
Natural
TP Monitor Interfaces

Version 3.1.6 for Mainframes

This document applies to Natural Version 3.1.6 for Mainframes and to all subsequent releases. Specifications
contained herein are subject to change and these changes will be reported in subsequent release notes or new
editions.

© June 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents
................ 1TP Monitor Interfaces - Overview
................ 1TP Monitor Interfaces - Overview
................ 2Using Natural with TP Monitors
................ 2Using Natural with TP Monitors
............. 2TP Monitor Systems Supported by Natural
............ 2Using Natural in a Teleprocessing Environment
............. 2Embedding Natural in a TP Environment
........... 2Calling Natural Transactions under a TP Monitor
............... 2Terminating a Natural Session
.................. 2Example Programs
................ 3Natural under CICS - Overview
................ 3Natural under CICS - Overview
............... 4Natural CICS Interface Functionality
............... 4Natural CICS Interface Functionality
.............. 4NCISTART - Natural CICS Interface
................ 4Natural Nucleus under CICS
................ 5System Control under CICS
... 5OSCOR/GETVIS - Natural Components in CICS Dynamic or Operating System Storage
.............. 7Natural Storage Threads under CICS
............... 8Natural Roll Facilities under CICS
.................. 8CICS Roll Facilities
.............. 8Natural Local Buffer Pool under CICS
................ 9Natural Swap Pool under CICS
.............. 9NCITIDEX Terminal ID Exit Interface
............... 10NCIUIDEX - User ID Exit Interface
................. 10NATUEX1 - User Exit
............. 10Natural CICS Interface Debugging Facilities
................ 10Using the TPF Parameter
.............. 11Using Asynchronous Natural Sessions
............... 12Natural CICS Generation Parameters
............... 12Natural CICS Generation Parameters
............... 12NCISCPCB Generation Parameters
................ 13NCMDIR Macro Parameters
........... 13CICSPLX - Switching of CICS Application Region
.......... 13ROLLFLS - Maximum Number of VSAM Roll Files
............... 13ROLLSRV - Roll Server Rolling
................ 14SWPSIZE - Swap Pool Size
......... 14TSKEY - Prefixes for Natural CICS Temporary Storage Key
....... 14TSRECSZ - Record Sizes for Main and Auxiliary Temporary Storage
.............. 15USERS - Session Information Record
................ 16NCMTGD Macro Parameters
............. 16PFKEY - PF/PA Keys for Thread Group
........... 16PRIMERF - Natural CICS Primary Roll Facility
................ 17THRDSZE - Thread Size
........ 17THREADS - Number of Threads or Tasks Per Thread Group
............ 18TRAN - Transaction IDs for Thread Group
............... 18TYPE - Thread Type for Group
......... 19XTRAN - Hexadecimal Transaction IDs for Thread Group
................ 19NTSWPRM Macro Parameters
............... 19NCIPAPM Generation Parameters
................ 19NCMPRM Macro Parameters
....... 19ASA - Use ASA Control Characters For Natural Message Logging
.......... 20BACKEND - Back-End Program Invocation Control

iCopyright © Software AG 2002

Table of ContentsTP Monitor Interfaces - Overview

....... 20BACKOUT - Backout Transaction in the Case of Unrecoverable Abends

.............. 20CHAP - Change Task’s Dispatching Priority

......... 21COMACAL - CICS COMMAREA Usage for Subroutine Calls

........ 21COMAMSG - CICS COMMAREA Usage for Termination Messages

.......... 21COMARET - CICS COMMAREA Usage for Task Control

........... 22CONSOLE - CICS Terminal ID for the Operator Console

......... 22FLDLEN - Supply Field Length List On External Program Call

............. 23LOGDEST - Natural CICS Logging Destination

......... 23MSGDEST - Destination ID for Natural Error Message Logging

........... 23MSGTRAN - Internal Message Switching Transaction ID

............ 23PREFIX - Common Prefix for Programs and Files

.......... 23PSTRNID - Control of *INIT-PROGRAM Variable Setting

......... 24RESENDC - Check for Screen Re-sending after Subroutine Calls

..... 24RESENDS - Screen Re-send Check after Pseudo-Conversational Session Resume

.......... 24RJEDEST - Name of the Natural CICS Submit Destination

............. 25RJEUSER - Submit to POWER User ID Setting

................. 25SIGNON - SIGNON Behavior

................ 26SLCALL - Standard Linkage Call

........ 26SNDLAST - LAST Option Usage for EXEC CICS SEND Commands

.......... 26TERMVAR - Terminal ID Variable for Natural Work Files

............ 27TRANCHK - Check Input Map for Transaction ID

............ 27UCTRAN - Lower/Mixed Case Support in Natural

........ 28WAITIME - Wait Time Interval for a Local System Recovery Task

............... 29NCISCPRI Warnings and Error Messages

............... 29NCISCPRI Warnings and Error Messages

............... 29NCISCPRI Warnings and Error Messages

................ 31Customizing VSAM RRDS Roll Files

................ 31Customizing VSAM RRDS Roll Files

............. 31Increasing the Number of VSAM RRDS Roll Files

............ 32Decreasing the Number of VSAM RRDS Roll Files

........... 32Changing the Characteristics of the VSAM RRDS Roll Files

................ 33Natural in CICS MRO Environments

................ 33Natural in CICS MRO Environments

.............. 33NCIPARM Parameter COMARET Set to YES

.............. 33NCIPARM Parameter COMARET Set to NO

............ 35CICS Node Error Program Considerations for Natural

............. 35CICS Node Error Program Considerations for Natural

.................... 35Normal Situation

............ 35Situations Not under Control of Natural CICS Interface

................... 35Recovery Mechanisms

................... 36Special Considerations

.................. 36Example Dummy Program

................... 38CICS 3270 Bridge Support

................... 38CICS 3270 Bridge Support

................ 38Default Support of CICS 3270 Bridge

................. 38Full CICS 3270 Bridge Support

................ 38NCIXFATU - NCI Source Module

.............. 38Profile Parameter DSC=OFF Recommended

................. 39Special Natural CICS Functionality

................. 39Special Natural CICS Functionality

................. 39Calling Non-Natural Programs

......... 39Calling Non-Natural Programs via Standard Linkage Conventions

....... 39Calling Non-Natural Programs with Parameter Values in a COMMAREA

.............. 40Dummy Screen I/Os with Natural under CICS

................ 40NCISTART - Natural CICS Nucleus

.................... 41Sample Programs

Copyright © Software AG 2002ii

TP Monitor Interfaces - OverviewTable of Contents

.................. 41In MRO Environments

................. 42Natural CICS Sample Programs

................. 42Natural CICS Sample Programs

............. 42Sample Programs in Natural CICS Source Library

................ 42XNCI3GC1 - Subprogram Call

................ 42XNCIFRNX - Front-End Program

................ 42XNCIFRNL - Front-End Program

................ 42XNCIFRNS - Front-End Program

................ 42XNCIFXC2 - Front-End Program

............... 42XNCIFRNP - Initialization Program

............... 43XNCIBACK - Termination Data Dump

................ 43XNCIRDC1 - Exit for SYSRDC

.................. 43XNCIUIDX - User Exit

................ 43XNCIUCTR - U/L Case Switch

................ 43XNCINEP1 - Node Error Program

................ 43XNCINEP2 - Node Error Program

.................. 43XNCITIDX - User Exit

............... 43Sample Programs for Use with VSE/ESA

................ 44Invoking Natural from User Programs

................ 44Invoking Natural from User Programs

.............. 44Commands for Activating a Natural Session

............. 44Using EXEC CICS XCTL or EXEC CICS LINK

................. 44Using EXEC CICS START

.................... 44Sample Programs

.............. 45Using the External Subroutine CMTASK

................... 45Front-End Parameters

................. 46Front-End Invoked via LINK

................. 46In CICSplex Environments

................. 46Front-End Invoked via START

................. 46Front-End Invoked via XCTL

............... 46Invoking Front-End Program as Back-End

.............. 47Asynchronous Natural Processing under CICS

.............. 47Asynchronous Natural Processing under CICS

................ 47Asynchronous Natural Processing

.............. 47Asynchronous Natural Sessions under CICS

................... 48Testing and Debugging

................ 49Logging Natural Sessions under CICS

................ 49Logging Natural Sessions under CICS

.................... 49Logging Facility

.................. 49Natural Log File Definition

................... 49Natural Log Records

............... 50Natural CICS System Restart Record

............... 50Natural Session Termination Record

............... 52Natural CICS Performance Considerations

............... 52Natural CICS Performance Considerations

................ 52Enironment-Specific Considerations

.................. 52Choosing the Roll Facility

.................... 52Control Interval

............ 52VSAM Roll Files versus CICS Temporary Storage

.............. 53Using CICS Auxiliary Temporary Storage

............... 53Using CICS Main Temporary Storage

................ 53Using VSAM RRDS Roll Files

.............. 54Using the Natural Swap Pool under CICS

............ 54Shared Storage Threads versus GETMAINed Threads

.................... 54Storage Usage

.................. 54Controlling Storage Usage

iiiCopyright © Software AG 2002

Table of ContentsTP Monitor Interfaces - Overview

................... 55Swapping/Rolling

............... 55Considerations for CICS 4.1 and above

..................... 56Conclusion

.................. 56CICS Parameter Settings

.................. 56Line Compression Systems

........... 57Pseudo-Conversational versus Conversational Transactions

.................... 57Natural and Adabas

.................. 57CICS Monitoring Products

................. 58Natural Work Files under CICS

................. 58Natural Work Files under CICS

................. 58Customizing Work File Usage

................ 58CICS Temporary Storage Work Files

.................. 58In CICSplex Environment

.................... 58System Queues

................. 58CICS Transient Data Work Files

................... 59Natural under Com-plete

................... 59Natural under Com-plete

................... 60Use of the Abend Exits

..................... 60Storage Usage

................. 61Support of Back-end Programs

............... 61Com-plete Support in Natural Batch Runs

.............. 62Support of Asynchronous Natural Processing

................ 62Invoking Natural from User Programs

................. 62Storage Thread Key Handling

........... 63Support of User Exit Handling during Session Initialization

................. 64Natural under IMS/TM - Overview

................. 64Natural under IMS/TM - Overview

................ 65Natural under IMS/TM - Environments

................ 65Natural under IMS/TM - Environments

.................. 65IMS/TM Interface Overview

................... 66IMS/TM Environments

.......... 66Natural in a Message Processing Region (MPP Environment)

........ 66Natural in a Batch Message Processing Region (BMP Environment)

.............. 67Natural in an Off-line DL/I Batch Region

................. 67Dialog-Oriented Environments

........... 67Special Considerations for a Conversational Environment

......... 67Special Considerations for a Non-Conversational Environment

............. 67Special Considerations for an MSC Environment

................. 68Message-Oriented Environment

............ 68Introduction to the Message-Oriented Environment

............. 68Operation of the Message-Oriented Environment

................. 70Bootstrap Module NIIBOOT

............... 70Batch Message Processing Environment

.............. 72Support of the Natural WRITE (n) Statement

............ 72Hints Concerning NTPRINT and CLOSE PRINTER

................ 74Natural under IMS/TM - Components

................ 74Natural under IMS/TM - Components

.................... 74Front-End Module

............. 74Environment-Dependent Interfaces (Drivers)

............... 74Natural Parameter Module NATPARM

.............. 75Work File Handling Module NATWKFO

............... 75Modules from Other Natural Products

............... 75Natural IMS Interface Module NIIINTFM

................... 75Natural IMS Nucleus

.............. 75Natural IMS Parameter Module NIIPARM

............... 75Transaction Code Table NIITRTAB

Copyright © Software AG 2002iv

TP Monitor Interfaces - OverviewTable of Contents

................ 76Message Text Module NIIMSGT

............... 76DL/I Language Interface ASMTDLI

.................. 76Physical Input Edit Routine

.................. 77Roll File and Roll Server

.................... 77Using Roll Files

................... 77Using the Roll Server

................... 78Shared Natural Nucleus

.................... 78Natural Buffer Pool

.................... 78Adabas Interface

..................... 78Preload List

.............. 79Natural under IMS/TM - Configuration Macros

.............. 79Natural under IMS/TM - Configuration Macros

................. 80NIMDRIV Macro Parameters

................. 80NIMPARM Macro Parameters

........................ 81A

....................... 82B - C

....................... 83E - H

....................... 84L - M

........................ 85P

....................... 87R - S

....................... 88T - U

................. 89NIMTRNTG Macro Parameters

................. 92NIMLPCB Macro Parameters

................. 92NIMMSGT Macro Parameters

................. 93NIMPIXT Macro Parameters

............... 94Natural under IMS/TM - Service Programs

............... 94Natural under IMS/TM - Service Programs

.......... 94Introduction to the Natural IMS/TM Interface Service Programs

........... 94Purpose of Natural IMS/TM Interface Service Programs

................. 94Location of Service Programs

.................. 94Common Return Codes

.................... 94Error Handling

.......... 95Description of the Natural IMS/TM Interface Service Programs

............. 95NIIBRCST - Send Passed Message to Terminal

............... 95NIICMD - Pass IMS Command to IMS

......... 96NIIDEFT - Prepare Deferred Switch to Natural Transaction Code

........ 96NIIDEFTX - Prepare Deferred Switch to Non-Natural Transaction Code

.......... 97NIIDIRT - Prepare Direct Switch to Natural Transaction Code

............ 97NIIDIRTX - Prepare Direct Switch to Transaction Code

........... 98NIIEMOD - Modify Setting of Module Output Descriptor

....... 98NIIGCMD - Retrieve Next Reply Segment of Previous IMS/TM Command

............. 99NIIGMSG - Retrieve First Segment Next Message

............ 99NIIGSEG - Retrieve Next Segment of Input Message

............. 100NIIGSPA - Retrieve Data from SPA Beginning

.............. 100NIIIMSIN - Retrieve IMS Environment Info

.............. 100NIIISRTF - Create Multi-Segment Messages

........... 101NIIISRTM - Insert Message Segment into Message Queue

............. 101NIIPCBAD - Return PSB Name and PCB Address

............... 102NIIPCOM - Move Data to Reply Area

.................. 102NIIPMSG - Send Message

................ 102NIIPSBAD - Return PSB Address

................. 104NIIPSPA - Replace Data in SPA

................. 104NIIPURG - Issue PURG Call

.............. 104NIIRETRM - Move Data into Message Area

............ 105NIISASD - Modify SENDER and OUTDEST Settings

................. 105NIIU3962 - Terminate Session

vCopyright © Software AG 2002

Table of ContentsTP Monitor Interfaces - Overview

............... 106Natural under IMS/TM - Service Modules

............... 106Natural under IMS/TM - Service Modules

.................. 106Purpose of Service Modules

.................. 106Service Module Descriptions

............. 106CMCMMND - Issue IMS Operator Commands

........ 107CMDEFSW - Deferred Transaction Switch to Natural Transaction Code

...... 107CMDEFSWX - Deferred Transaction Switch to Non-Natural Transaction Code

....... 108CMDIRNMX - Switch to Another Conversational Transaction w/o Message

....... 108CMDIRNMZ - Switch to Another Conversational Transaction w. Message

....... 109CMDIRSWX - Switch to Another Conversational Transaction w. Message

....... 110CMDIRSWZ - Switch to Another Conversational Transaction w. Message

................. 111CMDISPCB - Get PCB Content

............. 111CMEMOD - Modify MOD Name Dynamically

................ 112CMGETMSG - Read Next Message

................ 112CMGETSEG - Read Next Segment

............... 113CMGETSPA - Transfer Data from SPA

................ 113CMIMSID - Get MVS Subsystem ID

............... 114CMIMSINF - System Environment Info

................ 114CMPCBADR - Return PCB Address

............ 115CMPRNTR - Change Default Hardcopy Destination

............ 115CMPUTMSG - Insert Output Message into IO-PCB

................ 116CMPUTSPA - Move Data into SPA

.......... 116CMQTRAN - Content of Current Transaction Code Table Entry

............ 117CMQUEUE - Insert Message into First Alternate PCB

........... 117CMQUEUEX - Complete Control over Message Content

............... 118CMSNFPRT - Set Logical Device Name

............... 118CMSVC13D - Terminate Natural Session

.............. 118CMTRNSET - Insert SPA via Alternate PCB

............ 119NIIDDEFS - Deferred Switch to Foreign Transaction

.............. 119NIIDPURG - Insert Multi-Segment Message

.............. 120NIIDQUMS - Create Multi-Segment Message

.............. 120NIIDSETT - Get Foreign Transaction Code

................. 121Natural under IMS/TM - User Exits

................. 121Natural under IMS/TM - User Exits

..................... 121NIIXACCT

..................... 121NIIXSTAR

..................... 122NIIXMSSP

..................... 122NIIXSSTA

..................... 122NIIXISRM

...................... 122NIIXISRT

..................... 122NIIXTGU0

...................... 122NIIXJESA

...................... 122NIIXPRT0

..................... 122NIIXRFNU

..................... 122NIIXTGN0

............... 123Natural under IMS/TM - Special Functions

............... 123Natural under IMS/TM - Special Functions

..................... 123Prerequisites

..................... 123Accounting

..................... 124Monitoring

..................... 124Broadcasting

................... 126Multi-Session Feature

.............. 126Functionality of the Multi-Session Feature

..................... 127Session ID

.................. 127Multi-Session Database

.................... 127Server Environment

Copyright © Software AG 2002vi

TP Monitor Interfaces - OverviewTable of Contents

.................. 128Call Interface NIIBOOTS

............... 129ON ERROR Routine Recommended

.................... 129Return Codes

.............. 130Natural under IMS/TM - Recovery Handling

............... 130Natural under IMS/TM - Recovery Handling

.................. 131System and User Abends

................... 131Non-Recoverable Errors

.................... 131Recoverable Errors

.................... 132Natural under TIAM

.................... 132Natural under TIAM

............... 132Structure of the Natural TIAM Interface

................ 132Common Memory Pools under TIAM

................... 133Natural Shared Nucleus

.................... 134Natural under TSO

.................... 134Natural under TSO

............ 134General Information about the Natural TSO Interface

................... 134Natural TSO Datasets

................ 135Issuing TSO Commands from Natural

.................. 136Natural under UTM - Overview

................. 136Natural under UTM - Overview

.................. 138Natural under UTM - Part 1

.................. 138Natural under UTM - Part 1

............... 139Structure of the Natural UTM Interface

................. 140Formatting Messages - FREXIT

............... 141Embedding Natural in a UTM Application

................... 142Common Memory Pools

................ 142Natural Buffer Pool under UTM

................ 142Natural Swap Pool under UTM

......... 143Loading Natural in a Common Memory Pool - Natural Load Pool

................... 143Natural Monitor Pool

................... 144Other Storage Areas

................... 144Natural User Thread

........... 144Natural User Work Area Asynchronous Write Buffer

............ 144Natural User Area for Asynchronous Transactions

............... 144Natural Roll File - LINK=PAMNAT

................... 146Generating KDCROOT

............... 147Defining the UTM Resources - KDCDEF

............ 147Special Definition for Type 9755/9756 Terminals

................ 147Treatment of K Keys and F Keys

............... 148Support of IBM Type 3270 Terminals

................. 149Support of TTY Terminals

............. 150UTM DC-Transaction Exit Routine NUERROR

................... 150UTM Startup Function

.................. 151UTM Shutdown Function

............. 154Natural under UTM - Macro Keyword Parameters

............. 154Natural under UTM - Macro Keyword Parameters

............... 154NATUTM Macro Keyword Parameters

................ 154ADACALL - Access to Adabas

.............. 154ADACOM - Adabas Link Module Usage

........ 155ADAPRI - Activation of Adabas Priority Control for UTM Application

........ 155ADAUTM - Synchronization of Async UTM/Adabas Transactions

............. 155AFPNAME - Name of Common Memory Pool

............ 155APPLNAM - Name of Natural UTM Application

............ 156APRISTD - Adabas Priority for Standard UTM TAC

.......... 156ASAPPLI - Name of Logical UTM Communications Partner

..... 156ASYNTAC - UTM Transaction Code for Asynchronous UTM Task or Application

viiCopyright © Software AG 2002

Table of ContentsTP Monitor Interfaces - Overview

........... 156BADTAC - Activation of UTM Function "BADTACS"

................ 157BTX - Support of BTX System

....... 157CDYNAM - Maximum Number of Programs to be Dynamically Loaded

............ 157CLRKEY - Activation/Deactivation of CLEAR Key

............ 157CURPRO - Cursor Positioning to Protected Field

.......... 158ICONTRL - UTM Input Exit for Messages in Minus Format

.......... 158INITPRG - Value for Natural Variable *INIT-PROGRAM

.............. 158KB - Pass KB Address as First Parameter

.............. 158KBSAVE - Saving of UTM KB via SPUT

............ 159KBUSEXT - Length of UTM KB User Extension

................. 159LFH - Use of Adabas LFH

............ 159LINK - Programs and Modules Called from Natural

......... 160LINK2/LINK3/LINK4 - Extensions of Keyword Parameter LINK

............. 160LOFFMAP - Format Name for Logoff Message

..... 161NATMON - Automatic Activation of Natural Monitor during Application Startup

.............. 161NUAADDR - Natural User Thread Address

.......... 161NUCNAME - Name of Bounded Reentrant Natural Module

........... 162PARMOD - Generation of Front-End and Reentrant Parts

............. 162PENDPR - Define UTM TAC for "PEND PR"

................. 162PFK - Function Key Modes

............. 163PRKEY - UTM Return Code for Function Key

............. 163REFRKEY - Definition of UTM Function Key

............ 164ROLLACC - Access Method for Natural Roll File

.............. 164ROLLTSZ - Maximum Roll Thread Size

.............. 165RSTCNT - Control of Restart Situations

.............. 165RSTWARM - Control of Restart Situations

....... 165SCRNOPT - Terminal Types with Deactivated Natural Screen Optimization

................ 166SHUTALL - Name of User Exit

................ 166SHUTLST - Name of User Exit

.......... 166SPOOL - Automatic Start and Termination of Printer Task

............ 167STRTALL - Name of User Exit for All UTM Tasks

............ 168STRTFST - Name of User Exit for First UTM Task

......... 168SVDYPRM - Save Area Length for Dynamic Natural Parameters

.......... 168SWAMODE - Switching from 31 to 24-Bit Address Mode

........... 168SWDPAGE - Pageability of Swap Pool Main Directory

.............. 169SWPUSID - Swap Pool User Identification

.......... 169SYAPPLI - Name of Logical UTM Communications Partner

.... 169SYNTAC - UTM TAC for Sending Messages from Async to Sync UTM Applications

............ 169SYSLST - SYSLIST File Generation for UTM Task

................. 170TACEND - Action at PEND

......... 170TCLA1 - UTM TACs for Async Transaction w. Priority Level 1

.... 170TCLA2, TCLA3, TCLA4 - UTM TACs for Async Transaction w. Priority Levels 2, 3, 4

......... 170TCLS1 - UTM TACs for Async Transaction w. Priority Level 1

.... 171TCLS2, TCLS3, TCLS4 - UTM TACs for Async Transaction w. Priority Levels 2, 3, 4

....... 171TERMTAB - Terminal Control Table for Natural Roll File Management

.............. 172TID - Adabas User ID Construction Method

.......... 173TRACE - Trace File Number and Trace Print Record Length

............. 174TTYLS - Physical Line Size for TTY Devices

............. 174TTYPS - Physical Page Size for TTY Devices

............... 174UMODE - Session Processing Mode

.................. 176NATUTM Macro Entries

.............. 176CMKBADR - Current Address of UTM KB

............... 176User Area in the Swap Pool Directory

............... 177NURENT Macro Keyword Parameters

............. 177ACCNT - Call Logic for User Account Routine

................ 177ATTKEY - Attention Interrupt Key

Copyright © Software AG 2002viii

TP Monitor Interfaces - OverviewTable of Contents

................ 177BTX - Support of BTX System

........... 178CALLM31 - Switching from 31 to 24-Bit Address Mode

.............. 178CLR3270=xxx - Definition of CLEAR Key

....... 178EXTAPPL - UTM TERMN Name of External DCAM or PDN Applications

................ 178ILCS - Support of CRTE or ILCS

........... 179PARMOD - Generation of Front-End and Reentrant Parts

............... 179SCRNTRC - Tracing of Screen I/Os

.......... 179SPOOL - Automatic Start and Termination of Printer Task

................. 179UDS - Use of Natural for UDS

................. 180UINPEX - Name of User Exit

................. 180UOUTEX - Name of User Exit

.................. 181Natural under UTM - Part 3

.................. 181Natural under UTM - Part 3

...................... 182User Exits

................. 182ACCEXIT - Macro NATUTM

................. 182ACCINIT - Macro NATUTM

................. 182INPTEX - Program FREXIT

................. 182RP2PRNT - Macro NURENT

............. 183RMSPOOL - Macros NATUTM and NURENT

................ 184SHUTALL - Macro NATUTM

................. 184SHUTLST - Macro NATUTM

................. 184STRTALL - Macro NATUTM

................. 184STRTFST - Macro NATUTM

................ 184TRMIOEX - Program FREXIT

................. 185UINPEX - Macro NURENT

................. 185UOUTEX - Macro NURENT

................. 185UVGEXIT - Macro NATUTM

................. 185WHCEXT - Macro NURENT

............. 186Asynchronous Transaction Processing under UTM

.......... 187Asynchronous Processing within a Natural UTM Application

......... 189Asynchronous Processing between two Natural UTM Applications

................... 195Printing under UTM

................ 195Using Local Non-Spooled Printers

............ 196Using NATSPOOL (Natural Advanced Facilities)

.................. 196Other Spooling Systems

................. 197Calling Non-Natural Programs

............... 198Calling UTM Chained Partial Programs

....... 198Calling Adabas from Non-Natural Programs in a Natural UTM Application

............... 198Terminating a UTM Task Abnormally

.................. 199Natural under UTM - Part 4

.................. 199Natural under UTM - Part 4

.............. 199Accounting for Natural/UTM Applications

............... 200Structure of the Accounting Record

.............. 201Utility Programs for Use with Natural/UTM

.................. 201Utility Program NATDUE

.................. 202Utility Program INPTEX

................. 202Utility Program NATPRNT

................. 202Utility Program UTMTAC

................. 203Utility Program TACSWTCH

.................... 207Software Exchange

.................. 207Program XAMDUSA

................... 207Program UTMCOB

................... 207Program UTMNAV

.................. 208Program NUEXAMPL

................... 208Program ACCEXIT

................... 208Program TABMOD

ixCopyright © Software AG 2002

Table of ContentsTP Monitor Interfaces - Overview

.............. 208UTM TACCLASS Concept - Priority Control

................. 218UTM TACCLASS Switch

............... 220Generating a Natural/UTM Application

............... 221Generating the Natural UTM Interface

......... 222Linking the Non-Reentrant Front-End Part and the Reentrant Part

................ 222Setting Up the Natural Roll File

............. 222The Start Job for a Natural UTM Application

............... 223Optimizing Natural UTM Applications

............. 224Several Applications with one Common Natural

.......... 225Lists of Shared and Application-Specific Parameter Modules

............ 225Entering and Defining Dynamic Natural Parameters

.................... 225UTM User Restart

................... 226Adabas Priority Control

Copyright © Software AG 2002x

TP Monitor Interfaces - OverviewTable of Contents

TP Monitor Interfaces - Overview
This document provides detailed information on the operation of Natural with various supported TP monitor
systems.

It is organized in the following sections:

Using Natural with TP Monitorsprovides general information on the usage of Natural with TP Monitors.

Natural under CICS describes the functionality of the Natural CICS interface and the operation
and individual components of Natural in a CICS environment.

Natural under Com-plete describes how to operate Natural in a Com-plete environment.

Natural under IMS/TM describes how to run Natural under IMS/TM.

Natural under TIAM describes how to run Natural under TIAM.

Natural under TSO comprises general information about the Natural TSO Interface and
Datasets.

Natural under UTM describes how to run Natural under UTM.

For Natural under CMS, see Natural under VM/CMS (in the Natural Operations documentation for mainframes).

The TP Monitor Interfaces documentation is supplemented by the following documents:

Natural Installation Guide for Mainframes

Natural Operations for Mainframes

Messages and Codes

1Copyright © Software AG 2002

TP Monitor Interfaces - OverviewTP Monitor Interfaces - Overview

Using Natural with TP Monitors
This section covers the following topics:

TP Monitor Systems Supported by Natural
Using Natural in a Teleprocessing Environment

TP Monitor Systems Supported by Natural
Currently, Natural supports the following teleprocessing monitor systems:

CICS | CMS | Com-plete | IMS/TM | TIAM | TSO | UTM

For information on using Natural with a specific TP monitor, refer to the appropriate section in this
documentation.

See also: SYSTP Utility.

The Natural utility SYSTP provides various TP-monitor-specific functions. It is available under the TP monitors
CICS, Com-plete, IMS/TM, TIAM, TSO and UTM.

Using Natural in a Teleprocessing Environment

Embedding Natural in a TP Environment

In a teleprocessing monitor environment, Natural operates as a standard TP program and follows the rules that
apply to programs executing under the control of this TP monitor.

