———
NATURAL

Natural

TP Monitor Interfaces
Version 3.1.6 for Mainframes

f; softwARE ARG

This document applies to Natural Version 3.1.6 for Mainframes and to all subsequent releases. Specifications
contained herein are subject to change and these changes will be reported in subsequent release notes or new
editions.

© June 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

TP Monitor Interfaces - Overview Table of Contents

Table of Contents

TP Monitor Interfaces - Overview .
TP Monitor Interfaces - Overview
Using Natural with TP Monitors
Using Natural with TP Monitors .
TP Monitor Systems Supported by NaturaJ
Using Natural in a Teleprocessing Environment
Embedding Natural in a TP Environment
Calling Natural Transactions under a TP Monitor
Terminating a Natural Session .
Example Programs.
Natural under CICS - Overview
Natural under CICS - Overview .
Natural CICS Interface Functionality
Natural CICS Interface Functionality.
NCISTART - Natural CICS Interface .
Natural Nucleus under CICS .
System Control under CICS . .
OSCOR/GETVIS - Natural Components in CICS Dynamrc or Operatrng System Storage
Natural Storage Threads under CICS. e e
Natural Roll Facilities under CICS.
CICS Roll Facilities
Natural Local Buffer Pool under CICS
Natural Swap Pool under CICS
NCITIDEX Terminal ID Exit Interface .
NCIUIDEX - User ID Exit Interface
NATUEX1 - User Exit . .
Natural CICS Interface Debugging Facrlrtres
Using the TPF Parameter .
Using Asynchronous Natural Sessrons
Natural CICS Generation Parameters .
Natural CICS Generation Parameters
NCISCPCB Generation Parameters
NCMDIR Macro Parameters .
CICSPLX - Switching of CICS Applrcatron Regron
ROLLFLS - Maximum Number of VSAM Roll Files .
ROLLSRYV - Roll Server Rolling.
SWPSIZE - Swap Pool Size
TSKEY - Prefixes for Natural CICS Temporary Storage Key .
TSRECSZ - Record Sizes for Main and Auxiliary Temporary Storage
USERS - Session Information Recard S .
NCMTGD Macro Parameters. .
PFKEY - PF/PA Keys for Thread Group
PRIMERF - Natural CICS Primary Roll Facrlrty
THRDSZE - Thread Size
THREADS - Number of Threads or Tasks Per Thread Group
TRAN - Transaction IDs for Thread Group . .
TYPE - Thread Type for Group.
XTRAN - Hexadecimal Transaction IDs for Thread Group
NTSWPRM Macro Parameters
NCIPAPM Generation Parameters
NCMPRM Macro Parameters.
ASA - Use ASA Control Characters For Natural Message Loggrng
BACKEND - Back-End Program Invocation Control . .

Copyright © Software AG 2002

O©COOWOWONOUOUARARDMBEDRMWWNNDNNNNNNPREPRE

Table of Contents TP Monitor Interfaces - Overview

BACKOUT - Backout Transaction in the Case of Unrecoverable Abends
CHAP - Change Task’s Dispatching Priority . .
COMACAL - CICS COMMAREA Usage for Subroutrne CaIIs .
COMAMSG - CICS COMMAREA Usage for Termination Messages
COMARET - CICS COMMAREA Usage for Task Control .
CONSOLE - CICS Terminal ID for the Operator Console .
FLDLEN - Supply Field Length List On External Program Call.
LOGDEST - Natural CICS Logging Destinatian
MSGDEST - Destination ID for Natural Error Message Loggmg
MSGTRAN - Internal Message Switching Transaction.ID .
PREFIX - Common Prefix for Programs and Files.
PSTRNID - Control of *INIT-PROGRAM Variable Setting .
RESENDC - Check for Screen Re-sending after Subroutine Calls
RESENDS - Screen Re-send Check after Pseudo-Conversational Session Resume
RJEDEST - Name of the Natural CICS Submit Destination
RJEUSER - Submit to POWER User ID Setting
SIGNON - SIGNON Behavior .
SLCALL - Standard Linkage Call.
SNDLAST - LAST Option Usage for EXEC CICS SEND Commands
TERMVAR - Terminal ID Variable for Natural Work Files .
TRANCHK - Check Input Map for Transaction ID .
UCTRAN - Lower/Mixed Case Support in Natural. .
WAITIME - Wait Time Interval for a Local System Recovery Task
NCISCPRI Warnings and Error Messages . . .
NCISCPRI Warnings and Error Messages
NCISCPRI Warnings and Error Messages .
Customizing VSAM RRDS Roll Files
Customizing VSAM RRDS Roll Files . .
Increasing the Number of VSAM RRDS Roll Frles
Decreasing the Number of VSAM RRDS Roll Files . .
Changing the Characteristics of the VSAM RRDS Roll Files.
Natural in CICS MRO Environments
Natural in CICS MRO Environments .
NCIPARM Parameter COMARET Set to YES
NCIPARM Parameter COMARET Set to NO
CICS Node Error Program Considerations for Natural
CICS Node Error Program Considerations for Natural .
Normal Situation .
Situations Not under Control of Natural CICS Interface .
Recovery Mechanisms.
Special Considerations.
Example Dummy Program.
CICS 3270 Bridge Support .
CICS 3270 Bridge Support
Default Support of CICS 3270 Bndge
Full CICS 3270 Bridge Support.
NCIXFATU - NCI Source Module
Profile Parameter DSC=0OFF Recommended
Special Natural CICS Functionality .
Special Natural CICS Functionality
Calling Non-Natural Programs .
Calling Non-Natural Programs via Standard Lmkage Conventrons
Calling Non-Natural Programs with Parameter Values in a COMMAREA .
Dummy Screen 1/Os with Natural under CICS e
NCISTART - Natural CICS Nucleus
Sample Programs

20
20
21
21
21
22
22
23
23
23
23
23
24
24
24
25
25
26
26
26
27
27
28
29
29
29
31
31
31
32
32
33
33
33
33
35
35
35
35
35
36
36
38
38
38
38
38
38
39
39
39
39
39
40
40
41

ii Copyright © Software AG 2002

TP Monitor Interfaces - Overview

In MRO Environments
Natural CICS Sample Programs
Natural CICS Sample Programs .

Sample Programs in Natural CICS Source L|brary .

XNCI3GC1 - Subprogram Call
XNCIFRNX - Front-End Program.
XNCIFRNL - Front-End Program.
XNCIFRNS - Front-End Program.
XNCIFXC2 - Front-End Program.
XNCIFRNP - Initialization Program
XNCIBACK - Termination Data Dump
XNCIRDCL1 - Exit for SYSRDC
XNCIUIDX - User Exit
XNCIUCTR - U/L Case Switch
XNCINEPL1 - Node Error Program
XNCINEP2 - Node Error Program
XNCITIDX - User Exit
Sample Programs for Use with VSE/ESA
Invoking Natural from User Programs
Invoking Natural from User Programs.
Commands for Activating a Natural Session
Using EXEC CICS XCTL or EXEC CICS LINK
Using EXEC CICS START
Sample Programs
Using the External Subroutme CMTASK
Front-End Parameters .
Front-End Invoked via LINK
In CICSplex Environments
Front-End Invoked via START .
Front-End Invoked via XCTL .
Invoking Front-End Program as Back-End .
Asynchronous Natural Processing under CICS .
Asynchronous Natural Processing under CICS
Asynchronous Natural Processing .
Asynchronous Natural Sessions under CICS
Testing and Debugging .
Logging Natural Sessions under CICS .
Logging Natural Sessions under CICS
Logging Facility
Natural Log File Def|n|t|on
Natural Log Records
Natural CICS System Restart Record
Natural Session Termination Record .
Natural CICS Performance Considerations .
Natural CICS Performance Considerations
Enironment-Specific Considerations
Choosing the Roll Facility .
Control Interval .

VSAM Roll Files versus CICS Temporary Storage

Using CICS Auxiliary Temporary Storage.
Using CICS Main Temporary Storage
Using VSAM RRDS Roll Files

Using the Natural Swap Pool under CICS

Shared Storage Threads versus GETMAINed Threads .

Storage Usage . .
Controlling Storage Usage

Copyright © Software AG 2002

Table of Contents

41
42
42
42
42
42
42
42
42
42
43
43
43
43
43
43
43
43
44
44
44
44
44
44
45
45
46
46
46
46
46
47
47
47
47
48
49
49
49
49
49
50
50
52
52
52
52
52
52
53
53
53
54
54
54
54

Table of Contents TP Monitor Interfaces - Overview

Swapping/Rolling .
Considerations for CICS 4.1 and aboye .
Conclusion . .
CICS Parameter Settrngs .
Line Compression Systems
Pseudo-Conversational versus Conversatronal Transacuons
Natural and Adabas
CICS Monitoring Products .
Natural Work Files under CICS
Natural Work Files under CICS
Customizing Work File Usage .
CICS Temporary Storage Work Files
In CICSplex Environment
System Queues.
CICS Transient Data Work Frles
Natural under Com-plete
Natural under Com-plete.
Use of the Abend Exits.
Storage Usage
Support of Back-end Programs .
Com-plete Support in Natural Batch Runs .
Support of Asynchronous Natural Processing
Invoking Natural from User Programs
Storage Thread Key Handling .
Support of User Exit Handling during Sessron Inrtralrzanon
Natural under IMS/TM - Overview
Natural under IMS/TM - Overview,
Natural under IMS/TM - Environments .
Natural under IMS/TM - Environments
IMS/TM Interface Overview
IMS/TM Environments .
Natural in a Message Processrng Regron (MPP Enwronment)
Natural in a Batch Message Processing Region (BMP Environment)
Natural in an Off-line DL/l Batch Region .
Dialog-Oriented Environments .
Special Considerations for a Conversatronal Enwronment
Special Considerations for a Non-Conversational Environment
Special Considerations for an MSC Environment .
Message-Oriented Environment
Introduction to the Message-Oriented Envrronment
Operation of the Message-Oriented Environment.
Bootstrap Module NIIBOOT .
Batch Message Processing Environment
Support of the Natural WRITE) Statement .
Hints Concerning NTPRINT and CLOSE PRINTER
Natural under IMS/TM - Components
Natural under IMS/TM - Components.
Front-End Module .
Environment-Dependent Interfaces (Drrvers)
Natural Parameter Module NATPARM
Work File Handling Module NATWKFO
Modules from Other Natural Products
Natural IMS Interface Module NIIINTFM
Natural IMS Nucleus.
Natural IMS Parameter Module NIIPARM
Transaction Code Table NIITRTAB

55
55
56
56
56
57
57
57
58
58
58
58
58
58
58
59
59
60
60
61
61
62
62
62
63
64
64
65
65
65
66
66
66
67
67
67
67
67
68
68
68
70
70
72
72
74
74
74
74
74
75
75
75
75
75
75

iv Copyright © Software AG 2002

TP Monitor Interfaces - Overview Table of Contents

Message Text Module NIMSGT. 176
DL/I Language Interface ASMTDLI 1716
Physical Input Edit Routine. 1716
Roll File and Roll Server17
Using Roll Files.
Using the Roll Server77
Shared Natural Nucleus 18
Natural Buffer POl 18
Adabas Interface 18
Preload List . . Y £ <
Natural under IMS/TM - Confrguratron Macros Y 4]
Natural under IMS/TM - Configuration Macros. 1719
NIMDRIV Macro Parameters 80
NIMPARM Macro Parameters 80
A. 81
B-C 82
E-H 83
L-M 84
R - S T = ¥
T-U P 1
NIMTRNTG Macro Parameters e =1
NIMLPCB Macro Parameters 92
NIMMSGT Macro Parameters 92
NIMPIXT Macro Parameters 93
Natural under IMS/TM - Service Programs 9%
Natural under IMS/TM - Service Programs . . S 7
Introduction to the Natural IMS/TM Interface Servrce Programs S 7
Purpose of Natural IMS/TM Interface Service Programs 94
Location of Service Programs 94
Common ReturnCodes %4
Error Handling . . S 7
Description of the Natural IMS/TM Interface Servrce Programs .
NIIBRCST - Send Passed Message to Terminal 95
NIICMD - Pass IMS Command to IMS . . . e 1<)
NIIDEFT - Prepare Deferred Switch to Natural Transactron Code 96
NIIDEFTX - Prepare Deferred Switch to Non-Natural TransactionCode 96
NIIDIRT - Prepare Direct Switch to Natural TransactonCode 97
NIIDIRTX - Prepare Direct Switch to TransactionCode 97
NIIEMOD - Modify Setting of Module Output Descriptor. 98
NIIGCMD - Retrieve Next Reply Segment of Previous IMS/TM Command 98
NIIGMSG - Retrieve First Segment Next Message 99
NIIGSEG - Retrieve Next Segment of Input Message 99
NIIGSPA - Retrieve Data from SPA Beginning 100
NIIMSIN - Retrieve IMS Environmentinfo 100
NIISRTF - Create Multi-Segment Messages 100
NIIISRTM - Insert Message Segment into Message Queue . (0 §
NIIPCBAD - Return PSB Name and PCB Address 101
NIIPCOM - Move Data to Reply Area 102
NIIPMSG - Send Message.102
NIIPSBAD - Return PSB Address 102
NIIPSPA - Replace DatainSPA 104
NIIPURG - Issue PURG Call . . . e 10
NIIRETRM - Move Data into Message Area e 022
NIISASD - Modify SENDER and OUTDEST Settings 105
NIlU3962 - Terminate Session. 105

Copyright © Software AG 2002 v

Table of Contents

Natural under IMS/TM - Service Modules

Natural under IMS/TM - Service Modules .

Purpose of Service Modules

Service Module Descriptions .

CMCMMND - Issue IMS Operator Commands . .

CMDEFSW - Deferred Transaction Switch to Natural Transact|on Code
CMDEFSWHX - Deferred Transaction Switch to Non-Natural Transaction Code
CMDIRNMX - Switch to Another Conversational Transaction w/o Message .
CMDIRNMZ - Switch to Another Conversational Transaction w. Message
CMDIRSWX - Switch to Another Conversational Transaction w. Message
CMDIRSW?Z - Switch to Another Conversational Transaction w. Message
CMDISPCB - Get PCB Content

CMEMOD - Modify MOD Name Dynam|cally

CMGETMSG - Read Next Message

CMGETSEG - Read Next Segment

CMGETSPA - Transfer Data from SPA.

CMIMSID - Get MVS Subsystem 1D

CMIMSINF - System Environment Info .

CMPCBADR - Return PCB Address

CMPRNTR - Change Default Hardcopy Destlnatlon

CMPUTMSG - Insert Output Message into I0-PCB .

CMPUTSPA - Move Data into SPA.

CMQTRAN - Content of Current Transaction Code Table Entry
CMQUEUE - Insert Message into First Alternate PCB

CMQUEUEX - Complete Control over Message Content

CMSNFPRT - Set Logical Device Name .

CMSVC13D - Terminate Natural Session

CMTRNSET - Insert SPA via Alternate PCB

NIIDDEFS - Deferred Switch to Foreign Transaction

NIIDPURG - Insert Multi-Segment Message

NIIDQUMS - Create Multi-Segment Message

NIIDSETT - Get Foreign Transaction Code .

Natural under IMS/TM - User EXxits .

Natural under IMS/TM - User Exits

NIIXACCT
NIIXSTAR
NIIXMSSP
NIIXSSTA
NIXISRM
NIXISRT .
NIXTGUO
NIIXJESA .
NIIXPRTO.
NIIXRFNU
NIXTGNO

Natural under IMS/TM Spemal Functlons .

Vi

Natural under IMS/TM - Special Functions

Prerequisites .

Accounting

Monitoring

Broadcasting .

Multi-Session Feature
Functionality of the Multi- Sessmn Feature
Session ID .
Multi-Session Database

Server Environment

TP Monitor Interfaces - Overview

106
106
106
106
106
107
107
108
108
109
110
111
111
112
112
113
113
114
114
115
115
116
116
117
117
118
118
118
119
119
120
120
121
121
121
121
122
122
122
122
122
122
122
122
122
123
123
123
123
124
124
126
126
127
127
127

Copyright © Software AG 2002

TP Monitor Interfaces - Overview

Table of Contents

Call Interface NIIBOOTS. 128

ON ERROR Routine Recommended 129
Return Codes 129
Natural under IMS/TM - Recovery Handlrng 130
Natural under IMS/TM - Recovery Handlrng 130
System and User Abends . 131
Non-Recoverable Errors 131
Recoverable Errors 131
Natural under TIAM 132
Natural under TIAM . 132
Structure of the Natural TIAM Interface 132
Common Memory Pools under TIAM 132
Natural Shared Nucleus 133
Natural under TSO 134
Natural under TSO 134
General Information about the Natural TSO Interface 134
Natural TSO Datasets . . 134
Issuing TSO Commands from Natural . 135
Natural under UTM - Overview . 136
Natural under UTM - Overview 136
Natural under UTM - Part 1 138
Natural under UTM - Part 1 138
Structure of the Natural UTM Interface 139
Formatting Messages - FREXIT 140
Embedding Natural in a UTM Applicatian 141
Common Memory Pools . 142
Natural Buffer Pool under UTM 142
Natural Swap Pool under UTM 142
Loading Natural in a Common Memory Pool Natural Load PooI 143
Natural Monitor Pool. 143

Other Storage Areas 144
Natural User Thread. . 144
Natural User Work Area Asynchronous Wrrte Buffer . 144
Natural User Area for Asynchronous Transactions 144
Natural Roll File - LINK=PAMNAT 144
Generating KDCROOT. 146
Defining the UTM Resources - KDCDEF 147
Special Definition for Type 9755/9756 Termrnals 147
Treatment of K Keys and F Keys. . 147
Support of IBM Type 3270 Terminals. 148
Support of TTY Terminals 149

UTM DC-Transaction Exit Routine NUERROR 150
UTM Startup Function . 150
UTM Shutdown Function 151
Natural under UTM - Macro Keyword Parameters 154
Natural under UTM - Macro Keyword Parameters. 154
NATUTM Macro Keyword Parameters . 154
ADACALL - Access to Adabas . 154
ADACOM - Adabas Link Module Usage . 154
ADAPRI - Activation of Adabas Priority Control for UTM Applrcatron 155
ADAUTM - Synchronization of Async UTM/Adabas Transactions . 155
AFPNAME - Name of Common Memory Pool. 155
APPLNAM - Name of Natural UTM Application 155
APRISTD - Adabas Priority for Standard UTM TAC 156
ASAPPLI - Name of Logical UTM Communications Partner .. . 156
ASYNTAC - UTM Transaction Code for Asynchronous UTM Task or Applrcatron .. . 156

Copyright © Software AG 2002

vii

Table of Contents

viii

BADTAC - Activation of UTM Function "BADTACS"

BTX - Support of BTX System

CDYNAM - Maximum Number of Programs to be Dynamrcally Loaded
CLRKEY - Activation/Deactivation of CLEAR Key. .
CURPRO - Cursor Positioning to Protected Field .

ICONTRL - UTM Input Exit for Messages in Minus Format

INITPRG - Value for Natural Variable *INIT-PROGRAM

KB - Pass KB Address as First Parameter

KBSAVE - Saving of UTM KB via SPUT .

KBUSEXT - Length of UTM KB User Extension

LFH - Use of Adabas LFH

LINK - Programs and Modules Called from Natural

LINK2/LINK3/LINK4 - Extensions of Keyword Parameter LINK

LOFFMAP - Format Name for Logoff Message .

NATMON - Automatic Activation of Natural Monitor durrng Applrcatron Startup
NUAADDR - Natural User Thread Address e
NUCNAME - Name of Bounded Reentrant Natural Module

PARMOD - Generation of Front-End and Reentrant Parts.

PENDPR - Define UTM TAC for "PEND PR" .

PFK - Function Key Modes

PRKEY - UTM Return Code for Functron Key

REFRKEY - Definition of UTM Function Key .

ROLLACC - Access Method for Natural Roll File .

ROLLTSZ - Maximum Roll Thread Size .

RSTCNT - Control of Restart Situations .

RSTWARM - Control of Restart Situations

SCRNOPT - Terminal Types with Deactivated Natural Screen Optrmrzatron
SHUTALL - Name of User Exit

SHUTLST - Name of User Exit

SPOOL - Automatic Start and Termrnatron of Prrnter Task

STRTALL - Name of User Exit for All UTM Tasks.

STRTFST - Name of User Exit for First UTM Task .
SVDYPRM - Save Area Length for Dynamic Natural Parameters .
SWAMODE - Switching from 31 to 24-Bit Address Mode .

SWDPAGE - Pageability of Swap Pool Main Directory

SWPUSID - Swap Pool User Identification

SYAPPLI - Name of Logical UTM Communications Partner

SYNTAC - UTM TAC for Sending Messages from Async to Sync UTM Applrcatrons
SYSLST - SYSLIST File Generation for UTM Task

TACEND - Action at PEND .

TCLA1 - UTM TACs for Async Transactron w. Prrorrty Level 1 .
TCLA2, TCLA3, TCLA4 - UTM TACs for Async Transaction w. Priority LeveIs 2 3 4
TCLS1 - UTM TACs for Async Transaction w. Priority Level 1. .
TCLS2, TCLS3, TCLS4 - UTM TACs for Async Transaction w. Priority LeveIs 2 3 4
TERMTAB - Terminal Control Table for Natural Roll File Management. .
TID - Adabas User ID Construction Method . .

TRACE - Trace File Number and Trace Print Record Length .

TTYLS - Physical Line Size for TTY Devices .

TTYPS - Physical Page Size for TTY Devices

UMODE - Session Processing Mode.

NATUTM Macro Entries

CMKBADR - Current Address of UTM KB
User Area in the Swap Pool Directory

NURENT Macro Keyword Parameters .

ACCNT - Call Logic for User Account Routrne
ATTKEY - Attention Interrupt Key,

TP Monitor Interfaces - Overview

156
157
157
157
157
158
158
158
158
159
159
159
160
160
161
161
161
162
162
162
163
163
164
164
165
165
165
166
166
166
167
168
168
168
168
169
169
169
169
170
170
170
170
171
171
172
173
174
174
174
176
176
176
177
177
177

Copyright © Software AG 2002

TP Monitor Interfaces - Overview Table of Contents

BTX - Support of BTX System . . . v
CALLM31 - Switching from 31 to 24-Bit Address Mode 178
CLR3270=xxx -Definition of CLEAR Key . . . v £ <
EXTAPPL - UTM TERMN Name of External DCAM or PDN Applrcatrons . v £ <
ILCS - Support of CRTE or ILCS. . . 4
PARMOD - Generation of Front-End and Reentrant Parts N e
SCRNTRC - Tracing of Screen I/Os . . . e
SPOOL - Automatic Start and Termination of Prrnter Task N e
UDS - Use of Natural forubs 179
UINPEX - Name of User Exit. 180
UOUTEX - Name ofUserExit 180
Natural under UTM - Part 3 e 2 1
Natural under UTM -Part3 1&
User Exits. . . N < Y4
ACCEXIT - Macro NATUTM e £ S Y4
ACCINIT - Macro NATUTM 182
INPTEX - Program FREXIT 182
RP2PRNT - Macro NURENT. . . £ 24
RMSPOOL - Macros NATUTM and NURENT T S X
SHUTALL - Macro NATUTM 27
SHUTLST - Macro NATUTM. 184
STRTALL - Macro NATUTM. 184
STRTFEST - Macro NATUTM. 184
TRMIOEX - Program FREXIT 184
UINPEX - Macro NURENT 185
UOUTEX -MacroNURENT 185
UVGEXIT - Macro NATUTM. 185
WHCEXT - Macro NURENT 185
Asynchronous Transaction Processing under UTM 186
Asynchronous Processing within a Natural UTM Applicaton 187
Asynchronous Processing between two Natural UTM Applications 189
Printing under UTM . . Y £ 1)
Using Local Non-Spooled Prrnters . £ 1)
Using NATSPOOL (Natural Advanced Facrlrtres) 196
Other Spooling Systems. 19
Calling Non-Natural Programs . . N RV 4
Calling UTM Chained Partial Programs 198
Calling Adabas from Non-Natural Programs in a Natural UTM Applrcatron 198
Terminating a UTM Task Abnormally 198
Natural under UTM - Part 4 e e 1)
Natural under UTM - Part4 . . e K 1)
Accounting for Natural/UTM Applrcatrons e R
Structure of the Accounting Record 200
Utility Programs for Use with Natural/UT™M 201
Utility Program NATDUE. 201
Utility Program INPTEX 202
Utility Program NATPRNT 202
utility Program UTMTAC 202
utility Program TACSWTCH. 203
Software Exchange 207
Program XAMDUSA = 1 4
Program UTMCOB o207
Program UTMNAV o207
Program NUEXAMPL 208
Program ACCEXIT 208
Program TABMOD 208

Copyright © Software AG 2002 iX

Table of Contents TP Monitor Interfaces - Overview

UTM TACCLASS Concept - Priority Control. 208
UTM TACCLASS Switch 218
Generating a Natural/UTM Applicaton 220
Generating the Natural UTM Interface21
Linking the Non-Reentrant Front-End Part and the Reentrant Part ... 222
Setting Up the Natural Roll File 222
The Start Job for a Natural UTM Application 222
Optimizing Natural UTM Applications 228
Several Applications with one Common Natural . .
Lists of Shared and Application-Specific Parameter Modules225
Entering and Defining Dynamic Natural Parameters. 225
UTM User Restart.22
Adabas Priority Control 226

X Copyright © Software AG 2002

TP Monitor Interfaces - Overview TP Monitor Interfaces - Overview

TP Monitor Interfaces - Overview

This document provides detailed information on the operation of Natural with various supported TP monitor
systems.

It is organized in the following sections:

& Using Natural with TP Monitor provides general information on the usage of Natural with TP Monitors.

@ Natural under CICS describes the functionality of the Natural CICS interface and the operation
and individual components of Natural in a CICS environment.

@ Natural under Com-plete describes how to operate Natural in a Com-plete environment.

& Natural under IMS/TM describes how to run Natural under IMS/TM.

& Natural under TIAM describes how to run Natural under TIAM.

@ Natural under TSO comprises general information about the Natural TSO Interface and
Datasets.

& Natural under UTM describes how to run Natural under UTM.

For Natural under CMS, sé&atural under VM/CMSin the Natural Operations documentation for mainframes).

The TP Monitor Interfaces documentation is supplemented by the following documents:

@ Natural Installation Guide for Mainframes
@ Natural Operations for Mainframes
@& Messages and Codes

Copyright © Software AG 2002 1

Using Natural with TP Monitors Using Natural with TP Monitors

Using Natural with TP Monitors

This section covers the following topics:

® TP Monitor Systems Supported by Natural
® Using Natural in a Teleprocessing Environment

TP Monitor Systems Supported by Natural
Currently, Natural supports the following teleprocessing monitor systems:
CICS|CMS | Com-plete| IMS/TM | TIAM |TSO|UTM

For information on using Natural with a specific TP monitor, refer to the appropriate section in this
documentation.

See alsoSYSTP Utility.

The Natural utility SYSTP provides various TP-monitor-specific functions. It is available under the TP monitors
CICS, Com-plete, IMS/TM, TIAM, TSO and UTM.

Using Natural in a Teleprocessing Environment

Embedding Natural in a TP Environment

In a teleprocessing monitor environment, Natural operates as a standard TP program and follows the rules that
apply to programs executing under the control of this TP monitor.

As the Natural code is fully reentrant, it is shared between all Natural users and only a work area exists on an
individual per-user basis (and only for the duration of this user’'s Natural session).

Natural user programs (transactions) can be executed together with native TP programs to form an integrated
system comprising both Natural and conventional programs.

Calling Natural Transactions under a TP Monitor

The Natural transactions can be called by invoking the TP program called Natural and supplying the LOGON
system command and the name of the Natural transaction to be executed in the stack.

Multiple commands/transactions and input data for the commands/transactions can be passed using the stack
when calling Natural.

Terminating a Natural Session

The Natural session can be terminated by executing a TERMINATE statement or FIN system command.

Example Programs

The Natural library SYSEXTP contains several example programs for specific functions that apply only under
certain TP monitors.

2 Copyright © Software AG 2002

Natural under CICS - Overview Natural under CICS - Overview

Natural under CICS - Overview

The Natural CICS Interface documentation covers the following topics:

Natural CICS Interface Functionality

Natural CICS Generation Parameters
NCISCPRI Warnings and Error Messages
Customizing VSAM RRDS Roll Files

Natural in CICS MRO Environments

CICS Node Error Program Considerations for Natural
CICS 3270 Bridge Support

Special Natural CICS Functionality

Natural CICS Sample Programs

Invoking Natural from User Programs
Asynchronous Natural Processing under CICS
Logging Natural Sessions under CICS

Natural CICS Performance Considerations
Natural Work Files Under CICS

References to CICS Tables

Where appropriate, any references to CICS tables (DCT, FCT, PCT, PPT, TCT, etc.) can be considered as
references to the corresponding:

® assembly-type resource definitions,
® online resource definitions via CEDA,
® batch resource definitions via DFHCSDUP.

See also:

e |[nstalling the Natural CICS Interfade the Natural Installation Guide for Mainframes.

e Natural under CICS Abend Codes and Error Messéigese Messages and Codes documentation for
mainframes)

® Error Messages from the Natural Swap Pool Manager Valid under CICS andib/Tid Messages and
Codes documentation for mainframes).

® SYSTP- this Natural utility provides various TP-monitor-specific functions.

Copyright © Software AG 2002 3

Natural CICS Interface Functionality Natural CICS Interface Functionality

Natural CICS Interface Functionality

This part of the Natural CICS Interface documentation describes the functionality of the Natural CICS interface.
It covers the following topics:

NCISTART - Natural CICS Interface
Natural Nucleus under CICS

System Control under CICS
OSCOR/GETVIS - Natural Components in CICS Dynamic or Operating System Storage
Natural Storage Threads under CICS
Natural Roll Facilities under CICS

CICS Roll Facilities

Natural Local Buffer Pool under CICS
Natural Swap Pool under CICS

NCITIDEX Terminal ID Exit Interface
NCIUIDEX - User ID Exit Interface

Natural CICS Interface Debugging Facilities

Related Documents

Installation - refer tolnstalling the Natural CICS Interfa@e the Natural Installation Guide for
Mainframes.

Utility - refer to the Natural utilit$gY STPwhich provides various TP-monitor-specific functions
Operation, Individual Components - for information on operation and the individual components of
Natural in a CICS environmen, see also:

Node Error Program Considerations for Natup@llCS 3270 Bridge ConsideratiohSpecial Natural CICS
Functionality| Natural CICS Sample PrografidCIUIDEX User ID Exit Interfacé Invoking Natural from
User Program$Asynchronous Natural Processing under CI{I9gging Natural Sessions under CIGS
Performance ConsideratioffNatural CICS Interface Debugging Facilitigsatural Work Files Under
Cics

NCISTART - Natural CICS Interface

The Natural CICS Interface NCISTART is implemented in command level Assembler, thus allowing Natural to
be compatible with the CICS Multiple Region Option and the debugging facility CEDF.

NCISTART controls session initialization, roll-in restart (in pseudo-conversational mode), terminal 1/O, database
access, ABEND processing, Natural local buffer pool calls and the loading, linking to and releasing of external
subroutines. In addition, all roll I/O operations are made from NCISTART.

Natural Nucleus under CICS

The Natural nucleus is a combination of the reentrant Natural module and various support routines, which are
delivered as source programs requiring site-dependent assemblies and as load modules.

The CICS-related components of the Natural nucleus are:

e the Natural CICS Interface NCISTART,
o the Natural CICS parameter module NCIPARM,
e the NaturalCICS interface object-only part NCINUC.

Copyright © Software AG 2002

Natural CICS Interface Functionality System Control under CICS

System Control under CICS

Natural features specific to CICS include the organization of dynamic storage in threads and the additional
capability of handling these threads so that the Natural CICS System Control Program can more efficiently
handle dynamic storage.

The Natural CICS System Control Program was initially developed to overcome the 64 KB GETMAIN limit
under CICS. It provides complete storage allocation and management functions, including roll file 1/O operations
and relocation functions for pseudo-conversational users.

In order to enhance the pseudo-conversational processing capabilities of Natural with CICS, the System Control
Program uses threads, a contiguous amount of storage which is set up for each user. This structure allows Natural
to manage dynamic storage with minimal CICS involvement.

A complete understanding of system control can be attained from the following discussion of its structure and
operation. Ensure that you understand this mechanism before starting the installation procedure of Natural under
CICS.

OSCOR/GETVIS - Natural Components in CICS
Dynamic or Operating System Storage

Scenario 1: Single CICS Region

The diagram below shows the components of the Natural system that reside in CICS dynamic storage. The
components are explained under the following headings:

® Natural Storage Threads under CICS
o Natural Local Buffer Pool under CICS
o Natural Swap Pool under CICS

o Natural Roll Facilities

CICE Fedgion
MATURSL
System Direchomy I I
MATURAL MATLIRAL
Ewap Foal Fhoragge Threads
ioptional]
MATURAL
Muclens |
MATURAL CICE
Lacal Buifer Poal Ruoll Facilities

[Dptianal) [Optonal)

Scenario 1 applies when running Natural locally in a single CICS application region under OS/390 or VSE/ESA.

Platform: |Requirement:

0S/390 Additional scenarios are possible. The following three diagrams show combinations of OS4390
only systems, CICS regions, the Natural Roll Server and the Natural Authorized Services Mandger.

Copyright © Software AG 2002 5

OSCOR/GETVIS - Natural Components in CICS Dynamic or Operating System Storage Natural CICS Interface Functionality

Scenario 2: Single OS/390 With Single CICS Region, Single Roll Server

CICE Region Roll Setver

Scenario 3: Single OS/390 With Multiple CICS Regions, Single Roll Server/Authorized
Services Manager

MYE

CICE Reion
\-\‘ Rl Servat

CICE Reion
Buthorzed
EeMfice s
Manager

CICE Fregion

Scenario 4: Multiple OS/390 With Multiple CICS Regions, Multiple Roll
Servers/Authorized Services Managers

W I s
Fall Zappat
CICS Region Rl Files CICE Region

_ Foll Roll
Zemet Zapat
: CICE Region
CICE Region | Cougiing
Facility
BEM AEM
CICS Region CICE Region

In this scenario, you have to use the ADASVC Version 6.2.n and the Adabas link routine of the Adabas/CICS
interface (ACI) Version 6.2.n.

6 Copyright © Software AG 2002

Natural CICS Interface Functionality

Natural Storage Threads under CICS

Parameter Settings Required for the Above Scenarios

Module Scenario 1 (all)) Scenario 2| Scenario 3 Scenario 4
NCMDIR

Parameters

ROLLFLS nn n/a n/a n/a

SWPSIZE nnnn n/a n/a n/a

CICSPLX NO NO YES/hame YES/hame
ROLLSRYV NO YES/hame| YES/hame YES/hame
Roll Server n/a none none name

CF structure name

Authorized Services n/a n/a SIP slot XCF group name/ CF
Manager/SIP number/size structure name

The Natural CICS interface requires a SIP slot size of 256 bytes.

Natural Storage Threads under CICS

A thread is a contiguous storage area from where Natural requests all its required storage. It can either be storage
shared by several Natural users or, in 31-bit mode environments, CICS user storage above the 16 MB line
dedicated to a specific task.

Each storage thread can be seen as the "address space" for a Natural user. Each memory allocation request issued
by the Natural nucleus is transferred to the system control program to be satisfied from the storage thread.

Storage threads are allocated when the Natural CICS interface is initialized. They are allocated in a CICS region
or partition, in which case they are permanent (shared) threads or they are allocated during the start of a Natural
CICS task, in which case they are exclusive threads (task-dependent user storage).

The technique of storage threads was implemented with Natural for the following reasons:

® To overcome the 64 KB limitation of CICS for user storage in non-31-bit mode systems.

® To be able to optimize rolling (formerly, each piece of user storage had to be written to the roll medium;
now, as there is a contiguous storage area, this area is compressed by making the relevant portions
contiguous to each other before rolling out).

® The Natural CICS interface tries to satisfy all GETMAIN requests of a Natural session from its thread. This
is faster than GETMAIN requests by means of CICS service calls. This is particularly true for CICS
command level calls, as the CICS EXEC Interface Program (EIP) is involved, too.

A thread is released by the owning task with every screen I/O. This is true for both conversational and
pseudo-conversational tasks. When a session is resumed, its storage is rolled into a thread again, unless its
storage is still there; that is, no other task used the thread in between.

The Natural thread selection algorithm balances thread usage to minimize roll I/Os. This means that the more
threads there are, the better is the chance of finding the old data thus preventing a roll-in. However, the more
threads there are, the more paging the operating system must perform to keep all threads efficiently in real
storage.

Threads are grouped together depending on their size and their type; that is, whether they have been
pre-allocated as permanently shared storage or via a GETMAIN request. The decision on which kind of thread
group to use, is controlled by the CICS transaction code at session initialization time. All storage threads
belonging to the same group have the same size.

Copyright © Software AG 2002 7

Natural Roll Facilities under CICS Natural CICS Interface Functionality

The thread should be defined as small as possible; see aBuffitieUsage Statistickinction of the Natural
utility SYSTP(described in the section Debugging and Monitoring). However, the thread must still be large
enough to hold the session with the largest sizes.

If you have separate Natural development and production environments, the rule is to have more smaller threads
in the production environment (to serve production requests as soon as possible) and fewer larger threads in the
development environment (as Natural programmers normally need larger Natural sizes and have longer "think
times").

The very first Natural session allocates all permanent (shared) threads.

Natural Roll Facilities under CICS

As permanent storage threads are shared by several users and as larger threads allocated via GETMAIN should
not be kept for too much time, a Natural task releases its thread with each terminal I/O. Previously, however, the
user data have to be saved to be able to restart the Natural session after the terminal /0O has been performed.

Session data can be saved by using

e the Natural Roll Server with its local roll buffer and roll files;
e the CICS Roll Facilities;
e the Natural swap pool.

See also the variow®mponent scenariobor more information, seeoll Server(described in the Natural
Operations for Mainframes documentation).

CICS Roll Facilities

CICS Roll Facilities are local CICS storage facilities. They can be either CICS main or auxiliary temporary
storage or VSAM relative record datasets (RRDS) which the user has previously defined to CICS. These files
allow Natural to store a user’s compressed dynamic storage when a roll-out occurs.

When a swap pool is used, the CICS roll facilities only serve as backup for the swap pool. The choice of the roll
medium is of greater importance when no swap pool is used, since it affects Natural performance and
throughput.

Every CICS service request causes CICS system overhead. So, the larger the CISIZE/record size for the roll
facility is, the less CPU overhead occurs due to fewer CICS service calls to roll a Natural session. On the other
hand, larger CISIZE/record size also means more VSAM buffer space allocated for the roll facility.

SeePerformance Consideratiof further information on roll facilities.

When using the Roll Server, the swap pool and the CICS Roll Facilities are
not available.

Natural Local Buffer Pool under CICS

The Natural local buffer pool contains all Natural modules during execution and copies of Natural modules once
they have been loaded from the Adabas or VSAM system file.

The local buffer pool must be large enough to minimize the number of Natural program loads. However, if the
local buffer pool is too large, this means wasted storage and may introduce paging overhead.

8 Copyright © Software AG 2002

Natural CICS Interface Functionality Natural Swap Pool under CICS

The local buffer pool is allocated as GETMAIN storage: that is, under VSE/ESA with a GETVIS request; under
0S/390, with either a GETMAIN request (prior to CICS/ESA Version 3.3) or EXEC CICS GETMAIN

SHARED (with CICS/ESA Version 3.3 or above). Sufficient storage must be available in the partition/region or
relevant CICS DSA respectively.

Platform: Requirement:

0S/390-type A local buffer pool is optional, as Natural can also run with a global buffer pool, which
operating systems | can be shared with other Natural environments like Natural/TSO or Natural/IMS.

Natural Swap Pool under CICS

The Natural swap pool offers the possibility to "swap" a compressed Natural session from the thread into a main
storage area instead of doing expensive roll 1/0s.

The swap pool is allocated as GETMAIN storage: that is, under VSE/ESA with a GETVIS request; under
0S/390, with either a GETMAIN request (prior to CICS/ESA Version 3.3) or EXEC CICS GETMAIN

SHARED (with CICS/ESA Version 3.3 or above). Sufficient storage must be available in the partition/region or
relevant CICS DSA respectively.

The options for the swap management are set in the Natural CICS source module "NCISCPCB".

For further details on the swap pool, S&ural Swap Podldescribed in the Natural Operations for Mainframes
documentation) andsing the Natural Swap Pool under CICS

0S/390 systems:

The swap pool can only be used when running Natural under CICS locally in a single CICS region. However,
even in such a scenario, you should consider using the Roll Server instead, because it runs asynchronously to the
CICS region and because it can provide more roll buffers in its data space than the swap pool.

When using the Roll Server, the swap pool and the Roll Facilities are not available under CICS.

NCITIDEX Terminal ID Exit Interface

While theNCIUIDEX/NATUEX1 user exit interface can be used to set the internal terminal ID system variable
*INIT-ID, the NCITIDEX terminal ID exit interface can be used to set the terminal ID which is then used by the
Natural CICS interface NCI further on, i.e., this "logical" terminal ID will be used as part of the real/physical
terminal ID to register the Natural session (refer to the SYSTP utility, User Sessions) and instead of the
temporary storage key for that session.

Then this logical terminal ID is also the default value for the *INIT-ID system variable.

The NCITIDEX terminal ID exit interface gets control earlier than the NCIUIDEX/NATUEX1 user exit
interface, therefore the system variable *INIT-ID set by the NCITIDEX exit interface can be modified once
more by the NCIUIDEX/NATUEX1 user exit interface.

This is important to know when you are running Natural transactions under a CICS session manager.
Restrictions

1. The Natural terminal ID fields are 8 characters long. So the NCITIDEX terminal ID exit may set an
8-character terminal ID. However, the CICS terminal IDs are just 4 characters long and they are unique per
CICS region. Therefore as the Natural CICS interface NCI takes only the first 4 characters of the logical
terminal ID for its purposes, it lies in the user’s reponsibility to make sure that all logical terminal IDs are
unigue regarding the first 4 characters.

2. Certain Natural CICS interface functions cannot work if the first 4 characters of the logical terminal ID do
not match the physical terminal.

Copyright © Software AG 2002 9

NCIUIDEX - User ID Exit Interface Natural CICS Interface Functionality

As a consequence,
® you cannot send a message by way of message switching to a logical terminal,
® you cannot use the SYSTP utility or NEP to flush a session at a logical terminal.

NCIUIDEX - User ID Exit Interface

Natural provides a user exit interface to determine whether or not a user is authorized to use Natural. The name
of this user exit is NATUEX1.

NATUEX1 - User Exit

NATUEX1 is called using standard calling conventions (registers 13, 14, 15 and 1) whenever a Natural user
session is activated (see the following section).

For the CICS environment, the standard calling conventions are not sufficient to issue CICS request calls and to
obtain addressability of CICS control blocks. Therefore, the load module NCIUEX1 is delivered as an interface.
This module calls the user exit NCIUIDEX (formerly CMUIDEX) using the standard linkage conventions, but in
addition passing CICS related addresses into other registers: R6 (TCTTE), R4 (EIB), R5 (EISTG).

Thus, if you want to issue requests requiring addressability of the CICS environment, the NCIUIDEX user ID
exit interface should be used rather than the standard NATUEX1 interface. Source module XNCIUIDX contains
a sample user ID exit.

Important: With each installation of a new CICS release, the NCIUIDEX interface must be reassembled and
linked.

Natural CICS Interface Debugging Facilities

The following topics are covered:

® Using the TPF Parameter
® Using Asynchronous Natural Sessions

Using the TPF Parameter

The dynamic parameter TPF=(TPF1,TPF2, TPF3,TPF4,TPF5,TPF6,TPF7,TPF8) can be set for driver-specific
options by specifying "1" for the corresponding option.

Supported options are:

TPF1|Invoke Adabas linkage module via EXEC CICS LINK with Adabas parameter in TWA and CICS]
COMMAREA rather than via DCI.
Enables debugging of Adabas-related problems via CEDF.

TPF3| Dump the whole Natural buffer pool.
With this parameter setting, the entire Natural buffer pool is included in a CICS transaction dump.
Note: Usually the Natural buffer pool is not required in a dump, as all objects from the buffer pogl
relevant to a session are dumped anyway; so this option may only be required in the case of a puffer
pool problem.

TPF4| Dump the whole EDITOR buffer pool.
With this parameter setting, the EDITOR buffer pool is included in a CICS transaction dump.

10 Copyright © Software AG 2002

Natural CICS Interface Functionality Using Asynchronous Natural Sessions

When specifying "0" (which can also be omitted), the corresponding option is not set, for example:

TPF=(0,0,0,1) which is equivalent to TPF=(,,,1)

Using Asynchronous Natural Sessions

If the first 5 characters in the dynamic parameter string for starting Natural are "ASYN,", the Natural CICS
interface will always setup an asynchronous Natural session, regardless of whether the session is terminal-bound
or not.

This may be helpful for testing purposes, particularly with EDF or with other debugging tools installed.

Copyright © Software AG 2002 11

Natural CICS Generation Parameters Natural CICS Generation Parameters

Natural CICS Generation Parameters

This part of the Natural CICS Interface documentation describes the Natural CICS generation parameters. It
covers the following topics:

NCISCPCB Generation Parameters
NCMDIR Macro Parameters
NCMTGD Macro Parameters
NTSWPRM Macro Parameters
NCIPAPM Generation Parameters
NCMPRM Macro Parameters

References to CICS Tables

Where appropriate, any references to CICS tables (DCT, FCT, PCT, PPT, TCT, TST, etc.) can be considered as
references to the corresponding:

® assembly-type resource definitions,
e online resource definitions via CEDA,
® batch resource definitions via DFHCSDUP.

Related Documents

e |Installation - refer tolnstalling the Natural CICS Interfade the Natural Installation Guide for
Mainframes.

e Utility - refer to the Natural utilit$sY STPwhich provides various TP-monitor-specific functions

® Operation, Individual Components - for information on operation and the individual components of
Natural in a CICS environmen, see also:
Node Error Program Considerations for Natu@ICS 3270 Bridge ConsiderationSpecial Natural CICS
Functionality| Natural CICS Sample PrograrffidCIUIDEX User ID Exit Interfacd Invoking Natural from
User ProgramgAsynchronous Natural Processing under CI®gging Natural Sessions under CIGS
Performance ConsideratiorjifNatural CICS Interface Debugging Facilitigsatural Work Files Under
CICs

NCISCPCB Generation Parameters

The Natural CICS interface system directory is generated by assembling and linking the NCISCPCB source
module; see the corresponding step of the CICS-specific Installation Procedurllatutia Installation Guide
for Mainframes

NCISCPCB contains the following macros:

e NCMDIR
e NCMTGD
o NTSWPRM

The purpose of these macros and the individual parameters which can be specified in the macros NCMDIR and
NCMTGD are described in the following sections.

12 Copyright © Software AG 2002

Natural CICS Generation Parameters NCMDIR Macro Parameters

NCMDIR Macro Parameters

The NCMDIR macro is mandatory and must be specified as the first macro in NCISCPCB. It contains various
options for the system.

The individual parameters which can be specified in the NCMDIR macro are described below.

CICSPLX|ROLLFLS|ROLLSRV |SWPSIZE| TSKEY | TSRECSZ| USERS

CICSPLX - Switching of CICS Application Region

This parameter is applicable under OS/390 only.

CICSPLX=YES or Switching of the CICS application region is enabled if YES or
CICSPLX=subsystem-nan| subsystem-namé characters) is specified, see explanation below.

CICSPLX=NO Switching of the CICS application region is disabled. This is the default s¢tting.

If a Natural CICS session is to be enabled to switch the CICS application region, this parameter must be set to
YES or to asubsystem-nam@latural under CICS will then pass its session information records (SIRs) to the
Authorized Services Manager’s SIP handler via the CICS task end. For more information, see the
Authorized-Services Managar theNatural Operations for Mainframes documentation

If a subsystem-nanteas been specified, this will be taken.

If YES has been specified, the SUBSID parameter value in the Natural parameter module will be taken.

A Setting this parameter to YES or to a subsystem-name automatically sets the
ROLLSRYV parameter to YES, unless ROLLSRWbsystem nanteas been
specified.

ROLLFLS - Maximum Number of VSAM Roll Files

When generating the Natural CICS interface system directory, the ROLLFLS parameter defines the maximum
number of VSAM roll files which can be supported by the environment. Possible values are:

ROLLFLS=n| The maximum number of roll filascan be set over a range of 0 t(l) 9.

ROLLFLS=5| This is the default setting.

This parameter’s setting is ignored when you are using the Natural Roll Server.

ROLLSRYV - Roll Server Rolling

This parameter is applicable under OS/390 only.

Copyright © Software AG 2002 13

SWPSIZE - Swap Pool Size Natural CICS Generation Parameters

ROLLSRV=subsystem-nanm If a subsystem-nan{d charactersis specified, this will be taken.

ROLLSRV=NO This is the default setting, if CICSPLX=NO. If CICSPLXnst NO,
ROLLSRV=YES is forced.
ROLLSRV=YES Specifying YES causes the subsystem name specified for the CICSPLX

parameter to be taken; if no such value is available, the SUBSID parameter value
specified in the Natural parameter module will be taken.

If the Natural Roll Server is to be used to save and restore the Natural session data over a screen |/O, this
parameter must be set to YESsabsystem-nam&hen the CICSPLX parameter is set to NO. If the CICSPLX
parameter isot set to NO, the ROLLSRYV parameter is set to the CICSPLX parameter specification, if it is not
explicitly set to thesubsystem-name

SWPSIZE - Swap Pool Size

This parameter specifies the swap pool size (in kilobytes).

SWPSIZEsnn| nnncan be any numeric valle.

No default value is provided. If you do not wish to use the swap pool, set SWPSIZE to "0".

This parameter’s setting is ignored when using the Natural Roll Server.

TSKEY - Prefixes for Natural CICS Temporary Storage Key

The TSKEY parameter defines the constant prefix of the temporary storage queue (see explanation below).
Possible values are:

TSKEY=(Xxxxyyyy) xxxxdefines the prefix for roll datgyyydefines the prefix for
pseudo-conversational restart data.

TSKEY=(NAT2,NCOM)| This is the default setting.

When CICS temporary storage (main or auxiliary) is to be used for the Natural CICS interface roll facility or for
the communication area for pseudo-conversational Natural tasks (as described with the NCMPRM parameter
COMARET), names for queues of task dependent unique temporary storage must be specified.

These queue names consist of a constant 4-byte key and a task-related key. For terminal-dependent tasks, this
task-related key corresponds to the terminal ID, for asynchronous non-terminal tasks it corresponds the CICS
unique task number. The constant prefix of the temporary storage queue names is defined by the TSKEY
parameter.

The Natural CICS interface requires two 4-byte prefixes: one for roll data and one for pseudo-conversational
restart dataxxxxdefines the prefix for roll datgyyydefines the prefix for pseudo-conversational restart data.
The two prefixes must be different from each other and exclusive for Natural under CICS.

When running in a CICSplex environment, the CICS temporary storage prefix for Natural session restart
information must be defined in a CICS TST as REMOTE/SHARED to be accessible in all participating CICS
regions.

TSRECSZ - Record Sizes for Main and Auxiliary Temporary Storage
The TSRECSZ parameter defines the maximum record length for rolling of data if CICS temporary storage is to

be used as Natural CICS interface roll facility. A value specification of MAXfionnandmmmmnsets the
maximum value which is possible in CICS. Possible values are:

14 Copyright © Software AG 2002

Natural CICS Generation Parameters USERS - Session Information Record

TSRECSZ=Hnnnn,mmmmjy The first subparametentinni’ applies to CICS main temporary storage and
must be in the range of 4032 to 32763 or O; if it is set to 0, CICS main
temporary storage cannot be used for a Natural roll facility.

The second subparametenrhmmmapplies to CICS auxiliary temporary
storage and must be in the range of 3976 to 32763 or O; if non-zero, this Value is
used unconditionally; if set to 0, the Natural CICS interface sets the recorg
length which fits into an auxiliary temporary storage control interval, that ig, Cl
size minus VSAM control information minus CICS control information.

A user-defined record size greater than Cl size results in fewer (logical) ral 1/0Os
at the expense of additional CICS overhead due to writing spanned records.

TSRECSZ=(32748,0) This is the default setting.

USERS - Session Information Record

This parameter specifies the number of session information record slots (SIRs). Possible values are:

USERS=Gnnnnmmn) | The subparametenhnnii’ defines the number of SIRs to be held in the Natural CICS
directory module itself.finnnr’ must be in the range from 1 to 32767. When the SIR
slots in the directory are occupied, the Natural CICS interface acquires a CICS s$hared
storage segment, large enough to hold the number of SIRs definsdii,"which
must be in the range from 0 to 255.

If the subparametemimnt is O or omitted, the system does not acquire additional
storage for SIRs if no free SIR slot is available in the system directory. If so, the
Natural CICS system is actually restricted to the number of users specified by the first
subparameter.

If a value other than 0 is specified fanthni, secondary storage segments are
allocated automatically as required. Allocated secondary segments are freed adain if
they are no longer needed.

USERS=(100,20) This is the default setting.

The Natural CICS interface permanently holds information about all active Natural sessions. Per session a
so-called Session Information Record (SIR) is maintained.

These SIRs are kept

® in a Coupling Facility when running in a Parallel Sysplex environment;
® in a data space of the Natural Authorized Services Manager when running in multiple CICS regions inside a
single OS/390 system;

® in a CICS region’s main storage when running in a single CICS AOR (locally).

However, whenever a Natural session is active in a CICS region, it will occupy a SIR slot in the current
application region.

When running locally in a single CICS AOR, the USERS parameter applies to all Natural sessions. When

running in a CICSplex environment, USERS applies to the subset of Natural sessions which is currently active in
each of the participating CICS AORs.

Copyright © Software AG 2002 15

NCMTGD Macro Parameters Natural CICS Generation Parameters

NCMTGD Macro Parameters

The NCMTGD macro is mandatory and must be specified for each thread group. The Natural CICS interface
allows you to define groups of threads. These groups are controlled/chosen by the CICS transaction ID at session
initialization. The common thread size for the various groups may differ and the groups can have different
options.

