine by registering the BDT class withthe BDT
controller.

ThisalowstheBDT controller to associatethe name of aBDT withaBDT class. When
the BDT controller needs to call the conversion routine, it creates an instance of the
BDT class, gets areference to the class' IBDT interface, and finally calls the Convert
method.

Use one of the following techniques to register BDT classes with the BDT controller:
Register BDT classes using the Windows Registry

2 Explicitly register BDT classes
The following sections describe each of these options.

—151 -

Construct Spectrum SDK Reference

Register BDT Classes Using the Windows Registry

Thefirst technique for registering aBDT classisto use the Windows Registry to list all
of the BDT classes installed on the PC. For the standard BDTs supplied with the web
framework, the following excerpt from the Registry shows how thisis done:

HKEY_LOCAL_NMACHI NE
Sof t war e
Sof t ware AG
Busi ness Data Types

Al pha
Progl D = Standar dBDTs6. BDTAI pha

Al phaMul tiline
Progl D = Standar dBDTs6. BDTAl phaMul til i ne

Bool ean
Progl D = Standar dBDTs6. BDTBool ean

Notice the names of the BDTs under the Business Data Types key. Each BDT key con-
tainsa ProglD string value that tellstheBDT controller the programmatic ID (progi D)

of the class that implements the BDT conversion routine. Knowing the progl D allows
the BDT controller to create an instance of the BDT class.

The following example shows how the BDT controller locates and callsthe BDT con-
version routine for the Boolean BDT:

The BDT controller looks up the Progl D value under the Boolean key and finds the
name “ StandardBDTs6.BDTBoolean”.

It uses the Visual Basic CreateObject function to create an instance of this class. By
using the facilities of COM, CreateObject |oads the ActiveX DLL that implementsthe
BDT class (StandardBDTs6.dll) and creates an instance of the BDT class
(BDTBoolean).

The BDT controller calls the SelfRegister method in the IBDT interface implemented
by the BDT class. For example:

Private Sub | BDT_Sel f Regi ster (BDT As BDTController)
BDT. Regi st er BDT "Bool ean", Me
End Sub
TheBDT classcallsthe BDT controller’ sRegisterBDT method, passing in the name of
the BDT and an object reference to itself.

The RegisterBDT method in the BDT controller stores the BDT name and the object
reference in an internal table. The BDT controller uses this table as a cache to store
object references so it doesn’t have to create a new instance of the BDT class each time
the application uses the BDT.

The BDT controller now has areference to an instance of the BDT class, and calls the
Convert method in theclass IBDT interface.

The next time the application uses the Boolean BDT, the BDT controller looks at itsin-
ternal tablefirst and findsthe BDT name and object reference. It can then call the
Convert method immediately without having to perform the previous steps.

—-152 -

Using Business Data Types (BDTS)

Placing BDT classesin an ActiveX DLL and using the Windows Registry to list them
has the following advantages.

BDT classes can be shared by many applications. By implementing BDT classesin an
ActiveX DLL, they can be developed, tested, and enhanced separate from any
application.

An application that needs to use BDTs does not haveto explicitly register al of the
BDTsthat it will use. The BDT controller simply locates and loadsthe BDT class con-
taining the conversion routine dynamically at runtime whenever it is needed.

BDTs can be added to a PC by installing the ActiveX DLL that contains them and then
registering the new BDTsto the BDT controller by adding Registry keys under
HKEY_LOCAL_MACHINE\Software\Software AG\Business Data Types.

Explicitly Register BDT Classes
The second technique for registering aBDT classisto explicitly call the BDT control-
ler's RegisterBDT method in your application’s startup code. For example;

Public Sub Min

Regi ster the BDTs used by the application.
Regi st er BDT " Phone", New BDTPhone
Regi st er BDT "Zi pCode", New BDTZi pCode
Regi st er BDT "UPC', New BDTUPC

Show the application's main form
frmvai n. Show
End Sub

Inthisexample, the RegisterBDT method iscalled. For each BDT, the nameof theBDT
and areference to an instance of the BDT class that implements the BDT conversion
routineis passed. The BDT controller storesthe BDT name and referenceinitsinternal
tablein asimilar way asit does with the Windows Registry.

Because the BDT controller is a global, multi-use object, it can be invoked with its
properties and methods (such as RegisterBDT) asif they were global functions.

Explicitly registering BDT classes in your application has the following advantages:

Y ou can create private BDTs that are available only inside your application. They can
be developed, tested, and enhanced with your application.

Extrakeys do not need to be added to the Windows Registry to tell the BDT controller
about the BDTSs.

- 153 -

Construct Spectrum SDK Reference

BDT Conversion Object

In the Construct Spectrum web framework, BDT conversion routinesresideinsideBDT
classes. The following table describes the properties and methods of the BDT Conver-
sion object. In the examples used in the table, assume the following call was made:

strHours = ConvertToDi spl ay(dbl Hour s,

Property or Method

" Numer i ¢, ZERO=OFF, ROUND=2, STRI CT=ON", _
"N3. 2")

Description

Conversion

FormattedData and
RawData

Modifier.Count

Modifier

Tells the conversion routine what type of conversion to
perform. Can be one of the following constants:

bdt Convert ToDi spl ay
bdt Convert FronDi spl ay
bdt Cr eat eSanpl eSt ri ng

Should be one of the following:

» When Conversion = bdtConvertFromDisplay, the
conversion routine reads the value in FormattedData,
convertsitinto aVisua Basic datatype, and assignsthe
new value to RawData.

« When Conversion = bdtConvertToDisplay, the
conversionroutinereadsthevaluein RawData, formats
it for display, and assigns the formatted string value to
FormattedData.

» When Conversion = bdtCreateSampleString, the
conversion routine assigns a sample string to
FormattedData. For example:

Wth BDTC
Sel ect Case . Conversion
Case bdt Convert FronDi spl ay
. RawDat a = cvt ToRaw(. For nat t edDat a)
Case bdt Convert ToDi spl ay
.FormattedDat a = cvt ToDi sp(. RawDat a)
Case bdt Creat eSanpl eString
.Formatt edDat a = creat eSanpl e()
End Sel ect
End Wth

Returnsthe number of modifiers specified by thecaller. In
the example, Modifier.Count returns 3.

Returns the value of a specific modifier or can be used to
enumerate the modifiers used. In the example:

Wth BDTC
Print . Mdifier("ZERO") " Prints "OFF"
Print . Mdifier(1l) " Prints "ZERO'
Print . Mdifier(2) " Prints"ROUND"

Print .Mdifier(.Mdifier(1l))' Prints "OFF"
End Wth

— 154 —

Using Business Data Types (BDTS)

Property or Method

Description (continued)

Note:

FormatL ength

Format, Length, and
Decimals

BDTName

Note:

SetBDTString

ErrorCode, ErrorMsg,
ErrorPos, and ErrorLen

Modifier names, such as ZERO or ROUND, are passed to
the BDT conversion routinein uppercase. Y ou do not have
to use case-sensitive string comparisons when checking
which modifiers were used.

Returns the Natural format string used in the call. In the
example, FormatL ength returns N3.2.

Returns the format, length, and decimal portions,
respectively, of the Natural format string used in the call.
In the example, Format containsN, Length contains 3, and
Decimals contains 2.

Returnsthe nameof theBDT fromthecall. Inthe example,
BDTName contains Numeric.

BDT names are passed to the BDT conversion routine
with the capitalization used when the BDT was registered.
For example, if RegisterBDT was called to register the
BDT mixEdCase, and then ConvertToDisplay was called
for the BDT MixedCase, BDTC.BDTName contains
miIxEdCase.

Changes the BDT name and modifiersin the
BDTConversion object.

Contain error information. The conversion routine should
assign values to these propertiesif a conversion error
occurred.

—155 -

Construct Spectrum SDK Reference

Createthe BDT Class

A different class moduleis usually used for each BDT. Y ou can aso group aset of re-
lated BDTsin aclass moduleto share conversion routines or code. For example, aBDT

called PartNumber might be implemented by a class called BDTPartNumber. Y ou can

name your class as desired.

The basic structure of aBDT class when implemented in Visual Basicis:
Option Explicit

I npl ement s | BDT

Private Sub | BDT_Convert (BDTC As BDTConver si on)

Sel ect Case BDTC. Conversion

Case bdt Convert ToDi spl ay
BDTC. For matt edData = ...

Case bdt Convert FronDi spl ay
BDTC. RawbData = ...

Case bdt Creat eSanpl eString
BDTC. For matt edData = ...

Case bdt CreateSortabl eString
BDTC. For matt edData = ...

End Sel ect

End Sub

Private Sub |BDT_Sel f Regi ster(BDT As BDTControl | er)

BDT. Regi st er BDT "<BDT nanme>", M
End Sub
The BDT conversion routine isimplemented in the IBDT_Convert procedure. It uses
the properties of the BDTConversion object to determine what type of conversion to
perform (convert to display, convert from display, create sample string, or create sort-
able string), to get information about the modifiers used, the Natural format specified,
and to return the converted value.

Y ou can examinethe BDT classesin the StandardBDTs sampl e project to see how these
properties and methods are used in BDTSs.

— 156 —

Using Business Data Types (BDTS)

Other BDT Controller Methods
To deregister one or more BDTs, call the DeregisterBDT method as follows:

Der egi st er BDT ' Deregisters all BDTs.

Der egi sterBDT Me ' Deregisters only the BDTs in the
speci fied object.

Deregi sterBDT Me, "Nuneric" ' Deregisters only the Numeric BDT in

the specified object.

Deregistering BDTs is useful if you need to release al references to an object so that
the object can be destroyed. The object can then be recreated and re-registered with all
the BDTsit implements.

If the conversion routinefor agiven BDT needs to be located, use the GetBDTRoutine
to return the object reference of the BDT class that i mplements the conversion routine.
The syntax is:

Sub Get BDTRouti ne(ByVal BDTName As String, ByRef Handler As |BDT)

If the BDT name has not been registered, Handler contains Nothing on return.

Create a Natural-to-BDT M apper

The BDT controller calls the Natural to BDT mapper function when the application
uses a conversion function and provides the Natura format, instead of the name of a
BDT. The mapper provides the most appropriate BDT to use for each Natural format.

A mapper function must be registered with the BDT controller as BDTs are registered.
Using the Windows Registry technique, use the following Registry key:

HKEY_LOCAL_NMACHI NE
Sof t war e
Sof tware AG
Busi ness Data Types
Nat ur al BDTMapper
Pr ogl D=St andar dBDTs6. Nat ur al BDTMapper

Y ou can also explicitly register the mapper function using the RegisterNaturalBDT-
Mapper function:

Public Sub Min

Regi st er Nat ur al BDTMapper New Nat ur al BDTMapper

Show the application's main form
frmvai n. Show

End Sub

- 157 -

Construct Spectrum SDK Reference

This class must implement the IBDTMapper interface. The following example shows
how the mapper function isimplemented in the StandardBDTs sample project:

Option Explicit
I npl ement s | BDTMapper

Private Function | BDTMapper _Nat ural BDTMapper (Format As Stri ng,
Length As Long, _
Deci mal s As |nteger) _
As String

Sel ect Case For nat
Case "A"

| BDTMapper _Nat ur al BDTMapper = "Al pha, TRI M=T"
Case "B", "C

| BDTMapper _Nat ur al BDTMapper = "HexByt es"

Case "D

| BDTMapper _Nat ur al BDTMapper = "Dat e"
Case "F", "I", "N', "P"

| BDTMapper _Nat ur al BDTMapper = " Nuneric"
Case "L"

| BDTMapper _Nat ur al BDTMapper = " Bool ean”
Case "T"

| BDTMapper _Nat ur al BDTMapper = "Dat eTi ne"
End Sel ect

End Function
The Natural BDTM apper method must return the most appropriate BDT to use for the
given Natural format/length specified.

Once amapper function has been registered, the GetBDT method of the BDT controller
returns the name of the BDT used for the Natural format. Using the previous mapper:

Print GetBDT("D") " Prints "Date"
Print GetBDT("L") " Prints "Bool ean"
Print Get BDT("N6") " Prints "Nuneric"

— 158 —

Using Business Data Types (BDTS)

Create OneBDT Classwith MultipleBDTs

One BDT class can implement BDT conversion routines for multiple BDTs. For
example:
Private Sub | BDT_Sel f Regi ster (BDT As BDTControl | er)

Regi st er BDT " Account Nunber", M

Regi st er BDT " Dept Nunber", M

Regi st er BDT "G oupNunber", M

Regi ster BDT "Fil eNunber", M
End Sub

When the application uses the BDT, the conversion routine checks the BDT name as
follows to determine what conversion to perform:

Publ i c Sub 1 BDT_Convert (BDTC As BDTConver si on)
Sel ect Case BDTC. BDTNane

Case "Account Nunber"
Sel ect Case BDTC. Conver si on

Case "Dept Number", "G oupNumber"
Sel ect Case BDTC. Conversion

Case "Fil eNunber™
Sel ect Case BDTC. Conver si on

End Sel ect

End Sub

- 159 -

Construct Spectrum SDK Reference

- 160 —

DEBUGGING YOUR CLIENT/SERVER
APPLICATION

This chapter describes how to debug client/server applications created using Construct
Spectrum.

The following topics are covered:
« Overview, page 162
» Typesof Errors, page 165
» Generating Debug Data, page 167
« Running Spectrum Dispatch Services Online, page 174
» Using Natural Debugging Tools, page 175
» Debugging Tools on the Client and Server, page 177
» Troubleshooting, page 183
For related information, see:

» Construct Spectrum Messagesfor alist of each Construct Spectrum error with possible
causes and solutions.

« Natura documentation
Refer to the Natural documentation for information on the Natural Debugging facility.

» Microsoft Visual Basic Programmer’s Guide
Refer to the Debugging chapter for information on the debugging environment for Vi-
sual Basic applications, including the kinds of errors, different modes, and the
debugging tools available.

—-161 -

Construct Spectrum SDK Reference

Overview

Client/server applications are more complex than traditional, single-platform applica-
tions. Multiple computers are connected together, requiring acommunication layer that
opens the door for new types of errors. In client/server applications, errors can occur in
morethan oneplace. Server components must be devel oped as callable routineswithout
auser interface. Datavalues have different internal representations on the client and on
the server. All of these distributed computing issuesfor client/server applications allow
more room for errors.

Becauseit is not always apparent where the errors occur, debugging client/server appli-
cations can be more difficult than debugging single-platform applications. Errors may
occur within the client software, the server software, the network layer, or acombina-
tion of these. To simplify the debugging process, the client framework provides tools
and procedures you can use to debug your applications.

Communication Errors

Communication errors occur during aremote call from the client application to the sub-
program. Each remote call involves many individual software components and data
files. Some software components run on the client, while others run on the server. With
so many components and different platformsinvolved in every call, the potential for er-
ror is greater than in non-client/server applications. A high-level list of the components
involved in aremote call includes:

« application service definitions
 client application

» EntireX Broker

» EntireX Broker stub

» Entire Net-Work
 library imagefiles

» Spectrum Dispatch Client
» Spectrum dispatch service
» Spectrum security service
» subprogram proxy

« subprogram

Communication Error Handling

Because the client application initiates every remote call, it is also necessary to transfer
back to the client application any error that does occur. The client application takes cor-
rective action or it displays the error message to the user.

-162 -

Debugging Your Client/Server Application

Error messagesreturnto the client applicationin all but the most severe error situations.
The Spectrum Dispatch Client makes the error details available to the client application
through its error properties ErrorSource, ErrorNumber, ErrorM essage, and ErrorValue.
If DisplayErrorsis set to True, the Spectrum Dispatch Client will also display the error
message in a message box.

Severe error situations that prevent the error message from being returned to the client
application include:

« Aninterruption in the Entire Net-Work communication between client and server.
« EntireX Broker ends.
» EntireX Broker times out during the subprogram execution.
» The subprogram or a Spectrum service ends the Spectrum dispatch service.
If amessage cannot be returned to the client, it is written to the communication log.

For acomplete list of communication errors and how to resolve them, see Construct
Spectrum Messages.

Traditional Debugging Tools
In Natural applications, logic errors are diagnosed using one of two techniques:

» Temporarily add WRITE, DISPLAY, or INPUT statements to show the contents of
variables and the execution sequence of the program logic.

» Usethe Natural Debugging facility to step through the code and the variable contents.

When a client application invokes Natural services, these traditional debugging tools
are not avail able. Both of thesetraditional debugging techniques pause the execution of
the program for user input. However, because dispatch services run in batch mode by
default, no I/O statements are possible. Neverthel ess, the Spectrum dispatch service
may have reported Natural runtime errors or unexpected values back to the client. Each
of these requires investigation.

- 163 -

Construct Spectrum SDK Reference

Construct Spectrum Debugging Tools
The debugging tools supplied with Construct Spectrum allow you to:

» Savethedatafor client requeststo aNatural library on the server. Thisdata can then be
used to recreate the request on the server and run it online. Y ou can then use all of the
traditional Natural debugging facilities to diagnose problems. For information, see
Generating Debug Data, page 167, and Using Natural Debugging Tools, page 175.

» Useoutput statements, including WRITE, PRINT, and DISPLAY , in your Natural sub-
programs to write data to the Natural source buffer and save the source buffer to a
Natural library. You can then examine this data after the call returns to the client. Use
thistechniqueif you do not need to run client requests online. For information, see Gen-
erating Debug Data, page 167, and Using Natural Debugging T ools, page 175.

« Examine the data transmitted between the client and the server. For information, see
RequestProperty Property, page 186.

» Examine the data expected by a subprogram proxy. Use this feature if you suspect the
data formats used by the client and server components differ. For information, see Di-
agnostics Window, page 177.

— 164 —

Debugging Your Client/Server Application

Types of Errors

Errorsthat arereturned by the Spectrum Dispatch Client (SDC) fall into two categories:.
runtimeerrors and communication errors. A third category, Spectrum system messages,
are not returned to the SDC. These messages must be viewed in the Spectrum Admin-
istration subsystem.

While most errors can be fixed on the client, others must be fixed on the server. Con-

struct Spectrum provides methods that help you track the origin and reason for errors.

These methods allow you to determinewhat needsto be fixed and where therepair must
be made. The types of errors you will encounter while designing your Construct Spec-
trum client/server application are:

« Visua Basic runtime errors

« Communication errors

« Natura runtime errors

» Construct Spectrum-related errors

» Errorsthat do not return an error message

This chapter describes the Construct Spectrum toolsand proceduresto help debug these
last threetypesof errors: Natural runtime errors, Construct Spectrum-related errors, and
errorsthat do not return an error message.

Visual Basic RuntimeErrors

Visual Basic runtime errors can betrapped by using the Visual Basic On Error state-
ment. These errors are the easiest to resolve because they occur in your Construct
Spectrum application in Visual Basic and alow you to use the Visual Basic-provided
debugging features to pinpoint the problem. Runtime errors are always caused by pro-
gramming errors in your code or by some problem related to the client environment,
such asamissing file.

Note: You also code businessvalidationsin your Visual Basic maintenance objects
to raiseruntime errorswhen avalidation fails. The Construct Spectrum client
framework traps these errors and displays them as pop-up messages attached
to a GUI control.

For more information about validating your data, seeValidating Y our Data, page 261,
Construct Spectrum SDK for Client/Server Applications. For acompletelist of runtime
errors and how to resolve them, see Construct Spectrum Messages.

- 165 -

Construct Spectrum SDK Reference

Communication Errors

Communication errors occur when there are problems establishing a connection to the
server. These errors are returned by the Spectrum Dispatch Client’ s error properties. I
ErrorSource contains “ETB”, a communication error has occurred.

For moreinformation, see Construct Spectrum Messages. Also refer to the EntireX Bro-
ker Error Reference documentation.

Natural RuntimeErrors

Natural runtime errors may occur in your subprograms. These errors are always re-
turned to the client application by the Spectrum Dispatch Client. When theclient
application uses the CallINat method of the Spectrum Dispatch Client’ s dispatcher ob-
ject to call aremote subprogram and the CallNat is returned, check the dispatcher
object’s error properties. If ErrorSource contains “NAT”, aNatural runtime error has
occurred.

Construct Spectrum-Related Errors

These errors are returned by the Spectrum Dispatch Client. If ErrorSource contains
“SPE”, aConstruct Spectrum-related error has occurred.

For moreinformation, including a complete list of Construct Spectrum errors and how
to resolve them, see Construct Spectrum Messages.

Errorsthat Do Not Return an Error M essage

These errors do not return an error message, but they can cause your program to behave
unexpectedly.

- 166 —

Debugging Your Client/Server Application

Generating Debug Data

Generating debug datais a service provided by the Spectrum dispatch service. The
Spectrum dispatch service automatically saves the source area contents to the Natural
system file. The source area s contents are generated based on valuesfound in thetrace
options set on the client. Valuesassigned in your user record determinethe location and
name of the stored debug data.

For information, see Specify Whereto Save Debug Data, page 172.

Note: If you intend to usethe Trace function, you must install Construct Spectrum
with printer 2 and 3 assigned to batch. For more information, see Construct
Spectrum and SDK Installation Guide for Mainframes.

Save Parameter and Debug Data

For each request handled by the Spectrum dispatch service, it is possible to save the pa-
rameters passed in or out of the subprogram proxy. These parameter values are saved
to atext member within the Natural System file. It is also possible to save data that the
application code generates into the source area.

The Spectrum Dispatch Client and Spectrum dispatch server support atrace option that
determines how much debug datais saved during aremote CallNat. Thetrace optionis
set on the client before issuing the CallNat method. The Spectrum dispatch server then
examines the trace option during the CallNat to determine how much datato save.

Set Trace Options

» To set atrace option:

1 Placeabreak point inthe Visual Basic codejust before the Dispatcher.CallNat method
asfollows:

— For amaintenance dialog, in the InvokeRemoteM ethod function of the Visual Basic
maintenance object.

— For abrowse dialog, in the CallDBLayer function of the BrowseBase class.

2 Enter “ SetTraceOptions Dispatcher” in the Visual Basic Debug window, where
Dispatcher is the reference variable of a Dispatcher object.
The Trace Options window is displayed:

- 167 —

Construct Spectrum SDK Reference

(] Subprogram Proxy Trace Ophions

& {0-None 1
...................... i I:ancel
= 1 - Data sent to subprogram prosy will be saved

{~ 2 -Data received from subprogram prosy will be saved
= 3 - Data zent to and received from subprogrann prozy will be saved
= 4 -Data will be zaved only if an eror occurs

{5 - Data generated by application code will be saved

TTECE Dptll:lrl 2: Sul:lprl:lgram prosy CDnVEfEiDn IO eeeeesromeeees s ssss s s

= [-FRetun as NATURAL mn-time errars

= 1 - Feturm as Interface emars with full details

[T Beset trace options after call

Remote Dispatch Server Trace Options Window

3 Usethiswindow to set trace option 1 or 2.
The following sections describe each of these options.

Trace Option(1)
Trace Option(1) controls how you save data to the Natural system file.

Trace Option(1) causes the Spectrum dispatch service to issue an END TRANSAC-
TION command. Asaresult of the END TRANSACTION, the current data is saved to
the debug file.

Y ou can assign Trace Option(1) one of the following values:

Value Result
0 No tracing. Nothing is written to the Natural system file.
1 Spectrum dispatch service savesonly datareceived from the client and sent

to the subprogram proxy and writes it to the system file.

2 Spectrum dispatch service saves only data received from the subprogram
proxy and returned to the client and writes it to the system file.

3 Spectrum dispatch service saves both the data received from and the data
returned to the client.

- 168 —

Debugging Your Client/Server Application

Value Result (continued)

4 Server saves data only when a Natural runtime error occurs in the server
application. The data saved will be the contents of the subprogram proxy
parameters at the timethe error occurred. These values may differ from the
values sent to the subprogram proxy.

5 Any datathat the subprogram proxy or the subprogram writes to the
Natural source areais saved.

Note: When using trace option(1) = 3 and a subprogram that clears the source area
iscaled, datareceived from the client is lost. Only data transmitted to the cli-
ent is saved. In this case, use value 1 to save data received from the client.

If asubprogram writes data to asource areg, it is then saved by the dispatcher. To write
to the source area, the application subprograms must contain a printer definition, such
asDEFI NE PRI NTER (DEBUG=1) OUTPUT ‘ SOURCE . The subprogram can then write out
debug data using Natural DISPLAY, WRITE, and PRINT statements.

By default, all generated subprogram proxies contain a printer definition allowing de-
bug datato bewritten to the source area. This eiminatesthe need for you to place this
code in the generated proxy if you need to allow generation of application debug data
from inside the generated proxy routine.

To write debug datato the source area, you will write code to the beginning of the mod-
ule that will write the debug data (the START-OF-PROGRAM user exit if using
Construct-generated code). To view asample of this default and tailored code, seeCre-
ate Debug Data, page 170.

For more information about the subprogram proxy, see Using the Subpr ogram-Pr oxy
Model, page 103.

- 169 -

Construct Spectrum SDK Reference

Create Debug Data

The following example shows code samples of how to include debug information in
your applications and code samples of what you might see returned.

IF *LEVEL EQ 1 THEN

DEFI NE PRI NTER(DEBUG=1) OUTPUT ' SOURCE
END- | F
FORMAT(DEBUG PS=0 LS=250 SG=OFF ZP=OFF AD=Z
To create better, more readable debug information, the DEFINE PRINTER statement
should be bounded by an | F condition that does not execute in application subprograms.
The DEFINE PRINTER statement is till required in each module that is expected to
perform WRITE statementsin the source area. However, based on the | F statement, the
codeisnever executed; it only existsto allow for the definition of alogical printer name
for thedebugging target. By disallowing execution of the DEFINE PRINTER statement
in application code, the print queue remains open across all subprograms using it. Each
DEFINE PRINTER closes the print queue. While no information is lost, anew page
header is forced each time, causing less readabl e debug data to be produced.

Example of debug codein a series of subprograms

Subprogram 1 (SUBP1)
WRI TE * PROGRAM

Subprogram 2 (SUBP2)
WRI TE * PROGRAM

Subprogram 3 (SUBP3)
WRI TE * PROGRAM

Subprogram 4 (SUBP4)
WRI TE * PROGRAM

Results when debugging using the | F statement

SUBP1
SUBP2
SUBP3
SUBP4

-170-

Debugging Your Client/Server Application

Results when debugging without using the | F statement

*/
Page 1

SUBP1
*/
Page 1

SUBP2
*/
Page 1

SUBP3

nge 1

SUBP4

Use any output statement to generate information into the source area:

WRI TE (DEBUG) NOTI TLE ‘ Pronpt 1:' #VARL
or

PRI NT (DEBUG NOTITLE ‘ Pronpt 2:' #VAR2
or

DI SPLAY (DEBUG) NOTITLE ‘ Pronpt 3:' #VAR3

Note: The Natural subprograms called from the client execute in batch Natural pro-
cesses. The output will go to the printer or terminal unlessyou redirect the out-
put to the source area using the DEFINE PRINTER statement.

For moreinformation about using the debug data saved with Trace Option(1), seeUsing
Natural Debugging Tools, page 175.

-171 -

Construct Spectrum SDK Reference

Trace Option(2)

This option controls how the generated subprogram proxies handle runtime errors. It
worksin conjunction with the Generate Trace Codefield of the subprogram proxy spec-
ification. It is used to help uncover the cause of dataformat and datalength
incompatibilities between the client and the server.

Y ou can assign Trace Option(2) one of the following values:

Value Result

0 All errors occurring within the subprogram proxy are handled as normal
Natural runtime errors. Asaresult, control does not return to the Spectrum
dispatch service and the current Error Transaction is invoked. The default
error transaction returns a message to the client and restarts the Spectrum
dispatch service.

1 Format conversion errors are trapped in an ON ERROR block of the
generated subprogram proxy. A Natural runtime error does not occur for
these errors, so the Spectrum dispatch service resumes control after the ON
ERROR processing. If thisoption is used in conjunction with the Generate
Trace Code parameter of the subprogram proxy, the field name and data
valuesthat triggered the error are returned to the Spectrum dispatch service
and transferred to the client.