As the Natural code is fully reentrant, it is shared between all Natural users and only a work area exists on an
individual per-user basis (and only for the duration of this user’s Natural session).

Natural user programs (transactions) can be executed together with native TP programs to form an integrated
system comprising both Natural and conventional programs.

Calling Natural Transactions under a TP Monitor

The Natural transactions can be called by invoking the TP program called Natural and supplying the LOGON
system command and the name of the Natural transaction to be executed in the stack.

Multiple commands/transactions and input data for the commands/transactions can be passed using the stack
when calling Natural.

Terminating a Natural Session

The Natural session can be terminated by executing a TERMINATE statement or FIN system command.

Example Programs

The Natural library SYSEXTP contains several example programs for specific functions that apply only under
certain TP monitors.

Copyright © Software AG 20022

Using Natural with TP MonitorsUsing Natural with TP Monitors

Natural under CICS - Overview
The Natural CICS Interface documentation covers the following topics:

Natural CICS Interface Functionality
Natural CICS Generation Parameters
NCISCPRI Warnings and Error Messages
Customizing VSAM RRDS Roll Files
Natural in CICS MRO Environments
CICS Node Error Program Considerations for Natural
CICS 3270 Bridge Support
Special Natural CICS Functionality
Natural CICS Sample Programs
Invoking Natural from User Programs
Asynchronous Natural Processing under CICS
Logging Natural Sessions under CICS
Natural CICS Performance Considerations
Natural Work Files Under CICS

References to CICS Tables

Where appropriate, any references to CICS tables (DCT, FCT, PCT, PPT, TCT, etc.) can be considered as
references to the corresponding:

assembly-type resource definitions,
online resource definitions via CEDA,
batch resource definitions via DFHCSDUP.

See also:

Installing the Natural CICS Interface in the Natural Installation Guide for Mainframes.
Natural under CICS Abend Codes and Error Messages (in the Messages and Codes documentation for
mainframes)
Error Messages from the Natural Swap Pool Manager Valid under CICS and UTM (in the Messages and
Codes documentation for mainframes).
SYSTP - this Natural utility provides various TP-monitor-specific functions.

3Copyright © Software AG 2002

Natural under CICS - OverviewNatural under CICS - Overview

Natural CICS Interface Functionality
This part of the Natural CICS Interface documentation describes the functionality of the Natural CICS interface.
It covers the following topics:

NCISTART - Natural CICS Interface
Natural Nucleus under CICS
System Control under CICS
OSCOR/GETVIS - Natural Components in CICS Dynamic or Operating System Storage
Natural Storage Threads under CICS
Natural Roll Facilities under CICS
CICS Roll Facilities
Natural Local Buffer Pool under CICS
Natural Swap Pool under CICS
NCITIDEX Terminal ID Exit Interface
NCIUIDEX - User ID Exit Interface
Natural CICS Interface Debugging Facilities

Related Documents

Installation - refer to Installing the Natural CICS Interface in the Natural Installation Guide for
Mainframes.
Utility - refer to the Natural utility SYSTP which provides various TP-monitor-specific functions
Operation, Individual Components - for information on operation and the individual components of
Natural in a CICS environmen, see also:
Node Error Program Considerations for Natural | CICS 3270 Bridge Considerations | Special Natural CICS
Functionality | Natural CICS Sample Programs | NCIUIDEX User ID Exit Interface | Invoking Natural from
User Programs | Asynchronous Natural Processing under CICS | Logging Natural Sessions under CICS |
Performance Considerations | Natural CICS Interface Debugging Facilities | Natural Work Files Under
CICS

NCISTART - Natural CICS Interface
The Natural CICS Interface NCISTART is implemented in command level Assembler, thus allowing Natural to
be compatible with the CICS Multiple Region Option and the debugging facility CEDF.

NCISTART controls session initialization, roll-in restart (in pseudo-conversational mode), terminal I/O, database
access, ABEND processing, Natural local buffer pool calls and the loading, linking to and releasing of external
subroutines. In addition, all roll I/O operations are made from NCISTART.

Natural Nucleus under CICS
The Natural nucleus is a combination of the reentrant Natural module and various support routines, which are
delivered as source programs requiring site-dependent assemblies and as load modules.

The CICS-related components of the Natural nucleus are:

the Natural CICS Interface NCISTART,
the Natural CICS parameter module NCIPARM,
the NaturalCICS interface object-only part NCINUC.

Copyright © Software AG 20024

Natural CICS Interface FunctionalityNatural CICS Interface Functionality

System Control under CICS
Natural features specific to CICS include the organization of dynamic storage in threads and the additional
capability of handling these threads so that the Natural CICS System Control Program can more efficiently
handle dynamic storage.

The Natural CICS System Control Program was initially developed to overcome the 64 KB GETMAIN limit
under CICS. It provides complete storage allocation and management functions, including roll file I/O operations
and relocation functions for pseudo-conversational users.

In order to enhance the pseudo-conversational processing capabilities of Natural with CICS, the System Control
Program uses threads, a contiguous amount of storage which is set up for each user. This structure allows Natural
to manage dynamic storage with minimal CICS involvement.

A complete understanding of system control can be attained from the following discussion of its structure and
operation. Ensure that you understand this mechanism before starting the installation procedure of Natural under
CICS.

OSCOR/GETVIS - Natural Components in CICS
Dynamic or Operating System Storage
Scenario 1: Single CICS Region

The diagram below shows the components of the Natural system that reside in CICS dynamic storage. The
components are explained under the following headings:

Natural Storage Threads under CICS
Natural Local Buffer Pool under CICS
Natural Swap Pool under CICS
Natural Roll Facilities

Scenario 1 applies when running Natural locally in a single CICS application region under OS/390 or VSE/ESA.

Platform: Requirement:

OS/390
only

Additional scenarios are possible. The following three diagrams show combinations of OS/390
systems, CICS regions, the Natural Roll Server and the Natural Authorized Services Manager.

5Copyright © Software AG 2002

System Control under CICSNatural CICS Interface Functionality

Scenario 2: Single OS/390 With Single CICS Region, Single Roll Server

Scenario 3: Single OS/390 With Multiple CICS Regions, Single Roll Server/Authorized
Services Manager

Scenario 4: Multiple OS/390 With Multiple CICS Regions, Multiple Roll
Servers/Authorized Services Managers

In this scenario, you have to use the ADASVC Version 6.2.n and the Adabas link routine of the Adabas/CICS
interface (ACI) Version 6.2.n.

Copyright © Software AG 20026

Natural CICS Interface FunctionalityOSCOR/GETVIS - Natural Components in CICS Dynamic or Operating System Storage

Parameter Settings Required for the Above Scenarios

Module Scenario 1 (all) Scenario 2 Scenario 3 Scenario 4

NCMDIR
Parameters

ROLLFLS nn n/a n/a n/a

SWPSIZE nnnn n/a n/a n/a

CICSPLX NO NO YES/name YES/name

ROLLSRV NO YES/name YES/name YES/name

Roll Server
CF structure name

n/a none none name

Authorized Services
Manager/SIP

n/a n/a SIP slot
number/size

XCF group name/ CF
structure name

The Natural CICS interface requires a SIP slot size of 256 bytes.

Natural Storage Threads under CICS
A thread is a contiguous storage area from where Natural requests all its required storage. It can either be storage
shared by several Natural users or, in 31-bit mode environments, CICS user storage above the 16 MB line
dedicated to a specific task.

Each storage thread can be seen as the "address space" for a Natural user. Each memory allocation request issued
by the Natural nucleus is transferred to the system control program to be satisfied from the storage thread.

Storage threads are allocated when the Natural CICS interface is initialized. They are allocated in a CICS region
or partition, in which case they are permanent (shared) threads or they are allocated during the start of a Natural
CICS task, in which case they are exclusive threads (task-dependent user storage).

The technique of storage threads was implemented with Natural for the following reasons:

To overcome the 64 KB limitation of CICS for user storage in non-31-bit mode systems.
To be able to optimize rolling (formerly, each piece of user storage had to be written to the roll medium;
now, as there is a contiguous storage area, this area is compressed by making the relevant portions
contiguous to each other before rolling out).
The Natural CICS interface tries to satisfy all GETMAIN requests of a Natural session from its thread. This
is faster than GETMAIN requests by means of CICS service calls. This is particularly true for CICS
command level calls, as the CICS EXEC Interface Program (EIP) is involved, too.

A thread is released by the owning task with every screen I/O. This is true for both conversational and
pseudo-conversational tasks. When a session is resumed, its storage is rolled into a thread again, unless its
storage is still there; that is, no other task used the thread in between.

The Natural thread selection algorithm balances thread usage to minimize roll I/Os. This means that the more
threads there are, the better is the chance of finding the old data thus preventing a roll-in. However, the more
threads there are, the more paging the operating system must perform to keep all threads efficiently in real
storage.

Threads are grouped together depending on their size and their type; that is, whether they have been
pre-allocated as permanently shared storage or via a GETMAIN request. The decision on which kind of thread
group to use, is controlled by the CICS transaction code at session initialization time. All storage threads
belonging to the same group have the same size.

7Copyright © Software AG 2002

Natural Storage Threads under CICSNatural CICS Interface Functionality

The thread should be defined as small as possible; see also the Buffer Usage Statistics function of the Natural
utility SYSTP (described in the section Debugging and Monitoring). However, the thread must still be large
enough to hold the session with the largest sizes.

If you have separate Natural development and production environments, the rule is to have more smaller threads
in the production environment (to serve production requests as soon as possible) and fewer larger threads in the
development environment (as Natural programmers normally need larger Natural sizes and have longer "think
times").

The very first Natural session allocates all permanent (shared) threads.

Natural Roll Facilities under CICS
As permanent storage threads are shared by several users and as larger threads allocated via GETMAIN should
not be kept for too much time, a Natural task releases its thread with each terminal I/O. Previously, however, the
user data have to be saved to be able to restart the Natural session after the terminal I/O has been performed.

Session data can be saved by using

the Natural Roll Server with its local roll buffer and roll files;
the CICS Roll Facilities;
the Natural swap pool.

See also the various component scenarios. For more information, see Roll Server (described in the Natural
Operations for Mainframes documentation).

CICS Roll Facilities
CICS Roll Facilities are local CICS storage facilities. They can be either CICS main or auxiliary temporary
storage or VSAM relative record datasets (RRDS) which the user has previously defined to CICS. These files
allow Natural to store a user’s compressed dynamic storage when a roll-out occurs.

When a swap pool is used, the CICS roll facilities only serve as backup for the swap pool. The choice of the roll
medium is of greater importance when no swap pool is used, since it affects Natural performance and
throughput.

Every CICS service request causes CICS system overhead. So, the larger the CISIZE/record size for the roll
facility is, the less CPU overhead occurs due to fewer CICS service calls to roll a Natural session. On the other
hand, larger CISIZE/record size also means more VSAM buffer space allocated for the roll facility.

See Performance Considerations for further information on roll facilities.

When using the Roll Server, the swap pool and the CICS Roll Facilities are
not available.

Natural Local Buffer Pool under CICS
The Natural local buffer pool contains all Natural modules during execution and copies of Natural modules once
they have been loaded from the Adabas or VSAM system file.

The local buffer pool must be large enough to minimize the number of Natural program loads. However, if the
local buffer pool is too large, this means wasted storage and may introduce paging overhead.

Copyright © Software AG 20028

Natural CICS Interface FunctionalityNatural Roll Facilities under CICS

The local buffer pool is allocated as GETMAIN storage: that is, under VSE/ESA with a GETVIS request; under
OS/390, with either a GETMAIN request (prior to CICS/ESA Version 3.3) or EXEC CICS GETMAIN
SHARED (with CICS/ESA Version 3.3 or above). Sufficient storage must be available in the partition/region or
relevant CICS DSA respectively.

Platform: Requirement:

OS/390-type
operating systems

A local buffer pool is optional, as Natural can also run with a global buffer pool, which
can be shared with other Natural environments like Natural/TSO or Natural/IMS.

Natural Swap Pool under CICS
The Natural swap pool offers the possibility to "swap" a compressed Natural session from the thread into a main
storage area instead of doing expensive roll I/Os.

The swap pool is allocated as GETMAIN storage: that is, under VSE/ESA with a GETVIS request; under
OS/390, with either a GETMAIN request (prior to CICS/ESA Version 3.3) or EXEC CICS GETMAIN
SHARED (with CICS/ESA Version 3.3 or above). Sufficient storage must be available in the partition/region or
relevant CICS DSA respectively.

The options for the swap management are set in the Natural CICS source module "NCISCPCB".

For further details on the swap pool, see Natural Swap Pool (described in the Natural Operations for Mainframes
documentation) and Using the Natural Swap Pool under CICS.

OS/390 systems:
The swap pool can only be used when running Natural under CICS locally in a single CICS region. However,
even in such a scenario, you should consider using the Roll Server instead, because it runs asynchronously to the
CICS region and because it can provide more roll buffers in its data space than the swap pool.
When using the Roll Server, the swap pool and the Roll Facilities are not available under CICS.

NCITIDEX Terminal ID Exit Interface
While the NCIUIDEX/NATUEX1 user exit interface can be used to set the internal terminal ID system variable
*INIT-ID, the NCITIDEX terminal ID exit interface can be used to set the terminal ID which is then used by the
Natural CICS interface NCI further on, i.e., this "logical" terminal ID will be used as part of the real/physical
terminal ID to register the Natural session (refer to the SYSTP utility, User Sessions) and instead of the
temporary storage key for that session.

Then this logical terminal ID is also the default value for the *INIT-ID system variable.

The NCITIDEX terminal ID exit interface gets control earlier than the NCIUIDEX/NATUEX1 user exit
interface, therefore the system variable *INIT-ID set by the NCITIDEX exit interface can be modified once
more by the NCIUIDEX/NATUEX1 user exit interface.

This is important to know when you are running Natural transactions under a CICS session manager.

Restrictions

1. The Natural terminal ID fields are 8 characters long. So the NCITIDEX terminal ID exit may set an
8-character terminal ID. However, the CICS terminal IDs are just 4 characters long and they are unique per
CICS region. Therefore as the Natural CICS interface NCI takes only the first 4 characters of the logical
terminal ID for its purposes, it lies in the user’s reponsibility to make sure that all logical terminal IDs are
unique regarding the first 4 characters.

2. Certain Natural CICS interface functions cannot work if the first 4 characters of the logical terminal ID do
not match the physical terminal.

9Copyright © Software AG 2002

Natural Swap Pool under CICSNatural CICS Interface Functionality

As a consequence,
you cannot send a message by way of message switching to a logical terminal,
you cannot use the SYSTP utility or NEP to flush a session at a logical terminal.

NCIUIDEX - User ID Exit Interface
Natural provides a user exit interface to determine whether or not a user is authorized to use Natural. The name
of this user exit is NATUEX1.

NATUEX1 - User Exit

NATUEX1 is called using standard calling conventions (registers 13, 14, 15 and 1) whenever a Natural user
session is activated (see the following section).

For the CICS environment, the standard calling conventions are not sufficient to issue CICS request calls and to
obtain addressability of CICS control blocks. Therefore, the load module NCIUEX1 is delivered as an interface.
This module calls the user exit NCIUIDEX (formerly CMUIDEX) using the standard linkage conventions, but in
addition passing CICS related addresses into other registers: R6 (TCTTE), R4 (EIB), R5 (EISTG).

Thus, if you want to issue requests requiring addressability of the CICS environment, the NCIUIDEX user ID
exit interface should be used rather than the standard NATUEX1 interface. Source module XNCIUIDX contains
a sample user ID exit.

Important: With each installation of a new CICS release, the NCIUIDEX interface must be reassembled and
linked.

Natural CICS Interface Debugging Facilities
The following topics are covered:

Using the TPF Parameter
Using Asynchronous Natural Sessions

Using the TPF Parameter

The dynamic parameter TPF=(TPF1,TPF2,TPF3,TPF4,TPF5,TPF6,TPF7,TPF8) can be set for driver-specific
options by specifying "1" for the corresponding option.

Supported options are:

TPF1 Invoke Adabas linkage module via EXEC CICS LINK with Adabas parameter in TWA and CICS
COMMAREA rather than via DCI.
Enables debugging of Adabas-related problems via CEDF.

TPF3 Dump the whole Natural buffer pool.
With this parameter setting, the entire Natural buffer pool is included in a CICS transaction dump.
Note: Usually the Natural buffer pool is not required in a dump, as all objects from the buffer pool
relevant to a session are dumped anyway; so this option may only be required in the case of a buffer
pool problem.

TPF4 Dump the whole EDITOR buffer pool.
With this parameter setting, the EDITOR buffer pool is included in a CICS transaction dump.

Copyright © Software AG 200210

Natural CICS Interface FunctionalityNCIUIDEX - User ID Exit Interface

When specifying "0" (which can also be omitted), the corresponding option is not set, for example:

TPF=(0,0,0,1) which is equivalent to TPF=(,,,1)

Using Asynchronous Natural Sessions

If the first 5 characters in the dynamic parameter string for starting Natural are "ASYN,", the Natural CICS
interface will always setup an asynchronous Natural session, regardless of whether the session is terminal-bound
or not.

This may be helpful for testing purposes, particularly with EDF or with other debugging tools installed.

11Copyright © Software AG 2002

Using Asynchronous Natural SessionsNatural CICS Interface Functionality

Natural CICS Generation Parameters
This part of the Natural CICS Interface documentation describes the Natural CICS generation parameters. It
covers the following topics:

NCISCPCB Generation Parameters
NCMDIR Macro Parameters
NCMTGD Macro Parameters
NTSWPRM Macro Parameters
NCIPAPM Generation Parameters
NCMPRM Macro Parameters

References to CICS Tables

Where appropriate, any references to CICS tables (DCT, FCT, PCT, PPT, TCT, TST, etc.) can be considered as
references to the corresponding:

assembly-type resource definitions,
online resource definitions via CEDA,
batch resource definitions via DFHCSDUP.

Related Documents

Installation - refer to Installing the Natural CICS Interface in the Natural Installation Guide for
Mainframes.
Utility - refer to the Natural utility SYSTP which provides various TP-monitor-specific functions
Operation, Individual Components - for information on operation and the individual components of
Natural in a CICS environmen, see also:
Node Error Program Considerations for Natural | CICS 3270 Bridge Considerations | Special Natural CICS
Functionality | Natural CICS Sample Programs | NCIUIDEX User ID Exit Interface | Invoking Natural from
User Programs | Asynchronous Natural Processing under CICS | Logging Natural Sessions under CICS |
Performance Considerations | Natural CICS Interface Debugging Facilities | Natural Work Files Under
CICS

NCISCPCB Generation Parameters
The Natural CICS interface system directory is generated by assembling and linking the NCISCPCB source
module; see the corresponding step of the CICS-specific Installation Procedure in the Natural Installation Guide
for Mainframes.

NCISCPCB contains the following macros:

NCMDIR
NCMTGD
NTSWPRM

The purpose of these macros and the individual parameters which can be specified in the macros NCMDIR and
NCMTGD are described in the following sections.

Copyright © Software AG 200212

Natural CICS Generation ParametersNatural CICS Generation Parameters

NCMDIR Macro Parameters
The NCMDIR macro is mandatory and must be specified as the first macro in NCISCPCB. It contains various
options for the system.

The individual parameters which can be specified in the NCMDIR macro are described below.

CICSPLX | ROLLFLS | ROLLSRV | SWPSIZE | TSKEY | TSRECSZ | USERS

CICSPLX - Switching of CICS Application Region

This parameter is applicable under OS/390 only.

CICSPLX=YES or
CICSPLX=subsystem-name

Switching of the CICS application region is enabled if YES or
subsystem-name (4 characters) is specified, see explanation below.

CICSPLX=NO Switching of the CICS application region is disabled. This is the default setting.

If a Natural CICS session is to be enabled to switch the CICS application region, this parameter must be set to
YES or to a subsystem-name. Natural under CICS will then pass its session information records (SIRs) to the
Authorized Services Manager’s SIP handler via the CICS task end. For more information, see the
Authorized-Services Manager in the Natural Operations for Mainframes documentation.

If a subsystem-name has been specified, this will be taken.

If YES has been specified, the SUBSID parameter value in the Natural parameter module will be taken.

Setting this parameter to YES or to a subsystem-name automatically sets the
ROLLSRV parameter to YES, unless ROLLSRV=subsystem name has been
specified.

ROLLFLS - Maximum Number of VSAM Roll Files

When generating the Natural CICS interface system directory, the ROLLFLS parameter defines the maximum
number of VSAM roll files which can be supported by the environment. Possible values are:

ROLLFLS=n The maximum number of roll files n can be set over a range of 0 to 9.

ROLLFLS=5 This is the default setting.

This parameter’s setting is ignored when you are using the Natural Roll Server.

ROLLSRV - Roll Server Rolling

This parameter is applicable under OS/390 only.

13Copyright © Software AG 2002

NCMDIR Macro ParametersNatural CICS Generation Parameters

ROLLSRV=subsystem-nameIf a subsystem-name (4 characters) is specified, this will be taken.

ROLLSRV=NO This is the default setting, if CICSPLX=NO. If CICSPLX is not NO,
ROLLSRV=YES is forced.

ROLLSRV=YES Specifying YES causes the subsystem name specified for the CICSPLX
parameter to be taken; if no such value is available, the SUBSID parameter value
specified in the Natural parameter module will be taken.

If the Natural Roll Server is to be used to save and restore the Natural session data over a screen I/O, this
parameter must be set to YES or subsystem-name, when the CICSPLX parameter is set to NO. If the CICSPLX
parameter is not set to NO, the ROLLSRV parameter is set to the CICSPLX parameter specification, if it is not
explicitly set to the subsystem-name.

SWPSIZE - Swap Pool Size

This parameter specifies the swap pool size (in kilobytes).

SWPSIZE=nnn nnn can be any numeric value.

No default value is provided. If you do not wish to use the swap pool, set SWPSIZE to "0".

This parameter’s setting is ignored when using the Natural Roll Server.

TSKEY - Prefixes for Natural CICS Temporary Storage Key

The TSKEY parameter defines the constant prefix of the temporary storage queue (see explanation below).
Possible values are:

TSKEY=(xxxx,yyyy) xxxx defines the prefix for roll data, yyyy defines the prefix for
pseudo-conversational restart data.

TSKEY=(NAT2,NCOM) This is the default setting.

When CICS temporary storage (main or auxiliary) is to be used for the Natural CICS interface roll facility or for
the communication area for pseudo-conversational Natural tasks (as described with the NCMPRM parameter
COMARET), names for queues of task dependent unique temporary storage must be specified.

These queue names consist of a constant 4-byte key and a task-related key. For terminal-dependent tasks, this
task-related key corresponds to the terminal ID, for asynchronous non-terminal tasks it corresponds the CICS
unique task number. The constant prefix of the temporary storage queue names is defined by the TSKEY
parameter.

The Natural CICS interface requires two 4-byte prefixes: one for roll data and one for pseudo-conversational
restart data. xxxx defines the prefix for roll data, yyyy defines the prefix for pseudo-conversational restart data.
The two prefixes must be different from each other and exclusive for Natural under CICS.

When running in a CICSplex environment, the CICS temporary storage prefix for Natural session restart
information must be defined in a CICS TST as REMOTE/SHARED to be accessible in all participating CICS
regions.

TSRECSZ - Record Sizes for Main and Auxiliary Temporary Storage

The TSRECSZ parameter defines the maximum record length for rolling of data if CICS temporary storage is to
be used as Natural CICS interface roll facility. A value specification of MAX for nnnnn and mmmmm sets the
maximum value which is possible in CICS. Possible values are:

Copyright © Software AG 200214

Natural CICS Generation ParametersSWPSIZE - Swap Pool Size

TSRECSZ=(nnnnn,mmmmm) The first subparameter "nnnnn" applies to CICS main temporary storage and
must be in the range of 4032 to 32763 or 0; if it is set to 0, CICS main
temporary storage cannot be used for a Natural roll facility.
The second subparameter "mmmmm" applies to CICS auxiliary temporary
storage and must be in the range of 3976 to 32763 or 0; if non-zero, this value is
used unconditionally; if set to 0, the Natural CICS interface sets the record
length which fits into an auxiliary temporary storage control interval, that is, CI
size minus VSAM control information minus CICS control information.

A user-defined record size greater than CI size results in fewer (logical) roll I/Os
at the expense of additional CICS overhead due to writing spanned records.

TSRECSZ=(32748,0) This is the default setting.

USERS - Session Information Record

This parameter specifies the number of session information record slots (SIRs). Possible values are:

USERS=(nnnnn,mmm) The subparameter "nnnnn" defines the number of SIRs to be held in the Natural CICS
directory module itself. "nnnnn" must be in the range from 1 to 32767. When the SIR
slots in the directory are occupied, the Natural CICS interface acquires a CICS shared
storage segment, large enough to hold the number of SIRs defined by "mmm", which
must be in the range from 0 to 255.

If the subparameter "mmm" is 0 or omitted, the system does not acquire additional
storage for SIRs if no free SIR slot is available in the system directory. If so, the
Natural CICS system is actually restricted to the number of users specified by the first
subparameter.

If a value other than 0 is specified for "mmm", secondary storage segments are
allocated automatically as required. Allocated secondary segments are freed again if
they are no longer needed.

USERS=(100,20) This is the default setting.

The Natural CICS interface permanently holds information about all active Natural sessions. Per session a
so-called Session Information Record (SIR) is maintained.

These SIRs are kept

in a Coupling Facility when running in a Parallel Sysplex environment;
in a data space of the Natural Authorized Services Manager when running in multiple CICS regions inside a
single OS/390 system;
in a CICS region’s main storage when running in a single CICS AOR (locally).

However, whenever a Natural session is active in a CICS region, it will occupy a SIR slot in the current
application region.

When running locally in a single CICS AOR, the USERS parameter applies to all Natural sessions. When
running in a CICSplex environment, USERS applies to the subset of Natural sessions which is currently active in
each of the participating CICS AORs.

15Copyright © Software AG 2002

USERS - Session Information RecordNatural CICS Generation Parameters

NCMTGD Macro Parameters
The NCMTGD macro is mandatory and must be specified for each thread group. The Natural CICS interface
allows you to define groups of threads. These groups are controlled/chosen by the CICS transaction ID at session
initialization. The common thread size for the various groups may differ and the groups can have different
options.
The thread group definitions are part of the Natural CICS system directory, as they are relevant to the whole
system, not just to a single session.

The individual parameters which can be specified in an NCMTGD macro are described below.

PFKEY | PRIMERF | THRDSZE | THREADS | TRAN | TYPE | XTRAN

PFKEY - PF/PA Keys for Thread Group

This parameter defines a single CICS transaction or a list of them.

PFKEY=xxx Possible values for xxx are: PF1 to PF24, PA1 to PA3. Also list of keys can be specified.
No default value is provided.

PFKEY=(xxx,xxx,...)Also a list of keys can be specified. This has to be enclosed in parantheses, e.g.
PFKEY=(PF12, PF14).

When starting a session, the Natural CICS interface scans through all thread group definitions for the current
transaction ID, or PF or PA key. If it cannot be found, the first thread group is taken as default.

At least one transaction ID (in character or hexadecimal format) or one
transaction initiating attention identifier must be specified for all groups,
except for the first group, which is used as the default group.

PRIMERF - Natural CICS Primary Roll Facility

The PRIMERF parameter defines the Natural CICS interface primary roll facility for all tasks defined in the
associated thread group. Therefore, this parameter does not apply to thread groups with TYPE=NONE. Possible
values are:

PRIMERF=VSAM The Natural CICS interface VSAM RRDS roll files are taken as the primary roll facility.
CICS auxiliary temporary storage is considered as the secondary roll facility, which means
that it is used if all primary roll files become full or unavailable.

PRIMERF=AUX CICS auxiliary temporary storage is taken as primary roll facility of the Natural CICS
interface.

PRIMERF=MAIN CICS main temporary storage is taken as Natural CICS interface primary roll facility.

PRIMERF=NONE The associated sessions do not roll at all. NONE is not valid for TYPE=SHR groups and
for groups with TYPE=ALIAS redefining TYPE=SHR groups.

No default value is provided.

This parameter is ignored when using the Natural Roll Server; if you force a Natural session with Roll Server to
run conversationally with no rolling, value NONE is taken.

Points to be observed:

Copyright © Software AG 200216

Natural CICS Generation ParametersNCMTGD Macro Parameters

PRIMERF=VSAM and PRIMERF=AUX have the same effect, when no VSAM RRDS roll file is available
in the CICS system.
PRIMERF=AUX and PRIMERF=MAIN have the same effect, when auxiliary temporary storage is not
defined in the CICS system.
If auxiliary temporary storage is not defined in the CICS system, a specification of PRIMERF=VSAM
implies that CICS main temporary storage is considered as secondary roll facility, in case the VSAM RRDS
roll files become unavailable or full.
If CICS main temporary storage is to be used as roll facility, the record size is defined by the TSRECSZ
parameter.