The thread group definitions are part of the Natural CICS system directory, as they are relevant to the whole
system, not just to a single session.

The individual parameters which can be specified in an NCMTGD macro are described below.

PFKEY | PRIMERF| THRDSZE| THREADS| TRAN | TYPE | XTRAN

PFKEY - PF/PA Keys for Thread Group

This parameter defines a single CICS transaction or a list of them.

PFKEY=xxx Possible values foxxare: PF1 to PF24, PA1 to PA3. Also list of keys can be specified.
No default value is provided.

PFKEY=(xxx,xxx,...] Also a list of keys can be specified. This has to be enclosed in parantheses, e.g.
PFKEY=(PF12, PF14).

When starting a session, the Natural CICS interface scans through all thread group definitions for the current
transaction ID, or PF or PA key. If it cannot be found, the first thread group is taken as default.

A At least one transaction ID (in character or hexadecimal format) or one
transaction initiating attention identifier must be specified for all groups,
except for the first group, which is used as the default group.

PRIMERF - Natural CICS Primary Roll Facility

The PRIMERF parameter defines the Natural CICS interface primary roll facility for all tasks defined in the
associated thread group. Therefore, this parameter does not apply to thread groups with TYPE=NONE. Possible
values are:

PRIMERF=VSAM| The Natural CICS interface VSAM RRDS roll files are taken as the primary roll facillty.
CICS auxiliary temporary storage is considered as the secondary roll facility, which[means
that it is used if all primary roll files become full or unavailable.

PRIMERF=AUX | CICS auxiliary temporary storage is taken as primary roll facility of the Natural CICS
interface.

PRIMERF=MAIN | CICS main temporary storage is taken as Natural CICS interface primary roll facility.

PRIMERF=NONE| The associated sessions do not roll at all. NONE is not valid for TYPE=SHR groupq and
for groups with TYPE=ALIAS redefining TYPE=SHR groups.

No default value is provided.

This parameter is ignored when using the Natural Roll Server; if you force a Natural session with Roll Server to
run conversationally with no rolling, value NONE is taken.

Points to be observed:

16 Copyright © Software AG 2002

Natural CICS Generation Parameters THRDSZE - Thread Size

e PRIMERF=VSAM and PRIMERF=AUX have the same effect, when no VSAM RRDS roll file is available
in the CICS system.

e PRIMERF=AUX and PRIMERF=MAIN have the same effect, when auxiliary temporary storage is not
defined in the CICS system.

e |[f auxiliary temporary storage is not defined in the CICS system, a specification of PRIMERF=VSAM
implies that CICS main temporary storage is considered as secondary roll facility, in case the VSAM RRDS
roll files become unavailable or full.

e If CICS main temporary storage is to be used as roll facility, the record size is definedBREESZ
parameter.

A Note that sessions that are associated with thread groups defined with

PRIMERF=NONE cannot roll due to the lack of a roll facility and are
therefore conversational by design.

THRDSZE - Thread Size

The THRDSZE parameter defines the common thread size for TYPE=GETM and TYPE=SHR groups.

THRDSZE=nn| The thread sizanncan be equal to 40 or greafer.
No default value is provided.

Note that this parameter defines thgical thread size that is available to Natural. However, the Natural CICS
interface NCI adds another 2 KB to the logical thread size for internal administration purposes. This means that
thephysical thread size or length of the thread GETMAIN request is by 2 KB greater than the THRDSZE value.

THREADS - Number of Threads or Tasks Per Thread Group

This parameter specifies the number of threads or tasks as described below. Possible values are:

THREADS=nnn| The number of threads can be equal to 999 or|less.
No default value is provided.

For TYPE=SHR thread groups, the THREADS parameter is mandatory and defines the number of threads which
are to be allocated via GETMAIN (SVC or SHARED, depending on CICS version) during installation.

For TYPE=GETM and TYPE=NONE thread groups, the THREADS parameter is optional and determines the
maximum number of concurrently active Natural tasks per thread group.

The number of threads or the number of tasks per thread group is defined by providing thread control blocks
(TCBs).

While for TYPE=SHR thread groups, each thread is closely connected to its TCB. Threads are shared by
gueueing up on the associated TCB. Thread groups of TYPE=GETM and TYPE=NONE only queue up on a
TCB to get active.

While sessions with TYPE=SHR thread groups compete for threads, the other session types compete for TCBs
with a thread already allocated (TYPE=GETM) or with no allocated thread at all (TYPE=NONE).

When the THREADS parameter is specified, the Natural profile parameters DBROLL and MAXROLL and the
calls to CMROLL are handled differently.

Copyright © Software AG 2002 17

TRAN - Transaction IDs for Thread Group Natural CICS Generation Parameters

TRAN - Transaction IDs for Thread Group

The TRAN parameter defines a single CICS transaction or a list of them.

TRAN=| Possible values: one or more CICS transaction codes defined in the PCT for Natural.
No default value is provided.

The TRAN parameter expects transaction IDs to be in character format; transaction IDs with non-alphanumeric
characters have to be enclosed in apostrophes.

When starting a session, the Natural CICS interface scans through all thread group definitions for the current
transaction ID, or PF or PA key. If it cannot be found, the first thread group is taken as default.

A list of transaction IDs has to be enclosed in paranteses, e.g. TRAN=(NATU, XY2).
A At least one transaction ID (in character or hexadecimal format) or one

transaction initiating attention identifier must be specified for all groups,
except for the first group, which is used as the default group.

TYPE - Thread Type for Group

This parameter defines which type of thread is to be used for a given group. Possible values are:

TYPE=SHR |CICS shared storage threads are used. The threads available for a thread group are shared by
(default value) all CICS transactions defined for this group. Thread selection when starting a CICS task is
done by an ENQUEUE/DEQUEUE technique. If currently no thread is available, a wait queue
for this thread group is maintained.

When running in a SYSPlex environment, the Natural parameter RELO=0FF forces segsions
with TYPE=SHR threads to be conversational to prevent a CICS region switch.

TYPE=GETM Threads allocated via GETMAIN are used, which means that a thread is actually acquired
performing a CICS GETMAIN operation - EXEC CICS GETMAIN FLENGTH - with the
thread group’s common thread size. Using threads allocated via GETMAIN, each Natural task
has exclusive thread storage available until it is terminated; that is, for pseudo-conversational
tasks from screen I/O to screen /0.

If the Natural parameter RELO=0OFF or PSEUDO=0FF is specified, tasks using thread$
allocated via GETMAIN are forced to be conversational, as there is no guarantee that gfter a
FREEMAIN of the thread a subsequent GETMAIN obtains the same storage in memory. As
thread storage allocated via GETMAIN exclusively belongs to the owning task, howevef, such
tasks can be defined as non-rollable (sed*RRBMERFparameter), which means that a givgn
thread belongs to a given task until the end of the Natural session. If so, the task is
conversational by design and no rolling is done.

TYPE=NONE | No threads are used by transactions defined in this thread group and all Natural GETMAIN
requests are directly passed to CICS for an EXEC CICS GETMAIN FLENGTH request.|By
design, such tasks cannot roll and are therefore conversational.

TYPE=ALIAS | The current NCMTGD macro provides different options for the thread group defined by [the
previous NCMTGD macro specification. However, only thread groups of TYPE=GETM and
TYPE=SHR can be redefined by one or more NCMTGD TYPE=ALIAS macro requests,
Up to 99 thread groups are supported, which means that up to 99 NCMTGD macro
specifications with TYPE other than ALIAS are recognized.

18 Copyright © Software AG 2002

Natural CICS Generation Parameters NTSWPRM Macro Parameters

XTRAN - Hexadecimal Transaction IDs for Thread Group

The XTRAN parameter is equivalent to the TRAN parameter, but it expects the transaction ID to be in
hexadecimal format.

XTRAN= | Possible values: one or more CICS transaction codes defined in the PCT for Natural.

No default value is provided.

A At least one transaction ID (in character or hexadecimal format) or one
transaction initiating attention identifier must be specified for all groups,
except for the first group, which is used as the default group.

A list of transaction IDs in hexadecimal format has to be enclosed in parantheses, e.g. XTRAN=(D5C1E3E4,
E7E8E9).

NTSWPRM Macro Parameters

The NTSWPRM macro is used to define the various aspects of the swap pool. If no swap pool is to be used, omit
this macro. For more information, sdatural Swap Podh theNatural Operations for Mainframes
documentation

NCIPAPM Generation Parameters

NCMPRM Macro Parameters

The macro NCMPRM determines all Natural session options that are relevant in a CICS environment. This
macro is part of the Natural CICS parameter module, which is created in the corresponding step of the Natural
under CICSnstallation Procedurim the Natural Installation Guide for Mainframes.

A sample NCMPRM macro definition, including all default settings, is contained in the NCIPARM source
module in dataset N@hnSRCE.

The individual parameters of the NCMPRM macro are described below.

ASA | BACKEND | BACKOUT | CHAP | COMACAL | COMAMSG | COMARET | CONSOLE| FLDLEN |
LOGDEST|MSGDEST|MSGTRAN | PREFIX| PSTRNID| RESENDC| RESENDS| RJIEDEST| RJEUSER
SIGNON|SLCALL | SNDLAST | TERMVAR | TRANCHK | UCTRAN | WAITIME

ASA - Use ASA Control Characters For Natural Message Logging

The ASA parameter determines if messages routed to the Natural CICS interface error message destination must
have a leading ASA control character or not. See alsM8@DESTparameter. Possible values are:

ASA=YES| Leading ASA control character required.

ASA=NO | Leading ASA control character not required. This is the default sdtting.

Copyright © Software AG 2002 19

BACKEND - Back-End Program Invocation Control Natural CICS Generation Parameters

BACKEND - Back-End Program Invocation Control

The BACKEND parameter defines whether a specified back-end program or transaction is to be invoked after
the session has terminated (normally or abnormally).

The BACKEND parameter has two sub-parameters. The second sub-parameter is optional. It controls if a
back-end program is to be invoked in the event of a terminal error. This also includes session clean-up tasks
started by NEP.

Possible values are YES/NO for both sub-parameters, but the default values are different.

BACKEND=YES Same as BACKEND=(YES,NO). This is the default if the BACKEND parametgr is
omitted. A potential back-end program or transaction is always invoked, particularly
after task abends, but not in the case of terminal errors.

When a back-end program is invoked, the Natural termination message and r¢turn
code are passed to the CICS transaction work area (TWA). In addition, the same
information can be passed to a CICS COMMAREA, as described with the
COMAMSG parameter .

BACKEND=(YES,YES) Same as BACKEND=(,YES). A potential backend program or transaction is alivays
invoked, particularly after abends including terminal errors.

BACKEND=NO Forces BACKEND=(NO,NO). A potential back-end program or transaction is qnly
invoked if the Natural session has been terminated normally; that is, with a Ngtural
termination message.

BACKOQOUT - Backout Transaction in the Case of Unrecoverable Abends

The BACKOUT parameter defines whether the Natural CICS interface is to perform a transaction backout by
means of an EXEC CICS SYNCPOINT ROLLBACK call or not. Possible values are:

BACKOUT=YES| All pending file updates are backed out. This is the default sgtting.

BACKOUT=NO | All pending file updates are committed.

Because of its abnormal termination exit, the Natural CICS interface intercepts all abends. If an abend is not
recoverable, all resources of the abending session are released and the session is terminated via EXEC CICS
RETURN; that is, it is terminated "normally” in terms of CICS. Thus, at the end of the task, "pending" file
updates are not automatically backed out by CICS.

CHAP - Change Task’s Dispatching Priority

The CHAP parameter defines how the Natural CICS interface is to treat long-running tasks reaching the
DBROLL and/or MAXROLL call limits. Possible values are:

CHAP=YES| The task’s dispatching priority is decremented by 1 every time it reaches the DBROLL anf/or
MAXROLL call limits. The original task dispatching priority is re-established at the next sdreen
I/0.

CHAP=NO | The session is suspended. This is the default setting.

20 Copyright © Software AG 2002

Natural CICS Generation Parameters COMACAL - CICS COMMAREA Usage for Subroutine Calls

COMACAL - CICS COMMAREA Usage for Subroutine Calls

The COMACAL parameter defines whether the Natural CICS interface is to take advantage of the CICS
command level COMMAREA facility when invoking external subroutine programs with EXEC CICS LINK.
Possible values are:

COMACAL=YES
(default value)

The Natural parameter list addresses are passed in both the CICS TWA (as with Naltural

Version 1) and in a CICS COMMAREA (as with Natural Version 2).

The COMMAREA length setting is 8 or 12, depending onRhBLEN parameter’s
setting.

Specifying YES in particular improves the communication with external subroutine
programs written in CICS command level, because it is easier for these subroutines
access a CICS COMMAREA than a CICS TWA, it also results in less overhead.

to

COMACAL=NO

Forces Natural to pass the Natural request parameter list address to an external suk
program in the CICS TWA only.

routine

The COMMAREA length setting is 0.

Actually, the COMACAL parameter can provide "compatibility mode" to Natural Version 1 regarding the way
of passing data to called external subroutines.

Set this parameter to YES if you want to take advantage of the CALL option SET CONTROL 'P=C’; see also
the description of the terminal commar®dP' in the Natural Reference documentation

COMAMSG -

CICS COMMAREA Usage for Termination Messages

The COMAMSG parameter controls whether to pass the Natural termination message and return code to a

potential back-end

program or transaction in a CICS COMMAREA. Possible values are:

COMAMSG=YES

The Natural back-end parameter area and potential termination data are passed in
COMMAREA. This is the default setting.

COMAMSG=NO

This setting forces Natural at session termination (normal or abnormal) to pass the
back-end parameter area (see &8laok-End Program Calling ConventioimstheNatural

Operations for Mainframes documentajiém a potential back-end program in the CIC$

TWA only.
Potential termination data are still passed in the COMMAREA. If there are no termir
data available, no COMMAREA is passed.

COMARET - CICS COMMAREA Usage for Task Control

The COMARET parameter defines whether the Natural CICS interface is to take advantage of the CICS
command level COMMAREA facility when terminating and restarting pseudo- conversational tasks.

Copyright © Software AG 2002 21

n CICS

Natural

ation

CONSOLE - CICS Terminal ID for the Operator Console Natural CICS Generation Parameters

COMARET=YES| A pseudo-conversational Natural task saves its restart information into a CICS
COMMAREA, unless it has been invoked with EXEC CICS LINK or the equivalent CICS
macro request.

This is the default setting.

COMARET=NO | Forces Natural to place its restart information into CICS main temporary storage, whiich

results in more overhead because of additional CICS service calls necessary to plage and
retrieve this information.
The CICS temporary storage key used consists of a prefix string (as defined with thg
NCMDIR parametefSKEY and of the terminal ID. If running in a CICSplex
environment, the CICS temporary storage key prefix must be defined in a CICS TST| as
REMOTE/SHARED to be accessible in all participating CICS regions.

Actually the COMARET parameter can provide compatibility to Natural Version 1 in terms of where to put
pseudo-conversational restart data.

CONSOLE - CICS Terminal ID for the Operator Console

The CONSOLE parameter specifies the terminal ID used by Naturalefssage switchintp the operator
console. Possible values are:

CONSOLE=xxx |xxxxcan be any 4-character terminal ID
CONSOLE=CNO1 This is the default setting under 0S/39(Q.
CONSOLE=CNSL This is the default setting under VSE/E$A.

The console terminal must allow automatic transaction initiation (ATI) in the terminal entry.

FLDLEN - Supply Field Length List On External Program Call

The FLDLEN parameter defines whether the field length list address is to be passed or not when invoking
external subroutines via EXEC CICS LINK.

FLDLEN=NO |Only the parameter address list address and the field description list address (R1 and R2, as
(default value) | described with the CALL statement) are passed in the CICS TWA and in a CICS
COMMAREA, unless the COMACAL is set to NO.

FLDLEN=YES| The field length list address (R3, as described with the CALL statement) is passed in addition
in a CICS TWA and in a COMMAREA, respectively.

The following table lists the combinations of COMACAL and FLDLEN and their associated CALL parameter
values:

NCIPARM CALL Parameters

Parameters

COMACAL |FLDLEN | TWA parameter COMMAREA parameter COMMAREA
addresses addresses length

NO NO 2 n/a 0

NO YES 3 n/a 0

YES NO 2 2 8

YES YES 3 3 12

22 Copyright © Software AG 2002

Natural CICS Generation Parameters LOGDEST - Natural CICS Logging Destination

In any case, the last address passed gets a flag saying it is the last address in the list. This flag is set in the high
order bit in the address field.

LOGDEST - Natural CICS Logging Destination

This parameter specifies the name of a CICS destination, where the Natural CICS interface writes its session log
records to. Possible values are:

LOGDEST= Any valid destination name
LOGDEST=NLOG| This is the default setting.

A CICS destination control table entry must be defined for the optional Natural CICS log dataset.

MSGDEST - Destination ID for Natural Error Message Logging

MSGDEST= Any valid destination name
MSGDEST=NERR This is the default setting,

This parameter specifies the name of the CICS destination to be used by the Natural/ CICS interface to log the
Natural session termination message if a session terminates abnormally.

Since these messages are in character format, any already available CICS destination (for example, CSSL) can
be used rather than defining a new one. For more information, see afs®Atmarameter.

MSGTRAN - Internal Message Switching Transaction ID

The parameter specifies the transaction ID internally used by the Natural message switching and asynchronous
session flushing facilities.

MSGTRAN= Any valid CICS transaction I10).
MSGTRAN=NMSG, This is the default setting.

This transaction ID must be different from any transaction ID used to invoke Natural, and it must be defined in
CICs.

PREFIX - Common Prefix for Programs and Files

This parameter defines a common modurkfix for the Natural CICS components as the Natural CICS system
directory, the CICS 3270 Bridge XFAINTU exit, the VSAM roll files, and system control records in CICS main
temporary storage holding information about all permanent GETMAIN storages by NCI as local pools and
shared threads. The TS control record keys are of thepfiafix X CR where X is an unprintable character.

PREFIX=prefix| prefix can be 1 to 5 bytes long and must conform to the naming conventions for programs and
files.
No default value provided.

PSTRNID - Control of *INIT-PROGRAM Variable Setting

When a Natural task is activated by a front-end program, the PSTRNID parameter determines, how the Natural
variable *INIT-PROGRAM is set. Possible values are:

Copyright © Software AG 2002 23

RESENDC - Check for Screen Re-sending after Subroutine Calls Natural CICS Generation Parameters

PSTRNID=YES *INIT-PROGRAM is set to the actual transaction ID used for Natural CICS
pseudo-conversational task processing, which is not necessarily the transaction ID of the task
which originally started the Natural session. This is the default setting.

PSTRNID=NO |*INIT-PROGRAM is set to the transaction ID of the task, which originally started the
Natural session.

RESENDC - Check for Screen Re-sending after Subroutine Calls

Natural optimizes the 3270 output data stream by default. The screen imaging technique used by Natural makes
it possible for Natural to always remember the map most recently sent. Thus, when sending a new map, Natural

actually sends "updates" of the old map only. With this logic, a screen image can get destroyed by 3GL programs
called by Natural which perform screen 1/0s themselves.

RESENDC=YES The Natural CICS interface checks whether any called 3GL programs have performeth
(default value) |screen I/Os. If so, the Natural CICS interface causes Natural to send a full screen with the
next screen /0.

RESENDC=NO | The Natural CICS interface causes Natural to send only updates.

RESENDS - Screen Re-send Check after Pseudo-Conversational Session
Resume

Natural optimizes the 3270 output data stream by default. The screen imaging technique used by Natural makes
it possible that Natural always remembers the map most recently sent. Thus, Natural only sends "updates" when
sending a new map, too. With this logic a screen image can get destroyed, for example, by message switching
(CICS CMSG transaction) during pseudo-conversational screen 1/0.

RESENDS=YES{ During the Natural session, the Natural CICS interface also recognizes screen 1/Os frpm
(default value) |outside and causes Natural to re-send the screen most recently issued.

RESENDS=NO | Natural only sends "updates" when sending a new map.

RJEDEST - Name of the Natural CICS Submit Destination

The parameter applies to OS/390-type operating systems only.

RJEDEST= Destination name.

RJEDEST=NRJE This is the default setting.

RJEDEST specifies thdestinatiornameof the CICS extra partition destination used by the NATRJE utility for
submitting jobs via the JES internal reader facility.

24 Copyright © Software AG 2002

Natural CICS Generation Parameters RJEUSER - Submit to POWER User ID Setting

A An appropriate CICS destination must be defined in the CICS DCT and
start-up JCL; see also the corresponding step dh#tallation Procedure
for the Natural CICS Interface (in theNatural Installation Guide for
Mainframes$.

Function code "L" or "B" farm3of the NATRJE CALL statement) must be
set for the last NATRJE call.

L When "L" is specified andrje is an extra partition destination, the
destination is closed, which in turn triggers the start of the internal reader.

B When "B" is specified andrje is an indirect destination, the destination is
not closed; in this case, a trailing "/*EOF" card must be submitted in order to
trigger the start of the internal reader.

For further information on the Natural NATRJE utility, refer to Megural Utilities for Mainframes
documentation

RJEUSER - Submit to POWER User ID Setting

The RIJIEUSER parameter only applies to VSE/ESA operating systems using the POWER spooling system.

RJEUSER=YES The Natural system variable *INIT-USER is used as the XPCC user ID and the
(default value) POWER JECL must be set up appropriately by the user.

RJEUSER=(YES,CICS

RJEUSER=(YES,NAT) The Natural system variable *USER is used as the XPCC user ID and the POWER
JECL must be set up appropriately by the user.

RJEUSER=NO The user ID 'RO00Q’ is used as the XPCC user ID for all jobs submitted by the Natural
CICS interface.

In VSE/ESA operating systems, Natural under CICS performs job submission by means of XPCC macro
requests.

The XPCC macro requires the specification of a user ID, thus giving access to the submitted job’s list or punch
output to the submitting user only, unless appropriate LDEST/PDEST parameters have been specified in the * $$
JOB statement or appropriate DEST parameters have been specified in the *$$ LST or * $$ PUN statement
respectively.

Using the special user ID 'R000’, however, gives common access to list or punch output of a submitted job
without having to code appropriate target destinations in the JECL.

SIGNON - SIGNON Behavior

This parameter defines how Natural under CICS should deal with a CICS user ID for a Natural session.

SIGNON=NO | Natural under CICS always does an EXEC CICS ASSIGN USERID (..); when users hayve not
(default value)| signed on to CICS via CESN/CSSN, recent CICSes will return the CICS default user D).

SIGNON=YES| Natural under CICS only does an EXEC CICS ASSIGN USERID (..)
a) if it is a terminal task,
b) if the user has signed on to CICS.

Copyright © Software AG 2002 25

SLCALL - Standard Linkage Call Natural CICS Generation Parameters

Further processing:

Any non-blank result of EXEC CICS ASSIGN USER ID (..), if executed, is accepted for Natural *INIT-USER
ID.

If blank, the edited (unpacked) CICS task number is taken instead for asynchronous CICS sessions. For
terminal-bound tasks, the CICS 3-byte operator ID is taken when it is non-blank, otherwise the CICS terminal ID
is taken for Natural *INIT-USER ID.

Notes:

1. CICS terminal IDs are unique within a CICS region, while CICS user and operator are not necessarily.
However, CICS terminal IDs may have duplicates in other CICS regions resulting in duplicate user IDs in
Adabas.

2. Natural user ID exMATUEX1 or Natural CICS user ID exit interfabCIUIDEX may be used to
customize *INIT-USER.

SLCALL - Standard Linkage Call

The Natural CALL statement invokes a dynamic non-Natural program using CICS conventions, that is, via an
EXEC CICS LINK. A dynamic non-Natural program can also be invoked with standard linkage conventions (for
example BALR/BASR/BASSM 14,15) if an appropriate indicator is set in the Natural program before the CALL
statement is executed (see also the terminal comptérd).

A The terminal command %P=S bypasses the SLCALL automatism of using a
certain linkage convention.

SLCALL enables you to automatically use a certain linkage convention. This is particularly relevant in CICS
systems where the CICS macro level APl is no longer supported, which is the case in CICS/ESA Version 3.2 or
above. Possible values are:

SLCALL=YES| The Natural CICS interface determines whether the module to be called is a valid CICS
command level program by looking for the string "DFH" at the module’s load point. If "IDFH"
is found, the program is invoked via an EXEC CICS LINK. If "DFH" is not found, the magdule
is treated according to standard linkage conventions and is invoked via BALR/BASSM [14,15.

SLCALL=NO | The linkage convention is not used. This is the default setting.

SNDLAST - LAST Option Usage for EXEC CICS SEND Commands

The SNDLAST parameter is useful for SNA terminals (LUTYPEZ2) with bracket protocol to force "end bracket"
for pseudo-conversational screen 1/Os.

SNDLAST=YES| The LAST option is used for EXEC CICS SEND commands before the task terminatgs in
(default value) | pseudo-conversational mode.

SNDLAST=NO | The LAST option is not used.

TERMVAR - Terminal ID Variable for Natural Work Files

This parameter enables a Natural user to have exclusive Natural work files under CICS without having to know
the terminal ID.

26 Copyright © Software AG 2002

Natural CICS Generation Parameters TRANCHK - Check Input Map for Transaction 1D

TERMVAR=xxxx |Variablexxxxis a four-character string. See explanation bejow.

TERMVAR=&TID | This is the default setting.

As terminal IDs are unique in a CICS session, exclusive work files in CICS temporary storage usually contain
the CICS terminal ID. TERMVAR allows you to define a variable. If this variable is found in a work file name,
it will be replaced by the actual terminal ID. Strings with non-alphanumeric characters must be enclosed in
apostrophes ().

A The variable string must not contain the substring "**’, because Natural will
replace this substring with the work file number, which makes it impossible to
insert the terminal ID.

TRANCHK - Check Input Map for Transaction ID

If a connection to a CICS session gets lost or dropped (for example under VM or when a session manager is
installed) without having terminated the session, another user can get into this open session when calling CICS.
Usually, the first action of a user in a CICS environment is to enter a transaction ID. This parameter offers the
following options:

TRANCHK=YES| The Natural CICS interface checks whether the first 4 bytes of the transaction ID entlered by
the user matches the Natural transaction ID. If so, the Natural CICS interface assumges a
"restart" after a connection has been lost or dropped. All resources of the "old" sessipn are
freed and a new session is started.

TRANCHK=NO | Data entered by the user are not checked for the Natural transaction ID. This is the default
setting.

UCTRAN - Lower/Mixed Case Support in Natural

This parameter enables or disables the lower/mixed case support. Possible values are:

UCTRAN=YES| Lower/mixed case support is enabled. This is the default sgtting.

UCTRAN=NO | Lower/mixed case support is disabled.

To accomplish lower/mixed case support for pseudo-conversational Natural sessions, it is necessary that the
terminal input be not already translated to upper case before the Natural nucleus gets control. Therefor the
Natural CICS interface by default switches terminals defined with UCTRAN(YES) into mixed mode
(UCTRAN(TRANID)) for the lifetime of the Natural session.

As for security reasons any modification of CICS definitions / control blocks may not be desired, the Natural
CICS interface can be prevented from modifying a terminal’s upper case translation status by setting this
NCIPARM UCTRAN parameter to NO. If so, the user must define a terminal as running in "lower case" (CICS
TYPETERM parameter UCTRAN(TRANID/NO)) to be able to use the Natural lower/mixed case support.

As all CICS versions supported by Natural Version 3.1 provide "case switching" on transaction level via the
UCTRAN parameter in a transaction's PROFILE, this NCIPARM parameter should be set to NO, thus leaving
lower/mixed case support to CICS.

Note:

In CICS, the combination of the UCTRAN parameters in both TYPETERM and PROFILE definitions
determine how CICS treats the terminal input of a pseudo-conversational transaction (for details see CICS
Resource Definition Manual or others). Therefor it is always advisable that mainly the PROFILE associated
to a transaction defines the required upper case translation status thus making an application unaffected by
any TYPETERM upper case translation mode changes.

Copyright © Software AG 2002 27

WAITIME - Wait Time Interval for a Local System Recovery Task Natural CICS Generation Parameters

WAITIME - Wait Time Interval for a Local System Recovery Task

This parameter defines after how many seconds the system recovery task should become active.

WAITIME=n |n=any number.
WAITIME=30 | The default setting is 30 seconfs.

The Natural CICS interface’s system recovery task checks the Natural CICS environment in a CICS application
region for consistency and for renegade "dead" sessions, periodically or on request. It is also necessary for the
Natural CICS interface’s Natural session flush facility.

A session marked to be flushed (either via the SYSTP utility or by a CICS node error program) can only be
terminated in the CICS application-owning region (AOR) in which the session is, or has last been, active.

At system initialization time, Natural under CICS starts an asynchronous system recovery task (with the
transaction ID as defined with thMSGTRAN parameter in the CICS AOR. This task becomes active every
secondsr{ being the value of the WAITIME parameter), checks the system for pending session flush requests in
its region, activates the flushing process, and then deactivates itself again.

28 Copyright © Software AG 2002

NCISCPRI Warnings and Error Messages NCISCPRI Warnings and Error Messages

NCISCPRI Warnings and Error Messages

This part of the Natural CICS Interface documentation describes the NCISCPRI Warnings and Error Messages.

References to CICS Tables

Where appropriate, any references to CICS tables (DCT, FCT, PCT, PPT, TCT, etc.) can be considered as
references to the corresponding:

® assembly-type resource definitions,
e online resource definitions via CEDA,
® batch resource definitions via DFHCSDUP.

Related Documents

® |[nstallation - refer tolnstalling the Natural CICS Interfa@e the Natural Installation Guide for
Mainframes.

e Ultility - refer to the Natural utilitgY STPwhich provides various TP-monitor-specific functions

e Operation, Individual Components - for information on operation and the individual components of
Natural in a CICS environmen, see also:
Node Error Program Considerations for Natuf@ICS 3270 Bridge ConsideratiohSpecial Natural CICS
Functionality| Natural CICS Sample PrograriidCIUIDEX User ID Exit Interfacd Invoking Natural from
User Program$Asynchronous Natural Processing under CI®gging Natural Sessions under CIGS
Performance ConsideratiorifNatural CICS Interface Debugging Facilitigsatural Work Files Under
Cics

NCISCPRI Warnings and Error Messages

The following messages may be output during the initialization of VSAM roll files for Natural; see also the
corresponding step of thiastallation Procedure for the Natural CICS InterfactheNatural Installation Guide
for Mainframes

mmmmmmmm REQUEST FAILURE AT OFFSET xxxxx, RTC=rrrr, ERROR=eeee,
FTNCD=ffff (E)

A VSAM macro request failednmmmmmmiis the failing macroxxxxxis the offset of the macro request
within NCISCPRI;rrrr , eeeeandfffff are the VSAM macro request return, feedback and function code.

RECORD SIZE IS LESS THAN OPTIMUM OF CI-SIZE - 7 (W)

For an (unblocked) VSAM file, the maximum possible record size is the control interval size minus 7. Any
smaller record size means wasted disk space and can result in more roll I/Os.

ACCESSED FILE IS NOT AN RRDS FILE (E)

The VSAM file to be initialized is not an RRDS, but a KSDS or ESDS file. Only VSAM RRDS files are
supported as VSAM roll files for Natural.

Copyright © Software AG 2002 29

NCISCPRI Warnings and Error Messages NCISCPRI Warnings and Error Messages

RECORD SIZE IS LESS THAN ALLOWED MINIMUM OF 4089 (E)

The minimum VSAM control interval size supported by the Natural CICS interface is 4096 and the minimum
record size supported by Natural under CICS is the corresponding optimum record size.

PARAMETER INPUT OBSOLETE AND THEREFORE IGNORED (W)

NCISCPRI does not require parameter input in JCL stream. But if available, it is retrieved (until the end-of-data).
The message is not issued for null files.

30 Copyright © Software AG 2002

Customizing VSAM RRDS Roll Files Customizing VSAM RRDS Roll Files

Customizing VSAM RRDS Roll Files

This part of the Natural CICS Interface documentation describes the customization of VSAM RRDS roll files. It
covers the following topics:

® Increasing the Number of VSAM RRDS Roll Files
® Decreasing the Number of VSAM RRDS Roll Files
® Changing the Characteristics of the VSAM RRDS Roll Files

This section does not apply if you are using the Natural Roll Server.

References to CICS Tables

Where appropriate, any references to CICS tables (DCT, FCT, PCT, PPT, TCT, etc.) can be considered as
references to the corresponding:

® assembly-type resource definitions,
e online resource definitions via CEDA,
® batch resource definitions via DFHCSDUP.

Related Documents

e |Installation - refer tolnstalling the Natural CICS Interfade the Natural Installation Guide for
Mainframes.

e Utility - refer to the Natural utilit$gY STPwhich provides various TP-monitor-specific functions

® Operation, Individual Components - for information on operation and the individual components of
Natural in a CICS environmen, see also:
Node Error Program Considerations for Natuf@ICS 3270 Bridge ConsideratiohSpecial Natural CICS
Functionality| Natural CICS Sample PrograridCIUIDEX User ID Exit Interfacg Invoking Natural from
User ProgramgAsynchronous Natural Processing under CIE®gging Natural Sessions under CIGS
Performance ConsideratiorjifNatural CICS Interface Debugging Facilitigsatural Work Files Under
CICs

Increasing the Number of VSAM RRDS Roll Files

Up to 9 VSAM RRDS roll files can be allocated. Each roll file has an ID consisting of a user-defined prefix
followed by a fixed suffix. The prefix can be 1 to 9 characters long. The suffix consists of two characters from
"R1" to "R9".

To add a new VSAM roll file, perform the following steps:

1. Create an empty VSAM RRDS conforming to your local site standards. Then initialize the dataset using the
batch program NCISCPRI, which must have been assembled during the Natural installation.The SPACE
and RECORDSIZE attributes can differ between different roll files, so you can modify them as required to
find the best values in your environment.

2. Create an FCT entry and change the CICS JCL accordingly, using the prefix/suffix for both.

The new roll file becomes available when the Natural CICS interface is initialized again.

Copyright © Software AG 2002 31

Decreasing the Number of VSAM RRDS Roll Files Customizing VSAM RRDS Roll Files

Decreasing the Number of VSAM RRDS Roll Files

Perform the following steps:

1. Ensure that Natural is not active.
2. Either delete the FCT and JCL definitions or delete the file.

The number of roll files is adjusted when the Natural CICS interface is initialized again.

Changing the Characteristics of the VSAM RRDS Roll
Files
Perform the following steps:

1. Execute the procedures described above for decreasing the number of roll files.
2. Execute the procedures for increasing the number of roll files.

32 Copyright © Software AG 2002

Natural in CICS MRO Environments Natural in CICS MRO Environments

Natural in CICS MRO Environments

This part of the Natural CICS Interface documentation describes the functionality of Natural in CICS
Multi-Region (MRO) Environments. It covers the following topics:

® NCIPARM Parameter COMARET Set to YES
® NCIPARM Parameter COMARET Set to NO

References to CICS Tables

Where appropriate, any references to CICS tables (DCT, FCT, PCT, PPT, TCT, etc.) can be considered as
references to the corresponding:

® assembly-type resource definitions,
e online resource definitions via CEDA,
® batch resource definitions via DFHCSDUP.

Related Documents

e |Installation - refer tolnstalling the Natural CICS Interfade the Natural Installation Guide for
Mainframes.

e Ultility - refer to the Natural utilit$gY STPwhich provides various TP-monitor-specific functions

® Operation, Individual Components - for information on operation and the individual components of
Natural in a CICS environment, see also:
Node Error Program Considerations for Natuf@ICS 3270 Bridge ConsideratiohSpecial Natural CICS
Functionality| Natural CICS Sample PrograridCIUIDEX User ID Exit Interfacg Invoking Natural from
User ProgramgAsynchronous Natural Processing under CI®gging Natural Sessions under CIGS
Performance ConsideratiorjifNatural CICS Interface Debugging Facilitigsatural Work Files Under
CIcs

Special considerations apply when running Natural in a CICS multi-region (MRO) environment.

NCIPARM Parameter COMARET Setto YES

When COMARET is set to YES, Natural session data are kept in two different CICS regions:

® The session restart information is kept in the COMMAREA linked to the terminal entry in the CICS
terminal owning region (TOR).

® The actual session data are kept in the CICS application owning region (AOR); that is, the thread, swap
pool, or roll facility.

This may lead to inconsistencies when, for example, the AOR is restarted, but the TOR still contains old
"pending” Natural sessions; resuming such a session results in a corresponding error message.

NCIPARM Parameter COMARET Set to NO

When COMARET is set to NO, all Natural session data are kept in the AOR, thus preventing the inconsistencies
mentioned above.

However, there may be a security concern when a terminal is removed from the TOR (either back to VTAM or
by switching the session manager or power off), and another terminal dialing to this TOR receives the ID of the
removed terminal and enters the Natural transaction code: then this terminal resumes the session of the

Copyright © Software AG 2002 33

NCIPARM Parameter COMARET Set to NO Natural in CICS MRO Environments

previously removed terminal because of the restart information in the AOR’s temporary storage, which contains
the terminal ID as part of the queue name.

To prevent such a situation, a node error program (NEP) can be install&tb¢eError Program
Considerations for NaturaindNatural CICS Sample Prograjnghich terminates a Natural session when the
associated terminal is removed.

34 Copyright © Software AG 2002

CICS Node Error Program Considerations for Natural CICS Node Error Program Considerations for Natural

CICS Node Error Program Considerations
for Natural

This section discusses CICS node error program considerations. The following topics are covered:

Normal Situation

Situations Not under Control of Natural CICS Interface
Recovery Mechanisms

Special Considerations

Example Dummy Program

See also:

e Installing a CICS Node Error Program
For information on installing a CICS node error program, refer to the section concerning user-replaceable
programs in th€ICS Customization Guidefor your CICS version.

Normal Situation

Whenever a Natural session is active, CICS resources such as thread storage, roll facility entries (that is, records
in a VSAM RRDS file or in a CICS temporary storage queue), swap pool slots etc. are used.

If these resources are under the control of the Natural CICS interface, they are correctly released whenever a
session terminates normally or abnormally.

Situations Not under Control of Natural CICS Interface

The following cases cannot be controlled by the Natural CICS interface:

1. A non-Natural program called by Natural issues an EXEC CICS ABEND CANCEL command or the
equivalent CICS macro request: the CICS task is canceled without the Natural CICS interface receiving
control to properly release all session resources.

2. Some CICS monitor products offer tools to purge CICS tasks, bypassing any abnormal termination exit set
by the application. If a Natural task is canceled this way, the Natural CICS interface has no chance to
release the resources still owned by the session.

3. A user disconnects a terminal from the CICS region (by switching the power off or using an adequate
session manager function) while a Natural session is currently not active in CICS (pseudo-conversational
screen |/O).

Recovery Mechanisms
The Natural CICS interface provides some recovery mechanisms to recover from such situations; for example:

Whenever a new Natural session is to be started, a table is scanned for another Natural session still active with
the same terminal ID. If such a session exists, it is logically terminated, and all its resources are released prior to
starting the new one.

However, it may take quite a long time between logically terminating the session and releasing its resources, and
there may also be a security concern:

Copyright © Software AG 2002 35

Special Considerations CICS Node Error Program Considerations for Natural

When the NCIPARM generation parameter COMARET is set to NO, the information to resume a Natural
session is kept in a CICS temporary storage record with the terminal ID being part of the temporary storage
gueue name. If another CICS user tries to start Natural with this terminal 1D, he/she will resume the old Natural
session rather than starting a new one.

The third case in the above list is the most crucial one. CICS provides a node error program (NEP) exit interface,
which can be used in these cases to trigger the Natural CICS interface to terminate the lost session. An
appropriate program called NCIZNEP is provided in the Natural CICS source libraiggsal CICS Sample
Programy it must be called by a DFHZNEP node error program.

Special Considerations

There are still some items to be considered:

e With CICS versions prior to CICS/ESA 3.2, the CICS node error program had to be written using CICS
macro level calls, whereas with CICS/ESA 3.2 and above, the CICS node error program must be a
command level program.

Therefore, the Natural CICS source library contains two sample node error programs: XNCINEP1 for CICS
versions prior to CICS/ESA 3.2, and
XNCINEP?2 for CICS/ESA 3.2 and above.

Both sample programs do not perform anything special for the Natural CICS environment, they merely call
(via LINK) the NCIZNEP program, which then deals with Natural under CICS.

e DFHZNEP may already be customized for a specific installation; as only one node error program is
possible, the logic of the relevant XNCINEBrogram should be adapted to the existing DFHZNEP logic.

® In MRO environments, DFHZNEP must be installed in the TOR.

® When you are using the CICS storage protection feature with CICS 3.3 or above, the NCIZNEP program
must be defined with EXECKEY(CICS).

e In the case described under 3. above, DFHZNEP may receive control more than once for various internal
error codes, since each internal error code is related to a specific CICS error message, but there may be
more than one error message resulting from a given action.

® The CICS control block constellation may have changed each time a node error program has been invoked,
for example, the COMMAREA and NEXTRANSID information in the TCTTE may have been lost after a
certain node error event.

In this case the NCIPARM parameter COMARET must be set appropriately, which means that you cannot
choose a node error event for your node error program to be invoked when passing the Natural
pseudo-conversational session restart data in a CICS COMMAREA that has already been cleaned up by
CiCs.

Example Dummy Program

If you want to know how many times and with what error codes DFHZNEP is invoked on certain actions and
how the TCTTE should look, write a dummy node error program, which only issues CICS trace requests
showing the requested information.

The following sample enables a DFHZNEP error processor to receive control for all possible error codes passed
to DFHZNEP:

DFHSNEP TYPE=INITIAL

ORG NEPTT

DC 256X’'03' invoke error processor '3’ for ALL error codes
ORG,

36 Copyright © Software AG 2002

CICS Node Error Program Considerations for Natural

DFHSNEP TYPE=ERRPROC,GROUP=3,CODE=49

set up requested information and issue trace request(s)

Copyright © Software AG 2002

Example Dummy Program

37

CICS 3270 Bridge Support CICS 3270 Bridge Support

CICS 3270 Bridge Support

This section of the Natural CICS Interface documentation describes the CICS 3270 Bridge support. The
following topics are covered:

Default Support of CICS 3270 Bridge

Full CICS 3270 Bridge Support

NCIXFATU - NCI Source Module

Profile Parameter DSC=0OFF Recommended

Default Support of CICS 3270 Bridge

By default, the Natural CICS interface supports the CICS 3270 Bridge by being able to deal with "bridged
devices", i.e. terminals which are emulated via a CICS 3270 bridge exit.

Full CICS 3270 Bridge Support

If you want full CICS 3270 Bridge support, you have to install the NCI source module NCIXFATU. Refer to the
corresponding stefssemble the Natural/CICS Interface XFAINTU Eaftthe section Installing Natural under
CICS in the Natural Installation Guide for Mainframes.

NCIXFATU - NCI Source Module

The NCIXFATU module actually is a CICS XFAINTU Global User Exit (GLUE). Its purpose is to release
Natural resources in case the bridge facility’s keep-time has expired and an associated Natural session has not
been terminated yet.

The NCIXFATU module provides the same functionality for Natural as a Node Error Program (NEP) provides
for "real" terminals.

Profile Parameter DSC=0OFF Recommended

When you are using the CICS 3270 Bridge, you are recommended to start a Natural session with profile
parameter DSC=0OFF to force Natural always to send full screens rather than the delta to the previous screen.

38 Copyright © Software AG 2002

Special Natural CICS Functionality Special Natural CICS Functionality

Special Natural CICS Functionality

This part of the Natural CICS Interface documentation explains special Natural CICS functionality. It covers the
following sections:

e Calling Non-Natural Programs
® Dummy Screen I/Os with Natural under CICS
® NCISTART - Natural CICS Nucleus

Calling Non-Natural Programs

One of the first actions a Natural task does at its start, is to activate an exit for abnormal termination processing.
This exit is used to release all resources including the thread in the case of an abnormal termination. Therefore, a
non-Natural program must not issue EXEC CICS ABEND CANCEL or the equivalent macro level request, as
such a request cancels the current session ignoring any active exit. If so, Natural is not able to clean up its
resources, and the thread and the roll facility are not released.

A thread is assigned to a Natural task whenever a Natural program is active. This is also true when non-Natural
programs are called (following CICS linkage conventions).

Therefore, such programs should not do excessive 1/0s and other work load without Natural receiving control in
between. If a non-Natural program is doing conversational screen 1/Os, you can code a SET CONTROL 'P=V’
statement in the Natural program that calls the non-Natural program before the calling statement: this indicates
that parameter data are copied out of the thread and the session is rolled out before calling the non-Natural
program.

Calling Non-Natural Programs via Standard Linkage Conventions

A non-Natural program is invoked (CALLed) by Natural in the way programs are invoked within the underlying
operating and/or TP-monitor system.

In CICS, non-Natural programs are invoked by means of EXEC CICS LINK requests. However, when, for
example, the same subroutine program (not issuing any CICS or operating system request) is to be used for both
batch and online processing, a non-Natural program may also be invoked by using CICS standard linkage
conventions; that is, via BALR R14,R15.

For further information, see the terminal commé&sie=S in theNatural Reference documentati@ee also the
parameteSLCALL in macro NCMPRM .

Calling Non-Natural Programs with Parameter Values in a COMMAREA

By default, non-NATUAL programs are called with the addresses of the request parameter and field descriptor
lists (R1 and R2; see also the description of the CALL statement Nathieal Statements documentadion
passed in the TWA and COMMAREA (depending on the setting of the NCIPARM parameter COMACAL).

A more CICS-like method is to pass the parameter values in a CICS COMMAREA, particularly when the called
program resides in another CICS region - Distributed Program Link (DPL) -, as addresses within the "calling”
region are not accessible by the "called" region.

For details and restrictions, see the terminal comr@sieC in theNatural Reference documentation

Prerequisite: This functionality requires COMACAL to be set to YES in NCIPARM.

Copyright © Software AG 2002 39

Dummy Screen 1/Os with Natural under CICS Special Natural CICS Functionality

When the parameter values are passed to a CICS COMMAREA, the first two words of the CICS TWA are
low-value, which means that no R1 and R2 information is passed.

Dummy Screen 1/Os with Natural under CICS

If a SET CONTROL 'QO’ statement is placed before a Natural statement that causes a screen 1/O, the terminal
output is not executed by Natural under CICS. Consequently, both the ENTER key and user input are not passed

back to Natural.
This functionality may be useful in the following situations:

1. When leaving pseudo-conversational screen 1/0Os to non-Natural programs called by Natural.
The non-Natural program performs the EXEC CICS SEND operation and returns to Natural. Due to the
SET CONTROL 'QO’ statement, the next Natural screen I/O terminates the task of a pseudo-conversational
session. Upon screen input, Natural receives control and invokes the non-Natural program again, which
then performs the EXEC CICS RECEIVE.

2. When changing the Natural pseudo-conversational transaction ID "in-flight" without requiring a terminal

operator intervention:

MOVE *INIT-ID TO termid
CALLNAT 'CMTRNSET’ trnid /* change the restart transaction 1D

* starting a task on your terminal forces an interrupt as if
* pressing any attention identifier

CALL 'CMTASK’ USING trnid H’0000’ H'00000000’ termid
SET CONTROL 'QO’
INPUT 'DUMMY’ /* dummy 1/O, which you will never see

WRITE 'HELLO’ *INIT-PROGRAM /* now the new transaction ID is active

3. When switching to an application outside Natural, perhaps even in another CICS AOR (application-owning
region), without requiring a terminal operator intervention:

* starting a task on your terminal forces an interrupt as if
* pressing any attention identifier

CALL 'CMTASK’ USING trnid data-length start-data termid
SET CONTROL 'QO’
INPUT 'DUMMY’ /* dummy 1/O, which you will never see

WRITE 'HELLO’ *INIT-PROGRAM /* now the new transaction ID is active

In this case, it is the responsibility of the application being invoked to stack the Natural restart data when
they are passed in a CICS COMMAREA, as a COMMAREA most likely is used by the new
(pseudo-conversational) application, too.

NCISTART - Natural CICS Nucleus

NCISTART (that is, the Natural CICS nucleus with "NCISTART" as entry point) is eligible to be placed into the
CICS PLTSD for CICS quiesce stage 1 or 2 execution.

® When executed in quiesce stage 1, NCISTART performs the SYSTP snapshot function (as described in

SYSTP Utility in the section Debugging and Monitoring).
® When executed in quiesce stage 2, NCISTART force-terminates all active Natural sessions prior to

performing the SYSTP snapshot function.

40 Copyright © Software AG 2002

Special Natural CICS Functionality Sample Programs

NCISTART holds logic to be called (via a CICS LINK) by a node error program with the relevant CICS terminal
entry address either in the CICS COMMAREA (with CICS/ESA 3.2 or above) or at the beginning of the TWA
(with earlier CICS versions).

Sample Programs

The provided sample programs XNCINEP1 and XNCINEP2 show the calling conventions.

In MRO Environments

This functionality does not apply, as Natural under CICS is normally not installed in a TOR (terminal-owning
region); the program NCIZNEP can be called instead.

Copyright © Software AG 2002 41

Natural CICS Sample Programs Natural CICS Sample Programs

Natural CICS Sample Programs

This part of the Natural CICS Interface documentation describes the Natural CICS sample programs. It covers
the following topics:

e Sample Programs in Natural CICS Source Library
e Sample Programs for Use with VSE/ESA

You can find a more detailed explanation of all these programs in the corresponding program source itself.

Sample Programs in Natural CICS Source Library

The following sample programs are supplied in the Natural CICS source library:

XNCI3GC1 - Subprogram Call

Programming Language: COBOL

This program provides a sample COBOL call to a Natural subprogram under CICS.

XNCIFRNX - Front-End Program

Programming Language: Assembler

This is a front-end program for invoking Natural via EXEC CICS XCTL.

XNCIFRNL - Front-End Program

Programming Language: Assembler

This is a front-end program for invoking Natural via EXEC CICS LINK.

XNCIFRNS - Front-End Program

Programming Language: Assembler

This is a front-end program for invoking Natural via EXEC CICS START.

XNCIFXC2 - Front-End Program

Programming Language: COBOL

This is a front-end program for invoking Natural via EXEC CICS XCTL.

XNCIFRNP - Initialization Program

Programming Language: Assembler

This program initializes the Natural CICS environment at CICS start-up.

42 Copyright © Software AG 2002

Natural CICS Sample Programs Sample Programs for Use with VSE/ESA

XNCIBACK - Termination Data Dump
Programming Language: Assembler
This back-end program displays the Natural termination message and any termination data in dump format.

If invoked from an asynchronous task, the Natural termination message will be issued on the operator console,
and potential termination data will be dumped.

NCIBACK can also be invoked by a back-end transaction ("SXR& or "RET=xxxX’), where %xxX' is the
transaction code associated with XNCIBACK.

XNCIRDCL1 - Exit for SYSRDC

Programming Language: Assembler

This program provides a sample exit for B¥SRDCutility; see the relevant section in Debugging and
Monitoring.

XNCIUIDX - User Exit

Programming Language: Assembler

This program provides a sample user exit to test/set the user ID (sCHHDEX User ID Exit Interfack

XNCIUCTR - U/L Case Switch

Programming Language: Assembler

This program serves to switch the terminal into upper/lower case mode.

XNCINEP1 - Node Error Program

Programming Language: Assembler

This node error program calls NCIZNEP using the CICS macro level.

XNCINEP2 - Node Error Program

Programming Language: Assembler

This node error program calls NCIZNEP using the CICS command level.

XNCITIDX - User Exit

Programming Language: Assembler

This program provides a sample user exit to test the terminal ID and/or to set a logical terminal or session ID.

Sample Programs for Use with VSE/ESA

For VSE/ESA, the sample programs written in Assembler are supplied as A books. The sample programs written
in COBOL are supplied as C books.

Copyright © Software AG 2002 43

Invoking Natural from User Programs Invoking Natural from User Programs

Invoking Natural from User Programs

This part of the Natural CICS Interface documentation describes the various ways of how Natural can be
invoked from user programs. It covers the following topics:

Commands for Activating a Natural Session
Front-End Parameters

Front-End Invoked via LINK

Front-End Invoked via START

Front-End Invoked via XCTL

Invoking Front-End Program as Back-End

Commands for Activating a Natural Session

A Natural session can be activated by user front-end programs with one of the following commands:

e EXEC CICS XCTL
e EXEC CICS LINK
e EXEC CICS START

or the equivalent CICS macro level requests.

Using EXEC CICS XCTL or EXEC CICS LINK

When using EXEC CICS XCTL/LINK, the parameters used by Natural can be passed in a CICS COMMAREA
or in the TWA.

e Natural determines the location of the startup parameters by inspecting the length of the COMMAREA
passed to it during session initialization.

e If the length is 22, Natural tries to locate the parameters in the COMMAREA, otherwise it is assumed that
they have been passed in the TWA.

To identify a front-end program properly, it is mandatory that the first 4 bytes of the front-end parameter list
represent the current transaction ID.

The transaction ID associated with the front-end program must have a TWA size that is equal to or greater than
the Natural TWA size; see alsaitransac{Step 15 in the section Installing the Natural CICS Interface of the
Natural Installation Guide for Mainframes).

Using EXEC CICS START

When using EXEC CICS START, the front-end and dynamic parameters used by Natural can be passed with
FROM (...) and LENGTH (...) of the EXEC CICS START command. The parameters are described on the
following page.

Sample Programs

A series of sample programs for the various programming techniques is supplied in the Natural CICS source
library; see als®atural CICS Sample Programs

44 Copyright © Software AG 2002

Invoking

Natural from User Programs Front-End Parameters

Using the External Subroutine CMTASK

It is possible to start a Natural session from a Natural program by calling the external subroutine CMTASK.
Refer to the sample Natural program ASYNCICS in library SYSEXTP.

Front-End Parameters

The following list of parameters must be supplied to invoke Natural from a user front-end program:

Pos.

Contents

1-4

Invoking transaction 1D

This value must be equal to the current transaction ID. Via the invoking transaction ID, Natural
identifies that it was called by a user front-end program.