Tip: Using Trace Option(2)=0 while running a Spectrum dispatch service online can
be an effective way of determining runtime problems.

Specify Whereto Save Debug Data

Settings in your user record determine where debug information is stored and how file
names are determined. User records are maintained in the Spectrum Administration
subsystem.

For moreinformation on the Spectrum Administration subsystem, see Overview of the
Spectrum Administration Subsystem, page 19, Construct Spectrum Administration.

For more information about user records, see Defining Groups Using Natural Secu-
rity, page 80, and Defining User s Using Spectrum Security, page 83, Construct
Spectrum Administration.

172 -

Debugging Your Client/Server Application

Accessthe Maintain User Table Pandl

To access the Maintain User Table pandl:

Enter “SA” in the Function field on the Construct Spectrum Administration Subsystem
main menu.
The System Administration main menu is displayed.

Enter “MM?” in the Function field on the System Administration main menu.
The System Administration Maintenance menu is displayed.

Enter “US” in the Function field on the System Administration Mai ntenance menu.
The Maintain User Table panel is displayed:

BSUS__MP Construct Spectrum Adm ni stration Subsystem BSUS__ 11
Apr 14 Mai ntain User Table 1:45 PM
Action (A B, C,D,MN,P) _

User ID.................. SYSTEM _

Password................:

Name....................: DEFAULT SYSTEM USER (NO PASSWORD) __

Debug Library...........: SYSSPEC_

Debug Filenane..........: U ('T'imestanp; 'User |ID

Preferred Language......: 01

Goups................... SYSTEM_ - *

Di rect Conmand:

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
confmhelp retrnquit flip pref mainflip pref

nai n

User flip pref mai n

User SYSTEM di spl ayed successful ly

Maintain User Table Panel

Debug Library isthe name of the Natura library where the debug file is saved. If no
library is specified or if user information is provided by Natural security, the library
name defaults to the current user I1D. Debug Filename can be:

Value Result
T File name is determined by concatenating “T” with the current time value.
] File name is the same as the current user ID.

To view the generated debug members, use the Natural EDIT or LIST command.

—173-

Construct Spectrum SDK Reference

Running Spectrum Dispatch Services Online

Instead of using trace option (1) with assigned value 5 (which writesto the source area),
you can use aNatural session to initiate the service online. Initiating a dispatch service
from aNatural session allows I/0 to the terminal. This method is similar to the debug-
ging method discussed in Debugging Tools on the Client and Server, page 177, but

the Natural session running the dispatch service cannot perform any other tasks.

This type of dispatch Service stays active and locks control of your online Natural ses-
sion until you send it a shutdown request or until it times out because of server non-
activity.

» To start aserver online:

1 Invoke Natural using the SY SSPEC profile.

2 Enter the following command at the Next prompt in the SY SSPEC library:

‘ START servi cenane’

Note: You can also specify the Natural startup parametersin a Natural profile. For
moreinformation, see the Construct Spectrum and SDK Installation Guidefor
Mainframes.

Usethe INPUT Statement as a Debugging Tool

If you decide to run the dispatch service online, use the INPUT statement for debug-
ging. The INPUT statement allows you to interrupt and restart the execution of code.
Use these interruptions to generate a printed copy of the INPUT statement or to copy
the INPUT statement to the source areawith a %C command.

If application tracing is set (trace option 1 = 5), the dispatch service writes the inputs
copied to the source areainto the designated debug source member.

Tip: To guarantee that others using the same services do not generate terminal 1/0
when running the service online, bound your debug statementswith | F * USER =
“youruser| D THEN and END-1 F. Aslong as* youruser| D issettothe* USER
of the session in which the dispatch service has been initiated online, only your
online dispatch service generates messages to the terminal.

Tip: When running a server online, you can shut it down using the Broker console
shutdown command. It is best to use aunique server class/server name/service to
ensure that you do not shut down another server inadvertently.

—174 -

Debugging Your Client/Server Application

Using Natural Debugging Tools

Debugging client/server applications can be difficult because of their distributed nature.
To make the debugging process easier, Construct Spectrum includes an invoke subpro-
gram proxy function that simulates client calls. Using this function lets you reproduce
problems like runtime errors without the added complexity of communication between
the client and server.

To help you use Natural to simulate client calls, the client component of generated ap-
plications can tell the server application component that data being transmitted must be
saved on the server. Using this server-based data to drive the server component allows
you access to Natural debugging techniques, such as embedded INPUT or WRITE
statements. In addition, by executing the server component locally on the server ma-
chine, you can use the Natural Debugging Facility.

For more information, see Generating Debug Data, page 167.

For information on using the Natural Debugging facility, see the Natural Utilities
documentation.

| nvoke Subprogram Proxies Online

Oncethe debug data exists on the server, use the Invoke Proxy function in the Construct
Spectrum Administration subsystem to invoke the same subprogram proxy that the cli-
ent attempted to call. The function usesthe debug datato perform the function the client
originally requested. Once execution of the target proxy begins, one of two things can

happen:

Result Response

A runtime error occurs The system trapsthiserror and presentsit as a message on
the Invoke Proxy panel.

No runtimeerror occurs Thelnvoke Proxy panel displaysamessage indicating that
execution of the proxy completed successfully.

If you added debug code to the target proxy and subprogram, the system is able to
present the terminal output of these statements.

If the problem is not a runtime error, use the Natural Debugging facility to place break
and watch points in the target code. Y ou can monitor these points using the Invoke
Proxy function to examine variable contents and line-by-line execution.

—175-

Construct Spectrum SDK Reference

Accessthe Invoke Proxy Function

The Invoke Proxy function is one of the options accessible through the Application Ad-
ministration main menu. For a description of how to access the Construct Spectrum
Administration subsystem, see I nvoking the Spectrum Administration Subsystem,
page 31, Construct Spectrum Administration.

To access the Invoke Proxy function:

Enter “AA” in the Function field on the Construct Spectrum Administration Subsystem
main menu.
The Application Administration main menu is displayed.

Enter “IP” in the Function field on the System Administration main menu.
The Invoke Proxy pand is displayed:

BSSI DBGP Construct Spectrum Adm ni stration Subsystem BSSI DBGL
May 08 I nvoke Proxy 09: 03 AM

Debug Library: DEVDG _
Mermber : DEVOM __

DBI D :

FNR :

Di rect Conmand:
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
help retrn quit flip mai n

Invoke Proxy Panel

Using thispanel, you can activate the Natural Debugging facility or put trace statements
(INPUT, WRITE, DISPLAY, or PRINT) in the Natural server modules to help diag-
nose the error.

By default, the system uses the FUSER or FNAT defined for the session when retriev-
ing the debug data, depending on the library name. To use an alternate FUSER or
FNAT, specify the valuesin the DBID and FNR fields.

Tip: Manualy change the datain the debug member to generate aruntime error. Use
thistest either to ensure that runtime situations can be handled properly by the
system or to force execution of code that occurs only inthe case of runtime errors.

176 -

Debugging Your Client/Server Application

Debugging Tools on the Client and Server

Thefollowing sections describe debugging tool s you can use on the client and toolsyou
can use on the server.

Diagnostics Window

Application developers use the Diagnostics window during application development to
diagnose parameter alignment problems between the client and server.

When invoking remote Natural subprograms from a client application, the parameters
must match in both size and format on both sides of the call. The Diagnostics window
obtains information about the remote subprogram. By examining the Dispatcher.Re-
guestProperty array after invoking Dispatcher.CalINat, the Spectrum Dispatch Client
can give you information about the local call.

The following table summarizes the information:

Returned by Diagnostics Program Equivalent SDC Property
Number of level 1 blocksin the Dj‘spat cher. Request Property _
parameter data of the subprogram. (“Request . Dat aAreas”)

Name of each block (corresponds to Dl spat cher . Request Pr operty _
the level 1 field or structure name). ("Request . Dat aArea(2)") . Name
Expanded size of data in each block. Di spat cher. Request Property _

(“Request . DataArea(2)”). _
PackedDat aLengt h

Total size of the parameter data. Not applicable.

Image of the initialized parameter data. Di spat cher. Request Property _
(“Request . Dat aArea(2)"). _
PackedDat a

177 -

Construct Spectrum SDK Reference

The following example shows the Diagnostics window:

'; s e

ke

5 ubprags i Padey | Dats Sepeer | brtialiom Disda |
Ferrots Dipaich Sane
Levice [[DISPATCHER - Dalwlt Dapsichss 7]

Lz 1D SYSTEM

pot [
Subpeogram Frosy Detsd:
Qonsn [DEMD

Dbweeci [CusTOMER:
-y W
Method |GET

b=t D isgrecstecs: Drsle

Diagnostics Window, Subprogram Proxy Tab

Use thiswindow to simulate a CallNat by providing al the Spectrum dispatch service
parameters necessary to do the CalINat.

To use the Diagnostics window:

Enter your user 1D and password.
These values are required for all remote requests.

Enter the domain name, object name, version number, and method nameto identify the
subprogram you want to call.

Y ou can obtain this information from the Construct Spectrum Administration
subsystem or from the library imagefile (LIF) for your application.

Click Get Diagnostics Data to submit the request.
If the request is successful, the Data Sizes tab shows information about the level 1
blocks and the Initialize Data tab shows an image of the initialized parameter data.

—178-

Debugging Your Client/Server Application

Thefollowing examples show the tabsfor the DEMO/CUSTOMER/1.1.1/GET request:

[# Diagnostics
Eile

Offzet MName Size ___L_j
1 CUSTHMSA ZEZ
ZE63 CUSTHMSA-TID 3
Z59 CUSTHMEE zl
z90 CDAOETZ 35
3zk5 MEG-INFO zz k5
Total: E43

Diagnostics Window, Data Sizes Tab

—179-

Construct Spectrum SDK Reference

[# Diagnostics
Eile

1 [+00000 +000o000o0oo0

|
51 | |
101 |
151 |
Z01 | +00000000000. 004+000_ 00 ooo|
ZE1 1 000000000000+4+00000+4+00000000000000000000
301] oooooooooo0000000000
3E1
401
451
E0l

n o

Pozition: Lenath:

|
| +000o0

|

| +000+000+000

Diagnostics Window, Initialize Data Tab

The Initialize Data tab shows the expanded version of the parameter data. If you high-
light a portion of text, the position and length of the highlighted section are shown at
the bottom of the window. Y ou can use this information to help determine parameter
alignment problems. In the example above, notice the first line of text on theright side
of the window that reads “+0000000000". If you know something about the format of
the parameter data, you can infer that thisvaluerepresentsthe PHONE-NUMBER field,
an N10 field, in the Customer object. Y ou can then compare the format of this datato
the data sent to the server.

- 180 -

Debugging Your Client/Server Application

Trandations Program

Construct Spectrum uses its own ASCII/EBCDIC translation tables to convert data
when the client and server use different character sets. In most cases, you do not need
to know anything about these tables. However, when your subprograms send or receive
non-printable characters in alpha fields (format A), you may want to know what the
translation tables do with those characters.

The Translations program shows you exactly how each byte valueistrandated from
one character set to the other. The translation tables group the 256 charactersin each
character set into three sets:

Set Description

Printable characters Charactersexist in both character sets; thereisawell-defined
mapping from one character set to the other.

Preserved characters Characters have no corresponding character in the other
character set and their byte values are the same in both
character sets. For example, character 0 in ASCII isalso
character 0 in EBCDIC, and 255 is 255.

Altered characters Characters have no corresponding characters in the other
character set and their byte values are different in both
character sets because the bytevalueisalready being used by
aprintable character in one of the sets.

The Trand ations program uses colors to identify these three sets of characters. The fol-
lowing example shows the Translation M appings window in shades of gray:

—-181 -

Construct Spectrum SDK Reference

|§| Transzlation Mappings

[Printable I Frezerved [Alered
1] 1 2 3 4] B 7 a 9 By B C] E F

B0 FF[@ 82| 83 94| 85| 86| 87| 83 83 T 92 93 94| 195
95 97| 98| 93| A1 A2 A3 Ad| &S| AR| AF| AB| A3 CO| C1 Cz2
20([SB()50) C3| C4| C5(CE| C¥| C8&| C3| DO|. 2E|(«<3C|([28|+2B| D1
L26(D2| D3| D4| DE| DE| DF| DB DI| EO|! 21 ($24|=24() 29|: 3B|™ BE
-0\ #2F| E2| E3| E4| ES| EG| EF| EB| ES3(I 7C|. 2C|=®25|_G5F|>3E(? 3F
FOof F F2| F3| F4| F&5| FE| F7| F8| F9(: 3&|#23|@40|" 27 |=30 ™ 22

m M 5 O W - o oo -l M = L3 D

Trandlation Mappings Window

-182 -

Debugging Your Client/Server Application

Troubleshooting

This section provides quick access to the most common components you can check
when troubleshooting.

Registry Usage
The default framework stores preferences under the following Windows registry key:

HKEY_CURRENT_USER
Sof t war e
Sof t ware AG
CST Franmewor ks

Thename of thiskey is set in the AppSettings.bas module. It can be changed to any oth-
er key in HKEY_CURRENT_USER.

Other framework components store application preferences in subkeys of this key:

Component Sub-Key Constant in CST ObjectConstants.bas
Browse BrowseObjects BROWSE_SUBKEY

Maintenance MaintPreferences MAINTENANCE_SUBKEY
preferences

Thefollowing SDC preferences are stored as values under the main registry key:

Value Name Description
DispatchService Name of the dispatch service to use. This dispatch service
name is one of the namesin SDC.ini.
UserlD User ID to usein calls to the dispatch service.
SDC.ini

The SDC.ini file stores Spectrum service definitions on the client. It is located in the
Windows directory. To edit the SDC.ini, use the Spectrum Service Manager.

Tip: Theorder of the Spectrum service definitionsin thisfileisirrelevant.

-183 -

Construct Spectrum SDK Reference

SDCApp.ini

In the Windows directory, you can use this file to specify which dispatcher to useif
thereisno DispatchService entry in theregistry. Thisfunctionality isnot generally used
because the network error window lets you select a dispatch definition interactively.
The syntax is:

[SDC]

Def aul t Di spat cher =<nanme from SDC. i ni >

Intheproject directory, you can usethisfileto overridethe default L IF directory (which
is the directory where the project is stored). The syntax is:

[SDC]
Li braryPat h=<ful |l pathnane of a LIF directory>

Check for Necessary DLLs

The Ping function of the Spectrum Service Manager isthe best tool to use to check that
DLLsrequired by Spectrum areinstalled and arein the path. Pinging checks for the fol -
lowing DLLs (in this order):

BROKERVB.DLL (from ETB\BIN)
CDED32.DLL (from Windows\System)

Construct Spectrum Add-In

The Construct Spectrum Add-In always uses the following registry key for the SDC
preferences:

HKEY_CURRENT_USER
Sof t war e
Sof tware AG
Construct Spectrum Add-In
When you download or upload files, the Construct Spectrum Add-1n uses a default li-
brary name, DBID, and FNR. It reads these from A ppSettings.bas whenever you open
anew project or use the Construct Spectrum Add-Infor thefirst timeinaVisua Basic
session.

If you change these settings in A ppSettings.bas, save the project and then restart Visual
Basic to have the Construct Spectrum Add-1n re-read these settings.

Visual Basic knows about the Construct Spectrum Add-In because of the following
lines in Windows\VBADDIN.INI:

[Add- I ns32]
Const ruct Addl n5. Connect or =1

—184 -

Debugging Your Client/Server Application

Useful SDC Properties

The SDC has many properties you can check when you get an SDC runtime error or a
communication error. Use the Visual Basic Debug | mmediate function to examine
these properties. Some of these are displayed in the Network Error window.

Application Object

Property Description

LIFDirectory Directory where the SDC looks for LIF files. Defaults to
project directory (or when running an EXE, wherethe EXE is
located). May be overridden with the SDCApp.ini filein the
same directory.

MainLibrary Name of the main LIF file. Set in AppSettings.bas, with the
DefaultLibrary variable.

UserID User ID to usein calls to the dispatch service.

NaturalDataArea Object

Property Description

LibrarylmageFile

Definition
PackedData
PackedDatal ength

Name

Name of the LIF file from which the data area definition was
loaded.

Data area definition as read from the LIF file.
Wire-buffer representation of the field values in the data area.
Size of the wire buffer representation (in characters).

Name of the data area. The name may contain other
componentsif thisdata areawas created by using the FieldRef
method of another Natural DataArea object, or if the data area
contains 1.V fields.

—185—

Construct Spectrum SDK Reference

Dispatcher Object

Property Description

ErrorSource Oneof ETB, NAT, or SPE.

ErrorNumber Error number, formatted according to the error source.
ErrorM essage Error message.

ErrorValue(i) Substitution parameter for the message.

RequestProperty Property

The SDCLib.Dispatcher object has a property called RequestProperty that returnsin-
formation gathered during the last CallNat. The syntax for this property is:

Request Property(PropertyNane As String) As Variant

Thefollowing property names are defined (the last column indicates whether this prop-
erty is shown in the Network Error window):

Value Name

Data Type

Description X

Request. AppService

Request.DataAreas

Request.DataArea(i)

Request.BlocksOut

Request.BlocksIn

String

Integer

Natura data
area

String

String

— 186 —

Name of the application service X
definition (CUSTOMER, for
example). Thisisthe first
parameter of the CallNat

method. The application service
definitionislooked upintheLIF
files.

Number of Natural data area X
parameters passed into the
CallNat method.

1<=i <= Request.DataAreas. X
Returns areference to a

Natural DataArea object passed

to the CallNat method.

Block header and data blocks (in
wire-buffer format) passedtothe
subprogram proxy.

Blocks header and data blocks
(in wire buffer format) received
from the subprogram proxy.

Debugging Your Client/Server Application

Value Name (continued) Data Type Description

Request.Domain String Domain name read from the
application service definition.

Request.Object String Object name read from the
application service definition.

Request.Version Long Version number read from the
application service definition.

Request.Method String Method name specified in the
CallNat (or DEFAULT if not
specified). The number of
blocks and the blocks to send
arelooked up in the application
service definition.

Request.InsideTransaction Boolean Trueif StartTransaction was
caled. All requests are sent to a
dedicated dispatcher.

Request.DataOut Byte Array Full dispatcher request, starting

with the request protocol bytes
and the format byte.

Request.RawDataln Byte Array Binary response data received
from the dispatcher, after all
packets are assembled. Starts
with the response protocol bytes
and format byte.

Request.Dataln Byte Array Dispatcher response message,
after decryption, expansion,
and translation to ASCII.
Starts with the 4-digit
dispatcher message number.

Request.ReceivedData String Request.Data converted to a
string with the
StrConv(Request.Dataln,
vbUnicode) function. If the
dispatcher message number is
“0000", contains the same as
Request.Blocksln.

Packet.CountOut Integer Number of packets sent to the
dispatcher.

—187 -

Construct Spectrum SDK Reference

Value Name (continued) Data Type Description

Packet.DataOut(i) Byte Array (i) can befrom 1 to
Packet.CountOut. The bytes sent
for packet i.

Packet.Countin Integer Number of packets received.

Packet.Dataln(i) Byte Array (i) can befrom 1 to
Packet.CountIn. The bytes
received for packet i.

ETB.Conversations|D String Broker control block values for
the last Broker call.

ETB.Token String Generated to be unique.

ETB.UserID String Always “SPECTRUM-

DISPATCH-CLIENT".

—188 —

DEPLOYING YOUR CLIENT/SERVER
APPLICATION

Once a Construct Spectrum project is devel oped and tested, the new application can be
copied and installed on as many client machines as required. This chapter provides an
overview of this procedure, as well as different considerationsto keep in mind when
deploying your client/server application.

The following topics are covered:
« Transferring Data, page 190
« Distributing Your Application, page 191

For related information, see Deploying the Administration Subsystem, page 125,
Construct Spectrum Administration.

- 189 —

Construct Spectrum SDK Reference

Transferring Data

Y our test and development files may differ from your production environment. Before
deploying your application, copy the definitions from your test or development file on
the mainframe to your production environment. To copy thefile, either:

Use the supplied data transfer utilities.
or

Use the Construct Spectrum Administration subsystem to copy them manually.

Data Transfer Utilities

To copy definitions quickly, use the datatransfer utilities. Y ou can usethese utilitiesto
copy domains and groups between one Spectrum system file and another.

For more information, see Data Transfer Utilities, page 135, Construct Spectrum
Administration.

Construct Spectrum Administration Subsystem

If desired, you can manually define and maintain the domain, application service defi-
nitions, and steplib information in the Construct Spectrum Administration subsystem.

For information about identifying where your application libraries reside on the server,
see Step 1: Definethe Steplib Chain, page 43.

For information on grouping application objects and services, seeStep 2: Definethe
Domain, page 45.

For information on defining the domain, business object, and version of aVisual Basic
business object, see Accessthe Application Service Definitions, page 112.

—190 -

Deploying Your Client/Server Application

Distributing Y our Application

To distribute your application:

Step 1: Createthe Executable File, page 191
Step 2: Collect Files For Installation, page 191
Step 3: Install the Client Application, page 192

U000 v

Step 4: Run the Application, page 192
The following sections describe each of these stepsin detail.

Step 1: Createthe Executable File
Thefirst step isto create the file to execute the application.

» To create the executablefile:
1 Open Visua Basic.
2 Select Make EXE File from the File menu.

Step 2: Collect Files For Installation
Next, collect the following files for installation on thetarget PC:
» Theexecutablefile created in the previous step.
« All runtime support files required by the executablefile.
« Thelibrary imagefiles (installed in the same directory as the executablefile).

« Any resource files your application accesses from Resource class for the client frame-

work and any sound files used by validation errors.
« Any other datafiles used by your Construct Spectrum application.

Note: If thetarget PC hasthe Visual Basic runtime support filesinstalled, you need

only copy the executable and the library image files to the target PC.

The procedureto ready your files for installation differs depending on whether you are
creating an installation tape, installing from disk, or using a server to copy filesto the

target PC.

To create a professional setup program for your application, use the Package and De-
ployment wizard in Visual Basic or another setup toolkit. These programs ensure that
all required support files are included with your setup program. As with any external
datafile used by the application, you must add the library imagefilesto your setup pro-

gram manually.

—-191 -

Construct Spectrum SDK Reference

Warning:

The Package and Deployment wizard detects that your client application uses the Spec-
trum Dispatch Client (SDC) and listsit as one of your application support files. Because
the SDCisinstalled separately on thetarget PC, you must remove the check mark from
the SDCinthelist so it is not included with your setup program.

Step 3: Install the Client Application

Once you have a set of distribution files, you can install the client application on the
target PC. This procedure differs depending on whether you are creating an installation
tape, installation disks, or using a server to copy your files to the target PC. It aso dif-
fers depending on which setup toolkit was used to create your setup program.

There are no prerequisites for installing the client application.

Step 4: Run the Application
Before running the client application, ensure:

» The Spectrum Dispatch Client isinstalled on the target PC.

« That either Entire Net-Work isinstalled and configured to access Entire Broker or En-
tire Broker is configured to use TCP/IP.

Y ou can now run your newly installed application on the target PC. If installation was
successful, your application behaves identically to your tested application in your de-
velopment environment.

If an error message is displayed, see Debugging Your Client/Server Application,
page 161, for possible causes.

Note: Whileall error messages are displayed on the client, some conditions can be
remedied only by a system administrator on the mainframe.

-192 -

USING THE SPECTRUM DISPATCH CLIENT

This chapter describes the Spectrum Dispatch Client (SDC), akey component of Con-
struct Spectrum development. The SDC allows you to make calls from aclient to
Natural subprograms running on a server.

The following topics are covered:
« Overview, page 194
» Calling a Natural Subprogram, page 195
« Spectrum Dispatch Client Components, page 197
» Advanced Features, page 228
For related information, see:

« Creating Applications Without the Framewor k, page 235
This chapter describes the process of creating applications using Construct Spectrum
without using the client framework.

—-193 -

Construct Spectrum SDK Reference

Overview

The SDC gives application devel opers the ahility to make callsfrom aclient to Natural
subprograms running on a server. The following exampl es show a parameter data area
and code for aNatural subprogram.

Example of the parameter data area for the CUSTN Natural subprogram

DEFI NE DATA
PARAMETER USI NG NCUSTPDA
PARAMETER USI NG NCUSTPDR
PARAMETER USI NG CDACBJ
PARAMETER USI NG CDPDA- M

END- DEFI NE

Example of Natural codeto call CUSTN

DEFI NE DATA
LOCAL USI NG NCUSTPDA
LOCAL USI NG NCUSTPDR
LOCAL USI NG CDACBJ
LOCAL USI NG CDPDA- M
END- DEFI NE

ASSI GN NCUSTPDA. CUSTOVER- NUMBER = 10001
ASSI GN CDAOBJ. #FUNCTI ON = ' GET'
CALLNAT ' CUSTN' NCUSTPDA NCUSTPDR CDAOBJ CDPDA-M

END
Using the SDC, you can write similar Visual Basic codethat declaresthese Natural data

areas, assigns valuesto thefieldsin the data areas, performsa CALLNAT, and then ex-
amines the data areas to determine the results.

Note: The examples presented throughout this chapter use Visual Basic as a model
for creating applications. Y ou may chooseto use another OL E-compliant pro-
gramming tool with Construct Spectrum.

194 —

Using the Spectrum Dispatch Client

Calling a Natural Subprogram

’

O 0o0do

To call aNatura subprogram from the client:

Step 1: Create Parameter Data Area I nstances, page 195
Step 2: Assign Valuesto the Fields, page 195

Step 3: Usethe CallNat M ethod on the Client, page 196
Step 4: Check the Success of the CALLNAT, page 196
The following sections describe these steps in detail.

Step 1: Create Parameter Data Area I nstances

s
1

To create the PDA instances:

Declare the variables for the Natural data areas expected by your subprogram.
For example:

Di m ncust pda As Nat ur al Dat aAr ea
Di m ncust pdr As Nat ur al Dat aAr ea
Di m cdaobj As Nat ur al Dat aAr ea
Di m cdpda_m As Nat ur al Dat aAr ea
In this example, the variable names are similar to the names of the external PDAS. For
CDPDA-M, the dash character was changed to an underscore because the dash is not
valid in aVisua Basic variable name.

Associate the name of the Natural data area with each variable.
To do this, call aroutine that creates an instance of a Natural data area. For example:

Set ncust pda = SDCApp. Al | ocat e(" NCUSTPDA")
Set ncust pdr = SDCApp. Al | ocat e(" NCUSTPDR")
Set cdaobj = SDCApp. Al | ocat e(" CDAOBJ")
Set cdpda_m = SDCApp. Al | ocat e(" CDPDA- M')

This example calls the Allocate method of the SDCA pp object (described later in the
chapter).

Step 2: Assign Valuesto the Fields

This step sets up the input parameters for the call. To assign values to the fieldsin the
PDAS, read and write the fields in the data areas.

The following example writes one field in each of the NCSTPDA and CDAOBJ data
aress:

ncust pda. Fi el d(" CUSTOMVER- NUMBER') = 10001
cdaobj . Fi el d("#FUNCTI ON') = "CGET"

In thisexample, the Natural DataA rea object’ s Field property reads and writesthefields.

- 195 -

Construct Spectrum SDK Reference

Step 3. Usethe CallNat Method on the Client

This step usesthe CallNat method to call aremote subprogram. Thefollowing example
uses a communications object called Dispatcher:

Di spatcher. Call Nat "CUSTN', ncustpda, ncustpdr, cdaobj, cdpda_m
where:

CUSTN Is the name of the Natural subprogram to call.

ncustpda Are the names of the data areas passed into the subprogram.
ncustpdr

cdaobj

cdpda_m

The syntax of the CallNat method on the Dispatcher resemblesa CALLNAT in a Nat-
ural program.

Step 4. Check the Success of the CALLNAT

Because this CALLNAT occurs between two machines over a network, an error may

occur. To confirm the success of the CALLNAT, examine the error properties for the

Dispatcher object. The Successful property is Trueif the CALLNAT succeeded. If the
Successful property is Fase, check the ErrorNumber, ErrorSource, and ErrorMessage
properties to find out what went wrong.