Note that sessions that are associated with thread groups defined with
PRIMERF=NONE cannot roll due to the lack of a roll facility and are
therefore conversational by design.

THRDSZE - Thread Size

The THRDSZE parameter defines the common thread size for TYPE=GETM and TYPE=SHR groups.

THRDSZE=nnn The thread size nnn can be equal to 40 or greater.
No default value is provided.

Note that this parameter defines the logical thread size that is available to Natural. However, the Natural CICS
interface NCI adds another 2 KB to the logical thread size for internal administration purposes. This means that
the physical thread size or length of the thread GETMAIN request is by 2 KB greater than the THRDSZE value.

THREADS - Number of Threads or Tasks Per Thread Group

This parameter specifies the number of threads or tasks as described below. Possible values are:

THREADS=nnn The number of threads can be equal to 999 or less.
No default value is provided.

For TYPE=SHR thread groups, the THREADS parameter is mandatory and defines the number of threads which
are to be allocated via GETMAIN (SVC or SHARED, depending on CICS version) during installation.

For TYPE=GETM and TYPE=NONE thread groups, the THREADS parameter is optional and determines the
maximum number of concurrently active Natural tasks per thread group.

The number of threads or the number of tasks per thread group is defined by providing thread control blocks
(TCBs).

While for TYPE=SHR thread groups, each thread is closely connected to its TCB. Threads are shared by
queueing up on the associated TCB. Thread groups of TYPE=GETM and TYPE=NONE only queue up on a
TCB to get active.

While sessions with TYPE=SHR thread groups compete for threads, the other session types compete for TCBs
with a thread already allocated (TYPE=GETM) or with no allocated thread at all (TYPE=NONE).

When the THREADS parameter is specified, the Natural profile parameters DBROLL and MAXROLL and the
calls to CMROLL are handled differently.

17Copyright © Software AG 2002

THRDSZE - Thread SizeNatural CICS Generation Parameters

TRAN - Transaction IDs for Thread Group

The TRAN parameter defines a single CICS transaction or a list of them.

TRAN= Possible values: one or more CICS transaction codes defined in the PCT for Natural.
No default value is provided.

The TRAN parameter expects transaction IDs to be in character format; transaction IDs with non-alphanumeric
characters have to be enclosed in apostrophes.

When starting a session, the Natural CICS interface scans through all thread group definitions for the current
transaction ID, or PF or PA key. If it cannot be found, the first thread group is taken as default.

A list of transaction IDs has to be enclosed in paranteses, e.g. TRAN=(NATU, XYZ).

At least one transaction ID (in character or hexadecimal format) or one
transaction initiating attention identifier must be specified for all groups,
except for the first group, which is used as the default group.

TYPE - Thread Type for Group

This parameter defines which type of thread is to be used for a given group. Possible values are:

TYPE=SHR
(default value)

CICS shared storage threads are used. The threads available for a thread group are shared by
all CICS transactions defined for this group. Thread selection when starting a CICS task is
done by an ENQUEUE/DEQUEUE technique. If currently no thread is available, a wait queue
for this thread group is maintained.

When running in a SYSPlex environment, the Natural parameter RELO=OFF forces sessions
with TYPE=SHR threads to be conversational to prevent a CICS region switch.

TYPE=GETM Threads allocated via GETMAIN are used, which means that a thread is actually acquired
performing a CICS GETMAIN operation - EXEC CICS GETMAIN FLENGTH - with the
thread group’s common thread size. Using threads allocated via GETMAIN, each Natural task
has exclusive thread storage available until it is terminated; that is, for pseudo-conversational
tasks from screen I/O to screen I/O.

If the Natural parameter RELO=OFF or PSEUDO=OFF is specified, tasks using threads
allocated via GETMAIN are forced to be conversational, as there is no guarantee that after a
FREEMAIN of the thread a subsequent GETMAIN obtains the same storage in memory. As
thread storage allocated via GETMAIN exclusively belongs to the owning task, however, such
tasks can be defined as non-rollable (see the PRIMERF parameter), which means that a given
thread belongs to a given task until the end of the Natural session. If so, the task is
conversational by design and no rolling is done.

TYPE=NONE No threads are used by transactions defined in this thread group and all Natural GETMAIN
requests are directly passed to CICS for an EXEC CICS GETMAIN FLENGTH request. By
design, such tasks cannot roll and are therefore conversational.

TYPE=ALIAS The current NCMTGD macro provides different options for the thread group defined by the
previous NCMTGD macro specification. However, only thread groups of TYPE=GETM and
TYPE=SHR can be redefined by one or more NCMTGD TYPE=ALIAS macro requests.
Up to 99 thread groups are supported, which means that up to 99 NCMTGD macro
specifications with TYPE other than ALIAS are recognized.

Copyright © Software AG 200218

Natural CICS Generation ParametersTRAN - Transaction IDs for Thread Group

XTRAN - Hexadecimal Transaction IDs for Thread Group

The XTRAN parameter is equivalent to the TRAN parameter, but it expects the transaction ID to be in
hexadecimal format.

XTRAN= Possible values: one or more CICS transaction codes defined in the PCT for Natural.

No default value is provided.

At least one transaction ID (in character or hexadecimal format) or one
transaction initiating attention identifier must be specified for all groups,
except for the first group, which is used as the default group.

A list of transaction IDs in hexadecimal format has to be enclosed in parantheses, e.g. XTRAN=(D5C1E3E4,
E7E8E9).

NTSWPRM Macro Parameters
The NTSWPRM macro is used to define the various aspects of the swap pool. If no swap pool is to be used, omit
this macro. For more information, see Natural Swap Pool in the Natural Operations for Mainframes
documentation.

NCIPAPM Generation Parameters

NCMPRM Macro Parameters
The macro NCMPRM determines all Natural session options that are relevant in a CICS environment. This
macro is part of the Natural CICS parameter module, which is created in the corresponding step of the Natural
under CICS Installation Procedure in the Natural Installation Guide for Mainframes.

A sample NCMPRM macro definition, including all default settings, is contained in the NCIPARM source
module in dataset NCInnn.SRCE.

The individual parameters of the NCMPRM macro are described below.

ASA | BACKEND | BACKOUT | CHAP | COMACAL | COMAMSG | COMARET | CONSOLE | FLDLEN |
LOGDEST | MSGDEST | MSGTRAN | PREFIX | PSTRNID | RESENDC | RESENDS | RJEDEST | RJEUSER |
SIGNON | SLCALL | SNDLAST | TERMVAR | TRANCHK | UCTRAN | WAITIME

ASA - Use ASA Control Characters For Natural Message Logging

The ASA parameter determines if messages routed to the Natural CICS interface error message destination must
have a leading ASA control character or not. See also the MSGDEST parameter. Possible values are:

ASA=YES Leading ASA control character required.

ASA=NO Leading ASA control character not required. This is the default setting.

19Copyright © Software AG 2002

NTSWPRM Macro ParametersNatural CICS Generation Parameters

BACKEND - Back-End Program Invocation Control

The BACKEND parameter defines whether a specified back-end program or transaction is to be invoked after
the session has terminated (normally or abnormally).

The BACKEND parameter has two sub-parameters. The second sub-parameter is optional. It controls if a
back-end program is to be invoked in the event of a terminal error. This also includes session clean-up tasks
started by NEP.

Possible values are YES/NO for both sub-parameters, but the default values are different.

BACKEND=YES Same as BACKEND=(YES,NO). This is the default if the BACKEND parameter is
omitted. A potential back-end program or transaction is always invoked, particularly
after task abends, but not in the case of terminal errors.

When a back-end program is invoked, the Natural termination message and return
code are passed to the CICS transaction work area (TWA). In addition, the same
information can be passed to a CICS COMMAREA, as described with the
COMAMSG parameter .

BACKEND=(YES,YES) Same as BACKEND=(,YES). A potential backend program or transaction is always
invoked, particularly after abends including terminal errors.

BACKEND=NO Forces BACKEND=(NO,NO). A potential back-end program or transaction is only
invoked if the Natural session has been terminated normally; that is, with a Natural
termination message.

BACKOUT - Backout Transaction in the Case of Unrecoverable Abends

The BACKOUT parameter defines whether the Natural CICS interface is to perform a transaction backout by
means of an EXEC CICS SYNCPOINT ROLLBACK call or not. Possible values are:

BACKOUT=YES All pending file updates are backed out. This is the default setting.

BACKOUT=NO All pending file updates are committed.

Because of its abnormal termination exit, the Natural CICS interface intercepts all abends. If an abend is not
recoverable, all resources of the abending session are released and the session is terminated via EXEC CICS
RETURN; that is, it is terminated "normally" in terms of CICS. Thus, at the end of the task, "pending" file
updates are not automatically backed out by CICS.

CHAP - Change Task’s Dispatching Priority

The CHAP parameter defines how the Natural CICS interface is to treat long-running tasks reaching the
DBROLL and/or MAXROLL call limits. Possible values are:

CHAP=YES The task’s dispatching priority is decremented by 1 every time it reaches the DBROLL and/or
MAXROLL call limits. The original task dispatching priority is re-established at the next screen
I/O.

CHAP=NO The session is suspended. This is the default setting.

Copyright © Software AG 200220

Natural CICS Generation ParametersBACKEND - Back-End Program Invocation Control

COMACAL - CICS COMMAREA Usage for Subroutine Calls

The COMACAL parameter defines whether the Natural CICS interface is to take advantage of the CICS
command level COMMAREA facility when invoking external subroutine programs with EXEC CICS LINK.
Possible values are:

COMACAL=YES
(default value)

The Natural parameter list addresses are passed in both the CICS TWA (as with Natural
Version 1) and in a CICS COMMAREA (as with Natural Version 2).
The COMMAREA length setting is 8 or 12, depending on the FLDLEN parameter’s
setting.
Specifying YES in particular improves the communication with external subroutine
programs written in CICS command level, because it is easier for these subroutines to
access a CICS COMMAREA than a CICS TWA; it also results in less overhead.

COMACAL=NO Forces Natural to pass the Natural request parameter list address to an external subroutine
program in the CICS TWA only.
The COMMAREA length setting is 0.

Actually, the COMACAL parameter can provide "compatibility mode" to Natural Version 1 regarding the way
of passing data to called external subroutines.

Set this parameter to YES if you want to take advantage of the CALL option SET CONTROL ’P=C’; see also
the description of the terminal command "%P" in the Natural Reference documentation.

COMAMSG - CICS COMMAREA Usage for Termination Messages

The COMAMSG parameter controls whether to pass the Natural termination message and return code to a
potential back-end program or transaction in a CICS COMMAREA. Possible values are:

COMAMSG=YES The Natural back-end parameter area and potential termination data are passed in a CICS
COMMAREA. This is the default setting.

COMAMSG=NO This setting forces Natural at session termination (normal or abnormal) to pass the Natural
back-end parameter area (see also Back-End Program Calling Conventions in the Natural
Operations for Mainframes documentation) to a potential back-end program in the CICS
TWA only.
Potential termination data are still passed in the COMMAREA. If there are no termination
data available, no COMMAREA is passed.

COMARET - CICS COMMAREA Usage for Task Control

The COMARET parameter defines whether the Natural CICS interface is to take advantage of the CICS
command level COMMAREA facility when terminating and restarting pseudo- conversational tasks.

21Copyright © Software AG 2002

COMACAL - CICS COMMAREA Usage for Subroutine CallsNatural CICS Generation Parameters

COMARET=YES A pseudo-conversational Natural task saves its restart information into a CICS
COMMAREA, unless it has been invoked with EXEC CICS LINK or the equivalent CICS
macro request.
This is the default setting.

COMARET=NO Forces Natural to place its restart information into CICS main temporary storage, which
results in more overhead because of additional CICS service calls necessary to place and
retrieve this information.
The CICS temporary storage key used consists of a prefix string (as defined with the
NCMDIR parameter TSKEY and of the terminal ID. If running in a CICSplex
environment, the CICS temporary storage key prefix must be defined in a CICS TST as
REMOTE/SHARED to be accessible in all participating CICS regions.

Actually the COMARET parameter can provide compatibility to Natural Version 1 in terms of where to put
pseudo-conversational restart data.

CONSOLE - CICS Terminal ID for the Operator Console

The CONSOLE parameter specifies the terminal ID used by Natural for message switching to the operator
console. Possible values are:

CONSOLE=xxxx xxxx can be any 4-character terminal ID.

CONSOLE=CN01 This is the default setting under OS/390.

CONSOLE=CNSL This is the default setting under VSE/ESA.

The console terminal must allow automatic transaction initiation (ATI) in the terminal entry.

FLDLEN - Supply Field Length List On External Program Call

The FLDLEN parameter defines whether the field length list address is to be passed or not when invoking
external subroutines via EXEC CICS LINK.

FLDLEN=NO
(default value)

Only the parameter address list address and the field description list address (R1 and R2, as
described with the CALL statement) are passed in the CICS TWA and in a CICS
COMMAREA, unless the COMACAL is set to NO.

FLDLEN=YES The field length list address (R3, as described with the CALL statement) is passed in addition
in a CICS TWA and in a COMMAREA, respectively.

The following table lists the combinations of COMACAL and FLDLEN and their associated CALL parameter
values:

NCIPARM
Parameters

CALL Parameters

COMACAL FLDLEN TWA parameter
addresses

COMMAREA parameter
addresses

COMMAREA
length

NO NO 2 n/a 0

NO YES 3 n/a 0

YES NO 2 2 8

YES YES 3 3 12

Copyright © Software AG 200222

Natural CICS Generation ParametersCONSOLE - CICS Terminal ID for the Operator Console

In any case, the last address passed gets a flag saying it is the last address in the list. This flag is set in the high
order bit in the address field.

LOGDEST - Natural CICS Logging Destination

This parameter specifies the name of a CICS destination, where the Natural CICS interface writes its session log
records to. Possible values are:

LOGDEST= Any valid destination name

LOGDEST=NLOG This is the default setting.

A CICS destination control table entry must be defined for the optional Natural CICS log dataset.

MSGDEST - Destination ID for Natural Error Message Logging

MSGDEST= Any valid destination name

MSGDEST=NERR This is the default setting.

This parameter specifies the name of the CICS destination to be used by the Natural/ CICS interface to log the
Natural session termination message if a session terminates abnormally.

Since these messages are in character format, any already available CICS destination (for example, CSSL) can
be used rather than defining a new one. For more information, see also the ASA parameter.

MSGTRAN - Internal Message Switching Transaction ID

The parameter specifies the transaction ID internally used by the Natural message switching and asynchronous
session flushing facilities.

MSGTRAN= Any valid CICS transaction ID.

MSGTRAN=NMSG This is the default setting.

This transaction ID must be different from any transaction ID used to invoke Natural, and it must be defined in
CICS.

PREFIX - Common Prefix for Programs and Files

This parameter defines a common module prefix for the Natural CICS components as the Natural CICS system
directory, the CICS 3270 Bridge XFAINTU exit, the VSAM roll files, and system control records in CICS main
temporary storage holding information about all permanent GETMAIN storages by NCI as local pools and
shared threads. The TS control record keys are of the form prefix X CR, where X is an unprintable character.

PREFIX=prefix prefix can be 1 to 5 bytes long and must conform to the naming conventions for programs and
files.
No default value provided.

PSTRNID - Control of *INIT-PROGRAM Variable Setting

When a Natural task is activated by a front-end program, the PSTRNID parameter determines, how the Natural
variable *INIT-PROGRAM is set. Possible values are:

23Copyright © Software AG 2002

LOGDEST - Natural CICS Logging DestinationNatural CICS Generation Parameters

PSTRNID=YES *INIT-PROGRAM is set to the actual transaction ID used for Natural CICS
pseudo-conversational task processing, which is not necessarily the transaction ID of the task
which originally started the Natural session. This is the default setting.

PSTRNID=NO *INIT-PROGRAM is set to the transaction ID of the task, which originally started the
Natural session.

RESENDC - Check for Screen Re-sending after Subroutine Calls

Natural optimizes the 3270 output data stream by default. The screen imaging technique used by Natural makes
it possible for Natural to always remember the map most recently sent. Thus, when sending a new map, Natural
actually sends "updates" of the old map only. With this logic, a screen image can get destroyed by 3GL programs
called by Natural which perform screen I/Os themselves.

RESENDC=YES
(default value)

The Natural CICS interface checks whether any called 3GL programs have performed
screen I/Os. If so, the Natural CICS interface causes Natural to send a full screen with the
next screen I/O.

RESENDC=NO The Natural CICS interface causes Natural to send only updates.

RESENDS - Screen Re-send Check after Pseudo-Conversational Session
Resume

Natural optimizes the 3270 output data stream by default. The screen imaging technique used by Natural makes
it possible that Natural always remembers the map most recently sent. Thus, Natural only sends "updates" when
sending a new map, too. With this logic a screen image can get destroyed, for example, by message switching
(CICS CMSG transaction) during pseudo-conversational screen I/O.

RESENDS=YES
(default value)

During the Natural session, the Natural CICS interface also recognizes screen I/Os from
outside and causes Natural to re-send the screen most recently issued.

RESENDS=NO Natural only sends "updates" when sending a new map.

RJEDEST - Name of the Natural CICS Submit Destination

The parameter applies to OS/390-type operating systems only.

RJEDEST= Destination name.

RJEDEST=NRJEThis is the default setting.

RJEDEST specifies the destination name of the CICS extra partition destination used by the NATRJE utility for
submitting jobs via the JES internal reader facility.

Copyright © Software AG 200224

Natural CICS Generation ParametersRESENDC - Check for Screen Re-sending after Subroutine Calls

An appropriate CICS destination must be defined in the CICS DCT and
start-up JCL; see also the corresponding step of the Installation Procedure
for the Natural CICS Interface (in the Natural Installation Guide for
Mainframes).

Function code "L" or "B" (parm3 of the NATRJE CALL statement) must be
set for the last NATRJE call.

L When "L" is specified and nrje is an extra partition destination, the
destination is closed, which in turn triggers the start of the internal reader.

B When "B" is specified and nrje is an indirect destination, the destination is
not closed; in this case, a trailing "/*EOF" card must be submitted in order to
trigger the start of the internal reader.

For further information on the Natural NATRJE utility, refer to the Natural Utilities for Mainframes
documentation.

RJEUSER - Submit to POWER User ID Setting

The RJEUSER parameter only applies to VSE/ESA operating systems using the POWER spooling system.

RJEUSER=YES
(default value)

RJEUSER=(YES,CICS)

The Natural system variable *INIT-USER is used as the XPCC user ID and the
POWER JECL must be set up appropriately by the user.

RJEUSER=(YES,NAT) The Natural system variable *USER is used as the XPCC user ID and the POWER
JECL must be set up appropriately by the user.

RJEUSER=NO The user ID ’R000’ is used as the XPCC user ID for all jobs submitted by the Natural
CICS interface.

In VSE/ESA operating systems, Natural under CICS performs job submission by means of XPCC macro
requests.

The XPCC macro requires the specification of a user ID, thus giving access to the submitted job’s list or punch
output to the submitting user only, unless appropriate LDEST/PDEST parameters have been specified in the * $$
JOB statement or appropriate DEST parameters have been specified in the *$$ LST or * $$ PUN statement
respectively.

Using the special user ID ’R000’, however, gives common access to list or punch output of a submitted job
without having to code appropriate target destinations in the JECL.

SIGNON - SIGNON Behavior

This parameter defines how Natural under CICS should deal with a CICS user ID for a Natural session.

SIGNON=NO
(default value)

Natural under CICS always does an EXEC CICS ASSIGN USERID (..); when users have not
signed on to CICS via CESN/CSSN, recent CICSes will return the CICS default user ID.

SIGNON=YES Natural under CICS only does an EXEC CICS ASSIGN USERID (..)
a) if it is a terminal task,
b) if the user has signed on to CICS.

25Copyright © Software AG 2002

RJEUSER - Submit to POWER User ID SettingNatural CICS Generation Parameters

Further processing:

Any non-blank result of EXEC CICS ASSIGN USER ID (..), if executed, is accepted for Natural *INIT-USER
ID.

If blank, the edited (unpacked) CICS task number is taken instead for asynchronous CICS sessions. For
terminal-bound tasks, the CICS 3-byte operator ID is taken when it is non-blank, otherwise the CICS terminal ID
is taken for Natural *INIT-USER ID.

Notes:

1. CICS terminal IDs are unique within a CICS region, while CICS user and operator are not necessarily.
However, CICS terminal IDs may have duplicates in other CICS regions resulting in duplicate user IDs in
Adabas.

2. Natural user ID exit NATUEX1 or Natural CICS user ID exit interface NCIUIDEX may be used to
customize *INIT-USER.

SLCALL - Standard Linkage Call

The Natural CALL statement invokes a dynamic non-Natural program using CICS conventions, that is, via an
EXEC CICS LINK. A dynamic non-Natural program can also be invoked with standard linkage conventions (for
example BALR/BASR/BASSM 14,15) if an appropriate indicator is set in the Natural program before the CALL
statement is executed (see also the terminal command %P=S).

The terminal command %P=S bypasses the SLCALL automatism of using a
certain linkage convention.

SLCALL enables you to automatically use a certain linkage convention. This is particularly relevant in CICS
systems where the CICS macro level API is no longer supported, which is the case in CICS/ESA Version 3.2 or
above. Possible values are:

SLCALL=YES The Natural CICS interface determines whether the module to be called is a valid CICS
command level program by looking for the string "DFH" at the module’s load point. If "DFH"
is found, the program is invoked via an EXEC CICS LINK. If "DFH" is not found, the module
is treated according to standard linkage conventions and is invoked via BALR/BASSM 14,15.

SLCALL=NO The linkage convention is not used. This is the default setting.

SNDLAST - LAST Option Usage for EXEC CICS SEND Commands

The SNDLAST parameter is useful for SNA terminals (LUTYPE2) with bracket protocol to force "end bracket"
for pseudo-conversational screen I/Os.

SNDLAST=YES
(default value)

The LAST option is used for EXEC CICS SEND commands before the task terminates in
pseudo-conversational mode.

SNDLAST=NO The LAST option is not used.

TERMVAR - Terminal ID Variable for Natural Work Files

This parameter enables a Natural user to have exclusive Natural work files under CICS without having to know
the terminal ID.

Copyright © Software AG 200226

Natural CICS Generation ParametersSLCALL - Standard Linkage Call

TERMVAR=xxxx Variable xxxx is a four-character string. See explanation below.

TERMVAR=&TID This is the default setting.

As terminal IDs are unique in a CICS session, exclusive work files in CICS temporary storage usually contain
the CICS terminal ID. TERMVAR allows you to define a variable. If this variable is found in a work file name,
it will be replaced by the actual terminal ID. Strings with non-alphanumeric characters must be enclosed in
apostrophes (’ ’).

The variable string must not contain the substring ’**’, because Natural will
replace this substring with the work file number, which makes it impossible to
insert the terminal ID.

TRANCHK - Check Input Map for Transaction ID

If a connection to a CICS session gets lost or dropped (for example under VM or when a session manager is
installed) without having terminated the session, another user can get into this open session when calling CICS.
Usually, the first action of a user in a CICS environment is to enter a transaction ID. This parameter offers the
following options:

TRANCHK=YES The Natural CICS interface checks whether the first 4 bytes of the transaction ID entered by
the user matches the Natural transaction ID. If so, the Natural CICS interface assumes a
"restart" after a connection has been lost or dropped. All resources of the "old" session are
freed and a new session is started.

TRANCHK=NO Data entered by the user are not checked for the Natural transaction ID. This is the default
setting.

UCTRAN - Lower/Mixed Case Support in Natural

This parameter enables or disables the lower/mixed case support. Possible values are:

UCTRAN=YES Lower/mixed case support is enabled. This is the default setting.

UCTRAN=NO Lower/mixed case support is disabled.

To accomplish lower/mixed case support for pseudo-conversational Natural sessions, it is necessary that the
terminal input be not already translated to upper case before the Natural nucleus gets control. Therefor the
Natural CICS interface by default switches terminals defined with UCTRAN(YES) into mixed mode
(UCTRAN(TRANID)) for the lifetime of the Natural session.

As for security reasons any modification of CICS definitions / control blocks may not be desired, the Natural
CICS interface can be prevented from modifying a terminal’s upper case translation status by setting this
NCIPARM UCTRAN parameter to NO. If so, the user must define a terminal as running in "lower case" (CICS
TYPETERM parameter UCTRAN(TRANID/NO)) to be able to use the Natural lower/mixed case support.
As all CICS versions supported by Natural Version 3.1 provide "case switching" on transaction level via the
UCTRAN parameter in a transaction’s PROFILE, this NCIPARM parameter should be set to NO, thus leaving
lower/mixed case support to CICS.

Note:
In CICS, the combination of the UCTRAN parameters in both TYPETERM and PROFILE definitions
determine how CICS treats the terminal input of a pseudo-conversational transaction (for details see CICS
Resource Definition Manual or others). Therefor it is always advisable that mainly the PROFILE associated
to a transaction defines the required upper case translation status thus making an application unaffected by
any TYPETERM upper case translation mode changes.

27Copyright © Software AG 2002

TRANCHK - Check Input Map for Transaction IDNatural CICS Generation Parameters

WAITIME - Wait Time Interval for a Local System Recovery Task

This parameter defines after how many seconds the system recovery task should become active.

WAITIME= n n = any number.

WAITIME=30 The default setting is 30 seconds.

The Natural CICS interface’s system recovery task checks the Natural CICS environment in a CICS application
region for consistency and for renegade "dead" sessions, periodically or on request. It is also necessary for the
Natural CICS interface’s Natural session flush facility.

A session marked to be flushed (either via the SYSTP utility or by a CICS node error program) can only be
terminated in the CICS application-owning region (AOR) in which the session is, or has last been, active.

At system initialization time, Natural under CICS starts an asynchronous system recovery task (with the
transaction ID as defined with the MSGTRAN parameter in the CICS AOR. This task becomes active every n
seconds (n being the value of the WAITIME parameter), checks the system for pending session flush requests in
its region, activates the flushing process, and then deactivates itself again.

Copyright © Software AG 200228

Natural CICS Generation ParametersWAITIME - Wait Time Interval for a Local System Recovery Task

NCISCPRI Warnings and Error Messages
This part of the Natural CICS Interface documentation describes the NCISCPRI Warnings and Error Messages.

References to CICS Tables

Where appropriate, any references to CICS tables (DCT, FCT, PCT, PPT, TCT, etc.) can be considered as
references to the corresponding:

assembly-type resource definitions,
online resource definitions via CEDA,
batch resource definitions via DFHCSDUP.

Related Documents

Installation - refer to Installing the Natural CICS Interface in the Natural Installation Guide for
Mainframes.
Utility - refer to the Natural utility SYSTP which provides various TP-monitor-specific functions
Operation, Individual Components - for information on operation and the individual components of
Natural in a CICS environmen, see also:
Node Error Program Considerations for Natural | CICS 3270 Bridge Considerations | Special Natural CICS
Functionality | Natural CICS Sample Programs | NCIUIDEX User ID Exit Interface | Invoking Natural from
User Programs | Asynchronous Natural Processing under CICS | Logging Natural Sessions under CICS |
Performance Considerations | Natural CICS Interface Debugging Facilities | Natural Work Files Under
CICS

NCISCPRI Warnings and Error Messages
The following messages may be output during the initialization of VSAM roll files for Natural; see also the
corresponding step of the Installation Procedure for the Natural CICS Interface in the Natural Installation Guide
for Mainframes:

mmmmmmmm REQUEST FAILURE AT OFFSET xxxxx, RTC=rrrr, ERROR=eeee,
FTNCD=ffff (E)

A VSAM macro request failed. mmmmmmmm is the failing macro; xxxxx is the offset of the macro request
within NCISCPRI; rrrr , eeeee and fffff are the VSAM macro request return, feedback and function code.

RECORD SIZE IS LESS THAN OPTIMUM OF CI-SIZE - 7 (W)

For an (unblocked) VSAM file, the maximum possible record size is the control interval size minus 7. Any
smaller record size means wasted disk space and can result in more roll I/Os.

ACCESSED FILE IS NOT AN RRDS FILE (E)

The VSAM file to be initialized is not an RRDS, but a KSDS or ESDS file. Only VSAM RRDS files are
supported as VSAM roll files for Natural.

29Copyright © Software AG 2002

NCISCPRI Warnings and Error MessagesNCISCPRI Warnings and Error Messages

RECORD SIZE IS LESS THAN ALLOWED MINIMUM OF 4089 (E)

The minimum VSAM control interval size supported by the Natural CICS interface is 4096 and the minimum
record size supported by Natural under CICS is the corresponding optimum record size.

PARAMETER INPUT OBSOLETE AND THEREFORE IGNORED (W)

NCISCPRI does not require parameter input in JCL stream. But if available, it is retrieved (until the end-of-data).
The message is not issued for null files.

Copyright © Software AG 200230

NCISCPRI Warnings and Error MessagesNCISCPRI Warnings and Error Messages

Customizing VSAM RRDS Roll Files
This part of the Natural CICS Interface documentation describes the customization of VSAM RRDS roll files. It
covers the following topics:

Increasing the Number of VSAM RRDS Roll Files
Decreasing the Number of VSAM RRDS Roll Files
Changing the Characteristics of the VSAM RRDS Roll Files

This section does not apply if you are using the Natural Roll Server.