When being called with XCTL, the transaction is restarted at the end of the Natural session via
RETURN with TRANS ID, unless a return program name is specified (see 5th parameter).

Address/offset of dynamic parameter string

If dynamic parameter overwrites are to be evaluated, this value should be set to the address Id
bytes before the dynamic parameter assignment string.

cated 12

When being called with START, the field must be set to the offset (relative to the start of the frgnt-end

parameter list) of the address located 12 bytes before the dynamic parameter assignment strir

g.

Length of the dynamic parameter string

Zero indicates that no parameters are to be passed. 32760 is the maximum length allowed. If the

maximum value is exceeded, the session is terminated with a corresponding error message.

11-14

Natural transaction ID

The value specified is the transaction ID to be used for controlling a pseudo-conversational N
session, when being called with START or XCTL. This transaction is invoked each time the N
session is restarted in pseudo-conversational mode; that is, with each terminal I/O.

If the Natural transaction ID is not specified, Natural restarts the transaction ID which initiated
current CICS task, and the front-end program regains control after each pseudo-conversation

ural
tural

he
[1/0.

15-22

Back-end program name

This 8-byte value is the program name to which control is transferred at the end of the Natural

with a CICS XCTL command, rather than restarting the calling transaction ID via RETURN with

TRANSID.

If this field is numeric in the first byte, Natural simply RETURNSs without activating any back-en
Please note that this field can be superseded by the Natural profile parameter PROGRAM.

For further details on the PROGRAM parameter,Radile Parameters theNatural Operations for
Mainframes documentatiofor the conventions of calling non-Natural back-end programs, refer
theNatural Operations for Mainframes documentation

session

Copyright © Software AG 2002 45

Front-End Invoked via LINK Invoking Natural from User Programs

Front-End Invoked via LINK

If Natural is running in pseudo-conversational mode (PSEUDO=0N) and has been invoked by EXEC CICS
LINK (or the equivalent CICS macro level request), the original invoking transaction is invoked each time
Natural writes to a terminal and waits for input, which means that Natural issues a CICS RETURN TRANSID
(..) after having written its restart information into CICS temporary storage.

The invoking transaction must recognize this situation (for example, by checking whether a NEXTTRANSID
has been sent or by the existence of NG@&MTS records - where NCOM is the Natural CICS parameter
generation option andkxxis the terminal ID -) and pass control back to Natural.

The advantage of this method is that, during the session, the front-end program can decide to pass control to
another application (for example, COBOL) and to resume the Natural session later.

For further details see tiRSEUDOparameter description (in the section Profile Parameters in the Parameter
Reference documentation).

Per design, Natural treats a LINK front-end program as a back-end program at session termination, i.e. the
Back-End Program Calling Conventioagply.

In CICSplex Environments

Make sure that the NCOMXXTS records can be accessed by all participating CICS AORs (for example via
appropriate CICS TST definitions).

Front-End Invoked via START

If the Natural session is a started task (that is, invoked by an EXEC CICS START or EXEC CICS LINK/XCTL
command by a front-end user program which has been STARTed), Natural first scans for startup parameters
supplied with the COMMAREA, then it scans for parameters in the TWA and finally, it tries to obtain the
necessary parameters by an EXEC CICS RETRIEVE command.

Front-End Invoked via XCTL

If the Natural session is initiated from a front-end program with XCTL and no return program is specified (that

is, neither a fifth parameter in the session startup parameters nor a PROGRAM specification in the Natural
dynamic parameters or the NTPRM macro), Natural restarts the user front-end transaction at session termination
via RETURN with TRANSID.

To avoid a loop condition, logic must be included into the user front-end routine to decide whether a new session
is to be started or an old session is to be resumed.

Invoking Front-End Program as Back-End

If the Natural session is initiated from a front-end program and this program is also specified to be the return
program, the user front-end should also check for the initiating transaction ID.

In particular this applies if the front-end program is not in pseudo-conversational mode but Natural is in
conversational mode.

In this case Natural is invoked again rather than getting terminated, but this time without detecting that it is
called by a front-end program, as the first parameter in the startup parameters is the Natural transaction ID.

46 Copyright © Software AG 2002

Asynchronous Natural Processing under CICS Asynchronous Natural Processing under CICS

Asynchronous Natural Processing under
CICS

This document contains special considerations that apply when when you are using asynchronous Natural under
CICS. The following topics are covered:

® Asynchronous Natural Processing
® Asynchronous Natural Sessions under CICS
® Testing and Debugging

Asynchronous Natural Processing

Asynchronous Natural processing is generally discussed in the sa&stioohronous Processiriig theNatural
Operations for Mainframes documentatibowever, some additional considerations apply when running under
CICS. These are described in the following sections.

Asynchronous Natural Sessions under CICS

Make sure that appropriate SENDER and OUTDEST destinations are specified for an asynchronous Natural
session; otherwise, any output (for example, unexpected error messages) will lead to an abnormal termination.

Also, make sure that a suitable message switching transactiddBTRAN) is specified in the Natural
parameter modulSATPARM and defined in CICS.

In addition to CICS terminal IDs and transient data destinatiorSEBDERandOUTDEST, the following
keywords are supported by the Natural CICS interface:

DUMMY | Any output is ignored.

CONSOLE | Any output is routed to the operator console.
Internally the terminal ID defined via t@&ONSOLEparameter of the NCMPRM macro is us€d.
When dealing with the console, the terminal type should be switched accordingly, using th
profile parameteT TYPE or %T= set to ASYL or other.

D

It is also possible to send Natural output data without any 3270 terminal or printer control information to, for
example, a CICS message destination such as CSSL. This can be accomplished by switching into line mode
using aSET CONTROL'T=' statement or by starting with profile parameter TTYREzx wherexxxxis BTCH

or ASYL. All Natural output is then sent line by line, with a leading ASA control character when the Natural
profile parameter EJ is set to ON; with EJ=OFF, no control character is sent at all.

A Attention:

When SET CONTROL "TxxxX or SET CONTROL '+’ is used, or PC=ON is
specified, the Natural system variable *DEVICE will be modified, which
means that it can no longer be used to determine an asynchronous Natural
session.

Copyright © Software AG 2002 47

Testing and Debugging Asynchronous Natural Processing under CICS

Testing and Debugging

Recent CICS versions offer a transaction CDEX which enables tracing of asynchronous tasks in CICS. In earlier
CICS versions, this functionality did not exist, that is, such debugging was only possible with terminal bound
tasks.

The Natural CICS Interface NCI offers some assistance in this case: You can test asynchronous Natural sessions
by starting that session from a terminal, but either with "ASYN," as the very first five characters in the dynamic
parameter string, or with the profile parameter TYREx wherexxxxis ASYN or ASYL. The Natural CICS

interface then sets up an asynchronous Natural session.

Please, note that this emulation is only 100 percent in terms of Natural; CICS keeps on treating the task as
terminal bound.

48 Copyright © Software AG 2002

Logging Natural Sessions under CICS Logging Natural Sessions under CICS

Logging Natural Sessions under CICS

This section describes how information about Natural sessions can be logged in a file which can be processed
and evaluated in batch mode. It covers the following topics:

® | ogging Facility
o Natural Log File Definition
® Natural Log Records

Logging Facility

Optionally, information about Natural sessions can be logged in a file which can be processed and evaluated in
batch mode.

In contrast to the onlin8YSTP Ultility, which just gives a snap shot of the current system usage, this logging
facility can be used to keep track of the Natural CICS system usage over a longer period of time.

Special Considerations

® It is possible that several Natural CICS environments (that is, several system directories with unique
threads, roll facilities, swap and buffer pools) share the same Natural log destination. When an SCP
environment is initialized, a "system ID" is written into the system directory. This system ID is part of an
evaluation program to "sort" log records by Natural CICS system environment.

® You are recommended to define the Natural log file in the Natural application CICS, as logging to a
"remote" log file would degrade performance.

e \When running the log file evaluation program (S&STP in Batch Modén the section Debugging and
Monitoring), the log file should be closed in CICS, otherwise unpredictable results may happen due to the
last buffer being still in storage or the EOF record missing on file.

e Sufficient disk space should be reserved for the Natural log file; preferably the log file should be defined
using secondary allocation (if the file runs full in VSE/ESA, the VSE message NO MORE AVAILABLE
EXTENTS is issued and the operator is asked to enter new extents or cancel CICS).

Natural Log File Definition

The Natural log file is a sequential disk file; that is, an "extra partition destination" in terms of CICS. By default,
the internal (logical) name of the log file is NLOG; this name can be changed by specifli@GBEST
parameter in the NCMPRM macro.

The log file has to be defined ilCACS DCTas TYPE=EXTRA with associated dataset control information

(TYPE=SDSCI entry in DCT). This file must also be defined in the CICS start-up JCL (DD statement in OS/390,
DLBL statement in VSE/ESA).

Natural Log Records

The following records are logged in the Natural log file:

e Natural CICS System Restart Record
e Natural Session Termination Record

Copyright © Software AG 2002 49

Natural CICS System Restart Record Logging Natural Sessions under CICS

Natural CICS System Restart Record
Length=96

After successful SCP system initialization, a record that holds the initialization date and time as well as other
system data like the common system prefix, the number of RCBs or the number of thread groups, is written to
the log file.

When this first log request fails, the Natural log file is flagged in the system directory as not available and no
further logging takes place.

System restart records are written whenever the system highwater marks are reset by the corresponding system
administration function of the SYSTP utility. In addition to the system start information, these records contain
the terminal ID and the user ID of the SYSTP user.

Natural Session Termination Record
Length=216

On (normal or abnormal) termination of a Natural session, a session log record is written to the log file. This
record is internally split into six parts:

1. The record control part which holds the actual session statistics:
e the current date and time (that is, the date and time when the session terminated),
e the system ID which indicates the Natural CICS environment in which the session was active,
e the record type = session record.

The record control part is common to all Natural log records to distinguish the different record types. Macro
NCMLOG holds the record layouts.

2. The user session part which holds the actual session statistics:
e the terminal ID,
the (last) user ID,
the session start date and time,
the maximum storage allocated by the session,
the number of session resumes/swap ins/roll ins,
e the maximum number of records rolled by the session (if any).
3. The thread group part which holds the current data of the thread group associated with the session:
e the thread group number,
the number of TCB slots in the group (if any),
the common thread size of the group,
the maximum storage allocated in the group by any session,
the maximum number of sessions active in the group,
the maximum wait queue size of the group (with TYPE=SHR thread groups) and the maximum
number of sessions concurrently active in the group (with TYPE=GETM thread groups),
e the number of times this maximum wait queue size was reached.
4. The thread part which holds the data of the TYPE=SHR thread used as last thread by the session (if used at
all):
o the thread name,
the thread use count,
the highest thread storage used by any session,
the number of session resumes/roll-ins into this thread,
the maximum wait queue size of this thread,
e the number of times this maximum wait queue size was reached.
5. The roll facility part which holds information about the roll facility to which the session was assigned (if it

50 Copyright © Software AG 2002

Logging Natural Sessions under CICS Natural Session Termination Record

was at all):
o the roll facility name,
the maximum number of sessions assigned to this roll facility,
the record size of the roll facility,
the slot size of the roll facility,
the number of slots in this roll facility,
® the maximum number of roll-outs to / roll-ins from this roll facility.
6. The system directory part which holds statistics about the global system usage:
® the maximum number of UCB block extensions,
e the maximum number of sessions active in the system,
e the maximum number of sessions concurrently active in SCP,
e the number of SCP system recoveries.

By design, session termination records are stored by session date and time. This means that parts 3 to 6 of a later
session record always hold more current information than those of a previous one. Parts 3 to 6 of the record are
used by the log file evaluation program to refresh the corresponding information provided; that is, information

on the thread group, thread, roll facility and SCB.

This technique is used to keep up-to-date information about the Natural CICS system resources in case CICS
terminates in an uncontrolled manner.

The session termination log records, of course, reflect only resources which have been used by the corresponding
sessions. Therefore, these records may not reflect the full SCP environment. Reports of a full SCP environment
can be obtained by making a snapshot of the whole environment by either uSvgEiRSystem

Administration Facilities (as described in the section Debugging and Monitoring) or placing Natural under CICS
into the CICS PLTSD (as described in the secBpacial Natural CICS Functional)ty

System snapshot records in the Natural log file represent session termination records without session-specific
information as listed under part 2.

Copyright © Software AG 2002 51

Natural CICS Performance Considerations Natural CICS Performance Considerations

Natural CICS Performance Considerations

This section contains guidelines for setting up Natural in a CICS environment. It covers the following topics:

Environment-Specific Considerations

Choosing the Roll Facility

Shared Storage Threads versus GETMAINed Threads
CICS Parameter Settings

Line Compression Systems

Pseudo-Conversational versus Conversational Transactions
Natural and Adabas

CICS Monitoring Products

Enironment-Specific Considerations

The following environment-specific considerations should be noted:

® When running Natural in a CICSplex environment (OS/390 only), you must use the Natural Roll Server.
® When running Natural locally in a single CICS region, however, you have several possibilities.

One possibility (0S/390 only) is to use the Natural Roll Server. The benefit of this versus using CICS roll
facilities and a swap pool is that the Natural Roll Server runs asynchronously to the CICS region and can provide
more roll buffers in its data space than the swap pool.

Choosing the Roll Facility

Control Interval

VSAM Roll Files versus CICS Temporary Storage
Using CICS Auxiliary Temporary Storage

Using CICS Main Temporary Storage

Using VSAM RRDS Roll Files

Using the Natural Swap Pool under CICS

Control Interval

You are strongly recommended to define both roll facilities, VSAM and auxiliary temporary storage, with the
largest possible control interval size of 32 KB. This minimizes the number of 1/0Os and the CPU overhead
necessary to perform the rolling.

Reasons for a control interval size of less than 32 KB might be the better exploitation of disk tracks or the usage
of virtual storage for the VSAM buffers.

VSAM Roll Files versus CICS Temporary Storage
With the same CISIZE/record size, temporary storage causes less CPU overhead than VSAM roll files:

To write nrecords to temporary storage you have to isstleCICS requests (that is, 1 for DELETQ amiwr
PUTQ) while you have to issu@ Pequests for VSAM roll files because of the VSAM transaction lagitnes
(READ for UPDATE plus REWRITE).

52 Copyright © Software AG 2002

Natural CICS Performance Considerations Using CICS Auxiliary Temporary Storage

For VSAM update requests, a physical I/O is always performed, whereas for temporary storage (AUX) records,
buffering takes place, so that in many cases, records to be read are still found in the buffers.

However, CICS temporary storage may become a bottleneck when it is also being used by other applications.

VSAM roll files for Natural can overcome this situation (although at the expense of additional VSAM buffer
space) especially when 1/0O contention can be avoided. VSAM roll files with optimum/maximum CISIZE/record
size are particularly efficient when this record size cannot be specified for the CICS temporary storage file due to
other requirements.

CICS temporary storage should be used whenever it can be dedicated to Natural. If CICS temporary storage is
also used by other applications, you should evaluate whether the Natural performance is better when using
VSAM roll files.

If Natural with CICS temporary storage does not perform worse, you should choose CICS temporary storage as
roll facility and use the "saved" VSAM roll file buffer space for more TS buffers or for an additional thread.

Using CICS Auxiliary Temporary Storage
The primary roll facility is VSAM RRDS; the default type of temporary storage is AUXILIARY.

If you are using VSAM roll files, the Natural CICS interface uses temporary storage (AUX) if all roll files
become full or unusable during a CICS session.

However, if you do not wish to use roll files or if the roll files are incorrectly installed, Natural under CICS uses
temporary storage (AUX) for all rolling. When temporary storage (AUX) is used as roll file, the control interval
size for this file must be at least 4 KB. If auxiliary temporary storage is not available, main temporary storage is
used instead.

The number of VSAM buffers defined by the CICS SIT parameter TS should be increased to a reasonable value
to reduce the number of physical 1/0s. The CICS statistics should be checked for bottlenecks in this area.

Using CICS Main Temporary Storage

With CICS main temporary storage as roll facility, no 1/O is performed on rolling, but due to large main storage
amounts used, tuning considerations may be required due to increased paging.

Using VSAM RRDS Roll Files

The VSAM roll files should be considered for normal CICS VSAM file tuning, for example, BUFNO and
STRNO parameters in the FCT. The CICS shutdown statistics should be checked for bottlenecks in this area.

As the roll files serve as a kind of page dataset for Natural, everything which slows down the Natural rolling
should be avoided, as there is journaling and logging; dynamic transaction backout (DTB) and forward recovery
for roll files is useless and only causes overhead.

In MRO Environments

For performance reasons the VSAM roll files should be defined in the same CICS system in which the Natural
applications are running; MRO function shipping should not be invoked. CICS local shared resources (LSR) can
be used if there are enough buffers available.

Copyright © Software AG 2002 53

Shared Storage Threads versus GETMAINed Threads Natural CICS Performance Considerations

Separate LSR Pool for Natural

The definition of a separate LSR pool for Natural roll files is recommended, with the number of strings
(STRNO) greater than the number of threads. The number of buffers should also be greater than the number of
threads. A greater number of buffers increase the look-aside hit ratio.

Using the Natural Swap Pool under CICS

You are strongly recommended to use a swap pool rather than a large number of VSAM temporary storage
(AUX) buffers or temporary storage (MAIN).

The Natural swap manager handles the compressed session storage very efficiently and reduces CPU and 1/O
overhead. The size of the swap pool should be as large as possible. For example, a swap pool of 2.5 MB would
be required to hold 50 sessions which fit into 50 KB slots.

From a performance point of view, it does not make any sense to use main temporary storage as a backup facility
for the swap pool, since both of these facilities use CICS main storage. In general though, using the swap pool is
more advantageous, because CICS services overhead is eliminated. Rather than overflowing to main temporary
storage, it would be better to enlarge the swap pool and to use disk storage (that is, VSAM roll files or auxiliary
storage) as its backup facility.

If virtual storage becomes a bottleneck, the number of roll facility buffers and possibly the number of threads
should be minimized to the benefit of the swap pool.

Shared Storage Threads versus GETMAINed Threads

Storage Usage

Controlling Storage Usage
Swapping/Rolling

Considerations for CICS 4.1 and above
Conclusion

Storage Usage

Shared storage threads are pre-allocated during Natural CICS system initialization, which means that the storage
covered by these threads is dedicated to the Natural CICS system, regardless of whether there are active sessions
or not. On the other hand, GETMAINed threads only exist while the CICS task is active.

Controlling Storage Usage

With shared storage threads (TYPE=SHR), Natural under CICS always uses what has been pre-allocated during
the initialization of Natural; therefore, the size of storage used by Natural threads is easily predictable. For
GETMAINed threads (TYPE=GETM), however, the actual storage used depends on the number of Natural
sessions that are currently active.

Although Natural itself has no mechanism for setting the maximum number of GETMAINed threads, this can be
controlled by grouping transaction codes into a TCLASS. When a transaction code is defined in a TCLASS, the
maximum number of parallel tasks can be regulated by the CMXT parameter of the CICS system initialization
table (SIT).

54 Copyright © Software AG 2002

Natural CICS Performance Considerations Swapping/Rolling

Swapping/Rolling

When a Natural session releases its shared storage thread, session data are kept in the thread in uncompressed
format, unless another session needs to use this particular thread. If so, the new session is responsible for saving
the old session’s data.

Such an activity is called "deferred rolling”. It enables you to eliminate rolling or swapping entirely, provided
that the number of available threads is greater or equal to the number of concurrently active Natural sessions.

Conversely, sessions that use GETMAINed threads always save their data prior to the FREEMAIN operation at
CICS task termination, which leads to a roll/swap overhead regardless of the number of concurrently active
Natural sessions.

In environments with high volumes of Natural transactions, there is practically no difference between saving
session data via the "immediate" or the "deferred" rolling method.

In busy Natural environments with a high ratio of Natural sessions to program storage threads, there is more
roll-in/roll-out overhead, since these threads are shared by several Natural sessions. A potential problem in this
situation is thread contention caused by Natural tasks with long-running Adabas requests; that is, with many
Adabas calls.

To prevent such tasks from "locking" a thread for too long, they can be forced to release their thread by adjusting
the ADACALL parameter of NCIPARM. For GETMAINed threads, however, contention between two or more
Natural sessions never occurs, since a TYPE=GETM thread belongs exclusively to the Natural session it was
allocated for.

TYPE=GETM threads can thus be considered "single-use" resources that are never shared, whereas TYPE=SHR
threads can be considered "multi-use" resources that may be shared.

Considerations for CICS 4.1 and above

The most important feature of CICS 4.1 and above is transaction isolation, which means that a task’s storage can
be protected against other tasks.

To take advantage of this facility with Natural, TYPE=GETM threads should be used, since these threads are
subject to transaction isolation, whereas "shared" TYPE=SHR threads are not. Also additional CICS overhead
occurs for TYPE=SHR threads with CICS 4.1 and above.

While the thread selection algorithm for TYPE=GETM threads is trivial (when a Natural task is started, a thread
is allocated via CICS GETMAIN), for TYPE=SHR threads, it is more complicated: the Natural threads
environment is managed by NCISTART (queueing and balancing), whereas CICS does not know anything about
Natural threads. In contrast to TYPE=GETM threads, where CICS would release the thread at the latest at the
end of the task, with TYPE=SHR threads, Natural has to assign/release them to/from their sessions. In order to
do so, Natural maintains a list of thread control blocks (TCBSs).

Although Natural always keeps an exit active to be able to release session resources unknown to CICS (for
example, TYPE=SHR threads) in the case of abnormal task termination, situations may occur where a Natural
task terminates without its thread being marked as free in the associated TCB (for example, if an EXEC CICS
ABEND CANCEL request has been issued in a non-Natural program called by Natural, or if Natural sessions
have been flushed by any KILL transactions of a performance monitor).

To prevent problems with threads inadvertently left busy, Natural under CICS always checks in its thread
selection algorithm whether the CICS task associated to a busy thread is still existing; if not, the thread is
released.

Copyright © Software AG 2002 55

CICS Parameter Settings Natural CICS Performance Considerations

With CICS versions prior to CICS/ESA 4.1, this checking for active CICS tasks was done by control-block
jumping, which means that Natural was checking for an active task by testing the consistency of the task’s
EISTG, TCA and TQE control blocks. With CICS/ESA 4.1 and above, because of transaction isolation, the
storage of another task may not be accessible at all.

To accomplish this function in CICS/ESA 4.1 and above, NCISTART issues an EXEC CICS INQUIRE
STORAGE TASK() request for any thread identified as busy in the thread selection routine. This means that
there may have been some CICS requests before the task is finally ENQueued for thread resources. The same
CICS command is also used for the serialization of Natural sessions (for example, deferred rolling of
TYPE=SHR threads).

Conclusion

Both TYPE=SHR and TYPE=GETM threads have their advantages and disadvantages. However, with
CICS/ESA 4.1 and above, TYPE=GETM threads are preferred, because of:

e the support of transaction isolation,
e more CICS-like tuning possibilities,
® worse performance of TYPE=SHR threads.

CICS Parameter Settings
CICS SIT parameters AMXT and CMXT should be used to control the number of concurrent Natural tasks.

The number specified should be greater than the number of threads. You should also consider to specify a
separate transaction class with a suitable CMXT parameter for asynchronous Natural tasks and for Natural
Advanced Facilities spool tasks so as to prevent logouts of "normal” Natural terminal tasks by too many of such
"background" tasks occupying threads. Special thread groups can be defined for these transactions.

CICS dumps for Natural transactions should be suppressed, unless requested from Software AG personnel for
debugging purposes. Natural itself generates dumps (via EXEC CICS DUMP) for non-program check abends,
and also for program checks if the Natural session parameter DU is set to ON. When no Natural dump is
generated, a CICS dump is redundant and just causes overhead (particularly when creating a system/region
dump, since the whole CICS system is halted until the snap dump is completed).

CICS trace is essential when analyzing problems, although it introduces system overhead. Also CICS
performance monitoring tools and accounting packages cause system overhead of up to 30 percent and more.
Some packages internally turn on the CICS trace and then intercept it.

You should be aware of this potential system overhead. Also remember that the Natural CICS interface uses the
CICS command level application programming interface: CICS command level requests produce much more
trace entries (apart from other overhead) than CICS macro level requests.

Line Compression Systems

Natural itself optimizes its data streams by means of RA (repeat to address) and other techniques as screen
imaging etc. If other line compression systems are installed, the Natural transactions should be excluded from
being processed by these systems, as this would introduce overhead without achieving any benefit.

56 Copyright © Software AG 2002

Natural CICS Performance Considerations Pseudo-Conversational versus Conversational Transactions

Pseudo-Conversational versus Conversational
Transactions

When resuming a session, conversational Natural tasks are locked to their initial thread, which means that a
conversational task has to wait for this thread if it is currently not available. Pseudo-conversational Natural tasks,
however, are flexible to roll into any available thread.

In other words, the "classical" advantage of conversational tasks - less I/Os for saving/restoring data over screen
I/O operations - does not apply for Natural because of its thread technique.

Natural and Adabas

Since a Natural task in CICS waits for completion of an Adabas call, the servicing Adabas region/partition
should always have higher priority than the CICS region/partition to minimize wait time.

CICS Monitoring Products

CICS monitoring products may offer facilities to purge CICS tasks, bypassing any abnormal termination exit set
by the application.

A Attention:

Such facilities should not be used to cancel Natural tasks, as Natural may not
be able to clean up its resources, and, even worse, the Natural CICS system
may be left in an inconsistent state depending on what this task was doing.

To cancel Natural sessions, the Cancel/Flush Session functions of the B&isT& utility should be used
instead; see the relevant section in Debugging and Monitoring for details.

Copyright © Software AG 2002 57

Natural Work Files under CICS Natural Work Files under CICS

Natural Work Files under CICS

This document discusses the use of Natural work files under CICS. It covers the following topics:

® Customizing Work File Usage
® CICS Temporary Storage Work Files
® CICS Transient Data Work Files

Customizing Work File Usage

The Natural CICS interface supports Natural work files in CICS either as CICS transient data queues or as CICS
temporary storage queues, both auxiliary and main.

To customize usage, set the following subparameters in the WORK profile parameter:
AM=CICS, TYPE=TD/AUX/MAIN, DEST= queuename

For more information on the WORK profile parameter and on how to set the above subparameter values, see the
NTWORK macro (refer to Parameter Modules in the Natural Parameter Reference documentation).

CICS Temporary Storage Work Files

CICS temporary storage queues, both auxiliary and main, for CICS work files are RECFM=V files by design,
available for input and output.

Although in Natural under CICS there is no exclusive control of a specific TS queue by a Natural session, you
can automatically create session- or terminal-dependent work files by specifying the string defined in the
NCIPARM TERMVAR parameter in the DEST subparameter. When such a string is found within the
eight-character DEST subparameter, it is replaced by the actual terminal ID.

In CICSplex Environment

When running in a CICSplex environment, Natural work files in CICS temporary storage must be defined as
TYPE=SHARED or TYPE=REMOTE in a CICS TST.

System Queues

In Natural under CICS, system queues cannot be accessed. (System queues are TS queues with a prefix defined
in theTSKEY parameter of macro NCMDIR.)

CICS Transient Data Work Files

A CICS transient data queue for a Natural CICS work file must be defined in the CICS DCT. For indirect
destinations, the attributes of thasedestinations are propagated. In particular, the attributes of an
extra-partitiondestination, such as RECFM or TYPEFLE, determine the Natural work file attributes.

Intra-partition destinations have RECFM=V set by design and are available for both input and output.

CICS transient data work files are "shared files" in the sense that more than one session may issue 1/0s against
such a file.

58 Copyright © Software AG 2002

Natural under Com-plete Natural under Com-plete

Natural under Com-plete

This section describes how to operate Natural in a Com-plete environment.
It covers the following topics:

Use of the Abend Exits

Storage Usage

Support of Back-end Programs

Com-plete Support in Natural Batch Runs

Support of Asynchronous Natural Processing

Invoking Natural from User Programs

Storage Thread Key Handling

Support of User Exit Handling during Session Initialization

See also:

e For further details of the Com-plete product, refer to the Com-plete documentation set.
® [or details concerning the following topics, refer toNatural Installation Guide for Mainframes

Structure and Functionality of the Natural Com-plete Interface
Prerequisites

Installation Tape for the Natural Complete Interface
Installation Procedure for the Natural Complete Interface
Using a Natural Local Buffer Pool under Com-plete

Using the Com-plete *ULIB Function

Installation Verification

Customizing a Natural Com-plete Environment

® The Natural utility SYSTP provides various TP-monitor-specific functionsI¥&TP Utility).
® See alsdNatural under Com-plete Abend Codes and Error Messages

Copyright © Software AG 2002

59

Use of the Abend Exits Natural under Com-plete

Use of the Abend EXxits

The SPIE and ABEXIT exits can generally be deactivated by setting SPIEA=NO in NCFPARM.
The ABEXIT exit is called during Com-plete’s EOJ handling for an abnormal program termination other than a
0CX abend to clean up processing.

By default, an OCX abend is interpreted by the SPIE exit routine.

® Running with DU=0ON, the Natural session is dumped and correctly terminated with error message
NAT9974.

® Running with DU=FORCE, the SPIE and ABEXIT exit routines are disabled, an immediate dump during
Com-plete is produced.

If DU=OFF, Natural responds with error message NAT0954, NAT0955 or NAT0956, and the entire abend PSW
and registers 0 to 15 are contained in the IOCB at offset x'290’.

Note: DU=SNAP is currently not supported for COM51, but only with the next Com-plete version.

Storage Usage

At session initialization, the amount of space defined with parameter NTHSIZE in NCFPARM is allocated as
thread GETMAIN above or below the 16 MB line, depending on the parameter THABOVE, for usage by
Natural.

The WPSIZE profile parameter determines the sizes of below and above work pools. By default, the size of the
below subpool is set to 32 KB.

Therefore, you must catalog the Natural Com-plete front part with the Com-plete utility ULIB, RG size = 36KB
or larger.

The remaining areas within the Com-plete thread parts below and/or above (Com-plete ULIB RG= specification
and/or THABOVESIZE= specification) are used by Com-plete for the following things:

® user subroutines;
e the extended program interrupt element (EPIE) in OS/390;
® subproducts doing "physical" GETMAIN requests, this enforces the Natural work pool allocation.

For more details concerning the ULIB RG and THABOVESIZE parameters, refer@othelete Utilities
documentation

60 Copyright © Software AG 2002

Natural under Com-plete Support of Back-end Programs

Support of Back-end Programs

Natural passes the following string to a back-end program:

the Natural return code (fullword),

the Natural termination message (A72),

the length of the termination area (fullword),
the termination data.

This string is mapped by the NAMBCKP macro.

The XNCFBACK source module is an example of a Natural back-end program in a Com-plete environment. It is
written as reentrant code and can be loaded as RESIDENTPAGE program or once per user.

Com-plete Support in Natural Batch Runs

If you use the Com-plete services in a Natural batch run, the batch user ID remains logged on at the end of the
batch run.

To avoid this situation, include the module COMPBTCH from the Com-plete distribution library in the batch
Natural nucleus. This resolves the entry point for module EQJ, which is called at the end of the Natural batch job
for termination clean-up.

The module NCFAM (previous name: NATCMPL) is used to access Com-plete print/work files. It has to be
included in the linking of the Natural nucleus, together with the module COMPBTCH from the Com-plete
distribution library.

Copyright © Software AG 2002 61

Support of Asynchronous Natural Processing Natural under Com-plete

Support of Asynchronous Natural Processing

Asynchronous Natural processing is discussed in the sekgiprchronous Processimg theNatural Operations
for Mainframes documentatiphowever, some additional considerations apply when running Natural under
Com-plete.

Make sure that appropriate SENDER and OUTDEST destinations are specified for an asynchronous Natural
session; otherwise, any output will lead to an abnormal termination.

An example to start an asynchronous Natural transaction under Com-plete can be found in the library SYSEXTP,
program ASYNCOMP.

Invoking Natural from User Programs

The Com-plete FETCH function is used to invoke Natural from a user front-end program under Com-plete; see
the Com-plete Application Programmer’s documentationfor details.

Storage Thread Key Handling

If you want to use protection mode between Com-plete and your application program, you must set the
NATPARM parameter SKEY=OFF. The application program runs in the corresponding thread key. For any
Natural or Editor buffer pool call, the front-end driver switches into the Com-plete key and back to the thread
key after the call.

You can improve the performance of the application program dramatically under Com-plete Version 5.1.3 or
higher by activating the Storage-Protection Override facility on your machine.

Set the thread key = 9 in the Com-plete startup parameter THREAD-GROUP for your Natural sub-group.

The front-end driver sets the Natural application automatically to the privileged mode if the thread key is 9, and
uses the SPKA instruction for the key switch handling instead of using the Com-plete function MODIFY with
function codes THRD/TCS.

62 Copyright © Software AG 2002

Natural under Com-plete Support of User Exit Handling during Session Initialization

Support of User Exit Handling during Session
Initialization

During session initialization, it is possible to pass user-specific session information about the activation of a user
exit to Natural. The exit is called before Natural has been initialized, after the driver/IOCB initialization is
complete.

The driver passes as a parameter the address of the IOCB in register 1, whereas the exit is activated/deactivated
by the Com-plete functions COLOAD/CODEL; see @@mn-plete Application Programmer’s documentation
for details.

The NCFUEXIT source module is an example of a user exit. The user exit can be defined in the parameter
module NCFPARM.

Copyright © Software AG 2002 63

Natural under IMS/TM - Overview Natural under IMS/TM - Overview

Natural under IMS/TM - Overview

This section describes how to operate Natural in an IMS/TM environment. It covers the following topics:

Environments
Components
Configuration Macros
Service Programs
Service Modules
User EXxits

Special Functions
Recovery Handling

See also:

e Installation - refer tolnstalling the Natural IMS Interfada the Natural Installation Guide for Mainframes.

e Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII), refer thlatural IMS TM Error Codes the Natural Messages and Codes
documentation.

64 Copyright © Software AG 2002

Natural under IMS/TM - Environments Natural under IMS/TM - Environments

Natural under IMS/TM - Environments

This document describes how Natural runs under various IMS/TM environments. The following topics are
covered:

IMS/TM Interface Overview

IMS/TM Environments

Dialog-Oriented Environments
Message-Oriented Environment

Batch Message Processing Environment
Support of the Natural WRITE) Statement

Additional Information

Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer thlatural IMS/TM Error Codefin the Natural Messages and Codes
documentation).

Installation - refer tolnstalling the Natural IMS Interfagén the Natural Installation Guide for
Mainframes).

Further information - refer to the following topics:

Component$ Configuration Macro$Service ProgramgService Module$Special FunctiongUser Exits|
Recovery Handling

IMS/TM Interface Overview

— = IS/ T

. DLA Intetface (ASMTDLI

bodov b
T I

Environmert-Depen dert
Iriterfaces (Frovt-Ends

Matural IS Interface (NID

;

Matural

Copyright © Software AG 2002 65

IMS/TM Environments Natural under IMS/TM - Environments

IMS/TM Environments

IMS/TM provides three different types of environments:

® message processing regipns
® batch message processing regjons
e off-line DL/I btach region

To be able to use Natural in each of these environments, different environment-specific interfaces are provided
for the Natural IMS interface. The task of such an interface is to receive input (usually a terminal input message)
from the environment, to pass the input to Natural for processing and to direct the resulting output back to the
correct destination (usually a terminal output message). This way, it is possible to use the functionality of
Natural in all available IMS environments.

In addition to different available environments, within each environment, there are different ways of operating.

Natural in a Message Processing Region (MPP Environment)
In a message processing region, Natural online transactions can be one of the following:

e dialog-oriented
® message-oriented

Dialog-Oriented Natural

A dialog-oriented Natural session establishes an ongoing interaction with an IMS screen. Input and output
messages to and from Natural are logically related and, across dialog steps, Natural saves information so as to be
able to correctly process the next input message. In a dialog-oriented way, Natural can be run as either a
conversational or a non-conversational transaction.

In a dialog-oriented environment, Natural can be executed in multiple-message processing regions, as
Wait-for-Input (WFI) transaction and with the parallel-scheduling option.

To run Natural in dialog-oriented environments, you either have to use the roll server or roll filEse($tal
File and Roll Servér

If the Natural IMS interface detects an error situation, a record containing information about this error situation

is written to the IMS log file (seRecovery Handling Thus, all terminals on which Natural is to be executed

and all Natural transaction codes have to be authorized to issue the /LOG command using the automated operator
interface (AOI).

Message-Oriented Natural

A message-oriented Natural session processes non-3270-formatted messages from the IMS message queue. The
input messages are considered to be unrelated to each other and are not part of a dialog. In a message-oriented
way, Natural must be run as a non-conversational transaction.

Natural in a Batch Message Processing Region (BMP Environment)
In a batch message processing region, Natural can have access to the IMS message queue by using an input

transaction code. With batch-oriented BMP regions, Natural supports symbolic checkpoint and extended restart.
The input messages are non-3270-formatted messages.

66 Copyright © Software AG 2002

Natural under IMS/TM - Environments Dialog-Oriented Environments

Natural in an Off-line DL/l Batch Region
The BMP Natural can also be executed as an off-line DL/I batch job.

If no IOPCB is available, all END TRANSACTION and BACKOUT TRANSACTION statements are ignored
(as under NIl 2.2).

For diagnostic purposes, the following feature is available: If Natural has been started with dynamic profile
parameter TPF=(1), an informal WTO message is issued, indicating the above fact.

Dialog-Oriented Environments
This section discusses special points valid for the dialog-oriented conversational environment only.

® Special Considerations for a Conversational Environment
® Special Considerations for a Non-Conversational Environment
® Special Considerations for an MSC Environment

Special Considerations for a Conversational Environment

The dialog-oriented conversational environment is implemented by the Conversational MPP Interface which is
linked with the Natural parameter module to the Conversational MPP Front-End. This front-end is the IMS/TM
application program and is scheduled by IMS/TM if an input message for the assigned transaction code is
available in the IMS/TM message queue.

The dialog-oriented conversational environment requires a scratch pad area (SPA) of at least 157 bytes plus the
NRASTART value.

Special Considerations for a Non-Conversational Environment

The dialog-oriented non-conversational environment is implemented by the Non-Conversational MPP Interface
which is linked with the Natural parameter module to the Non-Conversational MPP Front-End. This front-end is
the IMS/TM application program and is scheduled by IMS/TM if an input message for the assigned transaction
code is available in the IMS/TM message queue.

When a dialog-oriented non-conversational environment is used, the Authorized Services Manager with its SIP
function enabled and the Physical Input Edit Routine are prerequisites.

® The Authorized Services Manager is used to simulate the IMS/TM SPA.
® The Physical Input Edit Routine is used to insert the transaction code in front of the input message.

You must specify the same Natural subsystem ID in the

® SPATID of the NIMPARM macro,
® SPATID of the NIMPIXT macro,
® startup parameters of the Authorized Services Manager.

Special Considerations for an MSC Environment

Assuming the following environment, the Natural IMS interface prepares the message X’000500006D’ for
NAT-B, which means that the terminal user has pressed CLEAR.

Copyright © Software AG 2002 67

Message-Oriented Environment Natural under IMS/TM - Environments

Two entries must be created in the transaction code table: the first entry is for NAT-A, the second for NAT-B.

These two entries must specify different offsets for the Natural Reserved Area (NRA) and must ensure that these
areas do not overlap.

NAT-B detects that a Natural session is to be started in IMS-B in the usual way and therefore gives control to its
session-start exit routine. The session-start exit routine checks the input message for the string X’000500006D’
and sets to "0" the length of the input message as seen by Natural.

If no additional logic is provided in either the exit NIIXSTAR or the exit NIIXSSTA, Natural starts a new user
session in IMS-B.

It is assumed that IMS-A and IMS-B have different dedicated roll files allocated for Natural.

Both (or more) Natural sessions can communicate with each other by transferring data in the SPA when
performing direct program-to-program switching.

For the time being, when two or more Natural sessions exist in such an environment, only the "active" session is
terminated correctly.

Message-Oriented Environment

This section describes the message-oriented interface for use with Natural for IMS/TM.

® Introduction to the Message-Oriented Environment
® Operation of the Message-Oriented Environment
® Bootstrap Module NIIBOOT

Introduction to the Message-Oriented Environment

This interface is designed to process nett-data input messages, which means that the meustagpsedent a
3270 data stream. The message-oriented interface is driven by a user-written Natural program which instructs the
interface to access the IMS message queue for the purpose of retrieving input messages.

The message-oriented interface has been created to support non-conversational, non-terminal driven transactions
which must be executed as non-conversational MPP transactions.

Operation of the Message-Oriented Environment

The message-oriented interface incorporates functions from both the MPP and the BMP interfaces. The BMP
interface is used as a basis, since much of the processing required emulates BMP-type transactions.

Since the message-oriented interface is not terminal-oriented, no messages or screen images are automatically
generated to be sent to a terminal. The Natural nucleus is informed that it is running in a batch environment;
therefore output is interpreted to be printer output and input is expected from a CMSYNIN file. All output which
is normally written to CMPRINT is sent to the IMS/TM destination (normally an LTERM) specified with the
Natural profile parameter SENDER. If Natural attempts to retrieve input data and no input data has been
supplied by the application through the STACK command, EOF indicates that no input exists and Natural is
terminated.

68 Copyright © Software AG 2002

Natural under IMS/TM - Environments Operation of the Message-Oriented Environment

You can set SENDER to a new value at runtime by using the service module CMSNFPRT.

Except for checkpoint processing, Natural for DL/I and Natural for DB2 process as if they were in BMP mode.
This is necessary, since one physical scheduling can (and usually will) process several unrelated input messages.
Under the conversational MPP interface, all transactions processed during one Natural session and all DL/I
requests within this Natural session are considered to be related, requiring maintenance of database positioning
and PCB usage. With the non-conversational interface, this Natural for DL/I logic is not applicable.

Since transactions which are processed during one scheduling (and one Natural session) are not related to each
other, the retention of Natural session information in the roll file is not required. Thus, no roll dataset needs to be
allocated for this interface. A roll slot area is still allocated via GETMAIN and used to store all Natural control
blocks and work areas.

Since processing is performed on a message-by-message basis, there is no need for any relocation logic.

With the message-oriented interface, retrieval of all messages from the message queue is initiated by a front-end
Natural program. This program must be user-written to meet your specific processing needs. However, it
requires a specific structure, as shown in the following:

PROGRAM INITIALIZATION
REPEAT

CALL 'CMGETMSG’ MESSAGE-AREA MESSAGE-LENGTH
IF MSG-LL =0 /* QC on GU to message queue
TERMINATE

FETCH RETURN PGMA MESSAGE-AREA
REPEAT

CALL 'CMGETSEG’ MESSAGE-AREA MESSAGE-LENGTH
IF MSG-LL =0 /* QD on GN to message queue
ESCAPE

FETCH RETURN PGMB MESSAGE-AREA
END-REPEAT

END-REPEAT

END

The service module CMGETMSG reads the first message segment. The service module CMGETSEG reads all
further message segments.

Since Natural cannot read input from CMSYNIN, it is required to use the Natural stack for input. This is done by
using the Natural profile parameter STACK.

It is your responsibility to ensure that the IMS message queue is accessed by your application prior to the
termination of Natural. If not, the Natural transaction abnormally ends with IMS abend code 462, indicating that
a GU to the message queue has not been performed.

To obtain these Natural messages even in the case of an abnormal termination, you are recommended to define
the first alternate PCB as an EXPRESS PCB.

The message-oriented environment is implemented by the NTRD Interface which is linked with the Natural
parameter module to the NTRD Front-End. This front-end can either be called directly by the IMS/TM program
controller or via a bootstrap module.

If it is called directly by IMS/TM, this front-end is the IMS/TM application program which is scheduled by
IMS/TM if an input message for the assigned transaction code is available in the IMS/TM message queue. You
are recommended to use a Natural profile which contains the required STACK parameter. Specify
PROFILE=PROGRAM in your Natural parameter module and create a profile with a name equal to the
transaction code with which the interface is invoked. This way, you have the flexibility to use a different profile
with a different STACK for each transaction code used.

Copyright © Software AG 2002 69

Batch Message Processing Environment Natural under IMS/TM - Environments

If it is called via a bootstrap module, this bootstrap module is the IMS/TM application program which is
scheduled by IMS/TM if an input message for the assigned transaction code is available in the IMS/TM message
gueue. This bootstrap module provides a string of dynamic profile parameters, one of which is the STACK
profile parameter, and calls the NTRD front-end whose name is specified during the generation of the bootstrap
module.

Bootstrap Module NIIBOOT

The bootstrap module is called by the program controller DFSPCC20. It loads and calls the message-oriented
front-end module passing the necessary parameters. The bootstrap module NIIBOOT is delivered as source
module and has to be assembled and link-edited during the installation process. The source code is contained in
the macro NIMBOOT.

NIMBOOT includes the following parameters:

DRIVERN |ENVTNAM | DYNPARM

Parameter |Possible Values |Default| Comment

DRIVERN |Any valid OS/390| None | This parameter specifies the name of the front-end module.
module name

ENVTNAM | Any valid OS/390|None | This parameter specifies the name of the environment table. This
module name parameter is optional. If it is not specified, the environment talle is
determined by the entry in the transaction code table which
corresponds to the transaction code used.

DYNPARM | Any character None | This parameter is used to define a valid string of up to 80
string of up to 80 characters of Natural dynamic parameters.
characters.

Batch Message Processing Environment

The Batch Message Processing (BMP) environment is implemented by the BMP Interface which is linked with
the Natural parameter module and the work file/print file access routine NATWKFO to the BMP Front-End.
This front-end is the IMS/TM application program which is specified in the BMP JCL.

A standard batch Natural is executed in a Batch Message Processing region. In comparison with the standard
batch Natural run, the optional input dataset CONTROL may be used.

The optional BMP CONTROL File contains a maximum of two input cards.

® The first input card must contain the following keyword:

Keyword Meaning

ENV-TAB= | The name of the environment table to be used.

Example:
ENV-TAB=ENVBMPO

® The second input card of the CONTROL file contains the dynamic Natural parameters.

70 Copyright © Software AG 2002

Natural under IMS/TM - Environments Batch Message Processing Environment

Using Both the CMPRMIN Dataset and the CONTROL File to Pass Dynamic Natural
Parameters

If the CMPRMIN dataset is also used to pass dynamic Natural parameters, the input of CONTROL is appended
to the input of CMPRMIN. This means the parameters specified in CONTROL overwrite the parameters
specified in CMPRMIN.

Working without CONTROL File

If the CONTROL file is not used, the name of the environment table is determined by the entry in the transaction
code table which corresponds to the transaction code used (transaction-oriented BMP) or to the PSB name used
(batch-oriented BMP).

Copyright © Software AG 2002 71

Support of the Natural WRITE (n) Statement Natural under IMS/TM - Environments

Support of the Natural WRITE (n) Statement

With the WRITE @) statement, up to 31 different reports on different printers can be produced within the same
Natural program. The reports are sent to the IMS terminals specified either in the Natural parameter module or
by using the Natural DEFINE PRINTER)(statement. You have to specify AM=IMS in the NTPRINT macro
which controls the report.

To be able to use this statement, define as many additional alternate TP-PCBs in your PSB as the number of
parallel reports you want to create within the same Natural program, and specify the number of additional
alternate TP-PCBs in your transaction code table by using the parameter WRKPCBs.

Attention: Be aware that the first alternate TP-PCB is used by the Natural
IMS interface.
When using the WRITE] statement in a dialog-oriented environment, the following restriction applies:

The generation of a report cannot span one or more screen I/Os. If you want to use the same printer after a screen
I/O, you have to close it explicitly before the screen I/O using the CLOSE PRIM) ERB{ement.

To create reports, the following parameters of the NTPRINT macro are relevant:

AM |DEST |BLKSIZE |DRIVER |NAME |FORMS |DISP | COPIES | CLASS | PRTY

Parameter| Meaning
AM Must be set to "IMS".
DEST Specifies the IMS/TM destination.

BLKSIZE | Specifies the size of the buffer which is sent to the destination. Report lines are buffered.

DRIVER | Specifies the driver to be used to create the report. For a list of possible values, see the PRTDRIV
parameter of the Natural/IMS interface parameter module. The driver determines where ydqu want
to have the form feed (at the start of the report, the end, both the start and the end, or no form

feed), where you want to start your page (on line 1 or on line 2 for NIl 2.2 compatibility) and
where you want to print your report (SCS or non-SCS printer). In addition, you can specify [that
you want to use the JES API.

NAME These parameters are only evaluated if you use the JES API.
FORMS
DISP
COPIES
CLASS
PRTY

Hints Concerning NTPRINT and CLOSE PRINTER
NTPRINT Settings

You are strongly recommended that you always use the defaults for the OPEN and CLOSE subparameters in the
NTPRINT/PRINT definition for IMS/TM printers (i.e. for printers defined with AM=STD). This means either
donYt specify any values for OPEN and CLOSE or use te defaults OPEN=ACC and CLOSE=CMD.

This is especially important if you have statically defined a printer in the NATPARM for a different access
method with other options for OPEN and CLOSE and if you dynamically overwrite the access method with
AM=IMS. In this case, always specify AM=IMS,0PEN=ACC,CLOSE=CMD together.

72 Copyright © Software AG 2002

Natural under IMS/TM - Environments Hints Concerning NTPRINT and CLOSE PRINTER

Note:
The NTPRINT options are merged with the dynamically specified PRINT options, even though the access
method has been overwritten.

Problems which may occur with non-default values:

1. With OPEN=0OBJ you may print to a wrong destination or get a NAT8211 if the OUTPUT option has been
specified in a DEFINE PRINTER statement. With OPEN=0OBJ the printer is opened before the OUTPUT
overwrite has been evaluated and the printer destination used is not the one which is specified in the
OUTPUT option but the one specified with the PRINT parameter.

2. With CLOSE=FIN the printer is not closed at CLOSE PRINTER time but at FIN time. This means that the
CLOSE may come afer a GU has been issued to the message queue and the destination has been reset in the
TP PCB. This will lead to NII error NII3641 for IMS/TM status code QF (MPP) or A3 (BMP and
OBMP/NTRD).

With CLOSE=CMD the printer is really closed with the CLOSE PRINTER.

Usage of CLOSE PRINTER or DEFINE PRINTER

A report written to an IMS/TM printer is implicitely closed by IMS/TM with the next GU call (i.e. either at
terminal I/O or through CMGETMSG).

This means, IMS/TM will print the report regardless of a CLOSE PRINTER or DEFINE PRINTER statement in
the program.

For Natural, the printer is still open, and the next WRITE statement with the same report number will continue
the already printed report which will lead to a NAT1518 error.

Scenario:

DEFINE PRINTER (1)
WRITE (1) 'line 1’
INPUT 'Press ENTER’ or CALL 'CMGETMSG'’ (both issue a GU)
WRITE (2) 'line 2’

The INPUT/CMGETMSG will "physically” close the printer and IMS/TM will print a report containing the line
'line 1’

As the printer is still "logically" open to Natural, the litiae 2’ will not start a new report and error
NAT1518 will be caused as the destination is purged by the GU call.

You are therefore strongly recommended to observe the following rule:

A A CLOSE PRINTER is required if, after the GU, the report with the same
number is continued.

Please note that the DEFINE PRINTER statement does an implicit close in which case the CLOSE PRINTER is
obsolete, for example:

Correct Correct Wrong (NAT1518)

REPEAT

DEFINE PRINTER (1)
REPEAT

LOOP

DEFINE PRINTER(1)

DEFINE PRINTER (1) REPEAT
WRITE(1)
mE'UTTE (1) CLOSE PRINTER (1) m?,'JTE(l)
LOOP INPUT LOOP

Copyright © Software AG 2002

73

Natural under IMS/TM - Components Natural under IMS/TM - Components

Natural under IMS/TM - Components

This part of the Natural IMS Interface documentation discusses the components of the Natural IMS interface.
The following topics are covered:

Front-End Module

Natural IMS Interface Module NIIINTFM
Physical Input Edit Routine

Roll File and Roll Server

Shared Natural Nucleus

Natural Buffer Pool

Adabas Interface

Preload List

Additional Information

o Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer thlatural IMS/TM Error Code# the Natural Messages and Codes
documentation.

e |nstallation - refer tolnstalling the Natural IMS Interfade the Natural Installation Guide for Mainframes.

e Further information - refer to the following topics:

Environmentq Configuration Macro$Service ProgramsService Module$Special FunctiongUser Exits
| Recovery Handling

Front-End Module

The front-end module receives control from the IMS/TM program controller DFSPPC20, except in the server
environment where it is called by the call interfaleBOOTS.

The front-end module must be created during the installation process and consists of the following:

e Environment-dependent Interfac@rivers)

e Natural Parameter Module

o Natural Work File Access Method for the BMP Environment
® Modules from Other Natural Products

Environment-Dependent Interfaces (Drivers)

You must generate an environment-dependent interface for each IMS environment supported by the Natural IMS
interface using the NIMDRIV macro.

For a detailed description of the macro NIMDRIV, $88MDRIV Macro Parameters

Natural Parameter Module NATPARM

For information on the Natural parameter module As&s=mbling a Natural Parameter Mod(ikethe Natural
Operations for Mainframes documentation).

74 Copyright © Software AG 2002

Natural under IMS/TM - Components Natural IMS Interface Module NIHINTFM

Work File Handling Module NATWKFO

The NATWKFO module is delivered as part of the base Natural. It is used for work file and print file handling
for work files and print files defines with AM=STD. It is applicable to the BMP environment only.

Modules from Other Natural Products

Some Natural products, such as Natural for DB2 and Natural for DL/I, require that their modules be linked to the
Natural IMS front-end module. For further information, see the appropriate product documentation.

Natural IMS Interface Module NIHINTFM

The Natural IMS Interface module has to be created during the installation process and is common to all
environments.

The interface module consists of the following components:

Natural IMS Nucleus

Natural IMS Parameter Module NIIPARM
Transaction Code Table NIITRTAB
Message Text Module NIIMSGT

DL/l Language Interface ASMTDLI

The interface module is fully reentrant and can run above the 16MB line. It is therefore eligible for the ECSA in
order to have only one copy of the interface module for all IMS environments.