The following example checks the success of the CALLNAT:

If Dispatcher. Successful Then
' The call was successful. Read the fields in the data areas.

El se
MsgBox "An error occurred." &

" Number = " & Dispatcher.ErrorNunber & _
" Source = " & Dispatcher.ErrorSource & _
' Message = " & Dispatcher. Error Message
End If
Summary

The previous examples illustrate the process of calling Natural subprograms from the
client. There are many other details you must first specify beforethis example can run
successfully. These include defining the Natural data areas (see Step 1), locating and
invoking the Natural subprogram (see Step 3), and initializing the SDCApp and Dis-
patcher objects. These steps are described later in this chapter.

- 196 —

Using the Spectrum Dispatch Client

Spectrum Dispatch Client Components

The SDC provides the following key functions:

« Natural data areasimulation

« Client/server communication

The following components provide Natural data area simulation:

Component

Description

Data area definitions

Data areadlocator

Data area objects

Definefieldsin the Natural data areas used by your client
applications.

Reads data area definitions and creates data area objects.

Provide properties and methods to read and write Natural data
areas for your client application.

The following components provide client/server communication:

Component

Description

Application service
definitions

Dispatch service
definitions

Dispatcher objects

Define the Natural subprograms called by your client
application.

Define the parameters required to communicate with the
Spectrum dispatch service.

Provide properties and methods to interact with the Spectrum
dispatch service.

For more information, see Construct Spectrum Messages.

The following sections provide more details about each of these components.

—-197 -

Construct Spectrum SDK Reference

Natural Data Area Simulation

When a client application calls a Natural subprogram, it uses parameter data areas
(PDAYS) to pass parameters to the subprogram and receive parameters from the subpro-
gram. Using Construct Spectrum, you can simulate Natural dataareasin Visual Basic.

The SDC components that provide this capability are the data area definitions, the data
area alocator, and the data area objects:

Data Area
Definitions

Definitions are read by the Data Area Allocator

Data Area
Allocator

The Data Area Allocator creates instances of data area objects

Data Area
Objects

Components Used to Simulate Natural Data Areas

Data Area Definitions

Data area definitions use the same syntax as an inline dataareain Natural code. These
definitions are stored in library imagefiles.

For information, see Library Image Files and the Steplib Chain, page 227.

—198 -

Using the Spectrum Dispatch Client

Example of the NCUSTPDA data area definition

[Dat aAr ea NCUSTPDA]
01 CUSTOMER
02 CUSTOVER- NUMBER (N5)
02 BUSI NESS- NAME (A30)
02 PHONE- NUMBER (N10)
02 MAI LI NG ADDRESS
03 M STREET (A25)
03 MCITY (A20)
03 M PROVI NCE (A20)
03 M POSTAL- CODE (A6)
02 SHI PPI NG- ADDRESS
03 S- STREET (A25)
03 S-CITY (A20)
03 S- PROVI NCE (A20)
03 S- PCSTAL- CODE (A6)
CONTACT (A30)
CREDI T- RATI NG (A3)
CREDIT-LIM T (P11.2)
DI SCOUNT- PERCENTAGE (P3. 2)
CUSTOVER- WAREHOUSE- | D (A3)
CUSTOVER- TI MESTAMP (T)
01 CUSTOMER-| D (N5)
01 REDEFI NE CUSTOMER- I D
02 STRUCTURE
03 CUSTOVER- NUMBER (N5)

The SDC supports the following features in a data area definition:
All Natura field formats: A, B, C,D,F,I,L,N,P,and T

Scalar fields

One, two, and three-dimensional arrays
Structures

Structure arrays

Redefinitions, including the FILLER keyword
Arrays with avariable number of occurrences (1:V)

—199 -

Construct S

pectrum SDK Reference

Data Area Simulation Objects

Many different SDC objects are involved in data area simulation. These objects and
their properties and methods are illustrated in the following object diagram:

@ Initialize MainLibrary
Application LIFDirectory Show
FieldRef() Name PackedData Reset
Field() PackedDataLength |FieldDefs
| Allocate —Yw|NaturalDataArea —GetField Definition CheckFieldSpec
SetField LibrarylmageFile |Copy
ValueBuffer Show
Level LevelTypeTrail FullName
Structure Redefined LineType
[
FieldDef() —»|NaturalFieldDef ’ —— Name Rank 0cc)
A FormatLength DefinedRank VBLength
Format Fromindex VBOffset
DataArea- 0
Definition Length Thrulndex()
Decimals DisplayLine
Name CheckFieldSpec
Definition VFieldCount
~ParseDataArea - DataAreaDefinition LibrarylmageFile ~ [ResolveVs S Key
FieldDefs PackedDataLength Object Object
ParseFieldSpec ~ [Structure IndexOcc() Method Method
[- -
NaturalFieldSpec ' —FieldSpec Indices IndexFrom() Property Property
FieldName IndexType() IndexThru() Property() | Array property
FullName

SDC Objects Involved in Data Area Simulation

— 200 -

Using the Spectrum Dispatch Client

Application Object

The application object is one of the externally-creatable objects exposed by the SDC. It
has the following properties and methods related to data area simulation:

Property or Method Description

Initialize method Tells the SDC the name of the library imagefile directory
and name of the main library.

LIFDirectory property Returns the name of the library image file directory set
with the Initialize method.

MainLibrary property Returns the name of the main library set with the Initialize
method.

Allocate method Allocates a Natural DataArea object.

Show method Displays apop-up window showing thevalues of all fields

in one or more data areas (values can be edited).

ParseDataArea method Similar to Allocate, but creates a DataAreaDefinition
object that can be used to parse adataarea. The
DataAreaDefinition does not store field values.

A client application creates one global instance of the application object and uses it to
create Natural DataArea objects.

Example of declaring and initializing the application object

Publ i ¢ SDCApp As SDCLi b6. Application

Public Sub Main
Set SDCApp = New SDCLi b6. Appl i cation
SDCApp. I nitialize App.Path, "LIBRARY"
End Sub
This example creates aglobal Application object called SDCA pp and then uses the ob-
ject’s Initialize method to set the library image file directory and main library.

For more information on the library image file directory and the main library, see Li-
brary Image Files and the Steplib Chain, page 227.

-201-

Construct Spectrum SDK Reference

Create NaturalDataArea Objects

The data area allocator reads data area definitions from library imagefiles. It then cre-
ates NaturalDataArea objects that know the structure of their data area definitions and
allow you to read and write fields in their data area.

To create Natural DataArea objects:

Call the Allocate method of the Application object.
The Allocate method has the following syntax:

Function All ocate (DataAreaName As String, _
ParamArray VSubstitutions() As Variant) _
As Nat ur al Dat aAr ea

where;

DataAreaName Isthe name of a Natural data area.

V Substitutions Is the parameter used when the data area has one or more 1:V
arrays. For information, see 1:V Fields, page 233.

NaturalDataArea Class

Thedataareaallocator creates data area objectsthat are instances of the Natural DataAr-
eaclass. Each object knows the structure of its own data area definition and allows you
to read and write fields in that data area.

The Natural DataArea class defines the properties and methods of the simulated Natural
dataareas. Each instance of this class stores detail s about its structure and maintainsthe
field values for asingle Natural data area. A client application can create as many in-
stances of the same or different data areas as required.

- 202 -

Using the Spectrum Dispatch Client

The properties and methods of the Natural DataArea class are:

Property or Method

Description

CheckFieldSpec
property

Copy method

DataAreaDefinition
property

Definition property

Field property

Checks whether afield nameis defined in the data area.
Raises aruntime error if thefield nameis not valid. For
example:

dat aar eal. CheckFi el dSpec " CUSTOVER- NUVBER'
dat aar eal. CheckFi el dSpec "ROWN1)"

Creates acopy of a NaturalDataArea object with the same
definition and the samefield values. Field values changed
in one do not affect the other. For example:

Di m dat al As Nat ur al Dat aAr ea

Di m dat a2 As Nat ur al Dat aAr ea
Al l ocate a data area.

Set datal = Nat.Al | ocate2 (DATAAREA_CSASTD)
Create a copy of this data area.

Set data2 = datal. Copy()

Providesinformation about the structure of a Natural data
area, such asthe name, format, length, and level number of
each field.

Returns a multiple-line string containing the data area
definition as read from the library imagefile.

Reads and writes the value in afield. This property
receives afield name as a parameter. If the field is part of
an array, also specify index values as part of the field
name. For example:

Wth dataareal
. Fi el d(" CUSTOVER- NUMBER') = 10001
. Fi el d("PHONE- NUMBER(1)") = "4165551234"
.Field("STREET(1,1)") = "134 Hill Blvd."
. Fi el d("CUSTOVER- NAME") = snane

End Wth

- 203 -

Construct Spectrum SDK Reference

Property or Method

Description (continued)

FieldDef property

FieldDefs property

FieldRef property

GetField method

LibrarylmageFile
property

Name property

PackedData property

Returns a Natural FieldDef object defining afield. (For
information, see NaturalFieldDef Class, page 210.) If the
field is part of an array, any specified index values are
ignored. For example:

Di m fl ddef As Natural Fi el dDef

Set flddef = dataareal.FieldDef("MCITY")
If flddef.FormatlLength = "A20" Then

End |f

The following two lines do the sane thing.
Set flddef = dataareal. Fi el dDef (" SALARY")
Set flddef = dataareal. Fi el dDef (" SALARY(1)")

Y ou can aso enumerate fields in the dataareausing a
numeric index instead of astring field name. For example:
For i = 1 to dataareal. Fiel dDefs

Print dataareal. Fi el dDef (i). Nane
Next

Returns the number of field definitions in the data area
definition.

Creates anew Natural DataArea object containing a subset
of the fields. For information, see FieldRef Property,
page 228.

Reads the value in afield. Similar to the Field property,
except index values are not specified as part of the field
name but as optional parameters. For example:
Wth dataareal

Print .GetField("CUSTOVER- NUVMBER")

Print .GetField("PHONE- NUMBER', 1)

Print .GetField("STREET", 1, 1)
End Wth

Returns the full file name of the library image file from
which the data area definition was loaded.

Returns the name of the data area represented by the
object. This name was passed to the Allocate method.

Returns field values for the data area as an al phanumeric
string. Assigning an a phanumeric string to this property
replacesthe field valuesin the data area with the valuesin
the string. Thelength of the string must bethe defined. The
following example copies all field values from one data
areato another:

dat aar ea2. PackedDat a = dat aar eal. PackedDat a

— 204 -

Using the Spectrum Dispatch Client

Property or Method

Description (continued)

PackedDatal ength
property

Reset method

SetField method

Show method

ValueBuffer property

Returns the length of the packed data. For example:

If Len(pdata) <> dat aareal. PackedDatalLength Then
MsgBox "The packed data is not " & _
"the right length."
El se
dat aareal. PackedData = pdata
End If

Resetsthefieldsinthe dataareato their default values. For
example:

dat aar eal. Reset

Y ou can also pass afield name into the Reset method to
reset only that field. For example:

dat aar eal. Reset " CUSTOVER- NUVMBER"

Y ou can aso reset structures and multiple occurrences of
an array. For example:
dat aar eal. Reset " CUSTOVER"

dat aar eal. Reset "STREET(*,*)"
dat aareal. Reset "STREET(1,*)"

Writes the value in afield. Similar to the Field property,
except index values are not specified as part of the field
name but as optional parameters. For example:
Wth dataareal
. SetField 10001, " CUSTOMER- NUMBER'
.SetField "4165551234", "PHONE- NUMBER', 1
.SetField "134 Hill Blvd. ", "STREET", 1, 1
End Wth

Displays apop-up window showing thevalues of all fields
in the data area. The syntax is:

obj ect . Show
Y ou can edit the field values.

Sets or returns a copy of theinternal block of memory that
storesfield vaues (the value buffer). Usethis property to
copy afield value from one data area to another. For
example:

dat al. Val ueBuf f er = data2. Val ueBuf f er

— 205 -

Construct Spectrum SDK Reference

Case Senditivity
Field names passed into the procedures of the Natural DataArea class are not case-sen-
sitive. Y ou can type the field name in uppercase, lowercase, or mixed case.

Tip: To beconsistent with Natural, specify al field namesin uppercase.

Alphanumeric Fields

When reading an alphanumeric field (format A), the returned value does not contain
trailing blanks. If afield contains only blanks, the value isreturned as an empty string.
When assigning avalueto afield, the value is truncated if it is longer than thefield or
padded with spaces (internally) if it is shorter than the field.

Fully Qualified Field Names

Whenever afield nameis passed into the procedures of the NaturalDataArea class or
DataArea, the field name caninclude thelevel 1 structure name asaqualifier. Thelevel
1 structure name, however, isrequired if there is more than one field with the same
name in the same data area.

Example of using thelevel 1 structure name as a qualifier

01 CDAPROXY
02 DATA- LENGTH(| 4)
02 DOVAI N(A8)

02 OBJECT(A32)
02 METHOD(A32)

01 CDAOBJ

02 OBJECT(A20)

Wth dataarea
.Field("DOVAI N') = "TEST"
. Fi el d(" CDAPROXY. OBJECT") = "EMPLOYEE"
. Fi el d(" CDAOBJ. OBJECT") = "EMPLOYEE"
End Wth

— 206 —

Using the Spectrum Dispatch Client

Redefined Fields
The SDC alows you to redefine fields, arrays, and structures just asin Natural.

Example of aredefined field

01 ACCOUNT(A12)
01 REDEFI NE ACCOUNT

02 COST- CENTER(A3)

02 ACCT(A4)

02 PRQIECT(A5)
When the Cost-Center, Acct, or Project fields are updated, the change is also reflected
inthe Account field. Similarly, when the Account field is changed, the Cost-Center, Ac-
ct, and Project fields are updated.

Redefinitionsthat change the format or interpretation of datamay introduce side effects
that are implementation dependent.

Example of the side effects of using redefined fields

01 OBJECT- VERSI ON(N6)
02 VERSI ON(\2)
02 RELEASE(N2)
02 MAI NT- LEVEL(N2)

Wth nyver
.Field("VERSION') = 2
.Fiel d("RELEASE") = 1

.Field("MAI NT-LEVEL") =1

Print .Field("OBJECT-VERSION') Prints: 20101

.Fi el d("RELEASE") = -1

Print .Field("OBJECT-VERSION') Prints: <inplenentation defined>
End Wth

ErrorsWhen Compiling

When catal oging aNatural module, the Natural compiler checkswhether fieldsreferred
to in Natural source code are actually part of the data area. If afield nameis not valid,
if thewrong number of index valuesis specified for an array field, or if thedatatypeis
not compatible, the Natural compiler generates a compile error.

The Visual Basic compiler cannot check for these errors because it does not have
knowledge of Natural. Because the SDC providesaruntime Natural simulation layer, a
Visual Basic developer will not discover an invalid field name until the statement that
usesit is executed.

- 207 -

Construct Spectrum SDK Reference

Read Arraysand Structures

Y ou must specify the necessary index val ueswhen reading or writing one, two, or three-
dimensional arrays. The following examples show two different waysto read array
fields.

Example of reading arrays with the GetField method

01 BROWSE- RECORDS(1: 20)

02 NAME(A5)

02 OTHER- COLUMNS(A20/ 1: 5)
01 ...

For irow =1 To 20
Print .GetField("NAME", irow);

For icol =1 To 5
Print .GetField("OTHER- COLUWS", irow, icol);
Next
Pri nt
Next

Example of specifying a field with occurrences

Print .Field("OTHER- COLUMNS(" & irow & "," & icol &")")

If the field has more than one dimension, specify the index values with a comma sepa-
rating them in the Field property. Y ou can also read a structure field and return it as a
Byte array (asthough theentire structureis defined asaB1 array). Thisis useful when
moving occurrences of a structure array.

The following example shows how to read and write occurrences of a structure array.
This example shuffles occurrences of the Item array down to simulate deleting the oc-
currence number stored in the Deleteltem variable.

Example of a data area definition

01 | TEM 1: 10)
02 NUMBER (N5)
02 DESCRI PTI ON (A30)
02 UNI T- COST (P7.2)
02 QUANTI TY (NB)
02 TOTAL- COST (P7.2)

— 208 -

Using the Spectrum Dispatch Client

Example of reading occurrences of the Item array

Wth dataareal

For i = Deleteltem+ 1 To 10
.Field("ITEM" & i - 1 & ")") = .Field("ITEM" &i & ")")
Next
End Wth

RuntimeErrors
Many different runtime errors can result from using Natural DataArea objects.

DataDefinitionArea Class

This class provides information about the structure of a Natural data area, such asthe
name, format, length, and level number of each field. The NaturalDataArea and
DataAreaDefinition classes have many properties in common because they both store
the definition of a Natural data area. However, unlike the NaturalDataArea class, the
DataAreaDefinition class does not store field values.

The SDC provides two ways to create an instance of a DataAreaDefinition: using the
ParseDataArea method of the Application class to parse an inline data area definition
or using adata area definition in an external LIF file. Optionally, you can use the
DataAreaDefinition property of a NaturalDataAreaobject. In the SDC, aNatural-
DataAreaobject uses a DataAreaDefinition object to store the structure of the dataarea.
The DataAreaDefinition property returnsareference to that DataAreaDefinition object.

Property or Method Description

CheckFieldSpec Checkswhether afield nameisdefined inthe dataarea. Raises
property aruntime error if the field nameis not valid. For example:

dat aar eal. CheckFi el dSpec " CUSTOVER- NUVBER'
dat aar eal. CheckFi el dSpec "ROWN1)"

Definition property Returns a multiple-line string containing the entire data area
definition as read from the library imagefile.

FieldDef property Returns a Natural FieldDef object defining afield. For
information, see Natur alFieldDef Class, page 210.

— 209 -

Construct Spectrum SDK Reference

Property or Method

Description (continued)

FieldDefs property

PackedDatal ength
property

Returns the number of field definitions in the data area
definition.

Returns the length of the packed data. For example:

If Len(pdata) <> dataareal. PackedDataLength Then
MsgBox "The packed data is not " & _
"the right length."
El se
dat aareal. PackedData = pdata
End If

NaturalFieldDef Class

NaturalFieldDef is an SDC class that returns the definition for asingle field in adata
areadefinition. The FieldDef property of the NaturalDataArea class creates and returns
an instance of the NaturalFieldDef class. All properties defined by this class are read-
only. These properties are:

Property

Description

Decimals

DefinedRank

Format

FormatL ength

Returns the decimal length portion of the Natural format. If the
format is not numeric or packed numeric, it returns 0. Returns
0, 0, 2, and 0 in the FormatL ength example.

Returns the number of dimensions of thefield in the data area
definition. This property works similar to the Rank property,
except it returns the number of dimensions regardless of any
structure arrays it might be part of.

Returns the Natural format character. Returns N, A, P, and D
in the FormatL ength example.

Returns the format and length of the field in Natural syntax.
Returns N6, A20, P8.2, and D for the following example:

Wth enpl oyee
Print .FieldDef("PID").FormatLength
Print .Fiel dDef ("Fl RST- NAME") . For mat Lengt h
Print .FieldDef("SALARY"). FormatLength
Print .FieldDef("H RE-DATE"). Format Lengt h
End Wth

-210-

Using the Spectrum Dispatch Client

Property

Description (continued)

FromIndex and
Thrulndex

FullName

Length

Level

Level TypeTrail

Returns the low and high index values for each dimension of
an array field. Returns 1,10 and 5,7 in the following example:

01 VALUES(N10/ 1: 10, 5: 7)
Wth data. Fi el dDef (" VALUES")

For i =1 To .Rank
Print .From ndex(i) & ":" & . Thrul ndex(i)
Next
End Wth

Returns the fully qualified field name (includes thelevel 1
structure name).

Returns the length portion of the Natural format. If the format
isD, L, or T, it returns 0. Length returns 6, 20, 8, and O in the
FormatL ength example.

Returns thefield' s level number in the data area definition.

Returns a string that determines the nesting of this field in the
data area definition. This string has one character for each
level. Each character can be one of the following:

« F(field)

« S(structure)
* R (redefine)
« X (filler)

-211 -

Construct Spectrum SDK Reference

Property

Description (continued)

Level TypeTrail
(continued)

Name

Occ

Rank

Redefined

Structure

Thrulndex

For the following data area example:

01 ROW COUNT (N2)
01 ROW (1: 10)
02 1D (N6)
02 ACCOUNT- NO (A16)
02 REDEFI NE ACCOUNT- NO
03 DI VI SI ON (A4)
03 FILLER 1X
03 GROUP (A5)
03 FILLER 1X
03 ENTI TY (AS5)

Level TypeTrail returns:

Print .Fiel dDef (" ROM COUNT"). Level TypeTrai l
Prints "F"

Print .FieldDef("ROW).Level TypeTrail
Prints "S"

Print .FieldDef("ID").Level TypeTrail
Prints "SF"

Print .FieldDef("ACCOUNT-NO"). Level TypeTrai l
Prints "SF"

Print .FieldDef("DIVISION"). Level TypeTrai l
Prints "SRF"

Print .FieldDef(7).Level TypeTrail
Prints "SRX"

Returns the name of the Natural field.

Returns the number of occurrences for each dimension of an
array field.

Returns whether the field is a scalar field or part of an array.
Rank indicates the number of index values that must be used
when reading or writing the field values:

« O (scaar)

« 1 (one-dimensional array)
« 2 (two-dimensiona array)
» 3 (three-dimensiona array)

Returns Trueif the field is redefined later in the data area
definition.

Returns the structure name if the field is part of alevel 1
structure.

See Froml ndex.

-212 -

Using the Spectrum Dispatch Client

Client/Server Communication

The other major function of the SDC is client/server communication. Many compo-
nents work together to enable client/server communication. These include:

« Application service definitions

» Dispatcher objects

» Dispatcher service definitions
The following sections describe these components in more detail.

Level 1 Block Optimization

Before you can understand application service definitions, you must understand level 1
block optimization. The SDC and the subprogram proxies implement this performance
optimization feature to minimize the amount of data that is transmitted between thecli-
ent and server for each remote CALLNAT.

With level 1 block optimization, each level 1 field in the parameter data of the Natural
subprogram becomes a numbered block. Each block can contain one or more Natural
fields, structures, or structure arrays. Instead of sending all parameter data between the
client and server for each remote CALLNAT, the SDC and Spectrum dispatch service
transmit a subset of the blocksin each direction.

To understand why thisis useful, consider the following. For most Natural subpro-
grams, each field in the parameter data can be assigned adirectional attributeto indicate
whether afield passes data into the subprogram, out of the subprogram, or both.

Note: Thesedirectional attributes are not supported by Natural. However, they may
be defined in the application service definitions supported by the SDC and
coded in user exitsin subprogram proxies.

The following table summarizes these directional attributes:

Directional Attribute Description

IN Passed from the caller to the subprogram.
ouT Returned from the subprogram to the caller.
IN/OUT Passed from the caller to the subprogram, optionally

modified by the subprogram, and then returned to the cdler.

-213 -

Construct Spectrum SDK Reference

If the parameter datais organized such that each block (level 1 field) containsonly In,
Out, or In/Out parameters, then the SDC can uselevel 1 block optimization to send only
the In and In/Out parameters to the subprogram proxy. The subprogram proxy can send
only the Out and In/Out parameters back to the client. In some cases, the size of the In
or Out parameters is small compared to the total size of the parameter data. Level 1
block optimization can make a significant differenceto the size of the data being trans-
mitted over your network.

Note: This block optimization feature does not allow directional attributes to be as-
signed at alevel of granularity finer than level 1 fields.

Occasionally, it may not be possibleto assign astatic directional attributeto a parameter
because it may change its direction depending on the values of other parameters. This
isillustrated in the following example:

Example of parameter data for a Natural Construct object subprogram

DEFI NE DATA
01 CUSTOVER /* Cbject PDA
02 CUSTOVER- NUMBER (N5)
02 BUSI NESS- NAMVE (A30)
02 PHONE- NUVBER (N10)

01 NCUSTPDA-1D
02 ...
01 NCUSTPDR

01 CDAOBJ
02 #FUNCTI ON (A15)

01 MBG I NFO
02

END- DEFI NE

The object PDA is either In, Out, or In/Out, depending on the #FUNCTION flag in
CDAOBJ. When #FUNCTION contains Get, the object PDA contains data returned
from the subprogram to the caller, so it is an Out parameter. When #FUNCTION con-
tains Update, the caller is passing datain the object PDA to the subprogram, and
depending on whether the subprogram performs edits on the data, the subprogram may
alsoreturn updated valuesin the object PDA, soit iseither an In or an In/Out parameter.

When using level 1 block optimization, the sender always decideswhich blocks are sent
to thereceiver. Sender and receiver differsfrom client and server becausethe client and
server are both senders and receivers.

—214 -

Client
1. Request
Client is sender 4©_>
2. Response

Clientis receiver 4_07

Server

Server is receiver

Server is sender

Client and Server are Both Sender and Receiver

Using the Spectrum Dispatch Client

When arequest is sent to the server, the client isthe sender and the server isthereceiver.
When the response is sent to the client, the server is the sender and the client is the

receiver.

Inthe exampl e above, different-sized ellipses show how the size of the request datamay
be different from the size of the response data because the set of blocks may be

different.

Application Service Definitions

Application service definitions are defined on the server in the Construct Spectrum Ad-
ministration subsystem and on the client in alibrary image file. The following table
compares the information stored on the server and on the client:

Information

Stored on Client

Stored on Server

Domain name

Object name

Object version number
Method names

Name of subprogram proxy to
call for each method

Steplib chain to use when calling a
subprogram

—-215-

X

X X X X

X

X
X
X

Construct Spectrum SDK Reference

Information Stored on Client Stored on Server

Number of level 1 fieldsin the X
parameter data areafor each
method’ s subprogram

Nameof thelevel 1 fieldssent to X
the server for each method

Example of an application service definition in a library image file

[AppSer vi ce CUSTOMER]
Domai n=DEMO

Obj ect =CUSTOVER
Version=4.4.1

Met hod=BROWSE, , 4, 1+3+4
Met hod=DEFAULT, , 5, 1+2+3+4+5
Met hod=DELETE, , 5, 2+3+4
Met hod=EXI STS, , 5, 2+4
Met hod=CET, , 5, 2+4

Met hod=I NI Tl ALI ZE, , 5, 4
Met hod=NEXT, , 5, 2+4

Met hod=STORE, , 5, 1+4
Met hod=UPDATE, , 5, 1+3+4

where;

[AppService CUSTOMER] Introduces the application service definition and
identifies the application service definition name.

Domain, Object, and I dentify the application service definition in the Construct
Version Spectrum Administration subsystem.
Method Defines a method within the application service.

-216 -

Using the Spectrum Dispatch Client

Each method line contains four values separated by commas:
A logical method name used in your Visual Basic code.

A physical method name that correspondsto a method name in the application service
definition on the server. If this nameis the same as the logical method name, it can be
omitted, asin the example above.

The number of level 1 fields in the parameter data of the subprogram associated with
the method. In the exampl e above, the subprogram for the Browse method hasfour level
1fieldsin its parameter data, and the subprogramsfor all other methods havefivelevel
1fieldsin their parameter data areas.

The names of level 1 fields sent to the server for the method. In the previous example,
only thefirst, third, and fourth level 1 fields are sent to the server when calling the
Browse method.

The application service definitions on the client and server work together to allow acli-
ent application to identify which subprogram to call on the server. To use the CallNat
method on the client, do not specify a Natural subprogram to call. Instead, specify the
name of an application service definition. The SDC uses this name to ook up the do-
main name, object name, and version number, and passes these values to the Spectrum
dispatch service running on the server. The dispatch service uses the values to look up
the subprogram proxy to call.

Thefollowing example shows a CallNat method on the client using the application ser-

vice definition from the previous example;

Di spatcher. Cal | Nat " CUSTOMER. GET", ncustpda, ncustpda_id, ncustpdr, _
cdaobj, cdpda_m

Notice how the GET method name is appended to the CUSTOMER application service
name. If you do not specify amethod nameinthe CallNat, the SDC usesthe DEFAULT
method name and this method must exist in the application service definition.