References to CICS Tables

Where appropriate, any references to CICS tables (DCT, FCT, PCT, PPT, TCT, etc.) can be considered as
references to the corresponding:

assembly-type resource definitions,
online resource definitions via CEDA,
batch resource definitions via DFHCSDUP.

Related Documents

Installation - refer to Installing the Natural CICS Interface in the Natural Installation Guide for
Mainframes.
Utility - refer to the Natural utility SYSTP which provides various TP-monitor-specific functions
Operation, Individual Components - for information on operation and the individual components of
Natural in a CICS environmen, see also:
Node Error Program Considerations for Natural | CICS 3270 Bridge Considerations | Special Natural CICS
Functionality | Natural CICS Sample Programs | NCIUIDEX User ID Exit Interface | Invoking Natural from
User Programs | Asynchronous Natural Processing under CICS | Logging Natural Sessions under CICS |
Performance Considerations | Natural CICS Interface Debugging Facilities | Natural Work Files Under
CICS

Increasing the Number of VSAM RRDS Roll Files
Up to 9 VSAM RRDS roll files can be allocated. Each roll file has an ID consisting of a user-defined prefix
followed by a fixed suffix. The prefix can be 1 to 9 characters long. The suffix consists of two characters from
"R1" to "R9".

To add a new VSAM roll file, perform the following steps:

1. Create an empty VSAM RRDS conforming to your local site standards. Then initialize the dataset using the
batch program NCISCPRI, which must have been assembled during the Natural installation.The SPACE
and RECORDSIZE attributes can differ between different roll files, so you can modify them as required to
find the best values in your environment.

2. Create an FCT entry and change the CICS JCL accordingly, using the prefix/suffix for both.

The new roll file becomes available when the Natural CICS interface is initialized again.

31Copyright © Software AG 2002

Customizing VSAM RRDS Roll FilesCustomizing VSAM RRDS Roll Files

Decreasing the Number of VSAM RRDS Roll Files
Perform the following steps:

1. Ensure that Natural is not active.
2. Either delete the FCT and JCL definitions or delete the file.

The number of roll files is adjusted when the Natural CICS interface is initialized again.

Changing the Characteristics of the VSAM RRDS Roll
Files
Perform the following steps:

1. Execute the procedures described above for decreasing the number of roll files.
2. Execute the procedures for increasing the number of roll files.

Copyright © Software AG 200232

Customizing VSAM RRDS Roll FilesDecreasing the Number of VSAM RRDS Roll Files

Natural in CICS MRO Environments
This part of the Natural CICS Interface documentation describes the functionality of Natural in CICS
Multi-Region (MRO) Environments. It covers the following topics:

NCIPARM Parameter COMARET Set to YES
NCIPARM Parameter COMARET Set to NO

References to CICS Tables

Where appropriate, any references to CICS tables (DCT, FCT, PCT, PPT, TCT, etc.) can be considered as
references to the corresponding:

assembly-type resource definitions,
online resource definitions via CEDA,
batch resource definitions via DFHCSDUP.

Related Documents

Installation - refer to Installing the Natural CICS Interface in the Natural Installation Guide for
Mainframes.
Utility - refer to the Natural utility SYSTP which provides various TP-monitor-specific functions
Operation, Individual Components - for information on operation and the individual components of
Natural in a CICS environment, see also:
Node Error Program Considerations for Natural | CICS 3270 Bridge Considerations | Special Natural CICS
Functionality | Natural CICS Sample Programs | NCIUIDEX User ID Exit Interface | Invoking Natural from
User Programs | Asynchronous Natural Processing under CICS | Logging Natural Sessions under CICS |
Performance Considerations | Natural CICS Interface Debugging Facilities | Natural Work Files Under
CICS

Special considerations apply when running Natural in a CICS multi-region (MRO) environment.

NCIPARM Parameter COMARET Set to YES
When COMARET is set to YES, Natural session data are kept in two different CICS regions:

The session restart information is kept in the COMMAREA linked to the terminal entry in the CICS
terminal owning region (TOR).
The actual session data are kept in the CICS application owning region (AOR); that is, the thread, swap
pool, or roll facility.

This may lead to inconsistencies when, for example, the AOR is restarted, but the TOR still contains old
"pending" Natural sessions; resuming such a session results in a corresponding error message.

NCIPARM Parameter COMARET Set to NO
When COMARET is set to NO, all Natural session data are kept in the AOR, thus preventing the inconsistencies
mentioned above.

However, there may be a security concern when a terminal is removed from the TOR (either back to VTAM or
by switching the session manager or power off), and another terminal dialing to this TOR receives the ID of the
removed terminal and enters the Natural transaction code: then this terminal resumes the session of the

33Copyright © Software AG 2002

Natural in CICS MRO EnvironmentsNatural in CICS MRO Environments

previously removed terminal because of the restart information in the AOR’s temporary storage, which contains
the terminal ID as part of the queue name.

To prevent such a situation, a node error program (NEP) can be installed (see Node Error Program
Considerations for Natural and Natural CICS Sample Programs), which terminates a Natural session when the
associated terminal is removed.

Copyright © Software AG 200234

Natural in CICS MRO EnvironmentsNCIPARM Parameter COMARET Set to NO

CICS Node Error Program Considerations
for Natural
This section discusses CICS node error program considerations. The following topics are covered:

Normal Situation
Situations Not under Control of Natural CICS Interface
Recovery Mechanisms
Special Considerations
Example Dummy Program

See also:

Installing a CICS Node Error Program
For information on installing a CICS node error program, refer to the section concerning user-replaceable
programs in the CICS Customization Guide for your CICS version.

Normal Situation
Whenever a Natural session is active, CICS resources such as thread storage, roll facility entries (that is, records
in a VSAM RRDS file or in a CICS temporary storage queue), swap pool slots etc. are used.

If these resources are under the control of the Natural CICS interface, they are correctly released whenever a
session terminates normally or abnormally.

Situations Not under Control of Natural CICS Interface
The following cases cannot be controlled by the Natural CICS interface:

1. A non-Natural program called by Natural issues an EXEC CICS ABEND CANCEL command or the
equivalent CICS macro request: the CICS task is canceled without the Natural CICS interface receiving
control to properly release all session resources.

2. Some CICS monitor products offer tools to purge CICS tasks, bypassing any abnormal termination exit set
by the application. If a Natural task is canceled this way, the Natural CICS interface has no chance to
release the resources still owned by the session.

3. A user disconnects a terminal from the CICS region (by switching the power off or using an adequate
session manager function) while a Natural session is currently not active in CICS (pseudo-conversational
screen I/O).

Recovery Mechanisms
The Natural CICS interface provides some recovery mechanisms to recover from such situations; for example:

Whenever a new Natural session is to be started, a table is scanned for another Natural session still active with
the same terminal ID. If such a session exists, it is logically terminated, and all its resources are released prior to
starting the new one.

However, it may take quite a long time between logically terminating the session and releasing its resources, and
there may also be a security concern:

35Copyright © Software AG 2002

CICS Node Error Program Considerations for NaturalCICS Node Error Program Considerations for Natural

When the NCIPARM generation parameter COMARET is set to NO, the information to resume a Natural
session is kept in a CICS temporary storage record with the terminal ID being part of the temporary storage
queue name. If another CICS user tries to start Natural with this terminal ID, he/she will resume the old Natural
session rather than starting a new one.

The third case in the above list is the most crucial one. CICS provides a node error program (NEP) exit interface,
which can be used in these cases to trigger the Natural CICS interface to terminate the lost session. An
appropriate program called NCIZNEP is provided in the Natural CICS source library (see Natural CICS Sample
Programs); it must be called by a DFHZNEP node error program.

Special Considerations
There are still some items to be considered:

With CICS versions prior to CICS/ESA 3.2, the CICS node error program had to be written using CICS
macro level calls, whereas with CICS/ESA 3.2 and above, the CICS node error program must be a
command level program.

Therefore, the Natural CICS source library contains two sample node error programs: XNCINEP1 for CICS
versions prior to CICS/ESA 3.2, and
XNCINEP2 for CICS/ESA 3.2 and above.

Both sample programs do not perform anything special for the Natural CICS environment, they merely call
(via LINK) the NCIZNEP program, which then deals with Natural under CICS.

DFHZNEP may already be customized for a specific installation; as only one node error program is
possible, the logic of the relevant XNCINEPx program should be adapted to the existing DFHZNEP logic.
In MRO environments, DFHZNEP must be installed in the TOR.
When you are using the CICS storage protection feature with CICS 3.3 or above, the NCIZNEP program
must be defined with EXECKEY(CICS).
In the case described under 3. above, DFHZNEP may receive control more than once for various internal
error codes, since each internal error code is related to a specific CICS error message, but there may be
more than one error message resulting from a given action.
The CICS control block constellation may have changed each time a node error program has been invoked,
for example, the COMMAREA and NEXTRANSID information in the TCTTE may have been lost after a
certain node error event.
In this case the NCIPARM parameter COMARET must be set appropriately, which means that you cannot
choose a node error event for your node error program to be invoked when passing the Natural
pseudo-conversational session restart data in a CICS COMMAREA that has already been cleaned up by
CICS.

Example Dummy Program
If you want to know how many times and with what error codes DFHZNEP is invoked on certain actions and
how the TCTTE should look, write a dummy node error program, which only issues CICS trace requests
showing the requested information.

The following sample enables a DFHZNEP error processor to receive control for all possible error codes passed
to DFHZNEP:

.
DFHSNEP TYPE=INITIAL
ORG NEPTT
DC 256X’03’ invoke error processor ’3’ for ALL error codes
ORG ,

Copyright © Software AG 200236

CICS Node Error Program Considerations for NaturalSpecial Considerations

DFHSNEP TYPE=ERRPROC,GROUP=3,CODE=49
.
set up requested information and issue trace request(s)

37Copyright © Software AG 2002

Example Dummy ProgramCICS Node Error Program Considerations for Natural

CICS 3270 Bridge Support
This section of the Natural CICS Interface documentation describes the CICS 3270 Bridge support. The
following topics are covered:

Default Support of CICS 3270 Bridge
Full CICS 3270 Bridge Support
NCIXFATU - NCI Source Module
Profile Parameter DSC=OFF Recommended

Default Support of CICS 3270 Bridge
By default, the Natural CICS interface supports the CICS 3270 Bridge by being able to deal with "bridged
devices", i.e. terminals which are emulated via a CICS 3270 bridge exit.

Full CICS 3270 Bridge Support
If you want full CICS 3270 Bridge support, you have to install the NCI source module NCIXFATU. Refer to the
corresponding step Assemble the Natural/CICS Interface XFAINTU Exit of the section Installing Natural under
CICS in the Natural Installation Guide for Mainframes.

NCIXFATU - NCI Source Module
The NCIXFATU module actually is a CICS XFAINTU Global User Exit (GLUE). Its purpose is to release
Natural resources in case the bridge facility’s keep-time has expired and an associated Natural session has not
been terminated yet.

The NCIXFATU module provides the same functionality for Natural as a Node Error Program (NEP) provides
for "real" terminals.

Profile Parameter DSC=OFF Recommended
When you are using the CICS 3270 Bridge, you are recommended to start a Natural session with profile
parameter DSC=OFF to force Natural always to send full screens rather than the delta to the previous screen.

Copyright © Software AG 200238

CICS 3270 Bridge SupportCICS 3270 Bridge Support

Special Natural CICS Functionality
This part of the Natural CICS Interface documentation explains special Natural CICS functionality. It covers the
following sections:

Calling Non-Natural Programs
Dummy Screen I/Os with Natural under CICS
NCISTART - Natural CICS Nucleus

Calling Non-Natural Programs
One of the first actions a Natural task does at its start, is to activate an exit for abnormal termination processing.
This exit is used to release all resources including the thread in the case of an abnormal termination. Therefore, a
non-Natural program must not issue EXEC CICS ABEND CANCEL or the equivalent macro level request, as
such a request cancels the current session ignoring any active exit. If so, Natural is not able to clean up its
resources, and the thread and the roll facility are not released.

A thread is assigned to a Natural task whenever a Natural program is active. This is also true when non-Natural
programs are called (following CICS linkage conventions).

Therefore, such programs should not do excessive I/Os and other work load without Natural receiving control in
between. If a non-Natural program is doing conversational screen I/Os, you can code a SET CONTROL ’P=V’
statement in the Natural program that calls the non-Natural program before the calling statement: this indicates
that parameter data are copied out of the thread and the session is rolled out before calling the non-Natural
program.

Calling Non-Natural Programs via Standard Linkage Conventions

A non-Natural program is invoked (CALLed) by Natural in the way programs are invoked within the underlying
operating and/or TP-monitor system.

In CICS, non-Natural programs are invoked by means of EXEC CICS LINK requests. However, when, for
example, the same subroutine program (not issuing any CICS or operating system request) is to be used for both
batch and online processing, a non-Natural program may also be invoked by using CICS standard linkage
conventions; that is, via BALR R14,R15.

For further information, see the terminal command %P=S in the Natural Reference documentation. See also the
parameter SLCALL in macro NCMPRM .

Calling Non-Natural Programs with Parameter Values in a COMMAREA

By default, non-NATUAL programs are called with the addresses of the request parameter and field descriptor
lists (R1 and R2; see also the description of the CALL statement in the Natural Statements documentation)
passed in the TWA and COMMAREA (depending on the setting of the NCIPARM parameter COMACAL).

A more CICS-like method is to pass the parameter values in a CICS COMMAREA, particularly when the called
program resides in another CICS region - Distributed Program Link (DPL) -, as addresses within the "calling"
region are not accessible by the "called" region.

For details and restrictions, see the terminal command %P=C in the Natural Reference documentation.

Prerequisite: This functionality requires COMACAL to be set to YES in NCIPARM.

39Copyright © Software AG 2002

Special Natural CICS FunctionalitySpecial Natural CICS Functionality

When the parameter values are passed to a CICS COMMAREA, the first two words of the CICS TWA are
low-value, which means that no R1 and R2 information is passed.

Dummy Screen I/Os with Natural under CICS
If a SET CONTROL ’QO’ statement is placed before a Natural statement that causes a screen I/O, the terminal
output is not executed by Natural under CICS. Consequently, both the ENTER key and user input are not passed
back to Natural.

This functionality may be useful in the following situations:

1. When leaving pseudo-conversational screen I/Os to non-Natural programs called by Natural.
The non-Natural program performs the EXEC CICS SEND operation and returns to Natural. Due to the
SET CONTROL ’QO’ statement, the next Natural screen I/O terminates the task of a pseudo-conversational
session. Upon screen input, Natural receives control and invokes the non-Natural program again, which
then performs the EXEC CICS RECEIVE.

2. When changing the Natural pseudo-conversational transaction ID "in-flight" without requiring a terminal
operator intervention:

 MOVE *INIT-ID TO termid
 CALLNAT ’CMTRNSET’ trnid /* change the restart transaction ID

 * starting a task on your terminal forces an interrupt as if
 * pressing any attention identifier

 CALL ’CMTASK’ USING trnid H’0000’ H’00000000’ termid
 SET CONTROL ’QO’
 INPUT ’DUMMY’ /* dummy I/O, which you will never see
 WRITE ’HELLO’ *INIT-PROGRAM /* now the new transaction ID is active

3. When switching to an application outside Natural, perhaps even in another CICS AOR (application-owning
region), without requiring a terminal operator intervention:

 * starting a task on your terminal forces an interrupt as if
 * pressing any attention identifier

 CALL ’CMTASK’ USING trnid data-length start-data termid
 SET CONTROL ’QO’
 INPUT ’DUMMY’ /* dummy I/O, which you will never see
 WRITE ’HELLO’ *INIT-PROGRAM /* now the new transaction ID is active

In this case, it is the responsibility of the application being invoked to stack the Natural restart data when
they are passed in a CICS COMMAREA, as a COMMAREA most likely is used by the new
(pseudo-conversational) application, too.

NCISTART - Natural CICS Nucleus
NCISTART (that is, the Natural CICS nucleus with "NCISTART" as entry point) is eligible to be placed into the
CICS PLTSD for CICS quiesce stage 1 or 2 execution.

When executed in quiesce stage 1, NCISTART performs the SYSTP snapshot function (as described in
SYSTP Utility in the section Debugging and Monitoring).
When executed in quiesce stage 2, NCISTART force-terminates all active Natural sessions prior to
performing the SYSTP snapshot function.

Copyright © Software AG 200240

Special Natural CICS FunctionalityDummy Screen I/Os with Natural under CICS

NCISTART holds logic to be called (via a CICS LINK) by a node error program with the relevant CICS terminal
entry address either in the CICS COMMAREA (with CICS/ESA 3.2 or above) or at the beginning of the TWA
(with earlier CICS versions).

Sample Programs

The provided sample programs XNCINEP1 and XNCINEP2 show the calling conventions.

In MRO Environments

This functionality does not apply, as Natural under CICS is normally not installed in a TOR (terminal-owning
region); the program NCIZNEP can be called instead.

41Copyright © Software AG 2002

Sample ProgramsSpecial Natural CICS Functionality

Natural CICS Sample Programs
This part of the Natural CICS Interface documentation describes the Natural CICS sample programs. It covers
the following topics:

Sample Programs in Natural CICS Source Library
Sample Programs for Use with VSE/ESA

You can find a more detailed explanation of all these programs in the corresponding program source itself.

Sample Programs in Natural CICS Source Library
The following sample programs are supplied in the Natural CICS source library:

XNCI3GC1 - Subprogram Call

Programming Language: COBOL

This program provides a sample COBOL call to a Natural subprogram under CICS.

XNCIFRNX - Front-End Program

Programming Language: Assembler

This is a front-end program for invoking Natural via EXEC CICS XCTL.

XNCIFRNL - Front-End Program

Programming Language: Assembler

This is a front-end program for invoking Natural via EXEC CICS LINK.

XNCIFRNS - Front-End Program

Programming Language: Assembler

This is a front-end program for invoking Natural via EXEC CICS START.

XNCIFXC2 - Front-End Program

Programming Language: COBOL

This is a front-end program for invoking Natural via EXEC CICS XCTL.

XNCIFRNP - Initialization Program

Programming Language: Assembler

This program initializes the Natural CICS environment at CICS start-up.

Copyright © Software AG 200242

Natural CICS Sample ProgramsNatural CICS Sample Programs

XNCIBACK - Termination Data Dump

Programming Language: Assembler

This back-end program displays the Natural termination message and any termination data in dump format.

If invoked from an asynchronous task, the Natural termination message will be issued on the operator console,
and potential termination data will be dumped.

NCIBACK can also be invoked by a back-end transaction ("STR=xxxx" or "RET=xxxx"), where "xxxx" is the
transaction code associated with XNCIBACK.

XNCIRDC1 - Exit for SYSRDC

Programming Language: Assembler

This program provides a sample exit for the SYSRDC utility; see the relevant section in Debugging and
Monitoring.

XNCIUIDX - User Exit

Programming Language: Assembler

This program provides a sample user exit to test/set the user ID (see also NCIUIDEX User ID Exit Interface).

XNCIUCTR - U/L Case Switch

Programming Language: Assembler

This program serves to switch the terminal into upper/lower case mode.

XNCINEP1 - Node Error Program

Programming Language: Assembler

This node error program calls NCIZNEP using the CICS macro level.

XNCINEP2 - Node Error Program

Programming Language: Assembler

This node error program calls NCIZNEP using the CICS command level.

XNCITIDX - User Exit

Programming Language: Assembler

This program provides a sample user exit to test the terminal ID and/or to set a logical terminal or session ID.

Sample Programs for Use with VSE/ESA
For VSE/ESA, the sample programs written in Assembler are supplied as A books. The sample programs written
in COBOL are supplied as C books.

43Copyright © Software AG 2002

Sample Programs for Use with VSE/ESANatural CICS Sample Programs

Invoking Natural from User Programs
This part of the Natural CICS Interface documentation describes the various ways of how Natural can be
invoked from user programs. It covers the following topics:

Commands for Activating a Natural Session
Front-End Parameters
Front-End Invoked via LINK
Front-End Invoked via START
Front-End Invoked via XCTL
Invoking Front-End Program as Back-End

Commands for Activating a Natural Session
A Natural session can be activated by user front-end programs with one of the following commands:

EXEC CICS XCTL
EXEC CICS LINK
EXEC CICS START

or the equivalent CICS macro level requests.

Using EXEC CICS XCTL or EXEC CICS LINK

When using EXEC CICS XCTL/LINK, the parameters used by Natural can be passed in a CICS COMMAREA
or in the TWA.

Natural determines the location of the startup parameters by inspecting the length of the COMMAREA
passed to it during session initialization.
If the length is 22, Natural tries to locate the parameters in the COMMAREA, otherwise it is assumed that
they have been passed in the TWA.

To identify a front-end program properly, it is mandatory that the first 4 bytes of the front-end parameter list
represent the current transaction ID.

The transaction ID associated with the front-end program must have a TWA size that is equal to or greater than
the Natural TWA size; see also ncitransact (Step 15 in the section Installing the Natural CICS Interface of the
Natural Installation Guide for Mainframes).

Using EXEC CICS START

When using EXEC CICS START, the front-end and dynamic parameters used by Natural can be passed with
FROM (...) and LENGTH (...) of the EXEC CICS START command. The parameters are described on the
following page.

Sample Programs

A series of sample programs for the various programming techniques is supplied in the Natural CICS source
library; see also Natural CICS Sample Programs

Copyright © Software AG 200244

Invoking Natural from User ProgramsInvoking Natural from User Programs

Using the External Subroutine CMTASK

It is possible to start a Natural session from a Natural program by calling the external subroutine CMTASK.
Refer to the sample Natural program ASYNCICS in library SYSEXTP.

Front-End Parameters
The following list of parameters must be supplied to invoke Natural from a user front-end program:

Pos. Contents

1 - 4 Invoking transaction ID

This value must be equal to the current transaction ID. Via the invoking transaction ID, Natural
identifies that it was called by a user front-end program.

When being called with XCTL, the transaction is restarted at the end of the Natural session via
RETURN with TRANS ID, unless a return program name is specified (see 5th parameter).

5 - 8 Address/offset of dynamic parameter string

If dynamic parameter overwrites are to be evaluated, this value should be set to the address located 12
bytes before the dynamic parameter assignment string.

When being called with START, the field must be set to the offset (relative to the start of the front-end
parameter list) of the address located 12 bytes before the dynamic parameter assignment string.

9 - 10 Length of the dynamic parameter string

Zero indicates that no parameters are to be passed. 32760 is the maximum length allowed. If the
maximum value is exceeded, the session is terminated with a corresponding error message.

11 - 14 Natural transaction ID

The value specified is the transaction ID to be used for controlling a pseudo-conversational Natural
session, when being called with START or XCTL. This transaction is invoked each time the Natural
session is restarted in pseudo-conversational mode; that is, with each terminal I/O.

If the Natural transaction ID is not specified, Natural restarts the transaction ID which initiated the
current CICS task, and the front-end program regains control after each pseudo-conversational I/O.

15 - 22 Back-end program name

This 8-byte value is the program name to which control is transferred at the end of the Natural session
with a CICS XCTL command, rather than restarting the calling transaction ID via RETURN with
TRANSID.

If this field is numeric in the first byte, Natural simply RETURNs without activating any back-end.
Please note that this field can be superseded by the Natural profile parameter PROGRAM.

For further details on the PROGRAM parameter, see Profile Parameters in the Natural Operations for
Mainframes documentation. For the conventions of calling non-Natural back-end programs, refer to
the Natural Operations for Mainframes documentation.

45Copyright © Software AG 2002

Front-End ParametersInvoking Natural from User Programs

Front-End Invoked via LINK
If Natural is running in pseudo-conversational mode (PSEUDO=ON) and has been invoked by EXEC CICS
LINK (or the equivalent CICS macro level request), the original invoking transaction is invoked each time
Natural writes to a terminal and waits for input, which means that Natural issues a CICS RETURN TRANSID
(..) after having written its restart information into CICS temporary storage.

The invoking transaction must recognize this situation (for example, by checking whether a NEXTTRANSID
has been sent or by the existence of NCOMxxxx TS records - where NCOM is the Natural CICS parameter
generation option and xxxx is the terminal ID -) and pass control back to Natural.

The advantage of this method is that, during the session, the front-end program can decide to pass control to
another application (for example, COBOL) and to resume the Natural session later.

For further details see the PSEUDO parameter description (in the section Profile Parameters in the Parameter
Reference documentation).

Per design, Natural treats a LINK front-end program as a back-end program at session termination, i.e. the
Back-End Program Calling Conventions apply.

In CICSplex Environments

Make sure that the NCOMxxxx TS records can be accessed by all participating CICS AORs (for example via
appropriate CICS TST definitions).

Front-End Invoked via START
If the Natural session is a started task (that is, invoked by an EXEC CICS START or EXEC CICS LINK/XCTL
command by a front-end user program which has been STARTed), Natural first scans for startup parameters
supplied with the COMMAREA, then it scans for parameters in the TWA and finally, it tries to obtain the
necessary parameters by an EXEC CICS RETRIEVE command.

Front-End Invoked via XCTL
If the Natural session is initiated from a front-end program with XCTL and no return program is specified (that
is, neither a fifth parameter in the session startup parameters nor a PROGRAM specification in the Natural
dynamic parameters or the NTPRM macro), Natural restarts the user front-end transaction at session termination
via RETURN with TRANSID.

To avoid a loop condition, logic must be included into the user front-end routine to decide whether a new session
is to be started or an old session is to be resumed.

Invoking Front-End Program as Back-End
If the Natural session is initiated from a front-end program and this program is also specified to be the return
program, the user front-end should also check for the initiating transaction ID.

In particular this applies if the front-end program is not in pseudo-conversational mode but Natural is in
conversational mode.

In this case Natural is invoked again rather than getting terminated, but this time without detecting that it is
called by a front-end program, as the first parameter in the startup parameters is the Natural transaction ID.

Copyright © Software AG 200246

Invoking Natural from User ProgramsFront-End Invoked via LINK

Asynchronous Natural Processing under
CICS
This document contains special considerations that apply when when you are using asynchronous Natural under
CICS. The following topics are covered:

Asynchronous Natural Processing
Asynchronous Natural Sessions under CICS
Testing and Debugging

Asynchronous Natural Processing
Asynchronous Natural processing is generally discussed in the section Asynchronous Processing in the Natural
Operations for Mainframes documentation; however, some additional considerations apply when running under
CICS. These are described in the following sections.

Asynchronous Natural Sessions under CICS
Make sure that appropriate SENDER and OUTDEST destinations are specified for an asynchronous Natural
session; otherwise, any output (for example, unexpected error messages) will lead to an abnormal termination.

Also, make sure that a suitable message switching transaction ID (MSGTRAN) is specified in the Natural
parameter module NATPARM and defined in CICS.

In addition to CICS terminal IDs and transient data destinations for SENDER and OUTDEST, the following
keywords are supported by the Natural CICS interface:

DUMMY Any output is ignored.

CONSOLE Any output is routed to the operator console.
Internally the terminal ID defined via the CONSOLE parameter of the NCMPRM macro is used.
When dealing with the console, the terminal type should be switched accordingly, using the
profile parameter TTYPE or %T= set to ASYL or other.

It is also possible to send Natural output data without any 3270 terminal or printer control information to, for
example, a CICS message destination such as CSSL. This can be accomplished by switching into line mode
using a SET CONTROL ’T=’ statement or by starting with profile parameter TTYPE=xxxx, where xxxx is BTCH
or ASYL. All Natural output is then sent line by line, with a leading ASA control character when the Natural
profile parameter EJ is set to ON; with EJ=OFF, no control character is sent at all.

Attention:

When SET CONTROL ’T=xxxx’ or SET CONTROL ’+’ is used, or PC=ON is
specified, the Natural system variable *DEVICE will be modified, which
means that it can no longer be used to determine an asynchronous Natural
session.

47Copyright © Software AG 2002

Asynchronous Natural Processing under CICSAsynchronous Natural Processing under CICS

Testing and Debugging
Recent CICS versions offer a transaction CDEX which enables tracing of asynchronous tasks in CICS. In earlier
CICS versions, this functionality did not exist, that is, such debugging was only possible with terminal bound
tasks.

The Natural CICS Interface NCI offers some assistance in this case: You can test asynchronous Natural sessions
by starting that session from a terminal, but either with "ASYN," as the very first five characters in the dynamic
parameter string, or with the profile parameter TYPE=xxxx, where xxxx is ASYN or ASYL. The Natural CICS
interface then sets up an asynchronous Natural session.

Please, note that this emulation is only 100 percent in terms of Natural; CICS keeps on treating the task as
terminal bound.

Copyright © Software AG 200248

Asynchronous Natural Processing under CICSTesting and Debugging

Logging Natural Sessions under CICS
This section describes how information about Natural sessions can be logged in a file which can be processed
and evaluated in batch mode. It covers the following topics:

Logging Facility
Natural Log File Definition
Natural Log Records

Logging Facility
Optionally, information about Natural sessions can be logged in a file which can be processed and evaluated in
batch mode.