Natural IMS Nucleus

The Natural IMS nucleus is delivered as a load module and contains all the runtime routines required by the
Natural IMS Interface.

Natural IMS Parameter Module NIIPARM

The Natural IMS parameter module NIIPARM contains a numben)bf parameter tables (also called
"environment tables") each defined by the macro NIMPARM and identified by the parameter ENTRYNM. Each
parameter table within NIIPARM defines the Natural IMS-specific parameters for a particular environment.
Thus it is possible to set the parameters for all Natural IMS environments in one parameter module. The
environment which is currently used is set in the transaction code table NIITRTAB.

For a detailed description of the macro NIMPARM, sigeIPARM Macro Parameters

Transaction Code Table NIITRTAB

The transaction code table NIITRTAB table is of variable length and each entry is generated by the macro
NIMTRNTG.

Each entry in the transaction code table refers to an entry in the Natural IMS parameter module and can be
followed by one or more occurrences of the matitdLPCB.

For a detailed description of the macro NIMLPCB, S#dLPCB Macro Parameters

The appropriate entry within this table is detected by the current transaction code. If, in a non-message-driven
BMP, no transaction code is defined, the current PSB name is taken instead.

Copyright © Software AG 2002 75

Physical Input Edit Routine Natural under IMS/TM - Components

For a detailed description of the macro NIMTRNTG, S#dTRNTG Macro Parameters

Message Text Module NIIMSGT

The message text module NIIMSGT is part of the Natural IMS Interface module and is supplied both as a load
and a source module. For each possible Natural IMS runtime error, it contains the corresponding message text.
Each entry is generated by the macro NIMMSGT.

For a detailed description of the macro NIMMSGT, B#EAMSGT Macro Parameters

DL/I Language Interface ASMTDLI

The DL/I language interface ASMTDLI is part of IMS/TM.

Physical Input Edit Routine

The physical input edit routine is required only in a dialog-oriented, non-conversational environment. It is used
to insert the transaction code preceding the message sent to the terminal. This is required as Natural runs in MFS
bypass mode and the message sent to the terminal does not contain a transaction code.

The physical input edit routine is generated by using the NIMPIXT macro. For futher information on the
NIMPIXT macro, sedNIMPIXT Macro Parameters

Once the physical input edit routine is generated, its name must be specified in the TYPE or LINEGRP macros
of your IMS/TM system definition. For all terminals on which the non-conversational environment is supposed
to run, you must enable physical editing by using the EDIT parameter in the TERMINAL macro.

76 Copyright © Software AG 2002

Natural under IMS/TM - Components Roll File and Roll Server

Roll File and Roll Server

These components are used in dialog-oriented environments only.

Natural session-related information is held in the Natural thread. With each terminal output, the content of the
Natural thread is saved either in a roll file or by using the roll server. The medium is defineditV AR M
parameteROLLSRYV.

Using Roll Files
To use roll files, the parameter ROLLSRYV is set to NO.

A roll slot in the roll file is reserved for each Natural user at Natural session initialization time. The slot is freed
when the Natural session terminates normally. In case of an abnormal termination, the roll slot remains allocated,
but will be reused when the same user (identified by his LTERM) starts a new Natural session.

Roll files are accessed under the DD statements ROLLF1 - ROLLF5. The number of roll files used is defined by
the NIMPARM parameter ROLLFN.

If your Natural transaction code is scheduled in more than one MPP region or if you switch between transaction
codes running in different MPP regions, you have to use the same roll files in all MPP regions.

If you reformat the roll file(s), make sure that no Natural transactions are active. If a transaction is scheduled
after the roll file has been reinitialized, it cannot locate its roll slot on the roll file and abnormally terminates. To
avoid this problem, it is recommended that you cold-start IMS after the roll file has been reformatted.

The roll files used by Natural under IMS have the same layout as the roll files usedloyl therverand are
formatted by the same utility program.

Using the Roll Server
To use the roll server, the parameter ROLLSRYV is set to YES.

Instead of using roll files which have to be allocated to each MPP region, you can use the Natural roll server.
The roll server offers the following advantages:

e No DD statements in each MPP region.
® One central address space is responsible for access to the roll files.
® Data space support.

In a SYSPLEX environment you must use the roll server.

For further information on roll files and the roll server, Bedl Server(in the Natural Operations for
Mainframes documentation).

Copyright © Software AG 2002 77

Shared Natural Nucleus Natural under IMS/TM - Components

Shared Natural Nucleus

In an IMS/TM environment, the Natural nucleus is always separated from the environment-dependent interface
(driver). This means that you have to install the shared Natural nucleus. The same Natural nucleus can be shared
by all Natural IMS environments.

For further information, selatural Shared Nucleys the Natural Operations for Mainframes documentation).

Natural Buffer Pool

Since Natural under IMS is executable in more than one MPP region, it is recommended that the Natural buffer
pool be a global buffer pool.

Although you can use a local buffer poal, this is not recommended in terminal-driven environments for
performance reasons.

For further information, selatural Global Buffer Pod(in the Natural Operations for Mainframes
documentation).

Adabas Interface

In order to access the Natural system file and Adabas user files, the Adabas interface is required.
By default, the appropriate Adabas interface is dynamically loaded at runtime.

® [|n terminal-driven dialog-oriented environments, the Adabas/IMS interface module ADALNI is used.
® [n all other environments, the Adabas batch interface module ADALNK is used.

You can overwrite the name of the Adabas interface to be used by specifying the Natural profile parameter
ADANAME.

A You must not use the reentrant version of either of these interface modules.

Preload List

It is no longer required to use a preload list with the Natural IMS Interface, but for performance reasons it is
recommended that you add the names of the following modules to the preload list for the Natural regions:

e the Natural IMS front-ends,

e the Natural IMS Interface module,
e the Natural shared nucleus,

e the Adabas interface.

78 Copyright © Software AG 2002

Natural under IMS/TM - Configuration Macros Natural under IMS/TM - Configuration Macros

Natural under IMS/TM - Configuration
Macros

This part of the Natural IMS Interface documentation discusses the configuration macros of the Natural IMS
interface. The following topics are covered:

NIMDRIV Macro Parameters
NIMPARM Macro Parameters
NIMTRNTG Macro Parameters
NIMLPCB Macro Parameters
NIMMSGT Macro Parameters
NIMPIXT Macro Parameters

Additional Information

e Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer thlatural IMS/TM Error Code the Natural Messages and Codes
documentation.

e |Installation - refer tolnstalling the Natural IMS Interfade the Natural Installation Guide for Mainframes.

e Further information - refer to the following topics:

Environmenty Component$ Service ProgramService Module$Special FunctiongUser Exits|
Recovery Handling

Copyright © Software AG 2002 79

NIMDRIV Macro Parameters Natural under IMS/TM - Configuration Macros

NIMDRIV Macro Parameters

The macro NIMDRIV generates environment-dependent interfaces (drivers). The parameters which can be
specified with the macro NIMDRIV are described below:

TYPE|LE370| NIINAME

Possible

Description Default Comment
Values

Parameter

TYPE specifies the type of the driver to be generated.
CONV |In case of "CONV", a dialog-oriented conversational
environment is generated.

NONC | Dialog-oriented non-conversational environment is generated.

Message-oriented (not terminal-driven) environment is

TYPE NTRD generated. None None.
Batch-oriented and transaction-oriented BMP environment|is
BMP generated.

Note: You can also use this interface in the DLIBATCH
environment.

SRVD | Server environment is generated.

LE370 specifies whether Natural under IMS initializes the
LE/370 environment.
YES In case of "YES", the LE/370 environment is initialized and

remains so until the Natural IMS front-end returns to the M
LE370 program controller. NO None.

The LE/370 environment is not initialized. An LE/370
NO environment is initialized and terminated for each LE/370
program call.

Specifies the name of the Natural IMS interface module to
NIINAME | xxxxxxxx used by the current driver. Any valid module name up to 8| NIIINTFM | None.
characters is possible..

NIMPARM Macro Parameters

The macro NIMPARM generates parameter tables which are contained in the parameter module NIIPARM.

The parameters which can be specified with the NIMPARM macro are described beldaNTR¥ NM
parameter identifies the current parameter table.

The parameters are listed in alphabetical order below.

ACTACTV |ACTAHDR |ACTARID |ACTLOG |BMPABER |BROACTV |CMBSIZE | COLPSCR]
ENDMODN | ENTRYNM | ERRLHDR|HCBSIZE | HDENSDU | LINPSCR| MISIZE | MONACTYV |
MOSIZE |[MSACTV | MSCMPTB|MSCRKEY | MSDBD | MSMAX | MSRSKEY | PRTDRIV | ROLLSRYV |
ROLLFN | SPASIZE| SPATID | SUPNONC| TERMDB | TERMIPL | THBELOW | THSIZE | USERID

80 Copyright © Software AG 2002

Natural under IMS/TM - Configuration Macros

A

Parameter

Possible
Values

Description

Default

Comment

ACTACTV

YES

ACTACTYV specifies whether the
accounting function is activated.

In case of "YES", an accounting
record is written with each terminal
I/0.

NO

No accounting record is written.

NO

Used in dialog-oriented
environments only.

ACTAHDR

XXXXXXXX

Defines the header of the accountin
records if written to the IMS log file.
Any string up to 8 bytes is possible.

SAG$$$3S

The parameter is only evaluat
when the ACTLOG parameter
is set to CMD. It is used for thg
accounting function only.

ACTARID

log code
or

SMF
record

type

Specifies the accounting record ID if
the accounting record is written usin
the LOG or SMF settings of the
ACTLOG parameter.

When the ACTLOG
parameter (see below) is
setto LOG.

Log code
(A0 - FF)

SMF
record
type
(128 -
255)

When the ACTLOG
parameter is set to SMF.

None

Used for the accounting
function only.

B

ACTLOG

CMD

ACTLOG specifies how accounting
records are written. In case of "CMO
accounting records are written to the
IMS log file using the CMD call.

LOG

Accounting records are written to theCMD

IMS log file using the LOG call.

SMF

Accounting records are written to
SMF using Authorized Services
Manager.

Used for the accounting
function only.

Copyright © Software AG 2002

81

B-C

Natural under IMS/TM - Configuration Macros

Parameter Possible Description Default| Comment
Values
BMPABER specifies how a BMP ruf
should be terminated if either a
Natural runtime error or a Natural
IMS interface non-recoverable error
YES
occurs.
In case of "YES", the BMP run is
BMPABER abended with ABEND codg521 NO None.
The BMP run is terminated normally
with the Natural termination error as
the condition code. If the BMP run is
NO . .
terminated with a non-recoverable
Natural IMS error, condition code
1024 is set.
YES Specifies whether the broadcasting Used in dialog-oriented environments
BROACTV T . NO
NO function is available or not. only.
The command buffer is used by the
service APINIICMD and
NIIGCMD, the service module
CMCMMND and the Accounting
Specifies the size of the command function.
CMBSIZE | xxXxxX iauflfgrl\l/lan_ytes. Arll)I/ numeric value u 1024 The size of the command buffer miist
0 IS possible. accommodate the maximum length of
the IMS commands to be processed
and the maximum length of the
accounting record including the user
extension.
Specifies the number of columns pe
COLPSCR | xx screen. Any valid screen width 80 None.
(numeric) is possible.
82 Copyright © Software AG 2002

Natural under IMS/TM - Configuration Macros

E-H

ue

et

Parameter \Ijgfsus;ts)le Description Default Comment
Enables Natural to be included in a
customer-specific menu.
Specifies the MOD name for
formatting the screen which The value of the ENDM.ODN
appears after a Natural sessio para_meter can be overridden by th_e
ENDMODN | XXXXXXXX terminated successfully. Any DFSMO2 |service APINIIEMOD and the servicg
valid MOD name up to 8 moduleCMEMOD.
characters is possible. If a Natural session terminates with &n
error, DFSMO2 is always used to isS
the appropriate Natural error message.
Identifies the current paramete
ENTRYNM | xxxxxxxx table. Any string up to 8 ENV00000 None.
characters is possible.
If you do not wish a message to be
Specifies the header of the IM written to the IMS log in the case of &
log records which are written non-recoverable Natural IMS error, S
ERRLHDR | xxxxxxxx when errors occur in the Natur NIIERR$$:he ElllQRLHDR par?gReltqeLr:SgEnfely
IMS interface. Any string up to 0 null, i.e. specify T
8 characters is possible. For further information, seRecovery
Handling
ﬁgrec;ggles t?i?]tslljzueﬁ:ar]r bKtnes of t Records which are sent to a printer
HCBSIZE | XxXxx numeri(F:)X/glue ub to i6 MyB 1024 destination using the Natural hardco
possible P function are buffered.
Specifies whether a snap dum
YES provoked by a Natural IMS
HDENSDU error should be writtenasa |NO None.
NO high-density dump to a 3800

printing subsystem or not.

Copyright © Software AG 2002

83

L-M

Natural under IMS/TM - Configuration Macros

the

the

Parameter Possible Description Default | Comment
Values
Defines the number of lines per screen
LINPSCR | xx Any valid screen size (numeric) is 24 None.
possible.
The size in bytes of the buffer which is This area must be as large as
MISIZE XXXXX | contain the input message. Any numeri| 4096 |largest input message to be
value up to 16 MB is possible. received from IMS/TM.
MONACTYV specifies whether the
monitoring function is activated.
YES In case of "YES", the session status is Used in dialog-oriented
MONACTV \I/}/gtten to the SIP server at each termin NO | o i onments only.
NO No session status is maintained.
The size in bytes of the buffer which is This area must be as large as
MOSIZE XXXXX | contain the output message. Any nume 4096 |largest output message to be
value up to 16 MB is possible. sent to IMS/TM.
YES Specifies whether the multi-session Used in dialog-oriented
MSACTV o . NO .
NO function is available or not. environments only.
YES Specifies whether sessions are switche Used for the multi-session
MSCMPTB . NO .
NO NI122/NIA-compatible mode or not. function only.
NONE Used for the multi-session
o . . function only.
MSCRKEY Spec_lfles with which PF keys a new NONE | If MSCMPTB=YES,
PF1 - session can be started.
PE24 MSCRKEY must be set to
NONE.
Specifies the name of the multi-session . .
MSDBD DBD database. Any valid DBD name is None Used_ for the multi-session
name ; function only.
possible.
MSMAX 2.9 Specifies the hlghes'g possible number 9 Used' for the multi-session
parallel Natural sessions per terminal. function only.
NONE Used for the multi-session
Specifies the PF key with which an old function only.
MSRSKEY | pF1- | session can be restarted. NONE | MSRSKEY must be set to
PF24 NONE, if MSCMPTB=YES.
84 Copyright © Software AG 2002

Natural under IMS/TM - Configuration Macros

P

Possible

Parameter Description

Values

Default

Comment

PRTDRIV

Drivers for JES API printer.

See tables of drivers below| Specifies the print driver to b
Drivers for SCS Printers used for reports which are
Drivers for Non-SCS Printel directly written to an IMS/TM

SCS_S2

For further information,

seeSupport of the
Natural WRITE)
Statement

Drivers for SCS Printers

Driver

Purpose

Scs_B1

Form feed at start and end of report, starts page on lin

el.

SCS_B?

Form feed at start and end of report, starts page on lin

e 2.

SCs_E1l

Form feed at end of report, starts page on line 1.

SCS_E2

Form feed at end of report, starts page on line 2.

SCS_N1

No form feed at start or end of report, starts page on li

ne 1.

SCS_N2

No form feed at start or end of report, starts page on li

ne 2.

scs_si1

Form feed at start report, starts page on line 1.

SCS_S2

Form feed at start of report, starts page on line 2.

Drivers for Non-SCS Printers

Driver

Purpose

NSCS_B1

Form feed at start and end of report, starts page on lirfe 1.

NSCS_B2

Form feed at start and end of report, starts page on lirffe 2.

NSCS_E1Form feed at end of report, starts page on line 1.

NSCS_E2 Form feed at end of report, starts page on line 2.

NSCS_N1 No form feed at start or end of report, starts page on

line 1.

NSCS_N2 No form feed at start or end of report, starts page on

line 2.

NSCS_S1 Form feed at start report, starts page on line 1.

NSCS_S2 Form feed at start of report, starts page on line 2.

Copyright © Software AG 2002

85

ing

hent with

P Natural under IMS/TM - Configuration Macros
Drivers for JES API
Driver Purpose
JES In this case, the following dataset processing options for JES are taken from the correspong
NTPRINT or DEFINE PRINTERparameters:
JES NTPRINT DEFINE PRINTER
CLASS CLASS CLASS
COPIES COPIES COPIES
DEST DEST OUTPUT
FORMS FORMS FORMS
NAME NAME NAME
OUTDISP DISP DISP
PRTY PRTY PRTY
The generated JES API parameter string is:
IAFP=A0M,PRTO=..0UTDI(disp),DES(dest),CLA(class),COP(copies),
FORMS(forms),NAME(name),PRTY(prty)
Note: Unspecified NTPRINT/DEFINE PRINTER parameters are ignored.
JESxxxxx| In this case, the dataset processing options for JES are taken from the OUTPUT JCL stater]
the name JESXXXXX.
The generated JES API parameter strin\ii?=A0M,OUTN=JESXXXXX
The OUTPUT JCL statement may look like:
JESxxxxx OUTPUT
OUTDISP=WRITE,DEST=dest,CLASS=A,COPIES=1,FORMS=form,...
Note: If the OUTPUT JCL statement is missing in the job stream, an error is reported.
86 Copyright © Software AG 2002

Natural under IMS/TM - Configuration Macros

R-S

environment is possible.

Parameter Possible Description Default | Comment
Values
ROLLSRYV apecifies the medium for
YES saving a Natural thread between termi o _
ROLLSRV output and input. If ROLLSRV=YES, |ygg |Ysed in dialog-oriented
the Natural roll server is used. environments only.
NO Roll files are used, see ROLLFN below.
Specifies the number of roll files to be Used in dialog-oriented
ROLLFN \1-5 used, if ROLLSRV=NO. 1 environments only.
Specifies the size in bytes of the buffel In a non-conversational
which is to contain the scratch-pad are environment, this is also the size
SPASIZE 000 Any numeric value up to 16 MB is 1024 the simulated SPA which is writte
possible. to the SIP server.
Specifies t_he Nat““”?' subsystem ID fqr This value must be the same for
the Authorized Services Manager whig arameter tables and must be th
SPATID XXXX is used to save the SPA for a b o
non-conversational driver. Any string u same as.the value specified for
. o SPATID in theNIMPIXT macro.
to 4 characters is possible.
YES Specifies whether switching from a
SUPNONC termmal-onented non-convgrsatlonal NO Used in the d|alog—pr|ented
NO environment to a conversational conversational environment only

Copyright © Software AG 2002

87

T-U

Natural under IMS/TM - Configuration Macros

Parameter Possible Description Default | Comment
Values
Used in dialog-oriented
YES environments only.
Specifies whether the Natural session
TERMDB has to be terminated if one of the DL/I NO If you set TERMDB to "NO* and
databases specified in the PSB is not one of the databases is not
available. available when it is accessed, th
NO Natural transaction code is
suspended by IMS/TM.
Specifies whether a Natural session ig
YES terminated with an error message whe Used in dialog-oriented
TERMIPL an IPL has taken place between the |NO s
: environments only.
NO current transaction step and the start
the session.
Specifies where the Natural thread is
YES allocated. In case of YES, the Natural .
thread is allocated below the 16 MB For batch message processing, fhe
THBELOW line. YES |thread is always allocated below
the 16 MB line.
NO The Natural thread is allocated above
the 16 MB line.
iE;e/Cr:fL:(rensetrTg zzﬁeoifnt?:ulﬂli?,ﬁz;al,}hé%i This is the area which contains g
THSIZE . 300000| user session related Natural
greater than or equal to 100000 is
; buffers.
possible.
USERID specifies how the value of th
system variable *init-user is determing
In case of "YES", the Natural user ID
YES specified in *INIT-USER is either take
from the security access control block
USERID a security package is active or from th NO Used by the BMP driver only.
USER parameter of the job card.
The Natural user ID specified in
NO *INIT-USER is taken from the job
name.
88 Copyright © Software AG 2002

Natural under IMS/TM - Configuration Macros

NIMTRNTG Macro Parameters

The macro NIMTRNTG generates an entry in the transaction code table NIITRTAB containing the specified

transaction code with related parameters. For each Natural transaction code an entry has to be included in the

NIMTRNTG Macro Parameters

transaction code table. For further information on NIITRTAB, Besmsaction Code Table NIITRTAB

The parameters which can be specified with the macro NIMTRNTG are listed in alphabetical order below:

HCPCB | MSGPCB | MSPCB | NIIPENT |NRASTART | PSBNAME | TRANCODE |
TYPE | WRKPCBS

Parameter

Possible
Values

Description

Default

Comment

HCPCB

SYSPCB

HCPCB specifies which PCB i
used for the hardcopy function
In case of "SYSPCB", the first
alternative TP PCB is used.

WRKPCB

One of the additional alternativ

TP PCBs is used. This enables

you to use an express TP PCE
for the hardcopy function.

SYSPCB
e

None.

MSGPCB

SYSPCB

MSGPCB specifies which PCE
is used when printing error
messages and standard outpu
the non-terminal-oriented
environment and for the serve
driver.

In case of "SYSPCB", the first
alternative TP PCB is used.

OWNPCB

The second alternative TP PCB

is reserved and used. This
enables you to use an express

TP PCB for sending messages.

SYSPCB

Relevant for non-terminal-orientg¢d

environments and the server dri
only.

MSPCB

NO

MSPCB specifies the number
the multi-session database PC
If "NO" is specified, the
multi-session feature is not usg

1-255

The PCB of the multi-session
database.

NO

Relevant for the multi-session
feature only.

NIIPENT

XXXXXXXX

Specifies the name of the
Natural IMS parameter table tg
be used for this entry in the
transaction code table. Any
non-blank character string up t
8 characters is possible.

ENV00000

None.

Copyright © Software AG 2002

89

er

NIMTRNTG Macro Parameters

Natural under IMS/TM - Configuration Macros

Defines the offset of the Natur
Reserved Area (NRA) within

The current length of the NRA ig
157 bytes. The length of the NR
may change from version to
version of the Natural IMS
interface.

If you want to save your own

Ped

=

NRASTART | offset value|the scr_atch-pad area. Any 16 information in the SPA in order t
numeric value greater than 14 :
; pass it to a non-Natural
possible. oo
transaction, it is recommended
that you save your data in front (
the NRA in order to be version
compatible.
Specifies the PSB name Used to _|dent|fy the entry in the
corresponding to the current transaction code_ table for
PSBNAME |PSB name . : None non-message-driven batch
transaction code. Any valid PS .
) : message processing and for the
name is possible. . .
batch processing environment.
ansacton. s e ctoen | Has o fectin o e
TRANCODE y . . None non-message-driven BMP and the
code name | table. Any valid transaction . :
. . batch processing environment.
code name is possible.
TYPE specifies the type of the
Natural transaction code. In c4g
CONV of "CONV", the transaction
code is for a conversational
TYPE Natural session. CONV | Nore.
The transaction code is for a
NONC non-conversational Natural
session.
WRKPCBS specifies the
number of alternative TP PCB;
available for printing additional
0 to the first TP PCB and, if
appropriate, to the MSGPCB.
In case of "0", no IMS printer is
WRKPCBS available. 0 See examples below.
The number of alternate TP
PCBs used for printing
1-32 additional to the first TP PCB
and, if appropriate, to the
MSGPCB.
Examples
Example 1:

You specified the following:

MSGPCB=SYSPCB

WRKPCBS=2

90

Copyright © Software AG 2002

Natural under IMS/TM - Configuration Macros NIMTRNTG Macro Parameters

The PSB must contain 3 alternate TP PCBs.
Example 2:
You specified the following:

MSGPCB=0OWNPCB
WRKPCBS=2

The PSB must contain 4 alternate TP PCBs. The second alternate TP PCB is reserved for the error messages and
standard output of the non-terminal-oriented environment.

Copyright © Software AG 2002 91

NIMLPCB Macro Parameters Natural under IMS/TM - Configuration Macros

NIMLPCB Macro Parameters

The macro NIMLPCB can optionally follow a NIMTRNTG entry in the transaction code table.

The parameters which can be specified with the macro NIMLPCB are listed in alphabetical order below:

NAME |NUM
Possible -

Parameter Description Default| Comment
Values

Specifies the logical name of the
NAME XXXXXXXX PCB. Any non-blank string up to 8 | None | None.
characters is possible.

PCB Specifies the positional number of t If NUM is not specified, the
NUM positional PCB in the PSB. Any integer is None | positional number of the
number possible. NIMLPCB macro is used.

NIMMSGT Macro Parameters

The macro NIMMSGT generates each entry in the message text module NIIMSGT which is part of the Natural
IMS interface module. Each generated entry provides a message text for each possible Natural IMS error
number.

The NIMMSGT macro is specified in one of the following two ways:
N error-number [*I NIMMSGT message-text

In this case, Natural under IMS will display the message text as defined. The message text may be up to 72
characters long.

X error-number [*] NIMMSGT message-text

In this case, Natural under IMS will append an error-specific reason code to the current message text. The
message text may be up to 64 characters long.

If the error number is followed by an asterisk (*), a snap dump will be generated when an error occurs. You may
adapt the message text to your own requirements. You may also add or delete the DUMP option of a specific
error number. You must not modify the error number and the characters N or R that precede the error number.

92 Copyright © Software AG 2002

Natural under IMS/TM - Configuration Macros NIMPIXT Macro Parameters

NIMPIXT Macro Parameters

The NIMPIXT macro generates tRdysical Input Edit Routine

The parameters which can be specified with the macro NIMPIXT are listed in alphabetical order below:

NIA | PIXTE | SIPSE|SPATID | SVC | SVCE |WTO |USER

Parameter Possible Description Default | Comment
Values

If you want to run the Natural

YES ifi
Specifies whether NIA (Natural under IMS Interface Version 2.3 and

NIA IMS/TM Advanced Interface) is supporteg NO :
NO by the physical input edit routine NIA 2.2 in parallel (on the same
' terminals), specify YES.
Specifies the start value for error number This value is added to the retyrn
PIXTE 1-999 |errors are detected by the physical input ¢ 400 code set by the physical input
routine. edit routine.
Specifies the start value for error number This value is added to the retyrn
SIPSE 1-999 |errors are detected by the Authorized 500 code set by the Authorized
Services Manager. Services Manager.
Specifies the Natural subsystem ID for thg The value of this parameter
Authorized Services Manager which is us must be the same as the valug¢
SPATID | xxxx to save the SPA for the non-conversation| None | specified for theSPATID
driver. Any string up to 4 characters is parameter in th&lIMPARM
possible. macro.

For more information, see the

200 - 3 Natural under IMS/TM

SvC 55 Specifies the SVC numbers used by NIA.|None |Advanced Interface
documentation (Manual order

no. NIA-225-110).

This value is added to the return
200 code of the NIA SVC to create
the error message number.

Specifies the start value for error number

SVCE 1-999 | errors are detected by the NIA SVC.

YES Specifies whether a WTO message is iss

WTO NO if the Authorized Services Manager fails. NO None.
Specifies whether a user-specific physical
XXXXXXXX input edit routine is to be called if the
USER NIMPIXT macro does not find the SPA. NO None.
NO If a user-specific input edit routine is to be

called, specify the name of the routine.

Copyright © Software AG 2002 93

Natural under IMS/TM - Service Programs Natural under IMS/TM - Service Programs

Natural under IMS/TM - Service Programs

This part of the Natural IMS Interface documentation describes the service programs of the Natural IMS/TM
Interface. The following topics are covered:

e Introduction to the Natural IMS/TM Interface Service Programs
® Description of the Natural IMS/TM Interface Service Programs

Additional Information

o Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer thlatural IMS/TM Error Code# the Natural Messages and Codes
documentation.

e |nstallation - refer tolnstalling the Natural IMS Interfada the Natural Installation Guide for Mainframes.

e Further information - refer to the following topics:

Environmentd Component$ Configuration Macro$Service Module$ Special FunctiongUser Exits|
Recovery Handling

Introduction to the Natural IMS/TM Interface Service
Programs

Purpose of Natural IMS/TM Interface Service Programs

Service programs are Natural subprograms which provide Natural under IMS with additional functionality. You
can call them from within a Natural program using a standard CALLNAT statement.

Location of Service Programs

The service programs are provided in the library SYSEXTP and you must copy them to the SYSTEM or steplib
library.
Sample Natural programs to invoke the service programs are also provided in the library SYSEXTP.

Common Return Codes

The last parameter in each service program is the return code whose format is (14). The following return code
values are common for all service programs:

0 OK

-1 Non-supported function. This is an internal error, please contact Software AG support.
For specific return code values, refer to the individual service program descriptions below.

Error Handling

If an error occurs, either a Natural error message is issued or the session is terminated with a Natural IMS error
message.

94 Copyright © Software AG 2002

Natural under IMS/TM - Service Programs Description of the Natural IMS/TM Interface Service Programs

Description of the Natural IMS/TM Interface Service
Programs
The following service programs are described below:

NIIBRCST |NIICMD |[NIIDEFT | NIIDEFTX | NIIDIRT |NIIDIRTX | NIHEMOD |NIIGCMD |NIIGMSG |
NIGSEG | NIGSPA|NIIMSIN |NIISRTF |NIIISRTM [NIIPCBAD |NIIPCOM | NIIPMSG | NIIPSBAD |
NIPSPA|NIIPURG |NIIRETRM | NIISASD | Nl1U3962

NIIBRCST - Send Passed Message to Terminal

Sends the passed message to the specified terminal using the message output descriptor specified in the
MOD_name parameter.

The following parameters are provided:

Terminal_name | Message | Message_length | MOD_name | Return_code

Terminal_name (A8)

Message (A1/1:V)

Message_lengt| (14)

MOD_name |(A8)

Return_code |(14)

Specific Return Code Values: None.

Sample Program: NIPGMSG

NIICMD - Pass IMS Command to IMS

Passes the IMS command specified to IMS. If there is a reply, it is moved into the reply area provided. If the
reply does not fit into the reply area, it is truncated and the return code is set to 4.

The following parameters are provided:

Command | Command_length | Reply_area | Reply_area_length | Reply_length |
Status_code | Return_code

Command (A2/1:V) | Input
Command_length (14) Input
Reply_area (A1/1:V) | Input/Output
Reply_area_lengt (14) Input
Reply_length (14) Output
Status_code (A2) Output
Return_code (14) Output

Copyright © Software AG 2002 95

NIIDEFT - Prepare Deferred Switch to Natural Transaction Code Natural under IMS/TM - Service Programs

Specific Return Code Values: 4 (reply truncated)

Sample Program: NIPCMD

NIIDEFT - Prepare Deferred Switch to Natural
Transaction Code

Prepares a deferred switch to the specified Natural transaction code. With the next terminal I/O, the output is sent
to the terminal and the next input from this terminal is processed by the transaction code specified in the
parameter Transaction_code.

The following parameters are provided:

Transaction_code | Return_code

Transaction_cod (A8) | Input

Return_code (14) | Output

Specific Return Code Values: None.

Sample Program: NIPDEFT

NIIDEFTX - Prepare Deferred Switch to Non-Natural
Transaction Code

Prepares a deferred switch to a non-Natural transaction code. With the next terminal 1/O, the output is sent to the
terminal using the given MOD_name and the next input from this terminal is processed by the transaction code
specified in the parameter Transaction code.

If the suspend flag is set to "Y", the Natural session will be suspended and can be resumed later. If the Natural
session is resumed, it will first issue the last Natural screen.

If the suspend flag is set to "Y" you may not switch from a conversational Natural session to a
non-conversational transaction code. If you try to do so, a Natural error message is issued.

The following parameters are provided:

Transaction_code | Transaction_type | Suspend_flag | MOD_name | Message |
Message_length | Return_code

96 Copyright © Software AG 2002

Natural under IMS/TM - Service Programs NIIDIRT - Prepare Direct Switch to Natural Transaction Code

Transaction_cod (A8) Input
Transaction_type Input
(Ad) Possible values:

CONV for conversational
NONC for non conversational

Suspend_flag Input

(A1) Possible values:
Y the Natural session will be suspendef

else the Natural session will be termingted

MOD_name (A8) Input

Message (A1/1:V) | Input
Message_length| (14) Input
Return_code (14) Output

Specific Return Code Values: None.

Sample Program: NIPDEFTX

NIIDIRT - Prepare Direct Switch to Natural Transaction
Code

Prepares a direct switch to a specified Natural transaction code. On the next terminal write, the CHNG command
to the specified transaction code is issued and the Natural screen is inserted using the alternate TP PCB.

If you switch from a conversational Natural session to a non-conversational one, the conversation is terminated
and a dummy message using MOD_name NIIMODNC is inserted. This message unprotects the screen
temporarily, and is thus overwritten by the first screen of the non-conversational Natural session.

Transaction_code | Return_code

Transaction_cod| (A8) | Input

Return_code (14) | Output]

Specific Return Code Values: None.

Sample Program: NIPDIRT

NIIDIRTX - Prepare Direct Switch to Transaction Code

Prepares a direct switch to the specified transaction code. On the next terminal write, the CHNG call for the new
transaction code is issued and the message and or the SPA are inserted using the alternate TP PCB. The
transaction type defines the type of the new transaction code.

e |f you switch from a conversational transaction code to a non-conversational one, the conversation is
finished by issuing a dummy message using MOD_name NIIMODN, which unprotects the screen
temporarily, thus it will be overwritten by the screen issued from the non conversational transaction code.

e If the suspend flag is set to "Y", the Natural session is suspended and may be resumed at a later time. When
the Natural session is resumed, the last Natural screen is issued.

e |[f the suspend flag is set to "Y" you may not switch from a conversational Natural to a non conversational

Copyright © Software AG 2002 97

NIIEMOD - Modify Setting of Module Output Descriptor Natural under IMS/TM - Service Programs

transaction code. If you try to do so, a Natural error message will be issued.

e If message length is set to zero, no message at all is inserted. This however is only possible if you switch to
a conversational transaction code.

The following parameters are provided:

Transaction_code | Transaction_type | Suspend_flag | Message | Message_length |
Return_code

Transaction_cod (A8) Input

Transaction_type (A4) Input

Possible values:

CONV for conversational transaction code
NONC for non-conversational transaction cpde

Suspend_flag | (Al) Input

Possible values:

Y the Natural session will be suspended
else the Natural session will be terminated

Message (A21/1:V) | Input
Message_length| (14) Input
Return_code (14) Output

Specific Return Code Values: None.

Sample Program: NIPDIRTX

NIIEMOD - Modify Setting of Module Output Descriptor

Modifies the current setting of the module output descriptor to be used in the insertion of the last message in a
Natural session and sets it to the value specified in the parameter MOD_name.

The following parameters are provided:

MOD_name | Return_code

MOD_name| (A8) | Input

Return_codg (14) | Output

Sample Program: NIPEMOD

NIIGCMD - Retrieve Next Reply Segment of Previous
IMS/TM Command

Retrieves the next reply segment of a previously issued IMS/TM command. The length of the reply is return in
the parameter reply length. If the reply does not fit into the reply area, the reply is truncated and return code 4 is
issued.

98 Copyright © Software AG 2002

Natural under IMS/TM - Service Programs NIIGMSG - Retrieve First Segment Next Message

The following parameters are provided:

Reply_area | Reply_area_length | Reply_length | Status_code | Return_code

Reply_area (A1/1:V) | Input/Output
Reply_area_lengt (14) Input
Reply_length (14) Output
Status_code (A2) Output
Return_code (14) Output

Specific Return Code Values: 4 (reply truncated)

Sample Program: NIPCMD

NIIGMSG - Retrieve First Segment Next Message

Retrieves the first segment of the next message from the message queue by issuing a GU. The message area will
contain the retrieved message including the leading LLZZ bytes. If there are no messages in the message queue,
LLZZ is set to zero.

The following parameters are provided:

Message_area | Message_area_length | Return_code

Message_area (A1/1:V) | Output]

Message_area_leng (14) Input

Return_code (14) Output

Specific Return Code Values: None.

Sample Programs: NIPGMSG, NIPGSEG

NIIGSEG - Retrieve Next Segment of Input Message

Retrieves the next segment of the input message by issuing a GN call. The message area will contain the
retrieved message including the leading LLZZ bytes. If there are no more message segments in the current
message, LLZZ is set to zero.

The following parameters are provided:

Message_area | Message_area_length | Return_code

Message_area (A1/1:V) | Output]

Message_area_leng (14) Input

Return_code (14) Output

Specific Return Code Values: None.

Copyright © Software AG 2002 99

NIIGSPA - Retrieve Data from SPA Beginning Natural under IMS/TM - Service Programs

Sample Program: NIPGSEG

NIIGSPA - Retrieve Data from SPA Beginning

Retrieves data from the SPA beginning at the specified offset in the specified length.

The following parameters are provided:

Offset | Length | Area | Return_code

Offset (14) Input

Length (14) Input

Area (A1/1:V) | Input/Output
Return_codé (14) Output

Specific Return Code Values: 4
The retrieved data resides entirely or partially within the part of the SPA reserved for Natural.

Sample Program: NIPGSPA

NIIMSIN - Retrieve IMS Environment Info

Retrieves the IMS environment information using the INQY ENVIRON call. If you specify a reply_area_length
smaller than 102, the reply will be truncated and you will receive return code X'0100’ with reason code
X'000C'.

The following parameters are provided:

Reply_area | Reply_area_length | Return_code

Reply_area (Al/1:v) | Output

Reply_area_lengt (14) Input

Return_code (14) Output

Specific Return Code Valuesnxx

nn: The first two bytes contain the AIB return coge. The second two bytes contain the AIB reason code.
AIB denotes "Application Interface Block" and is used when calling IMS through the AIBTDLI interface.

Sample Program: NIPIMSIN

NIIISRTF - Create Multi-Segment Messages

Creates multi-segment messages. NIIISRTF performs the CHNG call for the specified destination and inserts the
first message segment without performing a PURG call. Further message segments may be inserted using
NIIISRTM. The message has to be terminated uNiligURG. The LLZZ bytes are created by the service

module.

100 Copyright © Software AG 2002

Natural under IMS/TM - Service Programs NIISRTM - Insert Message Segment into Message Queue

The following parameters are provided:

Destination | Message | Message_length | Return_code

Destination (A8) Input
Message (A1/1:V) | Input
Message_lengt| (14) Input
Return_code |(14) Output

Specific Return Code Values: None.

Sample Program: NIPISRTM

NIISRTM - Insert Message Segment into Message Queue

Inserts the next message segment into the message queue without performing a CHNG or a PURG call. The
LLZZ bytes are created by the service module.

The following parameters are provided:

Message | Message_length | Return_code

Message (A1/1:V) | Input
Message_lengt| (14) Input
Return_code |(14) Output

Specific Return Code Values: None.

Sample Program: NIPISRTM

NIIPCBAD - Return PSB Name and PCB Address

Returns the currently scheduled PSB name and the address of the PCB identified by the logical name. If the
logical PCB name is not defined in the transaction code table, a Natural error message is issued.

The following parameters are provided:

PSB_name | Logical_PCB_name | PCB_address | Return_code

PSB_name (A8) | Output]

Logical PCB_nam((A8) | Input

PCB_address (B4) | Output]

Return_code (14) | Output]

Specific Return Code Values: None.

Sample Program: NIPPCBAD

Copyright © Software AG 2002 101

NIIPCOM - Move Data to Reply Area Natural under IMS/TM - Service Programs

NIIPCOM - Move Data to Reply Area

Moves the data provided in the data area into the reply area specified in the NIIBOOTS call at the specified
offset in the specified length. NIIPCOM may be called from the server environment only.

The following parameters are provided:

Offset | Data_area | Length | Return_code

Offset (14) Input
Data_area |(A1/1:V)|Input
Length (14) Input
Return_codé (14) Output

Specific Return Code Values: 4 (calling environment, not server environment)

Sample Program: NIPPCOM

NIIPMSG - Send Message

Sends a message using a given MOD_name to the destination which is represented by the I/O PCB. The message
is taken from the message area in the specified message area length. The message area must not contain the
leading LLZZ bytes. In this way you can send MFS-formatted output messages back to the originator of the

input message.

The following parameters are provided:

Message | Message length | MOD_name | Return_code

Message (A1/1:V) | Input
Message_lengt (14) Input
MOD_name |(A8) Input
Return_code |(14) Output

Specific Return Code Values: None.

Sample Program: NIPPMSG

NIIPSBAD - Return PSB Address

Returns the address of the PSB which is the address of the PCB address list.

The following parameters are provided:

PSB_address | Return_code

PSB_addres (B4) | Output
Return_code (14) | Output

102 Copyright © Software AG 2002

Natural under IMS/TM - Service Programs NIIPSBAD - Return PSB Address

Specific Return Code Values: None.

Sample Program: NIPBOOTS

Copyright © Software AG 2002 103

NIIPSPA - Replace Data in SPA Natural under IMS/TM - Service Programs

NIIPSPA - Replace Data in SPA

Replaces the data located in the SPA at the specified offset in the given length by the data provided in the data
area.

The following parameters are provided:

Offset | Length | Data_area | Return_code

Offset (14) Input

Length (14) Input

Data_area |(A1/1:V)|Input

Return_codé (14) Output

Specific Return Code Values: None.

An attempt to override the header of the SPA (first 14 bytes) and/or data residing in the Natural-reserved area is
refused and a Natural error message is issued.

Sample Program: NIPPSPA

NIIPURG - Issue PURG Call

Issues a PURG call.

The following parameter is provided:

Return_code

Return_code (14) | Output

Specific Return Code Values: None.

Sample Program: NIPISRTM

NIIRETRM - Move Data into Message Area

Moves data from the input message beginning at the specified offset in the specified length into the provided
message area.

The offset is calculated from the LLZZ bytes.

The following parameters are provided:

Offset | Length | Message_area | Return_code

Offset (14) Input

Length (14) Input

Message_are (A1/1:V) | Input/Output

Return_code | (14) Output

104 Copyright © Software AG 2002

Natural under IMS/TM - Service Programs NIISASD - Modify SENDER and OUTDEST Settings

Specific Return Code Values: None.

Sample Program: NIPRETRM

NIISASD - Modify SENDER and OUTDEST Settings

Modifies the current setting of the Natural dynamic parameters SENDER and OUTDEST.

The following parameters are provided:

Sender | Outdest | Return_code

Sender (A8) | Input
Outdest (A8) | Input
Return_codg (14) | Output

Specific Return Code Values: None.

Sample Program: NIPNTRD

NIIU3962 - Terminate Session

Terminates the session with user abend 3962 and produces a dump.

The following parameter is provided:

Return_code

Return_code (14) | Output

Specific Return Code Values: None.

Sample Program: NIPU3962

Copyright © Software AG 2002

105

Natural under IMS/TM - Service Modules Natural under IMS/TM - Service Modules

Natural under IMS/TM - Service Modules

This document describes the service modules of the Natural IMS interface. The following topics are covered:

® Purpose of Service Modules
® Service Module Descriptions

Additional Information

o Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer thlatural IMS/TM Error Code# the Natural Messages and Codes
documentation.

e |nstallation - refer tolnstalling the Natural IMS Interfade the Natural Installation Guide for Mainframes.

e Further information - refer to the following topics:

Environmentd Component$ Configuration Macro$Service ProgramgSpecial FunctiongUser Exits|
Recovery Handling

Purpose of Service Modules

Service modules perform IMS/TM-specific functions. They can be called from within a Natural program using
the standard Natural CALL interface. Sample programs are loaded by a Natural INPL into the library SYSEXTP.

Service Module Descriptions

This section contains a detailed description of all the service modules in alphabetical order. This includes a list of
the parameters available and the name of the module-relevant sample program.

CMCMMND - Issue IMS Operator Commands

The module CMCMMND issues IMS operator commands and returns the reply segments to the Natural user
program.

The following parameters are provided:

Command | Command length | Reply | Length of reply area

Name Format | Type |Comment

Command Input

Command length |(B4) Input

Reply Output

Length of reply are{ (B4) Input

The operator command contained in the command area is issued to IMS with the indicated length.

If the user has set a non-zero reply length, any reply segments from IMS are moved into the reply area over the
maximum available length. If the reply area is at least two bytes long, the first two bytes contain the IMS status
code after the command call has been issued. The two rightmost bytes of the REPLGTH field contain the
effective length of the total reply moved into the REPLY field.

106 Copyright © Software AG 2002

Natural under IMS/TM - Service Modules CMDEFSW - Deferred Transaction Switch to Natural Transaction Code

If the reply from IMS has to be truncated, this is indicated by setting X’80’ in the leftmost byte of the REPLGTH
field.

Sample Program: NIPSCMND

CMDEFSW - Deferred Transaction Switch to Natural
Transaction Code

The module CMDEFSW performs a deferred transaction switch to a Natural transaction code.
The following parameter is provided:

Trancode

Name |Format | Type| Comment

Trancodeg Input

With the next terminal I/O, the output is sent to the terminal and the next input from this terminal is processed by
the transaction code passed as parameter message.

CMDEFSWHX - Deferred Transaction Switch to
Non-Natural Transaction Code

The module CMDEFSWX performs a deferred switch to a non-Natural transaction code.
The following parameters are provided:

Trancode | Message | Message length | MOD name

Name Format | Type | Comment
Trancode Input
Message Input
Message lengt Input
MOD name Input

With the next terminal I/O, the given message with the given MOD name is inserted and the Natural session is
terminated.

If the new transaction code is a Natural transaction code, the message and the MOD name passed as parameters
are ignored and CMDEFSWX works @DEFSW.

Sample Programs: NIPSDEFX.

Copyright © Software AG 2002 107

CMDIRNMX - Switch to Another Conversational Transaction w/o Message Natural under IMS/TM - Service Modules

CMDIRNMX - Switch to Another Conversational
Transaction w/o Message

The module CMDIRNMX has the same functionalityCldDIRSWX, except that no message is inserted to the
alternate PCB. Thus, the only parameter you have to provide is TRANCODE.

The following parameter is provided:

Trancode

Name |Format | Type| Comment

Trancodeg Input

CMDIRNMX can also be used to perform a direct switch to another Natural transaction code, because in this
case, the CLEAR key is given as input message to Natural by default.

CMDIRNMZ - Switch to Another Conversational
Transaction w. Message

The module CMDIRNMZ has the same functionalityCAdDIRSWZ, except that no message is inserted to the
alternate PCB. Thus, the only parameter you have to provide is TRANCODE.

The following parameter is provided:

Trancode

Name |Format | Type| Comment

Trancodeg Input

108 Copyright © Software AG 2002

Natural under IMS/TM - Service Modules CMDIRSW(X - Switch to Another Conversational Transaction w. Message

CMDIRSWX - Switch to Another Conversational
Transaction w. Message

The module CMDIRSWX performs a direct switch to another conversational transaction and specifies a message
that is to be passed on to this new transaction.

The following parameters are provided:

Trancode | Message | Message length

Name Format | Type | Comment
Trancode Input
Message Input
Message lengt| (B4) Input

At the next terminal 1/O, a change call is executed against the alternate PCB to set its destination to the value of
the TRANCODE field. The SPA and the message are then inserted into the alternate PCB.

The new transaction code is checked if it is a Natural or a non-Natural transaction code.
In the case of a non-Natural transaction code, the Natural session is terminated.

In the case of a Natural transaction code, the CLEAR key is passed to Natural as input message, which means
that Natural reacts as if the terminal user pressed the CLEAR key. The type of the new transaction code is
automatically honored.

Sample Program: NIPSDIRX

Copyright © Software AG 2002 109

CMDIRSW?Z - Switch to Another Conversational Transaction w. Message Natural under IMS/TM - Service Modules

CMDIRSWZ - Switch to Another Conversational
Transaction w. Message

The module CMDIRSWZ has the same functionality as CMDIRSWX.

The following parameters are provided:

Trancode | Message | Message length

Name Format | Type | Comment
Trancode Input
Message Input
Message lengt| (B4) Input

The difference compared to CMDIRSWX is that, in case of a switch to a non-Natural transaction code, the
current Natural session is not terminated. This is done with the following intention:

® A given Natural session gives control to a non-Natural transaction code; the session is not terminated.

® The non-Natural transaction performs a terminal I/O and then switches back to the original Natural
transaction, passing data into the SPA.

® The Natural transaction does not start a new session, but continues the old session were it has left it, which
means that the roll slot is obtained from the swap pool and control is given to Natural so as to continue with
an existing session.

The non-Natural transaction code must pass the message "LLZZD", where "LL=H’0005", "ZZ=X'0000" and
"D=X'6D" are simulating to Natural that CLEAR has been pressed. By making the Natural program sensitive to
the CLEAR key, it is able to recognize that the called non-Natural transaction has come back and it can retrieve
the data prepared by the non-Natural transaction for use in subsequent processing.

CMDIRSW?Z cannot be used if the transaction code to switch to is a Natural transaction code.

Sample Program: NIPSDIFS

110 Copyright © Software AG 2002

Natural under IMS/TM - Service Modules CMDISPCB - Get PCB Content

CMDISPCB - Get PCB Content

The module CMDISPCB is used to obtain the contents of a PCB.
The following parameters are provided:

PCB number | Receiving area | Area length

Name Format | Type |Comment

PCB number | (B4) Input

Receiving are Output

Area length |(B4) Input

After the call is executed, the receiving area contains the contents of the PCB with the requested number in the
requested length. A check is made to verify that the requested PCB is within your current PCB list. The first PCB
is PCB number 1, the second PCB is PCB number 2, etc.. If you specify an invalid number, the field PCBNUM
is set to X’FFFFFFFF’ and no further information is passed to your application program.

Sample Program: NIPSPCBD

CMEMOD - Modify MOD Name Dynamically

The module CMEMOD allows the MOD name to be modified dynamically for a given LTERM at the normal
end of a Natural session.

The following parameter is provided:

MOD name

Name Format | Type | Comment

MOD name (A8) Input

At a normal end of a session, the environment-dependent interface inserts the message X’00060000403F’ into
the IOPCB, using the MOD name whose value is contained in MOD name parameter. This is intended to present
a meaningful screen (for example, a general menu) to the terminal user so that he can continue working at the
terminal.

Copyright © Software AG 2002 111

CMGETMSG - Read Next Message Natural under IMS/TM - Service Modules

CMGETMSG - Read Next Message

The module CMGETMSG reads the next message from the message queue.
The following parameters are provided:

Message area | Message area length

Name Format | Type |Comment
Message area Output
Message area leng (B4) Input

The length is checked to see if the received message fits into the message area. The message is moved including
the LLZZ bytes into the message area. If there are no more messages, LL=0 is moved into the message area.

If the message does not fit into the message area, a corresponding error message is returned.

Sample Programs: NIPSGETM and NIPSOBMP.

CMGETSEG - Read Next Segment

The module CMGETSEG reads the next segment of the current message from the message queue.
The following parameters are provided:

Message area | Message area length

Name Format | Type | Comment
Message area Input
Message area leng (B4) Input

The length is checked to see if the received message fits into the message area. The message segment is moved
including the LLZZ bytes into the message area. If there are no more message segments, LL=0 is moved into the
message area.

If the message does not fit into the message area, a corresponding error message is returned.

Sample Program: NIPSOBMP

112 Copyright © Software AG 2002

Natural under IMS/TM - Service Modules CMGETSPA - Transfer Data from SPA

CMGETSPA - Transfer Data from SPA

The module CMGETSPA transfers the data from the SPA starting from the given offset in the requested length
into the receiving area.

The following parameters are provided:

Offset | Length | Area

Name |Format | Type |Comment

Offset | (B4) Input

Length| (B4) Input

Area |(B4) Output

Sample Program®IPSGSPA and NIPSPSPA

CMIMSID - Get MVS Subsystem 1D

The module CMIMSID enables Natural programs to obtain the MVS subsystem ID of the IMS system in which
they are currently scheduled.

The following parameter is provided:

IMSID

Name |Format | Type |Comment

IMSID | (A4) | Output

After the call is executed, the field IMSID contains the MVS subsystem ID of the IMS system in which you are
currently scheduled.

The module CMIMSID depends upon an internal IMS control block. Therefore, it is an IMS release-dependent
function that will be updated whenever possible.

Copyright © Software AG 2002 113

CMIMSINF - System Environment Info

CMIMSINF - System Environment Info

The module CMIMSINF provides system environment information.

The following parameters are provided:

IMSID | SUFFIX | APPLGNAM | APPLNAM | NRENT | NNONR

Natural under IMS/TM - Service Modules

Name Format | Type |Comment

IMSID (A4) | Output| The IMS ID.

SUFFIX (A2) Output| The preload suffix.

APPLGNAM | (A8) Output| The application group name.

APPLNAM | (A8) Output| The application name.

NRENT (B4) Output| The number of reentrant modules preloaded.
NNONR (B4) Output| The number of non-reentrant modules preloaded.

CMIMSINF is also an IMS release-dependent module.

Sample Program: NIPSINF

CMPCBADR - Return PCB Address

The module CMPCBADR returns the address of a PCB which is identified by a logical name. The PSB name is
also returned to the Natural program.

The following parameters are provided:

PSB name | PCB name | PCB address

Name Format | Type | Comment
PSB name | (A8) Input
PCB name | (A8) Input
PCB addres| (B4) Input

After the call is executed, the field PCBADR contains the address of the PCB identified in the table module by
the logical name "PCBNAME" in the table entry that corresponds to the currently scheduled transaction code. If
the logical name does not exist for this transaction code, X’FFFFFFFF’ is returned in the PCBADR field. In any
case, the field PSBNAME contains the name of the currently scheduled PSB.

Sample Program: NIPSPCBA

114

Copyright © Software AG 2002

Natural under IMS/TM - Service Modules CMPRNTR - Change Default Hardcopy Destination

CMPRNTR - Change Default Hardcopy Destination

The module CMPRNTR changes the default hardcopy destination set by the module NIIIMSHC to the value
passed as parameter.

The following parameter is provided:

Destination

Name Format | Type | Comment

Destination (A8) Input

The module CMPRNTR is provided for compatibility reasons only; use the Natural SET CONde6ttid
statement instead.

CMPUTMSG - Insert Output Message into 10-PCB

The module CMPUTMSG can be used to insert any given output message of a given length into the I0-PCB,
using any given MFS MOD name.