-217 -

Construct Spectrum SDK Reference

Dispatcher Objects and Dispatch Service Definitions

Dispatcher is an SDC class that handles communication between the client and server.
It contains the networking components of the SDC.

The properties, methods, and related objects of the Dispatcher class are:

Key
Object] Object
Initialize UserlD Method Method
P —LIFDirectory Password
Application Propert Property
MainLibrary Language
PasswordEmpty |BrokerSession Property() | Aray property
NewPassword
DispatchService [StartTransaction |ErrorSource
CallNat Commit ErrorNumber
CallSystem Abort ErrorMessage
Compress TransactionActive |ErrorValue()
Encrypt Timeout Successful
TraceCommand [DisplayRetry DisplayErrors
TraceOption() RetryMessage Retry
| CreateDispatcher ——TraceAutoReset [RequestProperty() |RetryPossible
ID
Service —>|DispatcherProperties ﬁ ——Property()
Refresh
|—Serviceo
Count
—DispatchServices —>| DispatcherServices ServicesFile
Refresh

Dispatcher Objects

Dispatcher objects are created using the CreateDispatcher method of the Application
object.

Example of creating Dispatcher objects

Di m Di spat cher As Di spat cher
Set Di spatcher = SDCApp. Cr eat eDi spat cher ()

-218 -

Using the Spectrum Dispatch Client

The properties and methods of the Dispatcher object are separated into the following
functional groups.

Service selection

Remote subprogram invocation

Timeout, retry, and resume handling

Compression and encryption

Tracing

Database transaction control

Error reporting

The following sections describe each of these groups in more detail.

Service Selection

Y ou may have multiple Spectrum dispatch services running on one or more server plat-
forms simultaneously. There could even be different types of Spectrum dispatch
services, each with its own defaults, security settings, FUSER, and so on running at the
same time. Before sending any request, the client must first identify which Spectrum
dispatch service to connect to. Y ou do this by setting the DispatchService property to
the ID of avalid Spectrum dispatch service.

The available dispatch services are defined in the Construct Spectrum Administration
subsystem on the server platform. Onthe client, these dispatch services are defined with
the Spectrum Service Manager.

Each dispatch service definition specifies the following values:
EntireX Broker ID

Server class

Server name

Service

If you arefamiliar with EntireX Broker, you will recognizethat thiscombination of val-
ues uniquely identifies an EntireX Broker service. Each Spectrum dispatch serviceis
actually an EntireX Broker service.

—-219 -

Construct Spectrum SDK Reference

Remote Subprogram Invocation

To send arequest to the Spectrum dispatch service, use the CallNat and CallSystem
methods. These methods return Trueif the call was successful and Falseif the call was
unsuccessful.

The CallNat method invokes a Natural subprogram on the server.

Syntax of the CallNat method

Function Cal | Nat (ByVal AppServiceName As String, _
Par amArray Dat aAreas() As Variant) As Bool ean

The name of the application service is always required. Following this name, you can
specify zero or moreinstances of the Natural DataArea class passed as parametersto the
target subprogram. The parameters are passed by reference. When the subprogram re-
turns, any changes the subprogram madeto fieldsin the data areas are also availablein
the NaturalDataArea objects. To take advantage of level 1 block optimization, you can
include a method name in thefirst parameter.

Example of implementing level 1 block optimization

Di spatcher. Cal | Nat "CUSTN. GET", custpda, custpda_id, custpdr, _
cdaobj, cdpdam

where:
GET Isthe method name appended to the subprogram name. Use aperiod (.)

to separate the two. Only the blocks specified in the method definition
are sent to the server in the request data.

Usethe Call System method to send system commandsto the Spectrum dispatch service
or to invoke an arbitrary proxy.

- 220 -

Using the Spectrum Dispatch Client

Syntax of the CallSystem method

Function Cal | System (ByVal Donmai nNane As String, _
ByVal ObjectName As String, _
ByVal Version As Long, _
ByVal Met hodName As String, _
ByVal SendData As String, _
ByRef ReceiveData As String) As Bool ean

where;

CallSystem Isthe method that allows you to send system commands directly to the
Spectrum dispatch service or invoke an arbitrary subprogram proxy by
specifying its domain, object, version, and method.

Timeout, Retry, and Resume Handling

The CallNat and Call System methods do not return until the server sends back are-
sponse. | n effect, your calling application islocked up whilethe server isprocessing the
request.

If the server does not respond, your application may not regain control and the user will
have to terminate the application. For this reason, the Dispatcher object has a request
timeout. The timeout indicates the maximum number of seconds to wait for the server
to respond. When the specified number of seconds elapse, the dispatcher does one of
two things:

Returns control to your caling application.
or
Asks the user whether or not to continue waiting.

Usethe DisplayRetry property to tell the Dispatcher object what to do. To return control
to your calling application, set DisplayRetry to False. To ask the user whether to con-
tinue waiting, set DisplayRetry to True and, optionally, set the RetryM essage property
to amessage string that is displayed to auser. The default messageis: “ The server isnot
responding. Would you like to continue waiting?’

The Timeout property determines the timeout duration in seconds and can be set to any
value from —1 to 32767. Zero (0) returns control to the client application immediately.
Negative one (—1) isthe default and uses the timeout value specified in the dispatch
service definition.

Tip: You can change this timeout value using the Spectrum Service Manager. For in-
formation, see Using Construct Spectrum Tools, page 109, Construct Spectrum
Administration.

—-221 -

Construct Spectrum SDK Reference

The following flowchart illustrates the life-cycle of afull request and response
combination:

CallNat or
CallSystem

Is
this a resume
situation

Are
we resuming
the send
?

No

Yes

Send request data
to dispatch service

Did
a Broker
error occur

user want to
continue waiting
?

Start time-out Display “Continue
counter waiting?” prompt

Did
a Broker
error occur

Has
time-out been
exceeded

DisplayRetry
set

Set ‘resumable”
flag

(Returnto caller
with resumable |«
Return to caller Return to caller error
; e J
successful with error

Life Cycle of a Full Reguest/Response Combination
Showing Timeout Functionality

error class 7,
36, 37,74, or
215

A 4

Yes

Thisexampleillustratesthe SDC’ s ahility to resume the processing of arequest because
of atimeout or arecoverable EntireX Broker error.

Some EntireX Broker errors, such as resource shortages or atemporary interruption in
Entire Network, are recoverable. If such an error occurs in the middle of processing a
request, either when sending the request datato the server or receiving the response data
from the server, the SDC can return the error to the calling application, which can then
decide whether to resume the request or not.

-222 -

Using the Spectrum Dispatch Client

To determine if the request isresumable, check the RetryPossible property after return-
ing from the call. If this property returns True, you may set the Retry property to True
and then reissue the call.

Example of resuming a call

Do
If .CallNat("CUSTN. GET", custpda, custpda_id, custpdr, _
cdaobj, cdpdanm) Then
Request was successful.
Exit Do
El se
snmsg = "The following error occurred: " & _
.ErrorSource & ":" & .ErrorNumber & " - " & _
. Error Message & vbLf & vbLf & _
"Click OK to try again or Cancel to quit."
If MsgBox(snsg, vbCkCancel) = vbCancel Then
Exit Do
End | f
If .RetryPossible Then .Retry = True
End |f
Loop
If an error occursin this example, the error messageis displayed to the user, along with
aprompt asking if the user wantsto try again. If the user choosesto try again, the same

cal is performed.

What happens during the second call depends on the setting of the Retry property. If the
error isresumable (RetryPossibleis True), set Retry to True and the previous request is
resumed. If the error is not resumable (RetryPossible is False), the second call initiates
an entirely new request.

Compression and Encryption

The SDC can compress or encrypt the request datait sends to the Spectrum dispatch
service.

Compression can significantly reduce the size of the data. This can reduce thetransmis-
sion time, especialy over slow network connections such as dialup connections. The
compression agorithm reduces sequences of repeating characters, which are quite com-
mon when the request and response data contain partially-filled Natural data areas.

To enable compression, set the Compress property to True. To enable encryption, set
the Encrypt property to True. These properties remain set until you change them.

Note: These properties only compress and encrypt the request data sent from the cli-
ent to the Spectrum dispatch service. The decision to compress or encrypt the
response data is made in the subprogram proxy on the server.

— 223 -

Construct Spectrum SDK Reference

Tracing

Tracing options allow you to track the datatransmission to and from the server. Y ou set
these tracing options, depending on the type of datayou want to trace, by setting the
properties of the Dispatcher object.

The following Dispatcher abject properties are available to set trace options:
TraceOption array property with indices 1 to 15.
TraceCommand string property.

TraceAutoReset Boolean property, which automatically resets the trace options after
the call to the Spectrum dispatch service.

For more information about setting tracing options and understanding the result, see
Debugging Your Client/Server Application, page 161.

Database Transaction Control

Each request sent to the Spectrum dispatch service can be handled by adifferent copy
of the Spectrum dispatch service. While processing arequest, you have exclusive access
to the server. Once the server sends the response data back to the client, the server is
available for your next request or arequest sent by someone el se.

The SDC also gives you exclusive access to a specific server across more than onere-
guest. To have this exclusive access, you must specify when you want to start having
exclusive accessto a server and when you arefinished withit. Whileyou have exclusive
access, the server is dedicated to your client application and only accepts requestsfrom
you. No other client application can send requests to that server (unless you pass aref-
erence to the Dispatcher object for another client application). Try to release the server
as soon as possible, as you are preventing others from using it and there may be alim-
ited number of servers running.

When you have exclusive accessto aserver, you can alsoissue END TRANSACTION
or BACKOUT TRANSACTION statements from the client application and be assured
that only your requests are affected. The Dispatcher class has three methods and one
property to support exclusive use of a server:

Method or Property Description

StartTransaction method Tells the Dispatcher object that you want exclusive
access to aserver.

Commit method Sends arequest to the server to issue an END
TRANSACTION statement and releases the server.

Abort method Sends arequest to the server to issueaBACKOUT
TRANSACTION statement and releases the server.

TransactionActive property Returns True if you have exclusive access to a server.

—224 -

Using the Spectrum Dispatch Client

Each Spectrum dispatch service has atransaction timeout value that ensures a client ap-
plication does not have exclusive accessto the server for too long. The timeout period
begins as soon as the server sends the response data back to the client application. If the
client application does not send any more reguests to the server within the timeout pe-
riod, the server issuesaBACKOUT TRANSACTION statement and returnsto the
server pool. If this happens, the client application is not notified until it triesto send the
next request. The request fails with an sdcerrTransactionTerminated error.

Note: Thetransaction timeout period is set on the Maintain Services panelsin the
Construct Spectrum Administration subsystem.

To prevent transaction timeout, try to send all requests in succession and then release
the server. If your application interacts with the user between requests (or if an error oc-
curs and you display it to the user), thereisa greater possibility of transaction timeout
occurring because the user may not respond immediately.

Theserver is also automatically released when the Dispatcher object is destroyed (after
all object referencesto it are released).

Error Reporting

Errors that can occur in the Dispatcher object include:

Error Types Description

Runtime errors Raised using the standard OLE automation error handling
mechanism. For more information about runtime errors, see
Deploying Your Client/Server Application, page 189, or
Construct Spectrum Messages.

Communication Occur during aremote call from the client application to the

errors subprogram. Error detail sare returned in the error properties of
the Dispatcher object: ErrorSource, ErrorNumber,
ErrorMessage, ErrorValues, and Successful. For more
information about communication errors, see Deploying Y our
Client/Server Application, page 189, or Construct Spectrum
Messages.

— 225 -

Construct Spectrum SDK Reference

User Identification and Authentication

The Application object has UserlD, Password, and Language properties. These proper-
ties must be set before the first request is sent to the server, but may be changed at any
time after that. These properties are:

Application Properties Description

UserID Identifies who you areto the server.
Password Provides authentication of your user ID.
PasswordEmpty Returns whether the Password property is set.
Language Identifies internationalized servers.

If the server uses security, it can authenticate the user 1D and password for each request
and then check whether the user has the necessary permissions to execute the request.
If the server does not use security, any user ID and password assigned to these proper-
tiesisignored.

To indicate the spoken language, assign one of the Natural *LANGUAGE codes to the
Language property. This code is sent to the server with each request. Whenever the
server returns a message string, it ooks up the correct translation based on the code.

— 226 —

Using the Spectrum Dispatch Client

Library Image Files and the Steplib Chain

Library image files (L1Fs) are special text files that contain SDC definitions. Each LIF
contains up to three different types of definitions:

» Dataareadefinitions
For more information, see Data Area Definitions, page 198.

« Application service definitions
For more information, see Application Service Definitions, page 215.

» Steplib definitions

Syntax of the steplib definition

[St epLi bs]

CST441S

SYSTEM

A steplib definition allows multiple applicationsto share aset of LIFs. Each application
may have itsown main library, which contains just the definitions specific to that ap-
plication. Shared definitions can be placed in other L1Fs, which can beincluded in each
application’s steplib chain.

When searching for data area and application service definitions, the SDC first exam-
inesthe main library’s LIF. If it does not find the definition there, it looks for a steplib
definition in thefile. If it finds the steplib definition, it examinesthe LI1Fsfor the librar-
iesin the steplib definition, beginning with the first LIF on thelist.

- 227 -

Construct Spectrum SDK Reference

Advanced Features

The following sections introduce two advanced features you can use when devel oping
your applications. It includes:

Feature Description

FieldRef Property Defines objects as parameterswithout duplicating data areasto
pass objects to a Natural CALLNAT.

1V Defines arrays with variable numbers of occurrences.

FieldRef Property

The CallNat method of the Dispatcher class only accepts NaturalDataArea objects as
parameters to pass to subprograms. Y ou can, however, passindividual fields to a sub-
program in Natural code.

Example of passing individual fields to a subprogram

ASS| GN CBROWSEA. COUNT = 10
CALLNAT ' CUSTB' CBROWSEA. COUNT
CBROWSEA. ROWS(*)

In thisexample, onefield and all occurrences of an array are passed into a subprogram.

Example of how NOT to pass parameters to subprograms

Di m cbrowsea As Nat ur al Dat aAr ea

Set cbrowsea = SDCApp. Al | ocat e(" CBROASEA")

cbrowsea. Fi el d("COUNT") = 10

Di spatcher. Cal | Nat "CUSTB", cbrowsea. Fi el d("COUNT"),
cbrowsea. Fi el d("ROAS(*)")

In this example, the field valuesin CBROWSEA are passed to the Dispatcher object’s
CallNat method.

CBROWSEA
COUNT

(conr]
ROWS(1: 10)

v
Di spatcher. Cal | Nat “ CUSTB”, cbrowsea. Fi el d(“COUNT"), chrowsea. Fi el d(“ROAS. (1)")

CBROWSEA Fields Passed to the CallNat Method

— 228 -

Using the Spectrum Dispatch Client

The problem with this exampleisthat the Field property returns avalue, not an object.
The second and subsequent parametersto the CalINat method must be NaturalDataArea
objects. Because the Field property returns avalue, the CallNat method encounters a
runtime parameter type mismatch error.

Note: Thereason the CallNat method accepts only objects as parametersis so the
dispatcher can maintain references to the objects and update them when the
response comes back from the server.

A better way to simulate Natural codeisto create separate Natural DataArea objects for
each parameter you are sending to the subprogram. The following example illustrates
these differences:

Example of creating separate NaturalDataArea objects for each parameter

Di m cbrowsea As Natural Dat aAr ea
Di m mycount As Nat ur al Dat aAr ea
Di m nyrows As Natural Dat aArea

Set cbrowsea = SDCApp. Al | ocat e(" CBROASEA")
Set mycount = SDCApp. Al |l ocate(" CBA-C'") " 01 COUNT(N3)
Set nyrows = SDCApp. Al | ocat e(" CBA-R") ' 01 ROAS(A32/1:10)

cbrowsea. Fi el d("COUNT") = 10

Copy the CBROWSEA fields into the tenporary data areas.
nmycount . Fi el d(" COUNT") = cbhrowsea. Fi el d(" COUNT")
nmyrows. Fi el d("ROAS") = chrowsea. Fi el d(" ROWNS")

Di spatcher. Cal |l Nat "CUSTB", nycount, myrows

Copy the fields fromthe tenporary data areas back into CBROASEA.
cbrowsea. Fi el d("COUNT") = nycount. Fi el d(" COUNT")
cbrowsea. Fi el d("ROAS") = myrows. Fi el d(" ROAS")
In this example, the two newly-defined objects (mycount and myrows) are Natural-
DataArea objects containing copies of COUNT and ROWS respectively. These two
objects are then passed into the CallNat method:

— 229 -

Construct Spectrum SDK Reference

CBROWSEA

o COUNT]
ROWS(1: 10))

mycount myrows w

|

Di spatcher. Cal | Nat "CUSTB", nycount, nyrows

CBROWSEA Fields Defined as Objects to the CallNat Method

This example shows how to create additional dataareasfor theindividual fields passed
tothe subprogram. These data areas must beinitialized from the CBROWSEA dataarea
before issuing the CALLNAT. After the CALLNAT, the data areas must be copied

back into CBROWSEA. This code looks quite different from the original Natural code.

A better solution isto create a pointer to afield within aNatural DataArea object and
passthat pointer to the CallNat method of the Dispatcher object, effectively passing the
field by reference. Construct Spectrum provides the FieldRef property to do that. This
property of the Natural DataArea class creates an instance of the NaturalDataArea ob-
ject that does not contain its own data, but rather points to afield in the data area that
created it.

Syntax of the FieldRef property

Function Fi el dRef (ByVal FieldName As String) As Natural Dat aArea
where:

FieldName Isthefield the FieldRef property points to.

The FieldRef property creates a new instance of the NaturalDataArea object with the
same field definitions as the field indicated by FieldName. However, any time afield
inthe new dataareaisread or written, thefield in theoriginal dataareaisaccessed. This
effectively creates two data areas referring to the same data.

- 230 -

Using the Spectrum Dispatch Client

Data area object Data area object
Internal ! Pointer to the |
representation 1 data in
of the field ' another data !
values in this ' area object !
dataarea | | | ccommrioooes !
Other internal Other internal
variables variables

Using the FieldRef Property to Create Two
Data Areas that Refer to the Same Data

Y ou can now rewrite your original Visual Basic code using the FieldRef property in-
stead of the Field property.

Example of using the FieldRef property

Di m cbrowsea As Nat ur al Dat aAr ea

Set cbrowsea = SDCApp. Al | ocat e(" CBROASEA")

cbrowsea. Fi el d("COUNT") = 10

Di spatcher. Cal | Nat "CUSTB", cbrowsea. Fi el dRef (" COUNT"), _
cbrowsea. Fi el dRef (" ROWS")

Inthis example, the FieldRef property creates atemporary Natural DataArea object that
is passed to the CalINat method. Each temporary dataarea contains a pointer to the orig-
inal data.

CBROWSEA

o COUNT]
ROWS(1: 10))

mycount v Mmyrows v _
! COUNT] 'ROWS(1:10)

Di spatcher. Cal | Nat " CUSTB", cbrowsea. Fi el dRef (“COUNT”), cbrowsea. Fi el dRef (“ ROAS")

Using the FieldRef Property to Create Two
Data Areas that Refer to the Same Data

—-231-

Construct Spectrum SDK Reference

Example of using the CUSTA Natural data area

01 CUSTOMER- NUMBER(N5)
01 FI RST- NAVE(A20)
01 LAST- NAMVE(A20)
01 MAI LI NG ADDRESS
02 STREET(A30)
02 Cl TY(A20)
02 PROVI NCE(A20)
02 POSTAL- CODE(A6)
01 SHI PPl NG- ADDRESS
02 STREET(A30)
02 Cl TY(A20)
02 PROVI NCE(A20)
02 POSTAL- CODE(A6)

Y ou can use the FieldRef property to obtain a pointer to the Mailing-Address or Ship-
ping-Addressstructures so you can processthem individually, asthe following example
shows:

Example of Visual Basic code

Di m nycust As Natural Dat aArea
Di m mycustref As Natural Dat aArea

Set nycust = SDCApp. Al | ocat e(" CUSTA")

For i =1 To 2
If i =1 Then
Set nycustref = mycust. Fi el dRef (" MAI LI NG ADDRESS")
El se
Set nycustref = mycust. Fi el dRef (" SHI PPl NG- ADDRESS")
End |f

At this point, nycustref is an alias to either the nmailing
address or the shipping address fields of the nycust data area.

Wth nmycustref
Print .Field("STREET")
Print .Field("CTY")
Print .Fiel d("PROVI NCE")
Print .Field("POSTAL- CODE")
End Wth
Next

Thisexample did not specify thelevel 1 structure nameto qualify thefield namewhen
reading the Street, City, Province, or Postal-Code fields. This is because the Natural-
DataArea object returned by the FieldRef property only contains definitions for the
Mailing-Address or Shipping-Address fields.

- 232 -

Using the Spectrum Dispatch Client

1:V Fields

In aNatural parameter data area, you may specify an array with a variable number of
occurrences by using the index notation 1:V.

Example of specifying an array
01 #ROWS(1:V)
02 ...

Some of the library image files may aready contain similar data areadefinitions. How-
ever, you must specify the number of occurrences for each V to create an instance of
this data area. Specify the number of occurrences by using the optional V Substitutions
parameter when you call the Application.Allocate method.

Example of specifying the number of occurrencesfor your array

Function All ocate (ByVal DataAreaNanme As String, _
ParamArray VSubstitutions() As Variant) _
As Nat ur al Dat aAr ea

For your arraysto operate successfully, you must provide avalue for each V inthe data
areadefinition or aruntime error will occur. The parameters following DataAreaName
inthe Allocate call are called aV substitution list. The following examplesillustrate an
Allocate call.

Example of a PDA

[TESTPDA]
01 PARML(A5)
01 PARM2(A3/1:V, 1:V)
01 PARMB(1:V)
02 PARMA(N3/ 1:V)

Example of instantiating the PDA

[TESTPDA]
01 PARML(A5)
01 PARM2(A3/1: 10, 1: 5)
01 PARMB(1:20)
02 PARMA(N3/ 1:5)

Example of calling the Allocate method

Set nda = SDCApp. Al | ocat e(" TESTPDA", _
"PARMR", 10, 5, _
"PARMB", 20, _
"PARMA", 5)

— 233 -

Construct Spectrum SDK Reference

In this example, the V substitution list consists of groups of parameters. Each group
identifies afield and provides the substitution values for the 1:V specificationsfor that
field. There must be as many groups as there are fields with 1:V specifications.

Y ou can also store the V substitution list in an array and pass the array as aparameter
to the Allocate method.

Example of passing the array to the Allocate method

Dimvlist(1l To 7) As Variant

vlist(1l) = "PARM2": vlist(2) = 10: vlist(3) =5
vlist(4) = "PARMB": vlist(5) = 20
vlist(6) = "PARMA": vlist(7) =5

Set nda = SDCApp. Al | ocat e(" TESTPDA", vlist)

When you read the FieldDef property to obtain the lower and upper bounds of an array
defined with 1:V, 1 isreturned for the lower bound and the value specified for that
field's V isreturned for the upper bound.

Example of obtaining the upper and lower bounds of an array

W th nda. Fi el dDef (" PARMA")

Print .From ndex(1l) & ":" & . Thrul ndex(1) " Prints "1:20"
Print .From ndex(2) & ":" & .Thrul ndex(2) " Prints "1:5"
End Wth

Y ou can create instances of the same data areawith different numbers of occurrences.

Example of using the same data area with varying numbers of occurrences

Di m dat al As Nat ural Dat aAr ea
Di m dat a2 As Nat ur al Dat aAr ea

Set datal = SDCApp. Al | ocat e("#RONE", 15)
Set data2 = SDCApp. Al | ocat e("#ROWS", 100)
Wth datal. Fi el dDef (" #ROWNS")

Print .From ndex(1) & ":" & .Thrul ndex(1) " Prints "1:15"
End Wth
Wth data2. Fi el dDef (" #RONS")

Print .From ndex(1) & ":" & . Thrul ndex(1) " Prints "1:100"
End Wth

Note: The size of the data area must be no greater than allowed by Natural.

—234 -

CREATING APPLICATIONS WITHOUT THE
FRAMEWORK

This chapter describes how to create a Construct Spectrum application without using
Construct-generated framework components. Working through the steps of creating a
simple application, you will learn how to create and deploy your application. Whilethe
simple application is designed to run using Microsoft’s Visual Basic, you can use any
other development tool that fully supports OLE automation.

The following topics are covered:
« Setting Up the Server Components, page 236
» Generating Subprogram Proxies, page 240
» CreatingthelLibrary ImageFiles (LI1Fs), page 244
» Developing the Client Application, page 248

For information about creating Construct Spectrum applications using components gen-
erated using earlier versions of Natural Construct, seeM oving Existing Applications
to Construct Spectrum, page 201, Construct Soectrum SDK for Client/Server
Applications.

—235-

Construct Spectrum SDK Reference

Setting Up the Server Components

Thefollowing sections describe how to set up the server-side componentsto prepare an
environment for the client to be able to communicate with the server. Y ou can create
the server-side components entirely within the Natural environment.

Create or Select Application Services

When creating new application services or selecting existing services for deployment
inaclient/server environment, ensurethat the Natural subprogramsfollow certainrules.
Natural subprograms primarily execute as remote services in environments where no
input and output devices are defined. Therefore, there are some restrictions imposed on
your Natural programs.

The following sections identify issues to consider when you are developing new appli-
cation services or adapting existing services for a client/server environment.

No Terminal 1/0

Avoid the use of all commands that require input from the user or write information to
any external source other than a database file. This includes the INPUT statement as
well asthe WRITE, PRINT, and DISPLAY statements.

Whilethe INPUT statement cannot be used to input datafrom the user, you can use the
statement to retrieve data that was stacked using the STACK TOP DATA statement.

Only usethe WRITE, PRINT, and DISPLAY statements to write information to the
Natural source area for the purpose of debugging your application. If you are running
serversin batch mode, you can send these statements to the batch output queue. The
datais only viewable after the batch job ends. For information, see Debugging Y our
Client/Server Application, page 161.

Subprogram Interface

Construct Spectrum is only able to communicate with application services that areim-
plemented as subprograms. If necessary, you may invoke programs from inside the
called subprograms by using the FETCH RETURN statement.

No Global Data Area (GDA)

Called services do not normally define aglobal dataarea (GDA), asthe contents of the
GDAs used by a subprogram are not preserved between calls. However, you can use
GDAs to overcome a shortage of local dataarea (LDA) storage when necessary.

— 236 —

Creating Applications Without the Framework

Parameter Data Area (PDA) Data Size Limitation

All datatransmitted between the client and server is converted into printable characters.
For example, an |2 integer requires 6 bytes of data during transmission: asign byte and
five digits. The size of this converted data cannot exceed 32K. When checking or cata-
loging a subprogram proxy, Natural displays an error if the size of the converted data

exceeds 32K.

Subprogram Behavior

All subprograms invoked as application services must return to the calling routine. The
subprogram, and any called routines, cannot execute STOP, FETCH, or TERMINATE
statements. They should also avoid statements that affect the caller, such as RELEA SE
STACK,STACK COMMAND, STACK DATA, and RELEASE VARIABLES. Called
subprograms should not modify the * ERROR-TA value.

Externalize Parameters

The best design strategy isto externally define the parameters of your subprogram prox-
ies. Only when the parameters are externally defined can the parameter data areas
(PDAS) be downloaded and incorporated into the Spectrum Dispatch Client.

However, Construct Spectrum does allow you to generate subprogram proxies for sub-
programsthat define their parametersinline. If the subprogram accepts or returnslarge
amountsof datathat isstrictly input parameters or output parameters, consider grouping
all input parametersinto onelevel 1 structure and all output parametersinto another lev-
el 1 structure. Group parameters that are both input and output into a third level 1
structure. This allows data being sent between the client and the server to be optimized
so that only input datais sent to the server and only output dataisreturned to the client.