In contrast to the online SYSTP Utility, which just gives a snap shot of the current system usage, this logging
facility can be used to keep track of the Natural CICS system usage over a longer period of time.

Special Considerations

It is possible that several Natural CICS environments (that is, several system directories with unique
threads, roll facilities, swap and buffer pools) share the same Natural log destination. When an SCP
environment is initialized, a "system ID" is written into the system directory. This system ID is part of an
evaluation program to "sort" log records by Natural CICS system environment.
You are recommended to define the Natural log file in the Natural application CICS, as logging to a
"remote" log file would degrade performance.
When running the log file evaluation program (see SYSTP in Batch Mode in the section Debugging and
Monitoring), the log file should be closed in CICS, otherwise unpredictable results may happen due to the
last buffer being still in storage or the EOF record missing on file.
Sufficient disk space should be reserved for the Natural log file; preferably the log file should be defined
using secondary allocation (if the file runs full in VSE/ESA, the VSE message NO MORE AVAILABLE
EXTENTS is issued and the operator is asked to enter new extents or cancel CICS).

Natural Log File Definition
The Natural log file is a sequential disk file; that is, an "extra partition destination" in terms of CICS. By default,
the internal (logical) name of the log file is NLOG; this name can be changed by specifying the LOGDEST
parameter in the NCMPRM macro.

The log file has to be defined in a CICS DCT as TYPE=EXTRA with associated dataset control information
(TYPE=SDSCI entry in DCT). This file must also be defined in the CICS start-up JCL (DD statement in OS/390,
DLBL statement in VSE/ESA).

Natural Log Records
The following records are logged in the Natural log file:

Natural CICS System Restart Record
Natural Session Termination Record

49Copyright © Software AG 2002

Logging Natural Sessions under CICSLogging Natural Sessions under CICS

Natural CICS System Restart Record

Length=96

After successful SCP system initialization, a record that holds the initialization date and time as well as other
system data like the common system prefix, the number of RCBs or the number of thread groups, is written to
the log file.

When this first log request fails, the Natural log file is flagged in the system directory as not available and no
further logging takes place.

System restart records are written whenever the system highwater marks are reset by the corresponding system
administration function of the SYSTP utility. In addition to the system start information, these records contain
the terminal ID and the user ID of the SYSTP user.

Natural Session Termination Record

Length=216

On (normal or abnormal) termination of a Natural session, a session log record is written to the log file. This
record is internally split into six parts:

1. The record control part which holds the actual session statistics:
the current date and time (that is, the date and time when the session terminated),
the system ID which indicates the Natural CICS environment in which the session was active,
the record type = session record.

The record control part is common to all Natural log records to distinguish the different record types. Macro
NCMLOG holds the record layouts.

2. The user session part which holds the actual session statistics:
the terminal ID,
the (last) user ID,
the session start date and time,
the maximum storage allocated by the session,
the number of session resumes/swap ins/roll ins,
the maximum number of records rolled by the session (if any).

3. The thread group part which holds the current data of the thread group associated with the session:
the thread group number,
the number of TCB slots in the group (if any),
the common thread size of the group,
the maximum storage allocated in the group by any session,
the maximum number of sessions active in the group,
the maximum wait queue size of the group (with TYPE=SHR thread groups) and the maximum
number of sessions concurrently active in the group (with TYPE=GETM thread groups),
the number of times this maximum wait queue size was reached.

4. The thread part which holds the data of the TYPE=SHR thread used as last thread by the session (if used at
all):

the thread name,
the thread use count,
the highest thread storage used by any session,
the number of session resumes/roll-ins into this thread,
the maximum wait queue size of this thread,
the number of times this maximum wait queue size was reached.

5. The roll facility part which holds information about the roll facility to which the session was assigned (if it

Copyright © Software AG 200250

Logging Natural Sessions under CICSNatural CICS System Restart Record

was at all):
the roll facility name,
the maximum number of sessions assigned to this roll facility,
the record size of the roll facility,
the slot size of the roll facility,
the number of slots in this roll facility,
the maximum number of roll-outs to / roll-ins from this roll facility.

6. The system directory part which holds statistics about the global system usage:
the maximum number of UCB block extensions,
the maximum number of sessions active in the system,
the maximum number of sessions concurrently active in SCP,
the number of SCP system recoveries.

By design, session termination records are stored by session date and time. This means that parts 3 to 6 of a later
session record always hold more current information than those of a previous one. Parts 3 to 6 of the record are
used by the log file evaluation program to refresh the corresponding information provided; that is, information
on the thread group, thread, roll facility and SCB.

This technique is used to keep up-to-date information about the Natural CICS system resources in case CICS
terminates in an uncontrolled manner.

The session termination log records, of course, reflect only resources which have been used by the corresponding
sessions. Therefore, these records may not reflect the full SCP environment. Reports of a full SCP environment
can be obtained by making a snapshot of the whole environment by either using the SYSTP System
Administration Facilities (as described in the section Debugging and Monitoring) or placing Natural under CICS
into the CICS PLTSD (as described in the section Special Natural CICS Functionality).

System snapshot records in the Natural log file represent session termination records without session-specific
information as listed under part 2.

51Copyright © Software AG 2002

Natural Session Termination RecordLogging Natural Sessions under CICS

Natural CICS Performance Considerations
This section contains guidelines for setting up Natural in a CICS environment. It covers the following topics:

Environment-Specific Considerations
Choosing the Roll Facility
Shared Storage Threads versus GETMAINed Threads
CICS Parameter Settings
Line Compression Systems
Pseudo-Conversational versus Conversational Transactions
Natural and Adabas
CICS Monitoring Products

Enironment-Specific Considerations
The following environment-specific considerations should be noted:

When running Natural in a CICSplex environment (OS/390 only), you must use the Natural Roll Server.
When running Natural locally in a single CICS region, however, you have several possibilities.

One possibility (OS/390 only) is to use the Natural Roll Server. The benefit of this versus using CICS roll
facilities and a swap pool is that the Natural Roll Server runs asynchronously to the CICS region and can provide
more roll buffers in its data space than the swap pool.

Choosing the Roll Facility
Control Interval
VSAM Roll Files versus CICS Temporary Storage
Using CICS Auxiliary Temporary Storage
Using CICS Main Temporary Storage
Using VSAM RRDS Roll Files
Using the Natural Swap Pool under CICS

Control Interval

You are strongly recommended to define both roll facilities, VSAM and auxiliary temporary storage, with the
largest possible control interval size of 32 KB. This minimizes the number of I/Os and the CPU overhead
necessary to perform the rolling.

Reasons for a control interval size of less than 32 KB might be the better exploitation of disk tracks or the usage
of virtual storage for the VSAM buffers.

VSAM Roll Files versus CICS Temporary Storage

With the same CISIZE/record size, temporary storage causes less CPU overhead than VSAM roll files:

To write n records to temporary storage you have to issue n+1 CICS requests (that is, 1 for DELETQ and n for
PUTQ) while you have to issue 2n requests for VSAM roll files because of the VSAM transaction logic: n times
(READ for UPDATE plus REWRITE).

Copyright © Software AG 200252

Natural CICS Performance ConsiderationsNatural CICS Performance Considerations

For VSAM update requests, a physical I/O is always performed, whereas for temporary storage (AUX) records,
buffering takes place, so that in many cases, records to be read are still found in the buffers.

However, CICS temporary storage may become a bottleneck when it is also being used by other applications.

VSAM roll files for Natural can overcome this situation (although at the expense of additional VSAM buffer
space) especially when I/O contention can be avoided. VSAM roll files with optimum/maximum CISIZE/record
size are particularly efficient when this record size cannot be specified for the CICS temporary storage file due to
other requirements.

CICS temporary storage should be used whenever it can be dedicated to Natural. If CICS temporary storage is
also used by other applications, you should evaluate whether the Natural performance is better when using
VSAM roll files.

If Natural with CICS temporary storage does not perform worse, you should choose CICS temporary storage as
roll facility and use the "saved" VSAM roll file buffer space for more TS buffers or for an additional thread.

Using CICS Auxiliary Temporary Storage

The primary roll facility is VSAM RRDS; the default type of temporary storage is AUXILIARY.

If you are using VSAM roll files, the Natural CICS interface uses temporary storage (AUX) if all roll files
become full or unusable during a CICS session.

However, if you do not wish to use roll files or if the roll files are incorrectly installed, Natural under CICS uses
temporary storage (AUX) for all rolling. When temporary storage (AUX) is used as roll file, the control interval
size for this file must be at least 4 KB. If auxiliary temporary storage is not available, main temporary storage is
used instead.

The number of VSAM buffers defined by the CICS SIT parameter TS should be increased to a reasonable value
to reduce the number of physical I/Os. The CICS statistics should be checked for bottlenecks in this area.

Using CICS Main Temporary Storage

With CICS main temporary storage as roll facility, no I/O is performed on rolling, but due to large main storage
amounts used, tuning considerations may be required due to increased paging.

Using VSAM RRDS Roll Files

The VSAM roll files should be considered for normal CICS VSAM file tuning, for example, BUFNO and
STRNO parameters in the FCT. The CICS shutdown statistics should be checked for bottlenecks in this area.

As the roll files serve as a kind of page dataset for Natural, everything which slows down the Natural rolling
should be avoided, as there is journaling and logging; dynamic transaction backout (DTB) and forward recovery
for roll files is useless and only causes overhead.

In MRO Environments

For performance reasons the VSAM roll files should be defined in the same CICS system in which the Natural
applications are running; MRO function shipping should not be invoked. CICS local shared resources (LSR) can
be used if there are enough buffers available.

53Copyright © Software AG 2002

Using CICS Auxiliary Temporary StorageNatural CICS Performance Considerations

Separate LSR Pool for Natural

The definition of a separate LSR pool for Natural roll files is recommended, with the number of strings
(STRNO) greater than the number of threads. The number of buffers should also be greater than the number of
threads. A greater number of buffers increase the look-aside hit ratio.

Using the Natural Swap Pool under CICS

You are strongly recommended to use a swap pool rather than a large number of VSAM temporary storage
(AUX) buffers or temporary storage (MAIN).

The Natural swap manager handles the compressed session storage very efficiently and reduces CPU and I/O
overhead. The size of the swap pool should be as large as possible. For example, a swap pool of 2.5 MB would
be required to hold 50 sessions which fit into 50 KB slots.

From a performance point of view, it does not make any sense to use main temporary storage as a backup facility
for the swap pool, since both of these facilities use CICS main storage. In general though, using the swap pool is
more advantageous, because CICS services overhead is eliminated. Rather than overflowing to main temporary
storage, it would be better to enlarge the swap pool and to use disk storage (that is, VSAM roll files or auxiliary
storage) as its backup facility.

If virtual storage becomes a bottleneck, the number of roll facility buffers and possibly the number of threads
should be minimized to the benefit of the swap pool.

Shared Storage Threads versus GETMAINed Threads
Storage Usage
Controlling Storage Usage
Swapping/Rolling
Considerations for CICS 4.1 and above
Conclusion

Storage Usage

Shared storage threads are pre-allocated during Natural CICS system initialization, which means that the storage
covered by these threads is dedicated to the Natural CICS system, regardless of whether there are active sessions
or not. On the other hand, GETMAINed threads only exist while the CICS task is active.

Controlling Storage Usage

With shared storage threads (TYPE=SHR), Natural under CICS always uses what has been pre-allocated during
the initialization of Natural; therefore, the size of storage used by Natural threads is easily predictable. For
GETMAINed threads (TYPE=GETM), however, the actual storage used depends on the number of Natural
sessions that are currently active.

Although Natural itself has no mechanism for setting the maximum number of GETMAINed threads, this can be
controlled by grouping transaction codes into a TCLASS. When a transaction code is defined in a TCLASS, the
maximum number of parallel tasks can be regulated by the CMXT parameter of the CICS system initialization
table (SIT).

Copyright © Software AG 200254

Natural CICS Performance ConsiderationsShared Storage Threads versus GETMAINed Threads

Swapping/Rolling

When a Natural session releases its shared storage thread, session data are kept in the thread in uncompressed
format, unless another session needs to use this particular thread. If so, the new session is responsible for saving
the old session’s data.

Such an activity is called "deferred rolling". It enables you to eliminate rolling or swapping entirely, provided
that the number of available threads is greater or equal to the number of concurrently active Natural sessions.

Conversely, sessions that use GETMAINed threads always save their data prior to the FREEMAIN operation at
CICS task termination, which leads to a roll/swap overhead regardless of the number of concurrently active
Natural sessions.

In environments with high volumes of Natural transactions, there is practically no difference between saving
session data via the "immediate" or the "deferred" rolling method.

In busy Natural environments with a high ratio of Natural sessions to program storage threads, there is more
roll-in/roll-out overhead, since these threads are shared by several Natural sessions. A potential problem in this
situation is thread contention caused by Natural tasks with long-running Adabas requests; that is, with many
Adabas calls.

To prevent such tasks from "locking" a thread for too long, they can be forced to release their thread by adjusting
the ADACALL parameter of NCIPARM. For GETMAINed threads, however, contention between two or more
Natural sessions never occurs, since a TYPE=GETM thread belongs exclusively to the Natural session it was
allocated for.

TYPE=GETM threads can thus be considered "single-use" resources that are never shared, whereas TYPE=SHR
threads can be considered "multi-use" resources that may be shared.

Considerations for CICS 4.1 and above

The most important feature of CICS 4.1 and above is transaction isolation, which means that a task’s storage can
be protected against other tasks.

To take advantage of this facility with Natural, TYPE=GETM threads should be used, since these threads are
subject to transaction isolation, whereas "shared" TYPE=SHR threads are not. Also additional CICS overhead
occurs for TYPE=SHR threads with CICS 4.1 and above.

While the thread selection algorithm for TYPE=GETM threads is trivial (when a Natural task is started, a thread
is allocated via CICS GETMAIN), for TYPE=SHR threads, it is more complicated: the Natural threads
environment is managed by NCISTART (queueing and balancing), whereas CICS does not know anything about
Natural threads. In contrast to TYPE=GETM threads, where CICS would release the thread at the latest at the
end of the task, with TYPE=SHR threads, Natural has to assign/release them to/from their sessions. In order to
do so, Natural maintains a list of thread control blocks (TCBs).

Although Natural always keeps an exit active to be able to release session resources unknown to CICS (for
example, TYPE=SHR threads) in the case of abnormal task termination, situations may occur where a Natural
task terminates without its thread being marked as free in the associated TCB (for example, if an EXEC CICS
ABEND CANCEL request has been issued in a non-Natural program called by Natural, or if Natural sessions
have been flushed by any KILL transactions of a performance monitor).

To prevent problems with threads inadvertently left busy, Natural under CICS always checks in its thread
selection algorithm whether the CICS task associated to a busy thread is still existing; if not, the thread is
released.

55Copyright © Software AG 2002

Swapping/RollingNatural CICS Performance Considerations

With CICS versions prior to CICS/ESA 4.1, this checking for active CICS tasks was done by control-block
jumping, which means that Natural was checking for an active task by testing the consistency of the task’s
EISTG, TCA and TQE control blocks. With CICS/ESA 4.1 and above, because of transaction isolation, the
storage of another task may not be accessible at all.

To accomplish this function in CICS/ESA 4.1 and above, NCISTART issues an EXEC CICS INQUIRE
STORAGE TASK() request for any thread identified as busy in the thread selection routine. This means that
there may have been some CICS requests before the task is finally ENQueued for thread resources. The same
CICS command is also used for the serialization of Natural sessions (for example, deferred rolling of
TYPE=SHR threads).

Conclusion

Both TYPE=SHR and TYPE=GETM threads have their advantages and disadvantages. However, with
CICS/ESA 4.1 and above, TYPE=GETM threads are preferred, because of:

the support of transaction isolation,
more CICS-like tuning possibilities,
worse performance of TYPE=SHR threads.

CICS Parameter Settings
CICS SIT parameters AMXT and CMXT should be used to control the number of concurrent Natural tasks.

The number specified should be greater than the number of threads. You should also consider to specify a
separate transaction class with a suitable CMXT parameter for asynchronous Natural tasks and for Natural
Advanced Facilities spool tasks so as to prevent logouts of "normal" Natural terminal tasks by too many of such
"background" tasks occupying threads. Special thread groups can be defined for these transactions.

CICS dumps for Natural transactions should be suppressed, unless requested from Software AG personnel for
debugging purposes. Natural itself generates dumps (via EXEC CICS DUMP) for non-program check abends,
and also for program checks if the Natural session parameter DU is set to ON. When no Natural dump is
generated, a CICS dump is redundant and just causes overhead (particularly when creating a system/region
dump, since the whole CICS system is halted until the snap dump is completed).

CICS trace is essential when analyzing problems, although it introduces system overhead. Also CICS
performance monitoring tools and accounting packages cause system overhead of up to 30 percent and more.
Some packages internally turn on the CICS trace and then intercept it.
You should be aware of this potential system overhead. Also remember that the Natural CICS interface uses the
CICS command level application programming interface: CICS command level requests produce much more
trace entries (apart from other overhead) than CICS macro level requests.

Line Compression Systems
Natural itself optimizes its data streams by means of RA (repeat to address) and other techniques as screen
imaging etc. If other line compression systems are installed, the Natural transactions should be excluded from
being processed by these systems, as this would introduce overhead without achieving any benefit.

Copyright © Software AG 200256

Natural CICS Performance ConsiderationsCICS Parameter Settings

Pseudo-Conversational versus Conversational
Transactions
When resuming a session, conversational Natural tasks are locked to their initial thread, which means that a
conversational task has to wait for this thread if it is currently not available. Pseudo-conversational Natural tasks,
however, are flexible to roll into any available thread.

In other words, the "classical" advantage of conversational tasks - less I/Os for saving/restoring data over screen
I/O operations - does not apply for Natural because of its thread technique.

Natural and Adabas
Since a Natural task in CICS waits for completion of an Adabas call, the servicing Adabas region/partition
should always have higher priority than the CICS region/partition to minimize wait time.

CICS Monitoring Products
CICS monitoring products may offer facilities to purge CICS tasks, bypassing any abnormal termination exit set
by the application.

Attention:

Such facilities should not be used to cancel Natural tasks, as Natural may not
be able to clean up its resources, and, even worse, the Natural CICS system
may be left in an inconsistent state depending on what this task was doing.

To cancel Natural sessions, the Cancel/Flush Session functions of the Natural SYSTP utility should be used
instead; see the relevant section in Debugging and Monitoring for details.

57Copyright © Software AG 2002

Pseudo-Conversational versus Conversational TransactionsNatural CICS Performance Considerations

Natural Work Files under CICS
This document discusses the use of Natural work files under CICS. It covers the following topics:

Customizing Work File Usage
CICS Temporary Storage Work Files
CICS Transient Data Work Files

Customizing Work File Usage
The Natural CICS interface supports Natural work files in CICS either as CICS transient data queues or as CICS
temporary storage queues, both auxiliary and main.

To customize usage, set the following subparameters in the WORK profile parameter:

AM=CICS, TYPE=TD/AUX/MAIN, DEST= queuename

For more information on the WORK profile parameter and on how to set the above subparameter values, see the
NTWORK macro (refer to Parameter Modules in the Natural Parameter Reference documentation).

CICS Temporary Storage Work Files
CICS temporary storage queues, both auxiliary and main, for CICS work files are RECFM=V files by design,
available for input and output.

Although in Natural under CICS there is no exclusive control of a specific TS queue by a Natural session, you
can automatically create session- or terminal-dependent work files by specifying the string defined in the
NCIPARM TERMVAR parameter in the DEST subparameter. When such a string is found within the
eight-character DEST subparameter, it is replaced by the actual terminal ID.

In CICSplex Environment

When running in a CICSplex environment, Natural work files in CICS temporary storage must be defined as
TYPE=SHARED or TYPE=REMOTE in a CICS TST.

System Queues

In Natural under CICS, system queues cannot be accessed. (System queues are TS queues with a prefix defined
in the TSKEY parameter of macro NCMDIR.)

CICS Transient Data Work Files
A CICS transient data queue for a Natural CICS work file must be defined in the CICS DCT. For indirect
destinations, the attributes of the base destinations are propagated. In particular, the attributes of an
extra-partition destination, such as RECFM or TYPEFLE, determine the Natural work file attributes.

Intra-partition destinations have RECFM=V set by design and are available for both input and output.

CICS transient data work files are "shared files" in the sense that more than one session may issue I/Os against
such a file.

Copyright © Software AG 200258

Natural Work Files under CICSNatural Work Files under CICS

Natural under Com-plete
This section describes how to operate Natural in a Com-plete environment.

It covers the following topics:

Use of the Abend Exits
Storage Usage
Support of Back-end Programs
Com-plete Support in Natural Batch Runs
Support of Asynchronous Natural Processing
Invoking Natural from User Programs
Storage Thread Key Handling
Support of User Exit Handling during Session Initialization

See also:

For further details of the Com-plete product, refer to the Com-plete documentation set.
For details concerning the following topics, refer to the Natural Installation Guide for Mainframes:

Structure and Functionality of the Natural Com-plete Interface
Prerequisites
Installation Tape for the Natural Complete Interface
Installation Procedure for the Natural Complete Interface
Using a Natural Local Buffer Pool under Com-plete
Using the Com-plete *ULIB Function
Installation Verification
Customizing a Natural Com-plete Environment

The Natural utility SYSTP provides various TP-monitor-specific functions (see SYSTP Utility).
See also Natural under Com-plete Abend Codes and Error Messages.

59Copyright © Software AG 2002

Natural under Com-pleteNatural under Com-plete

Use of the Abend Exits
The SPIE and ABEXIT exits can generally be deactivated by setting SPIEA=NO in NCFPARM.
The ABEXIT exit is called during Com-plete’s EOJ handling for an abnormal program termination other than a
0CX abend to clean up processing.

By default, an 0CX abend is interpreted by the SPIE exit routine.

Running with DU=ON, the Natural session is dumped and correctly terminated with error message
NAT9974.
Running with DU=FORCE, the SPIE and ABEXIT exit routines are disabled, an immediate dump during
Com-plete is produced.

If DU=OFF, Natural responds with error message NAT0954, NAT0955 or NAT0956, and the entire abend PSW
and registers 0 to 15 are contained in the IOCB at offset x’290’.

Note: DU=SNAP is currently not supported for COM51, but only with the next Com-plete version.

Storage Usage
At session initialization, the amount of space defined with parameter NTHSIZE in NCFPARM is allocated as
thread GETMAIN above or below the 16 MB line, depending on the parameter THABOVE, for usage by
Natural.

The WPSIZE profile parameter determines the sizes of below and above work pools. By default, the size of the
below subpool is set to 32 KB.

Therefore, you must catalog the Natural Com-plete front part with the Com-plete utility ULIB, RG size = 36KB
or larger.

The remaining areas within the Com-plete thread parts below and/or above (Com-plete ULIB RG= specification
and/or THABOVESIZE= specification) are used by Com-plete for the following things:

user subroutines;
the extended program interrupt element (EPIE) in OS/390;
subproducts doing "physical" GETMAIN requests, this enforces the Natural work pool allocation.

For more details concerning the ULIB RG and THABOVESIZE parameters, refer to the Com-plete Utilities
documentation.

Copyright © Software AG 200260

Natural under Com-pleteUse of the Abend Exits

Support of Back-end Programs
Natural passes the following string to a back-end program:

the Natural return code (fullword),
the Natural termination message (A72),
the length of the termination area (fullword),
the termination data.

This string is mapped by the NAMBCKP macro.

The XNCFBACK source module is an example of a Natural back-end program in a Com-plete environment. It is
written as reentrant code and can be loaded as RESIDENTPAGE program or once per user.

Com-plete Support in Natural Batch Runs
If you use the Com-plete services in a Natural batch run, the batch user ID remains logged on at the end of the
batch run.

To avoid this situation, include the module COMPBTCH from the Com-plete distribution library in the batch
Natural nucleus. This resolves the entry point for module EOJ, which is called at the end of the Natural batch job
for termination clean-up.

The module NCFAM (previous name: NATCMPL) is used to access Com-plete print/work files. It has to be
included in the linking of the Natural nucleus, together with the module COMPBTCH from the Com-plete
distribution library.

61Copyright © Software AG 2002

Support of Back-end ProgramsNatural under Com-plete

Support of Asynchronous Natural Processing
Asynchronous Natural processing is discussed in the section Asynchronous Processing in the Natural Operations
for Mainframes documentation; however, some additional considerations apply when running Natural under
Com-plete.

Make sure that appropriate SENDER and OUTDEST destinations are specified for an asynchronous Natural
session; otherwise, any output will lead to an abnormal termination.

An example to start an asynchronous Natural transaction under Com-plete can be found in the library SYSEXTP,
program ASYNCOMP.

Invoking Natural from User Programs
The Com-plete FETCH function is used to invoke Natural from a user front-end program under Com-plete; see
the Com-plete Application Programmer’s documentation for details.

Storage Thread Key Handling
If you want to use protection mode between Com-plete and your application program, you must set the
NATPARM parameter SKEY=OFF. The application program runs in the corresponding thread key. For any
Natural or Editor buffer pool call, the front-end driver switches into the Com-plete key and back to the thread
key after the call.

You can improve the performance of the application program dramatically under Com-plete Version 5.1.3 or
higher by activating the Storage-Protection Override facility on your machine.

Set the thread key = 9 in the Com-plete startup parameter THREAD-GROUP for your Natural sub-group.

The front-end driver sets the Natural application automatically to the privileged mode if the thread key is 9, and
uses the SPKA instruction for the key switch handling instead of using the Com-plete function MODIFY with
function codes THRD/TCS.

Copyright © Software AG 200262

Natural under Com-pleteSupport of Asynchronous Natural Processing

Support of User Exit Handling during Session
Initialization
During session initialization, it is possible to pass user-specific session information about the activation of a user
exit to Natural. The exit is called before Natural has been initialized, after the driver/IOCB initialization is
complete.

The driver passes as a parameter the address of the IOCB in register 1, whereas the exit is activated/deactivated
by the Com-plete functions COLOAD/CODEL; see the Com-plete Application Programmer’s documentation
for details.

The NCFUEXIT source module is an example of a user exit. The user exit can be defined in the parameter
module NCFPARM.

63Copyright © Software AG 2002

Support of User Exit Handling during Session InitializationNatural under Com-plete

Natural under IMS/TM - Overview
This section describes how to operate Natural in an IMS/TM environment. It covers the following topics:

Environments
Components
Configuration Macros
Service Programs
Service Modules
User Exits
Special Functions
Recovery Handling

See also:

Installation - refer to Installing the Natural IMS Interface in the Natural Installation Guide for Mainframes.
Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII), refer to Natural IMS TM Error Codes in the Natural Messages and Codes
documentation.

Copyright © Software AG 200264

Natural under IMS/TM - OverviewNatural under IMS/TM - Overview

Natural under IMS/TM - Environments
This document describes how Natural runs under various IMS/TM environments. The following topics are
covered:

IMS/TM Interface Overview
IMS/TM Environments
Dialog-Oriented Environments
Message-Oriented Environment
Batch Message Processing Environment
Support of the Natural WRITE (n) Statement

Additional Information

Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer to Natural IMS/TM Error Codes (in the Natural Messages and Codes
documentation).
Installation - refer to Installing the Natural IMS Interface (in the Natural Installation Guide for
Mainframes).
Further information - refer to the following topics:
Components | Configuration Macros | Service Programs | Service Modules | Special Functions | User Exits |
Recovery Handling

IMS/TM Interface Overview

65Copyright © Software AG 2002

Natural under IMS/TM - EnvironmentsNatural under IMS/TM - Environments

IMS/TM Environments
IMS/TM provides three different types of environments:

message processing regions,
batch message processing regions,
off-line DL/I btach region.

To be able to use Natural in each of these environments, different environment-specific interfaces are provided
for the Natural IMS interface. The task of such an interface is to receive input (usually a terminal input message)
from the environment, to pass the input to Natural for processing and to direct the resulting output back to the
correct destination (usually a terminal output message). This way, it is possible to use the functionality of
Natural in all available IMS environments.

In addition to different available environments, within each environment, there are different ways of operating.

Natural in a Message Processing Region (MPP Environment)

In a message processing region, Natural online transactions can be one of the following:

dialog-oriented,
message-oriented.

Dialog-Oriented Natural

A dialog-oriented Natural session establishes an ongoing interaction with an IMS screen. Input and output
messages to and from Natural are logically related and, across dialog steps, Natural saves information so as to be
able to correctly process the next input message. In a dialog-oriented way, Natural can be run as either a
conversational or a non-conversational transaction.

In a dialog-oriented environment, Natural can be executed in multiple-message processing regions, as
Wait-for-Input (WFI) transaction and with the parallel-scheduling option.

To run Natural in dialog-oriented environments, you either have to use the roll server or roll files (see The Roll
File and Roll Server).