CMPUTMSG takes the number of bytes as indicated in the message length from the message area and inserts
them with the specified MOD name in the message queue.

There is no restriction upon the length of the message, except that it has to fit into the input message area of the
environment-dependent interface. No check is made regarding the I0-PCB status code after the insert call is
issued to IMS/TM. In this way, you can send MFS-formatted output messages back to the originator of the input
message.

The following parameters are provided:

Message area | Message length | MOD name

Name Format | Type | Comment

Message area Input

Message lengt| (B4) Input

MOD name Input

Copyright © Software AG 2002 115

CMPUTSPA - Move Data into SPA Natural under IMS/TM - Service Modules

CMPUTSPA - Move Data into SPA

The module CMPUTSPA moves the data with the given length at the specified offset into the SPA.
The following parameters are provided:

Offset | Length | Data

Name |Format | Type | Comment

Offset | (B4) Input

Length| (B4) Input

Data Input

A check is done if the specified offset points into the Natural Reserved Area (NRA) within the SPA. If yes,
return code 4 is returned.

Sample Program: NIPSPSPA

CMQTRAN - Content of Current Transaction Code Table
Entry

The module CMQTRAN returns the contents of the current entry within the transaction code table.
The following parameters are provided:

Transaction code | Offset | Length | Uoffset | PSB name | Number of PCBs

Name Format | Type |Comment

Transaction cod Output| The transaction code under which you are running.

Offset (B2) Output| The offset of the NRA with the SPA.

Length (B2) Output| The length of the NRA.

Uoffset (B2) Output| Not used.

PSB name Output| The name of the scheduled PSB.

Number of PCB Output| The number of PCBs whose addresses you can obtain using the nodule
CMPCBADR.

The logical names by which you can refer to PCBs in the module CMPCBADR are not returned because of
security considerations; you should be informed by your system about which logical names you are allowed to
refer to.

Sample Program: NIPSQTRA

116 Copyright © Software AG 2002

Natural under IMS/TM - Service Modules CMQUEUE - Insert Message into First Alternate PCB

CMQUEUE - Insert Message into First Alternate PCB

The module CMQUEUE inserts a message into the first alternate PCB.
The following parameters are provided:

Destination | Message | Message length

Name Format | Type | Comment
Destination Input
Message Input
Message lengt| (B4) Input

This call causes an immediate change call to set the destination of the first alternate PCB to the value contained
in the field Destination, after which the message is inserted into the alternate PCB with the indicated Message
length.

The transaction code is inserted after the LLZZ bytes with a length of 8.
After a PURGE call has been issued, control is returned to the next instruction in the Natural program.
The message can have any length up to the size of the input message area (usually 8000 minus 12 bytes).

Sample Program: NIPSQLOA

CMQUEUEX - Complete Control over Message Content

The module CMQUEUEX provides you with complete control over the contents of a message that is to be
gueued in the IMS/TM input queue.

The following parameters are provided:

Destination | Message | Message length

Name Format | Type | Comment
Destination Input
Message Input
Message lengt| (B4) Input

This call causes an immediate change call to set the destination of the first alternate PCB to the value contained
in the field Destaination, after which the message is inserted into the alternate PCB with the indicated Message
length after the LLZZ bytes. The difference compared to CMQUEUE is that the transactionrmatdessrted

after the LLZZ bytes.

After a PURGE call has been issued, control is returned to the next instruction in the Natural program. The
message can have any length up to the size of the input message area (usually 8000 minus 12 bytes).

Sample Program: NIPSQUEX

Copyright © Software AG 2002 117

CMSNFPRT - Set Logical Device Name Natural under IMS/TM - Service Modules

CMSNFPRT - Set Logical Device Name

The module CMSNFPRT sets the logical name of the device to which the Natural messages during the online
BMP run is sent.

The following parameter is provided:

Printer name

Name Format | Type | Comment

Printer namg Input

Before calling CMSNFPRT, use the Natural parameter SENDER to define the default output destination.

Sample Program: NIPSOBMP

CMSVC13D - Terminate Natural Session

The module CMSVC13D terminates the Natural session with user abend 222 and creates a dump.
Parameters: None

Sample Program: None.

CMTRNSET - Insert SPA via Alternate PCB

When the Natural session is terminated normally, the Natural IMS interface performs a direct
program-to-program switch to the specified transaction code and inserts the SPA via the alternate PCB.

The following parameter is provided:

Trancode

Name |Format | Type| Comment

Trancodeg Input

Sample Program: NIPSEOSS

118 Copyright © Software AG 2002

Natural under IMS/TM - Service Modules NIIDDEFS - Deferred Switch to Foreign Transaction

NIIDDEFS - Deferred Switch to Foreign Transaction

Module NIIDDEFS is similar to module CMDEFSWX. If you use NIIDDEFS to perform a deferred switch to a
foreign transaction, the current Natural session is suspended, as with module CMDIRSWZ. The suspended
Natural session can be resumed at any time by sending back to Natural a message containing the CLEAR key.

The following parameters are provided:

Transaction code | Message | Message length | MOD name | Transaction type

Name Format | Type | Comment

Transaction Input | The transaction code to switch to.

code

Message Input | The message to be sent to the foreign transaction code.

Message length| (B4) Input
MOD name (A8) Input

Transaction typ¢ (A4) Input| An A4 variable containing the string "CONV" if the foreign transaction is
conversational and the string "NONC" if the foreign transaction is
non-conversational.

Return Codes:

0 OK
4 The message length is greater than the size of the message area defined in the environment table.

8 You tried to do a deferred switch with suspend from a conversational Natural to a non-conversational
foreign transaction, something which cannot be done.

12 The fifth parameter is invalid; it contains neither "CONV" nor "NONC".

Sample Program: NIPSDEFS

NIIDPURG - Insert Multi-Segment Message

The module NIIDPURG does not have parameters. It issues a PURG call using the first alternate PCB and
inserts multi-segment messages using the module NIIDQUMS.

Return Codes: Either bytes two and three of the 4-byte return code contain the status code, or the return code has
the value O.

Sample Program: NIPSQLMS

Copyright © Software AG 2002 119

NIIDQUMS - Create Multi-Segment Message Natural under IMS/TM - Service Modules

NIIDQUMS - Create Multi-Segment Message

This module creates multi-segment messages. It has basically the same functionality as thE MQUEHE E,
with the difference that NIIDQUMS does not issue a PURG call.

The following parameters are provided:

Destination | Message | Message length

Name Format | Type | Comment
Destination Input
Message Input
Message lengt| (B4) Input

It is your responsibility to issue the PURG call using the modUBPURG.

Sample Program: NIPSQLMS

NIIDSETT - Get Foreign Transaction Code

In order to perform a correct transaction switch to a foreign transaction code, the type of the foreign transaction
code must be known. To obtain this type, the special-purpose module NIIDSETT can be used. If NIIDSETT is

not used, the foreign transaction code is assumed to be of the same type as the invoking Natural transaction code.
If this is not the case, there will be unpredictable results or the session will terminate abnormally.

The following parameter is provided:

Transaction type

Name Format | Type | Comment

Transaction typ¢ (A4) Input | Possible values:
"CONV" for conversational,
"NONC" for non-conversationg

120 Copyright © Software AG 2002

Natural under IMS/TM - User Exits Natural under IMS/TM - User Exits

Natural under IMS/TM - User EXits

This document contains an overview of the user exits that are available with the Natural IMS/TM Interface. For
each exit, a source module with the same name is provided. Each source module contains a description of the
parameter list and of the register conventions.

NIIXACCT
NIIXSTAR
NIIXMSSP
NIIXSSTA
NIXISRM
NIXISRT
NIIXTGUO
NIXJESA
NIIXPRTO
NIIXRFNU
NIIXTGNO

Additonal Information

e Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer thlatural IMS/TM Error Code the Natural Messages and Codes
documentation.

® |[nstallation - refer tolnstalling the Natural IMS Interfada the Natural Installation Guide for Mainframes.

e Further information - refer to the following topics:

Environmentg Component$ Configuration Macro$Service ProgramgService Module$Special
Functions| Recovery Handling

NIIXACCT

The exit is called before an accounting record is written to the IMS log or to SMF. Thus, it makes it possible to
modify the content of an accounting record. If NIIXACCT returns a non-zero register 15, the accounting record
iS not written at all.

NIIXSTAR

The exit is called with each transaction step after the SPA and the message have been retrieved and the Natural
thread has been rolled in and decompressed. Within this exit, the Natural IOCB and the driver work area are
accessible.

A value of 12 in register 15 upon return of NIIXSSTA forces the Natural IMS interface to terminate the Natural
session. Any other non-zero value in register 15 forces the interface to issue the Natural IMS interface error 3517
with the reason code containing the value in register 15.

Note:
This exit is not called when a new Natural session is started.

Copyright © Software AG 2002 121

NIIXMSSP Natural under IMS/TM - User Exits

NIIXMSSP

The exit is called only if the multi-session feature is in use. It builds the first 7 bytes of the session identification.
By default, Natural under IMS compresses the LTERM names to 7 characters.

NIIXSSTA

The exit is called when a new Natural user session has been started and the SPA and the Natural IOCB have
been initialized.Within this exit, the Natural IOCB and the driver work area are accessible.

A value of 12 in register 15 upon return of NIIXSSTA forces the Natural IMS interface to terminate the Natural
session. Any other non-zero value in register 15 forces the interface to issue the Natural IMS interface error 3509
with the reason code containing the value in register 15.

NIIXISRM

The exit is called before the insertion of the message into the IOPCB.

NIIXISRT

The exit is called before the insertion of the SPA into the IOPCB, even at the end of the Natural session. The
end-of-session situation can be recognized by a blank transaction code.

NIIXTGUO

The exit is called when the service module CMGETMSG is used. NIIXTGUO receives control immediately after
the GU call against the IOPCB, regardless of the status code.

NIIXJESA

The exit is called when the JES API is used for writing reports. It is called after the options string has been
created and may be used to modify the options string.

NIIXPRTO

The exit is called when reports are directly written to IMS/TM printers. It can be used to set the codes for "form
feed" and "new line".

NIIXRFNU

The exit is called when the new Natural session is assigned to a roll file. It can be used to calculate the number of
the roll file to be used for this session.

NIIXTGNO

The exit is called when the service module CMGSEGO or CMGETSEG is used. NIIXTGNO receives control
immediately after the message segment is retrieved, regardless of the status code.

122 Copyright © Software AG 2002

Natural under IMS/TM - Special Functions Natural under IMS/TM - Special Functions

Natural under IMS/TM - Special Functions

This document describes the use of special functions available with the Natural IMS Interface. The following
topics are covered:

Prerequisites
Accounting
Monitoring
Broadcasting
Multi-Session Feature
Server Environment

Additional Information

Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer thlatural IMS/TM Error Code the Natural Messages and Codes
documentation.

Installation - refer tolnstalling the Natural IMS Interfada the Natural Installation Guide for Mainframes.
Further information - refer to the following topics:

Environmenty Component$ Configuration Macro$Service ProgramService Module$User EXxits|
Recovery Handling

Prerequisites

Some of these functions require the Authorized Services Manager (ASM).

e Ifthe ASM is required, it must have been started before the function is used.
® The Natural subsystem used by the ASM must be the same as the one used by the Natural session.
® [or accounting and monitoring, the SIP server must have been enabled in addition.

Accounting

The accounting function is only available in dialog-oriented environments. It is activated by setting the
environment table parameter ACTACTV to "YES".

With each terminal I/O, information about the specific Natural session is written to the IMS log or to SMF,
depending on the setting of the Natural IMS parameter ACTLOG.

e If the ACTLOG parameter is set to "CMD", a /[LOG command is issued that writes the accounting record to

the IMS/TM log. All transaction codes must therefore be allowed to use the /[LOG command.

At the beginning of each record an 8-byte header is inserted. This header helps to easily select the
accounting records using the IMS utility DFSERA10. The header string is defined by the environment table
parameter ACTAHDR.

If the ACTLOG parameter is set to "LOG", the accounting record is written to the IMS/TM log using the
LOG call. With the Natural IMS parameter ACTARID, you specify the log code to be used.

If the ACTLOG parameter is set to "SMF", the accounting record is written to SMF using the Authorized
Services Manager. With the Natural IMS parameter ACTARID, you specify the SMF record type to be
used.

Copyright © Software AG 2002 123

Monitoring Natural under IMS/TM - Special Functions

The following information about each Natural user session is stored with each terminal 1/O:

IMS ID of the IMS system in which the user is active,

LTERM name of the IMS terminal on which the session was started,

user ID of the user of the Natural session (taken from the IOPCB),
number of dialog steps currently performed,

currently active transaction code,

currently active PSB name,

current Natural library name to which the user is logged on,

currently active Natural program name,

non-Natural transaction code to which the session is possibly suspended to,
time and date when the session was started,

time and date of the last ENTER operation,

DBID and FNR of the Natural system file (FNAT) for this session,

DBID and FNR of the Natural user file (FUSER) for this session,

DBID and FNR of the Natural dictionary file (FDIC) for this session,

DBID and FNR of the Natural Security system file (FSEC) for this session,
DBID and FNR of the Natural spool file (FSPOOL) for this session,

DBID and FNR of the Super Natural system file for this session,

last encountered Natural error number,

compressed thread length of the last terminal output.

The information is mapped by the DSECT NIMACTR. There are two areas for storing the DBID and FNR of the
Natural system files used. In the first area, one byte is used for each DBID and FNR,; this is supported for
compatibility reasons. In the second area, a fullword is used for each DBID and FNR to support Adabas Version
6. The accounting record is prefixed with a length and version field.

Before the accounting record is written to the IMS/TM log, respectively to SMF, the user exit NIIXACCT is
called. You can use this user exit to tailor the accounting record to your requirements. You may also append
information to the accounting record. In this case, you must set the length field to the new length.

Since the accounting record is built in the command buffer, the total length must not exceed the value specified
with the Natural IMS parameter CMBSIZE minus 17 bytes. The maximum length allowed is passed as
parameter.

If NIIXACCT returns with a non-zero value in register 15, no accounting record is written.

Monitoring

The monitoring function is only available in dialog-oriented environments. It is activated by setting the
environment table parameter MONACTYV to "YES" and uses the SIP function of the Authorized Services
Manager. The Natural subsystem must be the same as the one used by the Natural session to be monitored.

You can follow the ongoing activity of all Natural sessions which use the same Natural subsystem by using the
Monitoring (M) function of the SYSTP utility. For more information on the SYSTP utility SS8TPin the
section Debugging and Monitoring. The SYSTP session must also use the same Natural subsystem.

Broadcasting

The broadcasting function is only available in dialog-oriented environments. It is activated by setting the
environment table parameter BROACTYV to "YES" and uses the SIP function of the Authorized Services
Manager.

124 Copyright © Software AG 2002

Natural under IMS/TM - Special Functions Broadcasting

Once broadcasting is active, it is possible to send broadcast messages to targeted users of a given Natural
subsystem. Such users can be:

e all users of the Natural subsystem to which the sender is connected;

e all users of the Natural subsystem within the same IMS system as the sender of the message;

® all users of the Natural subsystem within the same IMS system as the sender of the message, but
additionally restricted to a given transaction code;

® all users of the Natural subsystem within the same IMS system as the sender of the message, but
additionally restricted to a Natural application;

e all users of the Natural subsystem within the same IMS system as the sender of the message, but
additionally restricted to a Natural application and to a given FUSER system file.

When a session comes to a terminal output, a check is made to see whether the session has to receive a message
or not. If not, the normal Natural output is sent. If yes, the message is sent instead of the normal output and,

when pressing ENTER, the Natural nucleus is instructed to re-send the last screen. In this way, you first see the
message and afterwards receive the normal Natural output screen.

If more than one broadcast message is available, the messages are displayed one after the other until the last
message has been shown. Afterwards, the normal Natural output screen is displayed.

A broadcast message will be displayed only if its expiration time specified in the message creation procedure
has not been exceeded.

When a broadcast message is sent, you must press RESET before you can press ENTER again. All possible
attention IDs have the same effect as pressing ENTER.

The utility SYSTPcan be used to create broadcast messages and to display the contents of all active messages
together with the LTERM/IMSID of the sender. The text of a message is limited to 72 bytes.

Messages to be broadcast are saved in a pool maintained by the SIP server. They remain there until you delete
them using the SYSTP utility or until you shut down the Authorized Services Manager.

When a broadcast message is deleted or created, all expired messages are
deleted as well.

Copyright © Software AG 2002 125

Multi-Session Feature Natural under IMS/TM - Special Functions

Multi-Session Feature

Functionality of the Multi-Session Feature

The multi-session feature is only available in dialog-oriented environments. It is activated by setting the Natural
IMS parameter MSACTV to "YES" and allows to run up to nine simultaneous Natural sessions on the same
logical terminal.

With the Natural IMS Interface Version 2.3, new sessions are created and suspended sessions are resumed in a
different way as with Natural IMS Interface Version 2.2. The Natural IMS Interface Version 2.2 mode is still
supported for compatibility reasons, but is no longer documented. The old Version 2.2 mode is activated by
setting the Natural IMS parameter MSCMPTB to "YES".

With the Natural IMS Interface Version 2.3, creating and resuming Natural sessions is controlled using PF keys.
The Natural IMS parameters MSCRKEY and MSRSKEY define the create and resume keys.

e |[f the create key is pressed, the current Natural session is suspended and a new Natural session is created.

e If the resume key is pressed, any input field may contain the gtrigh x between 1 and MSSESMX. In
this case, the currently active session is suspended and the specified session is resisyggdatér than
MSSESMX, the input is passed to the active application.

e If the resume key is entered without any input, the next suspended session is resumed in a wrap-around
manner. If, for example, the active session is session number 4, the next suspended session in the range 5
through MSSESMX or 1 through 3 is resumed. If there is no suspended session, the input is passed to the
active application.

e If the session to be resumed is using a different transaction code than the current session, an implicit
program-to-program switch is done in order to resume the suspended session with the correct transaction
code.

e |If conversational and non-conversational environments are used in parallel, the modnames NIIMODNC and
NIIMODMS are used for switching between the environments. The format definitions are delivered in the
source modules NIIMODMS and NIIMODNC and have to be defined to MFS using MFSUTL.

e If the active session is terminated, the next suspended session (if there is any) is resumed in the same order
as with the resume key.

e If the Natural IMS parameter MSMAX is set to "2" (two parallel sessions are allowed), the create key must
be identical with the resume key. In this case, pressing the create key creates a second session if only one
session is active, if not, it switches the session.

126 Copyright © Software AG 2002

Natural under IMS/TM - Special Functions Server Environment

Session ID

The session ID is the internally used unique identification of a session. It has th&XXXXxY where
XXXXXXxs the prefix and is the session number in the form of a numeric digit in the range of 1 to 9.

The session prefix is built by compressing the logical terminal name into a 6-byte binary XotbetxXand
by settingx to binary zero.

If the compression algorithm is not suitable for the LTERM names used (error 3635 is issued in this case), the
user exit NIIXMSSP must be used in order to build a unique 7-byte prefix of the session ID.

Multi-Session Database

The multi-session database is a HDAM root-only database which contains the Natural-reserved area of the SPA
for each suspended session.

The model DBD for the description of the multi-session database is delivered in the source module NIIMSDBD
and must be defined to IMS/TM.

The DBD name must be specified in the Natural IMS parameter module using the parameter MSDBD. The PCB
number must be specified in the transaction code table using the parameter MSPCB of macro NIMTRNTG.

Server Environment

The server environment allows 3GL applications to execute Natural programs using a call interface. It is
available in all supported IMS/TM environments and consists of a special Natural IMS driver, NIISRVD, of the
call interface NIIBOOTS and of the service API NIIPCOM.

NIISRVD and NIIBOOTS are delivered as source modules and must be assembled and link-edited on your site.
For details, setnstalling the Natural IMS Interfadgn the Natural Installation Guide for Mainframes).

The server environment allows you to start a Natural session by calling NIIBOOTS from any 3GL program.
After the Natural session has been started, it returns to the calling 3GL program and waits for further input. The
input would normally be expected from CMSYNIN, which means that the 3GL program has to simulate
Natural's primary input dataset.

It is strongly recommended to always put the server Natural on the NEXT line. This allows the next call to
NIIBOOTS to either execute a Natural command or a Natural program. Otherwise, the next call to NIIBOOTS
would be treated as input for a Natural program which had been started by a previous call to NIIBOOTS.

Similarly as with the message-oriented interface, all output normally written to CMPRINT is sent to the IMS/TM
destination specified with the Natural profile parameter SENDER.

In an MPP Environment, the same server Natural will be used by all
transactions scheduled in this region.

Copyright © Software AG 2002 127

Call Interface NIIBOOTS Natural under IMS/TM - Special Functions

Call Interface NIIBOOTS

NIIBOOTS is the default name as used in the documentation and in the delivered sample programs. This default
name can be changed during installation.

NIIBOOTS requires the following parameters:

e the PSB address (the address of the PCB address list),
® the command area,
e the reply area.

In the command area, the following may be passed:

® the startup parameters,
e any Natural command followed by its input data,
e the NIIBOOTS-specific commands, such as STAT and REFR (in combination with the startup parameters).

The startup parameters are passed in two contiguous 80-byte areas. The first area contains the name of the
environment table to be used as follows:

ENV-TAB= environment-table-name
The second area contains the dynamic Natural parameters with which the Natural session is to be started.

The reply area is the area in which a reply is to be entered from the executed Natural program using the service
API NIIPCOM.

Each time it is invoked, NIIBOOTS checks whether the server Natural has been initialized.

e If Natural has not been initialized, a new Natural session is started and the received command is passed to
Natural as a dynamic parameter.

e If Natural has been initialized, the string received in the command area is passed to Natural as a Natural
command or as a Natural program.

The NIIBOOTS-specific commands STAT and REFR do the following:
® STAT returns "COLD" in the reply area if Natural has not been initialized and "WARM" if it has been
initialized.
® REFR forces the initialization/reinitialization of Natural, regardless of the current state of Natural.

128 Copyright © Software AG 2002

Natural under IMS/TM - Special Functions ON ERROR Routine Recommended

ON ERROR Routine Recommended

It is highly recommended to use an ON ERROR routine in the executed Natural programs in order to give back
to the calling 3GL program some information in the reply area using NIIPCOM.

Return Codes

NIIBOOTS passes the return code provided by Natural on the termination of Natural.

Sample Programs

To illustrate usage of NIIBOOTS and NIIPCOM, the sample programs NIPBOOTS and NIPPCOM are
provided. NIPBOOTS plays the role of the calling 3GL program, NIPPCOM is a sample Natural program
executed in the server environment and writes the string "NIISRVR" into the reply area. The ON ERROR
routine places the Natural error number in the reply area.

With the sample programs, you can go through the following scenario:

1.
2.

w

Pass the command STAT. The string "COLD" is returned to the reply area.

Pass the command: STACK=(LOGON SYSEXTP),SENDER=S0201

S0201 is the LTERM name of the assigned printer device in the server Natural.

Natural will be initialized and will be ready to receive a Natural command in library SYSEXTP.

The successful logon message is issued on the assigned printer. Nothing is returned in the reply area.

. Pass the command STAT. The string "WARM" is returned to the reply area.
. Pass the command NIPPCOM. Program NIPPCOM is executed and the string "NIPSRVR" is returned to

the reply area. Natural is ready to accept the next command in library SYSEXTP.

. Pass the command: REFR STACK=(LOGON SYSEXTP;NIPPCOM),SENDER=S0201

Natural is reinitialized and program NIPPCOM in library SYSEXTP is executed. The reply area contains
the string "NIPSRVR".

. Pass the command FIN.

Natural is terminated and no information is passed to the reply area. The return code will contain the return
code of the Natural termination. The Natural termination message is issued on the assigned printer device.

. Pass the command STAT. The string "COLD" is returned to the reply area.

Copyright © Software AG 2002 129

Natural under IMS/TM - Recovery Handling Natural under IMS/TM - Recovery Handling

Natural under IMS/TM - Recovery
Handling

This section describes recovery handling in the Natural IMS Interface. The following topics are covered:

® System and User Abends
® Non-Recoverable Errors
® Recoverable Errors

Additional Information

e Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer thlatural IMS/TM Error Code# the Natural Messages and Codes
documentation.

e Installation - refer tolnstalling the Natural IMS Interfada the Natural Installation Guide for Mainframes.

® Further information - refer to the following topics:

Environmentg Component$ Configuration Macro$Service ProgramgService Module$Special
Functions| User Exits| Special Functions

130 Copyright © Software AG 2002

Natural under IMS/TM - Recovery Handling System and User Abends

System and User Abends

The Natural IMS interface is protected by an ESTAEX environment which takes control in case of an abend.

e If a user abend is detected, resources are cleaned up and the abend is percolated without giving control to
Natural.

e If a system abend is detected, Natural is informed about the abend and, depending on the setting of the
Natural profile parameter DU, Natural contines with an error message or terminates the session.

In both cases, you can produce a dump which represents the situation at the time when the error occurred
(register contents, PSW, etc.). The dump is produced if DU=ON or if the user abend has requested this.

Non-Recoverable Errors

A non-recoverable error is a logical error detected by the Natural IMS interface which cannot be handled by
Natural. These situations typically occur during startup, termination or terminal 1/O. In all cases, the Natural
runtime is not active and can thus not react to the error.

If a non-recoverable error is detected, the Natural IMS interface issues a NIl error and terminates the session.
The error message is also written to the IMS log and to the system log. Depending on the dump option in the
error message table, a snap dump is produced.

If you do not wish a message to be written to the IMS log, sé&Rf_HDR parameter of the NIMPARM
macro explicitely to null, i.e. you specify "ERRLHDR=,".

If it is not possible to send the error message (for example if the GU has failed), the session abends (user abend).

Recoverable Errors

If a logical error is detected by the Natural IMS interface which can be handled by Natural, for example an
invalid destionation for a report, a Natural error message is issued and Natural proceeds with its standard error
handling.

Copyright © Software AG 2002 131

Natural under TIAM Natural under TIAM

Natural under TIAM

This section describes how to run Natural under TIAM. It covers the following topics:

e Structure of the Natural TIAM Interface
e Common Memory Pools under TIAM
o Natural Shared Nucleus

For information on the following topics, refer to:

e |[nstalling the Natural TIAM Interfacén the Natural Installation Guide for Mainframes)
® Parameters in Macro NAMTIAMin the Natural Installation Guide for Mainframes)
e Natural under BS2000/0S(n the Natural Operations documentation for Mainframes).

Structure of the Natural TIAM Interface

The Natural TIAM interface consists of two components:

e the non-reentrant front-end part
e the reentrant part "NATRENT" (default)

Both components are elements of the macro NAMTIAM and are generated with two separate assembly runs; see
alsoParameters in Macro NAMTIANMparamete€CODE (in the Natural Installation Guide for Mainframes).

Thefront-end part is generally linked with the Adabas interface module ADALNK to form the initialization
routine which is run once only during the establishment of a Natural under TIAM session. During the
initialization phase, based on the operand values of the corresponding parameters, various functions, for
example, the establishment/connection to the Natural buffer pool, loading or linking of the Natural nucleus,
establishing the physical terminal buffer, are executed. The front-end part must be loaded for each user (task).

Thereentrant part NATRENT is linked as a modular element to the Natural nucleus and contains various entry
points for TP system dependent routines (memory management, terminal communication, etc.). If a shared
Natural nucleus is to be used, the generated NATRENT module must be linked to the front-end part.

TheNatural nucleusis completely environment-independent (shared code) and must be loaded only once for all
users.

Common Memory Pools under TIAM

You use macro ADDON (which assembles module BS2STUB) either to generate the local common memory
pools, or to define attachment to the global common memory pools.

The programs CMPSTART and CMPEND start and glopal common memory pools. They are described in
the sectiorGlobal Common Memory Poo(& theNatural Operations documentation for Mainfrajnes

A Natural TIAM application needs the following common memory pools:

e Natural load pool
The linked reentrant part of Natural is loaded into this common memaory pool.
e Natural buffer pool
The executable Natural programs and the Natural global data areas are loaded into this common memory
pool. Those compiled Natural programs whose objects are reentrant are executed from this memory pool.
® Natural/Adabas nucleus communication memory pool

132 Copyright © Software AG 2002

Natural under TIAM Natural Shared Nucleus

Natural connects to an additional common memory pool which is established by Adabas during startup.

The sum of the memory assigned to common memory pools, as well as the front-end work area, must completely
fit into the virtual user address space.

If the Adabas pool exceeds the user address space, error message 148 is produced during the OP command
execution. At the beginning of the session, Natural issues the error message NAT8148 and in the following
session termination with the message NAT9989 (incorrect system file).

Natural Shared Nucleus

For TIAM applications, it is possible to use a common shared Natural nucleus. The rules that apply in this case
are documented in the sectiNatural Shared Nucleus under BS2000/Q®the Natural Operations
documentation for Mainframes)

Copyright © Software AG 2002 133

Natural under TSO Natural under TSO

Natural under TSO

This section covers the following topics:

® General Information about the Natural TSO Interface
® Natural/TSO Datasets
® |ssuing TSO Commands from Natural

See also:

e Installing the Natural TSO Interfa¢a the Natural Installation Guide for mainframes).
o Natural Server Monito¢in the Natural Operations documentation for mainframes).

General Information about the Natural TSO Interface

The Natural TSO interface NATTSO consists of a number of service routines interfacing with the OS/390
operating system.

NATTSO is supplied as a source module and can be customized to meet your requirementsSsge3to
the NATTSO installation (section Installing the Natural TSO Interface in the Natural Installation Guide for
Mainframes).

NATTSO is fully reentrant and can run above the 16 MB line.

Natural TSO Datasets

The following optional sequential datasets are used during a Natural session:

DD Name |RECFM/LRECL |Purpose
CMHCOPY | FB/133 Hardcopy output if no HCDEST has been specified (default).

CMPRMIN |FB/80 Dynamic profile parameter input. For more informatiorGMPRMIN, refer
to Natural in Batch Modén the Natural Operations for Mainframes
documentation.

CMTRACE | FB/133 External trace output.
NATRJE |FB/80 Submit job output.
STEPLIB Load library for external modules.

134 Copyright © Software AG 2002

Natural under TSO Issuing TSO Commands from Natural

CMHDEST

Hardcopy output destination. This dataset’s hame can be changed WG DHEST profile
parameter.

If the default dataset name CMHCOPY is used, the hardcopy dataset will be closed upon pession

termination. If a different name is used, the hardcopy dataset will be closed with the next §
I/0O. To release and to reallocate the hardcopy dataset after the closure, the DYNALLOC {
can be used (see the sample library SYSEXTP).

dynamically with SYSOUT=(A,INTRDR) when the first job is submitted.

STEPLIB

This is the default library name for loading external modules, for example the shared nucl
Adabas link routine (ADALNK), the session back-end program and any external subprogr
linked to the Natural parameter module. The load library name can be overwritten by profi
parameter LIBNAM. In this case, the correct library name must be specified in the job con
(instead of STEPLIB).

Issuing TSO Commands from Natural

You can use the Natural example program TSO in library SYSEXTP to issue TSO commands; for example:

TSO LISTALC STATUS

creen
rogram

CMTRACE| If the profile parameter ETRACE is set to ON, all trace output is written to this dataset during the
session.
NATRJE | This dataset is used for the Natural job submitting utility. If it is not defined, it will be allocated

us, the
ms not
e

rol

If you enter TSO without parameters, a menu prompts you for a TSO command. To exit from the menu enter a
period (.) in the first position, or press PF3.

Copyright © Software AG 2002 135

Natural under UTM - Overview

Natural under UTM - Overview

Natural under UTM - Overview

The Natural UTM Interface documentation is divided into four parts and covers the following topics:

Part 1

Structure of the Natural UTM Interface
Formatting Messages - FREXIT

Embedding Natural in a UTM Application
Common Memory Pools

Other Storage Areas

Generating KDCROOT

Defining the UTM Resources - KDCDEF

UTM DC-Transaction Exit Routine NUERROR
UTM Startup Function

UTM Shutdown Function

Part 2

e NATUTM Macro Keyword Parameters
® NATUTM Macro Entries
® NURENT Macro Keyword Parameters

Part 3

User Exits

Asynchronous Transaction Processing under UTM
Printing under UTM

Calling Non-Natural Programs

Calling UTM Chained Partial Programs

Terminating a UTM Task Abnormally
Part 4

Accounting for Natural UTM Applications

Utility Programs for Use with Natural under UTM
Software Exchange

UTM TACCLASS Concept (Priority Control)
Generating a Natural UTM Application

Optimizing Natural UTM Applications

Several Applications with one Common Natural
Entering and Defining Dynamic Natural Parameters
UTM User Restart

Adabas Priority Control

See also:

Calling Adabas from Non-Natural Programs in a Natural UTM Application

Installing the Natural UTM Interfacgn the Natural Installation Guide for Mainframes)
Natural under UTM Error Messagéa the Messages and Codes documentation for Mainframes).

® Error Messages from the Natural Swap Pool Manager Valid under CICS andib/Tid Messages and

Codes documentation for Mainframes).

o Natural under BS2000/0S(n the Natural Operations documentation for Mainframes).

136 Copyright © Software AG 2002

Natural under UTM - Overview Natural under UTM - Overview

Notation vrs or vr

If used in the following document, the notatims or vr stands for the relevamérsion,releasesystem
maintenance levelumbers.

Copyright © Software AG 2002 137

Natural under UTM - Part 1 Natural under UTM - Part 1

Natural under UTM - Part 1

This part of the Natural UTM Interface documentation covers the following topics:

Structure of the Natural UTM Interface
Formatting Messages - FREXIT

Embedding Natural in a UTM Application
Common Memory Pools

Other Storage Areas

Generating KDCROOT

Defining the UTM Resources - KDCDEF

UTM DC-Transaction Exit Routine NUERROR
UTM Startup Function

UTM Shutdown Function

Installation - refer tolnstalling the Natural UTM Interfacie the Natural Installation Guide for Mainframes.

Notation_vrs_or_vr*>Notation vrsor vr: If used in the following document, the notatins or vr stands for
the relevantersion,releasesystem maintenance lewvalimbers.

138 Copyright © Software AG 2002

Natural under UTM - Part 1 Structure of the Natural UTM Interface

Structure of the Natural UTM Interface

The Natural UTM Interface consists of the macros NATUTM, BS2STUB and NURENT and of several utility
programs, which enable special requirements to be accommodated.

The macro NATUTM is used to generate the front-end part of the Natural UTM Interface to suit the particular
application based on appropriate operand definitions for the keyword parameters. The default values of the
parameters are chosen so that, in general, they can be used without alteration for an initial generation. The
front-end part is present once per UTM task and consists principally of the following components:

KDCROOT of UTM,
assembled macro NATUTM,
assembled macro BS2STUB,
format exit module FREXIT,
Adabas interface module.

The reentrant part of the Natural UTM Interface is generated by assembling the macro NURENT. This is linked
with the reentrant part of the Natural UTM application. If a shared Natural nucleus is to be used, the generated
"NURENT" module must be linked to the front-end part.

The reentrant part of the Natural UTM application consists of the following components:

NATINV (address module) (must be included as the first module),
Natural nucleus,

Natural buffer pool manager,

NURENT (CSECT name of the assembled macro NURENT),
NATSWPMG (Natural swap pool manager),

Natural parameter module,

NATLAST (end definition) (must be included as the last module).

The reentrant part of the Natural UTM Interface is only present once in a Natural UTM application (reentrant) if
it is loaded into class 4 storage or intcoanmon memory poai class 6 storage. The latter is recommended. A
further possibility is to link the reentrant part with the non-reentrant front-end part of the Natural UTM
application. The Natural and UTM macro libraries are required when assembling NATUTM, NURENT and all
utility programs.

Copyright © Software AG 2002 139

Formatting Messages - FREXIT Natural under UTM - Part 1

Formatting Messages - FREXIT

Natural uses its own formatting routines when sending messages to the VDU (UTM format type "-"). Messages
are processed by the format exit module FREXIT (transfer from logical to physical /O domain and vice versa,
producing RESTART and LOGOFF messages, etc.). The module FREXIT must be linked with the front-end part
of the Natural UTM application and it must be defined as the format exit module when generating KDCROOT or
KDCDEF.

Example:

PROGRAM FREXIT,COMP=ASSEMB
EXIT PROGRAM=FREXIT,USAGE=FORMAT

The program FREXIT supports the format name "-END" for the LOGOFF message. See the description of the
keyword parametdtOFFMAP of the macro NATUTM. No more UTM administration commands (KDCINF,
KDCSHUT N, etc.) can be entered after the format name "-END" has been used and the LOGOFF message has
been output. The LOGOFF message is output in formatted mode; however, UTM expects administration
commands in line mode and therefore any input results in a syntax error. After this error message has been
received, all valid administration commands can be input with the administration ID. The messages for
asynchronous messages, RESTART and LOGOFF can be changed to suit specific requirements by changing the
appropriate text constants in the program FREXIT.

The program FREXIT has a user exit INPTEX that can be satisfied by the utility program INPTEX. See the
descriptions of the programs NATDUE and INPTEX in the sedfitiity Programs

Another user exit in program FREXIT is TRMIOEX, which can be used for input/output message control.

The macro FREXIT contains the following keyword parameters:

AMSG=ASAP | If there are any "free-running" (asynchronous) messages, a further dialogue with Natpral is
only possible if these messages have previously been read with the command KDCQUT.

AMSG=WAIT | A further dialogue with Natural is possible even if any "free-running" messages have hot yet
been read with the command KDCOUT. This is the default.

KDCDISP=YES | (Default) KDCDISP is supported by a restart message with an automatic ENTER. Thge last
screen output will be refreshed.

KDCDISP=NO |KDCDISP is supported by a restart message with a following refresh screen.

If you want to change a default operand of macro FREXIT, you must reassemble FREXIT.

140 Copyright © Software AG 2002

Natural under UTM - Part 1 Embedding Natural in a UTM Application

Embedding Natural in a UTM Application

h‘lessa‘tffﬁz-f” KOCFILE
—— T ——
IJTM Task [
__ KDCROOT - . KDCA,
MATURAL Swap Pool
N'ﬁ'Tlﬂlr-Fﬂ Diirectory T
- T all File
. PFEMD FI -— MATURAL e ——
— MUERROR User Work Areas |
ES25TUE _— ; PAMMAT
FREXIT : —
ana MM ADBEAS Task I
P > fr————
= event
User%m_:lrrams ADABAS - S‘?gﬁa’“ﬁ
e
MATURAL
Reentrant Poal
MATIRY
MUREMT Unshared MATUR AL MNucleus)
. L MGET
fread screen)
— v WPLT = |
{“'fp'té rjg;‘-'E"} . NATURAL Buffer Pool
NATSWPMG r\?::;";:‘:_
MATEWE B ngrgms |
| , HATURAL -
Y naTRARM
MATLAST

Copyright © Software AG 2002 141

Common Memory Pools Natural under UTM - Part 1

Common Memory Pools

The following topics are covered:

e Natural Buffer Pool under UTM

o Natural Swap Pool under UTM

e |oading Natural in a Common Memory Pdblatural Load Pool)
e Natural Monitor Pool

Natural Buffer Pool under UTM

Natural requires a common area into which Natural programs can be read from the Adabas database and where
they are also executed. This common memory pool is the Nauffat pool

You use the keyword parameters of macro "ADDON" (which assembles module "BS2STUB") either to define a
local Natural buffer pool, or to define the connection to a global Natural buffer pool. For more information, see
ADDON Macroin theNatural Operations for Mainframes documentation

You use the keyword parameters of module "CMPSTART" to define a global Natural buffer pool. For more
information on this module, s€&MPSTART Progranin theNatural Operations for Mainframes documentation

To display statistical information about the buffer pool, use the Natural @Ni8BPM (which is described in
the section Debugging and Monitoring).

Natural Swap Pool under UTM

A Naturaluser work areds required for each online Natural user. This user work area must be in the computer’s
main store whenever the user initiates any form of dialogue transaction. To reduce the frequency with which the
user work area is rolled out to the swap file and rolled in again, it is possible to set up a3Nedpr&oal For

details on the swap pool, please refeN&iural Swap Podh theNatural Operations for Mainframes

documentation

You use the keyword parameters of macro "ADDON" (which assembles module "BS2STUB") either to define a
local Natural swap pool, or to define the connection to a global Natural swap pool. For more information, see
ADDON Macroin theNatural Operations for Mainframes documentation

You use the keyword parameters of module "CMPSTART" to define a global Natural swap pool. For more
information, se€MPSTART Progranin theNatural Operations for Mainframes documentation

142 Copyright © Software AG 2002

Natural under UTM - Part 1 Loading Natural in a Common Memory Pool - Natural Load Pool

Loading Natural in a Common Memory Pool - Natural Load Pool

The reentrant part of the Natural UTM application can be loaded in class 4 storage or linked with the front-end
part of the Natural UTM application. Alternatively, it can be loaded in a common memory pool in class 6

storage. This last method is recommended. The amount of storage required in the common memory pool depends
upon the size of the linked reentrant part of the Natural UTM application; this can be read from the linker listing.
The following keyword parameter of macro NATUTM is used if Natural is to be loaded into a common memory
pool in class 6 storage:

Parameter | Explanation

NUCNAME | This parameter specifies the name of the linked, reentrant Natural
nucleus. This is also the name of the Natural load pool.

See als&eyword Parameters of Macro NATUTM

You use the keyword parameters of macro "ADDON" (which assembles module "BS2STUB") either to define a
local Natural load pool, or to define the connection to a global Natural load pool (shared Natural nucleus). For
more information, seADDON Macroin theNatural Operations for Mainframes documentation

You use the keyword parameters of module "CMPSTART" to define a global Natural load pool (shared Natural
nucleus). For more information, SEMPSTART Progranin theNatural Operations for Mainframes
documentation

Natural Monitor Pool

The Natural Monitor utility requires a common memory pool for data storage. This common memory pool is
allocated when the Monitor utility is activated, and released when the Monitor utility is deactivated.

You use the keyword parameters of macro "ADDON" (which assembles module "BS2STUB") either to define a
local Natural monitor pool, or to define the connection to a global Natural monitor pool. For more information,
seeADDON Macroin theNatural Operations for Mainframes documentation

You use the keyword parameters of module "CMPSTART" to define a global Natural monitor pool. For more
information, se€MPSTART Progranin theNatural Operations for Mainframes documentation

For details on the Monitor utility, se&&YSTP Utility in the section Debugging and Monitoring.

Copyright © Software AG 2002 143

Other Storage Areas Natural under UTM - Part 1

Other Storage Areas

Natural User Thread

For each UTM task a storage area with a size of MAXSIZE is generated. This area contains the Natural user area
in decompressed form.

Natural User Work Area Asynchronous Write Buffer

The Natural user work area can be written out either asynchronously ("write without wait") or synchronously
("write with wait").

If the asynchronous option is used (this is the default option), a write buffer having the size of defined operand
for parameter ROLLTSZ is generated for each UTM task. Using this technique, the compressed user work area
is copied from the swap pool into the write buffer, the asynchronous write is started and processing can continue
immediately. This option gives better performance, but at the cost of increased storage.

If roll-outs are to be performed synchronously, the keyword parameter ROLLACC must have the value
"UPAM-SY". In this case, it is not necessary to allocate a write buffer. Processing is suspended until the user
work area has successfully been written to the swap file.

Natural User Area for Asynchronous Transactions

A storage area of MAXSIZE is allocated for each asynchronous transaction in a Natural UTM application

(Natural user work area for this transaction). It is released at the end of the transaction. The Natural swap pool is
not used to store the user work area associated with asynchronous transactions. Every Natural program that runs
asynchronously must end with TERMINATE; that is, the UTM DC transaction is ended with PEND "FI(NISH)'.
This applies to asynchronous transactions both within an application and between two Natural UTM

applications; see alssynchronous Transaction Processing

Natural Roll File - LINK=PAMNAT

A PAM file is required for swapping the Natural user work areas. Writing to and reading from this file is done by
physical chained PAM-1/0. However, this is only possible as long as the swap file does not cross an extent
boundary. This can be checked using SPCCNTRL.

The LINK name of the Natural swap file is PAMNAT. The size of the roll file can be computed as follows:
NP=([(MS+4+31)/32]*32*NT+4)/2

where:

NP = Size of dataset in PAM pages;

MS = Parameter ROLLTSZ in KB, rounded up to next even number;
NT = Number of terminals online.

144 Copyright © Software AG 2002

Natural under UTM - Part 1 Natural Roll File - LINK=PAMNAT

Example:
ROLLTSZ = 80 KB (per user) Number of terminals online = 40

Size of dataset=([(80+4+31)/32]*32*40+4)/2
=([115/32]1*32*40+4)/2
=([3.59375]1*32*40+4)/2
=(3*32*40+4)/2
=3844/2
=1922 PAM pages

FILE statement:
/FILE NATUTM.SWAPFILE,LINK=PAMNAT,SPACE=(1922,96)

When a local swap pool is used, each Natural UTM application requires its own Natural swap file. When a user
logs on to the application, the Natural UTM Interface checks whether there is sufficient space available for the
new user in the Natural roll file. If there is not enough space, error méss&f033is output.

When a global swap pool is used, all Natural UTM applications which are connected to the same global swap
pool must use the same Natural roll file.

Copyright © Software AG 2002 145

Generating KDCROOT Natural under UTM - Part 1

Generating KDCROOT

The following Natural-specific definitions must be entered when generating KDCROOT for a Natural UTM
application:

MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=5120 (see Note 1)

PROGRAM NUSTART,COMP=ASSEMB (see Note 2)
PROGRAM NUERROR,COMP=ASSEMB (see Note 2)
TAC NAT,PROGRAM=NUSTART,EXIT=NUERROR (see Note 2)
EXIT PROGRAM=FREXIT,USAGE=FORMAT (see Note 3)
PROGRAM FREXIT,COMP=ASSEMB (see Note 3)

Note

1 The area needed for the UTM KB has a minimum length of 400 bytes. The necessary KB length for
operand KBannin the MAX parameter of KDCDEF must be calculated as follows:
Fixed KB length is 400 bytes
+ length of KB user extension (keyword parameter KBUSEXT)
+ length of dynamic parameter save area (keyword parameter SVDYPRM)
+ (only if MULTI-PASS is used) length of session key areas, which has to be calculated
as follows:n*72 wheren is the number of parallel session minus 1
The UTM I/O areas NB and TRMSLGTH need a length of 5120 bytes.

2 In a Natural UTM application there is as a rule only one user-specific UTM partial program.

This program is the front-end part of the Natural UTM Interface, which must be defined in the adequate
parameters of KDCDEF under the name specified in the operand of the keyword parameter CSECT of
macro NATUTM (default = NUSTART).

Any number of UTM transaction codes can be assigned, providing the naming rule is observed.

The name of the DC transaction exit routine NUERROR must be defined for the front-end part of the
Natural UTM Interface and for each other UTM partial program.

3 The format exit module FREXIT must be defined with the parameters EXIT and PROGRAM.

All other definitions relating to the generation of KDCROOT are either specific to UTM or else they are
dependent upon the values defined in the operands of the appropriate keyword parameters of macro NATUTM.

146 Copyright © Software AG 2002

Natural under UTM - Part 1 Defining the UTM Resources - KDCDEF

Defining the UTM Resources - KDCDEF

The following Natural-specific points must be observed when defining the UTM resources:

Special Definition for Type 9755/9756 Terminals

The TERMN operand of the PTERM command must be set to the value "X1" or "FG" for 9755-type terminals
and to the value "X2" for 9756-type terminals. These are special values and not described in the appropriate table
in the Siemens UTM documentations.

For all other types of terminals, the TERMN operand must be set to the value shown in the tables.

Example:

PTERM ss19,lterm=Itdf1900,pronam=vr,ptype=t9755, TERMN=X1

Treatment of K Keys and F Keys

The Natural UTM Interface supports the function keys K1, K2, K3, K4, F1, F2, F3, F4 and F5 (for P keys). The
function key which has been pressed can be identified by means of the UTM return code, which must be defined
using the SFUNC statement of KDCDEF:

SFUNC K1,RET=26Z
SFUNC K2,RET=27Z
SFUNC K3,RET=28Z
SFUNC K4,RET=29Z
SFUNC F1,RET=21Z
SFUNC F2,RET=22Z
SFUNC F3,RET=23Z
SFUNC F4,RET=24Z
SFUNC F5,RET=25Z
SFUNC nn,RET=nnZ (for the PRKEY; see the keyword parameter PRKEY

Using other function keys or using valid function keys that have not been defined in KDCDEF results in an error
message.

Copyright © Software AG 2002 147

Support of IBM Type 3270 Terminals

Support of IBM Type 3270 Terminals

Natural under UTM - Part 1

In an appropriate system configuration of IBM SNA (VTAM) and Siemens TRANSDATA DC 3270-type

terminals are supported by the Natural UTM Interface.

This means that Siemens terminals as well as 3270 terminals can be connected to a Natural UTM application.
Natural adjusts screen output to the specific terminal type used. 3270-type terminals have to be defined as such

to KDCDEF in the PTERM command (see Siemens UTM documentations).

For the support of Siemens and IBM function keys, the SFUNC statements of KDCDEF have to be defined as

follows:

Siemens Key IBM Key UTM Return Code
F1 PF1 217
F2 PF2 227
F3 PF3 23Z
F4 PF4 247
F5 PF5 257
K1 PA1 267
K2 PA2 277
K3 PF6 + PF13|28Z
K4 PF7 + PF14|29Z
K5 PF8 + PF15| 30Z
K6 PF9 + PF16|31Z
K7 PF10 + PF1132Z
K8 PF11 + PF1§ 33Z
K9 PF12 + PF1¢34Z
K10 PF20 3572
K11 PF21 36Z
K12 PF22 37Z
K13 PF23 3872
K14 PF24 397
148

Copyright © Software AG 2002

Natural under UTM - Part 1 Support of TTY Terminals

Support of TTY Terminals

For terminals which are to be used in TTY mode, the TERMN operand of the PTERM command must be set to
TERMN=X9.

The following restrictions apply to TTY mode:

® Asynchronous transaction processing is not supported.
® MULTI-PASS is not supported.

Copyright © Software AG 2002 149

UTM DC-Transaction Exit Routine NUERROR Natural under UTM - Part 1

UTM DC-Transaction Exit Routine NUERROR

A UTM DC-transaction exit routine is defined in the front-end part of the Natural UTM Interface. This routine is
called at the beginning of a DC transaction, when a DC transaction is restarted, at normal termination and at
abnormal termination (PEND ER). The user exit UVGEXIT can be used in any of these circumstances.

In the case of abnormal termination, the affected user is deleted from the internal terminal control table, the
Natural recovery procedures are executed and the user’s user area is released from the swap pool directory if
necessary.

The DC-transaction exit routine NUERROR must be defined in the adequate parameters of KDCDEF for the
front-end part of the Natural UTM Interface (generation of KDCROOT); seezarerating KDCROOT

UTM Startup Function

If the user exit STARTEX (default value of keyword parameter STRTALL) is to be used, "EXIT
PROGRAM=NUSTART,USAGE=START" must be defined in the KDCDEF parameter for the front-end part of
the Natural UTM Interface.

One of the effects of this is that the task initialization routines (allocation of common memory pools, loading
Natural, etc.) are activated immediately following the start of each UTM task. Errors that occur are output on the
console and all users are sent an appropriate message; if SYSLST=YES (see keyword @Y&hsBy

errors are also output to SYSLST.

If the UTM startup function is not used, the UTM task(s) are not initialized until they are activated when a user
logs on. If an error occurs under these circumstances, the error message is sent to the terminal that caused the
error. All other users are given an appropriate message when they try to log-on to the application.

150 Copyright © Software AG 2002

Natural under UTM - Part 1 UTM Shutdown Function

UTM Shutdown Function

If the user exits SHUTEX1 and/or SHUTEX2 (default values of keyword parameters SHUTALL and

SHUTLST) are to be used, "EXIT PROGRAM=NUSTART,USAGE=SHUT" must be defined in the KDCDEF
parameters (KDCROOT) for the front-end part of the Natural UTM Interface. The statistics of the Natural UTM

Interface are output when the last UTM task terminates.