Timing Issues

Some application services perform tasks that require extensive processing. The length
of time spent in the application service affects the timeout values triggered in a client

system. If an application requires extensive time to execute, it may be necessary to de-
fineand associate such long-running processeswith Spectrum dispatch servicesthat use
inflated timeout values. These resource-intensive application services can execute un-
der aspecially-configured dispatch service. Thisincludes defining special servicesin

the EntireX Broker attribute files.

- 237 -

Construct Spectrum SDK Reference

Example of Creating a Simple Natural Subprogram
This section describes how to create a small application service and generate the asso-
ciated subprogram proxy.
» To create your server-based components for the sample application:

1 Create aparameter data area named GCDA.
Use the following configuration and compile the PDA in the SAMPLE library:

Par amet er GCDA Li brary SAMPLE DBID 17 FNR 38
Comand > +
I T L Nane F Leng | ndex/ | ni t/ EM Nane/ Conment
L B e T LT
1 GCD DATA
2 #OPERAND- 1 | 4
2 #OPERAND- 2 | 4
2 #RESULT | 4
----- Current Source Size: 143 Free: 43402 --------------------- S 4 L1

Example of GCDA Parameter Data Area

For an example of this module, refer to SAMPLE_A in the SY SSPEC library.

— 238 -

Creating Applications Without the Framework

2 Typethefollowing codein the Natural editor and compileit as a Natural subprogram
named GCDN in the SAMPLE library:

> > + Subprogram GCDN Li b SAMPLE
Top e 20+ 8+ b+ B L+ ... Mode Struct..
0010 R R RS SRR SRR R R R RS R R R R R R R R R R R R R R R R R RS R R R R R R R R R SRR R R R R R R EEEEEES]
0020 ** This nmobdul e accepts nunbers as input paranters and returns the
0030 ** greatest common divisor as the result.

D040 **H**kkkkkhkkkhkhkkhhkkhkkhhk kK kI KKK KKK kKK kK Ik kKKK KKK kKK kKK Kk kK Kk kX Kk

0050 DEFI NE DATA

0060 PARAMETER USI NG GCDA /* 1 nput and out put paraneters

0070 LOCAL

0080 01 #TEMP(I 4) /* Local variable used in calculation
0090 END- DEFI NE

0100 **

0110 ** Repeat while the second operand value is not equal to O.

0120 REPEAT

0130 WHI LE #OPERAND- 2 NE 0
0140 DI VI DE #OPERAND- 2 | NTO #OPERAND- 1 REMAI NDER #TEMP

0150 ASS| G\ #OPERAND- 1 = #OPERAND- 2
0160 ASS| G\ #OPERAND- 2 = #TEMP
0170 END- REPEAT
0180 **
0190 ASSI GN #RESULT = #OPERAND- 1
0200 END
....+..Current Source Size: 799 Char. Free: 42970+... S 21 L1

Example of GCDN Natural Subprogram

For an example of this module, refer to SAMPLE_N in the SY SSPEC library.

— 239 -

Construct Spectrum SDK Reference

Generating Subprogram Proxies

Thefollowing sections describe how to make the newly-created GCDN Natural subpro-
gram accessible from the client. To do this, generate a subprogram proxy using the
Subprogram-Proxy model.

Subpr ogram-Proxy M odel

The Subprogram-Proxy model is available in the Generation subsystem on the server
and as amodel wizard in the Construct Windows interface. In the example, the model
wizard is used.

For more information about using the model, see Using the Subprogram-Pr oxy M od-
el, page 103.

» To generate a subprogram proxy for the GCDN subprogram:
1 Accessthe Standard Parameters window for the Subprogram-Proxy wizard.
2 Enter the following information in the window:

Note: Many of theinput values for the Subprogram-Proxy model are automatically
determined and set by the model itself.

— 240 -

Creating Applications Without the Framework

SUBPROGRAM-PROXY Wizard [7] i

B stan Enter the standard parameters for this model
Standard
Parameters Module: GLD
Finish System: [DEMO
Title: ;Subprngram prozey For GCD

Description: |This subprogram procey communicates with the ___r__j
module that caloulates the greatest common
divisor of bwo numbers

Subprogram: iGCDN - 1 Edit 1:%
Cverrides
Darnain: iS.ﬁ.MF‘LE i

Obiject name: ;GCDN|

Mersion: 31.1.1

[T Generate trace code

[T Compress nebwark data
[T Encrypt netwaork data

Yalidate] Cancel] < Back. l Mexk = l Einish

Subprogram-Proxy Wizard — Standard Parameters

3 Generate and stow the GCD subprogram proxy.
Generation creates two new items:

— the generated GCD subprogram proxy

— the application service definition (generated into the Construct Spectrum Adminis-
tration subsystem)

—241 -

Construct Spectrum SDK Reference

Application Service Definition

The application service definition is automatically created when you generate a subpro-
gram proxy using the Subprogram-Proxy model. It definesthe name and | ocation of the
target subprogram to the Spectrum dispatch service, aswell aswhich methodsthetarget
subprogram supports.

Thetarget subprogram can be any Natural subprogram, although there are many advan-
tages to creating the subprogram using the Object-M aint-Subp and Object-Browse-
Subp models.

Totailor your application service definition, use the following procedure. The example
uses the GCD subprogram proxy.

» To customize the generated application service definition:

=

Access the Construct Spectrum Administration subsystem main menu.

2 Enter “AA” in the Function field.
The Application Administration main menu is displayed.

3 Enter *“MM?” in the Function field.
The Application Administration M aintenance menu is displayed.

4 Enter “AS’ inthe Function field.
The Maintain Application Service Definitions panel is displayed.

5 Typethefollowing valuesin the fields indicated:
— “D” inthe Action field
— “SAMPLE” in the Domain field
— "GCD” inthe Object field
— “01/02/01" in the Version field

—242 -

Creating Applications Without the Framework

6 PressEnter.
The application service definition associated with GCD is displayed:

BSI F__MP Construct Spectrum Adm ni stration Subsystem BSIF__11
June 27 Mai ntain Application Service Definitions 3:15 PM

Action (A B, C,D,MN,P)

Domain..................: SAWLE ___ *
Object..................: GCDN
Version.................: 01/ 01/ 01
Description.............: GCDN
Def aul t subprogram proxy: GCD_
Steplibs................: *
Subpr ogram
01 Met hod Nare Pr oxy Steplibs *
1 DEFAULT
2
3
4
5
Comand:
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
confmhelp retrn quit flip pref bkwd frwd mai n

Appl Srvc Definition DEMD> PRODUC di spl ayed successfully

Example of the Application Service Definition Panel

The application service definition for GCD was generated with one method — Default.
The Default method is generated automatically for each application service definition
unlessthetarget Natural subprogram wasgenerated using either the Object-Maint-Subp
or Object-Browse-Subp model.

The definition does not specify asteplib, although one is required to access the target
subprogram. Because the specified domain, SAMPLE, has a steplib defined, the appli-
cation service definition also uses SAM PLE by default. For more information, see Step
1: Definethe Steplib Chain, page 43.

— 243 -

Construct Spectrum SDK Reference

Creating the Library Image Files (LI1Fs)

Before you can call the target subprogram from the client application, you must create
afileon the client that describes the subprogram and any parameter data areasit uses.
Thisfileiscaled alibrary imagefile (LIF) because it contains an image (or a copy) of
the Natural objectsin your application library on the server platform. Definitions of all
objects used in the client application must bein the LIF. If your client application uses
objects from multiple libraries on the server, you must create one LIF for each library.

Thefile namefor aLIF is the same as the name of the library, plus the extension .LIF.
For example, the LIF for the CSTDEMO library is CSTDEMO.LIF. All LIFstheclient
application uses must be stored in the same LIF directory on your PC (or on a network
file server).

Each application can have its own LIF directory, or multiple applications can sharea
single LIF directory containing many different LIFs.

The following sections describe how to use the Construct Spectrum Add-In in Visual
Basic to create and tailor LI1Fs for your application. Use the Download function to
download LIF definitions from an application library on the server to your client.

Construct Spectrum Add-In

Use the Construct Spectrum Add-In to download the subprogram and parameter data
area (PDA) definitionsto alibrary image file.

Before You Start

» Ensurethat you know thelibrary name, database ID (DBID), and file number (FNR) of
the FUSER system file. Thisfile resides on the server and contains the subprogram you
created earlier in an application library in the FUSER file.

» Choose or create aL IF directory on your PC for thelibrary image file.
Note: You will create the client application in this directory in alater step.

» Ensure that you know the name of the subprogram proxy and all PDAs used by the
subprogram.

» Ensure that the Spectrum Dispatch Client is installed and configured properly. For in-
formation, see the Construct Spectrum and SDK Installation Guide for Windows.

— 244 —

Creating Applications Without the Framework

Download Definitions

Todownload the definitions:
1 Start Visua Basicif it is not already running.

2 Select Construct Spectrum > Download Generated Modules from the Visual Basic
Add-Ins menu.
The Download Modules window is displayed:

?:I'Illlwnhmll Maodulex

[| pain: o L Lal
Bcadube: name: | Cancel |
H v | Tipe | el Lz |6 | Erata 2 Tona |

Direariboad program modudes mlo pioesc] drschon [

Clrasrge: I
Drinrbnied chelimbeis e ot dninga Fikee | Charge I

01 repchabes Biesd D) ool pelscied

Download Window

3 Typethefollowing valuesin thefields indicated:
— Name of the application library in Library
— Database ID in DBID
— File number of the FUSER file containing the library in FNR

Note: If you have already used the Download function, the DBID, FNR, and library
name used for that download arefilled in automatically.

— 245 -

Construct Spectrum SDK Reference

4 Enter“GCD*” inModule nametolist all modules beginning with “GCD” inthelibrary:

@' Download Modules [X]

Libray: |5PE|:02 DEID: [i7 ENF: [23
Module name: IGED" |

Cancel

Mame | Type | Model | Usger D | Date / Time |

Download program modules into project directan: IE:'xMy Documents Change

Change

Dawnload definitions into brary image file: IC:'\My DocumentzhSPECDZ. I |

0 modules listed / 0 modules selected

Searching the Module Field in the Download Window

5 Click List.

After afew seconds, alist of the modules matching the wildcard patternisdisplayed. If
an error message is displayed, see Downloading the Client M odules, page 188,

Construct Spectrum SDK for Client/Server Applications, or Construct Spectrum
Messages.

Note: Only subprogram proxiesand PDAsaredisplayed. Other Natural object types,

such as programs, maps, and copy code members, are not displayed because
they cannot be downloaded.

— 246 —

Creating Applications Without the Framework

6 Select all subprogram proxies and PDAs associated with your subprogram.

Tip: To select more than oneitem on thelist, use the standard Windows multiple-se-
lect actions (Shift-Click and Ctrl-Click), or use the mouse to drag a marquee
around the items you want to select.

7 Click Download.
The selected modules are downloaded.

8 Click Close to close the Download M odules window.

If an error message is displayed during the download process, see Construct Spectrum
Messages for information about resolving the error.

The download process creates a new library imagefile in the LIF directory or updates
an existing L1F. Thefollowing section describes how to develop aclient application that
uses the LIF definitions to call the subprogram on the server.

— 247 —

Construct Spectrum SDK Reference

Developing the Client Application

(I I A B O A 74

This section describes the minimum requirements to develop aclient application that
callsyour subprogram. Although the example uses Microsoft’s Visual Basic for devel-
opment, you can use any development tool that supports OL E automation.

This section assumesyou are familiar with the following OLE automation concepts. If
any of these are unfamiliar, refer to the appropriate documentation for the devel opment
tool you are using:

OLE Automation Term Definition

object library (or typelibrary) Provides definitions of all the objects, methods, and
properties exposed by an OLE automation server.

externally creatable object Object exposed by an OLE automation server that can
be created outside the server.

dependent object Object exposed by an OL E automation server that can
only be accessed using a method of a higher-level
object, such as an externally-creatable object.

To develop your client application:

Step 1: Create a New Project, page 249

Step 2: Add a Referenceto the SDC Object Library, page 249
Step 3: Write Codeto Initialize the SDC, page 250

Step 4: Createthe User Interface, page 251

Step 5: Write Code to Call the Subprogram, page 252

Step 6: Run the Application, page 253

The following sections describe each of these steps in more detail.

— 248 -

Creating Applications Without the Framework

Step 1. Create a New Project

» To create anew project:
1 Start Visua Basic.

2 Create anew Standard EXE project.
Save all project componentsin the LIF directory you created earlier. This makes
keeping track of all project components easier.

Step 2. Add a Referencetothe SDC Object Library

Before you can use objectsin the Spectrum Dispatch Client (SDC), you must add a ref-
erence to its object library in your Visual Basic project.

» To add areference to the object library for the Spectrum Dispatch Client:

1 Select References from the Tools menu.
The References window is displayed.

2 Ensurethat the Construct Spectrum Dispatch Client (VB6) is selected:

Evadable Ralerences

Cormitrat Form Olbjiacts :I Canoi |
Conesinock Mode] Developrmesnt Objeds

Broesss. .. |

e |

Constnuck Mabursl Modeds
Constnck Spactrum AR Foundsbion dissses
Condnat SpEchrum &dd-n (WES)

Condtnel Spactr i BDT Fud borallsy

Consinct Spectrum ETE sy Hanasge Erariy
Constnuck Spactrum Genershor Sareices
LoniEngl SpEhrum Ui Er |r-\.'|'|+|\.o-i_|l- ﬂ
Connat Spictrun Sanderd EDTs
Zonstnck Spectrun LRy Obijects
Constnck Spackrum Wb Component Library _ﬁl

]

I".q:ns:rl.-:l: Spechrum Wizand Hansoms
i

Croretruct Spectnom Fepatch Chert (VDE)
Location: CHCSTA3SCE A
Language: Skandand

References Window

» Toview the object library:

1 Select Object Browser from the View menu.
The Object Browser window is displayed.

2 Select SDCLib from Libraries/Projects.

— 249 —

Construct Spectrum SDK Reference

Step 3: Write Codeto Initializethe SDC

» Toinitiaizethe SDC:

1 Sdlect Add Module from the Project menu.
A new module is added to your Construct Spectrum project.

2 Add thefollowing code to the module:

Publ i ¢ SDCApp As New SDCLi b6. Appli cation
Publ ic Di spatcher As SDCLi b6. D spat cher

Public Sub Min

SDCApp. I nitialize App.Path, "CSTDEMO'
SDCApp. User | D = " GUEST"

Set Di spat cher = SDCApp. O eat eDi spat cher ()
Di spatcher. Di splayErrors = True

For ml. Show
End Sub

where;

Application

App.Path

Dispatcher
Forml

Initialize method

Set Dispatcher =
CreateDispatcher()

GUEST

Is an externally-creatable object exposed by the Spectrum
Dispatch Client. It is used to create all other objects.

IsaVisual Basic property that returnsthe name of the directory
containing your saved project. In this example, the project is
stored in the LIF directory.

App.Path returns the name of the directory where your
executable project is located. Your library image file must
always bein that directory.

Is an object used to communicate with the server platform.
Contains the user interface for the client application.

Tells the SDC the name of the LIF directory and name of the
application library. Together, thesetwo valuestell the SDC the
name of the library imagefile.

CreatesaDispatcher object with methods that allow you to call
the subprogram on the server. If the DisplayErrors property is
set to True, the Dispatcher object automatically displays
communication errors. Y ou do not have to write additional
codeto display errors.

Is apredefined user ID in the Construct Spectrum
Administration subsystem containing the required security
definitions for this example. Every call to the server platform
requires the caller’s user 1D to be known.

— 250 -

Creating Applications Without the Framework

This code creates two object variables used throughout the application: SDCApp and
Dispatcher.

3 Select <App.Name> Properties from the Project menu.
The General tab in the Project Properties window is displayed.

4 Sdlect “Sub Main” from the Startup Object field:

Fanjuet] - Progec! Froperliez

f'H'F-i‘lhld-'r | Compie | Companent | Detuggrg |

Project Tygs: Shartug Ofject
[Stanwd £ =] [- |
Propect Bluini:
| Provectl

Prodect Help
i Pk e Combest [
I o e
Project Dascriplion:
I

Thr mading Hodel

; |]
I Wporade el Controks -
r = 3

9

Project Properties Window

Step 4. Createthe User Interface

» To create the user interface for the client application:
1 Ensure Formlisopen in design mode.
2 Add three TextBox controls and a CommandButton control, arranged as follows:

W Foaml ﬂEl E

Cadse | [

[[Temiz

Example of the Layout of Form 1

- 251 -

Construct Spectrum SDK Reference

3 Set the control properties as follows:

Control Property Value

Textl (Name) txtOperandl
Text <empty>

Text2 Type txtOperand2
Text <empty>

Text3 Type txtResult
Text <empty>

CommandButton Type cmdCalculate
Caption Calculate

Step 5: Write Codeto Call the Subprogram

» To codethe Click event of the command button to call the subprogram:

1 Double-click the Command button.
The Code window is displayed.

2 Add thefollowing code to the cmdCalculate_Click procedure:
Private Sub cndCal cul ate_Cli ck()
Di m parnms As Nat ur al Dat aAr ea
Set parnms = SDCApp. Al | ocat e(" GCDA")

par ns (" #OPERAND- 1")
par ns (" #OPERAND- 2")

Val (txt Operandl. Text)
Val (txt Operand2. Text)

Scr een. MousePoi nt er = vbHour gl ass
Di spatcher. Cal | Nat " GCDN', parns
Scr een. MousePoi nt er = vbDef aul t

If Di spatcher. Successful Then
txt Resul t. Text = parns("#RESULT")

End |f
End Sub
This code declaresand allocatesa Natural dataarea corresponding to the PDA expected
by your subprogram. Next, it assigns the numeric values in txtOperandl and
txtOperand2 to the #OPERAND-1 and #OPERAND-2 fields in the data area. It then
calls the subprogram with the CallNat method for the Dispatcher object. The mouse
pointer changes to an hourglass icon for the duration of thiscall. Finally, if thecall is
successful, the contents of the Result field are displayed in txtResult. If the call isun-
successful, the Dispatcher object automatically displaysthe error message (becauseyou
set the DisplayErrors property to True).

- 252 -

Creating Applications Without the Framework

Step 6: Run the Application

(AJI\JHV

Note: Before running the application, save the project. This ensures that the
App.Path property in Sub Main returns the correct directory for the Initialize
call.

Tip: If you forget to save anew project, App.Path returnsthe working directory from
which you started Visual Basic. However, when you save to disk, App.Path re-
turns the name of the directory in which the project file is saved.

To run the application:
Press F5.
Type a number into each operand text box.

Click Calculate.
Theresult is displayed in Resullt.

Note: Thefirst call to the communication server platform will take afew secondsas
the EntireX Broker DLLsmust be loaded into memory and initialized. Subse-
guent calls are much faster.

The Dispatcher object may display the following error in thecmdCal culate_Click
procedure:

Nuneric overfl ow

Possible cause:
The value being assigned to the #OPERAND-1 or #OPERAND-2 field is too large for
the Natural format.

Resolution:
Enhance the codeto check that values entered by the user into the text boxes are not too
large for the Natural format.

If the Dispatcher object displays an error, see Debugging Your Client/Server Appli-
cation, page 161, or Construct Spectrum Messages for information about resolving the
error.

For information about packaging the client application and installing it on another PC,
see Deploying Your Client/Server Application, page 189.

Close the window to return to design mode when you are finished testing the
application.

— 253 -

Construct Spectrum SDK Reference

— 254 —

APPENDIX A: GLOSSARY

The following terms are used throughout the Construct Spectrum documentation set.
Each term is listed with its meaning.

Term

Definition

active server page
(ASP) script

ActiveX business
object (ABO)

ActiveX DLL

application library

application service
definition

application services

architecture

browse command
handler

browse data cache

Script that activates the WebA pp.cls page handler, which
opens the specified web page.

Visual Basic class that represents aNatural business object on
the client. The ABO wraps the Spectrum calls required to
communicate with the Natural subprogram exposed by a
subprogram proxy.

Datalink library containing one or more ABOs. It is used to
package and deploy web applications.

Natural library containing the server application components
of aclient/server application.

Definition in the Construct Spectrum Administration
subsystem that identifies the methods exposed by a
subprogram. The definition is created automatically by the
Subprogram-Proxy model. Y ou can modify these settings on
the Maintain Application Service Definition panel in the
Construct Spectrum Administration subsystem.

Natural subprogram implementing methods that can be called
as remote services.

High-level description of the organization of functional
responsibilities within a system. The architecture conveys
information about the general structure of systems. It defines
relationshi ps between system components, but not the
implementation of components.

Defines the commandslinked to a browse dialog. It also acts
astheinitial target of commands, typically redirecting them to
other application components. See also command handler,
page 257.

Area containing database records returned from the server.
Records are usually displayed in a browse dialog.

— 255 -

Construct Spectrum SDK Reference

Term

Definition (continued)

browse dialog

browse process

business data
type (BDT)

BDT class

BDT controller
class

BDT controller
object

BDT modifier

BDT procedure

Generic GUI browse window called to display any browse data
residing on amainframe or PC.

Process by which framework components and generated
browse components retrieve data and, optionally, display itin
abrowse dialog.

For example, a browse process can retrieve rows of data,
search for specific values, and then perform calculations and
conditional processing. Users can display the resultsin a
browse dialog, if desired.

Typevalidation on the client that applies business semanticsto
afield. Typically, BDTsareused to format field data specified
by the user.

For example, if an application has an input field to enter a
phone number, you can associate aBDT with thefield to
reformat the number with hyphens. A user can enter
“7053332112". When the user moves to the next field or
performs another action, the number is automatically
reformatted as 705-333-2112.

Construct Spectrum supplies standard BDTs, which you can
customize, or you can create your own. BDT modifiers are
added to the keyword components of afield in Predict.

Collection of all BDT procedures.

Collection of methods available to members of aBDT class.
See also BDT class.

Supplied client framework component that isan instance of the
BDT controller class and uses the methods available to that
class. Each application declaresaBDT controller object,
which records and maintains alist of namesfor each BDT and
pointsto the BDT definition. See al'so business data type
(BDT), page 256.

Additional logic users supply to modify the formatting or
validation rulesfor aBDT. For example, BTD_NUMERIC
ensuresthat only numeric valuesareenteredinafield. You can
also add a modifier to round numeric values. To increase
flexibility, each BDT defines its own modifiers.

Codethat implements aBDT.

— 256 —

Appendix A: Glossary

Term

Definition (continued)

business object

Business-Object-
Super-Model model

Business-Object-
Super-Model wizard
cardinality

child model

client application

client framework

code block

command block

command handler

Conceptual abstraction that groupsthe attributes and behaviors
associated with abusiness entity, such as Customer or Order.
See also Visual Basic business object, page 269.

Model (available in the Construct Windows interface and
Generation subsystem) that generates multiple modules for
both web or client/server applications that do not use the
Construct Spectrum client framework.

Wizard that generates maintenance and browse subprograms
and subprogram proxies for business objects.

Number of dimensions of information. Information with the
same number of dimensions has the same cardinality.

Individual model for which a super model (parent model)
collects parameters and generates specifications.

Portion of a Construct Spectrum client/server application that
runs on a Windows platform.

Supplied set of cooperating Visual Basic classes that form a
reusable design. It provides a skeleton of functionality, which
you can customize or fill with generated and hand-coded
Visual Basic modules.

The client framework reduces the size of generated
components and alows them to interact. It includes forms,
classes, procedures, global variables, and constants that are
shared among generated application components. It supplies
both client and server components.

Oneor morelinesof codein aVisual Basic modulethat can be
manipulated in the code editor as a block.

Code block that tellsthe Natural Construct nucleusto treat the
text within the block as a separate module and to apply the
specified command to the block. Super models use command
blocks to generate multiple modules.

Object, generally a Visual Basic class, that processes a
command. The client framework calls command handlers
when a user clicks a menu command or toolbar button. One
command handler can handle multiple commands. See also
command handler list, page 258, and hook, page 261.

— 257 -

Construct Spectrum SDK Reference

Term

Definition (continued)

command
handler list

command ID

complex redefine

compression

Construct
Spectrum

Construct
Spectrum Add-In

Construct Spectrum
Administration
subsystem

database record

DBID

List of command handlers for each command ID. The |ast
command handler hooked to acommand ID iscalled first. See
also hook, page 261.

Unique identifier for an application-specific command sent
when auser clicks a menu command or toolbar button. Define
these commands by specifying a single command ID as
“constant” for each unique menu and toolbar command.

Redefinition of a dataarea containing multiple data types,
multiple redefinitions of a datafield, or multiple levels of
redefined fields.

Reduce the byte size required to transmit datato and from the
client and server. Datais compressed when it is sent and then
decompressed when it reaches its destination. Thisreducesthe
Size of datatransmissions and improves network performance.

Application consisting of a client and server component. The
client component is a Construct Spectrum application running
inVisual Basic. The server component isaset of subprograms
accessed remotely by the client component.

Customized functionality added to the Visual Basic
environment.

Mainframe subsystem used to maintain and query tables
defining Construct Spectrum application services and security.

Logical view of database information. A database record can
be comprised of one or morelogically related database files or
tables. Construct Spectrum represents database information in
parameter data areas (PDAS).

Acronym for database I D, which is the number identifying the
server database containing application components.

— 258 —

Appendix A: Glossary

Term

Definition (continued)

debugging tools

dependent object

deployment

dialog
dispatcher or
dispatch service

domain

double-byte
character set
(DBCS)
download data

encapsulation

encryption

Utilities you can use to locate and analyze logic errors. Y ou

can simulate client calls online and use traditional debugging

tools, such as:

« Trace options, which allow you to save data from aclient
call to afileon the server and then use the datato recreate
situations that caused errors.

» Input and output statements, such as INPUT, PRINT, and
WRITE, which alow you to step through the program for
testing purposes.

« Natural Debugging facility, which you can useto establish
adebug environment. For information, see the Natural
Debugging facility in the Natural documentation.

Object exposed by an OLE automation server that can only be
created using the method of a higher-level object. Seeaso
exter nally-creatable object, page 260.

Movement of an application from a development environment
to a production environment.

GUI form running on the client.

Server component used to broker communications between
server componentsand client framework components. See also
Spectrum dispatch service, page 267.

Entity that defines a collection of related business objects (for
example, Test, Admin, and Sales).

Related collection of charactersin some non-Latin languages
that require two bytes to display.

Transfer (copy) modules from the server to the client.

Technigue in object-oriented programming in which the
internal implementation details of an object are hidden from
users of the object. Methods control how the object datais
manipulated. Encapsulation allows internal implementations
to change without affecting the way an object is used
externaly.

Encoding dataso it isunusable for individua s without access
to the decryption algorithms. Construct Spectrum allows you
to encrypt sensitive data, such as payroll information, during
network transmission. Datais decrypted when it reachesits
destination.

— 259 —

Construct Spectrum SDK Reference

Term

Definition (continued)

Entire Broker
service settings

Entire Broker stub

event

externally-creatable
object

field

FNR

foreign key

form

form section

framework
templates

generate

Collection of Entire Broker-related parameters, including
Entire Broker ID, server class, server name, and service.

Entire Broker DLL on a Windows platform.

Action recognized by an object, such aspressing a key or
clicking amouse. Y ou write code to respond to events.

Object exposed by an OLE automation server that can be
created outside the server. See also dependent object, page
259.

Component of a database record. Theterm also refersto areas
on apanel in which values are entered.

Acronym for the file number that identifies a specific server
database file containing application components.

Key field pointing to arecord in an external file. For example,
the demo application hasan Order file containing aforeign key
totheWarehousefield in the Warehousefile. Foreign keyscan
be set up with abrowse function, enabling users to search for
and select values.

Window (dialog) that acts as the interface for an application.
Y ouadd controlsand graphicsto aform to create the effect you
want. Construct Spectrum supplies formsin the client
framework and generates form modules for business object
maintenance dial ogs.

When you run a project, forms are compiled into GUI dialogs
that the user interacts with while using the application. Some
forms, such as the generic BrowseDialog form, are
dynamically configured at runtime by the client framework to
alter the look of the form.

Form definitions are saved in files with the extension .frm.

Portion of aweb page containing a block of related
information.

Structure or container supplied for applications. These
customizabl e templates include header, footer, navigation bar,
messages area, and constants.