If the Natural IMS interface detects an error situation, a record containing information about this error situation
is written to the IMS log file (see Recovery Handling). Thus, all terminals on which Natural is to be executed
and all Natural transaction codes have to be authorized to issue the /LOG command using the automated operator
interface (AOI).

Message-Oriented Natural

A message-oriented Natural session processes non-3270-formatted messages from the IMS message queue. The
input messages are considered to be unrelated to each other and are not part of a dialog. In a message-oriented
way, Natural must be run as a non-conversational transaction.

Natural in a Batch Message Processing Region (BMP Environment)

In a batch message processing region, Natural can have access to the IMS message queue by using an input
transaction code. With batch-oriented BMP regions, Natural supports symbolic checkpoint and extended restart.
The input messages are non-3270-formatted messages.

Copyright © Software AG 200266

Natural under IMS/TM - EnvironmentsIMS/TM Environments

Natural in an Off-line DL/I Batch Region

The BMP Natural can also be executed as an off-line DL/I batch job.

If no IOPCB is available, all END TRANSACTION and BACKOUT TRANSACTION statements are ignored
(as under NII 2.2).

For diagnostic purposes, the following feature is available: If Natural has been started with dynamic profile
parameter TPF=(1), an informal WTO message is issued, indicating the above fact.

Dialog-Oriented Environments
This section discusses special points valid for the dialog-oriented conversational environment only.

Special Considerations for a Conversational Environment
Special Considerations for a Non-Conversational Environment
Special Considerations for an MSC Environment

Special Considerations for a Conversational Environment

The dialog-oriented conversational environment is implemented by the Conversational MPP Interface which is
linked with the Natural parameter module to the Conversational MPP Front-End. This front-end is the IMS/TM
application program and is scheduled by IMS/TM if an input message for the assigned transaction code is
available in the IMS/TM message queue.

The dialog-oriented conversational environment requires a scratch pad area (SPA) of at least 157 bytes plus the
NRASTART value.

Special Considerations for a Non-Conversational Environment

The dialog-oriented non-conversational environment is implemented by the Non-Conversational MPP Interface
which is linked with the Natural parameter module to the Non-Conversational MPP Front-End. This front-end is
the IMS/TM application program and is scheduled by IMS/TM if an input message for the assigned transaction
code is available in the IMS/TM message queue.

When a dialog-oriented non-conversational environment is used, the Authorized Services Manager with its SIP
function enabled and the Physical Input Edit Routine are prerequisites.

The Authorized Services Manager is used to simulate the IMS/TM SPA.
The Physical Input Edit Routine is used to insert the transaction code in front of the input message.

You must specify the same Natural subsystem ID in the

SPATID of the NIMPARM macro,
SPATID of the NIMPIXT macro,
startup parameters of the Authorized Services Manager.

Special Considerations for an MSC Environment

Assuming the following environment, the Natural IMS interface prepares the message X’000500006D’ for
NAT-B, which means that the terminal user has pressed CLEAR.

67Copyright © Software AG 2002

Dialog-Oriented EnvironmentsNatural under IMS/TM - Environments

 IMS-A IMS-B
 ----- -----
 MPP-A1 MPP-A2 MPP-A3 MPP-B1 MPP-B2 MPP-B3
 ------ ------ ------ ------ ------ ------
 DIRECT SWITCH
 NAT-A --------------------------------> NAT-B

Two entries must be created in the transaction code table: the first entry is for NAT-A, the second for NAT-B.

These two entries must specify different offsets for the Natural Reserved Area (NRA) and must ensure that these
areas do not overlap.

NAT-B detects that a Natural session is to be started in IMS-B in the usual way and therefore gives control to its
session-start exit routine. The session-start exit routine checks the input message for the string X’000500006D’
and sets to "0" the length of the input message as seen by Natural.

If no additional logic is provided in either the exit NIIXSTAR or the exit NIIXSSTA, Natural starts a new user
session in IMS-B.

It is assumed that IMS-A and IMS-B have different dedicated roll files allocated for Natural.

Both (or more) Natural sessions can communicate with each other by transferring data in the SPA when
performing direct program-to-program switching.

For the time being, when two or more Natural sessions exist in such an environment, only the "active" session is
terminated correctly.

Message-Oriented Environment
This section describes the message-oriented interface for use with Natural for IMS/TM.

Introduction to the Message-Oriented Environment
Operation of the Message-Oriented Environment
Bootstrap Module NIIBOOT

Introduction to the Message-Oriented Environment

This interface is designed to process nett-data input messages, which means that the messages do not represent a
3270 data stream. The message-oriented interface is driven by a user-written Natural program which instructs the
interface to access the IMS message queue for the purpose of retrieving input messages.

The message-oriented interface has been created to support non-conversational, non-terminal driven transactions
which must be executed as non-conversational MPP transactions.

Operation of the Message-Oriented Environment

The message-oriented interface incorporates functions from both the MPP and the BMP interfaces. The BMP
interface is used as a basis, since much of the processing required emulates BMP-type transactions.

Since the message-oriented interface is not terminal-oriented, no messages or screen images are automatically
generated to be sent to a terminal. The Natural nucleus is informed that it is running in a batch environment;
therefore output is interpreted to be printer output and input is expected from a CMSYNIN file. All output which
is normally written to CMPRINT is sent to the IMS/TM destination (normally an LTERM) specified with the
Natural profile parameter SENDER. If Natural attempts to retrieve input data and no input data has been
supplied by the application through the STACK command, EOF indicates that no input exists and Natural is
terminated.

Copyright © Software AG 200268

Natural under IMS/TM - EnvironmentsMessage-Oriented Environment

You can set SENDER to a new value at runtime by using the service module CMSNFPRT.

Except for checkpoint processing, Natural for DL/I and Natural for DB2 process as if they were in BMP mode.
This is necessary, since one physical scheduling can (and usually will) process several unrelated input messages.
Under the conversational MPP interface, all transactions processed during one Natural session and all DL/I
requests within this Natural session are considered to be related, requiring maintenance of database positioning
and PCB usage. With the non-conversational interface, this Natural for DL/I logic is not applicable.

Since transactions which are processed during one scheduling (and one Natural session) are not related to each
other, the retention of Natural session information in the roll file is not required. Thus, no roll dataset needs to be
allocated for this interface. A roll slot area is still allocated via GETMAIN and used to store all Natural control
blocks and work areas.

Since processing is performed on a message-by-message basis, there is no need for any relocation logic.

With the message-oriented interface, retrieval of all messages from the message queue is initiated by a front-end
Natural program. This program must be user-written to meet your specific processing needs. However, it
requires a specific structure, as shown in the following:

PROGRAM INITIALIZATION
REPEAT
CALL ’CMGETMSG’ MESSAGE-AREA MESSAGE-LENGTH
IF MSG-LL = 0 /* QC on GU to message queue
TERMINATE
FETCH RETURN PGMA MESSAGE-AREA
REPEAT
CALL ’CMGETSEG’ MESSAGE-AREA MESSAGE-LENGTH
IF MSG-LL = 0 /* QD on GN to message queue
ESCAPE
FETCH RETURN PGMB MESSAGE-AREA
END-REPEAT
END-REPEAT
END

The service module CMGETMSG reads the first message segment. The service module CMGETSEG reads all
further message segments.

Since Natural cannot read input from CMSYNIN, it is required to use the Natural stack for input. This is done by
using the Natural profile parameter STACK.

It is your responsibility to ensure that the IMS message queue is accessed by your application prior to the
termination of Natural. If not, the Natural transaction abnormally ends with IMS abend code 462, indicating that
a GU to the message queue has not been performed.

To obtain these Natural messages even in the case of an abnormal termination, you are recommended to define
the first alternate PCB as an EXPRESS PCB.

The message-oriented environment is implemented by the NTRD Interface which is linked with the Natural
parameter module to the NTRD Front-End. This front-end can either be called directly by the IMS/TM program
controller or via a bootstrap module.

If it is called directly by IMS/TM, this front-end is the IMS/TM application program which is scheduled by
IMS/TM if an input message for the assigned transaction code is available in the IMS/TM message queue. You
are recommended to use a Natural profile which contains the required STACK parameter. Specify
PROFILE=PROGRAM in your Natural parameter module and create a profile with a name equal to the
transaction code with which the interface is invoked. This way, you have the flexibility to use a different profile
with a different STACK for each transaction code used.

69Copyright © Software AG 2002

Operation of the Message-Oriented EnvironmentNatural under IMS/TM - Environments

If it is called via a bootstrap module, this bootstrap module is the IMS/TM application program which is
scheduled by IMS/TM if an input message for the assigned transaction code is available in the IMS/TM message
queue. This bootstrap module provides a string of dynamic profile parameters, one of which is the STACK
profile parameter, and calls the NTRD front-end whose name is specified during the generation of the bootstrap
module.

Bootstrap Module NIIBOOT

The bootstrap module is called by the program controller DFSPCC20. It loads and calls the message-oriented
front-end module passing the necessary parameters. The bootstrap module NIIBOOT is delivered as source
module and has to be assembled and link-edited during the installation process. The source code is contained in
the macro NIMBOOT.

NIMBOOT includes the following parameters:

DRIVERN | ENVTNAM | DYNPARM

Parameter Possible Values Default Comment

DRIVERN Any valid OS/390
module name

None This parameter specifies the name of the front-end module.

ENVTNAM Any valid OS/390
module name

None This parameter specifies the name of the environment table. This
parameter is optional. If it is not specified, the environment table is
determined by the entry in the transaction code table which
corresponds to the transaction code used.

DYNPARM Any character
string of up to 80
characters.

None This parameter is used to define a valid string of up to 80
characters of Natural dynamic parameters.

Batch Message Processing Environment
The Batch Message Processing (BMP) environment is implemented by the BMP Interface which is linked with
the Natural parameter module and the work file/print file access routine NATWKFO to the BMP Front-End.
This front-end is the IMS/TM application program which is specified in the BMP JCL.

A standard batch Natural is executed in a Batch Message Processing region. In comparison with the standard
batch Natural run, the optional input dataset CONTROL may be used.

The optional BMP CONTROL File contains a maximum of two input cards.

The first input card must contain the following keyword:

Keyword Meaning

ENV-TAB= The name of the environment table to be used.

Example:

ENV-TAB=ENVBMP0

The second input card of the CONTROL file contains the dynamic Natural parameters.

Copyright © Software AG 200270

Natural under IMS/TM - EnvironmentsBatch Message Processing Environment

Using Both the CMPRMIN Dataset and the CONTROL File to Pass Dynamic Natural
Parameters

If the CMPRMIN dataset is also used to pass dynamic Natural parameters, the input of CONTROL is appended
to the input of CMPRMIN. This means the parameters specified in CONTROL overwrite the parameters
specified in CMPRMIN.

Working without CONTROL File

If the CONTROL file is not used, the name of the environment table is determined by the entry in the transaction
code table which corresponds to the transaction code used (transaction-oriented BMP) or to the PSB name used
(batch-oriented BMP).

71Copyright © Software AG 2002

Batch Message Processing EnvironmentNatural under IMS/TM - Environments

Support of the Natural WRITE (n) Statement
With the WRITE (n) statement, up to 31 different reports on different printers can be produced within the same
Natural program. The reports are sent to the IMS terminals specified either in the Natural parameter module or
by using the Natural DEFINE PRINTER (n) statement. You have to specify AM=IMS in the NTPRINT macro
which controls the report.

To be able to use this statement, define as many additional alternate TP-PCBs in your PSB as the number of
parallel reports you want to create within the same Natural program, and specify the number of additional
alternate TP-PCBs in your transaction code table by using the parameter WRKPCBs.

Attention: Be aware that the first alternate TP-PCB is used by the Natural
IMS interface.

When using the WRITE (n) statement in a dialog-oriented environment, the following restriction applies:

The generation of a report cannot span one or more screen I/Os. If you want to use the same printer after a screen
I/O, you have to close it explicitly before the screen I/O using the CLOSE PRINTER(n) statement.

To create reports, the following parameters of the NTPRINT macro are relevant:

AM | DEST | BLKSIZE | DRIVER | NAME | FORMS | DISP | COPIES | CLASS | PRTY

Parameter Meaning

AM Must be set to "IMS".

DEST Specifies the IMS/TM destination.

BLKSIZE Specifies the size of the buffer which is sent to the destination. Report lines are buffered.

DRIVER Specifies the driver to be used to create the report. For a list of possible values, see the PRTDRIV
parameter of the Natural/IMS interface parameter module. The driver determines where you want
to have the form feed (at the start of the report, the end, both the start and the end, or no form
feed), where you want to start your page (on line 1 or on line 2 for NII 2.2 compatibility) and
where you want to print your report (SCS or non-SCS printer). In addition, you can specify that
you want to use the JES API.

NAME
FORMS
DISP
COPIES
CLASS
PRTY

These parameters are only evaluated if you use the JES API.

Hints Concerning NTPRINT and CLOSE PRINTER

NTPRINT Settings

You are strongly recommended that you always use the defaults for the OPEN and CLOSE subparameters in the
NTPRINT/PRINT definition for IMS/TM printers (i.e. for printers defined with AM=STD). This means either
donŸt specify any values for OPEN and CLOSE or use te defaults OPEN=ACC and CLOSE=CMD.

This is especially important if you have statically defined a printer in the NATPARM for a different access
method with other options for OPEN and CLOSE and if you dynamically overwrite the access method with
AM=IMS. In this case, always specify AM=IMS,OPEN=ACC,CLOSE=CMD together.

Copyright © Software AG 200272

Natural under IMS/TM - EnvironmentsSupport of the Natural WRITE (n) Statement

Note:
The NTPRINT options are merged with the dynamically specified PRINT options, even though the access
method has been overwritten.

Problems which may occur with non-default values:

1. With OPEN=OBJ you may print to a wrong destination or get a NAT8211 if the OUTPUT option has been
specified in a DEFINE PRINTER statement. With OPEN=OBJ the printer is opened before the OUTPUT
overwrite has been evaluated and the printer destination used is not the one which is specified in the
OUTPUT option but the one specified with the PRINT parameter.

2. With CLOSE=FIN the printer is not closed at CLOSE PRINTER time but at FIN time. This means that the
CLOSE may come afer a GU has been issued to the message queue and the destination has been reset in the
TP PCB. This will lead to NII error NII3641 for IMS/TM status code QF (MPP) or A3 (BMP and
OBMP/NTRD).
With CLOSE=CMD the printer is really closed with the CLOSE PRINTER.

Usage of CLOSE PRINTER or DEFINE PRINTER

A report written to an IMS/TM printer is implicitely closed by IMS/TM with the next GU call (i.e. either at
terminal I/O or through CMGETMSG).
This means, IMS/TM will print the report regardless of a CLOSE PRINTER or DEFINE PRINTER statement in
the program.

For Natural, the printer is still open, and the next WRITE statement with the same report number will continue
the already printed report which will lead to a NAT1518 error.

Scenario:

DEFINE PRINTER (1)
 WRITE (1) ’line 1’
 INPUT ’Press ENTER’ or CALL ’CMGETMSG’ (both issue a GU)
 WRITE (2) ’line 2’

The INPUT/CMGETMSG will "physically" close the printer and IMS/TM will print a report containing the line
’line 1’ .

As the printer is still "logically" open to Natural, the line ’line 2’ will not start a new report and error
NAT1518 will be caused as the destination is purged by the GU call.

You are therefore strongly recommended to observe the following rule:

A CLOSE PRINTER is required if, after the GU, the report with the same
number is continued.

Please note that the DEFINE PRINTER statement does an implicit close in which case the CLOSE PRINTER is
obsolete, for example:

Correct Correct Wrong (NAT1518)

REPEAT
 DEFINE PRINTER (1)
 WRITE (1)
 INPUT
LOOP

DEFINE PRINTER (1)
REPEAT
 WRITE(1)
 CLOSE PRINTER (1)
 INPUT
LOOP

DEFINE PRINTER(1)
REPEAT
 WRITE(1)
 INPUT
LOOP

73Copyright © Software AG 2002

Hints Concerning NTPRINT and CLOSE PRINTERNatural under IMS/TM - Environments

Natural under IMS/TM - Components
This part of the Natural IMS Interface documentation discusses the components of the Natural IMS interface.
The following topics are covered:

Front-End Module
Natural IMS Interface Module NIIINTFM
Physical Input Edit Routine
Roll File and Roll Server
Shared Natural Nucleus
Natural Buffer Pool
Adabas Interface
Preload List

Additional Information

Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer to Natural IMS/TM Error Codes in the Natural Messages and Codes
documentation.
Installation - refer to Installing the Natural IMS Interface in the Natural Installation Guide for Mainframes.
Further information - refer to the following topics:
Environments | Configuration Macros | Service Programs | Service Modules | Special Functions | User Exits
| Recovery Handling

Front-End Module
The front-end module receives control from the IMS/TM program controller DFSPPC20, except in the server
environment where it is called by the call interface NIIBOOTS.

The front-end module must be created during the installation process and consists of the following:

Environment-dependent Interfaces (Drivers)
Natural Parameter Module
Natural Work File Access Method for the BMP Environment
Modules from Other Natural Products

Environment-Dependent Interfaces (Drivers)

You must generate an environment-dependent interface for each IMS environment supported by the Natural IMS
interface using the NIMDRIV macro.

For a detailed description of the macro NIMDRIV, see NIMDRIV Macro Parameters.

Natural Parameter Module NATPARM

For information on the Natural parameter module, see Assembling a Natural Parameter Module (in the Natural
Operations for Mainframes documentation).

Copyright © Software AG 200274

Natural under IMS/TM - ComponentsNatural under IMS/TM - Components

Work File Handling Module NATWKFO

The NATWKFO module is delivered as part of the base Natural. It is used for work file and print file handling
for work files and print files defines with AM=STD. It is applicable to the BMP environment only.

Modules from Other Natural Products

Some Natural products, such as Natural for DB2 and Natural for DL/I, require that their modules be linked to the
Natural IMS front-end module. For further information, see the appropriate product documentation.

Natural IMS Interface Module NIIINTFM
The Natural IMS Interface module has to be created during the installation process and is common to all
environments.

The interface module consists of the following components:

Natural IMS Nucleus
Natural IMS Parameter Module NIIPARM
Transaction Code Table NIITRTAB
Message Text Module NIIMSGT
DL/I Language Interface ASMTDLI

The interface module is fully reentrant and can run above the 16MB line. It is therefore eligible for the ECSA in
order to have only one copy of the interface module for all IMS environments.

Natural IMS Nucleus

The Natural IMS nucleus is delivered as a load module and contains all the runtime routines required by the
Natural IMS Interface.

Natural IMS Parameter Module NIIPARM

The Natural IMS parameter module NIIPARM contains a number (1 - n) of parameter tables (also called
"environment tables") each defined by the macro NIMPARM and identified by the parameter ENTRYNM. Each
parameter table within NIIPARM defines the Natural IMS-specific parameters for a particular environment.
Thus it is possible to set the parameters for all Natural IMS environments in one parameter module. The
environment which is currently used is set in the transaction code table NIITRTAB.

For a detailed description of the macro NIMPARM, see NIMPARM Macro Parameters.

Transaction Code Table NIITRTAB

The transaction code table NIITRTAB table is of variable length and each entry is generated by the macro
NIMTRNTG.

Each entry in the transaction code table refers to an entry in the Natural IMS parameter module and can be
followed by one or more occurrences of the macro NIMLPCB.

For a detailed description of the macro NIMLPCB, see NIMLPCB Macro Parameters .

The appropriate entry within this table is detected by the current transaction code. If, in a non-message-driven
BMP, no transaction code is defined, the current PSB name is taken instead.

75Copyright © Software AG 2002

Natural IMS Interface Module NIIINTFMNatural under IMS/TM - Components

For a detailed description of the macro NIMTRNTG, see NIMTRNTG Macro Parameters.

Message Text Module NIIMSGT

The message text module NIIMSGT is part of the Natural IMS Interface module and is supplied both as a load
and a source module. For each possible Natural IMS runtime error, it contains the corresponding message text.
Each entry is generated by the macro NIMMSGT.

For a detailed description of the macro NIMMSGT, see NIMMSGT Macro Parameters .

DL/I Language Interface ASMTDLI

The DL/I language interface ASMTDLI is part of IMS/TM.

Physical Input Edit Routine
The physical input edit routine is required only in a dialog-oriented, non-conversational environment. It is used
to insert the transaction code preceding the message sent to the terminal. This is required as Natural runs in MFS
bypass mode and the message sent to the terminal does not contain a transaction code.

The physical input edit routine is generated by using the NIMPIXT macro. For futher information on the
NIMPIXT macro, see NIMPIXT Macro Parameters.

Once the physical input edit routine is generated, its name must be specified in the TYPE or LINEGRP macros
of your IMS/TM system definition. For all terminals on which the non-conversational environment is supposed
to run, you must enable physical editing by using the EDIT parameter in the TERMINAL macro.

Copyright © Software AG 200276

Natural under IMS/TM - ComponentsPhysical Input Edit Routine

Roll File and Roll Server
These components are used in dialog-oriented environments only.

Natural session-related information is held in the Natural thread. With each terminal output, the content of the
Natural thread is saved either in a roll file or by using the roll server. The medium is defined by the NIMPARM
parameter ROLLSRV.

Using Roll Files

To use roll files, the parameter ROLLSRV is set to NO.

A roll slot in the roll file is reserved for each Natural user at Natural session initialization time. The slot is freed
when the Natural session terminates normally. In case of an abnormal termination, the roll slot remains allocated,
but will be reused when the same user (identified by his LTERM) starts a new Natural session.

Roll files are accessed under the DD statements ROLLF1 - ROLLF5. The number of roll files used is defined by
the NIMPARM parameter ROLLFN.

If your Natural transaction code is scheduled in more than one MPP region or if you switch between transaction
codes running in different MPP regions, you have to use the same roll files in all MPP regions.

If you reformat the roll file(s), make sure that no Natural transactions are active. If a transaction is scheduled
after the roll file has been reinitialized, it cannot locate its roll slot on the roll file and abnormally terminates. To
avoid this problem, it is recommended that you cold-start IMS after the roll file has been reformatted.

The roll files used by Natural under IMS have the same layout as the roll files used by the Roll Server and are
formatted by the same utility program.

Using the Roll Server

To use the roll server, the parameter ROLLSRV is set to YES.

Instead of using roll files which have to be allocated to each MPP region, you can use the Natural roll server.
The roll server offers the following advantages:

No DD statements in each MPP region.
One central address space is responsible for access to the roll files.
Data space support.

In a SYSPLEX environment you must use the roll server.

For further information on roll files and the roll server, see Roll Server (in the Natural Operations for
Mainframes documentation).

77Copyright © Software AG 2002

Roll File and Roll ServerNatural under IMS/TM - Components

Shared Natural Nucleus
In an IMS/TM environment, the Natural nucleus is always separated from the environment-dependent interface
(driver). This means that you have to install the shared Natural nucleus. The same Natural nucleus can be shared
by all Natural IMS environments.

For further information, see Natural Shared Nucleus (in the Natural Operations for Mainframes documentation).

Natural Buffer Pool
Since Natural under IMS is executable in more than one MPP region, it is recommended that the Natural buffer
pool be a global buffer pool.

Although you can use a local buffer pool, this is not recommended in terminal-driven environments for
performance reasons.

For further information, see Natural Global Buffer Pool (in the Natural Operations for Mainframes
documentation).

Adabas Interface
In order to access the Natural system file and Adabas user files, the Adabas interface is required.

By default, the appropriate Adabas interface is dynamically loaded at runtime.

In terminal-driven dialog-oriented environments, the Adabas/IMS interface module ADALNI is used.
In all other environments, the Adabas batch interface module ADALNK is used.

You can overwrite the name of the Adabas interface to be used by specifying the Natural profile parameter
ADANAME.

You must not use the reentrant version of either of these interface modules.

Preload List
It is no longer required to use a preload list with the Natural IMS Interface, but for performance reasons it is
recommended that you add the names of the following modules to the preload list for the Natural regions:

the Natural IMS front-ends,
the Natural IMS Interface module,
the Natural shared nucleus,
the Adabas interface.

Copyright © Software AG 200278

Natural under IMS/TM - ComponentsShared Natural Nucleus

Natural under IMS/TM - Configuration
Macros
This part of the Natural IMS Interface documentation discusses the configuration macros of the Natural IMS
interface. The following topics are covered:

NIMDRIV Macro Parameters
NIMPARM Macro Parameters
NIMTRNTG Macro Parameters
NIMLPCB Macro Parameters
NIMMSGT Macro Parameters
NIMPIXT Macro Parameters

Additional Information

Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer to Natural IMS/TM Error Codes in the Natural Messages and Codes
documentation.
Installation - refer to Installing the Natural IMS Interface in the Natural Installation Guide for Mainframes.
Further information - refer to the following topics:
Environments | Components | Service Programs | Service Modules | Special Functions | User Exits |
Recovery Handling

79Copyright © Software AG 2002

Natural under IMS/TM - Configuration MacrosNatural under IMS/TM - Configuration Macros

NIMDRIV Macro Parameters
The macro NIMDRIV generates environment-dependent interfaces (drivers). The parameters which can be
specified with the macro NIMDRIV are described below:

TYPE | LE370 | NIINAME

Parameter
Possible
Values

Description Default Comment

TYPE

CONV
TYPE specifies the type of the driver to be generated.
In case of "CONV", a dialog-oriented conversational
environment is generated.

None None.

NONC Dialog-oriented non-conversational environment is generated.

NTRD
Message-oriented (not terminal-driven) environment is
generated.

BMP

Batch-oriented and transaction-oriented BMP environment is
generated.
Note: You can also use this interface in the DLIBATCH
environment.

SRVD Server environment is generated.

LE370

YES

LE370 specifies whether Natural under IMS initializes the
LE/370 environment.
In case of "YES", the LE/370 environment is initialized and
remains so until the Natural IMS front-end returns to the IMS
program controller. NO None.

NO
The LE/370 environment is not initialized. An LE/370
environment is initialized and terminated for each LE/370
program call.

NIINAME xxxxxxxx
Specifies the name of the Natural IMS interface module to be
used by the current driver. Any valid module name up to 8
characters is possible..

NIIINTFM None.

NIMPARM Macro Parameters
The macro NIMPARM generates parameter tables which are contained in the parameter module NIIPARM.

The parameters which can be specified with the NIMPARM macro are described below. The ENTRYNM
parameter identifies the current parameter table.

The parameters are listed in alphabetical order below.

ACTACTV | ACTAHDR | ACTARID | ACTLOG | BMPABER | BROACTV | CMBSIZE | COLPSCR |
ENDMODN | ENTRYNM | ERRLHDR | HCBSIZE | HDENSDU | LINPSCR | MISIZE | MONACTV |
MOSIZE | MSACTV | MSCMPTB | MSCRKEY | MSDBD | MSMAX | MSRSKEY | PRTDRIV | ROLLSRV |
ROLLFN | SPASIZE | SPATID | SUPNONC | TERMDB | TERMIPL | THBELOW | THSIZE | USERID

Copyright © Software AG 200280

Natural under IMS/TM - Configuration MacrosNIMDRIV Macro Parameters

A

Parameter
Possible
Values

Description Default Comment

ACTACTV
YES

ACTACTV specifies whether the
accounting function is activated.
In case of "YES", an accounting
record is written with each terminal
I/O.

NO
Used in dialog-oriented
environments only.

NO No accounting record is written.

ACTAHDR xxxxxxxx
Defines the header of the accounting
records if written to the IMS log file.
Any string up to 8 bytes is possible.

SAG$$$$$

The parameter is only evaluated
when the ACTLOG parameter
is set to CMD. It is used for the
accounting function only.

ACTARID

log code

or

SMF
record
type

Specifies the accounting record ID if
the accounting record is written using
the LOG or SMF settings of the
ACTLOG parameter.

None
Used for the accounting
function only.

Log code
(A0 - FF)

When the ACTLOG
parameter (see below) is
set to LOG.

SMF
record
type
(128 -
255)

When the ACTLOG
parameter is set to SMF.

ACTLOG

CMD

ACTLOG specifies how accounting
records are written. In case of "CMD",
accounting records are written to the
IMS log file using the CMD call.

CMD
Used for the accounting
function only. LOG

Accounting records are written to the
IMS log file using the LOG call.

SMF
Accounting records are written to
SMF using Authorized Services
Manager.

81Copyright © Software AG 2002

ANatural under IMS/TM - Configuration Macros

B - C

Parameter
Possible
Values

Description Default Comment

BMPABER

YES

BMPABER specifies how a BMP run
should be terminated if either a
Natural runtime error or a Natural
IMS interface non-recoverable error
occurs.

In case of "YES", the BMP run is
abended with ABEND code 3521. NO None.

NO

The BMP run is terminated normally
with the Natural termination error as
the condition code. If the BMP run is
terminated with a non-recoverable
Natural IMS error, condition code
1024 is set.

BROACTV
YES Specifies whether the broadcasting

function is available or not.
NO

Used in dialog-oriented environments
only. NO

CMBSIZE xxxxx
Specifies the size of the command
buffer in bytes. Any numeric value up
to 16 MB is possible.

1024

The command buffer is used by the
service APIs NIICMD and
NIIGCMD, the service module
CMCMMND and the Accounting
function.