If the UTM shutdown function is not used, the user exits defined with SHUTALL and SHUTLST cannot be used

and the statistics are not available.
The statistics that are collected and output by the Natural UTM Interface are:

MAIN DIRECTORY IS RESIDENT,NOT PAGEABLE

INITIALIZED WITH CONTROL DATA FROM NAT SYSTEM FILE
TOTAL SIZE OF SWAP POOL INKB : 32760

SIZE OF MAIN DIRECTORY IN KB : 2

TOTAL NO. OF SWAP POOL THREADS: 209

TOTAL NO. OF LOGICAL SWP(S): 10

LAST STATUS OF THE SWAP POOL STATISTICS
+ +

| Natural USER THREADS WITH LENGTH |
| GREATER LOWER |

| 152 KB |

+ + +

| +2KB: 01-2KB: 0l

| +4KB: 01-4KB: 171

| +6KB: 01-6KB: 0l

| +8KB: 01-8KB: 11

| +10 KB: 01-10KB: 0l

| +12 KB: 01-12KB: 0l

| +14 KB: 01-14KB: 0l

| + 16 KB: 01-16 KB: 0l

| + 18 KB: 01-18KB: 0l

I + NN KB: 01- NN KB: 0l

| AVER.LNG.NN: 0 KB I AVER.LNG.NN: OKB |
+ +

LOGICAL SWP NO. 01 LOGICAL SWP NO. 02

LOGICAL SWP SIZE IN KB: 2402 LOGICAL SWP SIZE IN KB: 2690
DIRECTORY SIZEINKB: 2 DIRECTORY SIZEINKB: 2

SWP THREAD SIZE IN KB : 120 SWP THREAD SIZE IN KB : 128
NO. OF SWP ENTRIES: 20 NO.OF SWP ENTRIES: 21

MAX. USED ENTRIES : 0 MAX. USED ENTRIES : 0

NO. OF SWP GUESTS : 0 NO. OF SWP GUESTS: 0

NO. SUCCESSFUL LOCATES: 0 NO. SUCCESSFUL LOCATES: 0
NO. FAILED LOCATES : 0 NO. FAILED LOCATES : 0

LOGICAL SWP NO. 03 LOGICAL SWP NO. 04

LOGICAL SWP SIZE IN KB: 2858 LOGICAL SWP SIZE IN KB: 3026
DIRECTORY SIZEINKB: 2 DIRECTORY SIZEINKB: 2

SWP THREAD SIZEINKB : 136 SWP THREAD SIZE INKB : 144
NO. OF SWP ENTRIES: 21 NO.OF SWP ENTRIES: 21

MAX. USED ENTRIES : 0 MAX. USED ENTRIES : 1

NO. OF SWP GUESTS : 0 NO. OF SWP GUESTS: 0

NO. SUCCESSFUL LOCATES: 0 NO. SUCCESSFUL LOCATES: 1
NO. FAILED LOCATES : 0 NO. FAILED LOCATES : 0

Copyright © Software AG 2002 151

UTM Shutdown Function Natural under UTM - Part 1

LOGICAL SWP NO. 05 LOGICAL SWP NO. 06

LOGICAL SWP SIZE IN KB: 3194 LOGICAL SWP SIZE IN KB: 3362
DIRECTORY SIZEINKB: 2 DIRECTORY SIZEINKB: 2

SWP THREAD SIZE INKB : 152 SWP THREAD SIZE IN KB : 160
NO. OF SWP ENTRIES: 21 NO.OF SWP ENTRIES: 21

MAX. USED ENTRIES : 1 MAX. USED ENTRIES : 0

NO. OF SWP GUESTS : 0 NO. OF SWP GUESTS: 0

NO. SUCCESSFUL LOCATES: 17 NO. SUCCESSFUL LOCATES: 0
NO. FAILED LOCATES : 0 NO. FAILED LOCATES : 0

LOGICAL SWP NO. 07 LOGICAL SWP NO. 08

LOGICAL SWP SIZE IN KB: 3530 LOGICAL SWP SIZE IN KB: 3698
DIRECTORY SIZEINKB: 2 DIRECTORY SIZEINKB: 2

SWP THREAD SIZE INKB : 168 SWP THREAD SIZE IN KB : 176
NO. OF SWP ENTRIES: 21 NO.OF SWP ENTRIES: 21

MAX. USED ENTRIES : 0 MAX. USED ENTRIES: 0

NO. OF SWP GUESTS : 0 NO. OF SWP GUESTS: 0

NO. SUCCESSFUL LOCATES: 0 NO. SUCCESSFUL LOCATES: 0
NO. FAILED LOCATES : 0 NO. FAILED LOCATES : 0

LOGICAL SWP NO. 09 LOGICAL SWP NO. 10

LOGICAL SWP SIZE IN KB: 3866 LOGICAL SWP SIZE IN KB: 4118
DIRECTORY SIZEINKB: 2 DIRECTORY SIZEINKB: 2

SWP THREAD SIZE INKB : 184 SWP THREAD SIZE IN KB : 196
NO. OF SWP ENTRIES: 21 NO.OF SWP ENTRIES: 21

MAX. USED ENTRIES : 0 MAX. USED ENTRIES: 0

NO. OF SWP GUESTS : 0 NO. OF SWP GUESTS: 0

NO. SUCCESSFUL LOCATES: 0 NO. SUCCESSFUL LOCATES: 0
NO. FAILED LOCATES : 0 NO. FAILED LOCATES : 0

USAGE STATISTICS OF SWAP POOL AND NATURAL USER THREADS

SWP SLOT NO. NAT. % DIAGRAM
NO. LNG KB THREADS

94,4 ** ke
0,0

0,0

0,0

0,0

10 196 0,0

DESERTERS: 0 00

o
a1
-
o1
N
cocoococooljrooo

MAIN DIRECTORY STATISTICS AREA

NATSHARE: SWAP POOL START DATE 97-02-25
NATSHARE: SWAP POOL START TIME 16:11:39
NATSHARE: TOTAL NUMBER OF SWP SYNC. WAITS: 0
NATSHARE: TOTAL NUMBER OF ASYN. WRITE WAITS: 0
NATSHARE: TOTAL NUMBER OF DIALOGUE STEPS: 19
NATSHARE: TOTAL NUMBER OF SWAPS: 0
NATSHARE: TOTAL NUMBER OF WRITES TO ROLL FILE: 0
NATSHARE: TOTAL NUMBER OF SYNCHRONOUS WRITES: 0
NATSHARE: MAX NUMBER OF USER: 1
NATSHARE: MAX NUMBER OF DIALOGUES WITHOUT SWAPS: 19

152 Copyright © Software AG 2002

Natural under UTM - Part 1 UTM Shutdown Function

NATSHARE: NUMBER OF SWAP POOL REORGANIZATION: 0
NATSHARE: NUMBER OF SWAP POOL REPAIR: 0
NATSHARE: NUMBER OF ABNORMAL ENDED SESSIONS: 0

NATSHARE: MAX. COMPR. L' OF NAT USER THREAD IN KB: 148
NATSHARE: REAL MAXSIZE NEEDED FROM Natural IN KB: 386
NATSHARE: SWP STATISTICS PRINT DATE: 97-02-25
NATSHARE: SWP STATISTICS PRINT TIME: 17:20:40

Copyright © Software AG 2002 153

Natural under UTM - Macro Keyword Parameters Natural under UTM - Macro Keyword Parameters

Natural under UTM - Macro Keyword
Parameters

This part of the Natural UTM Interface documentation covers the following topics:

e NATUTM Macro Keyword Parameters
e NATUTM Macro Entries
® NURENT Macro Keyword Parameters

Installation - refer to Installing the Natural UTM Interfac@n the Natural Installation Guide for Mainframes).

Notation_vrs_or_vr*>Notation vrsor vr: If used in the following document, the notatins or vr stands for
the relevantersion,releasesystem maintenance levalimbers.

NATUTM Macro Keyword Parameters

The following parameters are available:

ADACALL | ADACOM |ADAPRI | ADAUTM | AFPNAME | APPLNAM | APRISTD | ASAPPLI |
ASYNTAC |BADTAC | BTX | CDYNAM |CLRKEY | CURPRO]ICONTRL | INITPRG | KB | KBSAVE |
KBUSEXT |LFH |LINK |LINK2/LINK3/LINK4 |LOFFMAP |NATMON |NUAADDR |NUCNAME |
PARMOD | PENDPR| PFK | PRKEY | REFRKEY | ROLLACC | ROLLTSZ | RSTCNT|RSTWARM |
SCRNOPT| SHUTALL | SHUTLST|SPOOL|STRTALL | STRTFST| SVDYPRM | SWAMODE |
SWDPAGE| SWPUSID| SYAPPLI| SYNTAC | SYSLST| TACEND | TCLAL | TCLA2, TCLA3, TCLA4|
TCLS1|TCLS2, TCLS3, TCLS4TERMTAB |TID | TRACE | TTYLS | TTYPS|UMODE

ADACALL - Access to Adabas

This parameter defines an entry in the Natural UTM Interface for the subroutine ADACALL. This subroutine
must be called each time a non-Natural program accesses Adabas. ADACALL generates a valid Adabas user ID
and subsequently invokes the Adabas interface module ADALNN. Possible values are:

ADACALL= name nameof the entry.

ADACALL=NO |Subroutine ADACALL is not generated. This is the default vdlue.

ADACOM - Adabas Link Module Usage

This parameter determines which Adabas link module is to be used.

ADACOM=ADABAS | The modules ADAUSER and SSFB2C are linked to the front-end part (Adabas
Version 7.1 and higher).

ADACOM=ADALINK | The modules ADALNK, ADAL2P and SSFB2C are linked to the front-end part
(Adabas Version 7.1 and higher).

ADACOM=, The module ADALNN is linked to the front-end part (Adabas versions lower than
7.1). This is the default value.

154 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters ADAPRI - Activation of Adabas Priority Control for UTM Application

ADAPRI - Activation of Adabas Priority Control for UTM Application

ADAPRI=YES| Activates Adabas priority control for a Natural UTM application.

ADAPRI=NO | The Adabas priority for all UTM transactions is the same. This is the default jalue.

SeeAdabas Priority Contrdior details.

ADAUTM - Synchronization of Async UTM/Adabas Transactions

This parameter enables you to realize synchronized processing and coordinated restart of asynchronous
transactions between UTM and Adabas. This requires that the module "ADAUTM" is available; this module
must be linked to the front-end part of the Natural UTM application. Possible values are:

ADAUTM=YES | Synchronized processing and coordinated restart of asynchronous transactions betwg¢en
UTM and Adabas are enabled.

If ADAUTM=YES is specified, theADACALL parameter mustot be set to "Adabas".

ADAUTM=NO |This is the default value.
Warning: Do not change the default value of this parameter without prior consultatior| of
Software AG support.

AFPNAME - Name of Common Memory Pool

This parameter specifies the name of the common memory pool of Adabas Fast Path. This name must be used
for the common memory pool definition in macro ADDON (this macro is used for assembling BS2STUB).
Possible values are:

AFPNAME=name Maximum 16 characters.

AFPNAME-=, Setting only a comma means no name. This is the default yalue.

APPLNAM - Name of Natural UTM Application

With this parameter, you specify the name of the Natural UTM application. The value of this parameter must be
identical with the value of parameter APPLINAME in KDCDEF. This name is used to create a name for a
task-specific SYSLST file. Possible values are:

APPLNAME=name Up to 8 characters long. No default value proviniied.

The specified name is also used to construct a serialization marker for the initialization routine in the Natural
UTM Interface; an "S" is inserted in the first free character position (for example, if APPLNAM=NATUTM, the
name of the serialization marker is NATUTMS).

Furthermore, this name is used to create an Adabas user ID if TID=N is specified.

A defined character position of the operand of APPLNAM can be used for constructing the Adabas user ID; see
keyword parameterID.

Copyright © Software AG 2002 155

APRISTD - Adabas Priority for Standard UTM TAC Natural under UTM - Macro Keyword Parameters

APRISTD - Adabas Priority for Standard UTM TAC

APRISTD=nnn| Adabas prioritynnnfor the standard UTM TAC (default "NAT]

~

APRISTD=144 This is the default value.

This parameter can be used to define the Adabas pniomitfor the standard UTM TAC (default "NAT"). The
APRISTD parameter is only in effect if the ADAPRI parameter is set to "YES". For individual TACs, individual
priorities can be defined with the parameters T€hB8d TCLAn; see alsd\dabas Priority Control

ASAPPLI - Name of Logical UTM Communications Partner

This parameter specifies the name of the logical UTM communications partner (as defined in KDCDEF) of the
asynchronous UTM application. This name is only relevant in the case of asynchronous transaction processing
between two UTM applications. Possible values are:

ASAPPLI=mame namespecifies the name of the logical UTM communications palltner.

ASAPPLI=NO |This is the default value.

If ASAPPLI=nameis specified, the operand of the keyword parameter SYAPPLI must also be defined.
ASYNTAC - UTM Transaction Code for Asynchronous UTM Task or
Application

With this parameter you define the UTM transaction code (TAC) for the UTM task or application that runs
asynchronously. Possible values are:

ASYNTAC=tac UTM TAC for the UTM task or application that runs asynchronoysly.
ASYNTAC=NATAS | This is the default value.

The specified UTM TAC must be distinct from the "standard" Natural TAC and also from the TAC used for the
synchronous UTM application (if asynchronous transaction processing is used between two UTM applications).

The first five characters determine the unique identifier for asynchronous UTM TACs.

BADTAC - Activation of UTM Function "BADTACS"

This parameter enables you to activate the UTM function "BADTACS", which means that in the assembled
program of macro NATUTM, the startup program "AUTOTAC" is generated for undefined UTM transaction
codes. Possible values are:

BADTAC=YES| Activates the UTM function "BADTACS'|.
BADTAC=NO |This is the default value.

BADTAC=YES requires that the following additional definitions must be supplied when defining KDCDEF and
generating KDCROOT:

156 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters BTX - Support of BTX System

KDCDEF:

PROGRAM AUTOTAC,COMP=ASSEMB
TAC KDCBADTC,CALL=FIRST,PROGRAM=AUTOTAC,EXIT=NUERROR,TYPH=D
TAC AUTOCONN,TYPE=D,PROGRAM=NATUTM,EXIT=NUERROR,CALL=BOTH

BTX - Support of BTX System

This parameter specifies whether a preliminary BTX system is supported ("Siemens
Bildschirmtext-Verarbeitung") or not. Possible values are:

BTX=YES| A preliminary BTX system is supportgd.

BTX=NO |This is the default value.

If BTX=YES is specified, the logical UTM terminal names must begin with "LBX".

BTXFTAC defines the BTX startup transaction code (default value: NATFIRST); BTXNTAC defines the
transaction code for further BTX transactions (default value: NAT); BTXMAP defines a BTX logoff mask.

You must specify a value for parameter BTX if you want to assemble macro NURENT.

CDYNAM - Maximum Number of Programs to be Dynamically Loaded

This parameter specifies the maximum number of programs to be dynamically loaded (for example, COBOL or
Assembler subroutines) and/or the number of programs which have been linked with the front-end part and
declared with parameters LINK to LINK4. Possible values are:

CDYNAM=nn| nndefines the number of programs.

CDYNAM=15 | This is the default value.

The programs to be dynamically loaded must be either in the load library specified in the Natural parameter
module or in the BLSLIB(S) specified in the start job.

CLRKEY - Activation/Deactivation of CLEAR Key

This parameter activates or deactivates the CLEAR key. Possible values are:

CLRKEY=ON | Activates the CLEAR key (keys LSP and ENTER). This is the default value.

CLRKEY=0OFF| Deactivates the CLEAR key, which means that after pressing CLEAR, the entire last Natural
screen is displayed again.

CURPRO - Cursor Positioning to Protected Field

This parameter controls whether the cursor can be positioned to a protected field. Possible values are:

CURPRO=0N | The cursorcannot be positioned to a protected field. This is the default value.

CURPRO=0FH The cursor can also be placed in a protected field (for example, for field-specific help
functions).

Copyright © Software AG 2002 157

ICONTRL - UTM Input Exit for Messages in Minus Format Natural under UTM - Macro Keyword Parameters

ICONTRL - UTM Input Exit for Messages in Minus Format

This parameter allows you to generate an UTM input exit for messages in minus ("-") format; that is, messages
from a Natural screen. Such an input exit controls the allowed (or not-allowed) user KDC commands. Possible
values are:

ICONTRL=(YES,KDCxxx{,KDCxxxx...))| Any KDC command not allowed must be defined with this
parameter by specifying YES and the name of the KDC command.

ICONTRL=(YES) See examples below.

ICONTRL=(NO) This is the default value.

Examples:

ICONTRL=(NO) This example does not generate an input exit and allows all UTM
commands.

ICONTRL=(YES) This example generates an input exit with the name ICONTRL ahd
prohibits usage of all UTM commands.

ICONTRL=(YES,KDCOUT,KDCOFF] This example generates an input exit with the name ICONTRL ahd
prohibits usage of the commands KDCOUT and KDCOFF.

If YES is specified as first operand, the generated input exit must be defined in KDCDEF and KDCROOT as
follows:

EXIT PROGRAM=ICONTRL,USAGE=(INPUT,USERFORM)
PROGRAM ICONTRL,COMP=ASSEMB

INITPRG - Value for Natural Variable *INIT-PROGRAM

This parameter defines the value for the Natural variable *INIT-PROGRAM. Possible values are:

INITPRG=APPLNAM | The Natural variable *INIT-PROGRAM contains the value of the keyword parameter
APPLNAM. This is the default value.

INITPRG=KCTACVG| The Natural variable *INIT-PROGRAM contains the value of the UTM KB field
KCTACVG (UTM start TAC).

KB - Pass KB Address as First Parameter

This parameter specifies whether the address of the UTM communication area (Kommunikationsbereich, KB) is
passed as the first parameter address each time Natural calls a non-Natural program. This has been taken account
of in the subroutines and utility programs of the Natural UTM Interface. Possible values are:

KB=YES | The address of the UTM communication area (KB) is passed as the first parameter address |each
time Natural calls a non-Natural program.

KB=NO |This is the default value.

KBSAVE - Saving of UTM KB via SPUT

This parameter specifies whether the UTM KB will be saved via SPUT or not. Possible values are:

158 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters KBUSEXT - Length of UTM KB User Extension

KBSAVE=YES|The UTM KB will be saved via SPUT, starting from the end of the KB header plus twelye
bytes. This information will be saved in the LSSB before a PEND PR(ogram) is executed for
a user-specific partial UTM program.

KBSAVE=NO |The UTM KB will not be saved. This is the default value.

To be able to use this parameter, you must set the following KDCDEF definition:

MAX LSSBS=1

If the user-specific partial UTM program resumes, the original communication area will be refreshed via SGET.
This allows the partial UTM program to use the KB from the end of the UTM communication area header plus
twelve bytes. Therefore, the program must not destroy these twelve bytes. If a KB user extension is defined, this
area will not be saved.

KBUSEXT - Length of UTM KB User Extension

This parameter specifies the length of a UTM KB (Kommunikationsbereich) user extension. Possible values are:

KBUSEXT=nnnnn| nnnnnspecifies the length of a UTM KB user extension. The maximum length allowg¢d is
30720 bytes.

KBUSEXT=0 This is the default value.

Length and address of a user extension are stored in the KB:

USEREXTL DS|H |length in byte$

USEREXTA DS| F | address

For more information, see the DSECT macro CMBS2TP.

LFH - Use of Adabas LFH

This parameter specifies that the Adabas large file handler (LFH) is to be used. Possible values are:

LFH=YES| Specifies that you are using the Adabas LIFH .

LFH=NO |This is the default value.

If you specify YES, you also must define the buffer size for the Adabas LFH in the Natural parameter module
(parameter VSIZE).

LINK - Programs and Modules Called from Natural

This parameter enables you to specify the names of programs and modules that are called from Natural programs
and linked with the non-reentrant part. Possible values are:

LINK=name | Thenamesof programs and modules that are called from Natural programs and linked with
(namename...)| the non-reentrant part must be specified in the operand of this parameter.
Conversely, the programs and modules whose names are specified must be linked with the

non-reentrant part, otherwise the application is put into status SYSTEMERROR and al| users
are rejected with an error message.

Default value: none

Copyright © Software AG 2002 159

LINK2/LINK3/LINK4 - Extensions of Keyword Parameter LINK Natural under UTM - Macro Keyword Parameters

A "TABLE" macro call is performed for the specified programs and modules, which enters their load addresses
into the dynamic loader’s link table. It is therefore not necessary to dynamically load these programs when they
are called by Natural programs.

Example:

LINK=PROG1
LINK=(PROG1,PROG2,MODUL111)

LINK2/LINK3/LINK4 - Extensions of Keyword Parameter LINK

These parameters are an extension of the keyword parameter LINK. Possible values are:

LINK2/LINK3/LINK4= name The syntax is in analogy to that of LINK. See examples below.

(namename...)
Default value: none

Since an operand definition must not be longer than 127 characters (including parentheses), the parameters
LINK2 to LINK4 are provided for cases where the operand of parameter LINK would be too long.

Examples:
NATUTM LINK=(PROG1,PROG?2,...),

LINK2=(PROG54,...)
NATUTM LINK=(PROG1,PROG2,PROG3,PROG4)

LOFFMAP - Format Name for Logoff Message

With this parameter, a format name for the logoff message can be specified. Possible values are:

LOFFMAP="-END’ The message defined in the format exit module FREXIT is output:

NAT9994 - YOUR SESSION WAS SUCCESSFULLY FINISHED.
PLEASE GIVE "KDCOFF" (LEAVE THE APPLICATION) OR
"UTM-TAC".

The message is output in the language specified by parameter UMODE; if requiired, it
can be modified in the program FREXIT.

This is the default value.

LOFFMAP="" The following message is output in line mode:

NAT9994 - Natural TERMINATED NORMALLY

LOFFMAP="name The user-defined message is output.

("-" or "*" format) The message is defined with "-" format in FREXIT or with "*" format with IFG apd
FHS.

LOFFMAP='KDCOFF'| An automatic "KDCOFF" is performed for the user when a FIN system command or
TERMINATE statement is executed.

In any case, the operand specified with the LOFFMAP parameter is used as the format name for UTM. The
operand is therefore restricted to a maximum of 8 characters.

160 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters NATMON - Automatic Activation of Natural Monitor during Application Startup

NATMON - Automatic Activation of Natural Monitor during Application
Startup

This parameter specifies whether the Natural monitor is activated automatically during application startup or not.
Possible values are:

NATMON=ON | The Natural monitor is activated automatically during application startup.

NATMON=O0OFF| The Natural monitor is not activated automatically during application startup.
This is the default value.

NUAADDR - Natural User Thread Address

With this parameter, you specify a Natural user thread address. The following happens if you specify a particular
value:

NUAADDR=, (comma) Comma means no value. The Natural user thread will be allocated in the
next free address below the 16-MB line.
This is the default value.

NUAADDR=XXXXX The Natural user thread will be allocated on the hexadecimal address ih the
class 6 memory below the 16-MB line. This address must be aligned tq the

4-KB segment limit. The result of address plus Natural user thread’s lepgth

in bytes (MAXSIZE) must not be greater than address X’DF0000’. The
highest possible address is X'DEFFFF'.

NUAADDR=ABOVE The Natural user thread will be allocated above the 16-MB line.

NUAADDR=(ABOVE,NNNNN | The Natural user thread will be allocated above the 16-megabyte line where
NNNNNdenotes the decimal number of megabytes above the

16-MB line.

Examples:

NUAADDR=ABOVE The Natural user thread will be allocated in the next free address above the
16-MB line.

NUAADDR=(ABOVE,258)| The hexadecimal address of the Natural user thread is X’10200000’ (above the
16-MB line).

NUAADDR=6E000I The hexadecimal address of the Natural user thread is X’6E000’ (below th¢
16-MB line).

When the Natural user thread is allocated above the 16-MB line, the asynchronous write buffer and the thread for
asynchronous transactions will also be allocated above the 16-MB line. In this case, the 31-bit address mode will
not be switched back to 24-bit address mode before a 3GL program is called. This means the called 3GL
program must be able to run in 31-bit address mode.

NUCNAME - Name of Bounded Reentrant Natural Module

This parameter specifies the name of the bounded, reentrant Natural module. Possible values are:

NUCNAME=name nameof the bounded, reentrant Natural modjle.

Default value: none

Copyright © Software AG 2002 161

PARMOD - Generation of Front-End and Reentrant Parts Natural under UTM - Macro Keyword Parameters

You must use the name of the bounded, reentrant Natural module for the Natural pool and load information in
macro ADDON (macro ADDON assembles BS2STUB) and for program CMPSTART when a shared nucleus is
to be used.

PARMOD - Generation of Front-End and Reentrant Parts

This parameter applies to the generation of both the front-end and reentrant parts. Possible values are:

PARMOD=nn,loc The first value of this parametem) is used to define an addressing mode (24-lit
or 31-bit mode) for the Natural UTM application.
nn: 24/31 The second value of this parametec) is used to define the front part location qf

loc: BELOW/ABOVE | the Natural UTM application.
PARMOD=(24,BELOW)| This is the default value.

If you load the front part of the application above 16 MB, this must be defined in the front part’s link procedure
as follows:

LOADPT=*XS or
LOADPT=X' address '’

Example:

/EXEC TSOLINK
PROG NAT vrs ,FILENAM=NATvrs ,LOADPT=*XS,...
TRAITS RMODE=ANY,AMODE=31
INCLUDE....
/* PARMOD=(nn, loc) MUST ALSO BE DEFINED FOR ASSEMBLING MACRO NURENT, WHICH
/* BELONGS TO THE REENTRANT PART OF Natural/UTM; OPERANDS MUST BE IDENTICAL FOR
/* THE FRONT-END AND REENTRANT PARTS.

PENDPR - Define UTM TAC for "PEND PR"

This parameter defines a UTM TAC for a "PEND PR". Possible values are:

PENDPR=2zz77277 zzzzzzZgmaximum 8 characters) defines the UTM TAC.
PENDPR="" This is the default value (no TAC for PEND PR) .

When PENDPR=2zzzzzzis specified, a "PEND PR(OGRAM)" is executed instead of a "PEND FI(NISH)"

when the FIN system command is entered or a TERMINATE statement is executed or the PEND PR function
key is pressed. The UTM partial program that has been associated with the specified UTM TAC is started after
the PEND PR.

PFK - Function Key Modes

This parameter is used to set one of the following function-key modes:

162 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters PRKEY - UTM Return Code for Function Key

PFK=(KNy) | The literals "%K1" to "%K20" and send-key code "DU1" are loaded to the function keys.

PFK=(KOy) | The literals "01" to "20" and send-key code "F5" are loaded to the function keys.

PFK=(KSy) | The literals "A" to "T" and send-key code "F5" are loaded to the function keys; in addition| with
every output message a dummy field is generated at the last two positions of the screen,|which is
used to receive and pass the key value.

PFK=OFF | No function key mode is generated.
PFK=KS,L | This is the default value.

Wherey can be:
"L" - function keys are loaded, or
"N" - function keys are not loaded.

PRKEY - UTM Return Code for Function Key

This parameter is used to define a UTM return code for a function key (F1 to F5 or K1 to K14). Possible values
are:

PRKEY=nZ | Possible values are 20Z to 39Z.
PRKEY=35Z| Default value for K10 (keys ESC + ">1).

Whenever a function key defined with this parameter is activated in the Natural dialogue, the Natural session is
suspended and if a UTM TAC for another UTM partial program is available, a PEND PR(OGRAM) is executed.

This UTM TAC can be defined in several ways:

e with the Natural profile parameter PROGRAMg,
e with the keyword parameter PENDPHg,
o with the utility program TACSWTCH.

On return from the called UTM partial program via the PEND PR(OGRAM) to the Natural UTM Interface, the
Natural session is continued at the point where it has been suspended.

The same return code as specified with the PRKEY parameter must also be defined with an SFUNC statement in
KDCDEF.

REFRKEY - Definition of UTM Function Key

This parameter can be used to define a UTM function key. Possible values are:

REFRKEY=nZ | Possible values farn are in the range from 26 to 39 (K1 to K14).
REFRKEY=NO|No UTM function key defined.
REFRKEY=39Z Default value for K14 (keys ESC + ":").

If the defined function key is pressed, the last full Natural screen is refreshed. Thus it is possible to continue the
dialog with Natural after the screen has been overwritten by messages from the operator or the operating system.
The send key code is not passed to the Natural application. The interface sets the Natural key code to "ENTER".

Copyright © Software AG 2002 163

ROLLACC - Access Method for Natural Roll File Natural under UTM - Macro Keyword Parameters

ROLLACC - Access Method for Natural Roll File

This parameter defines the access method for the Natural roll file. Possible values are:

ROLLACC=UPAM-SY The access method for the Natural roll file is UPAM with synchronjous
roll file I/Os. This access method is not allowed with global swap
pools.

ROLLACC=UPAM-AS The access method for the Natural roll file is UPAM with P1-eventing

for asynchronous writes.
This is the default value.

ROLLACC=(UPAM-AS,PAMWAIT) | The NATURAL UTM interface waits with a VPASS SVC from the
completed asynchronous write before a PEND RE is executed. This
option is needed because a UTM task which is inactive (P2 wait)
cannot be posted via P1-eventing. Instead, the user session must|be
terminated with the error message "Timeout for asynchronous write."

ROLLACC=FASTPAM The access method for the Natural roll file is FASTPAM with Forward
Eventing for asynchronous writes (high performance). See
prerequisites described below.

Prerequisites for ROLLACC=FASTPAM
To use the FASTPAM option, the following prerequisites apply:
BS2000/0SD Version 1.0 or above.

® Parameter TERMTAB must be defined as SWP.

® The class Il definition in the batch job for starting the resident FASTPAM environment and the FASTPAM
I/O pool must be:
/[EXEC NATUTM,CLASSII=(nnnyy)

® The FASTPAM authorization in the user catalog must be:
/SHOW-USER-ATTRIBUTES
FIELD: DMS-TUNING-RESOURCES=*EXCLUSIVE
/*OR ALTERNATIVELY:
/MODIFY-USER
FIELD: DMS-TUNING-RESOURCES=EXCLUSIVE-USE

® The BIAS for the BS2000/0OSD operating system must be defined as follows:
/MODIFY-SYSTEM-BIAS MAX-RESIDENT-PAGESHNN

To calculate the necessary number of resident core pages, use the following formula (ignore all rest values):

ROLLTSZ +3/4*2 = N1 (FASTPAM I/O areas)
ROLLTSZ +31/32* 36 + 4095/ 4096 * = N2 (FASTPAM access list§)

N1 + N2 = number of resident pages for one Natural/UTM task

ROLLTSZ - Maximum Roll Thread Size

This parameter determines the maximum roll threadrsingin KB); that is, the maximum size of a compressed
user thread on the Natural roll file. Possible values are:

164 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters RSTCNT - Control of Restart Situations

ROLLTSZ=nnn| nnnmust be a multiple of 4 (roll file block sina).

ROLLTSZ=160| Default value: 160 KB

If ROLLACC=UPAM-AS, valid values for ROLLTSZ are 4 to 1600 (KB).

If ROLLACC=UPAM-SY or ROLLACC=FASTPAM, valid values for ROLLTSZ are 4 to 3200 (KB).
To calculate the size of the Natural roll file, use the following formula:

ROLLTSZ / 2 * maximum number of usersmn

nnnis the number of PAM pages for the Natural roll file.

As user threads are generally written to the roll file in compressed form, an optimum roll thread size contributes
considerably to saving disc storage.

The optimum value fonnncan be ascertained with the Natural Swap Pool Statistics; s8¥ 8ieST parameter.

RSTCNT - Control of Restart Situations

This parameter can be used to control restart situations in which the "lifetime" of a user results from an old
Natural/lUTM session. Possible values are:

RSTCNT=YES In such a restart situation a message is displayed to the user and the UTM task is finisped with
"PEND FI(NISH)"; the user must restart his/her UTM task by entering the UTM TAC.

RSTCNT=NO | In such a restart situation the Natural session is newly initialized without a message being
displayed. This is the default value.

RSTWARM - Control of Restart Situations

This parameter can be used to control restart situations. Possible values are:

RSTWARM=YES| There will be a warm start of a Natural session if there is a UTM restart situation. The last
terminal screen will be displayed, prerequisite for this function is a global Natural swlap
pool.

RSTWARM=NO | There will be a restart of a Natural session if there is a UTM restart situation.
This is the default value.

SCRNOPT - Terminal Types with Deactivated Natural Screen
Optimization

This parameter can be used to define (one or two) terminal types for which Natural screen optimization is to be
de-activated. Possible values are:

SCRNOPT={y=22 yy must be a valid terminal name TERMN as defined in KDCDEF.

zzis a synonym foyy.

For terminal types defined in KDCDEF with TERMERE=screen optimization is
then de-activated.

SCRNOPT={y=zzyy=z2 | Same as above, but two terminals defined.

SCRNOPT=NO Screen optimization is active for all terminal types. This is the default value.

Copyright © Software AG 2002 165

SHUTALL - Name of User Exit Natural under UTM - Macro Keyword Parameters

Example:
SCRNOPT=(FL=2Z9)

"FL" is a valid TERMN name for IBM 3270-type terminals; "Z9" is a synonym for 3270-type terminals. This
example would deactivate screen optimization for those 3270-type terminals which are defined as TERMN=Z9
in KDCDEF.

SHUTALL - Name of User Exit

With this parameter, you can specify th@meof a user exit. Possible values are:

SHUTALL=name Specifies the name of a user ekit.

SHUTALL=SHUTEX1| This is the default value.

This user exit is invoked by the Natural UTM interface whenever a UTM task is terminated with "KDCSHUT",
provided that the UTM SHUTDOWN function has been defined in KDCDEF.

SHUTLST - Name of User Exit

With this parameter, you can specify ti@meof a user exit. Possible values are:

SHUTLST=name Specifies the name of a user ekit.

SHUTLST=SHUTEX2 This is the default value.

This user exit is invoked by Natural/lUTM when the last UTM task is terminated with "KDCSHUT", provided
that the UTM SHUTDOWN function has been defined in KDCROOT.

SPOOL - Automatic Start and Termination of Printer Task

This parameter enables you to specify a spooling system. Possible values are:

SPOOL=(NATSPOOLgnter-parmn) | For use with NATSPOOL (Natural Advanced Facilities), ¥sing

NATSPOOL

SPOOL=REPRO-2000 For use with a remote spooling system, deing REPRO-2000
Remote Spooling System

SPOOL=RMSPOOL For use with your own user exit program, sksing RMSPOOL Usef
Exit.

Default value: None.

Using NATSPOOL

When using NATSPOOL (Natural Advanced Facilities), the SPOOL parameter can be used to indicate that the
printer task(s) required by NATSPOOL are to be started up automatically by means of ENTER calls whenever
the Natural UTM application is started, and terminated whenever the application is shut down. In this case, the
operands of the keyword parameter must be:

SPOOL=(NATSPOOL,enter-parm ',n)

where’ enter-parmsare the parameters for the ENTER call (in apostrophes) enithe number of printer tasks
to be started (in the range 1 to 30).

166 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters STRTALL - Name of User Exit for All UTM Tasks

Example:
The following ENTER job is to be automatically started and terminated. The file name is "AF.E.PRINT:

/LOGON

/OPTION MSG=FHL
ISYSFILE FILE=SYSLST
/IEXEC NAFPTTSK
/LOGOFF

Operand definition for the keyword parameter SPOOL:
SPOOL=(NATSPOOL,'AF.E.PRINT,TIME=999’,2)

In this example, "NATSPOOL" is the name of the Natural spooling system; "AF.E.PRINT" is the file name of
the ENTER job to be started and terminated; "TIME=999" is an additional, optional parameter for the BNTER
call (see the description of the BS2000/0OSD ENTER macro); and "2" means that two NATSPOOL printer
tasks are to be started/terminated.

The second suboperand can contain any valid operands (enclosed in apostrophes) for the ENTER macro call.
The operand of keyword parameter SPOOL in macro NURENT must be "NATSPOOL".
NATSPOOL Processing Logic

The specified number of NATSPOOL printer tasks according to the operand definition in the keyword parameter
SPOOL is started when the application is started up. Interprocess communication is then used to check that at
least one printer task is running. If this condition is not satisfied, the application is set to status
SYSTEMERROR, an error message is output on the console and users who attempt to logon are rejected with
the message:

NUIO036 - SYSTEMERROR ... PLEASE GIVE KDCOFF

For more information on this system error, Bk#0036.

Using REPRO-2000 Remote Spooling System

If a remote spooling system is used (for example, TD-SPOOL or REPRO-2000), set SPOOL=REPRO-2000 in
the macros NATUTM and NURENT. This function is not supported by Software AG.

The logic used by Natural offline reports must be considered when implementing the interface module for a
remote spooling system (see macro NURENT, label CMWHC). When an offline report is activated, Natural
transfers output a record at a time. The logic for sending and accepting print records, the layout of the print
record, etc., are in macro NURENT, subroutine CMWHC.

Using RMSPOOL User Exit

If you use your own user exit program named "RMSPOOL" as remote spooling interface, set
SPOOL=RMSPOOL in the macros NATUTM and NURENT. 8aer Exitsfor details on the user exit
"RMSPOOL".

STRTALL - Name of User Exit for All UTM Tasks

With this parameter, you can specify ti@meof a user exit. This user exit is invoked by Natural/UTM
whenever a UTM task is started. Possible values are:

Copyright © Software AG 2002 167

STRTFST - Name of User Exit for First UTM Task Natural under UTM - Macro Keyword Parameters

STRTALL=name Specifies thenameof a user exit],

STRTALL=STARTEX| This is the default setting.

STRTFST - Name of User Exit for First UTM Task

With this parameter, you can specify ti@meof a user exit. This user exit is invoked by Natural/lUTM when the
first UTM task is started, provided that the UTM STARTUP function has been defined in KDCDEF. Possible
values are:

STRTFSTsame Specifies thmameof a user exit],

STRTFST=STAPPLX This is the default setting.

SVDYPRM - Save Area Length for Dynamic Natural Parameters

This parameter determines the length in bytes of a save area for dynamic Natural parameters in the UTM KB.
These parameters are used when a Natural/UTM session is restarted. Possible values are:

SVDYPRM=nnn| Specifies the length in bytes of a save area for dynamic Natural parameters in the UTM
KB. Possible values are 0/8...2048 (bytes).

SVDYPRM=0 This is the default value.

SWAMODE - Switching from 31 to 24-Bit Address Mode

This parameter determines whether a 31-bit address mode is switched to 24-bit mode or not before a PEND
PR(ogram) is executed. What you must set depends on whether the partial UTM program can run in 31-bit
address mode (NO) or not (YES). Possible values are:

SWAMODE=YES| 31-bit address mode is switched to 24-bit m¢de.

SWAMODE=NO | This is the default value.

SWDPAGE - Pageability of Swap Pool Main Directory

This parameter determines whether the swap pool main directory is pageable or not. Possible values are:

SWDPAGE=NO | Specifies that the swap pool main directory is not pageable.

SWDPAGE=YES This is the default value.

A swap pool directory that is not pageable improves performance considerably. In that case, the BS2000/0SD
macro CSTAT will be used to declare the swap pool directory as not pageable. To be able to specify
SWDPAGE=NO, you must define the maximum and minimum of resident core pages in the startup job.

Example/EXEC E.NAT vrs ,CLASSII=(4,2)

For more information, see the description of BS2000/OSD macro CSTAT or the description of BS2000/0SD
command EXECUTE, operand CLASSII or, when SDF is used, the description of BS2000/0SD command
START-PROGRAM, operand RESIDENT-PAGES=PARAMETERS....

If the call to macro CSTAT fails, the application is still able to run.

168 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters SWPUSID - Swap Pool User Identification

SWPUSID - Swap Pool User Identification

This parameter determines the swap pool user identification. Possible values are:

SWPUSID=KCLOGTER This is the UTM KB'’s logical terminal name. This is the default va
SWPUSID=KCBENID |This is the UTM KB's user name.
SWPUSID=INTERNID | This is the internal terminal ID (serial number).

ue.

SYAPPLI - Name of Logical UTM Communications Partner

With this parameter, you can specify ti@mneof the logical UTM communications partner (as defined in
KDCDEF) of the synchronous UTM application. Possible values are:

SYAPPLImame The operand of the keyword parameter ASAPPLI must also be ddfined.
SYAPPLI=NO |This is the default value.

The operand is only significant in the case of asynchronous transaction processing between two UTM
applications.

SYNTAC - UTM TAC for Sending Messages from Async to Sync UTM
Applications

This parameter defines the UTM transaction code used to send free messages for a terminal from the
asynchronous to the synchronous UTM application. Possible values are:

SYNTAC=tac Specifies the UTM transaction code.
SYNTAC=NATSY | This is the default value (synchronous TAC).

The UTM TAC specified in this parameter must be distinct from the "standard" Natural TAC and also from the
TAC used for the asynchronous UTM application.

SYSLST - SYSLIST File Generation for UTM Task

This parameter defines whether a SYSLST file is generated for each UTM task or not. The SYSLST file contains
statistics data and error information (if a UTM task ends abnormally). Possible values are:

SYSLST=YES A SYSLST file is generated for each UTM task. This is the default vialue.
SYSLST=NO |No SYSLST file is generated.

The name of a SYSLST file is "LSTametsn”, which is generated from the following components:

® ST - prefix,
® name- the value of keyword parameter APPLNAM,
® tsn- the 4-digit task sequence number of the UTM task.

Copyright © Software AG 2002 169

TACEND - Action at PEND Natural under UTM - Macro Keyword Parameters

TACEND - Action at PEND

This parameter defines the action to be taken in conjunction with the UTM operation key "PEND". Possible
values are:

TACEND=KP| Each dialogue step is terminated with a "PEND KP" (KEEP). The UTM-KB is written to {he
page pool of KDCFILE only if no additional space in UTM CACHE storage is available. |t is
to be noted that no synchronized processing between UTM(s) and Adabas can be perfgrmed.

TACEND=RE| Each dialogue step is terminated with a "PEND RE" (RETURN); that is, the end of a UTM
transaction. The UTM-KBs in the page pool of KDCFILE are saved with each dialogue step.
This processing mode is required when a synchronized processing between UTM(s) and
Adabas is to take place. This is the default value.

TCLAL - UTM TACs for Async Transaction w. Priority Level 1

This parameter allocates UTM TACs for asynchronous transactions with priority level 1 using the UTM
TACCLASS concept. A TAC table is constructed that can be accessed from Natural programs by means of the
subroutine NATTAC, passing a priority level as parameter{3@d TACCLASS Concept (Priority Contral)

Possible values are:

TCLAl=tac nn can be specified to control Adabas priority for the corresponding UTM TAC
TCLAl=(tac,nn) (TACCLASS); seAdabas Priority Control

TCLAL=- Specifying TCLA1=- (note that the dash is not enclosed in apostrophes) denotef that
(-,0) no UTM TAC is to be allocated.

TCLA1=(NATASL1,64)| This is the default value.

TCLAZ2, TCLA3, TCLA4 - UTM TACs for Async Transaction w. Priority
Levels 2, 3, 4

These parameters allocate UTM TACs for asynchronous transactions with priority levels 2, 3 and 4 using the
UTM TACCLASS concept. Their values are used analogous to TCLAL (see above). Possible values are:

TCLAN=tac Analogous to TCLA1, but for priority levels=2, 3, 4/
TCLAN=(tac,nn)
TCLAN=-

TCLA2=(NATAS2,48)| These are the default values.
TCLA3=(NATAS3,32)
TCLA4=(NATAS4,16)

TCLS1 - UTM TACs for Async Transaction w. Priority Level 1

This parameter allocates UTM TACs for synchronous transactions with priority level 1 using the UTM
TACCLASS concept. A TAC table is constructed that can be accessed from Natural programs by means of the
subroutine NATTAC, passing a priority level as parameter{3@d¢ TACCLASS Concept (Priority Contral)

Possible values are:

170 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters

TCLS2, TCLS3, TCLS4 - UTM TACs for Async Transaction w. Priority Levels 2, 3, 4

TCLS1+tac
TCLS1=tacnn)
TCLS1=-

(-, 0)

nn can be specified to control Adabas priority for the corresponding UTM TAC

(TACCLASS); seéAdabas Priority Control

Specifying TCLS1=- (note that the dash is not enclosed in apostrophes) denotes {hat no

UTM TAC is to be allocated.

TCLS1=(NAT1,128

This is the default value.

TCLS2, TCLS3, TCLS4 - UTM TACs for Async Transaction w. Priority

Levels 2, 3, 4

These parameters allocate UTM TACs for asynchronous transactions with priority levels 2, 3 and 4 using the
UTM TACCLASS concept. Their values are used analogous to TCLS1 (see above).

Possible values are:

TCLSn=tac
TCLSh=(tac,nn)
TCLSh=-

Analogous to TCLS1, but for priority levets2, 3, 4

TCLS2=(NAT2,112
TCLS3=(NAT3,96)
TCLS4=(NAT4,80)

These are the default values.

TERMTAB - Terminal Control Table for Natural Roll File Management

This parameter defines the terminal control table needed to manage the Natural roll file. Possible values are:

TERMTAB=(SWP, TERMNAME,CHECKPNT] 20 bytes long
TERMTAB=(SWP,INTERNID,CHECKPNT) |12 bytes
TERMTAB=(SWP,TERMNAME) 10 bytes
TERMTAB=(SWP,INTERNID) 2 bytes
TERMTAB=(N, TERMNAME) 10 bytes
TERMTAB=(N,INTERNID) 2 bytes
TERMTAB=(SWP,TERMNAME) Default value

The terminal control table is allocated either in the Natural swap pool or in the Natural roll file. It contains a
header (48 bytes) and an entry for each active user or active session. Its size depends on the size of the Natural
roll file, on the value of the parameter ROLLTSZ and on the length of its own entries.

The Natural UTM Interface computes the length of the terminal control table as follows:

Roll file pages / (ROLLTSZ /2) =N
N * terminal control table entry length + 48 = length of the terminal control

table

Copyright © Software AG 2002

171

TID - Adabas User ID Construction Method Natural under UTM - Macro Keyword Parameters

SWP

The terminal control table is allocated in the Natural swap pool.

TERMNAME | The logical terminal name will be used to identify an entry in the terminal control table.

INTERNID

The internal terminal ID (serial number) will be used to identify an entry in the terminal ¢
table. INTERNID is two bytes long.

bntrol

CHECKPNT | Is only allowed when the terminal control table is allocated in the Natural swap pool.

It is necessary if terminals are defined with RESTART=NO or if a terminal pool is define
KDCDEF.

The terminal control table entry contains a checkpoint (timestamp) for the last Natural us
thread that has been rolled out. A user thread in the Natural roll file should not be overw

CHECKPNT is 10 bytes long.

by a thread with a timestamp lower than the timestamp in the terminal control table entry.

d in

ber
ritten

The number of PAM pages for the terminal control table in the Natural roll file. Possible
of this operand are 1...16 (PAM pages). For each terminal, 10 bytes are needed in the tg
control table. For each session, two bytes are needed.

/alues
erminal

Examples:

TERMTAB=(2,TERMNAME)

The maximal number of entries in the terminal control table: 2 * 2048 - 48 / 10 = 404

TERMTAB=(1,INTERNID)

The maximal number of entries in the terminal control table: 1 * 2048 - 48 / 2 = 1000

TID - Adabas User ID Construction Method

This parameter specifies the method to be used to construct the "unique" Adabas user ID. Possible values are:

TID=n

The Adabas user ID is constructed from the defimgdl{aracter of the operand of the keyword
parameter APPLNAM (default value: N) and the last two characters of the user’s first
SWAPPAMKEY.n must be a number in the range of 1 to 8.

Important: If you specify TID=n, the "defined character" of the value specified with the keyw
parameter APPLNAM must be different from that of other Natural UTM applications if these
the same Adabas; otherwise, the uniqueness of the Adabas user IDs - and thus data consi
cannot be guaranteed.

ord
use
stency -

TID=(T,n)

A unigue 4-byte user ID is constructed by taking charaotewygmax.n+3) of the logical UTM
terminal name (KCLOGTERR must be a number in the range 1 - 8. The resulting character
must consist of valid characters (0 - 9 and A - F) and must be unique.

See example below.

string

TID=(U,n)

The characters are taken from the UTM user ID (KCBENID), starting at the position specifig
the second subparameter. The resulting character string must consist of valid characters a
be unique.

ed by
nd must

(TID=1)

This is the default value. The Adabas user ID consists of the first digit from the operand of

keyword parameter APPLNAM and of the two-byte entry number in the terminal control tab

Example:

172

Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters TRACE - Trace File Number and Trace Print Record Length

TID=(T,4) |KCLOGTER |Adabas User ID
1st terminal |LTU9A110 |X'00009A11’
2nd terminal|[LTU9F110 | X'00009F11
3rd terminal |[LTU9F120 | X'00009F12’

If "mixed" Adabas calls occur within one Natural UTM application (that is, calls from both Natural and
non-Natural programs), the Adabas user ID can be found using the "ENTRY CMTRMID" in macro NATUTM.
The current Adabas user ID (4 bytes) can be found at address CMTRMID; see also the keyword parameter
ADACALL .

Example:

EXTRN CMTRMID

L R1,CMTRMID
MVC ADAID(4),0(R1)

With Adabas Version 5.2:

With Adabas Version 5.2, the Adabas user IDs are constructed either from the logical UTM terminal name
(KCLOGTER) or from the UTM user ID (KCBENID); this depends on the setting of the keyword parameter
TID. For compatibility reasons, the second digit of the operand specified with TID must be a number from 1 to
8. For example:

KCLOGTER=LTU9A110 KCBENID=HARRIS

TID=(T,3) -> Adabas user ID: D9A110
TID=(U,1) -> Adabas user ID: HARRIS__

Note: For "mixed" Adabas calls no particular considerations have to be observed.

In the case of asynchronous transaction processing, the Adabas user ID is constructed from the "packed" TSN of
the asynchronous task.

With Adabas Version 5.3 and above:

With Adabas Version 5.3 and above, for the Adabas user ID, the full terminal name (KCLOGTER) will be used
when TID=(T,n) or the full user ID (KCBENID) will be used when TID=(U,n). Default is TID=((T,1).

TRACE - Trace File Number and Trace Print Record Length

With this parameter, you specify the number of a trace file and the maximal length of a trace print record.
Possible values are:

nnis the number for the SYSL®&M trace file. Possible range: 01...99
Il is the maximal length in characters of a trace print record. Possible range: 11...132

TRACE=(99,71) This is the default value.

TRACE=nn,l)

If any external Natural trace function is active, the trace records will be written to SY8L&This case, the
Natural/UTM driver creates the following trace file:

Copyright © Software AG 2002 173

TTYLS - Physical Line Size for TTY Devices Natural under UTM - Macro Keyword Parameters

Example:

applname .Natural. TRACE,SPACE=(90,60)
SYSFILE SYSLST nn=applname. Natural. TRACE
[* applname is the application name

This file will be used by all tasks of the Natural UTM application. Before the Natural UTM application is
terminated, the trace file will be closed as follows:

SYSFILE SYSLST nn=(PRIMARY)

To activate the Natural trace functions, see the parameters ETRACE and ITRACE of the Natural parameter
module.

TTYLS - Physical Line Size for TTY Devices

With this parameter you can adjust Natural’s physical line length to different paper formats used with a telex
machine. Possible values are:

TTYLS=nn| nn specifies the physical line size for TTY devides.

TTYLS=80| This is the default value.

TTYPS - Physical Page Size for TTY Devices

With this parameter you can adjust Natural's physical page size to different paper formats used with a telex
machine. Possible values are:

TTYPS=nn| nn specifies the physical page size (number of lines) for TTY deyices.

TTYPS=24 This is the default value.

UMODE - Session Processing Mode

This parameter determines the Natural session processing mode. Possible values are:

UMODE=(Sy) | S specifies the mode of operatiorlm.
yis the language indicator.

See explanation of operands belpw.

UMODE=(S,E)| This is the default value.

Explanation of Operands

174 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters UMODE - Session Processing Mode

Operand | Meaning:

S Mode of operation = single; that is, one Natural session can be started from one terminal/user.

y Language indicator for the restart message, the message for "free-running messages" and the logoff
message.
D=Danish
E=English
F=French
G=German
I=ltalian
N=Dutch
S=Spanish

Copyright © Software AG 2002 175

NATUTM Macro Entries Natural under UTM - Macro Keyword Parameters

NATUTM Macro Entries

® CMKBADR - Current Address of UTM KB
® User Area in the Swap Pool Directory

CMKBADR - Current Address of UTM KB

The entry CMKBADR holds the current address of the UTM communication area (Kommunikationsbereich,
KB).

The communication area can be accessed as shown in the following example, which illustrates an Assembler
program that could be called from a Natural program.

Example:

EXAMPLE CSECT
STM 14,12,12(13)

USING EXAMPLE, 15

L 2,VCONST LOAD ADDRESS OF KB-ADDRESS
L 3,0(,2) LOAD ADDRESS OF KB

LM 14,12,12(13)

BR 14

VCONST DC V(CMKBADR) ENTRY ADDRESS
END

In this case, the program name "EXAMPLE" must be defined with the keyword parameter LINK or LINK2 of
macro NATUTM, and the program itself must be linked with the front-end part of the Natural UTM Interface.

User Area in the Swap Pool Directory

One fullword is available for user-defined purposes in the Natural swap pool directory - see label USERWRD in
DSECT MEMPOOL of macro NAMSWDIR. This word can be used for synchronization, for example, for
switching accounting on and off, whilst the Natural/UTM application is running.

The following example shows how this area can be addressed.
Example:

WXTRN CMKBADR ENTRY IN MACRO NATUTM

PROG CSECT

STM 14,12,12(13) SAVE REGISTERS

USING PROG,15 BASE OF PROGRAM

USING KB,4 BASE OF UTM KB

USING MAINDIR,5 BASE OF SWAP POOL DIRECTORY
L 3,KBADR LOAD ADDRESS OF KB ADDRESS

L 4,0(,3) LOAD ADDRESS UTM KB

L 5,ASWPDIR ADDRESS SWAP POOL DIRECTORY

Ol USERWRD+3,1 SET THE LOW ORDER BIT OF FIELD
*USERWRD TO 1

LM 14,12,12(13) RELOAD REGISTERS

BR 14 RETURN

KBADR DC A(CMKBADR) ENTRY IN MACRO NATUTM
NAMSWDIR MACRO CALL FOR SWAP POOL DSECT
MAINDIR DSECT

176 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters NURENT Macro Keyword Parameters

USERWRD DS F DIRECTORY USER AREA

CMKBNEX MACRO CALL FOR UTM KB DSECT

KB DSECT

ADRSWAP DS F ADDRESS OF Natural SWAP POOL

END

When working in this area, the user must take care not to overwrite any other data in the swap pool directory.
Mistakes could lead to abnormal termination of the UTM task.

NURENT Macro Keyword Parameters

The following parameters are available:

ACCNT |ATTKEY |BTX | CALLM31 | CLR3270| EXTAPPL | ILCS | PARMOD | SCRNTRC| SPOOL|UDS
| UINPEX | UOUTEX

ACCNT - Call Logic for User Account Routine

This parameter is used to define the logic for call of the user account routine (user exit ACCEXIT). Possible
values are:

ACCNT=APPL|ACCEXIT is called at change of application (new Natural logon|ID).
This is the default value.

ACCNT=DIAL | ACCEXT is called after every dialog step.

ATTKEY - Attention Interrupt Key

This parameter is used to define an attention interrupt key. Such a key definition only makes sense for output in
non-conversational mode. Possible values are:

ATTKEY=nnZ | nnZ can be in the range of 26Z to 39Z.

ATTKEY= Default value: no value

BTX - Support of BTX System

This parameter enables the support of a BTX system. Possible values are:

BTX=YES|BTX support is enabled.
BTX=NO |BTX support is disabled. This is the default value.

The value for this parameter must be the same as the value for the BTX parameter in macro NATUTM.