Process of producing code from specifications.

— 260 —

Appendix A: Glossary

Term

Definition (continued)

generated
module

generation
data cache

grid

grid control

group

GUI

GUI control
override

hook

host

HTML fragment
HTML template

HTML Template

wizard

Generated component for either the client or server portion of
an application. Generated server modules include Natural
subprograms, subprogram proxies, and parameter data areas.
Generated client modul esinclude object factories, dialogs, and
maintenance objects.

In-memory hierarchical data structure that allows you to
quickly retrieve stored generation data.

Displays 2-dimensional datafor aclient/server applicationin a
table format.

One-dimensional data shows onetype of data, such asaphone
number, name, or quantity. Two-dimensional data shows
additional information in a grid or table. For example, the
detail lines on an order can be displayed in agrid with each
grid row corresponding to a unique line item. Each column in
the grid corresponds to a discrete piece of information about
the line, such as an item name, price, or quantity.

GUI control that displaysrelated information in atable format.
For example, purchase order line items can be displayed in a
grid. The grid control supplied with Construct Spectrum sizes
itself to the minimal width required to display all grid
components. Y ou can configure the grid control as desired.

Collection of users defined in the Construct Spectrum
Administration subsystem.

Acronym for graphical user interface.

Use Predict keywords to force a GUI control derivation. See
also keywor d, page 262.

Associate acommand handler object with acommand ID. See
also command handler, page 257, command handler list,
page 258, and command 1D, page 258.

See server, page 266.
Portion of HTML that is not a complete web page.

HTML that may contain replacement tags, which are
dynamically exchanged for content or nested HTML templates
at runtime.

Wizard used to generate HTML templ ates.

- 261 -

Construct Spectrum SDK Reference

Term Definition (continued)

http request Parameterized list of named value pairs sent by a browser
client to aweb application.

instantiation Process of creating an instance of aclass. Theresultisan

internationalization

job control
language (JCL)

keyword

Level 1 data
block

Level 1 data
block optimization

library image
file (LIF)

LIF definitions
module

localization

lookups

maintenance
dialog

object.

Adapting an application to make it easy to localize. See also
localization, page 262.

Command language used for batch jobsthat tellsthe computer
what to do.

Predict metadata type that acts as alabel or identifier.

Level onefield or structure and its subfieldsin a Natural
parameter data area (PDA).

Technigue to improve the performance of client/server
applications by reducing the volume of datatransmitted across
anetwork. Rather than sending all data blocks associated with
an object, only the required blocks are sent.

File that defines Natural definitions used by the Spectrum
Dispatch Client.

BAS modulein aVisual Basic project containing the
definitions for application services, parameter data areas, and
subprograms.

Process of trand ating and adapting a software product for use
in adifferent language or country.

Return descriptive information when a user requests a browse
dialog or entersavaluein aforeign key field on amaintenance
dialog. For example, assume the Warehouse Number fieldisa
foreign key field in the Order dialog and Warehouse Name is
adescriptive field attached to the foreign key value. When a
user enters avalid warehouse number, the lookup returns the
name of the warehouse for display in the diaog.

GUI dialog from which auser can perform one or more actions
on abusiness object. For example, a Customer Order object
can be represented on amaintenance dialog. Using thisdial og,
an authorized user can add, delete, or update customer order
information.

— 262 -

Appendix A: Glossary

Term

Definition (continued)

MDI child

MDI frame

MDI parent

menu

menu bar

metadata

method

model

module

Window or dialog opened from an MDI parent window in a
client/server application. For example, the Order maintenance
dialog in the demo application isan MDI child to the MDI
frame window.

Standard Visual Basic M DI frame supplied with the Construct
Spectrum client framework.

MDI window from which other windows are opened and
displayed in aclient/server application. The MDI frame
supplied with the client framework is an MDI parent.

On amainframe server, apanel or window listing available
functions. To access afunction, users enter avaluein aninput
field or move the cursor to avalue and press Enter.

In Windows, apull-down dialog listing the availablefunctions.
To access afunction, users select an option from the menu
using the cursor or a keystroke combination.

Displays the menus available for user selection. By default,
Construct Spectrum client/server applications contain File,
Edit, Actions, Window, and Hel p menus on the menu bar, each
containing standard menu commands.

Information about data. M etadata describes how physical data
is formatted and interrelated. It includes descriptions of data
elements, data files, and relationships between data entities.
Typically, metadatais maintained in arepository known as a
data dictionary, such as Predict.

Procedure that operates on an object and isimplemented
internally by the object. For example, the Update method
updates a Customer Order object after changes to the order
information.

Template used to generate modules. Each model contains one
or more specification panels. Using these panels, you can
specify parametersfor a desired module and then generate the
corresponding code. Natural Construct provides numerous
models, including the Object-Maint-Subp and Subprogram-
Proxy models.

Single application component, such as a hand-coded Natural
program, subprogram, or data area or a Natural Construct-
generated program, subprogram, data area, or subprogram
proxy.

— 263 -

Construct Spectrum SDK Reference

Term Definition (continued)
multi-level Security you can define at ahigh level or at adetailed level
security affecting many objects. For example, you can apply multi-

multiple-document
interface (MDI)

Natura Construct
nucleus

Natural Debugging
facility

navigation bar

node

nucleus

object

object factory

Object Factory

wizard

object library

level security to domains, objects, and methods.

Microsoft Windows paradigm for presenting windows
whereby a parent window can encompass one or more child
windows. See also MDI child, page 263, and M DI parent,
page 263.

Sophisticated driver program that invokes the model
subprograms at the appropriate timein the generation process
and performsfunctionscommonto all models, such as opening
windows and performing PF-key functions. The nucleus
communicates with the model subprograms through standard
parameter data areas (PDAS). These PDAs contain fields
assigned by Natural Construct, as well asfields required by a
model.

Utility availablein a Natural environment to help you locate
and analyse logic errors. To accessthe facility, use the Invoke
Proxy function in the Construct Spectrum Administration
subsystem. The subprogram proxy sets up an online
environment that simulates the client/server environment and
allows you to use all the features of the Natural Debugging
facility.

Menu bar on aweb page containing links to other pages or
actions.

Individual computer or, occasionally, another type of machine
in anetwork.

See Natural Construct nucleus, page 264.

Any application component, such as aform or record. A
business object is agroup of services related to acommon
business entity, such as Customer, Order, or Department.

Visual Basic module that identifies all objects and methodsin
an application and instantiates objects upon request.

Visual Basic Add-In that updates an object factory in a
Construct Spectrum web application.

Provides definitions for all the objects, methods, and
properties exposed by an OLE automation server. Equivalent
to typelibrary, page 268.

— 264 -

Appendix A: Glossary

Term

Definition (continued)

OLE

OLE automation server

overflow
condition

package

page handler

Page Handler
wizard

parent model
parse area

ping

platform

project

project group

property

Acronym for object linking and embedding.

Code component that passes objects to other applications so
they can programmatically manipulate the objects.

Situation where there are more fields than can be displayed on
adialog.

Collection of all modules necessary to implement a business
object. A package combines components and classes to
provide both browse and maintenance services for a database
table. It is composed of a set of modules generated from a
multi-module generation. An application is made up of one or
more packages.

Visual Basic class that exchanges replacement tags on an
HTML template with database content or another HTML
template.

Construct Spectrum Add-In that generates page handlers for
web applications.

Super maodel that collects parameters for child models and
generates specifications.

Codein a page handler that locates and exchanges HTML
replacement tags.

Request sent to a service to determine whether the serviceis
running.

Piece of equipment that, together with its operating system,
serves as a base on which you can build other systems. For
example, an MV S mainframe computer can serve asaplatform
for alarge accounting system.

Collection of filesused to build an application in Visual Basic.

Collection of two or more Visua Basic projects, for example,
web and ABO projects. A project group uses a.vbg extension.

Characteristic of an object, such as size, caption, or color. In
Construct Spectrum, it refers to the data settings or attributes
for an object in Visual Basic.

— 265 -

Construct Spectrum SDK Reference

Term

Definition (continued)

regenerate/preserve
status

remote call

replacement tag

resource

run
security cache

server

server application

service

service exit

service log
shutdown

software
development kit
(SDK)

Spectrum
client/server
application

Status indicating whether a code block in amoduleis
regenerated or preserved during regeneration of the module. If
you mark ablock to be regenerated, it isreplaced or deleted. If
you mark a block to be preserved, it is not changed during
regeneration.

Communication with an object residing in adifferent location,
such as a server.

HTML tag that is replaced with database content or another
HTML template when the web pageis assembled. Some
replacement tags can be used to remove existing sections of
HTML. For example, you can use a security tag to specify
content that only certain users can access.

Text or binary value that can be localized. See also
localization, page 262.

Execute or invoke a module or application.
File used to store recently-accessed security data.

Computer that provides services to another computer (called a
client) and responds to requests for services. On multitasking
machines, a process that provides services to another process
iscaled aserver.

Application that runs on a server machine.

Software servicethat runson aserver. Several servicescanrun
on one server.

Exposed exit routine called by the Spectrum dispatch service;
it can be replaced by a user-supplied routine.

File used to store service log data.
Command sent to a service to terminate the service.

See toolkit, page 268.

Application created using the Construct Spectrum wizards and
add-ins. Users access mainframe business functions and data
through aVisual Basic component running on a Windows
platform.

— 266 —

Appendix A: Glossary

Term

Definition (continued)

Spectrum Control
record

Spectrum Dispatch
Client (SDC)

Spectrum dispatch
service

Spectrum security
service

Spectrum Service
Manager

Spectrum service
settings
Spectrum web
application
Spectrum web
framework

Status bar

steplib chain

Sub Main
procedure

subprogram
proxy

Record that is created daily and contains system control and
statistic data for a Spectrum dispatch service.

Provides the Construct Spectrum data exchange, which
facilitates calls from aclient to Natural subprograms running
on aserver.

Middleware component that encapsulates broker calls on the
server, provides directory services, enforces security, and
invokes backend Natural services.

Component of the Construct Spectrum Administration
subsystem that controls accessto application libraries, objects,
and methods.

Client tool supplied with Construct Spectrum that allows you
to specify which Spectrum services the client uses to
communicate with the server.

Collection of parameters used to configure a Spectrum service.

Application created using the Construct Spectrum wizards and
add-ins. It allowsusersto access mainframe businessfunctions
and datafrom a web browser.

Group of Visual Basic modules and classes that collaborate to
dynamically generate web pages.

Areathat displays status information about a selected item,
application, or business object in aclient/server application. It
contains sections for a message, status indicators, and the
current date and time. Status bars are also displayed at the
bottom of an MDI form.

Hierarchy of Natural libraries that determines the location
from which modules are executed.

First Visua Basic procedure executed when you run a
Construct Spectrum application. Each Visual Basic
application has one Sub Main procedure.

Natural subprogram called by a Spectrum dispatch service to
translate data formats between the client and a Natural
subprogram on the server. Each subprogram requires a
subprogram proxy, which alows Construct Spectrum to
provide a common interface to any subprogram.

- 267 —

Construct Spectrum SDK Reference

Term Definition (continued)

super model Model that generates multiple components of a Construct
Spectrum client/server or web application. Using a minimum
number of input parameters, a super model determines the
specifications for all models required to generate individual
components of a package. See also package, page 265.

target module See tar get subprogram, page 268.

target object See tar get subprogram, page 268.

target subprogram
template parser

tool bar

toolbar button

toolkit

trace options

type library

upload data

variant

VB-Client-Server-
Super-Model model

Any Natural subprogram.
Class used to parse HTML or other templates.

Bar that provides quick access to commonly used commands
in an application. A user clicks the appropriate toolbar button
to perform the action it represents. Any action that can be
performed from atoolbar can also be invoked from a menu.

Icon on atoolbar that allows users to perform an action.

Set of related and reusable classes that provide general-
purpose functionality. An application incorporates classes
from one or more toolKkits.

Toolkits, or software development kits (SDKs), emphasize
code reuse and are the obj ect-oriented equivalent of subroutine
libraries. For example, atoolkit can be a collection of classes
for lists, associative tables, or stacks.

Options that specify how to trace messages sent between the
client and server.

Library containing definitions for all objects, methods, and
properties exposed by the OLE automation server. See aso
object library, page 264.

Transfer modules from the client to the server.

Visual Basic term identifying alate-binding datatype.
Variants allow Construct Spectrum subroutines or functionsto
accept different types of data. The exact typeis determined
when they receive thevalue in Visual Basic.

Model that generates all modules required for afully
functional client/server application. The super model can
generate all modules required for maintenance and browse
servicesfor up to 12 business objects at atime. See also super
model, page 268.

— 268 —

Appendix A: Glossary

Term

Definition (continued)

verification
rules

Visual Basic
browse object

Visual Basic
business object

Visual Basic
maintenance object

Web Super wizard

web class

web application ASP

wildcard

Predict-defined business rules that are implemented in the
object subprogram on the server and the maintenance object on
the client. They also provide default values for derived fields
represented by GUI controls, such as check boxes, option
buttons, or drop-down combo boxes.

Y ou can use verification rulesto force users to make a
selection based on one or more choices. For example, if an
application has an input field for the state name, you can attach
averification ruleto thefield in Predict so that only valid state
names are accepted.

Visual Basic classthat configures an instance of abrowse base
class. This class delivers information about the columns and
keys supported by the browse subprogram to the client
framework, which configures and displays the browse dialog
at runtime. See also Visual Basic business object, page 269.

Conceptual browse or maintenance object comprised of class
modul es or objects with adomain on the client. It implements
business rules and encapsulates communication with the
Spectrum Dispatch Client (SDC).

Visual Basic class instantiated by a maintenance dialog to:
» encapsulate callsto the SDC
« implement validation in the maintenance dialog

See also Visual Basic business object above.

Construct Spectrum Add-In to Visual Basic that generates
multiple HTML templates and page handlers for aweb
application.

Visual Basic class that respondsto requests for aweb page
(ASP requests).

ASP (active server page) script used to instantiate a Spectrum
web application.

Character or symbol that qualifiesaselection, suchas“*”, “<”,
or “>". For example, using avalue followed by an asterisk (*)
indicates a range of file names beginning with that value. To
list all modulesthat begin with “Maint”, enter “Maint*” asthe
selection criteria.

— 269 -

Construct Spectrum SDK Reference

Term

Definition (continued)

XML extract

Extract information from Predict and other sources, which is
stored on the client as metadatain XML format. Thisincludes
information about business objects, as well as the formatting
used by wizards to build application components. See also
metadata, page 263.

— 270 -

APPENDIX B: UTILITIES

This chapter describes the utility subprograms supplied with the Spectrum Administra-
tion subsystem. To invoke these subprograms, you must be in the SY SSPEC library.

The following topics are covered:
» Response Subprogram, page 272
« Spectrum Interface Subprogram, page 278
« Conversation Factory Utility, page 289
+ Character Translation Subprogram, page 290
« Multi-Tasking Verification Utility, page 291
« Log Utilities, page 292

—271-

Construct Spectrum SDK Reference

Response Subprogram

The SPUREPLY subprogram is mainly used by serversto send responses back to acli-
ent. The response can be defined as a SY SERR message or a hardcoded text string.

Featur es and Benefits
SPUREPLY has the following benefits and features:
» Defines a standard protocol for exchanging messages.
» Enables messages to be multilingual if you define them in SY SERR.
» Performs message substitution of :1::2::3: within SY SERR messages.
« Can send other information in addition to a message.

Response Length Limitation
The maximum supported response length is 5000 bytes.

Supported M ethods

SPUREPLY supports the following methods (defined in SPLREPLY). One of these
methods must be assigned to the SPAREPLY .METHOD parameter before calling

SPUREPLY :
Method Description
SEND-REPLY Sends a single message reply, with the End of

Conversation option.

SEND-WITHOUT-EOC Sends a multi-part reply. Usethe SEND-REPLY method
to send the last message of the reply.

LOOKUP-MESSAGE L ooks up the error message text, but does not send it.

SEND-MESSAGE-ONLY Sends the message text without the standard protocol
information.

SEND-MESSAGE-ONLY- Sameas SEND-MESSAGE-ONLY, but does not include
WITHOUT-EOC End of Conversation option.

-272 -

Appendix B: Utilities

M essage Pr otocol
All messages sent to the client use the following protocol:

M essage Protocol

SIGNATURE(A6) MSG111 constant. Defines the structure of the send buffer.

RESPONSE- Response code passed to SPUREPLY in SPAREPLY .
CODE(N4) Successful responses use a response code of zero. Other
predefined response codes are:

» 001 (Replical D was not matched)
« 9999 (Natural runtime error)

REPLICA-ID(A32) ReplicalD passed from SPAETB.

SPECTRUM- Passed from SPAETB.
SERVICE(A32)

SY SERR- Name of the SY SERR library containing the message.
LIBRARY (A8)

MSG-NR(N4) Number of the SY SERR message.

MESSAGE(AL/1:V) Message area of send buffer. In most cases, this area contains
amessage |ooked up in SYSERR by SPUREPLY . Additional
information can also be passed in this area.

Call Interface
SPUREPLY supports the following interface:

PARAMETER USI NG SPAREPLY /* Specific paraneters
PARAVETER /* The nessage portion of the send buffer
01 SPAREPM

02 | NPUT- QUTPUTS
03 BUFFER- LENGTH (12)
03 MSG BUFFER (Al/1:V)

PARAMETER USI NG SPAETB /* Parameters to SPUETB
PARAMVETER USI NG ETBCB /* Standard broker control block
PARAVETER USI NG CDPDA- M /* Standard nessage area

These data areas are described in the following sections.

—273-

Construct Spectrum SDK Reference

SPAREPLY Data Area

This data areais passed to SPUREPLY . It contains the following data:

*

3 EMBEDDED- MSG- | NFO

* %k ok ok

MSG- START
MSG- LENGTH

P

Paraneter SPAREPLY Library S441 DBl D 17 FNR 60
Command > +
I T L Nane F Leng | ndex/ | ni t/ EM Nane/ Conment
L] R R e
*
*
* Data Area Name: SPAREPLY Function
* Ceated on....: Jun 12, 02 ========
* Created by....: SAG This data area is passed to
* SPUREPLY which is used to
* send a reply back to a client.
*
* The reply structure is
* defined in SPLREP.
1 SPAREPLY
2 | NPUTS
3 METHOD | 1 /* See SPLREPLY
3 RESPONSE- CODE N 4 /* This response, use zero for
* /* successful response
3 SYSERR- | NFO
4 MSG NR N 4 | * SYSERR Message nunber
4 SYSERR- LI BRARY A 8 /* Defaults to SYSSPEC
4 NMSG DATA A 32 (1:3) /* Subs. values
* /* May contain *NNNN ref erences
3 TRANSLATE L /* Transl ate character set. If

/*
/*
/*
/*
/*
/*
/*

currently EBCDIC, nmessage
will be translated to ASCl I
and vi se-versa
This structure is only used
when the nessage to be | ooked
up is only a portion of the
data to be sent. In this case
/* you must indicate where the
/* message is in the send buffer
| 2 /* Byte location of start of msg
| 2 /* Total length of nessage
/* portion

Thefieldsin this data area are:

Field Name

SPAREPLY Data Area

Description

METHOD (I1)

RESPONSE-CODE (N4)
MSG-NR (N4)

Indicates whether you want to perform a send with
EOC, send without EOC, or just look up the message
text. Assign avalue from SPLREPLY .

Contains the response code value sent to the client.

If amessageislooked up in SY SERR, contains the
message number.

—274 -

Appendix B: Utilities

Field Name

Description (continued)

SYSERR-LIBRARY (A8)

MSG-DATA (A32/1:3)

TRANSLATE (L)

MSG-START (12)

MSG-LENGTH (12)

Name of the library in which to look up messages. By
default, all messages are looked up in the SY SSPEC
library. If thisis not true, specify thelibrary name.

Contains up to three values for substitution into the
message. These values replace the :1::2::3:
placeholders in the SY SERR message. Substitution
values can belooked up in SY SERR by specifying
message data in *nnnn format.

Indicates whether the message is translated (from
EBCDIC to ASCII or vice versa).

If the message retrieved from SY SERR represents
only a portion of the datato be sent, indicates the
starting position of the message portion of the send
buffer.

Indicatesthe length of the message portion of the send
buffer. Thisfield isonly required when MSG-START
is assigned.

—275-

Construct Spectrum SDK Reference

SPAREPM Data Area

This data areais an example of a standard message area that can be passed to SPURE-
PLY. Use SPAREPM to send messages up to 250 characters in length. After SY SERR
messages are looked up, the resulting messagetext is returned in this parameter. The
valuesin SPAREPLY.MSG-START and SPAREPLY .M SG-LENGTH determine
wherethe messageisassigned. If these values are zero, the message isreturned, starting

at position 1 and continuing to SPAREPM.BUFFER-LENGTH.
The SPAREPM data area contains the following fields:

cal SPAREPM Library S441 DBI D 17 FNR 60
Conmand > +
I T L Nane F Leng | ndex/ | ni t/ EM Nane/ Conment
T I B i I T
* Data Area Name: SPAREPM Function
* Created on....: Jun 12, 02 ========
* Created by....: SAG This data area can be used as
* the second paranmeter to
* SPUREPLY. Wen a nessage nunber
* is passed to SPUREPLY, the
* nmessage text is returned in
* this parameter.
* Al ternatively, the nessage to
* be sent can be passed to
* SPUREPLY using this paraneter.
1 SPAREPM
2 | NPUT- QUTPUTS
3 BUFFER- LENGTH | 2 | Nl T<250>
3 MSG BUFFER A 1 (1:250)
R 3 MSG BUFFER
4 MSG STRI NG A 250
----- Current Source Size: 1201 Free: 100104 ------------------- S 17 L1

SPAREPM Data Area

To send information other than a standard message, copy SPAREPM and define the
fields you want to send (up to 5000 bytes). To reflect the size of datato be sent, assign

the BUFFER-LENGTH field.

— 276 -

Appendix B: Utilities

Example of a call

/*

/* SYSSPEC/ 1001: Invalid request:1:sent to:2:expecting:3:
ASSI GN SPAREPLY. MSG NR = 1001

ASSI GN SPAREPLY. MSG DATA(1) = #COMVAND

ASSI GN SPAREPLY. MSG DATA(2) = * PROGRAM

ASSI GN SPAREPLY. MSG DATA(3) = '''CREATE' "'

ASSI GN SPAREPLY. RESPONSE-CODE = 1 /* Invalid comand
PERFORM SEND- MESSAGE

*

Kk kkkkkkkkhkhkhkhkhkh ok ok khkkkhkhkhkkkkkhkhk h kA kA kA kA kA kkkk kk kk kk ok k ok k& k% % %
DEFI NE SUBROUTI NE SEND- MESSAGE
Kk kkkkkkkkhkhkhkhkhk ok khk ok khkhkhkhkhkhkkk hk k kA kA kA kA kA kkkk Ak kk kk ok k ok kK k& % %

*

IF #1-AMASCI | NE #CLI ENT-1S-ASCI | THEN
ASSI GN SPAREPLY. TRANSLATE = TRUE
END- | F
ASSI GN SPAREPLY. METHOD = SPLREPLY. SEND-REPLY /* Send with eoc
CALLNAT ' SPUREPLY' SPAREPLY
SPAREPM
SPAETB
ETBCB
MSG- | NFO
END- SUBROUTI NE /* SEND- MESSAGE

Example of send buffer

M5GL110001ATTACH MANACER- - BOB218EC55E1AEQL AURORA- CONVERSATI ON FACTCORY
SYSSPEC 1001l nvalid request CMD SH sent to SPSCFACT expecting ' CREATE'

where:

MSG111 I's the message signature.
0001 I's the response code.
ATTACH-MANAGER-- Isthe server replicaID.
BOB218EC55E1AEQL

AURORA-CONVERSATION-FACTORY Isthe Spectrum service.

SYSSPEC Is the name of the SY SERR library used.
1001 Isthe SY SERR message number.
Invalid request CMD SH sent to I's the message text.

SPSCFACT expecting 'CREATE'

- 277 -

Construct Spectrum SDK Reference

Spectrum Interface Subprogram

Writing robust servers can be a complex task. There are many possible errors that can
occur, and ensuring that each error is handled in the proper way is very difficult. Some
errors are caused by resource shortages, so it is desirable to retry the call again after a
brief pause. Other errors are fatal and should result in the server shutting down. Still
other errors, like wait timeouts, are normal and expected.

To help simplify and standardize the task of writing servers, Construct Spectrum sup-
plies a subprogram that wraps the Broker ACI calls. This wrapper subprogram, called
SPUETB, handles many situations that have to be coded to make direct Broker calls.

To ensurethat errors are handled and logged properly, use SPUETB for all broker calls.

Featur es and Benefits
The following sections contain a summary of the capabilities offered by SPUETB.

Broker Error Handling

Most Broker errors are handled internally by SPUETB. If the errors are due to resource
shortages, SPUETB pauses for two seconds and then tries the call again. The subpro-
gram continues to retry the call for up to 20 seconds.

When implementing server receive loops, SPUETB handles all wait timeouts (Broker
error 74) and returns to the receive state.

Fatal errors cause the server to shutdown if SPUETB is granted shutdown permission.

SPUETB can also handle message length errors and return a message to the sender in-
dicating that the message was too long.

Error Logging

All errorsreturned from Entire Broker arelogged in the Spectrum Communication L og.
Usethislog to help detect problems with your programs or environment.

Shutdown Requests

SPUETB respondsto shutdown requests from Entire Broker. These requests can be ini-
tiated using the EntireX Broker Control Center.

Server Timeouts

Whenever the server has not received a message for the length of time specified on the
service record, the server shuts down.

— 278 -

Appendix B: Utilities

Command Handling

SPUETB registers for the CMD service and responds to all command requests. Com-
mand requestsincludethe CMD CALLNAT command, which allowsyou to supply the
name of the subprogram call.

SPUETB Interface
SPUETB is called using the following interface:

DEFI NE DATA
PARAMETER USI NG SPAETB /* Specific Paraneters
PARAMVETER USI NG ETBCB /* Standard broker control block
PARAVETER

01 SEND- BUFFER(A1/ 1: V)

01 RECEI VE- BUFFER(A1/ 1: V)

01 RESERVED- AREA(A1/1:V) [* Reserved for SPUETB use

PARAMETER USI NG CDPDA-M /* Standard nessage area
END- DEFI NE
Asinadirect call to Entire Broker, the caller isresponsible for filling in the Broker con-
trol block. Additionally, the caller can specify the degree of error handling and support

for common functions handled by SPUETB.
The data areas are described in the following sections.

— 279 -

Construct Spectrum SDK Reference

Data Areas

SPAETB Data Area

Par aneter SPAETB Li brary S441

Conmand > +
I T L Nane F Leng | ndex/ | ni t/ EM Nane/ Conment
TOP - ==---cmcmememee e R LR L LR L PR LT R
*
*
* Data Area Name: SPAETB Function
* Created on....: My 05, 02 ========
* Created by....: SAG This data area is passed to
* SPUETB which is used to
* encapsul ate calls to Entire
* Broker. Use SPLETB to assign
* constant val ues.
1 SPAETB
2 FORCE- PDA A 1 (1:V) /* This field is only here

* /* to force the caller to create
* /* a separate LDA to call SPUETB
* /* rather than using SPAETB.

* /* This way, initial values can
* /* be placed in the LDA so that
* /* defaul ts get assigned.

|

2 | NPUTS
3 METHOD | 1/* 0 = Normal call
* /* See SPLETB for other nethods
3 ENCAPSULATED- FUNCTI ONS /* Set desired functions ...
4 SUPPORT- SERVER- COMVANDS L /* SPUETB will automatically
* /* register a conmand service
* /* whenever a regular service is
* /* registered. CMDis used as
* /* the broker service nane.
* /* SPUETB will handl e all
* /* command requests directly.
4 ALTER- RECEIl VE- SERVI CE L /* Automatically change the
* /* service name on receive to
* /* an '*' to allow commands
4 SHUTDOWN- PERM SSI ON L /* 1f true, SPUETB is allowed to
* /* shutdown the server directly.
* /* See SHUT- DOWN- REASONS
4 SHUTDOWN- REASONS /* Set desired shutdown reasons:
* /* only set after nethod 6
5 EXPLI CI T- SHUTDOWN L /* Shutdown request from BROKER
* /* or from Spectrum consol e.
5 TI MEOUT- REACHED L /* See TI MEQUT- HANDLI NG
5 TERM NAL- ERROR L /* Non-recoverabl e broker error.