The size of the command buffer must
accommodate the maximum length of
the IMS commands to be processed
and the maximum length of the
accounting record including the user
extension.

COLPSCR xx
Specifies the number of columns per
screen. Any valid screen width
(numeric) is possible.

80 None.

Copyright © Software AG 200282

Natural under IMS/TM - Configuration MacrosB - C

E - H

Parameter
Possible
Values

Description Default Comment

ENDMODN xxxxxxxx

Specifies the MOD name for
formatting the screen which
appears after a Natural session is
terminated successfully. Any
valid MOD name up to 8
characters is possible.

DFSMO2

Enables Natural to be included in a
customer-specific menu.

The value of the ENDMODN
parameter can be overridden by the
service API NIIEMOD and the service
module CMEMOD.

If a Natural session terminates with an
error, DFSMO2 is always used to issue
the appropriate Natural error message.

ENTRYNM xxxxxxxx
Identifies the current parameter
table. Any string up to 8
characters is possible.

ENV00000 None.

ERRLHDR xxxxxxxx

Specifies the header of the IMS
log records which are written
when errors occur in the Natural
IMS interface. Any string up to
8 characters is possible.

NIIERR$$

If you do not wish a message to be
written to the IMS log in the case of a
non-recoverable Natural IMS error, set
the ERRLHDR parameter explicitely
to null, i.e. specify "ERRLHDR=,".

For further information, see Recovery
Handling.

HCBSIZE xxxxx

Speicifies the size in bytes of the
hardcopy print buffer. Any
numeric value up to 16 MB
possible.

1024
Records which are sent to a printer
destination using the Natural hardcopy
function are buffered.

HDENSDU

YES
Specifies whether a snap dump
provoked by a Natural IMS
error should be written as a
high-density dump to a 3800
printing subsystem or not.

NO None.

NO

83Copyright © Software AG 2002

E - HNatural under IMS/TM - Configuration Macros

L - M

Parameter
Possible
Values

Description Default Comment

LINPSCR xx
Defines the number of lines per screen.
Any valid screen size (numeric) is
possible.

24 None.

MISIZE xxxxx
The size in bytes of the buffer which is to
contain the input message. Any numeric
value up to 16 MB is possible.

4096
This area must be as large as the
largest input message to be
received from IMS/TM.

MONACTV
YES

MONACTV specifies whether the
monitoring function is activated.
In case of "YES", the session status is
written to the SIP server at each terminal
I/O.

NO
Used in dialog-oriented
environments only.

NO No session status is maintained.

MOSIZE xxxxx
The size in bytes of the buffer which is to
contain the output message. Any numeric
value up to 16 MB is possible.

4096
This area must be as large as the
largest output message to be
sent to IMS/TM.

MSACTV
YES Specifies whether the multi-session

function is available or not.
NO

Used in dialog-oriented
environments only. NO

MSCMPTB
YES Specifies whether sessions are switched in

NII22/NIA-compatible mode or not.
NO

Used for the multi-session
function only. NO

MSCRKEY

NONE

Specifies with which PF keys a new
session can be started.

NONE

Used for the multi-session
function only.
If MSCMPTB=YES,
MSCRKEY must be set to
NONE.

PF1 -
PF24

MSDBD
DBD
name

Specifies the name of the multi-session
database. Any valid DBD name is
possible.

None
Used for the multi-session
function only.

MSMAX 2 - 9
Specifies the highest possible number of
parallel Natural sessions per terminal.

9
Used for the multi-session
function only.

MSRSKEY

NONE
Specifies the PF key with which an old
session can be restarted.

NONE

Used for the multi-session
function only.
MSRSKEY must be set to
NONE, if MSCMPTB=YES.

PF1 -
PF24

Copyright © Software AG 200284

Natural under IMS/TM - Configuration MacrosL - M

P

Parameter
Possible
Values

Description Default Comment

PRTDRIV

See tables of drivers below.
Drivers for SCS Printers
Drivers for Non-SCS Printers
Drivers for JES API

Specifies the print driver to be
used for reports which are
directly written to an IMS/TM
printer.

SCS_S2

For further information,
see Support of the
Natural WRITE (n)
Statement.

Drivers for SCS Printers

Driver Purpose

SCS_B1 Form feed at start and end of report, starts page on line 1.

SCS_B2 Form feed at start and end of report, starts page on line 2.

SCS_E1 Form feed at end of report, starts page on line 1.

SCS_E2 Form feed at end of report, starts page on line 2.

SCS_N1 No form feed at start or end of report, starts page on line 1.

SCS_N2 No form feed at start or end of report, starts page on line 2.

SCS_S1 Form feed at start report, starts page on line 1.

SCS_S2 Form feed at start of report, starts page on line 2.

Drivers for Non-SCS Printers

Driver Purpose

NSCS_B1 Form feed at start and end of report, starts page on line 1.

NSCS_B2 Form feed at start and end of report, starts page on line 2.

NSCS_E1 Form feed at end of report, starts page on line 1.

NSCS_E2 Form feed at end of report, starts page on line 2.

NSCS_N1 No form feed at start or end of report, starts page on line 1.

NSCS_N2 No form feed at start or end of report, starts page on line 2.

NSCS_S1 Form feed at start report, starts page on line 1.

NSCS_S2 Form feed at start of report, starts page on line 2.

85Copyright © Software AG 2002

PNatural under IMS/TM - Configuration Macros

Drivers for JES API

Driver Purpose

JES In this case, the following dataset processing options for JES are taken from the corresponding
NTPRINT or DEFINE PRINTER parameters:

JES NTPRINT DEFINE PRINTER

CLASS CLASS CLASS

COPIES COPIES COPIES

DEST DEST OUTPUT

FORMS FORMS FORMS

NAME NAME NAME

OUTDISP DISP DISP

PRTY PRTY PRTY

The generated JES API parameter string is:

IAFP=A0M,PRTO=..OUTDI(disp),DES(dest),CLA(class),COP(copies),
 FORMS(forms),NAME(name),PRTY(prty)

Note: Unspecified NTPRINT/DEFINE PRINTER parameters are ignored.

JESxxxxx In this case, the dataset processing options for JES are taken from the OUTPUT JCL statement with
the name JESxxxxx.
The generated JES API parameter string is:IAFP=A0M,OUTN=JESxxxxx

The OUTPUT JCL statement may look like:

JESxxxxx OUTPUT
OUTDISP=WRITE,DEST=dest,CLASS=A,COPIES=1,FORMS=form,...

Note: If the OUTPUT JCL statement is missing in the job stream, an error is reported.

Copyright © Software AG 200286

Natural under IMS/TM - Configuration MacrosP

R - S

Parameter
Possible
Values

Description Default Comment

ROLLSRV
YES

ROLLSRV apecifies the medium for
saving a Natural thread between terminal
output and input. If ROLLSRV=YES,
the Natural roll server is used.

YES
Used in dialog-oriented
environments only.

NO Roll files are used, see ROLLFN below.

ROLLFN 1 - 5
Specifies the number of roll files to be
used, if ROLLSRV=NO.

1
Used in dialog-oriented
environments only.

SPASIZE xxxxx

Specifies the size in bytes of the buffer
which is to contain the scratch-pad area.
Any numeric value up to 16 MB is
possible.

1024

In a non-conversational
environment, this is also the size of
the simulated SPA which is written
to the SIP server.

SPATID xxxx

Specifies the Natural subsystem ID for
the Authorized Services Manager which
is used to save the SPA for a
non-conversational driver. Any string up
to 4 characters is possible.

This value must be the same for all
parameter tables and must be the
same as the value specified for
SPATID in the NIMPIXT macro.

SUPNONC
YES Specifies whether switching from a

terminal-oriented non-conversational
environment to a conversational
environment is possible.

NO
Used in the dialog-oriented
conversational environment only.

NO

87Copyright © Software AG 2002

R - SNatural under IMS/TM - Configuration Macros

T - U

Parameter
Possible
Values

Description Default Comment

TERMDB

YES
Specifies whether the Natural session
has to be terminated if one of the DL/I
databases specified in the PSB is not
available.

NO

Used in dialog-oriented
environments only.

If you set TERMDB to "NO" and
one of the databases is not
available when it is accessed, the
Natural transaction code is
suspended by IMS/TM.

NO

TERMIPL

YES
Specifies whether a Natural session is
terminated with an error message when
an IPL has taken place between the
current transaction step and the start of
the session.

NO
Used in dialog-oriented
environments only.

NO

THBELOW

YES

Specifies where the Natural thread is
allocated. In case of YES, the Natural
thread is allocated below the 16 MB
line. YES

For batch message processing, the
thread is always allocated below
the 16 MB line.

NO
The Natural thread is allocated above
the 16 MB line.

THSIZE

Specifies the size of the Natural thread.
Any numeric value in multiples of eight
greater than or equal to 100000 is
possible.

300000
This is the area which contains all
user session related Natural
buffers.

USERID

YES

USERID specifies how the value of the
system variable *init-user is determined.
In case of "YES", the Natural user ID
specified in *INIT-USER is either taken
from the security access control block if
a security package is active or from the
USER parameter of the job card.

NO Used by the BMP driver only.

NO
The Natural user ID specified in
*INIT-USER is taken from the job
name.

Copyright © Software AG 200288

Natural under IMS/TM - Configuration MacrosT - U

NIMTRNTG Macro Parameters
The macro NIMTRNTG generates an entry in the transaction code table NIITRTAB containing the specified
transaction code with related parameters. For each Natural transaction code an entry has to be included in the
transaction code table. For further information on NIITRTAB, see Transaction Code Table NIITRTAB.

The parameters which can be specified with the macro NIMTRNTG are listed in alphabetical order below:

HCPCB | MSGPCB | MSPCB | NIIPENT | NRASTART | PSBNAME | TRANCODE |
TYPE | WRKPCBS

Parameter
Possible
Values

Description Default Comment

HCPCB

SYSPCB

HCPCB specifies which PCB is
used for the hardcopy function.
In case of "SYSPCB", the first
alternative TP PCB is used.

SYSPCB None.

WRKPCB

One of the additional alternative
TP PCBs is used. This enables
you to use an express TP PCB
for the hardcopy function.

MSGPCB

SYSPCB

MSGPCB specifies which PCB
is used when printing error
messages and standard output in
the non-terminal-oriented
environment and for the server
driver.
In case of "SYSPCB", the first
alternative TP PCB is used.

SYSPCB
Relevant for non-terminal-oriented
environments and the server driver
only.

OWNPCB

The second alternative TP PCB
is reserved and used. This
enables you to use an express
TP PCB for sending messages.

MSPCB

NO

MSPCB specifies the number of
the multi-session database PCB.
If "NO" is specified, the
multi-session feature is not used. NO

Relevant for the multi-session
feature only.

1 - 255
The PCB of the multi-session
database.

NIIPENT xxxxxxxx

Specifies the name of the
Natural IMS parameter table to
be used for this entry in the
transaction code table. Any
non-blank character string up to
8 characters is possible.

ENV00000 None.

89Copyright © Software AG 2002

NIMTRNTG Macro ParametersNatural under IMS/TM - Configuration Macros

NRASTART offset value

Defines the offset of the Natural
Reserved Area (NRA) within
the scratch-pad area. Any
numeric value greater than 14 is
possible.

16

The current length of the NRA is
157 bytes. The length of the NRA
may change from version to
version of the Natural IMS
interface.
If you want to save your own
information in the SPA in order to
pass it to a non-Natural
transaction, it is recommended
that you save your data in front of
the NRA in order to be version
compatible.

PSBNAME PSB name

Specifies the PSB name
corresponding to the current
transaction code. Any valid PSB
name is possible.

None

Used to identify the entry in the
transaction code table for
non-message-driven batch
message processing and for the
batch processing environment.

TRANCODE
transaction
code name

Specifies the identifier of each
entry within the transaction code
table. Any valid transaction
code name is possible.

None
Has no effect in both the
non-message-driven BMP and the
batch processing environment.

TYPE

CONV

TYPE specifies the type of the
Natural transaction code. In case
of "CONV", the transaction
code is for a conversational
Natural session. CONV None.

NONC
The transaction code is for a
non-conversational Natural
session.

WRKPCBS

0

WRKPCBS specifies the
number of alternative TP PCBs
available for printing additional
to the first TP PCB and, if
appropriate, to the MSGPCB.
In case of "0", no IMS printer is
available. 0 See examples below.

1 - 32

The number of alternate TP
PCBs used for printing
additional to the first TP PCB
and, if appropriate, to the
MSGPCB.

Examples

Example 1:

You specified the following:

MSGPCB=SYSPCB
WRKPCBS=2

Copyright © Software AG 200290

Natural under IMS/TM - Configuration MacrosNIMTRNTG Macro Parameters

The PSB must contain 3 alternate TP PCBs.

Example 2:

You specified the following:

MSGPCB=OWNPCB
WRKPCBS=2

The PSB must contain 4 alternate TP PCBs. The second alternate TP PCB is reserved for the error messages and
standard output of the non-terminal-oriented environment.

91Copyright © Software AG 2002

NIMTRNTG Macro ParametersNatural under IMS/TM - Configuration Macros

NIMLPCB Macro Parameters
The macro NIMLPCB can optionally follow a NIMTRNTG entry in the transaction code table.

The parameters which can be specified with the macro NIMLPCB are listed in alphabetical order below:

NAME | NUM

Parameter
Possible
Values

Description Default Comment

NAME xxxxxxxx
Specifies the logical name of the
PCB. Any non-blank string up to 8
characters is possible.

None None.

NUM
PCB
positional
number

Specifies the positional number of the
PCB in the PSB. Any integer is
possible.

None
If NUM is not specified, the
positional number of the
NIMLPCB macro is used.

NIMMSGT Macro Parameters
The macro NIMMSGT generates each entry in the message text module NIIMSGT which is part of the Natural
IMS interface module. Each generated entry provides a message text for each possible Natural IMS error
number.

The NIMMSGT macro is specified in one of the following two ways:

 N error-number [*] NIMMSGT message-text

In this case, Natural under IMS will display the message text as defined. The message text may be up to 72
characters long.

 X error-number [*] NIMMSGT message-text

In this case, Natural under IMS will append an error-specific reason code to the current message text. The
message text may be up to 64 characters long.

If the error number is followed by an asterisk (*), a snap dump will be generated when an error occurs. You may
adapt the message text to your own requirements. You may also add or delete the DUMP option of a specific
error number. You must not modify the error number and the characters N or R that precede the error number.

Copyright © Software AG 200292

Natural under IMS/TM - Configuration MacrosNIMLPCB Macro Parameters

NIMPIXT Macro Parameters
The NIMPIXT macro generates the Physical Input Edit Routine.

The parameters which can be specified with the macro NIMPIXT are listed in alphabetical order below:

NIA | PIXTE | SIPSE | SPATID | SVC | SVCE | WTO | USER

Parameter
Possible
Values

Description Default Comment

NIA
YES Specifies whether NIA (Natural under

IMS/TM Advanced Interface) is supported
by the physical input edit routine.

NO

If you want to run the Natural
IMS Interface Version 2.3 and
NIA 2.2 in parallel (on the same
terminals), specify YES. NO

PIXTE 1 - 999
Specifies the start value for error numbers if
errors are detected by the physical input edit
routine.

400
This value is added to the return
code set by the physical input
edit routine.

SIPSE 1 - 999
Specifies the start value for error numbers if
errors are detected by the Authorized
Services Manager.

500
This value is added to the return
code set by the Authorized
Services Manager.

SPATID xxxx

Specifies the Natural subsystem ID for the
Authorized Services Manager which is used
to save the SPA for the non-conversational
driver. Any string up to 4 characters is
possible.

None

The value of this parameter
must be the same as the value
specified for the SPATID
parameter in the NIMPARM
macro.

SVC
200 -
255

Specifies the SVC numbers used by NIA. None

For more information, see the
Natural under IMS/TM
Advanced Interface
documentation (Manual order
no. NIA-225-110).

SVCE 1 - 999
Specifies the start value for error numbers if
errors are detected by the NIA SVC.

200
This value is added to the return
code of the NIA SVC to create
the error message number.

WTO
YES Specifies whether a WTO message is issued

if the Authorized Services Manager fails.
NO None.

NO

USER

xxxxxxxx
Specifies whether a user-specific physical
input edit routine is to be called if the
NIMPIXT macro does not find the SPA.

If a user-specific input edit routine is to be
called, specify the name of the routine.

NO None.

NO

93Copyright © Software AG 2002

NIMPIXT Macro ParametersNatural under IMS/TM - Configuration Macros

Natural under IMS/TM - Service Programs
This part of the Natural IMS Interface documentation describes the service programs of the Natural IMS/TM
Interface. The following topics are covered:

Introduction to the Natural IMS/TM Interface Service Programs
Description of the Natural IMS/TM Interface Service Programs

Additional Information

Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer to Natural IMS/TM Error Codes in the Natural Messages and Codes
documentation.
Installation - refer to Installing the Natural IMS Interface in the Natural Installation Guide for Mainframes.
Further information - refer to the following topics:
Environments | Components | Configuration Macros | Service Modules | Special Functions | User Exits |
Recovery Handling

Introduction to the Natural IMS/TM Interface Service
Programs

Purpose of Natural IMS/TM Interface Service Programs

Service programs are Natural subprograms which provide Natural under IMS with additional functionality. You
can call them from within a Natural program using a standard CALLNAT statement.

Location of Service Programs

The service programs are provided in the library SYSEXTP and you must copy them to the SYSTEM or steplib
library.
Sample Natural programs to invoke the service programs are also provided in the library SYSEXTP.

Common Return Codes

The last parameter in each service program is the return code whose format is (I4). The following return code
values are common for all service programs:

0 OK

-1 Non-supported function. This is an internal error, please contact Software AG support.

For specific return code values, refer to the individual service program descriptions below.

Error Handling

If an error occurs, either a Natural error message is issued or the session is terminated with a Natural IMS error
message.

Copyright © Software AG 200294

Natural under IMS/TM - Service ProgramsNatural under IMS/TM - Service Programs

Description of the Natural IMS/TM Interface Service
Programs
The following service programs are described below:

NIIBRCST | NIICMD | NIIDEFT | NIIDEFTX | NIIDIRT | NIIDIRTX | NIIEMOD | NIIGCMD | NIIGMSG |
NIIGSEG | NIIGSPA | NIIIMSIN | NIIISRTF | NIIISRTM | NIIPCBAD | NIIPCOM | NIIPMSG | NIIPSBAD |
NIIPSPA | NIIPURG | NIIRETRM | NIISASD | NIIU3962

NIIBRCST - Send Passed Message to Terminal
Sends the passed message to the specified terminal using the message output descriptor specified in the
MOD_name parameter.

The following parameters are provided:

Terminal_name | Message | Message_length | MOD_name | Return_code

Terminal_name (A8)

Message (A1/1:V)

Message_length(I4)

MOD_name (A8)

Return_code (I4)

Specific Return Code Values: None.

Sample Program: NIPGMSG

NIICMD - Pass IMS Command to IMS
Passes the IMS command specified to IMS. If there is a reply, it is moved into the reply area provided. If the
reply does not fit into the reply area, it is truncated and the return code is set to 4.

The following parameters are provided:

Command | Command_length | Reply_area | Reply_area_length | Reply_length |
Status_code | Return_code

Command (A1/1:V) Input

Command_length (I4) Input

Reply_area (A1/1:V) Input/Output

Reply_area_length(I4) Input

Reply_length (I4) Output

Status_code (A2) Output

Return_code (I4) Output

95Copyright © Software AG 2002

Description of the Natural IMS/TM Interface Service ProgramsNatural under IMS/TM - Service Programs

Specific Return Code Values: 4 (reply truncated)

Sample Program: NIPCMD

NIIDEFT - Prepare Deferred Switch to Natural
Transaction Code
Prepares a deferred switch to the specified Natural transaction code. With the next terminal I/O, the output is sent
to the terminal and the next input from this terminal is processed by the transaction code specified in the
parameter Transaction_code.

The following parameters are provided:

Transaction_code | Return_code

Transaction_code(A8) Input

Return_code (I4) Output

Specific Return Code Values: None.

Sample Program: NIPDEFT

NIIDEFTX - Prepare Deferred Switch to Non-Natural
Transaction Code
Prepares a deferred switch to a non-Natural transaction code. With the next terminal I/O, the output is sent to the
terminal using the given MOD_name and the next input from this terminal is processed by the transaction code
specified in the parameter Transaction code.

If the suspend flag is set to "Y", the Natural session will be suspended and can be resumed later. If the Natural
session is resumed, it will first issue the last Natural screen.

If the suspend flag is set to "Y" you may not switch from a conversational Natural session to a
non-conversational transaction code. If you try to do so, a Natural error message is issued.

The following parameters are provided:

Transaction_code | Transaction_type | Suspend_flag | MOD_name | Message |
Message_length | Return_code

Copyright © Software AG 200296

Natural under IMS/TM - Service ProgramsNIIDEFT - Prepare Deferred Switch to Natural Transaction Code

Transaction_code(A8) Input

Transaction_type

(A4)

Input
Possible values:
CONV for conversational
NONC for non conversational

Suspend_flag

(A1)

Input
Possible values:
Y the Natural session will be suspended
else the Natural session will be terminated

MOD_name (A8) Input

Message (A1/1:V) Input

Message_length (I4) Input

Return_code (I4) Output

Specific Return Code Values: None.

Sample Program: NIPDEFTX

NIIDIRT - Prepare Direct Switch to Natural Transaction
Code
Prepares a direct switch to a specified Natural transaction code. On the next terminal write, the CHNG command
to the specified transaction code is issued and the Natural screen is inserted using the alternate TP PCB.

If you switch from a conversational Natural session to a non-conversational one, the conversation is terminated
and a dummy message using MOD_name NIIMODNC is inserted. This message unprotects the screen
temporarily, and is thus overwritten by the first screen of the non-conversational Natural session.

Transaction_code | Return_code

Transaction_code(A8) Input

Return_code (I4) Output

Specific Return Code Values: None.

Sample Program: NIPDIRT

NIIDIRTX - Prepare Direct Switch to Transaction Code
Prepares a direct switch to the specified transaction code. On the next terminal write, the CHNG call for the new
transaction code is issued and the message and or the SPA are inserted using the alternate TP PCB. The
transaction type defines the type of the new transaction code.

If you switch from a conversational transaction code to a non-conversational one, the conversation is
finished by issuing a dummy message using MOD_name NIIMODN, which unprotects the screen
temporarily, thus it will be overwritten by the screen issued from the non conversational transaction code.
If the suspend flag is set to "Y", the Natural session is suspended and may be resumed at a later time. When
the Natural session is resumed, the last Natural screen is issued.
If the suspend flag is set to "Y" you may not switch from a conversational Natural to a non conversational

97Copyright © Software AG 2002

NIIDIRT - Prepare Direct Switch to Natural Transaction CodeNatural under IMS/TM - Service Programs

transaction code. If you try to do so, a Natural error message will be issued.
If message length is set to zero, no message at all is inserted. This however is only possible if you switch to
a conversational transaction code.

The following parameters are provided:

Transaction_code | Transaction_type | Suspend_flag | Message | Message_length |
Return_code

Transaction_code(A8) Input

Transaction_type(A4) Input
Possible values:
CONV for conversational transaction code
NONC for non-conversational transaction code

Suspend_flag (A1) Input
Possible values:
Y the Natural session will be suspended
else the Natural session will be terminated

Message (A1/1:V) Input

Message_length (I4) Input

Return_code (I4) Output

Specific Return Code Values: None.

Sample Program: NIPDIRTX

NIIEMOD - Modify Setting of Module Output Descriptor
Modifies the current setting of the module output descriptor to be used in the insertion of the last message in a
Natural session and sets it to the value specified in the parameter MOD_name.

The following parameters are provided:

MOD_name | Return_code

MOD_name (A8) Input

Return_code(I4) Output

Sample Program: NIPEMOD

NIIGCMD - Retrieve Next Reply Segment of Previous
IMS/TM Command
Retrieves the next reply segment of a previously issued IMS/TM command. The length of the reply is return in
the parameter reply length. If the reply does not fit into the reply area, the reply is truncated and return code 4 is
issued.

Copyright © Software AG 200298

Natural under IMS/TM - Service ProgramsNIIEMOD - Modify Setting of Module Output Descriptor

The following parameters are provided:

Reply_area | Reply_area_length | Reply_length | Status_code | Return_code

Reply_area (A1/1:V) Input/Output

Reply_area_length(I4) Input

Reply_length (I4) Output

Status_code (A2) Output

Return_code (I4) Output

Specific Return Code Values: 4 (reply truncated)

Sample Program: NIPCMD

NIIGMSG - Retrieve First Segment Next Message
Retrieves the first segment of the next message from the message queue by issuing a GU. The message area will
contain the retrieved message including the leading LLZZ bytes. If there are no messages in the message queue,
LLZZ is set to zero.

The following parameters are provided:

Message_area | Message_area_length | Return_code

Message_area (A1/1:V) Output

Message_area_length(I4) Input

Return_code (I4) Output

Specific Return Code Values: None.

Sample Programs: NIPGMSG, NIPGSEG

NIIGSEG - Retrieve Next Segment of Input Message
Retrieves the next segment of the input message by issuing a GN call. The message area will contain the
retrieved message including the leading LLZZ bytes. If there are no more message segments in the current
message, LLZZ is set to zero.

The following parameters are provided:

Message_area | Message_area_length | Return_code

Message_area (A1/1:V) Output

Message_area_length(I4) Input

Return_code (I4) Output

Specific Return Code Values: None.

99Copyright © Software AG 2002

NIIGMSG - Retrieve First Segment Next MessageNatural under IMS/TM - Service Programs

Sample Program: NIPGSEG

NIIGSPA - Retrieve Data from SPA Beginning
Retrieves data from the SPA beginning at the specified offset in the specified length.

The following parameters are provided:

Offset | Length | Area | Return_code

Offset (I4) Input

Length (I4) Input

Area (A1/1:V) Input/Output

Return_code(I4) Output

Specific Return Code Values: 4

The retrieved data resides entirely or partially within the part of the SPA reserved for Natural.

Sample Program: NIPGSPA

NIIIMSIN - Retrieve IMS Environment Info
Retrieves the IMS environment information using the INQY ENVIRON call. If you specify a reply_area_length
smaller than 102, the reply will be truncated and you will receive return code X’0100’ with reason code
X’000C’.

The following parameters are provided:

Reply_area | Reply_area_length | Return_code

Reply_area (A1/1:v) Output

Reply_area_length(I4) Input

Return_code (I4) Output

Specific Return Code Values: nnxx

nn: The first two bytes contain the AIB return code. xx: The second two bytes contain the AIB reason code.
AIB denotes "Application Interface Block" and is used when calling IMS through the AIBTDLI interface.

Sample Program: NIPIMSIN

NIIISRTF - Create Multi-Segment Messages
Creates multi-segment messages. NIIISRTF performs the CHNG call for the specified destination and inserts the
first message segment without performing a PURG call. Further message segments may be inserted using
NIIISRTM. The message has to be terminated using NIIPURG. The LLZZ bytes are created by the service
module.

Copyright © Software AG 2002100

Natural under IMS/TM - Service ProgramsNIIGSPA - Retrieve Data from SPA Beginning

The following parameters are provided:

Destination | Message | Message_length | Return_code

Destination (A8) Input

Message (A1/1:V) Input

Message_length(I4) Input

Return_code (I4) Output

Specific Return Code Values: None.

Sample Program: NIPISRTM

NIIISRTM - Insert Message Segment into Message Queue
Inserts the next message segment into the message queue without performing a CHNG or a PURG call. The
LLZZ bytes are created by the service module.

The following parameters are provided:

Message | Message_length | Return_code

Message (A1/1:V) Input

Message_length(I4) Input

Return_code (I4) Output

Specific Return Code Values: None.

Sample Program: NIPISRTM

NIIPCBAD - Return PSB Name and PCB Address
Returns the currently scheduled PSB name and the address of the PCB identified by the logical name. If the
logical PCB name is not defined in the transaction code table, a Natural error message is issued.

The following parameters are provided:

PSB_name | Logical_PCB_name | PCB_address | Return_code

PSB_name (A8) Output

Logical_PCB_name(A8) Input

PCB_address (B4) Output

Return_code (I4) Output

Specific Return Code Values: None.

Sample Program: NIPPCBAD

101Copyright © Software AG 2002

NIIISRTM - Insert Message Segment into Message QueueNatural under IMS/TM - Service Programs

NIIPCOM - Move Data to Reply Area
Moves the data provided in the data area into the reply area specified in the NIIBOOTS call at the specified
offset in the specified length. NIIPCOM may be called from the server environment only.

The following parameters are provided:

Offset | Data_area | Length | Return_code

Offset (I4) Input

Data_area (A1/1:V) Input

Length (I4) Input

Return_code(I4) Output

Specific Return Code Values: 4 (calling environment, not server environment)

Sample Program: NIPPCOM

NIIPMSG - Send Message
Sends a message using a given MOD_name to the destination which is represented by the I/O PCB. The message
is taken from the message area in the specified message area length. The message area must not contain the
leading LLZZ bytes. In this way you can send MFS-formatted output messages back to the originator of the
input message.