Copyright © Software AG 2002 177

CALLM31 - Switching from 31 to 24-Bit Address Mode Natural under UTM - Macro Keyword Parameters

CALLM3L1 - Switching from 31 to 24-Bit Address Mode

This parameter is only relevant if Natural is generated for the 31-bit addressing mode and the front part is loaded
below (PARMOD=31, see below).

CALLMB31=YES| A call from a Natural program to a 3GL program will be executed in 31-bit addressing
mode.

CALLM31=NO | Call in 24-bit mode. The addressing mode is switched from 31-bit to 24-bit before a 3[GL
program will be called from a Natural program. This is the default value.

Exceptions:

® The 3GL program is loaded above the 16-MB line.
® The address of the parameter list is above the 16-MB line.

CLR3270=xxx - Definition of CLEAR Key

This parameter defines the CLEAR key in the AID character table V (AID3270) for 3270-type devices (IBM).

CLR3270=xxx | xxxdefines the CLEAR key.

CLR3270=PA1 By default, PAl is the CLEAR key.

EXTAPPL - UTM TERMN Name of External DCAM or PDN Applications

This parameter defines the UTM TERMN name (see the parameter PTERM of UTM KDCDEF) of external
DCAM or PDN applications. For these TERMN names, the MGET return code "05Z" (format changed) is
ignored. Possible values are:

EXTAPPL=xx xx andyy define the UTM TERMN namg¢
EXTAPPL=(xxyy) | No default value is provided.

L4

ILCS - Support of CRTE or ILCS

This parameter specifies whether the common runtime environment for calls (CRTE) or the ILCS interface for
calls of 3GL programs will be supported. Possible values are:

te:

ILCS=CRTE| The common runtime environment for calls of 3GL programs will be supported. Prerequig
The program "ITOSL#" must be included in the front part.

INCLUDE ITOSL#,SYSLNK.CRTE.010
RESOLVE,SYSLNK.CRTE.010

ILCS=YES |Only the ILCS interface for calls of 3GL programs will be supported. Prerequisite: The program
"ITOINITS" must be included in the front part.

INCLUDE ITOINITS,SYSLNK.ILCS
RESOLVE,SYSLNK.ILCS

ILCS=NO |CRTE or ILCS are not supported. This is the default value.

178 Copyright © Software AG 2002

Natural under UTM - Macro Keyword Parameters PARMOD - Generation of Front-End and Reentrant Parts

PARMOD - Generation of Front-End and Reentrant Parts

This parameter applies to the generation of both the front-end and reentrant parts. Possible values are:

PARMOD=(n,log The first part of this parameterr is used to define an addressing mode (24-bifj or
nn=24/31 31-bit mode) for the Natural/lUTM application.

loc=BELOW/ABOVE
The second part of this parametex) is used to define the front part location of the

Natural/UTM application.
PARMOD=(24,BELOW) This is the default value.

PARMOD=(nn,log must also be defined for assembling macro NATUTM. Operands must be identical for the
front-end and reentrant parts.

SCRNTRC - Tracing of Screen 1/Os

This parameter is used for debugging screen I/O to find out the reason for certain error situations. If this
parameter is set to ON/(OMNy), a special debug buffer for each user will be allocated (default buffer size is 3
KB). Possible values are:

SCRNTRC=0ON A debug buffer for each user is allocated with a default buffer size of 3 KB.

SCRNTRC=(ONyn) | A debug buffer for each user is allocatelderennis used to define a specific screen
debug buffer size other than the default value of 3 KB.

SCRNTRC=0OFF |This is the default value.

You should only set this parameter to ON/(&M,after having consulted with Software AG Technical Support.

SPOOL - Automatic Start and Termination of Printer Task

This parameter enables you to specify a spooling system. The value for this parameter must be the same as the
value for theSPOOLparameter in macro NATUTM. Possible values are:

SPOOL=(NATSPOOLgnter-parmin) | For use with NATSPOOL (Natural Advanced Facilities), dsing
NATSPOOL

SPOOL=REPRO-2000 For use with a remote spooling system, dsing REPRO-2000
Remote Spooling System

SPOOL=RMSPOOL For use with your own user exit program, ssing RMSPOOL Usef
Exit.

Default value: None.

UDS - Use of Natural for UDS

This parameter specifies whether Natural for UDS is to be used under UTM. Possible values are:

UDS=YES| Natural for UDS is to be used under UTM.
UDS=NO | This is the default value.

Copyright © Software AG 2002 179

UINPEX - Name of User Exit Natural under UTM - Macro Keyword Parameters

UINPEX - Name of User Exit

With this parameter, you can specify th@meof a user exit. This user exit is invoked by Natural/lUTM after a
terminal message has been sent; seeliso Exits Possible values are:

UINPEX=name |namespecifies the name of a user J:xit

UINPEX=INPSCR By default, user exit INPSCR is used.

UOUTEX - Name of User Exit

With this parameter, you can specify ti@meof a user exit. This user exit is invoked by Natural/lUTM before a
terminal message is to be sent; see diser Exits

UOUTEX=name namespecifies the name of a user ejit

UOUTEX=0OUTSCR By default, user exit OUTSCR is us¢d.

180 Copyright © Software AG 2002

Natural under UTM - Part 3 Natural under UTM - Part 3

Natural under UTM - Part 3

This part of the Natural UTM Interface documentation covers the following topics:

User Exits

Asynchronous Transaction Processing unter UTM

Printing under UTM

Calling Non-Natural Programs

Calling UTM Chained Partial Programs

Calling Adabas from Non-Natural Programs in a Natural UTM Application
Terminating a UTM Task Abnormally

Installation - refer tolnstalling the Natural UTM Interfacia the Natural Installation Guide for Mainframes.

Notation_vrs_or_vr">Notation vrsor vr: If used in the following document, the notatims or vr stands for
the relevantersion,releasesystem maintenance levaimbers.

Copyright © Software AG 2002 181

User Exits Natural under UTM - Part 3

User Exits

Several user exits are provided in the Natural UTM Interface. These are described below.

To use any of these exits, the corresponding user program must be linked with the front-end part of the
Natural/UTM application. The user exit RP2PRNT is an exception.

User exit routines are called with the customary register conventions.

ACCEXIT - Macro NATUTM

The user exit ACCEXIT can be used to retrieve accounting information. Depending on the value of the keyword
parameter ACCNT in macro NURENT, this user exit is activated either at the end of each dialogue step or at
each change of application (new Natural logon ID); seefsdsounting for Natural UTM Applications

ACCINIT - Macro NATUTM

The user exit ACCINIT can be used to gather accounting information. It is activated at the beginning of each
dialogue step; see alé@counting for Natural UTM Applications

INPTEX - Program FREXIT

The user exit INPTEX is activated whenever an input message is read. See also the description of the program
INPTEX in the sectiotJtility Programs for Use with Natural/UTM

RP2PRNT - Macro NURENT

The user exit RP2PRNT is intended as an interface to other manufacturers’ spooling systems. The user exit
routine (spooling program) must be reentrant and linked with the reentrant part of the Natural/UTM application.
See als®ther Spooling Systerrend the description of the keyword parameter SPOOL in the s&aiomord
Parameters of Macro NATUTM

182 Copyright © Software AG 2002

Natural under UTM - Part 3 RMSPOOL - Macros NATUTM and NURENT

RMSPOOL - Macros NATUTM and NURENT

If you wish to write your own spooling interface program, call it "RMSPOOL". The program "RMSPOOL" can
be linked to the (non-reentrant) front-end part or to the reentrant part of the Natural/UTM application. If it is to
be linked to the reentrant part, the program itself must be written so as to be reentrant.

Important:

If program "RMSPOOL" is to be used, the SPOOL parameter in macros NATUTM and NURENT must

be set

to SPOOL=RMSPOOL.

The Natural UTM Interface passes the following parameters to program "RMSPOOL":

Address
(Format/Length)

Contents

1st Address (A2)

Function code.
Possible function codes are:

OP - The print file has to be opened,

and the first print record is passed.

PR - Any subsequent print record is passed.
CL - The print file has to be closed.

2nd Address

Print record (data to be printed).
The first byte of the print record contains the line/form feed character. (If function g
"CL", this is a dummy address.)

ode

3rd Address (B2)

Length of print record (including feed character).
(If function code "CL", this is a dummy address.)

4th Address (A8)

Printer name.

5th Address

Print buffer.

This buffer can be used as work area by RMSPOOL (also if RMSPOOL is reentral
any purpose. The buffer is available for exclusive use by RMSPOOL between dial
input and dialogue output.

nt) for
bgue

6th Address (B2)

Length of print buffer.

7th Address (A8)

Current user ID (as in the system variable *USER).

8th Address (A8)

Current terminal ID (as in the system variable *INIT-ID).

9th Address (A8)

Current Natural library name
(as in the system variable *LIBRARY-ID).

10th Address (A8)

Current Natural program name
(as in the system variable *PROGRAM).

11th Address
(A4/B4)

Return code.

When RMSPOOL is invoked, the Natural UTM Interface sets this field to binary "0f.

Upon return of control from RMSPOOL, any value other than binary "0" is interprefed as

error code and (if displayable) is displayed to the user on the terminal screen and
output to "SYSLST".

hlso

Copyright © Software AG 2002 183

SHUTALL - Macro NATUTM Natural under UTM - Part 3

SHUTALL - Macro NATUTM

The user exit specified with the SHUTALL parameter in macro NATUTM is activated whenever a UTM task is
terminated (KDCSHUT). By default, this user exit is "SHUTEX1".

If the user exit specified with SHUTALL is to be used, the parameter USAGE=SHUT in KDCDEF for the
Natural UTM Interface must have been set when generating KDCROOT.

SHUTLST - Macro NATUTM

The user exit specified with the SHUTLST parameter in macro NATUTM is activated whiaisttbd M task is
terminated (KDCSHUT). By default, this user exit is "SHUTEX2".

If the user exit specified with SHUTLST is to be used, the parameter USAGE=SHUT in KDCDEF for the
Natural UTM Interface must have been set when generating KDCROOT.

STRTALL - Macro NATUTM

The user exit specified with the STRTALL parameter in macro NATUTM is activated whenever a UTM task is
started. By default, this user exit is "STARTEX".

STRTFST - Macro NATUTM

The user exit specified with the STRTFST parameter in macro NATUTM is activated wHaattdM task is
started. By default, this user exit is "STAPPLX".

TRMIOEX - Program FREXIT

The user exit TRMIOEX is activated with each formatted input or output message.

184 Copyright © Software AG 2002

Natural under UTM - Part 3 UINPEX - Macro NURENT

UINPEX - Macro NURENT

The user exit specified with the UINPEX parameter in macro NURENT is actiafited terminal message has
been sent. By default, this user exit is "INPSCR".

Natural/UTM passes the following parameters to the user exit:

Address (Format/Length)| Contents

1st Address Address input buffer.

2nd Address (B2) Address message length.

UOUTEX - Macro NURENT

The user exit specified with the UOUTEX parameter in macro NURENT is activaferka terminal message
is to be sent. By default, this user exit is "OUTSCR".

Natural/UTM passes the following parameters to the user exit:

Address (Format/Length)| Contents

1st Address Address output buffer.

2nd Address (B2) Address message lengh.

UVGEXIT - Macro NATUTM

The user exit UVGEXIT is activated at the start, restart and end (normal or abnormal) of a UTM DC transaction.
The current task ID (Vorgangskennzeichen, KCKNZVG) is passed to the user exit routine.

WHCEXT - Macro NURENT

The user exit WHCEXT can be used to modify an output which is to be printed before it is passed by FPUT to
UTM. When WHCEXT is called, register 9 contains the address of the output to be printed and register 13 the
address of the save area.

WHCEXT must be reentrant and it must be linked to the reentrant part of the Natural/UTM application. For
further information, please refer to the source listing of the assembled macro NURENT (Label 'NUWHC").

Copyright © Software AG 2002 185

Asynchronous Transaction Processing under UTM Natural under UTM - Part 3

Asynchronous Transaction Processing under UTM

To start an asynchronous transaction, the service routine NATASYN in the Natural UTM Interface has to be
called. The start of an asynchronous transaction in a Natural program is done by passing dynamic parameters
according to the following pattern:

COMPRESS dynamic parameters INTO field
CALL 'NATASYN’ [parameter area]

SET CONTROL 'H’

WRITE NOTITLE NOHDR field

[WRITE ...]
INPUT ‘text’ ifield (A1)
END

If the length of the dynamic parameters exceeds 250 bytes (that is, if more than one WRITE statement is
required), gparameter arednas to be passed with the CALL 'NATASYN' statement.

The parameter area is also required if the asynchronous transaction is to be started with UTM DPUT; that is, at a
specific time. The aggregate length of the dynamic parameters must not exceed 3750 bptrsnidter area
for the CALL 'NATASYN'’ has the following structure:

Bytes| Contents
01-02| Number of WRITE statement

03 DPUT time indicator:
R = a relative time,
A = an absolute time,
blank= FPUT.

04-06| Day of the year.
07-08| Hours.

09-10| Minutes.

11-12| Seconds.

n

For the contents of bytes 03 - 12, the same rules apply as described for DPUT calls in the respective Siemens
UTM documentation. Natural programming examples can be found in the Natural application SYSEXTP
(programs STARTAS1, ASYNMULT, STARTAS, READAUTO, AWINDOW1, AWINDOW?2).

For asynchronous transaction processing, KDCROOT, KDCDEF and the UTM startup job must be modified as
necessary (see the Siemens UTM documentation).

186 Copyright © Software AG 2002

Natural under UTM - Part 3 Asynchronous Processing within a Natural UTM Application

All UTM TACs for asynchronous transactions must begin with the character sequence which is defined as a
unique identifier for asynchronous TACs in parameter ASYNTAC of macro NATUTM. Conversely, the first
five characters of UTM TACs for synchronous transactions matdie this character string.

Mixed transaction processing (that is, both within a single UTM application and between two UTM applications)
is not possible.

Asynchronous Processing within a Natural UTM Application

If transactions are to be processed asynchronously within a Natural/UTM application, the operands of the
keyword parameters SYAPPLI and ASAPPLI of macro NATUTM must be set to "NO" (this is the default
value).

Example:

This is an example of a Natural program that initializes an asynchronous transaction within a Natural/TM
application.

* STARTAS - EXAMPLE OF THE INITIALIZATION FOR ASYNCHRONOUS
* TRANSACTION WORKING WITHIN ONE UTM APPLICATION
* PARMS ARE SEPARATED BY ',

* SUBLIST IN STACK IS SEPARATED BY ;'

FORMAT LS=145

RESET PARM1(A144) PRDEST(A8) LTDEST(A8)

MOVE 'PRINTERL’ TO PRDEST /* --> 1

MOVE *INIT-ID TO LTDEST /* --> 2

COMPRESS 'SENDER=' PRDEST ’,OUTDEST=' LTDEST ',
'"MENU=F,STACK=(LOGON APPL1;READAUTO)’

INTO PARM1 LEAVING NO /* --> 3

CALL 'NATASYN' /* --> 4

SET CONTROL 'H' /* -->5

WRITE NOTITLE NOHDR PARML /* --> 6

INPUT ’ASYNTASK INVOKED - HOPEFULLY’ IFELD(AL) /* --> 7
END

Copyright © Software AG 2002 187

Asynchronous Processing within a Natural UTM Application Natural under UTM - Part 3

input field.

Note

1 The name (dummy) of a printer is moved into field PRDEST.

2 The logical name of the UTM terminal is moved into field LTDEST.

3 The message that is to be sent and processed by Natural is assembled, with the following information:
the printer name (in this example, an arbitrary 8-character name),
the logical name (KCLOGTER) of the terminal to which the message is to be sent,
suppression of the main menu (this must be specified),
the application name (Natural logon ID),
the name of the program to be started and to be run in an asynchronous UTM transaction (READAUTO
in the example).

4 When the subroutine NATASYN (in macro NATUTM) is called, a marker is set to indicate that ar
asynchronous transaction is to be initialized. The subroutine NATASYN conforms to the conventons for
calling non-Natural programs.

5 The Natural offline report is activated.

6 The message (PARM1) is output by FPUT as an asynchronous transaction.

7 The Natural offline report is "switched off" by means of an INPUT statement that must have at lepst one

END

An example of the program that is to be executed asynchronously:

* READAUTO - EXAMPLE FOR ASYNCHRONOUS TRANSACTION WORKING
READ (75) AUTOMOBILES BY MAKE

WRITE MAKE MODEL HORSEPOWER YEAR

LOOP

ON ERROR DO /* --> 1

ERRNO(A4) = *ERROR

W R IT E Thkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkk

/ERROR NO.: " ERRNO ' IN ASYNCHRONOUS PROGRAM " *PROGRAM
/’**’

TERMINATE

DOEND

TERMINATE /* --> 2

Note

1

An "ON ERROR" routine must be defined in each program that is to be executed asynchronousl
routine must end with a TERMINATE statement.

. The

Each program that is to be executed asynchronously must end with a TERMINATE statement.

188

Copyright © Software AG 2002

Natural under UTM - Part 3 Asynchronous Processing between two Natural UTM Applications

Logic of an Asynchronous Transaction within one Natural UTM Application:

Sywnchronous UTM Task
INlT Rebgbet
MZET +——|| kpcouT
MaTURAL
EMEC STARTAS
start asynchmno s
Tansackon
WRITE cynamic patms I
FPUT KcrRMaTa:
MPLIT KDCFILE
FEMD RE
Message 1 l T

ZEMDER #RINTERL,OUTDESET Kcloghe ;M EMNU FETACK SLOGOMN APRE ADALTO]

|
AsynchronousUTH Task '

IMIT
FGET

HMATURAL
EXE T READALITO
DIEPLAY syt
0 ERROR TERMIMATE
TERMIMATE
EWD

Message 2 ... 20

FPUT KCRM %o gter > sCheen autput
PEND FI

Asynchronous Processing between two Natural UTM Applications

When processing transactions asynchronously between two Natural/UTM applications, the logical UTM terminal
name (LTERM name) of the synchronous application must be defined with the keyword parameter SYAPPLI of
macro NATUTM, and the logical UTM terminal name (LTERM name) of the asynchronous application must be
defined with the keyword parameter ASAPPLI of macro NATUTM.

Example:

NUSTART NATUTM SYAPPLI=LNATUTM,ASAPPLI=LNATASY,...
ASYNDRV NATUTM SYAPPLI=LNATUTM,ASAPPLI=LNATASY.,...

KDCROOT and KDCDEF must be generated as appropriate for both applications.

Copyright © Software AG 2002 189

Asynchronous Processing between two Natural UTM Applications Natural under UTM - Part 3

Example for Synchronous Application:

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATS
ROOT.KDCNATS

MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=520

MAX APPLINAME=NATUTM,APPLIMODE=S,KDCFILE=(NATUTM,S)
MAX TASKS=10,ASYNTASKS=5

EXIT PROGRAM=NUSTART,USAGE=START
EXIT PROGRAM=NUSTART,USAGE=SHUT
EXIT PROGRAM=FREXIT,USAGE=FORMAT

DEFAULT PROGRAM COMP=ASSEMB
PROGRAM NUSTART

PROGRAM FREXIT

PROGRAM NUERROR

DEFAULT TAC TYPE=D,PROGRAM=NUSTART,EXIT=NUERROR,CALL=BOTH,...
TAC NAT,ADMIN=NO, TIME=0
TAC NAT1,ADMIN=NO,TIME=0

DEFAULT TAC TYPE=A,PROGRAM=NUSTART,EXIT=NUERROR,CALL=FIRST,...
TAC NATSY
TAC NATAS

PTERM NATASY,PRONAM=HOST,PTYPE=APPLI, TERMN=A1,LTERM=LNATASI
DEFAULT PTERM PRONAM=PCDF,PTYPE=T9750,TRMN=FE,CONNECT=N,STATUSFON
PTERM DFDSS001,LTERM=DF97501
PTERM DFDSS002,LTERM=DF97502

LTERM LNATASY

DEFAULT LTERM USAGE=D,STATUS=0ON,ANNOAMSG=Y,RESTART=YES
LTERM DF97501

LTERM DF97502

SFUNC F1,RET=21Z

END

190 Copyright © Software AG 2002

Natural under UTM - Part 3 Asynchronous Processing between two Natural UTM Applications

Example of Asynchronous Application:

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATA
ROOT.KDCNATA

MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=520

MAX APPLINAME=NATASY,APPLIMODE=S,KDCFILE=(NATASY,S)
MAX TASKS=10,ASYNTASKS=5

EXIT PROGRAM=ASYNDRV,USAGE=START
EXIT PROGRAM=ASYNDRV,USAGE=SHUT
EXIT PROGRAM=FREXIT,USAGE=FORMAT

DEFAULT PROGRAM COMP=ASSEMB
PROGRAM ASYNDRV

PROGRAM FREXIT

PROGRAM NUERROR

DEFAULT TAC TYPE=D,PROGRAM=ASYNDRV,EXIT=NUERROR,CALL=BOTH,.}.
TAC NAT,ADMIN=NO, TIME=0
TAC NAT1,ADMIN=NO,TIME=0

Please see also the Siemens UTM documentations. If the asynchronous application is primarily intended for
processing asynchronous transactions, storage can be saved by generating this application with a small (local)
Natural swap pool of about 64 KB.

Important:

The TAC that was defined with the keyword parameter SYNTAC (the default value is "NATSY") must glways
be defined for KDCDEF with "TYPE=A"; this is an exception to the rules for naming UTM TACSs. If, in
addition, the synchronous application uses the UTM TACCLASS concept, an asynchronous TAC clas$ must
also be allocated to this TAC.

Copyright © Software AG 2002 191

Asynchronous Processing between two Natural UTM Applications Natural under UTM - Part 3

Example of a Natural Program to Initialize an Asynchronous Transaction between two Natural UTM
Applications:

* ASYNAPPL - EXAMPLE OF INITIALIZATION FOR ASYNCHRONOUS
* TRANSACTION WORKING BETWEEN TWO UTM APPLICATIONS
FORMAT LS=145

RESET PARM1(A144) PRDEST(A8) LTDEST(A8) ASYNTAC(AS)
MOVE 'PRINTERL’ TO PRDEST /* --> Note 1

MOVE *INIT-ID TO LTDEST /* --> Note 2

MOVE 'NATSY’ TO ASYNTAC /* --> Note 3

COMPRESS 'NATAS’* SENDER=" PRDEST ’,OUTDEST=' LTDEST

' ASYNNAME=" ASYNTAC *,

'"MENU=F,STACK=(LOGON APPL1;READAUTO)

INTO PARM1 LEAVING NO /* --> Note 4

CALL 'NATASYN’ /* --> Note 5

SET CONTROL 'H’ /* --> Note 6

WRITE NOTITLE NOHDR PARML /* --> Note 7

INPUT ’ASYNTASK INVOKED - HOPEFULLY’ IFELD(A1) /* --> Note 8
END

Note

1 The name of a printer (simulation) is moved into the field PRDEST.

2 The logical name of the UTM terminal (KCLOGTER) is moved into the field LTDEST.

3 The standard TAC for sending "free-running” messages from the asynchronous application to th
synchronous application is put in the field ASYNTAC. See also the description of the keyword
parameter SYNTAC of macro NATUTM.

1%

4 The message that is to be sent and processed by Natural is assembled, with the following inforn
transaction code for the asynchronous transaction (NATAS),

printer name (in this example, an arbitrary 8-character string),

the logical name (KCLOGTER) of the terminal to which the message is to be sent,

the name of the standard TAC for sending free-running messages from the asynchronous applic
the synchronous application,

main menu suppression (this must be specified),
the name of the application (Natural logon ID),

the name of the Natural program to be started and to be run in the asynchronous transaction/ap
(in this example, READAUTO).

ation:

ation to

plication

5 When subroutine NATASYN (in macro NATUTM) is called, a marker for the initialization of an
asynchronous transaction is set. The subroutine conforms to the conventions for calling non-Nat
programs.

ural

6 The Natural offline report is activated.

7 The message (PARM1) is output with FPUT as an asynchronous transaction.

8 The Natural offline report is "switched off" by means of an INPUT statement with at least one inp
field.

192 Copyright © Software AG 2002

Natural under UTM - Part 3 Asynchronous Processing between two Natural UTM Applications

The program to be executed asynchronously (READAUTO) must conform to the conventions that apply to
asynchronous transaction processing within one Natural/UTM application.

Copyright © Software AG 2002 193

Asynchronous Processing between two Natural UTM Applications Natural under UTM - Part 3

Logic of Asynchronous Transaction between two Natural UTM Applications:

MATUTM
KCLOGTER L WATLITH)
Synchronous Application
Smchronous Task Asmchronous Task
IMIT INIT
TGET FGET Message 3.50
MATURAL KCRM 4 CLOGTER +w
EXE C &5%hAF PL PEMD FE
skt asynchmnops
fansacton
WRITE ohynamic pams
FPUT KCRM LheTasy
MPUT
PEMND RE
fessage 1 r KDCFILE
| MATAS | MEMNU =F STACK =LOGON APP L1',FIE.|5.DF'.LITO}|
Message 2,20
|m15~f |I‘-’.CLOGTEF! |su:reen output |
naTasy f k
KCLOGTER L h AT A5Y) Message 4..4n
Asynchronous Application | sCreen output
Asmchronous Task
J’ IMIT
FGET 1
¥ KCLOGTER
MATURAL
S e osouT I
TERMIMATE
FPUT KCRM £MATUTH
FEMND FI

194 Copyright © Software AG 2002

Natural under UTM - Part 3

Printing under UTM

Using Local Non-Spooled Printers

Printing under UTM

A Natural program that wishes to use local printers without spooling (that is, with FPUT via UTM), should

proceed as shown in the following example.

Example:

* TESTPRNT - TEST FOR THE Natural OFFLINE REPORT
RESET PARAM(A9)

REDEFINE PARAM (PARAM1(A1) PARAM2(A8))

MOVE 'H’ TO PARAML1 /* --> Note 1

MOVE 'PRINTERL’ TO PARAM2 /* --> Note 2

SET CONTROL PARAM /* --> Note 3

READ (50) AUTOMOBILES BY MAKE

WRITE NOTITLE NOHDR MAKE MODEL HORSEPOWER YEAR /* --> Note 4
LOOP

EJECT

INPUT 'PRINT ORDER WAS EXECUTED’ IFELD(A1) /* --> Note 5
END

Note

1 The Natural offline report is activated by putting an "H" in the first position of the field PARAM.

2 The logical UTM printer name is defined starting at the second position of the field PARAM.

Programs for Use with Natural/UTM

3 The SET CONTROL statement, together with the content of the field PARAM, activates the Naty
offline report and specifies the name of the printer. To ensure compatibility for existing programs
using Natural Version 1, the programs CMLIST and NATPRNT continue to be availablétjlgge

4 The print records are passed to UTM from the Natural UTM Interface using FPUT.

5 The INPUT statement (which must have at least one input field) deactivates the Natural offline re

ral
written

port.

All the necessary steps for using local printers must have been taken when generating UTM; for further details,
please refer to the Siemens UTM documentation. The appropriate UTM administration commands can be used to

verify that a connection to the defined printers exists.

Copyright © Software AG 2002

195

Using NATSPOOL (Natural Advanced Facilities) Natural under UTM - Part 3

Using NATSPOOL (Natural Advanced Facilities)

The keyword parameter SPOOL of macro NATUTM is provided for using NATSPOOL under UTM. Further
details are given in the sectig®yword Parameters of Macro NATUT.N®lease refer also to the
BS2000/0SD-specific installation information in tatural Advanced Facilities documentation

If in an asynchronous UTM transaction printing is to be done with NATSPOOL, the TERMINATE statement
must be preceded by an END OF TRANSACTION statement.

Other Spooling Systems

The user exit RP2PRNT is provided for interfacing to other spooling systems. This user exit is activated if
"REPRO-2000" is specified with the keyword parameter SPOOL in macro NURENT. (This value should be used
for all spooling systems.)

Since it must be linked with the reentrant part of the Natural/UTM application, the user exit routine RP2PRNT
must be reentrant.

The logic of the transfer of print records from Natural, buffer processing, etc., can be seen in macro NURENT
(labels CMWTERM and CMWHC) and the appropriate routines in macro NATUTM.

As an alternative, it is possible to use the user exit RMSPOOIjsareEXits

Software AG does not provide support for this interface to other spooling systems except as described in the
preceding paragraphs.

196 Copyright © Software AG 2002

Natural under UTM - Part 3 Calling Non-Natural Programs

Calling Non-Natural Programs

Non-Natural programs are called using the standard register conventions for inter-program communication. If the
program to be called is reentrant (uses shared code), it can be defined with CSTATIC in the Natural parameter
module (macro NTPRM) and linked with the reentrant part of the UTM application. Otherwise, one of the
following procedures can be used:

® The programs can be dynamically loaded at runtime.
To do this, the programs must be in the library defined by the LIBNAM parameter in the Natural parameter
module or in the BLSLIB libraries specified in the UTM start job;

® The programs can be linked with the front-end part of the Natural/UTM application. To do this, the names
of the programs must be defined in the operand of the keyword parameter LINK, LINK2, LINK3 or LINK4
of macro NATUTM.
This procedure is always necessary for programs that contain an EXTRN reference to an ENTRY that is
already present in the front-end part of the Natural UTM Interface. The Natural UTM Interface executes a
TABLE macro call for the programs that have been defined in this way. This makes an entry in the dynamic
loader’s LINK table, indicating that it is not necessary to dynamically load the programs when they are
called by the Natural program.

In both cases, the maximum number of called non-Natural programs must be defined with the keyword
parameter CDYNAM of macro NATUTM; sdéeyword Parameters of Macro NATUTM

Attention: If keyword parameter KB in macro NATUTM is set to "YES", Natural always passes the address of
the UTM communication area (Kommunikationsbereich, KB) as the first parameter address. This does not apply
to programs which are defined with CSTATIC.

Copyright © Software AG 2002 197

Calling UTM Chained Partial Programs Natural under UTM - Part 3

Calling UTM Chained Partial Programs

Several methods are provided for ending a Natural session (FIN or TERMINATE) with a PEND PR(OGRAM)
instead of a PEND FI(NISH), so that another UTM patrtial program is called:

e The UTM TAC for the UTM partial program that is to be called can be passed using the Natural dynamic
parameter PROGRAM at the start of the Natural session.
Example:STACK=(LOGON APPL1;MENU),PROGRAM=NAT10

® The UTM TAC for the UTM partial program that is to be called can be defined in the operand of the
keyword parameter PENDPR of macro NATUTM.
Example:NATUTM PENDPR="NAT10’

® The utility program TACSWTCH can be used.

In all cases, the Natural UTM Interface would execute a PEND PR(OGRAM) with the UTM TAC NAT10 at the
end of the Natural session, which means that the UTM partial program associated with this TAC would be
started.

Another way to execute a PEND PR(OGRAM) is by activating the function key defined for this purpose, which
suspends, but not terminates, the Natural session. On return from the UTM partial program with PEND
PR(OGRAM), the Natural session can be continued from the point at which it has been suspended; see also the
keyword parametd?RKEY. If the function key for PEND PR(OGRAM) is activated without a UTM TAC for
another UTM partial program being defined, an appropriate error message is displayed.

Note:

The programs NUEXAMPL, UTMNAV and UTMCOB show examples of the logic necessary in a UTM
partial program that wishes to communicate with the Natural UTM Interface (and therefore with Natura] itself)
- see the descriptions of programs UTMCOB and UTMNAY in the se&tidtware Exchange

Calling Adabas from Non-Natural Programs in a Natural
UTM Application

If a Natural program calls a non-Natural program that also includes Adabas calls, the appropriate field in the
Adabas control block must be supplied with the current Adabas user ID. In this case, generate the CSECT
ADACALL in the Natural UTM Interface.

ADACALL contains an entry which is defined with the keyword parameter ADACALL in macro NATUTM (the
default value of this parameter is "Adabas").

This entry is activated for every "CALL [Adabas] USING ...". The current Adabas user ID is passed to the field
ADDITIONS?2 of the Adabas command block, and subsequent processing of the Adabas call is passed to the
Adabas interface module ADALNN; see also the keyword pararA&tACALL .

Terminating a UTM Task Abnormally

The Natural session (and thereby also the UTM task) can be abnormally terminated by entering the CANCEL
parameter’s value of the Natural parameter module (default is *CANCEL in upper-case letters).

198 Copyright © Software AG 2002

Natural under UTM - Part 4 Natural under UTM - Part 4

Natural under UTM - Part 4

This part of the Natural UTM Interface documentation covers the following topics:

Accounting for Natural UTM Applications

Utility Programs for Use with Natural/UTM
Software Exchange

UTM TACCLASS Concept - Priority Control
Generating a Natural UTM Application

Optimizing Natural UTM Applications

Several Applications with one Common Natural
Entering and Defining Dynamic Natural Parameters
UTM User Restart

Adabas Priority Control

Installation - refer tolnstalling the Natural UTM Interfacie the Natural Installation Guide for Mainframes.

Notation_vrs_or_vr*>Notation vrsor vr: If used in the following document, the notatins or vr stands for
the relevantersion,releasesystem maintenance lewvalimbers.

Accounting for Natural/UTM Applications

To better control the use of resources by Natural/UTM applications, accounting records are made available by
the user exits ACCINIT and ACCEXIT.

The user exit ACCINIT is activated by the Natural UTM Interface at the beginning of each dialogue step.

The user exit ACCEXIT is activated by the Natural UTM Interface depending on the keyword parameter
ACCNT in macro NURENT:

ACCNT=DIAL | Tthe user exit ACCEXIT is activated at the end of each dialogue step.

ACCNT=APPL | The user exit ACCEXIT is activated at each change of application (new Natural logpn ID).

In both cases, an accounting record is also provided at the end of the session (FIN system command or
TERMINATE statement).

Copyright © Software AG 2002 199

Structure of the Accounting Record

Natural under UTM - Part 4

Structure of the Accounting Record

0-7 |Logical UTM terminal name DS|CL8
8-15 |UserID DS|CL8
16 - 23 Current Natural application name |DS|CL8
24 - 27/ Number of Adabas calls DS|F
28 - 31 Accumulated message length DS|F
32 - 35 Elapsed time in Natural including |DS|F
subroutines (milliseconds)

36 - 37 Number of pages printed DS|H
38 - 39 Number of terminal I/O transfers |DS|H
40 - 49 (user area) DS|CL10
50 - 51 unused DS|CL2
52 - 55 Adabas command time (millisecon¢ DS | F
56 - 63 Name of last transaction program |DS|CL8

The user area of the accounting record can (if required) be used for additional application-specific accounting
information. The accounting area is in the user-specific UTM communication area (Kommunikationsbereich,

KB).

The current address of the UTM KBs can be found with the entry "CMKBADR" of macro NATUTM as
necessary; otherwise, the operand of the keyword parameter KB of macro NATUTM must be set to "YES". In
this case, Natural passes the address of the communication area as the first parameter of every subroutine call.

The user exit routine ACCEXIT can store the accounting records in an Adabas file, in a shared sequential PAM
dataset or in a task-specific SAM dataset. The program ACCEXIT shows an example of the method for storing
accounting records; s&oftware Exchange

200

Copyright © Software AG 2002

Natural under UTM - Part 4 Utility Programs for Use with Natural/UTM

Utility Programs for Use with Natural/UTM
Several utility programs are provided for use with Natural under UTM. The following rules apply to their usage:

® The Natural and UTM macro libraries must be used when assembling these utilities.

® When a particular program is to be used:
O its name must be specified with the keyword parameter LINK or LINK2 of macro NATUTM
O and the program itself must be linked with the front-end part of the Natural/UTM application.

A detailed description, including the interface, valid parameter values and a summary of the logic, can be found
in each program’s maintenance log.

Utility Program NATDUE

The program NATDUE can be used to find out within a Natural program whether the user has entered data in the
current dialogue step or whether merely EM/DU or DU was entered.

The utility program INPTEX must be used if NATDUE is to be called. The program INPTEX satisfies the user
exit INPTEX in the format exit module FREXIT and checks at each dialogue step whether data were entered.
According to the result of this test, a flag that is subsequently interrogated by the program NATDUE is set in the
communication area (Kommunikationsbereich, KB).

Example of a Natural Program that Calls NATDUE:

* PROG1 - EXAMPLE FOR CALLING THE SUBROUTINE 'NATDUE'’
RESET P1(Al) ...

INPUT USING MAP ...

CALL 'NATDUE’ P1

IFP1L="Y"DO .. /*INPUT FROM USER
IFP1="N"DO ... /* NO INPUT FROM USER
IF P1="E DO ... /* ERROR

END

Copyright © Software AG 2002 201

Utility Program INPTEX Natural under UTM - Part 4

Utility Program INPTEX
The utility program INPTEX satisfies the user exit of the same name in the format exit FREXIT.
Important: INPTEX must be linked with the front-end part of the Natural/UTM application.

Warning: Any modifications that can be made to this program, for example, ignoring data entered in a particular
line on the terminal screen, are made at the user’s risk.

Function: This program checks each input message for the presence of input from the terminal, or whether
merely EM/DU or DU was pressed.

It is not necessary to define the program name INPTEX with the keyword parameter LINK or LINK2 of macro
NATUTM.

Utility Program NATPRNT

The program NATPRNT provides the following special service functions for operating local printers:

® accepting the logical name of the target printer;
e verifying the printer name against a list of valid printer names;
e setting a marker for building variable length print records.

Utility Program UTMTAC

The program UTMTAC, which can be called from a Natural program, yields the current UTM TAC. This makes
it possible for a central Natural program to perform UTM TAC-controlled "navigation” within a Natural/UTM
application.

202 Copyright © Software AG 2002

Natural under UTM - Part 4 Utility Program TACSWTCH

Utility Program TACSWTCH

The utility program TACSWTCH is a macro which can be used to dynamically assign a UTM TAC for a PEND
PR(OGRAM) from within a Natural program. The specified UTM TAC is checked against the generated UTM
table and saved accordingly. Also, information can be passed to the PEND PR(OGRAM). To use this utility,
proceed as follows:

1. Define the valid UTM TACs and assemble the TACSWTCH macro:
For Example: TACSWTCH TAC=(tacl,tac2,tac3,..iac

These TACs have to be defined in KDCDEF as well, and for the generation of KDCROOT they have to be
assigned to the corresponding UTM partial programs.

1. Define the program TACSWTCH with the keyword parameters LINK to LINK4 in macro NATUTM.
2. Link program TACSWTCH to the front-end part of the Natural UTM Interface.
3. Interface description: CALL 'TACSWTCH' HPZ P3

P1 |Contains the UTM TAC to be used for a PEND PR.
(A8)

P2 |lIs optional and contains the length and data of a message to the PEND PR
(An)

The structure of P2 is: LLLDDD.....
LLL = Message length (3 digits, no length field); minimum length: 000, maximum length: 160.

DDD = Message area.

P3 | Has two functions:
(A1)
On call and if P3 contains the value "G" (Go), the PEND PR(OGRAM) is executed at the next Natural
output (INPUT, WRITE, DISPLAY). After calling the Natural UTM Interface with PEND PR, the
Natural session is continued where it had been suspended, which means that the last output is flisplayed
to the user.

On return, P3 contains the return code from TACSWTCH.
Possible return codes are:

0 = The operation has been executed without error.
1 = TAC has not been found in the TAC table.

2 = Message length was less than "000".

3 = Message length was over "160".

Once TACSWTCH has been called without error, a PEND PR(OGRAM) can be executed by either
issuing a FIN command or with a TERMINATE statement or by activating the function key for PEND
PR; see the keyword parameRRKEY.

Copyright © Software AG 2002 203

Utility Program TACSWTCH Natural under UTM - Part 4

Special TACSWTCH Functions

You can use the first TACSWTCH parameter with the following values:

RESET | The UTM TAC currently available will be cleared, that is, the session will be terminated with HEND
Fl.

GETP | Data will be moved from the print buffer to the adequate data area of the calling Natural progrfam.

GETU | Data will be moved from the KB user extension to the adequate data area of the calling Naturgl
program.

The first two bytes (format: binary) in the print buffer or in the KB user extension must contain the data length
(including these first two bytes).

PUTP | Data will be moved from the adequate data area of the calling Natural program to the print buffer.

PUTU | Data will be moved from the adequate data area of the calling Natural program to the KB user
extension.

The first two bytes (format: binary) in the data area of the Natural program must contain the data length
(including these first two bytes). The data will be moved including the first two bytes.

204 Copyright © Software AG 2002

Natural under UTM - Part 4 Utility Program TACSWTCH

Example for PUTP and GETP:

DEFINE DATA LOCAL
01 P1(A8) /* FUNCTION CODE/UTM TAC

01 P2(A252) /* FIRST PART OF DATA AREA

01 REDEFINE P2

02 P21(B2) /* DATA LENGTH INCLUDING FIRST TWO BYTES
02 P22(A250)

01 A1(A250) /* SECOND PART OF DATA AREA

01 P3(N1) /* RETURN CODE

END-DEFINE

... * PROGRAM LOGIC

MOVE 'PUTP’ TO P1 /* MOVE FUNCTION CODE FOR TACSWTCH
MOVE 502 TO P21 /* MOVE TOTAL LENGTH OF DATA

CALL 'TACSWTCH’ P1 P2 P3 /* PUT DATA INTO PRINT BUFFER
IF P2 NE 0 /* RETURN CODE CONTROLLING

DO... /¥ ERROR LOGIC

MOVE 'NAT1’ TO P1 /* MOVE ADEQUATE UTM TAC

MOVE 'G’ TO P3 /* EXECUTE PEND PR WITH TAC NAT1

CALL 'TACSWTCH’ P1 P3

IF P3 NE 0 /* RETURN CODE CONTROLLING

DO... /¥ ERROR LOGIC

INPUT’’ /* DUMMY MESSAGE FOR DRIVER CONTROL

Now the Natural/lUTM driver gets control and runs with the following logic:
1. It ignores the dummy message (INPUT "").
2. MPUT with LENGTH=0 and PEND PR with TAC 'NAT1’ for the UTM partial program.

3. The UTM partial program gets the Natural program data through the print buffer. The print buffer is |
in the UTM SPAB and the address of the print buffer is defined in the field 'KBAPBUFF’, which is locat
the UTM KB:

- It moves data for the Natural program into the print buffer (the first two bytes must contain the data le
binary format, including the two-byte length field).

- It executes an MPUT with LENGTH=0 and a PEND PR with the TAC defined for the Natural/UTM dri
4. The Natural/lUTM driver gets control (INIT/MGET).

5. It simulates ONLY ENTER for Natural.

6. It resumes with Natural as follows:

MOVE 'RESET’ TO P1 /* MOVE FUNCTION CODE FOR TACSWTCH
CALL 'TACSWTCH’ P1 P3 /* RESET PEND PR TAC (NAT1)

IF P3 NE O /* RETURN CODE CONTROLLING

DO... /* ERROR LOGIC

MOVE 'GETP’ TO P1 /* MOVE FUNCTION CODE FOR TACSWTCH
CALL 'TACSWTCH’ P1 P2 P3 /* GET DATA FROM PRINT BUFFER
IF P3 NE O /* RETURN CODE CONTROLLING

DO... /* ERROR LOGIC

... " PROGRAM LOGIC

pcated
bd in

ngth in

ver.

END

Copyright © Software AG 2002 205

Utility Program TACSWTCH Natural under UTM - Part 4

If the keyword parameter KBSAVE of macro NATUTM is set to YES, the called UTM partial program may use
the UTM KB (from the end of the header plus first twelve bytes). In this case, the UTM KB will be saved
(beginning from KB header plus first twelve bytes) with SPUT and will be refreshed with SGET.

When defining UTM transaction codes for the transaction logic between Natural and other UTM patrtial
programs, the following rule applies:

For a PEND PR(ogram) from another UTM partial program to the Natural/UTM driver, the preceding start TAC
may never be used. The fact that the Natural/UTM driver was called by a PEND PR(ogram) can only be
recognized if the contents of the preceding start TAC in field KCTACVG are different from the current TAC in
field KCTACAL. (Normally, field KCTACVG contains the TAC with which the user has entered the
application.)

206 Copyright © Software AG 2002

Natural under UTM - Part 4 Software Exchange

Software Exchange

Software AG’s customers have developed programs that meet certain specific needs found in their Natural/UTM
applications. These programs are made available to all interested users via the "Software Exchange". This also
applies to programs developed by Software AG that demonstrate example solutions to particular problems.

These programs, which are available free of charge, are not maintained by Software AG. The documentation of
each program is usually included in the maintenance log of the source listing.

Program XAMDUSA

This program saves and restores the current user-specific WORKING-STORAGE SECTION of the calling
COBOL program.

This enables user-specific data areas, for example tables, to be accessible over many dialogue steps and without
regard to the UTM task in which the user is currently running. The data are saved in a PAM file using
logical/physical chained PAM-1/O.

Program UTMCOB

Program UTMCOB is an example of a user-specific UTM partial program within a Natural/UTM application. It
shows the fundamental logical structure of a program that, as a UTM patrtial program:

® Can be activated by the user by associated UTM TACs.

® Activates the Natural UTM Interface and hence the Natural application by means of PEND PR(OGRAM)
with dynamic Natural parameters.

® Can be activated from the Natural UTM Interface by means of PEND PR(OGRAM).

See alsc€Calling UTM Chained Partial Programs

Program UTMNAV

Program UTMNAV is another example of a user-specific UTM partial program within a Natural/UTM
application:

It can be activated by the user or with PEND PR(OGRAM) by the associated UTM TAC.

It interprets passed messages as dynamic Natural parameters.

It provides screen output of information on the program logic.

Previously received screen input (Natural dynamic parameters) is sent with MPUT and passed to the
Natural UTM Interface with PEND PR(OGRAM).

Program UTMNAYV contains an example of how the UTM KB can be used as a "common" user area.

Copyright © Software AG 2002 207

UTM TACCLASS Concept - Priority Control Natural under UTM - Part 4

Program NUEXAMPL

Program NUEXAMPL is an example of a user-specific UTM partial program which can exchange data with a
Natural program. The program logic of NUEXAMPL and of the calling Natural program is described in the
maintenance log of NUEXAMPL.

Program ACCEXIT

Program ACCEXIT is an example of a program that saves accounting data on a shared ISAM dataset. The user
exits ACCEXIT and SHUTEX2 of the Natural UTM Interface are used. Sed\atsminting for Natural/UTM
Applications

Program TABMOD

The program TABMOD, which can be called from a Natural program, performs the following functions:

® |oad data records, for example a table, into a common memory pool using a unique key when an application
is started and whilst an application is running;
e transfer data records according to the requirements of the calling Natural program.

This makes it possible to load frequently-needed data into storage once only and then keep them resident.

TABMOD is available as a macro in the library NbRRMAC. It contains all information necessary for its
installation and usage.

UTM TACCLASS Concept - Priority Control

Natural programs can allocate UTM TAC classes to optimize resource control using the UTM TACCLASS
concept in a Natural/UTM application.

The following procedure should be followed when generating the Natural/UTM application and creating the
Natural program:

Step 1: Specify UTM TACs and TAC Classes in the KDCDEF and KDCROOT
Definitions

208 Copyright © Software AG 2002

Natural under UTM - Part 4 UTM TACCLASS Concept - Priority Control

Example:

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATP

ROOT KDCNATP

MAX APPLINAME=NATUTM,APPLIMODE=S,KDCFILE=(NATUTM,S)
MAX KB=400,SPAB=8192,NB=5120, TRMSGLTH=5120

MAX TASKS=10

MAX ASYNTASKS=3

EXIT PROGRAM=NUSTART,USAGE=START
EXIT PROGRAM=NUSTART,USAGE=SHUT
EXIT PROGRAM=FREXIT,USAGE=FORMAT

DEFAULT PROGRAM COMP=ASSEMB
PROGRAM NUSTART

PROGRAM FREXIT

PROGRAM NUERROR

PROGRAM KDCADM,COMP=SPL4

DEFAULT TAC TYPE=D,PROGRAM=NUSTART,EXIT=NUERROR,CALL=BOTH,...
TAC NAT,TIME=(3600000,5400), TACCLASS=1,...
TAC NAT1,TIME=(3600000,5400), TACCLASS=2,...

DEFAULT TAC TYPE=A,PROGRAM=NUSTART,EXIT=NUERROR,CALL=FIRST,...
TAC NATAS, TACCLASS=9
TAC NATAS1,TACCLASS=10

TACCLASS 1,TASKS=3
TACCLASS 2,TASKS=1
TACCLASS 9,TASKS=2
TACCLASS 10,TASKS=1

END

See also the Siemens documentation "UTM Generierung und Administration” (UTM Generation and
Administration).

Notes on the UTM TACs Defined

NAT This is the UTM TAC for less resource-intensive synchronous transactions; that is, transactipns of
short duration.

NAT1 This is the UTM TAC for more resource-intensive synchronous transactions; that is, transactions of
longer duration.

NATAS | This is the UTM TAC for less resource-intensive asynchronous transactions.

NATAS1 | This is the UTM TAC for more resource-intensive asynchronous transactions.

Copyright © Software AG 2002 209

UTM TACCLASS Concept - Priority Control

Step 2: The Structure of the UTM Start Job

The name of the job is "EN.NATUTM".

Example:

/.NATUTM LOGON Natural,E,, TIME=10000
/SYSFILE SYSOUT=PROT.UTMSTAT
/FILE NATUTM.KDCA,LINK=KDCFILE
/ERASE NATUTM.PRINTCONTROL
/STEP

/FILE LOG.NATUTM,LINK=SYSLOG

/FILE NATUTM.SWAPFILE,LINK=PAMNAT,SHARUPD=Y
/SYSFILE TASKLIB=NAT210.MOD
[.REPEAT EXEC NATUTM.E

.UTM START FILEBASE=NATUTM
START TASKS=7

START ASYNTASKS=3

START STARTNAME=EN.NATUTM

.UTM END

/SKIP .REPEAT

/STEP

/SYSFILE SYSOUT=(PRIMARY)

/STEP

/SYSFILE SYSLST=(PRIMARY)

/CAT NATUTM.PRINTCONTROL,SHARE=YES
/PRINT LST.NATUTM.,SPACE=E

/ERASE LST.NATUTM.

/STEP

/LOGOFF NOSPOOL

210

Natural under UTM - Part 4

Copyright © Software AG 2002

Natural under UTM - Part 4 UTM TACCLASS Concept - Priority Control

Step 3: Change the TAC Class of Synchr. Transactions by a Natural Program
The TAC-class of synchronous UTM transactions can be changed by a Natural program with the statements:

CALL 'NATTAC operandl [operand2][operand3 |
INPUT 'TACCLASS’

operandl Must contain the value "$#, where "S" denotes "synchronous" amd is an integer value (0 - 4)
that denotes the priority level of the transaction in subroutine NATTAC's table of transaction|codes
for synchronous TACs.

If "n" is O, the table of transaction codes is not used. The TAC to be used is passed explicitly
operand2when NATTAC is called.

n

If "n" is a value in the range 1 - 4, the priority level of the desired TAC is taken from the appropriate
keyword parameter TCLS1 - TCLS4 (for synchronous transactions) or TCLAL - TCLA4 (for
asynchronous transactions).

If the subroutine NATTAC detects an erroroperandl it returns immediately to the calling
program with an error code aperandl

EO1: The first two characters operandlwere neither "S=" nor "A=".

EO02: The third character operandlwas <0 or >4.

E03: No UTM TAC was defined for the specified priority level when the Natural/UTM application
was generated, which means that the corresponding keyword parameten @rAlC3_An) has the
value "-".

operand2 Optional. Must contain the UTM TAC for the desired TAC class if the third charactgecdndl
is "0".

operand3 Optional. Must contain the value "Y" if the current user’s subsequent dialogue is to be executed with
the UTM TAC defined iroperandlor operand2 If operand3s omitted when NATTAC is called,
or if operand3has some value other than "Y", the START transaction code for the current user is
used again with the first terminal output (standard functiompéfand3has the value "Y" when
NATTAC is called, further processing for the current user takes place with the UTM TAC spdcified
in operandl(implicit) or operand2(explicit).

The statement INPUT 'TACCLASS'’ does not perform any terminal I/O; its function is merely to control the
TACCLASS allocation.

Alternatively, a Natural program can call the Natural subprogram "NATTAC" with a CALLNAT statement. For
this, the INPUT 'NATTAC' statement is omitted; the operands are the same as for the CALL statement (see
above):

CALLNAT 'NATTAC' operandl [operand2][operand3]

This procedure can be used with synchronous as well as asynchronous transactions. NATTAC is contained in the
library SYSTEM.

Copyright © Software AG 2002 211

UTM TACCLASS Concept - Priority Control Natural under UTM - Part 4

Example 1:

A Natural program that allocates a UTM TAC explicitly to assign a new TAC class and then changes oyer to
the START UTM TAC.

* TACCLASS - EXAMPLE FOR A TACCLASS SWITCH
RESET CONTROL(A3) NEWTAC(A8) NR(N3)

REDEFINE CONTROL (ERRFLD(A1))

INPUT 'TEST FOR A TACCLASS SWITCH - NEW TAC: NAT1' IFELD(A1)
MOVE 'S=0' TO CONTROL /* SYNCHR. TAC, EXPLICIT --> Note 1

MOVE 'NAT1’ TO NEWTAC /* SET NEW TAC --> Note 2

CALL 'NATTAC' CONTROL NEWTAC /* INVOKE TAC SWITCH --> Note 3

IF ERRFLD = 'E’ DO /* ERROR CHECK --> Note 4

DISPLAY 'ERROR’ CONTROL 'FROM NATTAC'

TERMINATE

DOEND

INPUT 'TACCLASS' /* ACTIVATE NEW TAC --> Note 5

READ (50) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS --> Note 6
ADD 1 TO NR

WRITE NOTITLE NOHDR NR MAKE MODEL /* START TAC IS USED --> Note 7
LOOP

ON ERROR DISPLAY 'ERROR IN PROGRAM TACCLASS'

END

Note

1 The value 5=0" indicates that it is a synchronous transaction and that the TAC is passed explicitly in the
second parameter of tiRALL 'NATTAC, which means that the TAC table is not used.

The new TAC (NAT1) is set up for the call to NATTAC.
The change of TAC class is initialized by calling NATTAC.

An error check is performed after returning from subroutine NATTAC.