— 280 -

Appendix B: Utilities

R S S

R S S

TI MEQUT- HANDLI NG

ERRCOR- HANDLI NG
HANDL E- TRUNCATI ON- ERROR

RESERVED
USE- SPECTRUM ERROR- LOG

WRI TE- ERRORS- TO- CONSCLE

WRI TE- ERRORS- TO- PRI NT- FI LE- 0 L

MAX- RETRY- Tl ME

MESSAGE- DATA

CALLI NG- PROGRAM
SPECTRUM SERVI CE

CALL- DESC
I NPUT- QUTPUTS
REPLI CA-1 D

CLI ENT- MODE

OPTI ON
QUTPUTS
RESULT

4

[ee)

8 /*

32

32 /* Description of

32

50

1

/* 0 = Return all timeouts so
/* that caller can handl e
/* >0= Reissue call for this

| * many seconds. Set to

/* max desired idle period.
/* -1= Reissue call indefinitely
/* -1 is normally used by
/* ATTACH servers which

/* shoul d run forever.

/* SPUETB wi |l respond to

/* ETB error 00200094. This

/* won't be sent back to caller
/* Reserved for future.

/* Log all errors on the Spec.
/* file. Warning, this will

/* cause an ET to be issued.

/* CALL 'CMWMO with errors

/* Wite errors to Natural

/* print file O

/* Nunmber of seconds to continue
/* to retry call in the event of
/* a Broker resource shortage.
/* Defaults to 20 seconds.

/* These fields are used to

/* build hel pful error messages
/* when broker calls fail.

Name of caller.

/* Name of spectrum service

/* if known.

the call

/* Assigned at first
/* do not adj ust

/* In this node, errors need
/* not be | ogged and checks
/* for broker error cycles
/* are not perforned.

/* SPUETB option

LOGON

/* See SPLETB

/* 0 = Normal request

/* 1 = Attach request

/* 2 = Command request

/* 3 = Tineout

/* 4 = Non-termnal error

/* 5 = Term nal error

/* 6 = Restarting after error.

SPAETB DataArea

—-281 -

Construct Spectrum SDK Reference

Thefieldsin the SPAETB data area are:

Field Name

Description

FORCE-PDA (A1/1:V)

METHOD (I1)

SPLETB.NORMAL-CALL

SPLETB.LOGON

SPLETB.REGISTER-
SERVER

SPLETB.SHUTDOWN-
SERVER

SPLETB.LOG-SUPPLIED-
ERROR

SPLETB.LOG-Natural-
ERROR

Due to the number of input settings that must be
assigned before calling SPUETB, the preferred
method of assigning them is to use supplied LDAS,
initialized with common defaults settings. The
following LDAS are supplied:

» SPAETBC (used by Broker client programs)

» SPAETBS (used by Broker server programs)

Determines the type of processing performed by
SPUETB. Assign the method values using one of the
constants in SPLETB.METHODS.

Used for all broker calls except LOGON,
REGISTER, DEREGISTER, and LOGOFF.

Uses the value of SPAETB.SPECTRUM-SERVICE
to look up the Broker ID, user I D, and corresponding
password with which to log on to Entire Broker. It
also executes the Broker Logon function.

Uses SPAETB.SPECTRUM-SERVICE to look up
the Broker 1D, Server Class, Server Name, and
Service and uses these values to Register with Entire
Broker. If the SUPPORT-SERVER-COMMANDS
parameter is set to TRUE, this method also registers
an additional service, CMD, to accept commands.

Invokes the Broker Deregister and Logoff functions.
It is used by servers only. Always issue a shutdown
request before ending server programs. Assign
SHUTDOWN-PERMISSION=TRUE if you want
SPUETB to perform a shutdown automatically.

Requests that an application error be logged by
SPUETB. The error must be passed in the MSG-
INFO.##M SG field of the CDPDA-M dataarea. The
message is logged to locations specified in the
SPAETB.ERROR-HANDLING structure.

Only called from ON ERROR blocks or error
transactions(assignto *ERROR-TA). TelIsSPUETB
tologthelast Natural error that occurred. Theerror is
logged to locations specified in the
SPAETB.ERROR-HANDLING structure.

— 282 -

Appendix B: Utilities

Field Name

Description (continued)

SPLETB.GET-SERVICE-
DEFAULTS

SPLETB.LOGOFF

SUPPORT-SERVER-
COMMANDS (L)

ALTER-RECEIVE-SERVICE
(L)

SHUTDOWN-PERMISSION
(L)

EXPLICIT-SHUTDOWN
(L)

TIMEOUT-REACHED (L)

TERMINAL-ERROR (L)

Assigns the following fields based on the values
established at the time of the initial LOGON method.
+ ETBCB.BROKER-ID

+ ETBCB.SERVER-CLASS

+ ETBCB.SERVER-NAME ETBCB.SERVICE,

+ ETBCB.USER-ID

« ETBCB.TOKEN

+ ETBCB.SECURITY-TOKEN

+ SPAETB.TIMEOUT-HANDLING

« SPAETB.SPECTRUM-SERVICE

Performs a Broker Logoff function. For other
methods, refer to SPLETB.

Tells SPUETB to automatically support command
services such as PING, SHUTDOWN, etc. SPUETB
automatically registers a separate service using CMD
as the service name. All command requests are
handled by SPUETB; the caller need not code any
specific support for commands.

Used in conjunction with SUPPORT-SERV ER-
COMMANDS. If thisfield is set to true, SPUETB
automatically changes the service name specified on
any receivefunctionto an asterisk (*). Thisallowsthe
receiveto be satisfied by either arequest for the main
service or arequest for the command service.

If true, SPUETB can shutdown the current program.
Normally, it is only set for server programs. To
determine which events allow SPUETB to shutdown
the running server, assign thefieldsin
SPAETB.SHUTDOWN. SPUETB always logs any
errors prior to shutting down.

Allows SPUETB to shutdown the server as aresult of
an explicit SHUTDOWN command.

Allows SPUETB to shutdown the server when the
server timeout value isreached. Thistimeout valueis
passedinthe TIMEOUT-HANDLING parameter and
defaulted from the Server Timeout field on the
Spectrum service record.

Allows SPUETB to shutdown the server in response
to afatal Broker error.

— 283 -

Construct Spectrum SDK Reference

Field Name

Description (continued)

TIMEOUT-HANDLING (14)

RESERVED (A8)

USE-SPECTRUM-ERROR-
LOG (L)

WRITE-ERRORS-TO-
CONSOLE (L)

WRITE-ERRORS-TO-
PRINT-FILE O(L)

MAX-RETRY-TIME (12)

CALLING-PROGRAM
(A8)

SPECTRUM-SERVICE
(A32)
CALL-DESC (A32)

REPLICA-ID(A32)

Tells SPUETB how to handle timeouts when
executing Broker RECEIV E functions. Can be one of
the following:
- -1
Executeforever (useSPLETB.NO-TIME-LIMIT)
to assign this value.
« 0
Return to the caller after the first receive timeout.
° >0
Execute for this many seconds, then either return
to the caller or execute shutdown processing
(based on SHUTDOWN-PERMISION and
TIMEOUT-REACHED parameters).

Thisfield is derived from the Server Timeout value
on the Spectrum service record. If no server timeout
is specified, the following defaults are used:

» Services without Attach Servers-1
» Services with Attach Servers 1200 (= 20 minutes)

Reserved for future use.

Logs al errors to the Spectrum log file.

Writes all errors to the operator console.

Writes all errorsto Print fileO.

Indicates the length of time to continue trying to
executeaBroker call inthe event of aBroker resource
shortage. This defaults to 20 seconds.

Identifies the caller of SPUETB. This hameis used
when logging error messages.

To use the L ogon and Register methods of SPUETB,
specify the name of the Spectrum servicein thisfield.
Also used when writing error messages.

Free-format description of the call used when logging
€rror messages.

Replicaid assigned to the server (output field only).

— 284 -

Appendix B: Utilities

Field Name Description (continued)

CLIENT-MODE(L) If thisflag is set, SPUETB does not log errors and
checks for broker error cycles are not performed.

RESULT (11) Interpreted after the call to determine the results of
the call. The SPLETB data areadefinesthefollowing
constants to check the results:

NORMAL-REQUEST

Broker call completed normally.
ATTACH-REQUEST

Broker call resulted in an Attach request. Only
returned to Attach Services.

TIMEOUT

Receive timeout was reached and shutdown
permission for timeouts was not granted to
SPUETB.

NON-TERMINAL-ERROR

Non-terminal broker error occurred. Thiserror is
automatically logged by SPUETB. See
ETBCB.ERROR-CODE.

TERMINAL-ERROR

Terminal Broker error occurred, but shutdown
permission was not granted to SPUETB. Theerror
is automatically logged.

ETBCB Data Area

ETBCB isastandard data arearepresenting the fields that must be passed to Entire Bro-
ker when using the Broker ACI. The calling program should use ETBCB12 or
ETBCB13, depending on the version of the Broker stub in use.

SEND-BUFFER

The send buffer is used in conjunction with the Broker Send function. The size of this
buffer must be greater than or equal to the value of ETBCB.SEND-LEN.

RECEIVE-BUFFER

The receive buffer isused in conjunction with the Broker Receive function or blocked
Sends. The size of this buffer must be greater than or equal to the value of ETBCB.RE-

CEIVE-LEN.

— 285 -

Construct Spectrum SDK Reference

RESERVED-AREA

Thispassareaisreserved for future use. Define and passthe SPAETBP.NOT-USED (*)
parameter in place of this parameter.

CDPDA-M

Thisis a standard message area. Whenever SPUETB encounters a non-recoverable er-
ror, it returns with the error text in MSG-INFO.##M SG and M SG-INFO.##RETURN-
CODE isassigned “E”.

Using SPUETB

For an example of using SPUETB, refer to the SPSTIMS Timestamp Server example.
If you need to do your own character set trandation (because your messages contain a
mixture of printable and binary data), refer to SPSTIMS2.

CMD TRACE

The TRACE command enables and disablestracing of arunning server. Thisfeatureis
used in conjunction with the CSUDEBI utility. The TRACE command accepts aRID
to target the command to a specific replica

There are two separate forms of the TRA CE command; the one you choose depends on
whether you want to enable or disable tracing.

» Toenabletracing:
1 UsetheCMD TRACE LOCATION=n [options] command.

» Todisabletracing:
1 Usethe CMD TRACE OFF command.

— 286 —

Appendix B: Utilities

Valid Keywords

Valid trace locations are defined in the CSLDEBUG local dataareain SYSCST. The
following table shows the trace keywords:

Keyword Description

QHANDLE A valid queue handle is required when setting the message
location to 10. Thisis aquoted value consisting:

"bkrid, user-1D, token, (unpacked) security-token,
conv-1D

ERROR-TRIGGER Forcesaruntime error at aspecified point within the running
server. Errorscan only betriggered on linesthat are currently
being traced. The syntax of the value assigned to this field is:

Program Li ne, NATnnnn, Ski p'

where:

» Programisthe name of the program where the runtime
error isto be triggered.

 Li ne istheline number where the error is to be triggered.

* NATnnnn isthe error to be triggered.

» Skipisusedif theerror isnot to be triggered on the next

execution of the statement, but rather after executing the
statement this many times.

FILTER-MASK A100 string of 0 and 1 values. “1" is used to represent
statements that are to be traced. Each mask character is
related to a constant in the SPLTRACE locd dataarea

FILTER-PROGRAM List of up to five programs (in quotes and separated by
commas) used to limit the programs that produce trace
output. Y ou can use specia charactersin the program name
to serve as pattern-matching characters. For details, refer to
the PATTERN option for the Natural EXAMINE statement.

Example of enabling tracing

CMD TRACE

R D=BBCBOB5A1BD5AF9F201FACBOB5A14D5AF9F201, LOCATI ON=10, QHANDLE=" BKR045
, SPSCFACT, AAC

BOB5A1BD5AF9F201FACBOB5A14D5AF9F201, 0000000000000000000000000000000000
000000000000000000000000000000, 0000000000000220° , ERROR-

TRI GGER=' SPUETB, 5420, NAT0082' , FI LTER- MASK=1000110000000010000
00010000000110000000000000000000000000000000000000, FI LTER-

PROGRAME* SPU*, SP?SEC

— 287 -

Construct Spectrum SDK Reference

Trace Response

The trace response is normally a confirmation message indicating whether the trace re-
quest was successful. The response uses the SPUREPLY protocol (MSG111).

Test the Trace Facility
To test the trace functions, usethe CMD CALLNAT SPUTRTST command.

CMD CALLNAT

It is possibleto CALLNAT any subprogram, provided the subprogram implements a
generic interface. Thisinterfaceis defined as follows:

DEFI NE DATA
PARAMETER USI NG SPACALLN /* Standard cal |l nat paraneters
PARAMETER USI NG SPAREPLY /* Reply nmessage paraneters
PARAMETER
01 RECEI VE- SEND- BUFFER(A1/ 1: 15000)

END- DEFI NE

The CALLNAT command takes the form:

CMD CALLNAT subpnane paraneter_string
where:

Subpname Is the name of the subprogram you want to CALLNAT.

parameter_string Isany set of characters to be passed to the specified subprogram
using the RECEIVE-SEND-BUFFER.

For an example of how to write anew CALLNAT interface subprogram, refer to the
SPUCMDT subprogram.

— 288 —

Appendix B: Utilities

Conversation Factory Utility

Construct Spectrum includes afacility called a Conversation Factory. This facility
works in conjunction with high-level callnat and message queue APIsto facilitate the
simpletransfer of databetween two platforms. The benefits offered by the Conversation
Factory and supporting APIsinclude:

» Allow communication between a client and server without knowledge of Broker ACI.
« Allow aconversation to be established between two processes, each acting as clients.

» Support multiple concurrent conversations between the same two participants. For ex-
ample, the Construct generate server listensfor specifications on one conversation and
cancels requests on another.

» Areused in conjunction with servers launched from the client to establish a conversa-
tion between the client who launched a service and the service itself.

On the server, the Conversation Factory consists of the following four subprograms:

Subprogram Description

SQUOPEN Opens a new conversation.

SQUSEND Sends information from one end of the conversation to the other.
SQURECV Receives information.

SQUCLOSE Closes the conversation.

For an example of how to use the Conversation Factory APIs, refer to the SQEXAMPL
subprogram.

— 289 —

Construct Spectrum SDK Reference

Character Trandlation Subprogram

When writing your own servers, it is sometimes necessary to perform character-set
translation. The preferred approach to character translation is to use the translation rou-
tines assigned to the Broker Service in the Broker Attribute File. However, sometimes
you may want to send a message that contains a mixture of binary and printable data
where only a portion of the message isto be translated. Use the SPUTLATE subpro-
gram for this purpose.

SPUTLATE alowsyouto passin astring, along with an array of character positionsto
betranslated. It issupplied in source form. For an example of calling SPUTLATE, refer
to SPSTIM S2.

Determine a Character Set

Sometimes a server receives amessage it cannot interpret. Normally, the server returns
areply tothe sender indicating that the messageisinvalid. If the server performsitsown
translation, it needs to know the character set of the recelved message so that the reply
can be sent back in the client’s character set. SPUASCII hel ps determine whether a
string of charactersis ASCII or EBCDIC format. For an example of calling SPUASCII,
refer to SPSTIM S2.

—290 -

Appendix B: Utilities

Multi-Tasking Verification Utility

Usethis utility to verify that ADALNK has been configured to be re-entrant and that
the Natural batch nucleus that usesit is also re-entrant. A re-entrant Natural nucleusis
required to run Spectrum services in a batch multi-tasking environment.

To start multiple Natural subtasks, use JCL to run the supplied Natural module,
TESTTASK, in batch (as documented in Step 2: Verify Natural Subtask Support,
page 39, Construct Spectrum and SDK Installation Guide for Mainframes). If your Nat-
ural nucleusis re-entrant, TESTTASK will successfully start Natural subtask sessions
that will execute the TESTSTSK program, which will then write trace information to
workfile 1 showing the execution status of the subtasks. Otherwise, the job that runs
TESTTASK will not end and will have to be manually cancelled.

—-291 -

Construct Spectrum SDK Reference

Log Utilities

Construct Spectrum supplies several utilities for archiving and deleting log data. Most
of the parameters apply to al log archive utilities.

Spectrum Log Utilities
Thefollowing Spectrum log utilities are supplied with Construct Spectrum:

Utility

Description

BSBLARCP

Input End Date

Full Report

Delete After
Archive

BSBLRESP

Full Report

Allowsthe Spectrum L og datato be archived to awork fileand
optionally deleted from the Spectrum Log based on adate. It
also generates alog record of the archive process.

This utility has thefollowing input fields:
Indicates the last LOG date to be archived.

Indicates which detailsto display.

« Todisplay full details of al databeing logged, enter “F’
(full).
« To show only the main log information, enter “B” (brief).

Indicates whether to delete log records after they are archived.

Restores data to the Spectrum Log file. It uses the entire log
data created by the BSBLARCP utility. It also generates alog
record of the restore process.

This utility has thefollowing input field:

Indicates which detailsto display.

» Todisplay full details of al databeing logged, enter “F’
(full).
» To show only the main log information, enter “B” (brief).

- 292 -

Appendix B: Utilities

Construct Spectrum Control Record Log Utilities

Thefollowing Control record utilities are supplied with Construct Spectrum:

Utility

Description

BSCTARCP

Input End Date

Full Report

Delete After
Archive

BSCTRESP

Full Report

Allowsthe Spectrum Control Record log datato bearchived to
awork file and, optionally, deleted from the Spectrum Control
Record log based on adate. It also generates alog record of the
archive process.

This utility has thefollowing input fields:
Indicates the last LOG date to be archived.

Indicates which detailsto display.

» Todisplay full details of al databeing logged, enter “F’
(full).

» To show only the main log information, enter “B” (brief).

Indicates whether to delete log records after they are archived.

Restores data to the Spectrum Control Record log file. It uses
the entire log data created by the BSCTARCP utility. It also
generates alog record of the restore process.

This utility has thefollowing input field:

Indicates which detailsto display.

« Todisplay full details of al databeing logged, enter “F’
(full).

« To show only the main log information, enter “B” (brief).

— 293 -

Construct Spectrum SDK Reference

Domain Log Utilities

Thefollowing domain log utilities are supplied with Construct Spectrum:

Utility

Description

BSDOARCP

Input End Date

Full Report

Delete After
Archive

BSDORESP

Full Report

Allows the Domain log data to be archived to awork file and,
optionally, deleted from the Domainlog based on adate. It also
generates alog record of the archive process.

This utility has thefollowing input fields:
Indicates the last LOG date to be archived.

Indicates which detailsto display.

« Todisplay full details of al databeing logged, enter “F’
(full).

» To show only the main log information, enter “B” (brief).

Indicates whether to delete log records after they are archived.

Restores data to the Domain log file. It usesthe entire log data
created by the BSDOARCRP utility. It also generates alog
record of the restore process.

This utility has thefollowing input field:

Indicates which detailsto display.

« Todisplay full details of al databeing logged, enter “F’
(full).

« To show only the main log information, enter “B” (brief).

— 294 —

Appendix B: Utilities

Spectrum Group Log Utilities
The following group log utilities are supplied with Construct Spectrum:

Utility

Description

BSGRARCP

Input End Date

Full Report

Delete After
Archive

BSGRRESP

Full Report

Allows the Spectrum Group log datato be archived to awork
file and, optionally, deleted from the Spectrum Group log,
based on a date. It aso generates alog record of the archive
process.

This utility has thefollowing input fields:
Indicates the last LOG date to be archived.

Indicates which detailsto display.

» Todisplay full details of al databeing logged, enter “F’
(full).

» To show only the main log information, enter “B” (brief).

Indicates whether to delete log records after they are archived.

Restores data to the Spectrum Group log file. It usesthe entire
log data created by the BSGRARCP utility. It also generatesa
log record of the restore process.

This utility has thefollowing input field:

Indicates which detailsto display.

« Todisplay full details of al databeing logged, enter “F’
(full).

« To show only the main log information, enter “B” (brief).

— 295 -

Construct Spectrum SDK Reference

Application Service Definition Log Utilities
Thefollowing Application Service Definition utilities are supplied with Construct

Spectrum:
Utility Description
BSIFARCP Allows the Application Service Definition log data to be
archived to awork file and, optionally, deleted from the
Application Service Definition log based on a date. It also
generates alog record of the archive process.
This utility has thefollowing input fields:
Report type Indicates which report typeto display.
« Toincludeinformation related to the interface and method
data, enter “F” (full).
« Todisplay only the log for the application service header
information, enter “B” (brief).
Delete After Indicates whether to delete log records after they are archived.
Archive
BSIFRESP Restores data to the Application Service Definition log file. It
uses the entire log data created by the BSIFARCP utility. It
also generates alog record of the restoration process.
This utility has thefollowing input field:
Report type Indicates which report typeto display.

» Toinclude information related to the interface and method
data, enter “F” (full).

« Todisplay only the log for the application service header
information, enter “B” (brief).

— 296 —

Appendix B: Utilities

Spectrum Steplib Log Utilities

The following utilities are supplied with Construct Spectrum:

Utility

Description

BSSDARCP

Input End Date

Full Report

Delete After
Archive

BSSDRESP

Full Report

Allows the Spectrum Steplib log datato be archived to awork
file and, optionally, deleted from the Spectrum Steplib log
based on a date. It aso generates alog record of the archive
process.

This utility has thefollowing input fields:
Indicates the last LOG date to be archived.

Indicates which detailsto display.

» Todisplay full details of al databeing logged, enter “F’
(full).

» To show only the main log information, enter “B” (brief).

Indicates whether to delete log records after they are archived.

Restores data to the Broker Steplib log file. It uses the entire
log data created by the BSSDARCP utility. It also generates a
log record of the restore process.

This utility has thefollowing input field:

Indicates which detailsto display.

« Todisplay full details of al databeing logged, enter “F’
(full).
« To show only the main log information, enter “B” (brief).

- 297 -

Construct Spectrum SDK Reference

User and Group Log Utilities
The following utilities are supplied with Construct Spectrum:

Utility Description

BSUSARCP Allows the User and Group log data to be archived to a work
fileand, optionally, deleted from the User and Group | og based
on adate. It also generates alog record of the archive process.

This utility has thefollowing input fields:

Report type Indicates which report typeto display.
« Toinclude information related to the interface and method
data, enter “F” (full).
« Todisplay only the log for the application service header
information, enter “B” (brief).

Delete After Indicates whether to delete log records after they are archived.
Archive
BSUSRESP Restores data to the User and Group log file. It usesthe entire

log data created by the BSUSARCP utility. It also generates a
log record of the restore process.

This utility has thefollowing input field:

Report type Indicates which report type to display.
« Toincludeinformation related to the interface and method
data, enter “F” (full).
« Todisplay only the log for the application service header
information, enter “B” (brief).

— 298 —

INDEX

Numerics

1.V fields
example of aPDA, 233
example of calling the Allocate method,
233

example of code to specify an array, 233

example of code to specify number of
occurrences, 233

example of instantiating the PDA, 233
example of obtaining the bounds of an
array, 234

example of passing an array, 234

example of using thesame dataarea, 234

1:V overrides
Edit 1
V Overrides window, 108
1:V variables
Subprogram proxies
1:V variable considerations, 108

A

ABO interface
customizing, 98
ABO project
components, 91
creating, 87
ABO wizard
using, 92
Active server page (ASP) script
definition of, 255
ActiveX business object (ABO)
definition of, 255
with Microsoft 11S, 35
ActiveX DLL
definition of, 255

— 299 -

Adding
methods
application service definitions, 113
user exits
Subprogram-Proxy model, 106, 109
Altered characters
Translations program, 181
Application library
definition of, 255
Application objects
troubleshooting, 185
Application service definition
definition of, 255
Application service definitions
accessing, 112
adding a method, 113
Maintain Application Service
Definitions panel, 112
methods, 111
Application services
creating and selecting server
components, 236
definition of, 255
external parameters, 237
global data areas, 236
parameter data areas, 237
subprogram behavior, 237
subprogram interface, 236
terminal 1/0O, 236
timing issues, 237
Applications
client/server
deploying, 191
Construct Spectrum
client/server, 28
web, 28
creating without using client framework
setting up server components, 236

Construct Spectrum SDK Reference

Architecture
Construct Spectrum
diagram, 29
definition of, 255
ASCII character set
translation of, 31

B

BDT class
definition of, 256

BDT controller
calling conversion routines, 126
convert from display, 128
convert to display, 127
converting in-place, 128
creating sample values, 129
error information properties, 131
ErrorCode, 131
ErrorLen, 131
ErrorMsg, 131
ErrorPos, 131
example of code, 131
syntax example, 125
using Natural formats, 130
BDT controller class
definition of, 256
BDT controller object
definition of, 256
BDT modifier
definition of, 256
BDT procedure
definition of, 256
BDT_DATE
Predict keyword, 137
BDTs (business data types)
overview, 122
Block handling
default methods, 116
overriding, 116
specifying on the server, 118
Broker ACI calls
wrapping, 278
Browse command handler
definition of, 255

—300 -

Browse data cache
definition of, 255
Browse dialog
definition of, 256
Browse process
definition of, 256
Browse subprogram proxy
number of occurrences returned, 108
specifying number of occurrences, 106
BSBLARCP
log utility, 292
BSBLRESP
log utility, 292
BSCTARCP
log utility
Control record, 293
BSCTRESP
log utility
Control record, 293
BSDOARCP
log utility
domain, 294
BSDORESP
log utility
domain, 294
BSGRARCP
log utility
group, 295
BSGRRESP
log utility
group, 295
BSIFARCP
log utility
Application Service Definition, 296
BSIFRESP
log utility
Application Service Definition, 296
BSSDARCP
log utility
steplib, 297
BSSDRESP
log utility
steplib, 297
BSUSARCP
log utility
user and group, 298

Index

BSUSRESP
log utility
user and group, 298
Business datatype (BDT)
definition of, 256
Business data type (BDT) objects
BDTController, 141
BDTConversion, 141
diagram of properties and methods, 142

Business data types
setting up in Predict, 40
Business data types (BDTs)
benefits of using, 123
client framework, 124-125
composition
conversion routine, 124
modifiers, 124
name, 124
creating
modifiers, 138
name, 138
Natural formats supported, 138
returning appropriate variant types,
139
customizing and creating, 138
handling runtime errors, 141
one conversion routine with multiple
BDTs, 148
overriding, 149
overview, 122
placing the conversion routine, 148
referencing
in your application, 149
Predict, 150
registering, 145
example of code, 145
retrieving error information, 149
supplied with Construct Spectrum
Alpha, 133
Boolean, 133
Currency, 135
Date, 136
Numeric, 134
Time, 134
used by client framework
diagram, 126
using modifiers, 129
Visual Basic, 123
diagram, 123

-301 -

Business object
definition of, 257
setting up in Predict, 42
Business-Object-Super-Model
before using, 73
application environment, 75
default valuesin Predict, 73
model defaults, 73
naming conventions, 74
generating packages, 76
general package parameters, 78
specific package parameters, 79
standard parameters, 77
overview, 72
when to use, 72
Business-Object-Super-Model wizard
definition of, 257

C

CallNat method
syntax, 220
CALLNAT simulation
Spectrum Dispatch Client, 33
CallSystem method
syntax, 221
Cardinality
definition of, 257
Character set
determining, 290
Character Ul
on mainframe server, 30
Checklists
application creation, 38
Child model
definition of, 257
Client applications
definition of, 257
developing
codeto call subprogram, 252
creating the user interface, 251
running applications, 253
Client calls
simulate for debugging, 175
Client framework
definition of, 257