A "pseudo”"-MPUT and a "PEND PA" are executed with the new TAC.

The program is now running in the TAC class for NAT1.

N oo~ W N

When the first terminal output starts, the START UTM TAC takes effect again.

In this example, the AUTOMOBILE file is read using the UTM TAC NAT1. When the first terminal output
begins, the START UTM TAC (NAT) takes effect again.

Internal Processing Logic:When NATTAC is called, a flag is set in the UTM communication area
(Kommunikationsbereich, KB) indicating that a change of TACCLASS is pending.

The UTM TAC passed by the program is also stored in the user-specific communication area. The operation
INPUT 'TACCLASS'’ causes terminal output from Natural, which causes the UTM interface to issue an MPUT

and a PEND 'PA’ with the new UTM TAC (the message is received by the Natural UTM Interface itself). When

the message is received (in the new TAC class), the presence of the TACCLASS change flag causes the interface
to simulate an ETX/DU in its input area. Further processing runs in the new TAC class.

Depending upon the value of the operand in the previous call of NATTAC, the first message sent to the terminal
can cause an MPUT and a PEND 'PR’ with the user's START UTM TAC,; that is, a further TACCLASS change
may take place.

212 Copyright © Software AG 2002

Natural under UTM - Part 4 UTM TACCLASS Concept - Priority Control

Example 2:

A Natural program that allocates a UTM TAC explicitly to assign a new TAC class without changing oV
the START UTM TAC.

* TACCLAS1 - EXAMPLE FOR A TACCLASS SWITCH

RESET CONTROL(A3) NEWTAC(A8) SWOFF(A1)

INPUT 'TEST FOR A TACCLASS SWITCH - NEW TAC: NAT1' IFELD(A1)
MOVE 'S=0’ TO CONTROL /* SYNCHR. TAC, EXPLICIT

MOVE 'NAT1’ TO NEWTAC /* SET NEW TAC

MOVE 'Y’ TO SWOFF /* NO RESET TO START TAC

CALL 'NATTAC' CONTROL NEWTAC SWOFF /* INVOKE TAC SWITCH
INPUT 'TACCLASS' /* ACTIVATE NEW TAC

FETCH 'TACCLAS2’ /* NOW IN NEW TACCLASS

END

* TACCLAS?2 - THIS PROGRAM IS FETCHED FROM PROGRAM TACCLAS1
RESET NR(N3)

READ (25) AUTOMOBILES BY MAKE /* TACCLASS IS NAT1

ADD 1 TO NR

WRITE NOTITLE NOHDR NR MAKE MODEL HORSEPOWER YEAR
LOOP

FETCH 'MAINMENU’ /* TACCLASS = NAT1

END

In this example, processing is assigned to a new TAC class with TAC NAT1. Switching to the user's S
UTM TAC is avoided by the presence of the third parameter (SWOFF) in the call to NATTAC with valu

er to

TART
e "Y".

It is also possible to perform several TACCLASS changes within one Natural program.

Example 3:
A Natural program that performs two explicit and one implicit TACCLASS changsds.

*TACMULT - EXAMPLE FOR TWO TACCLASS SWITCHES IN ONE PROGRAM
RESET CONTROL(A3) NEWTAC(A8) SWOFF(A1) NR(N4)

INPUT 'TEST FOR 2 TACCLASS SWITCHES' IFELD(A1)

MOVE 'S=0’ TO CONTROL /* SYNCHR. TAC, EXPLICIT

MOVE 'NAT1’ TO NEWTAC /* SET NEW TAC

MOVE 'Y’ TO SWOFF /* NO RESET TO START TAC

CALL 'NATTAC’' CONTROL NEWTAC SWOFF /* INVOKE TAC SWITCH
INPUT 'TACCLASS' /* ACTIVATE NEW TAC

READ (50) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
ADD 1 TO NR

WRITE NR MAKE MODEL YEAR

LOOP

EJECT /* ACTIVATE NEW OUTPUT **xx

MOVE 'S=0’ TO CONTROL /* SYNCHR. TAC, EXPLICIT

MOVE 'NAT2' TO NEWTAC /* SET NEW TAC

CALL 'NATTAC’' CONTROL NEWTAC /* INVOKE TAC SWITCH
INPUT 'TACCLASS' /* ACTIVATE NEW TAC

READ (100) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
WRITE MAKE MODEL YEAR /* NOW START TAC IS USED

LOOP

ON ERROR DISPLAY 'ERROR IN PROGRAM TACMULT’

END

Copyright © Software AG 2002 213

UTM TACCLASS Concept - Priority Control Natural under UTM - Part 4

The UTM TAC NAT2 has not been considered in the preceding examples; it must be defined in KDCROOT and
KDCDEF.

If an explicit TACCLASS change is to take place after a WRITE, PRINT or DISPLAY statement, an EJECT
must be issued before assigning the new TAC. This operation performs an unconditional output to the terminal
before executing the INPUT "'TACCLASS'. Instead of the EJECT, the following statements can be used:

STACK TOP DATA A’
INPUT A(AL)

This sequence also performs an unconditional output to the terminal before executing the INPUT 'TACCLASS’

Example 4:

A Natural program that allocates a UTM TAC implicitly to assign a new TAC class and then changes oyer to
the START UTM TAC. This example uses the TAC table for synchronous transactions in the subroutine
NATTAC.

* TACIMP1 - EXAMPLE FOR AN IMPLICIT TACCLASS SWITCH
RESET CONTROL(A3) NR(N3)

REDEFINE CONTROL (ERRFLD(A1))

INPUT "'TEST FOR AN IMPLICIT TACCLASS SWITCH’ IFELD(A1)
MOVE 'S=1’ TO CONTROL /* USE 1ST TAC IN TABLE --> NOTE
CALL 'NATTAC’ CONTROL /* INVOKE TAC SWITCH

IF ERRFLD = E’ DO /* ERROR CHECK

DISPLAY 'ERROR’ CONTROL 'FROM NATTAC’

TERMINATE

DOEND

INPUT 'TACCLASS' /* ACTIVATE NEW TAC

READ (100) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
ADD 1 TO NR

WRITE NOTITLE NOHDR NR MAKE MODEL /* START TAC IS USED
LOOP

ON ERROR DISPLAY 'ERROR IN PROGRAM TACIMPY’

END

The value "S=1" indicates that it is a synchronous transaction and that the TAC is to be taken from the| first
entry in the TAC table. This is the TAC that was defined as the value of the operand of the keyword pgrameter
TCLS1 (default value: NAT1).

The third character of the first parameter in the CALL 'NATTAC' indicates which of the four keyword
parameters TCLS1 to TCLS4 applies.

214 Copyright © Software AG 2002

Natural under UTM - Part 4 UTM TACCLASS Concept - Priority Control

Example 5:

NATTAC, and processing continues with this TAC.

* TACIMP2 - EXAMPLE FOR AN IMPLICIT TACCLASS SWITCH
RESET CONTROL (A3) SWOFF(A1) NR(N3)

REDEFINE CONTROL (ERRFLD(A1))

MOVE 'S=4' TO CONTROL /* USE 4TH TAC IN TABLE --> NOTE
MOVE 'Y’ TO SWOFF /* NO RESET TO START TAC

CALL 'NATTAC' CONTROL SWOFF /* INVOKE TAC SWITCH

IF ERRFLD = 'E’ DO /* ERROR CHECK

DISPLAY 'ERROR’ CONTROL 'FROM NATTAC'

TERMINATE

DOEND

INPUT 'TACCLASS' /* ACTIVATE NEW TAC

READ (100) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
ADD 1 TO NR

WRITE NR MAKE MODEL YEAR

LOOP

ON ERROR DISPLAY 'ERROR IN PROGRAM TACIMP2’

END

The value "S=4" indicates that it is a synchronous transaction and that the TAC is to be taken from thej
entry in the TAC table. This is the TAC that was defined as the value of the operand of the keyword p3
TCLS4 (default value: NAT4).

The TAC NATA4 is not defined in the examples of KDCROOT and KDCDEF,; in practice, the user must
suitable definitions.

A Natural program that allocates a UTM TAC implicitly to assign a new TAC class but does not changg over to
the START UTM TAC. This example uses the TAC table for synchronous transactions in the subroutine

fourth
rameter

supply

Using the TAC table has the advantage that the UTM TAC does not have to be coded explicitly in the Natural
program. The Natural programs contain merely the relative priority "weights" of the transactions to be executed.
The system administrator can allocate and change the names of the UTM TACs without having to change the

Natural programs.

For testing Natural programs with TACCLASS change for synchronous transactions, please note the fo
To verify correct operation of the TACCLASS change, the Natural program can be tested without the
statement(s) "CALL 'NATTAC'operandl(operand? (operand3". If the INPUT 'TACCLASS' statement
produces only the output "'TACCLASS' on the terminal, the program is correct. The operand(s) for the c

llowing:

all to

NATTAC must be set correctly. The UTM processing terminates with error code KM01 whenever a UTM TAC

that is not defined in KDCROOT and KDCDEF is used.

Copyright © Software AG 2002 215

UTM TACCLASS Concept - Priority Control Natural under UTM - Part 4

Step 4: Allocation of TAC Classes for Asynchronous Transactions within one
Natural/UTM Application

The TAC class for asynchronous transactions within a Natural/UTM application can be changed with the
statement:

CALL 'NATTAC’ operandl [operand2]

operandl Must contain the value "A%, where "A" denotes "asynchronous" amd i5 an integer in the rang
from O to 4 that denotes the priority level of the transaction in subroutine NATTAC's table of
transaction codes for asynchronous TACs. The form of the operand is analogous to the fornj of the
operand for synchronous transactions.

11%

operandZ Optional. Contains the UTM TAC for the required TAC clagspérandlhas the value "A=0".

All UTM TACs for asynchronous transactions must begin with the character string which is defined as unique
identifier for asynchronous TACs in parameter ASYNTAC of macro NATUTM. Conversely, the UTM TACs for
synchronous transactions must not begin with this string.

Example 6:

A Natural program that performs initialization for asynchronous transaction processing, using the UTM| TAC
NATAS. This is the standard TAC for asynchronous transactions. See also the description of the keyword
parameteASYNTAC of macro NATUTM.

* STARTAS - EXAMPLE FOR ASYNCHRONOUS TRANSACTION WORKING
* WITHIN ONE APPLICATION - USING THE STANDARD TAC FORMAT LS=145
RESET PARM1(A144) PRDEST(A8) LTDEST(A8)

MOVE 'PRINTER1’ TO PRDEST

MOVE *INITID TO LTDEST

COMPRESS 'SENDER=" PRDEST ’,OUTDEST=' LTDEST ',
'MENU=F,STACK=(LOGON APPL1;READAUTO)’ INTO PARM1

LEAVING NO

CALL 'NATASYN'

SET CONTROL 'H’

WRITE NOTITLE NOHDR PARM1

INPUT '"ASYNTASK INVOKED - HOPEFULLY’ IFELD(A1)

END

216 Copyright © Software AG 2002

Natural under UTM - Part 4 UTM TACCLASS Concept - Priority Control

Example 7:

A Natural program that initializes asynchronous transaction processing and allocates the UTM TAC NATASL1
for assignment to another TAC class.

* STASTAC - EXAMPLE FOR ASYNCHRONOUS TRANSACTION WORKING
* WITHIN ONE APPLICATION

* AND SWITCH TO A NEW TACCLASS

FORMAT LS=145

RESET PARM1(A144) PRDEST(A8) LTDEST(A8) CONTROL(A3) NEWTAC(A8)
REDEFINE CONTROL (ERRFLD(A1))

MOVE 'PRINTER1’ TO PRDEST

MOVE *INIT-ID TO LTDEST

COMPRESS 'SENDER=' PRDEST ',OUTDEST=' LTDEST *,’
'"MENU=F,STACK=(LOGON APPL1;READAUTO)’ INTO PARM1
LEAVING NO

MOVE 'A=0' TO CONTROL /* ASYNCHR. TAC, EXPLICIT --> NOTE
MOVE 'NATAS1’ TO NEWTAC /* SET NEW TAC

CALL 'NATTAC’ CONTROL NEWTAC /* INVOKE TAC SWITCH

IF ERRFLD = 'E’ DO /* ERROR CHECK

DISPLAY 'ERROR’ CONTROL 'FROM NATTAC'

TERMINATE

DOEND

CALL 'NATASYN' /* INVOKE ASYNCHRONOUS TAC

SET CONTROL 'H’

WRITE NOTITLE NOHDR PARM1

INPUT '"ASYNTAC INVOKED - HOPEFULLY’ IFELD(A1)

END

The value "A=0" indicates that it is an asynchronous transaction and that the TAC is passed explicitly in the
second parameter of the CALL 'NATTAC’, which means that the TAC table is not used.

MOVE 'A=1’ TO CONTROL
CALL 'NATTAC’ CONTROL

The procedure for using the TAC table (see keyword parameters TCLAL - TCLA4 in the Kegtioord
Parameters of Macro NATUTMorresponds to the procedure for synchronous transactions.

An example of the program that is to be executed asynchronously (READAUTO):

* READAUTO - ASYNCHRONOUS Natural PROGRAM
READ (75) AUTOMOBILES BY MAKE

WRITE MAKE MODEL HORSEPOWER BODY-TYPE YEAR
LOOP

ON ERROR TERMINATE

TERMINATE

END

Copyright © Software AG 2002 217

UTM TACCLASS Switch Natural under UTM - Part 4

Example 7 (continued):

4 +
*I PTERM 9750 DEFINITION |
4 +

DEFAULT PTERM PRONAM=VR,PTYPE=T9750,TERMN=FE,CONNECT=N
PTERM DFDSS001,LTERM=DF97501
PTERM DFDSS002,LTERM=DF97502
PTERM DFDSS003,LTERM=DF97503

4 +
*I LTERM DEFINITION |
*y +

DEFAULT LTERM USAGE=D,STATUS=0ON,ANNOAMSG=Y,RESTART=YES
LTERM=DF97501
LTERM=DF97502
LTERM=DF97503

*y +
*I SFUNC DEFINITION |
*y +

SFUNC F1,RET=21Z
SFUNC F2,RET=22Z
SFUNC F3,RET=23Z
SFUNC F4,RET=24Z
SFUNC F5,RET=25Z
SFUNC K1,RET=26Z
SFUNC K2,RET=27Z
SFUNC K3,RET=28Z
SFUNC K4,RET=29Z
END

The desired UTM TAC must always be allocated in the Natural program that initializes the asynchronous
transaction processing (the use of the standard TAC for asynchronous transaction processing is an exception; see
the description of the keyword paramed&YNTAC in the macro NATUTM. The program that is to be

executed asynchronously then runs in the desired TAC class. Since each asynchronous Natural program must be
ended with the TERMINATE statement, the UTM DC transaction is also ended (PEND 'FI’) when the program
ends.

The program that initializes the asynchronous transaction processing always runs in a synchronous transaction.
Thus it is feasible to perform a change of TACCLASS using the procedure for synchronous transactions. This
change can take place before allocating the asynchronous TACs or after initializing the asynchronous transaction
(INPUT statement).

Step 5: Assign the TAC Class for Asynchronous Transactions between two
Natural/UTM Applications

It is not necessary to call NATTAC for asynchronous transaction processing between two Natural/UTM
applications. The necessary UTM TAC is allocated explicitly in the Natural program; séswatehironous
Transaction Processing

UTM TACCLASS Switch

The following figure illustrates the logic of a UTM TACCLASS switch for synchronous transactions:

218 Copyright © Software AG 2002

Natural under UTM - Part 4

EMND

Message
SCreen Output
UTH Task B uTh Task
TAC Class MAT1 TAC Class MAT2
IMIT {mc=HATT) Messaie [T (mebIAT2
MGET —{TAcoLess H-MGET
. IF FLAG=ON DO
- SET ETXIDU
PESET FLAG
3 DOE D
(WP LT — = @
PEND PAMATZ) MPLUT |
@ | | PEMD RE NAT2
3 fessage
HATURAL ETeOd
EXECPROGRAM
: . SETFLAG
CALL MATTAC : SETFLAG
INPUT TACCLASS
FEAD AUTOMOBILES.., < 4
DISF LAY...

&

Copyright © Software AG 2002

UTM TACCLASS Switch

219

Generating a Natural/lUTM Application Natural under UTM - Part 4

Generating a Natural/UTM Application

The following programs and macros must be assembled to generate a Natural/UTM application:

KDCROOT | UTM interface module.

NATUTM | Front-end part of the Natural UTM Interface.

BS2STUB | Common memory pool definition.

FREXIT Format exit module (only if the default parameter is to be changed).

NURENT | Reentrant part of the Natural UTM Interface.

NTPRM Natural parameter module.

NTSWPRM | Swap pool parameter module.

This list does not include the utility programs of the Natural UTM Interface.

The following example shows how to generate an application.

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATP

ROOT KDCNATP

MAX APPLINAME=NATUTM,APPLIMODE=S,KDCFILE=(NATUTM,S)
MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=5120

MAX TASKS=10,ASYNTASKS=3

MAX GSSBS=0,KSSBS=1

MAX LOGACKWAIT=600,RESWAIT=(600,1200), TERMWAIT=(1800,0)
MAX PGPOOL=(88,80,95),CONRTIME=2,RECBUF=(400,2048)

MAX DPUTLIMIT1=(001,23,59,59),DPUTLIMIT2=(001,23,59,59)

MAX LPUTLTH=0

*+ +

*| EXIT DEFINITIONS: STARTUP (CSECT NAME OF NATUTM) |

*| SHUTDOWN (CSECT NAME OF NATUTM) |

*| FORMAT (FREXIT) |

*+ +

EXIT PROGRAM=NUSTART,USAGE=START

EXIT PROGRAM=NUSTART,USAGE=SHUT

EXIT PROGRAM=FREXIT,USAGE=FORMAT

*+ +
IPROGRAMDEFINITIONSI
*+ +

DEFAULT PROGRAM COMP=ASSEMB

PROGRAM NUSTART

PROGRAM FREXIT

PROGRAM NUERROR

PROGRAM AUTOTAC

PROGRAM KDCADM,COMP=SPL4

*+ +

*I SYNCHRONOUS TACS FOR Natural/UTM |

*I THE ERROR EXIT 'NUERROR’ MUST BE DEFINED FOR EACH TAC |
*+ +

DEFAULT TAC TYPE=D,PROGRAM=NUSTART,EXIT=NUERROR,CALL=BOTH
TAC NAT,ADMIN=NO, TIME=0

TAC AUTOCONN

*+ +

*| BADTACS DEFINITION FOR Natural/UTM |

*I THE ERROR EXIT 'NUERROR’ MUST BE DEFINED FOR EACH TAC |

*+ +
TAC KDCBADTC,CALL=FIRST,PROGRAM=AUTOTAC,EXIT=NUERROR,TYPE=D
*+ +

220 Copyright © Software AG 2002

Natural under UTM - Part 4 Generating the Natural UTM Interface

* ASYNCHRONOUS TACS FOR Natural/UTM |

* THE ERROR EXIT 'NUERROR' MUST BE DEFINED FOR EACH TAC |
*1 +

DEFAULT TAC TYPE=A,PROGRAM=NUSTART EXIT=NUERROR,CALL=FIRST
TAC NATAS

TAC NATSY

*1 +

* UTM ADMINISTRATOR TACS |

*1 +

DEFAULT TAC PROGRAM=KDCADM,ADMIN=Y,TYPE=D,CALL=BOTH
TAC KDCTAC

TAC KDCLOG

TAC KDCSHUT

TAC KDCAPPL

TAC KDCINF

TAC KDCUSER

TAC KDCSEND

TAC KDCDIAG

TAC KDCLTERM

TAC KDCPTERM

TAC KDCSWTCH

TAC KDCHELP

See also the Siemens documentation "UTM Generierung und Administration" (UTM Generation and
Administration).

Generating the Natural UTM Interface

1. The operands of the keyword parameters of macro NATUTM must be set to the correct values as required; the
macro NATUTM must then be assembled.

Example of NATUTM Macro Call:

NUSTART NATUTM APPLNAM=NATUTM, --> Note 1 -
NUCNAME=NATs , --> Note 2 -

LINK=TACSWTCH --> Note 3 -

PARMOD=24, --> Note 4 -

ROLLACC=UPAM-AS, --> Note 5 -

ROLLTSZ=180, --> Note 6 -
TERMTAB=(SWP,TERMNAME), --> Note 7 -
UMODE=(S,G) --> Note 8

Copyright © Software AG 2002 221

Linking the Non-Reentrant Front-End Part and the Reentrant Part Natural under UTM - Part 4

Note

1 The CSECT name of the front-end part of the Natural UTM Interface is specified as NUSTART (flefault
value). The name of the Natural/UTM application is specified as NATUTM.

2 The name of the link-edited reentrant part of the Natural/UTM application is specified asI\Nih is
also the name of the common memory pool into which the reentrant part will be loaded.

3 A TABLE macro call is to be executed for program TACSWTCH. This means that this program must be
linked in the front-end part of the Natural/lUTM application.

4 The Natural/UTM application runs in 24-bit addressing mode.

5 The access method to the Natural roll file is specified as UPAM with P1-Eventing for asynchronqus
writes.

6 The maximum thread size of the Natural roll file is specified as 180 KB.

7 The internal terminal control table is allocated in the Natural swap pool; the logical terminal nam¢ will
be used for identifying the entries in the terminal control table.

8 The user dialogue with Natural is to take place in "single" mode; that is, one terminal can initiate jone
Natural session. Messages at restart, logoff and also free-running messages (asynchronous progessing)
are to be output in German.

The operands of the other keyword parameters of macro NATUTM are not specified since the default values
apply.

2. Assemble the macro NURENT (the reentrant part of the Natural UTM Interface). In this example, no changes
are required to the keyword parameters. The CSECT name of the assembled macro NURENT is "NURENT".

3. Assemble the macro BS2STUB with the common memory pool definitions specified in macro ADDON.

4. Assemble the Natural parameter module. The sample NTPRM macro call must be adapted to suit the local
environment.

5. Assemble the swap pool parameter module (macro NTSWPRM).

Linking the Non-Reentrant Front-End Part and the Reentrant Part

The front-end part and the reentrant part of the Natural UTM application can be linked using the JCL supplied.
This JCL should be checked and modified as required to suit the local environment (library names, etc.) before
being used. Special features in the JCL are indicated by REMARK statements.

Setting Up the Natural Roll File

The size of the Natural swap file must be calculated and the file must be allocated with link name PAMNAT.

The Start Job for a Natural UTM Application

JCL examples for starting the Natural UTM application are supplied. Before use, the JCL should be checked and
modified as required (UTM startup parameters, dataset nhames, etc.).

222 Copyright © Software AG 2002

Natural under UTM - Part 4 Optimizing Natural UTM Applications

Optimizing Natural UTM Applications

The following points should be considered if the performance of a Natural UTM application is unsatisfactory:

Can poor performance be localized to one or more particular Natural programs? If so, optimize the
program(s) by redesigning. These programs can be identified by using the Natural monitor in library
SYSTP.
Is the swap I/O rate to high? By using the program MENU in library SYSTP you can check how efficiently
the Natural swap pool is being used. The statistical information provided about the swap pool also helps to
answer the following questions:

O Is the number of logical swap pools and their slot lengths appropriate? Function SW in the main menu

of SYSTP offers various possibilities for controlling the Natural swap pool optimization.
O Has the Natural swap pool been defined large enough? Increasing the size of the swap pool reduces the
swap /O rate considerably.

Is the Natural buffer pool too small? Information about the size and occupancy of the Natural buffer pool
can be obtained with the Natural util®Y SBPM which is described in the section Debugging and
Monitoring.
Has the number of UTM tasks been chosen correctly? This is strongly dependent upon the path lengths of
the individual transactions and the number of terminals connected.
Is it possible that particular transactions (so-called "long jobs") are loading the available UTM tasks so
heavily that the shorter transactions are suffering from poor throughput as a result? If this is the case, the
UTM TACCLASS concept and/or the asynchronous transaction processing facilities should be used.
Does the Natural Roll File consist of too many extents on one disk drive (physical chained I/O is not
possible over extent boundaries), or is the Natural Roll File on a very heavily used disk drive? If possible,
allocate the Natural Roll File to one or more lightly-used disk drives, with only one extent on each.

These suggestions should be considered in the light of the total system environment, including such factors as
available storage, storage paging rates, disk and channel I/O traffic loads, etc.

Copyright © Software AG 2002 223

Several Applications with one Common Natural Natural under UTM - Part 4

Several Applications with one Common Natural

See alsoNatural Shared Nucleus under BS2000/Q8ithe Natural Operations for Mainframes
documentation).

To save storage space, it can be desirable for several Natural UTM applications to share a common Natural
reentrant part in a common memory pool in the class 6 storage. The following steps must be taken when
generating the Natural UTM application:

® The global Natural load pool must be defined with the keyword parameters of module CMPSTART, for
example:

NAME=NATSHARE,POSI=ABOVE,ADDR=250,PFIX=YES,SIZE=2MB
LIBR=NAT vrs .USER.MOD

For more information, se@MPSTART Prograntin the Natural Operations for Mainframes documentation).
Notes:

e NATSHARE is the name of the linked Natural reentrant part. It is also the name of the common memory
pool.

® The operand of parameter PFIX must be YES.

The operand of parameter ADDR must be defined.

® The operand of parameter LIBR must contain the name of the module library from which the Natural
reentrant part is to be loaded.

® The reentrant part of the Natural UTM driver (the assembled module of macro NURENT) must be linked to
the front-end part of several applications.

® The operand of keyword parameter NUCNAME must be defined for each assembly of macro NATUTM as
the same (in this example: NUCNAME=NATSHARE).

® The definition of the Natural load pool in the ADDON macro for the assembly of macro BS2STUB must be
the same for all applications, for example:

STUBSHAR BS2STUB PARMOD=31,PROGMOD=ANY
ADDON NAME=NATSHARE,STAT=GLOBAL

For more information, se&DDON Macroin theNatural Operations for Mainframes documentation

224 Copyright © Software AG 2002

Natural under UTM - Part 4 Entering and Defining Dynamic Natural Parameters

Lists of Shared and Application-Specific Parameter Modules

If application-specific Natural parameter modules are to be used, they must be linked to the front-end parts of the
Natural UTM applications, which means that there is a parameter module in each front-end part. This also
applies to the swap pool parameter module.

Only the addresses defined in the CSTATIC list of the parameter module of the front-end part are considered; if
any of these addresses cannot be resolved in the front-end part (because they refer to the reentrant part), Natural
tries to resolve these addresses with the CSTATIC list in the parameter module of the reentrant part. Thus it is
allowed to have unresolved CSTATIC addresses when linking the front-end part, provided they can be resolved
by the reentrant part.

As the CSTATIC list of the reentrant part is only used for those addresses which cannot be resolved by the
front-end partall CSTATIC entries to be used (whether they are in the front-end part or in the reentrant part)
must be defined in the CSTATIC list of the parameter module of the front-end part.

Entering and Defining Dynamic Natural Parameters

The following possibilities exist for entering and defining the Natural dynamic parameters:

® entering the dynamic parameters together with the UTM TAC when logging on to the application;

® passing the dynamic parameters from another UTM patrtial program using "MPUT" and "PEND
PR(OGRAM)";

e defining the dynamic parameters in the operand of the keyword parameter MSPARL. They then apply to all
users of this application and cannot be changed.

UTM User Restart

When a Natural session is started, any Natural dynamic parameters defined are saved up to a length which is
defined in the operand of keyword parameter SVDYPRM in macro NATUTM. In case of a user restart situation,
these saved data are automatically reused when the Natural session is started again. This also applies when the
start of the Natural session results from a PEND PR(OGRAM) of another UTM partial program.

See alsd@slobal (Restartable) Swap PanltheNatural Operations for Mainframes documentation

Copyright © Software AG 2002 225

Adabas Priority Control Natural under UTM - Part 4

Adabas Priority Control

Adabas priority control has no connection with the priority control of BS2000/0SD. Unlike with BS2000/0SD
priority control, for Adabas a higher priority value means higher priority. If several requests are in the Adabas
command queue at the same time, the request with the highest priority is processed first by Adabas and "1" is
added to the priority of the other requests that are in the command queue at this time.

Under certain conditions, it may be useful to assign to the Adabas task a lower BS2000/0OSD priority than to the
UTM tasks.

The following keyword parameters in macro NATUTM can be used to control Adabas priority control for UTM
transactions:

ADAPRI | Activation of Adabas priority control for UTM transactions.

APRISTD | Assignment of standard Adabas priority for all UTM transactions to which no priority is assigjned
individually.

TCLSn | Assignment of Adabas priority for individual synchronous UTM transactions.

TCLA N | Assignment of Adabas priority for individual asynchronous UTM transactions.

If Adabas priority control is activated for UTM transactions (parameter ADAPRI=YES), it is also in effect for
non-Natural programs which access Adabas via the subroutine ADACALL; see the keyword parameter
ADACALL in the macro NATUTM.

By defining different Adabas priorities for different transactions with the above parameters, and at the same time
using the UTM TACCLASS concept, it is possible to set up a very sophisticated system of priority control.
However, when you explicitly assign Adabas priorities to UTM transaction, you should take into consideration
the standard priorities Adabas assigns to other processes (for example, TIAM or batch processing).

226 Copyright © Software AG 2002

	Cover Page
	page 2

	Table of Contents
	TP Monitor Interfaces - Overview
	Using Natural with TP Monitors
	TP Monitor Systems Supported by Natural
	Using Natural in a Teleprocessing Environment
	Embedding Natural in a TP Environment
	Calling Natural Transactions under a TP Monitor
	Terminating a Natural Session
	Example Programs

	Natural under CICS - Overview
	
	
	References to CICS Tables
	See also:

	Natural CICS Interface Functionality
	
	
	Related Documents

	NCISTART - Natural CICS Interface
	Natural Nucleus under CICS
	System Control under CICS
	OSCOR/GETVIS - Natural Components in CICS Dynamic or Operating System Storage
	
	Scenario 1: Single CICS Region
	Scenario 2: Single OS/390 With Single CICS Region, Single Roll Server
	Scenario 3: Single OS/390 With Multiple CICS Regions, Single Roll Server/Authorized Services Manager
	Scenario 4: Multiple OS/390 With Multiple CICS Regions, Multiple Roll Servers/Authorized Services Managers
	Parameter Settings Required for the Above Scenarios

	Natural Storage Threads under CICS
	Natural Roll Facilities under CICS
	CICS Roll Facilities
	Natural Local Buffer Pool under CICS
	Natural Swap Pool under CICS
	NCITIDEX Terminal ID Exit Interface
	NCIUIDEX - User ID Exit Interface
	NATUEX1 - User Exit

	Natural CICS Interface Debugging Facilities
	Using the TPF Parameter
	Using Asynchronous Natural Sessions

	Natural CICS Generation Parameters
	
	
	References to CICS Tables
	Related Documents

	NCISCPCB Generation Parameters
	NCMDIR Macro Parameters
	CICSPLX - Switching of CICS Application Region
	ROLLFLS - Maximum Number of VSAM Roll Files
	ROLLSRV - Roll Server Rolling
	SWPSIZE - Swap Pool Size
	TSKEY - Prefixes for Natural CICS Temporary Storage Key
	TSRECSZ - Record Sizes for Main and Auxiliary Temporary Storage
	USERS - Session Information Record

	NCMTGD Macro Parameters
	PFKEY - PF/PA Keys for Thread Group
	PRIMERF - Natural CICS Primary Roll Facility
	THRDSZE - Thread Size
	THREADS - Number of Threads or Tasks Per Thread Group
	TRAN - Transaction IDs for Thread Group
	TYPE - Thread Type for Group
	XTRAN - Hexadecimal Transaction IDs for Thread Group

	NTSWPRM Macro Parameters
	NCIPAPM Generation Parameters
	NCMPRM Macro Parameters
	ASA - Use ASA Control Characters For Natural Message Logging
	BACKEND - Back-End Program Invocation Control
	BACKOUT - Backout Transaction in the Case of Unrecoverable Abends
	CHAP - Change Task's Dispatching Priority
	COMACAL - CICS COMMAREA Usage for Subroutine Calls
	COMAMSG - CICS COMMAREA Usage for Termination Messages
	COMARET - CICS COMMAREA Usage for Task Control
	CONSOLE - CICS Terminal ID for the Operator Console
	FLDLEN - Supply Field Length List On External Program Call
	LOGDEST - Natural CICS Logging Destination
	MSGDEST - Destination ID for Natural Error Message Logging
	MSGTRAN - Internal Message Switching Transaction ID
	PREFIX - Common Prefix for Programs and Files
	PSTRNID - Control of *INIT-PROGRAM Variable Setting
	RESENDC - Check for Screen Re-sending after Subroutine Calls
	RESENDS - Screen Re-send Check after Pseudo-Conversational Session Resume
	RJEDEST - Name of the Natural CICS Submit Destination
	RJEUSER - Submit to POWER User ID Setting
	SIGNON - SIGNON Behavior
	Notes:

	SLCALL - Standard Linkage Call
	SNDLAST - LAST Option Usage for EXEC CICS SEND Commands
	TERMVAR - Terminal ID Variable for Natural Work Files
	TRANCHK - Check Input Map for Transaction ID
	UCTRAN - Lower/Mixed Case Support in Natural
	WAITIME - Wait Time Interval for a Local System Recovery Task

	NCISCPRI Warnings and Error Messages
	
	
	References to CICS Tables
	Related Documents

	NCISCPRI Warnings and Error Messages
	
	mmmmmmmm REQUEST FAILURE AT OFFSET xxxxx, RTC=rrrr, ERROR=eeee, FTNCD=ffff †E‡
	RECORD SIZE IS LESS THAN OPTIMUM OF CI-SIZE - 7 †W‡
	ACCESSED FILE IS NOT AN RRDS FILE †E‡
	RECORD SIZE IS LESS THAN ALLOWED MINIMUM OF 4089 †E‡
	PARAMETER INPUT OBSOLETE AND THEREFORE IGNORED †W‡

	Customizing VSAM RRDS Roll Files
	
	
	References to CICS Tables
	Related Documents

	Increasing the Number of VSAM RRDS Roll Files
	Decreasing the Number of VSAM RRDS Roll Files
	Changing the Characteristics of the VSAM RRDS Roll Files

	Natural in CICS MRO Environments
	
	
	References to CICS Tables
	Related Documents

	NCIPARM Parameter COMARET Set to YES
	NCIPARM Parameter COMARET Set to NO

	CICS Node Error Program Considerations for Natural
	Normal Situation
	Situations Not under Control of Natural CICS Interface
	Recovery Mechanisms
	Special Considerations
	Example Dummy Program

	CICS 3270 Bridge Support
	Default Support of CICS 3270 Bridge
	Full CICS 3270 Bridge Support
	NCIXFATU - NCI Source Module
	Profile Parameter DSC=OFF Recommended

	Special Natural CICS Functionality
	Calling Non-Natural Programs
	Calling Non-Natural Programs via Standard Linkage Conventions
	Calling Non-Natural Programs with Parameter Values in a COMMAREA

	Dummy Screen I/Os with Natural under CICS
	NCISTART - Natural CICS Nucleus
	Sample Programs
	In MRO Environments

	Natural CICS Sample Programs
	Sample Programs in Natural CICS Source Library
	XNCI3GC1 - Subprogram Call
	XNCIFRNX - Front-End Program
	XNCIFRNL - Front-End Program
	XNCIFRNS - Front-End Program
	XNCIFXC2 - Front-End Program
	XNCIFRNP - Initialization Program
	XNCIBACK - Termination Data Dump
	XNCIRDC1 - Exit for SYSRDC
	XNCIUIDX - User Exit
	XNCIUCTR - U/L Case Switch
	XNCINEP1 - Node Error Program
	XNCINEP2 - Node Error Program
	XNCITIDX - User Exit

	Sample Programs for Use with VSE/ESA

	Invoking Natural from User Programs
	Commands for Activating a Natural Session
	Using EXEC CICS XCTL or EXEC CICS LINK
	Using EXEC CICS START
	Sample Programs
	Using the External Subroutine CMTASK

	Front-End Parameters
	Front-End Invoked via LINK
	In CICSplex Environments

	Front-End Invoked via START
	Front-End Invoked via XCTL
	Invoking Front-End Program as Back-End

	Asynchronous Natural Processing under CICS
	Asynchronous Natural Processing
	Asynchronous Natural Sessions under CICS
	Testing and Debugging

	Logging Natural Sessions under CICS
	Logging Facility
	
	Special Considerations

	Natural Log File Definition
	Natural Log Records
	Natural CICS System Restart Record
	Natural Session Termination Record

	Natural CICS Performance Considerations
	Enironment-Specific Considerations
	Choosing the Roll Facility
	Control Interval
	VSAM Roll Files versus CICS Temporary Storage
	Using CICS Auxiliary Temporary Storage
	Using CICS Main Temporary Storage
	Using VSAM RRDS Roll Files
	In MRO Environments
	Separate LSR Pool for Natural

	Using the Natural Swap Pool under CICS

	Shared Storage Threads versus GETMAINed Threads
	Storage Usage
	Controlling Storage Usage
	Swapping/Rolling
	Considerations for CICS 4.1 and above
	Conclusion

	CICS Parameter Settings
	Line Compression Systems
	Pseudo-Conversational versus Conversational Transactions
	Natural and Adabas
	CICS Monitoring Products

	Natural Work Files under CICS
	Customizing Work File Usage
	CICS Temporary Storage Work Files
	In CICSplex Environment
	System Queues

	CICS Transient Data Work Files

	Natural under Com-plete
	Use of the Abend Exits
	Storage Usage
	Support of Back-end Programs
	Com-plete Support in Natural Batch Runs
	Support of Asynchronous Natural Processing
	Invoking Natural from User Programs
	Storage Thread Key Handling
	Support of User Exit Handling during Session Initialization

	Natural under IMS/TM - Overview
	Natural under IMS/TM - Environments
	IMS/TM Interface Overview
	IMS/TM Environments
	Natural in a Message Processing Region †MPP Environment‡
	Dialog-Oriented Natural
	Message-Oriented Natural

	Natural in a Batch Message Processing Region †BMP Environment‡
	Natural in an Off-line DL/I Batch Region

	Dialog-Oriented Environments
	Special Considerations for a Conversational Environment
	Special Considerations for a Non-Conversational Environment
	Special Considerations for an MSC Environment

	Message-Oriented Environment
	Introduction to the Message-Oriented Environment
	Operation of the Message-Oriented Environment
	Bootstrap Module NIIBOOT
	DRIVERN | ENVTNAM | DYNPARM

	Batch Message Processing Environment
	
	Using Both the CMPRMIN Dataset and the CONTROL File to Pass Dynamic Natural Parameters
	Working without CONTROL File

	Support of the Natural WRITE †n‡ Statement
	
	AM | DEST | BLKSIZE | DRIVER | NAME | FORMS | DISP | COPIES | CLASS | PRTY

	Hints Concerning NTPRINT and CLOSE PRINTER
	NTPRINT Settings
	Usage of CLOSE PRINTER or DEFINE PRINTER

	Natural under IMS/TM - Components
	Front-End Module
	Environment-Dependent Interfaces †Drivers‡
	Natural Parameter Module NATPARM
	Work File Handling Module NATWKFO
	Modules from Other Natural Products

	Natural IMS Interface Module NIIINTFM
	Natural IMS Nucleus
	Natural IMS Parameter Module NIIPARM
	Transaction Code Table NIITRTAB
	Message Text Module NIIMSGT
	DL/I Language Interface ASMTDLI

	Physical Input Edit Routine
	Roll File and Roll Server
	Using Roll Files
	Using the Roll Server

	Shared Natural Nucleus
	Natural Buffer Pool
	Adabas Interface
	Preload List

	Natural under IMS/TM - Configuration Macros
	NIMDRIV Macro Parameters
	NIMPARM Macro Parameters
	A
	B - C
	E - H
	L - M
	P
	
	Drivers for SCS Printers
	Drivers for Non-SCS Printers
	Drivers for JES API

	R - S
	T - U
	NIMTRNTG Macro Parameters
	
	HCPCB | MSGPCB | MSPCB | NIIPENT | NRASTART | PSBNAME | TRANCODE | TYPE | WRKPCBS
	Examples

	NIMLPCB Macro Parameters
	
	NAME | NUM

	NIMMSGT Macro Parameters
	NIMPIXT Macro Parameters
	
	NIA | PIXTE | SIPSE | SPATID | SVC | SVCE | WTO | USER

	Natural under IMS/TM - Service Programs
	Introduction to the Natural IMS/TM Interface Service Programs
	Purpose of Natural IMS/TM Interface Service Programs
	Location of Service Programs
	Common Return Codes
	Error Handling

	Description of the Natural IMS/TM Interface Service Programs
	NIIBRCST - Send Passed Message to Terminal
	
	
	Terminal_name | Message | Message_length | MOD_name | Return_code

	NIICMD - Pass IMS Command to IMS
	
	
	Command | Command_length | Reply_area | Reply_area_length | Reply_length | Status_code | Return_code

	NIIDEFT - Prepare Deferred Switch to Natural Transaction Code
	
	
	Transaction_code | Return_code

	NIIDEFTX - Prepare Deferred Switch to Non-Natural Transaction Code
	
	
	Transaction_code | Transaction_type | Suspend_flag | MOD_name | Message | Message_length | Return_code

	NIIDIRT - Prepare Direct Switch to Natural Transaction Code
	
	
	Transaction_code | Return_code

	NIIDIRTX - Prepare Direct Switch to Transaction Code
	
	
	Transaction_code | Transaction_type | Suspend_flag | Message | Message_length | Return_code

	NIIEMOD - Modify Setting of Module Output Descriptor
	
	
	MOD_name | Return_code

	NIIGCMD - Retrieve Next Reply Segment of Previous IMS/TM Command
	
	
	Reply_area | Reply_area_length | Reply_length | Status_code | Return_code

	NIIGMSG - Retrieve First Segment Next Message
	
	
	Message_area | Message_area_length | Return_code

	NIIGSEG - Retrieve Next Segment of Input Message
	
	
	Message_area | Message_area_length | Return_code

	NIIGSPA - Retrieve Data from SPA Beginning
	
	
	Offset | Length | Area | Return_code

	NIIIMSIN - Retrieve IMS Environment Info
	
	
	Reply_area | Reply_area_length | Return_code

	NIIISRTF - Create Multi-Segment Messages
	
	
	Destination | Message | Message_length | Return_code

	NIIISRTM - Insert Message Segment into Message Queue
	
	
	Message | Message_length | Return_code

	NIIPCBAD - Return PSB Name and PCB Address
	
	
	PSB_name | Logical_PCB_name | PCB_address | Return_code

	NIIPCOM - Move Data to Reply Area
	
	
	Offset | Data_area | Length | Return_code

	NIIPMSG - Send Message
	
	
	Message | Message_length | MOD_name | Return_code

	NIIPSBAD - Return PSB Address
	
	
	PSB_address | Return_code

	NIIPSPA - Replace Data in SPA
	
	
	Offset | Length | Data_area | Return_code

	NIIPURG - Issue PURG Call
	
	
	Return_code

	NIIRETRM - Move Data into Message Area
	
	
	Offset | Length | Message_area | Return_code

	NIISASD - Modify SENDER and OUTDEST Settings
	
	
	Sender | Outdest | Return_code

	NIIU3962 - Terminate Session
	
	
	Return_code

	Natural under IMS/TM - Service Modules
	Purpose of Service Modules
	Service Module Descriptions
	CMCMMND - Issue IMS Operator Commands
	CMDEFSW - Deferred Transaction Switch to Natural Transaction Code
	CMDEFSWX - Deferred Transaction Switch to Non-Natural Transaction Code
	CMDIRNMX - Switch to Another Conversational Transaction w/o Message
	CMDIRNMZ - Switch to Another Conversational Transaction w. Message
	CMDIRSWX - Switch to Another Conversational Transaction w. Message
	CMDIRSWZ - Switch to Another Conversational Transaction w. Message
	CMDISPCB - Get PCB Content
	CMEMOD - Modify MOD Name Dynamically
	CMGETMSG - Read Next Message
	CMGETSEG - Read Next Segment
	CMGETSPA - Transfer Data from SPA
	CMIMSID - Get MVS Subsystem ID
	CMIMSINF - System Environment Info
	CMPCBADR - Return PCB Address
	CMPRNTR - Change Default Hardcopy Destination
	CMPUTMSG - Insert Output Message into IO-PCB
	CMPUTSPA - Move Data into SPA
	CMQTRAN - Content of Current Transaction Code Table Entry
	CMQUEUE - Insert Message into First Alternate PCB
	CMQUEUEX - Complete Control over Message Content
	CMSNFPRT - Set Logical Device Name
	CMSVC13D - Terminate Natural Session
	CMTRNSET - Insert SPA via Alternate PCB
	NIIDDEFS - Deferred Switch to Foreign Transaction
	NIIDPURG - Insert Multi-Segment Message
	NIIDQUMS - Create Multi-Segment Message
	NIIDSETT - Get Foreign Transaction Code

	Natural under IMS/TM - User Exits
	NIIXACCT
	NIIXSTAR
	NIIXMSSP
	NIIXSSTA
	NIIXISRM
	NIIXISRT
	NIIXTGU0
	NIIXJESA
	NIIXPRT0
	NIIXRFNU
	NIIXTGN0

	Natural under IMS/TM - Special Functions
	Prerequisites
	Accounting
	Monitoring
	Broadcasting
	Multi-Session Feature
	Functionality of the Multi-Session Feature
	Session ID
	Multi-Session Database

	Server Environment
	Call Interface NIIBOOTS
	ON ERROR Routine Recommended
	Return Codes
	Sample Programs

	Natural under IMS/TM - Recovery Handling
	System and User Abends
	Non-Recoverable Errors
	Recoverable Errors

	Natural under TIAM
	Structure of the Natural TIAM Interface
	Common Memory Pools under TIAM
	Natural Shared Nucleus

	Natural under TSO
	General Information about the Natural TSO Interface
	Natural TSO Datasets
	Issuing TSO Commands from Natural

	Natural under UTM - Overview
	
	
	Notation vrs or vr

	Natural under UTM - Part 1
	Structure of the Natural UTM Interface
	Formatting Messages - FREXIT
	Embedding Natural in a UTM Application
	Common Memory Pools
	Natural Buffer Pool under UTM
	Natural Swap Pool under UTM
	Loading Natural in a Common Memory Pool - Natural Load Pool
	Natural Monitor Pool

	Other Storage Areas
	Natural User Thread
	Natural User Work Area Asynchronous Write Buffer
	Natural User Area for Asynchronous Transactions
	Natural Roll File - LINK=PAMNAT

	Generating KDCROOT
	Defining the UTM Resources - KDCDEF
	Special Definition for Type 9755/9756 Terminals
	Treatment of K Keys and F Keys
	Support of IBM Type 3270 Terminals
	Support of TTY Terminals

	UTM DC-Transaction Exit Routine NUERROR
	UTM Startup Function
	UTM Shutdown Function

	Natural under UTM - Macro Keyword Parameters
	NATUTM Macro Keyword Parameters
	ADACALL - Access to Adabas
	ADACOM - Adabas Link Module Usage
	ADAPRI - Activation of Adabas Priority Control for UTM Application
	ADAUTM - Synchronization of Async UTM/Adabas Transactions
	AFPNAME - Name of Common Memory Pool
	APPLNAM - Name of Natural UTM Application
	APRISTD - Adabas Priority for Standard UTM TAC
	ASAPPLI - Name of Logical UTM Communications Partner
	ASYNTAC - UTM Transaction Code for Asynchronous UTM Task or Application
	BADTAC - Activation of UTM Function "BADTACS"
	BTX - Support of BTX System
	CDYNAM - Maximum Number of Programs to be Dynamically Loaded
	CLRKEY - Activation/Deactivation of CLEAR Key
	CURPRO - Cursor Positioning to Protected Field
	ICONTRL - UTM Input Exit for Messages in Minus Format
	INITPRG - Value for Natural Variable *INIT-PROGRAM
	KB - Pass KB Address as First Parameter
	KBSAVE - Saving of UTM KB via SPUT
	KBUSEXT - Length of UTM KB User Extension
	LFH - Use of Adabas LFH
	LINK - Programs and Modules Called from Natural
	LINK2/LINK3/LINK4 - Extensions of Keyword Parameter LINK
	LOFFMAP - Format Name for Logoff Message
	NATMON - Automatic Activation of Natural Monitor during Application Startup
	NUAADDR - Natural User Thread Address
	NUCNAME - Name of Bounded Reentrant Natural Module
	PARMOD - Generation of Front-End and Reentrant Parts
	PENDPR - Define UTM TAC for "PEND PR"
	PFK - Function Key Modes
	PRKEY - UTM Return Code for Function Key
	REFRKEY - Definition of UTM Function Key
	ROLLACC - Access Method for Natural Roll File
	Prerequisites for ROLLACC=FASTPAM

	ROLLTSZ - Maximum Roll Thread Size
	RSTCNT - Control of Restart Situations
	RSTWARM - Control of Restart Situations
	SCRNOPT - Terminal Types with Deactivated Natural Screen Optimization
	SHUTALL - Name of User Exit
	SHUTLST - Name of User Exit
	SPOOL - Automatic Start and Termination of Printer Task
	Using NATSPOOL
	Using REPRO-2000 Remote Spooling System
	Using RMSPOOL User Exit

	STRTALL - Name of User Exit for All UTM Tasks
	STRTFST - Name of User Exit for First UTM Task
	SVDYPRM - Save Area Length for Dynamic Natural Parameters
	SWAMODE - Switching from 31 to 24-Bit Address Mode
	SWDPAGE - Pageability of Swap Pool Main Directory
	SWPUSID - Swap Pool User Identification
	SYAPPLI - Name of Logical UTM Communications Partner
	SYNTAC - UTM TAC for Sending Messages from Async to Sync UTM Applications
	SYSLST - SYSLIST File Generation for UTM Task
	TACEND - Action at PEND
	TCLA1 - UTM TACs for Async Transaction w. Priority Level 1
	TCLA2, TCLA3, TCLA4 - UTM TACs for Async Transaction w. Priority Levels 2, 3, 4
	TCLS1 - UTM TACs for Async Transaction w. Priority Level 1
	TCLS2, TCLS3, TCLS4 - UTM TACs for Async Transaction w. Priority Levels 2, 3, 4
	TERMTAB - Terminal Control Table for Natural Roll File Management
	TID - Adabas User ID Construction Method
	With Adabas Version 5.2:
	With Adabas Version 5.3 and above:

	TRACE - Trace File Number and Trace Print Record Length
	TTYLS - Physical Line Size for TTY Devices
	TTYPS - Physical Page Size for TTY Devices
	UMODE - Session Processing Mode

	NATUTM Macro Entries
	CMKBADR - Current Address of UTM KB
	User Area in the Swap Pool Directory

	NURENT Macro Keyword Parameters
	ACCNT - Call Logic for User Account Routine
	ATTKEY - Attention Interrupt Key
	BTX - Support of BTX System
	CALLM31 - Switching from 31 to 24-Bit Address Mode
	CLR3270=xxx - Definition of CLEAR Key
	EXTAPPL - UTM TERMN Name of External DCAM or PDN Applications
	ILCS - Support of CRTE or ILCS
	PARMOD - Generation of Front-End and Reentrant Parts
	SCRNTRC - Tracing of Screen I/Os
	SPOOL - Automatic Start and Termination of Printer Task
	UDS - Use of Natural for UDS
	UINPEX - Name of User Exit
	UOUTEX - Name of User Exit

	Natural under UTM - Part 3
	User Exits
	ACCEXIT - Macro NATUTM
	ACCINIT - Macro NATUTM
	INPTEX - Program FREXIT
	RP2PRNT - Macro NURENT
	RMSPOOL - Macros NATUTM and NURENT
	SHUTALL - Macro NATUTM
	SHUTLST - Macro NATUTM
	STRTALL - Macro NATUTM
	STRTFST - Macro NATUTM
	TRMIOEX - Program FREXIT
	UINPEX - Macro NURENT
	UOUTEX - Macro NURENT
	UVGEXIT - Macro NATUTM
	WHCEXT - Macro NURENT

	Asynchronous Transaction Processing under UTM
	Asynchronous Processing within a Natural UTM Application
	Logic of an Asynchronous Transaction within one Natural UTM Application:

	Asynchronous Processing between two Natural UTM Applications
	Logic of Asynchronous Transaction between two Natural UTM Applications:

	Printing under UTM
	Using Local Non-Spooled Printers
	Using NATSPOOL †Natural Advanced Facilities‡
	Other Spooling Systems

	Calling Non-Natural Programs
	Calling UTM Chained Partial Programs
	Calling Adabas from Non-Natural Programs in a Natural UTM Application
	Terminating a UTM Task Abnormally

	Natural under UTM - Part 4
	Accounting for Natural/UTM Applications
	Structure of the Accounting Record

	Utility Programs for Use with Natural/UTM
	Utility Program NATDUE
	Utility Program INPTEX
	Utility Program NATPRNT
	Utility Program UTMTAC
	Utility Program TACSWTCH
	Special TACSWTCH Functions

	Software Exchange
	Program XAMDUSA
	Program UTMCOB
	Program UTMNAV
	Program NUEXAMPL
	Program ACCEXIT
	Program TABMOD

	UTM TACCLASS Concept - Priority Control
	
	Step 1: Specify UTM TACs and TAC Classes in the KDCDEF and KDCROOT Definitions
	Step 2: The Structure of the UTM Start Job
	Step 3: Change the TAC Class of Synchr. Transactions by a Natural Program
	Step 4: Allocation of TAC Classes for Asynchronous Transactions within one Natural/UTM Application
	Step 5: Assign the TAC Class for Asynchronous Transactions between two Natural/UTM Applications

	UTM TACCLASS Switch

	Generating a Natural/UTM Application
	Generating the Natural UTM Interface
	Linking the Non-Reentrant Front-End Part and the Reentrant Part
	Setting Up the Natural Roll File
	The Start Job for a Natural UTM Application

	Optimizing Natural UTM Applications
	Several Applications with one Common Natural
	Lists of Shared and Application-Specific Parameter Modules

	Entering and Defining Dynamic Natural Parameters
	UTM User Restart
	Adabas Priority Control