Construct Spectrum SDK Reference

Client/Server application
creating using Construct Spectrumtools,
17
creating without Construct Spectrum, 17
Code
preserving customizations to generated
code, 58
protecting
using implied user exits, 58
using the cst
PRESERVE tag, 58
Code block
definition of, 257

Command block
definition of, 257
Command handler list
definition of, 258
Command handlers

definition of, 257

Command ID
definition of, 258
Communication errors
handling, 162
possible origins, 162
retrieving information, 163
severe, 163
Complex redefine
definition of, 258

Components

framework

ABO project, 91

Compression

definition of, 258
Configuration editor

invoking, 50
Configuration Profiles tab

Configuration editor, 50
Construct Spectrum

courses, 20

definition of, 258

glossary of terms, 255
Construct Spectrum Add-In

definition of, 258
Construct Spectrum Administration
subsystem

definition of, 258

-302 -

Construct Spectrum applications
creating without using client framework
setting up server components, 236
Construct Spectrum SDK Reference
layout, 14
Conventions
used in this documentation, 18

Conversation Factory
transferring databetween two platforms,
289

Conversion routines
creating, 143
handling errors, 131
properties and methods, 143, 154
Courses
Construct Spectrum, 20
Cresating
applications, 195
assign values to fields in parameter
data areas, 195
example of code to write to data
areas, 195
check success of CALLNAT, 196
example of code to check CallNat,
196
create parameter data areainstances,
195
example of code declaring
variables, 195
example of creating a data area, 195
use the CallNat method on the client,
196
example of code to use the CallNat
method, 196
domain for your application, 39
Customizing
ABO
using user exits, 100
properties generated for the ABO, 98

D

Data encryption/de-encryption
Construct Spectrum applications, 31
Data Sizes tab
Diagnostics window, 179

Index

Data translation, 31
system functions, 32
Database record
definition of, 258
DBID
definition of, 258
Debug data
Debug Library field, 173
generating, 167
writing to the source area

example of code in subprograms, 170
example of results from |F statement,

170
example of results without I1F
statement, 171
Debugging
client/server applications, 162
list of error sources, 162
runtime errors, 167
traditional tools, 163-164
communication errors, 167
returning information, 32
Debugging tools
client/server
Diagnostics window, 177
Trandations program, 181
definition of, 259
INPUT statement, 174
simulating client calls, 175
traditional
DISPLAY statements, 163
INPUT statements, 163
Natural Debugging facility, 163
WRITE statements, 163
Defaulting from Predict
business object description, 42
GUI controls, 40
hold field, 41
primary key, 41
DEFINE PRINTER statement
using, 170
Defining
domain for your application, 45
security for your application, 47
steplib chain for your application, 43
Dependent object
definition of, 259

- 303 -

Deploying

client/server applications, 191
collect filesfor installation, 191
create the executable file, 191
install the client application, 192
run the application, 192

Deployment

definition of, 259

Descriptions

defaulting for business objects, 42

Determining

character set, 290

Development environments

Construct Spectrum Add-Ins
Visual Basic, 26

Construct Spectrum Administration

subsystem, 24

Construct Spectrum options
Add-Ins menu, 26

Construct Windows interface, 25

creating a web application, 27

integrated tools, 23

using an HTML editor, 27

Development process

overview, 36

Diagnostics window

Data Sizestab, 179

description, 177

Initialize Data tab, 180

Subprogram Proxy tab, 178

summary of diagnostic information, 177
using, 178

Dialog

definition of, 259

Dispatch service

definition of, 259

Dispatch service data

on mainframe server, 31

Dispatcher

definition of, 259

Dispatcher objects

troubleshooting, 186

Distributing

client/server applications, 191
collect filesfor installation, 191
create the executable file, 191
install the client application, 192
run the application, 192

Construct Spectrum SDK Reference

Documentation
related, 18
Domain
definition of, 259
Domains
defining, 45
defining security, 47
Double-byte character set (DBCS)
definition of, 259
Download data
definition of, 259

E

EBCDIC character set
translation of, 31

EDIT command
Natural
view generated debug members, 173
Enabling trace options in subprogram
proxy, 107
Encapsulation
definition of, 259

Encrypt and decrypt data
system functions, 32
Encryption
definition of, 259
Encryption/de-encryption of data
Construct Spectrum applications, 31

Entire Broker
encapsulation of calls, 33
on mainframe server, 31
on Windows platform, 33
with Microsoft 11S, 35
Entire Broker service settings
definition of, 260
Entire Broker stub
definition of, 260

Error categories

communication, 165

debugging client/server applications,

165

runtime, 165

Spectrum system messages, 165
Error handling

system functions, 32

~304 -

Errors.bas
description, 91
ETBCB dataarea
description, 285
Event
definition of, 260

Externally-creatabl e object
definition of, 260

F

Field
definition of, 260

Field headings
setting up in Predict, 39

FieldRef property
diagram of creating two data areas, 231
diagram of fields defined as objectsto
CalNat, 230
diagram of fields passed to CallNat, 228
diagram of using, 231
example, 231
example of code to passindividual
fields, 228
example of using the CUSTA Natura
data area, 232
example of Visual Basic code, 232
syntax, 230

File volume information
specifying in Predict, 42

FNR
definition of, 260

Foreign key
definition of, 260

Form
definition of, 260

Framework components
ABO project, 91

G

Generate
definition of, 260

Generated module
definition of, 261

Index

Generating
debug data, 167
saving parameter and debug data, 167
Generate Trace Codefield, 172
package modules
Generation subsystem, 82
subprogram proxy, 105-106
Generation data cache
definition of, 261
Global data areas
application services, 236
Global settings
configuration profile, 50
Globals.bas
description, 91
Grid
definition of, 261
Grid control
definition of, 261
Group
definition of, 261
Grouping related business objects, 45
GUI
definition of, 261
GUI control override
definition of, 261
GUI controls
setting up in Predict, 40
GUI dialog
on Windows platform, 34

H

Hold field default
setting up in Predict, 41
Hook
definition of, 261
Host
definition of, 261
HTML fragment
definition of, 261
HTML template
definition of, 261
HTML Template wizard
definition of, 261
http request
definition of, 262

- 305 -

Initialize Data tab
Diagnostics window, 180
INPUT statement
use as debugging tool, 174
Instantiation
definition of, 262
Internationalization
definition of, 262
Internet/intranet
supported browsers, 35
Invoke Proxy function
accessing, 176
Invoke Proxy panel
description, 176
Invoking
Configuration editor, 50

J

Job control language (JCL)
definition of, 262

K

Keys

defaulting primary, 41
Keyword

definition of, 262
Knowledge

assumed, 14

L

Level 1 block optimization
description, 213
diagram of client and server as sender
and receiver, 215
directional attributes
example, 214
list of directional attributes, 213
Level 1 data block
definition of, 262
Level 1 data block optimization
definition of, 262
Libraries
adding to your steplib chain, 44

Construct Spectrum SDK Reference

Library imagefile (LIF)

definition of, 262
Library imagefiles

simulated PDAS, 33
LIF definitions module

definition of, 262
LIFDefinitions.bas

description, 91
LIST command

Natural

view generated debug members, 173

Localization

definition of, 262
Log utilities

supplied with Construct Spectrum, 292
L ookups

definition of, 262

M

Maintain Domains Table panel
description, 46

Maintain Steplib Table panel
description, 44

Maintain User Table panel
accessing, 173

Maintenance dialog
definition of, 262

Maintenance subprogram proxy
level 1 blocks sent for default methods,
116

Mapper function
description, 130

MDI child
definition of, 263

MDI frame
definition of, 263

MDI parent
definition of, 263

Menu
definition of, 263

— 306 -

Menu bar
definition of, 263

M essage handling
system functions, 32

M essage protocol
MESSAGE(A1), 273
MSG-NR(N4), 273
REPLICA-ID(A32), 273
RESPONSE-CODE(N4), 273
SIGNATURE(A6), 273
SPECTRUM-SERVICE(A32), 273
SYSERR-LIBRARY (A8), 273

M etadata
definition of, 263
Method
definition of, 263
Methods
Abort, 224
adding, 113
application service definitions, 113
updating application service
definitions, 113
updating LIFs, 114
Allocate, 201
Commit, 224
GetField, 204
Initialize, 201
Reset, 205
SetField, 205
StartTransaction, 224
Middleware
relationship with Construct Spectrum,
22
Model
definition of, 263
Module
definition of, 263
Multi-level security
definition of, 264
Multiple-document interface (MDI)
definition of, 264
Multi-tasking verification utility
description, 291

Index

N

Natural Construct nucleus
definition of, 264
Natural data area
simulation, 198
Allocate method, 201
application object properties or
methods, 201
creating Natural DataArea objects, 202
data areadefinitions, 198
definition, 198
diagram of components, 198
diagram of objectsin dataarea
simulation, 200
example of a data area definition, 208
example of code for data area
definition, 199
example of code for redefining, 207
example of code to declare and
initialize the application object, 201
example of code using structure name
asaqualifier, 206
example of reading arrays with the
GetField method, 208
exampl e of reading occurrences of the
Item array, 209
example of specifying afield with
occurrences, 208
example of using redefined fields, 207
Initialize method, 201
LIFDirectory property, 201
list of featuresin dataarea definitions,
199
MainLibrary property, 201
NaturalDataArea class, 202—203
NaturalDataArea object, 206
NaturalFieldDef class, 210
simulation objects, 200
syntax for Allocate method, 202
Natural Debugging facility
definition of, 264
Natural security
user information, 173
Natural source areas
writing information to, 236

Natural subprograms
example of creating, 238—239
PDA, 238
on mainframe server, 30

- 307 -

NaturalDataArea object
troubleshooting, 185
Navigation bar
definition of, 264
Node
definition of, 264
Nodes
marking for refresh, 70
removing from cache, 70
Nucleus
definition of, 264

O

Object
definition of, 264
Object factory
definition of, 264
Object Factory wizard
definition of, 264
Object library
definition of, 264
OLE
definition of, 265
OLE automation server
definition of, 265
Options window
customizing the ABO
description, 99
Overflow condition
definition of, 265
Overriding
1:V variables, 108
domain steplib chain, 115

P

Package
definition of, 265

Page handler
definition of, 265

Page Handler wizard
definition of, 265

Parameter alignment problems
diagnosing, 177

Construct Spectrum SDK Reference

Parameter and debug data
accessing the Maintain User Table
panel, 173
using, 172
Parameter data areas
application services
data size limitations, 237
example of creating, 238

simulation by Spectrum Dispatch Client,

33

Parameters
externalizing, 237

Parent model
definition of, 265
Parse area
definition of, 265
Partner products
Construct Spectrum, 22
Ping
definition of, 265
Platform
definition of, 265
Predict data dictionary
relationship with Construct Spectrum,
22

Predict set up tasks
business data types, 40
default business object description, 42
default GUI controls, 40
default hold field, 41
default primary key, 41
field headings, 39
file volume information, 42
verification rules, 40, 42
Prerequisites
assumed knowledge, 14
Preserving characters
Translation program, 181
Primary keys
defaulting from Predict, 41
Printable characters
Translation program, 181

Programming languages

incorporating with Construct Spectrum,

23
Project
definition of, 265

Project group
definition of, 265

Properties
CheckFieldSpec, 203, 209
Decimals, 210
DefinedRank, 210
Definition, 203, 209
Field, 203
FieldDef, 204, 209
FieldDefs, 204, 210
FieldRef, 204
Format, 210
FormatL ength, 210
Fromindex, 211
Length, 211
Level, 211
Level TypeTrail, 211
LibrarylmageFile, 204
LIFDirectory, 201
MainLibrary, 201
Name, 204, 212
PackedData, 204

PackedDatal ength, 205, 210

Rank, 212

Redefined, 212

Structure, 212

Thrulndex, 211-212

TransactionActive, 224
Property

definition of, 265

R

Regenerate/preserve status
definition of, 266

Remote cdl
definition of, 266

Replacement tag

definition of, 266
Reports

using, 63
RequestProperty properties

Spectrum Dispatch Client, 186

Resource
definition of, 266
Run
definition of, 266

Index

Running
applications, 253

Runtime errors
listing, 165
results, 175

S

Security
defining for adomain, 47
Security cache
definition of, 266
Security services
on mainframe server, 31
Sending
responses back to client, 272
Server
components
setting up for communication with
client, 236
definition of, 266
Server application
definition of, 266
Service
definition of, 266
Service exit
definition of, 266
Servicelog
definition of, 266
Set up checklists
see Checklists, 38
Setting
trace options, 167
Setting up
security for your application, 43
Settings for Profile tab
Configuration editor, 52
Shutdown
definition of, 266
Software development kit (SDK)
definition of, 266
SPAETB dataarea
description, 280
Specifying
block handling on the server, 118
general package parameters
Business-Object-Super-Model, 78
overrides, 118

- 309 -

specific package parameters
Business-Object-Super-Model, 79, 81
standard parameters
Business-Object-Super-Model, 77
Specifying defaults
hold key, 41
primary key, 41
Spectrum administration
on mainframe server, 31

Spectrum client/server application
definition of, 266
Spectrum Control record
definition of, 267
Spectrum Dispatch Client
advanced features, 228
1ltoV fields, 233
FieldRef property, 228
application service definitions, 215
examplein alibrary imagefile, 216
CALLNAT simulation, 33
client/server communication, 213
application service, 197
components, 197
data area simulation, 198
level 1 block optimization, 213
client/server communication
components
definitions, 197
dispatch service definitions, 197
Dispatcher objects, 197
creating applications
See creating applications, 195
data area simulation components, 197
data area alocator, 197
data area definitions, 197
data area objects, 197
database transaction control, 34
Dispatcher objects and dispatch service
definitions, 218
compression and encryption, 223
database transaction control, 224
diagram of Dispatcher objects, 218
diagram of timeout functionality, 222
example of code to create Dispatcher
objects, 218
example of implementing level 1
block optimization, 220
example of resuming acall, 223
list of error types, 225
remote subprogram invocation, 220

Construct Spectrum SDK Reference

service selection, 219
timeout, retry, and resume handling,
221
tracing, 224
user identification and authentication
application properties, 226
encapsulation of Entire Broker calls, 33
functions
client/server communication, 197
Natural data area simulation, 197
initializing
Project Properties dialog, 251
library image files and the steplib chain,
227
syntax of the steplib definition, 227
overview, 194
properties, 185
with Microsoft 11S, 35
Spectrum Dispatch Client (SDC)
definition of, 267
on Windows platform, 33
Spectrum dispatch service
definition of, 267
on mainframe server, 31
running online, 174
Spectrum security service
definition of, 267
Spectrum security services
on mainframe server, 31
Spectrum Service Manager
definition of, 267
Spectrum service settings
definition of, 267
Spectrum web application
definition of, 267
Spectrum web framework
definition of, 267
Spectrum XML Cache Viewer
overview, 68
refreshing, 70
SPSTLATE utility, 290
SPUETB subprogram
wrapping Broker ACI calls, 278
SPUREPLY subprogram
sending responses back to client, 272
Status bar
definition of, 267

-310-

Steplib chain
defining, 43
definition of, 267
Sub Main procedure
definition of, 267
Subprogram proxies
generating using model, 240
invoking online, 175
setting trace code option, 107
Spectrum dispatch service, 31
Subprogram proxy
definition of, 267
methods generated, 111
on mainframe server, 30
overview
application service definition methods
See Application service definitions,
111
prerequisites
Construct Spectrum Administration
subsystem datafiles, 111
generating subprograms and object
PDAs, 111
versioning, 120
security implications, 120
Subprogram Proxy tab
Diagnostics window, 178
Subprogram-Proxy model
adding user exits, 109
overview, 104
standard parameters, 106
using, 105
Subprograms
behavior, 237
interfacing, 236
Super model
definition of, 268

T

Target module
definition of, 268

Target object
definition of, 268

Target subprogram
definition of, 268

Index

Template parser
definition of, 268
Timing issues
application services, 237
Toolbar
definition of, 268
Toolbar button
definition of, 268
Toolkit
definition of, 268
Tools
debugging
client/server applications, 163
Trace options
definition of, 268
setting, 167
Subprogram Proxy Trace Options
window, 168
Trace-Option(1)
description, 168
Trace-Option(2)
description, 172
Generate Trace Codefield, 172
valid values, 172
Transferring
data between two platforms, 289
Trandating
character sets, 290
Trandation M appings window
description, 182
Trandation of character sets, 31
Trandations program
ASCII/EBCDIC, 181
character sets, 181
atered, 181
preserved, 181
printable, 181
translation tables, 181
Troubleshooting
Construct Spectrum Add-1n, 184
Construct Spectrum dispatch client
properties, 185
Typelibrary
definition of, 268

-311-

U

Updating
application service definitions, 113
LIFfiles, 114

Upload data
definition of, 268
User exits
customizing the ABO, 100
User interface
creating, 251
example form, 251
Utilities
log, 292
multi-tasking verification, 291
sending responses back to client
SPUREPLY subprogram, 272
transferring data between two platforms
Conversation Factory, 289
trand ating character sets
SPSTLATE subprogram, 290
wrapping Broker ACI calls
SPUETB subprogram, 278
Utility.bas
description, 91

Vv

Variant

definition of, 268
VB-Client-Server-Super-Model

definition of, 268
Verification rules

definition of, 269

setting up in Predict, 40, 42
Visual Basic browse object

definition of, 269

Visual Basic business object
definition of, 269
on Windows platform, 34
Visual Basic maintenance object
definition of, 269
Volume information
see File volume information

Construct Spectrum SDK Reference

w

Web application
with Microsoft 11S, 35

Web application ASP
definition of, 269

Web class
definition of, 269

Web Super wizard
definition of, 269

Wildcard
definition of, 269

Wrapping
Broker ACI calls, 278

X

XML extract
definition of, 270

-312 -

	Preface
	Prerequisite Knowledge
	Purpose and Structure of this Documentation
	How to Use This Documentation
	Create a Web Application
	Create a Client/Server Application
	Without Using the Client Framework

	Other Resources
	Related Documentation
	Construct Spectrum SDK
	Construct Spectrum
	Natural Construct

	Other Documentation
	Related Courses

	Introduction
	What is Construct Spectrum?
	Partner Products
	Data Dictionary and Repository
	Middleware
	Programming Languages
	Multiple Development Environments

	Construct Spectrum Development Environments
	Construct Spectrum Administration Subsystem
	Construct Windows Interface
	Visual Basic
	Client/Server Applications
	Web Applications

	Types of Construct Spectrum Applications
	Architecture of Construct Spectrum Applications
	Mainframe Server Components
	System Functions

	Windows Components
	Internet Information Server (IIS) Components
	Internet/Intranet Components

	Overview of the Development Process

	Setting up the Mainframe Environment
	Overview
	Setting Up Predict Definitions
	Field Headings
	Business Data Types (BDTs)
	Default GUI and HTML Controls
	Verification Rules
	Default Primary Keys and Hold Fields
	Define a Default Primary Key
	Define a Default Hold Key

	Default Business Object Description
	Descriptive Browse Fields
	File Volume Information in Client/Server Applications

	Creating a Domain and Setting Up Security
	Step 1: Define the Steplib Chain
	Step 2: Define the Domain
	Step 3: Define Security for the Domain

	Features of the Wizards
	Using the Configuration Editor
	Invoke the Configuration Editor
	Modify the Profile Settings
	Create a New Configuration Profile
	Modify the Path Settings

	Working with Code
	Implied User Exits
	Preserve Customizations to Generated Code

	Regenerating Modules
	Regenerate Individual Modules
	Regenerate Multiple Modules
	Regenerate External Files

	Editing Modules
	Generating and Reviewing Reports
	Access Reports
	Review a Stored Report
	Specify Report Detail

	Use Reports with a Code Comparison Tool

	Using The Spectrum Cache
	Overview
	Mark Nodes to be Refreshed
	Remove Nodes From the Spectrum Cache

	Using the Business-Object-Super- Model
	Overview
	Before You Begin
	Check the Model Defaults
	Set up Default Values in Predict
	Establish a Naming Convention
	Set Up the Application Environment

	Generating Packages
	Step 1: Define the Standard Parameters
	Step 2: Define the General Package Parameters
	Step 3: Define the Specific Package Parameters
	Step 4: Create Another Package (Optional)
	Step 5: Generate the Modules
	Generation Subsystem

	Troubleshooting

	Using ActiveX Business Objects
	Overview
	Using the ABO Project Wizard
	Create the ABO Project
	Framework Components for the ABO Project

	Using the ABO Wizard
	Customizing the ABO
	Customize Properties Generated for the ABO
	Opt Column

	Customize the ABO within User Exits
	GetAppService_.SetMethodAndBlocks
	ICSTBrowseObject_LogicalKeyInfo.Extra
	ICSTPersist_InstanceData.Get.Extra
	ICSTPersist_InstanceData.Let.Extra
	ICSTPropertyInfo_PropertyInfo.Get.Extra
	<CounterPropertyName>.Get.NullList

	Using the Subprogram-Proxy Model
	Overview
	Accessing System Files
	Generating a Subprogram Proxy
	Step 1: Specify Standard Parameters
	Step 2: Specify the Number of Occurrences Returned
	Step 3: Add User Exits
	Step 4: Generate the Subprogram Proxy

	Generating Methods
	Access the Application Service Definitions
	Add a Method
	Step 1: Create the Method
	Step 2: Update the Application Service Definition
	Step 3: Update the Library Image File

	Override the Steplib Chain for the Domain

	Overriding Block Handling
	Default Block Handling
	Maintenance Subprogram Blocks Sent to Server
	Maintenance Subprogram Blocks Returned to Client
	Browse Subprogram Blocks Sent to Server
	Browse Subprogram Blocks Returned to Client

	Specify Overrides
	Step 1: Define Block Handling On Server
	Disable a Block Unconditionally
	Send Blocks to the Client Conditionally

	Step 2: Define Block Handling On Client

	Versioning Support
	Security Implications

	Debugging Support

	Using Business Data Types (BDTs)
	Overview
	Understanding and Using BDTs
	Benefits of Using BDTs
	Relationship With Visual Basic Data Types
	Composition of a BDT
	Name
	Conversion Routine
	Modifiers

	Elements of a BDT
	BDT Controller
	How the Client Framework Uses BDTs

	Conversion Routines
	ConvertToDisplay Method
	ConvertFromDisplay Method
	ConvertInPlace Method
	CreateSampleString Method

	Modifiers
	Natural Formats

	Handling Errors Returned from a BDT Conversion Routine
	How Web Applications Use BDTs
	BDTs Supplied With Construct Spectrum
	Alpha
	Boolean
	Time
	Numeric
	Currency
	Date

	Referencing BDTs in Predict
	Defining BDTs
	Name
	Modifiers
	Natural Formats
	Variant Data Types

	Returning Conversion Error Information
	Handling Runtime Errors
	Creating and Customizing BDTs
	BDTs and the Client/Server Framework
	Understanding the BDT Objects

	Create BDT Conversion Routines
	Register a BDT
	Deregister a BDT
	Locate the Conversion Routine for a BDT
	Create a Natural-to-BDT Mapper
	Other Considerations
	Use One Conversion Routine with Multiple BDTs
	Placement of the Conversion Routine
	Override a Supplied BDT
	Reference BDTs in Your Application

	BDTs and the Web Framework
	Implement BDTs in the Web Framework
	Register BDTs in the Web Framework
	Register BDT Classes Using the Windows Registry
	Explicitly Register BDT Classes

	BDT Conversion Object
	Create the BDT Class
	Other BDT Controller Methods
	Create a Natural-to-BDT Mapper

	Create One BDT Class with Multiple BDTs

	Debugging Your Client/Server Application
	Overview
	Communication Errors
	Communication Error Handling

	Traditional Debugging Tools
	Construct Spectrum Debugging Tools

	Types of Errors
	Visual Basic Runtime Errors
	Communication Errors
	Natural Runtime Errors
	Construct Spectrum-Related Errors
	Errors that Do Not Return an Error Message

	Generating Debug Data
	Save Parameter and Debug Data
	Set Trace Options
	Trace Option(1)
	Create Debug Data

	Trace Option(2)

	Specify Where to Save Debug Data
	Access the Maintain User Table Panel

	Running Spectrum Dispatch Services Online
	Use the INPUT Statement as a Debugging Tool

	Using Natural Debugging Tools
	Invoke Subprogram Proxies Online
	Access the Invoke Proxy Function

	Debugging Tools on the Client and Server
	Diagnostics Window
	Translations Program

	Troubleshooting
	Registry Usage
	SDC.ini
	SDCApp.ini
	Check for Necessary DLLs
	Construct Spectrum Add-In
	Useful SDC Properties
	Application Object
	NaturalDataArea Object
	Dispatcher Object
	RequestProperty Property

	Deploying Your Client/Server Application
	Transferring Data
	Data Transfer Utilities
	Construct Spectrum Administration Subsystem

	Distributing Your Application
	Step 1: Create the Executable File
	Step 2: Collect Files For Installation
	Step 3: Install the Client Application
	Step 4: Run the Application

	Using the Spectrum Dispatch Client
	Overview
	Calling a Natural Subprogram
	Step 1: Create Parameter Data Area Instances
	Step 2: Assign Values to the Fields
	Step 3: Use the CallNat Method on the Client
	Step 4: Check the Success of the CALLNAT
	Summary

	Spectrum Dispatch Client Components
	Natural Data Area Simulation
	Data Area Definitions
	Data Area Simulation Objects
	Application Object
	Create NaturalDataArea Objects
	NaturalDataArea Class
	Case Sensitivity
	Alphanumeric Fields
	Fully Qualified Field Names
	Redefined Fields
	Errors When Compiling
	Read Arrays and Structures
	Runtime Errors

	DataDefinitionArea Class
	NaturalFieldDef Class
	Client/Server Communication
	Level 1 Block Optimization

	Application Service Definitions
	Dispatcher Objects and Dispatch Service Definitions
	Service Selection
	Remote Subprogram Invocation
	Timeout, Retry, and Resume Handling
	Compression and Encryption
	Tracing
	Database Transaction Control
	Error Reporting

	User Identification and Authentication
	Library Image Files and the Steplib Chain

	Advanced Features
	FieldRef Property
	1:V Fields

	Creating Applications Without the Framework
	Setting Up the Server Components
	Create or Select Application Services
	No Terminal I/O
	Subprogram Interface
	No Global Data Area (GDA)
	Parameter Data Area (PDA) Data Size Limitation
	Subprogram Behavior
	Externalize Parameters
	Timing Issues

	Example of Creating a Simple Natural Subprogram

	Generating Subprogram Proxies
	Subprogram-Proxy Model
	Application Service Definition

	Creating the Library Image Files (LIFs)
	Construct Spectrum Add-In
	Before You Start
	Download Definitions

	Developing the Client Application
	Step 1: Create a New Project
	Step 2: Add a Reference to the SDC Object Library
	Step 3: Write Code to Initialize the SDC
	Step 4: Create the User Interface
	Step 5: Write Code to Call the Subprogram
	Step 6: Run the Application

	Appendix A: Glossary
	Appendix B: Utilities
	Response Subprogram
	Features and Benefits
	Response Length Limitation
	Supported Methods
	Message Protocol
	Call Interface
	SPAREPLY Data Area
	SPAREPM Data Area

	Spectrum Interface Subprogram
	Features and Benefits
	Broker Error Handling
	Error Logging
	Shutdown Requests
	Server Timeouts
	Command Handling

	SPUETB Interface
	Data Areas
	SPAETB Data Area
	ETBCB Data Area
	SEND-BUFFER
	RECEIVE-BUFFER
	RESERVED-AREA
	CDPDA-M

	Using SPUETB
	CMD TRACE
	Valid Keywords

	Trace Response
	Test the Trace Facility
	CMD CALLNAT

	Conversation Factory Utility
	Character Translation Subprogram
	Determine a Character Set

	Multi-Tasking Verification Utility
	Log Utilities
	Spectrum Log Utilities
	Construct Spectrum Control Record Log Utilities
	Domain Log Utilities
	Spectrum Group Log Utilities
	Application Service Definition Log Utilities
	Spectrum Steplib Log Utilities
	User and Group Log Utilities

	Index