The following parameters are provided:

Message | Message_length | MOD_name | Return_code

Message (A1/1:V) Input

Message_length(I4) Input

MOD_name (A8) Input

Return_code (I4) Output

Specific Return Code Values: None.

Sample Program: NIPPMSG

NIIPSBAD - Return PSB Address
Returns the address of the PSB which is the address of the PCB address list.

The following parameters are provided:

PSB_address | Return_code

PSB_address(B4) Output

Return_code (I4) Output

Copyright © Software AG 2002102

Natural under IMS/TM - Service ProgramsNIIPCOM - Move Data to Reply Area

Specific Return Code Values: None.

Sample Program: NIPBOOTS

103Copyright © Software AG 2002

NIIPSBAD - Return PSB AddressNatural under IMS/TM - Service Programs

NIIPSPA - Replace Data in SPA
Replaces the data located in the SPA at the specified offset in the given length by the data provided in the data
area.

The following parameters are provided:

Offset | Length | Data_area | Return_code

Offset (I4) Input

Length (I4) Input

Data_area (A1/1:V) Input

Return_code(I4) Output

Specific Return Code Values: None.

An attempt to override the header of the SPA (first 14 bytes) and/or data residing in the Natural-reserved area is
refused and a Natural error message is issued.

Sample Program: NIPPSPA

NIIPURG - Issue PURG Call
Issues a PURG call.

The following parameter is provided:

Return_code

Return_code(I4) Output

Specific Return Code Values: None.

Sample Program: NIPISRTM

NIIRETRM - Move Data into Message Area
Moves data from the input message beginning at the specified offset in the specified length into the provided
message area.

The offset is calculated from the LLZZ bytes.

The following parameters are provided:

Offset | Length | Message_area | Return_code

Offset (I4) Input

Length (I4) Input

Message_area(A1/1:V) Input/Output

Return_code (I4) Output

Copyright © Software AG 2002104

Natural under IMS/TM - Service ProgramsNIIPSPA - Replace Data in SPA

Specific Return Code Values: None.

Sample Program: NIPRETRM

NIISASD - Modify SENDER and OUTDEST Settings
Modifies the current setting of the Natural dynamic parameters SENDER and OUTDEST.

The following parameters are provided:

Sender | Outdest | Return_code

Sender (A8) Input

Outdest (A8) Input

Return_code(I4) Output

Specific Return Code Values: None.

Sample Program: NIPNTRD

NIIU3962 - Terminate Session
Terminates the session with user abend 3962 and produces a dump.

The following parameter is provided:

Return_code

Return_code(I4) Output

Specific Return Code Values: None.

Sample Program: NIPU3962

105Copyright © Software AG 2002

NIISASD - Modify SENDER and OUTDEST SettingsNatural under IMS/TM - Service Programs

Natural under IMS/TM - Service Modules
This document describes the service modules of the Natural IMS interface. The following topics are covered:

Purpose of Service Modules
Service Module Descriptions

Additional Information

Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer to Natural IMS/TM Error Codes in the Natural Messages and Codes
documentation.
Installation - refer to Installing the Natural IMS Interface in the Natural Installation Guide for Mainframes.
Further information - refer to the following topics:
Environments | Components | Configuration Macros | Service Programs | Special Functions | User Exits |
Recovery Handling

Purpose of Service Modules
Service modules perform IMS/TM-specific functions. They can be called from within a Natural program using
the standard Natural CALL interface. Sample programs are loaded by a Natural INPL into the library SYSEXTP.

Service Module Descriptions
This section contains a detailed description of all the service modules in alphabetical order. This includes a list of
the parameters available and the name of the module-relevant sample program.

CMCMMND - Issue IMS Operator Commands
The module CMCMMND issues IMS operator commands and returns the reply segments to the Natural user
program.

The following parameters are provided:

Command | Command length | Reply | Length of reply area

Name Format Type Comment

Command Input

Command length (B4) Input

Reply Output

Length of reply area (B4) Input

The operator command contained in the command area is issued to IMS with the indicated length.

If the user has set a non-zero reply length, any reply segments from IMS are moved into the reply area over the
maximum available length. If the reply area is at least two bytes long, the first two bytes contain the IMS status
code after the command call has been issued. The two rightmost bytes of the REPLGTH field contain the
effective length of the total reply moved into the REPLY field.

Copyright © Software AG 2002106

Natural under IMS/TM - Service ModulesNatural under IMS/TM - Service Modules

If the reply from IMS has to be truncated, this is indicated by setting X’80’ in the leftmost byte of the REPLGTH
field.

Sample Program: NIPSCMND

CMDEFSW - Deferred Transaction Switch to Natural
Transaction Code
The module CMDEFSW performs a deferred transaction switch to a Natural transaction code.

The following parameter is provided:

Trancode

Name Format Type Comment

Trancode Input

With the next terminal I/O, the output is sent to the terminal and the next input from this terminal is processed by
the transaction code passed as parameter message.

CMDEFSWX - Deferred Transaction Switch to
Non-Natural Transaction Code
The module CMDEFSWX performs a deferred switch to a non-Natural transaction code.

The following parameters are provided:

Trancode | Message | Message length | MOD name

Name Format Type Comment

Trancode Input

Message Input

Message length Input

MOD name Input

With the next terminal I/O, the given message with the given MOD name is inserted and the Natural session is
terminated.

If the new transaction code is a Natural transaction code, the message and the MOD name passed as parameters
are ignored and CMDEFSWX works as CMDEFSW.

Sample Programs: NIPSDEFX.

107Copyright © Software AG 2002

CMDEFSW - Deferred Transaction Switch to Natural Transaction CodeNatural under IMS/TM - Service Modules

CMDIRNMX - Switch to Another Conversational
Transaction w/o Message
The module CMDIRNMX has the same functionality as CMDIRSWX, except that no message is inserted to the
alternate PCB. Thus, the only parameter you have to provide is TRANCODE.

The following parameter is provided:

Trancode

Name Format Type Comment

Trancode Input

CMDIRNMX can also be used to perform a direct switch to another Natural transaction code, because in this
case, the CLEAR key is given as input message to Natural by default.

CMDIRNMZ - Switch to Another Conversational
Transaction w. Message
The module CMDIRNMZ has the same functionality as CMDIRSWZ, except that no message is inserted to the
alternate PCB. Thus, the only parameter you have to provide is TRANCODE.

The following parameter is provided:

Trancode

Name Format Type Comment

Trancode Input

Copyright © Software AG 2002108

Natural under IMS/TM - Service ModulesCMDIRNMX - Switch to Another Conversational Transaction w/o Message

CMDIRSWX - Switch to Another Conversational
Transaction w. Message
The module CMDIRSWX performs a direct switch to another conversational transaction and specifies a message
that is to be passed on to this new transaction.

The following parameters are provided:

Trancode | Message | Message length

Name Format Type Comment

Trancode Input

Message Input

Message length(B4) Input

At the next terminal I/O, a change call is executed against the alternate PCB to set its destination to the value of
the TRANCODE field. The SPA and the message are then inserted into the alternate PCB.

The new transaction code is checked if it is a Natural or a non-Natural transaction code.

In the case of a non-Natural transaction code, the Natural session is terminated.

In the case of a Natural transaction code, the CLEAR key is passed to Natural as input message, which means
that Natural reacts as if the terminal user pressed the CLEAR key. The type of the new transaction code is
automatically honored.

Sample Program: NIPSDIRX

109Copyright © Software AG 2002

CMDIRSWX - Switch to Another Conversational Transaction w. MessageNatural under IMS/TM - Service Modules

CMDIRSWZ - Switch to Another Conversational
Transaction w. Message
The module CMDIRSWZ has the same functionality as CMDIRSWX.

The following parameters are provided:

Trancode | Message | Message length

Name Format Type Comment

Trancode Input

Message Input

Message length(B4) Input

The difference compared to CMDIRSWX is that, in case of a switch to a non-Natural transaction code, the
current Natural session is not terminated. This is done with the following intention:

A given Natural session gives control to a non-Natural transaction code; the session is not terminated.
The non-Natural transaction performs a terminal I/O and then switches back to the original Natural
transaction, passing data into the SPA.
The Natural transaction does not start a new session, but continues the old session were it has left it, which
means that the roll slot is obtained from the swap pool and control is given to Natural so as to continue with
an existing session.

The non-Natural transaction code must pass the message "LLZZD", where "LL=H’0005’", "ZZ=X’0000’" and
"D=X’6D’" are simulating to Natural that CLEAR has been pressed. By making the Natural program sensitive to
the CLEAR key, it is able to recognize that the called non-Natural transaction has come back and it can retrieve
the data prepared by the non-Natural transaction for use in subsequent processing.

CMDIRSWZ cannot be used if the transaction code to switch to is a Natural transaction code.

Sample Program: NIPSDIFS

Copyright © Software AG 2002110

Natural under IMS/TM - Service ModulesCMDIRSWZ - Switch to Another Conversational Transaction w. Message

CMDISPCB - Get PCB Content
The module CMDISPCB is used to obtain the contents of a PCB.

The following parameters are provided:

PCB number | Receiving area | Area length

Name Format Type Comment

PCB number (B4) Input

Receiving area Output

Area length (B4) Input

After the call is executed, the receiving area contains the contents of the PCB with the requested number in the
requested length. A check is made to verify that the requested PCB is within your current PCB list. The first PCB
is PCB number 1, the second PCB is PCB number 2, etc.. If you specify an invalid number, the field PCBNUM
is set to X’FFFFFFFF’ and no further information is passed to your application program.

Sample Program: NIPSPCBD

CMEMOD - Modify MOD Name Dynamically
The module CMEMOD allows the MOD name to be modified dynamically for a given LTERM at the normal
end of a Natural session.

The following parameter is provided:

MOD name

Name Format Type Comment

MOD name (A8) Input

At a normal end of a session, the environment-dependent interface inserts the message X’00060000403F’ into
the IOPCB, using the MOD name whose value is contained in MOD name parameter. This is intended to present
a meaningful screen (for example, a general menu) to the terminal user so that he can continue working at the
terminal.

111Copyright © Software AG 2002

CMDISPCB - Get PCB ContentNatural under IMS/TM - Service Modules

CMGETMSG - Read Next Message
The module CMGETMSG reads the next message from the message queue.

The following parameters are provided:

Message area | Message area length

Name Format Type Comment

Message area Output

Message area length(B4) Input

The length is checked to see if the received message fits into the message area. The message is moved including
the LLZZ bytes into the message area. If there are no more messages, LL=0 is moved into the message area.

If the message does not fit into the message area, a corresponding error message is returned.

Sample Programs: NIPSGETM and NIPSOBMP.

CMGETSEG - Read Next Segment
The module CMGETSEG reads the next segment of the current message from the message queue.

The following parameters are provided:

Message area | Message area length

Name Format Type Comment

Message area Input

Message area length(B4) Input

The length is checked to see if the received message fits into the message area. The message segment is moved
including the LLZZ bytes into the message area. If there are no more message segments, LL=0 is moved into the
message area.

If the message does not fit into the message area, a corresponding error message is returned.

Sample Program: NIPSOBMP

Copyright © Software AG 2002112

Natural under IMS/TM - Service ModulesCMGETMSG - Read Next Message

CMGETSPA - Transfer Data from SPA
The module CMGETSPA transfers the data from the SPA starting from the given offset in the requested length
into the receiving area.

The following parameters are provided:

Offset | Length | Area

Name Format Type Comment

Offset (B4) Input

Length (B4) Input

Area (B4) Output

Sample Programs: NIPSGSPA and NIPSPSPA

CMIMSID - Get MVS Subsystem ID
The module CMIMSID enables Natural programs to obtain the MVS subsystem ID of the IMS system in which
they are currently scheduled.

The following parameter is provided:

IMSID

Name Format Type Comment

IMSID (A4) Output

After the call is executed, the field IMSID contains the MVS subsystem ID of the IMS system in which you are
currently scheduled.

The module CMIMSID depends upon an internal IMS control block. Therefore, it is an IMS release-dependent
function that will be updated whenever possible.

113Copyright © Software AG 2002

CMGETSPA - Transfer Data from SPANatural under IMS/TM - Service Modules

CMIMSINF - System Environment Info
The module CMIMSINF provides system environment information.

The following parameters are provided:

IMSID | SUFFIX | APPLGNAM | APPLNAM | NRENT | NNONR

Name Format Type Comment

IMSID (A4) Output The IMS ID.

SUFFIX (A2) Output The preload suffix.

APPLGNAM (A8) Output The application group name.

APPLNAM (A8) Output The application name.

NRENT (B4) Output The number of reentrant modules preloaded.

NNONR (B4) Output The number of non-reentrant modules preloaded.

CMIMSINF is also an IMS release-dependent module.

Sample Program: NIPSINF

CMPCBADR - Return PCB Address
The module CMPCBADR returns the address of a PCB which is identified by a logical name. The PSB name is
also returned to the Natural program.

The following parameters are provided:

PSB name | PCB name | PCB address

Name Format Type Comment

PSB name (A8) Input

PCB name (A8) Input

PCB address(B4) Input

After the call is executed, the field PCBADR contains the address of the PCB identified in the table module by
the logical name "PCBNAME" in the table entry that corresponds to the currently scheduled transaction code. If
the logical name does not exist for this transaction code, X’FFFFFFFF’ is returned in the PCBADR field. In any
case, the field PSBNAME contains the name of the currently scheduled PSB.

Sample Program: NIPSPCBA

Copyright © Software AG 2002114

Natural under IMS/TM - Service ModulesCMIMSINF - System Environment Info

CMPRNTR - Change Default Hardcopy Destination
The module CMPRNTR changes the default hardcopy destination set by the module NIIIMSHC to the value
passed as parameter.

The following parameter is provided:

Destination

Name Format Type Comment

Destination (A8) Input

The module CMPRNTR is provided for compatibility reasons only; use the Natural SET CONTROL hdest-id
statement instead.

CMPUTMSG - Insert Output Message into IO-PCB
The module CMPUTMSG can be used to insert any given output message of a given length into the IO-PCB,
using any given MFS MOD name.

CMPUTMSG takes the number of bytes as indicated in the message length from the message area and inserts
them with the specified MOD name in the message queue.

There is no restriction upon the length of the message, except that it has to fit into the input message area of the
environment-dependent interface. No check is made regarding the IO-PCB status code after the insert call is
issued to IMS/TM. In this way, you can send MFS-formatted output messages back to the originator of the input
message.

The following parameters are provided:

Message area | Message length | MOD name

Name Format Type Comment

Message area Input

Message length(B4) Input

MOD name Input

115Copyright © Software AG 2002

CMPRNTR - Change Default Hardcopy DestinationNatural under IMS/TM - Service Modules

CMPUTSPA - Move Data into SPA
The module CMPUTSPA moves the data with the given length at the specified offset into the SPA.

The following parameters are provided:

Offset | Length | Data

Name Format Type Comment

Offset (B4) Input

Length (B4) Input

Data Input

A check is done if the specified offset points into the Natural Reserved Area (NRA) within the SPA. If yes,
return code 4 is returned.

Sample Program: NIPSPSPA

CMQTRAN - Content of Current Transaction Code Table
Entry
The module CMQTRAN returns the contents of the current entry within the transaction code table.

The following parameters are provided:

Transaction code | Offset | Length | Uoffset | PSB name | Number of PCBs

Name Format Type Comment

Transaction code Output The transaction code under which you are running.

Offset (B2) Output The offset of the NRA with the SPA.

Length (B2) Output The length of the NRA.

Uoffset (B2) Output Not used.

PSB name Output The name of the scheduled PSB.

Number of PCBs Output The number of PCBs whose addresses you can obtain using the module
CMPCBADR.

The logical names by which you can refer to PCBs in the module CMPCBADR are not returned because of
security considerations; you should be informed by your system about which logical names you are allowed to
refer to.

Sample Program: NIPSQTRA

Copyright © Software AG 2002116

Natural under IMS/TM - Service ModulesCMPUTSPA - Move Data into SPA

CMQUEUE - Insert Message into First Alternate PCB
The module CMQUEUE inserts a message into the first alternate PCB.

The following parameters are provided:

Destination | Message | Message length

Name Format Type Comment

Destination Input

Message Input

Message length(B4) Input

This call causes an immediate change call to set the destination of the first alternate PCB to the value contained
in the field Destination, after which the message is inserted into the alternate PCB with the indicated Message
length.

The transaction code is inserted after the LLZZ bytes with a length of 8.

After a PURGE call has been issued, control is returned to the next instruction in the Natural program.

The message can have any length up to the size of the input message area (usually 8000 minus 12 bytes).

Sample Program: NIPSQLOA

CMQUEUEX - Complete Control over Message Content
The module CMQUEUEX provides you with complete control over the contents of a message that is to be
queued in the IMS/TM input queue.

The following parameters are provided:

Destination | Message | Message length

Name Format Type Comment

Destination Input

Message Input

Message length(B4) Input

This call causes an immediate change call to set the destination of the first alternate PCB to the value contained
in the field Destaination, after which the message is inserted into the alternate PCB with the indicated Message
length after the LLZZ bytes. The difference compared to CMQUEUE is that the transaction code is not inserted
after the LLZZ bytes.

After a PURGE call has been issued, control is returned to the next instruction in the Natural program. The
message can have any length up to the size of the input message area (usually 8000 minus 12 bytes).

Sample Program: NIPSQUEX

117Copyright © Software AG 2002

CMQUEUE - Insert Message into First Alternate PCBNatural under IMS/TM - Service Modules

CMSNFPRT - Set Logical Device Name
The module CMSNFPRT sets the logical name of the device to which the Natural messages during the online
BMP run is sent.

The following parameter is provided:

Printer name

Name Format Type Comment

Printer name Input

Before calling CMSNFPRT, use the Natural parameter SENDER to define the default output destination.

Sample Program: NIPSOBMP

CMSVC13D - Terminate Natural Session
The module CMSVC13D terminates the Natural session with user abend 222 and creates a dump.

Parameters: None

Sample Program: None.

CMTRNSET - Insert SPA via Alternate PCB
When the Natural session is terminated normally, the Natural IMS interface performs a direct
program-to-program switch to the specified transaction code and inserts the SPA via the alternate PCB.

The following parameter is provided:

Trancode

Name Format Type Comment

Trancode Input

Sample Program: NIPSEOSS

Copyright © Software AG 2002118

Natural under IMS/TM - Service ModulesCMSNFPRT - Set Logical Device Name

NIIDDEFS - Deferred Switch to Foreign Transaction
Module NIIDDEFS is similar to module CMDEFSWX. If you use NIIDDEFS to perform a deferred switch to a
foreign transaction, the current Natural session is suspended, as with module CMDIRSWZ. The suspended
Natural session can be resumed at any time by sending back to Natural a message containing the CLEAR key.

The following parameters are provided:

Transaction code | Message | Message length | MOD name | Transaction type

Name Format Type Comment

Transaction
code

 Input The transaction code to switch to.

Message Input The message to be sent to the foreign transaction code.

Message length (B4) Input

MOD name (A8) Input

Transaction type(A4) Input An A4 variable containing the string "CONV" if the foreign transaction is
conversational and the string "NONC" if the foreign transaction is
non-conversational.

Return Codes:

0 OK

4 The message length is greater than the size of the message area defined in the environment table.

8 You tried to do a deferred switch with suspend from a conversational Natural to a non-conversational
foreign transaction, something which cannot be done.

12 The fifth parameter is invalid; it contains neither "CONV" nor "NONC".

Sample Program: NIPSDEFS

NIIDPURG - Insert Multi-Segment Message
The module NIIDPURG does not have parameters. It issues a PURG call using the first alternate PCB and
inserts multi-segment messages using the module NIIDQUMS.

Return Codes: Either bytes two and three of the 4-byte return code contain the status code, or the return code has
the value 0.

Sample Program: NIPSQLMS

119Copyright © Software AG 2002

NIIDDEFS - Deferred Switch to Foreign TransactionNatural under IMS/TM - Service Modules

NIIDQUMS - Create Multi-Segment Message
This module creates multi-segment messages. It has basically the same functionality as the module CMQUEUE,
with the difference that NIIDQUMS does not issue a PURG call.

The following parameters are provided:

Destination | Message | Message length

Name Format Type Comment

Destination Input

Message Input

Message length(B4) Input

It is your responsibility to issue the PURG call using the module NIIDPURG.

Sample Program: NIPSQLMS

NIIDSETT - Get Foreign Transaction Code
In order to perform a correct transaction switch to a foreign transaction code, the type of the foreign transaction
code must be known. To obtain this type, the special-purpose module NIIDSETT can be used. If NIIDSETT is
not used, the foreign transaction code is assumed to be of the same type as the invoking Natural transaction code.
If this is not the case, there will be unpredictable results or the session will terminate abnormally.

The following parameter is provided:

Transaction type

Name Format Type Comment

Transaction type(A4) Input Possible values:
"CONV" for conversational,
"NONC" for non-conversational.

Copyright © Software AG 2002120

Natural under IMS/TM - Service ModulesNIIDQUMS - Create Multi-Segment Message

Natural under IMS/TM - User Exits
This document contains an overview of the user exits that are available with the Natural IMS/TM Interface. For
each exit, a source module with the same name is provided. Each source module contains a description of the
parameter list and of the register conventions.

NIIXACCT
NIIXSTAR
NIIXMSSP
NIIXSSTA
NIIXISRM
NIIXISRT
NIIXTGU0
NIIXJESA
NIIXPRT0
NIIXRFNU
NIIXTGN0

Additonal Information

Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer to Natural IMS/TM Error Codes in the Natural Messages and Codes
documentation.
Installation - refer to Installing the Natural IMS Interface in the Natural Installation Guide for Mainframes.
Further information - refer to the following topics:
Environments | Components | Configuration Macros | Service Programs | Service Modules | Special
Functions | Recovery Handling

NIIXACCT
The exit is called before an accounting record is written to the IMS log or to SMF. Thus, it makes it possible to
modify the content of an accounting record. If NIIXACCT returns a non-zero register 15, the accounting record
is not written at all.

NIIXSTAR
The exit is called with each transaction step after the SPA and the message have been retrieved and the Natural
thread has been rolled in and decompressed. Within this exit, the Natural IOCB and the driver work area are
accessible.

A value of 12 in register 15 upon return of NIIXSSTA forces the Natural IMS interface to terminate the Natural
session. Any other non-zero value in register 15 forces the interface to issue the Natural IMS interface error 3517
with the reason code containing the value in register 15.

Note:
This exit is not called when a new Natural session is started.

121Copyright © Software AG 2002

Natural under IMS/TM - User ExitsNatural under IMS/TM - User Exits

NIIXMSSP
The exit is called only if the multi-session feature is in use. It builds the first 7 bytes of the session identification.
By default, Natural under IMS compresses the LTERM names to 7 characters.

NIIXSSTA
The exit is called when a new Natural user session has been started and the SPA and the Natural IOCB have
been initialized.Within this exit, the Natural IOCB and the driver work area are accessible.

A value of 12 in register 15 upon return of NIIXSSTA forces the Natural IMS interface to terminate the Natural
session. Any other non-zero value in register 15 forces the interface to issue the Natural IMS interface error 3509
with the reason code containing the value in register 15.

NIIXISRM
The exit is called before the insertion of the message into the IOPCB.

NIIXISRT
The exit is called before the insertion of the SPA into the IOPCB, even at the end of the Natural session. The
end-of-session situation can be recognized by a blank transaction code.

NIIXTGU0
The exit is called when the service module CMGETMSG is used. NIIXTGU0 receives control immediately after
the GU call against the IOPCB, regardless of the status code.

NIIXJESA
The exit is called when the JES API is used for writing reports. It is called after the options string has been
created and may be used to modify the options string.

NIIXPRT0
The exit is called when reports are directly written to IMS/TM printers. It can be used to set the codes for "form
feed" and "new line".

NIIXRFNU
The exit is called when the new Natural session is assigned to a roll file. It can be used to calculate the number of
the roll file to be used for this session.

NIIXTGN0
The exit is called when the service module CMGSEGO or CMGETSEG is used. NIIXTGN0 receives control
immediately after the message segment is retrieved, regardless of the status code.

Copyright © Software AG 2002122

Natural under IMS/TM - User ExitsNIIXMSSP

Natural under IMS/TM - Special Functions
This document describes the use of special functions available with the Natural IMS Interface. The following
topics are covered:

Prerequisites
Accounting
Monitoring
Broadcasting
Multi-Session Feature
Server Environment

Additional Information

Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer to Natural IMS/TM Error Codes in the Natural Messages and Codes
documentation.
Installation - refer to Installing the Natural IMS Interface in the Natural Installation Guide for Mainframes.
Further information - refer to the following topics:
Environments | Components | Configuration Macros | Service Programs | Service Modules | User Exits |
Recovery Handling

Prerequisites
Some of these functions require the Authorized Services Manager (ASM).

If the ASM is required, it must have been started before the function is used.
The Natural subsystem used by the ASM must be the same as the one used by the Natural session.
For accounting and monitoring, the SIP server must have been enabled in addition.

Accounting
The accounting function is only available in dialog-oriented environments. It is activated by setting the
environment table parameter ACTACTV to "YES".

With each terminal I/O, information about the specific Natural session is written to the IMS log or to SMF,
depending on the setting of the Natural IMS parameter ACTLOG.

If the ACTLOG parameter is set to "CMD", a /LOG command is issued that writes the accounting record to
the IMS/TM log. All transaction codes must therefore be allowed to use the /LOG command.
At the beginning of each record an 8-byte header is inserted. This header helps to easily select the
accounting records using the IMS utility DFSERA10. The header string is defined by the environment table
parameter ACTAHDR.
If the ACTLOG parameter is set to "LOG", the accounting record is written to the IMS/TM log using the
LOG call. With the Natural IMS parameter ACTARID, you specify the log code to be used.
If the ACTLOG parameter is set to "SMF", the accounting record is written to SMF using the Authorized
Services Manager. With the Natural IMS parameter ACTARID, you specify the SMF record type to be
used.

123Copyright © Software AG 2002

Natural under IMS/TM - Special FunctionsNatural under IMS/TM - Special Functions

The following information about each Natural user session is stored with each terminal I/O:

IMS ID of the IMS system in which the user is active,
LTERM name of the IMS terminal on which the session was started,
user ID of the user of the Natural session (taken from the IOPCB),
number of dialog steps currently performed,
currently active transaction code,
currently active PSB name,
current Natural library name to which the user is logged on,
currently active Natural program name,
non-Natural transaction code to which the session is possibly suspended to,
time and date when the session was started,
time and date of the last ENTER operation,
DBID and FNR of the Natural system file (FNAT) for this session,
DBID and FNR of the Natural user file (FUSER) for this session,
DBID and FNR of the Natural dictionary file (FDIC) for this session,
DBID and FNR of the Natural Security system file (FSEC) for this session,
DBID and FNR of the Natural spool file (FSPOOL) for this session,
DBID and FNR of the Super Natural system file for this session,
last encountered Natural error number,
compressed thread length of the last terminal output.

The information is mapped by the DSECT NIMACTR. There are two areas for storing the DBID and FNR of the
Natural system files used. In the first area, one byte is used for each DBID and FNR; this is supported for
compatibility reasons. In the second area, a fullword is used for each DBID and FNR to support Adabas Version
6. The accounting record is prefixed with a length and version field.

Before the accounting record is written to the IMS/TM log, respectively to SMF, the user exit NIIXACCT is
called. You can use this user exit to tailor the accounting record to your requirements. You may also append
information to the accounting record. In this case, you must set the length field to the new length.

Since the accounting record is built in the command buffer, the total length must not exceed the value specified
with the Natural IMS parameter CMBSIZE minus 17 bytes. The maximum length allowed is passed as
parameter.

If NIIXACCT returns with a non-zero value in register 15, no accounting record is written.

Monitoring
The monitoring function is only available in dialog-oriented environments. It is activated by setting the
environment table parameter MONACTV to "YES" and uses the SIP function of the Authorized Services
Manager. The Natural subsystem must be the same as the one used by the Natural session to be monitored.

You can follow the ongoing activity of all Natural sessions which use the same Natural subsystem by using the
Monitoring (M) function of the SYSTP utility. For more information on the SYSTP utility, see SYSTP in the
section Debugging and Monitoring. The SYSTP session must also use the same Natural subsystem.

Broadcasting
The broadcasting function is only available in dialog-oriented environments. It is activated by setting the
environment table parameter BROACTV to "YES" and uses the SIP function of the Authorized Services
Manager.

Copyright © Software AG 2002124

Natural under IMS/TM - Special FunctionsMonitoring

Once broadcasting is active, it is possible to send broadcast messages to targeted users of a given Natural
subsystem. Such users can be:

all users of the Natural subsystem to which the sender is connected;
all users of the Natural subsystem within the same IMS system as the sender of the message;
all users of the Natural subsystem within the same IMS system as the sender of the message, but
additionally restricted to a given transaction code;
all users of the Natural subsystem within the same IMS system as the sender of the message, but
additionally restricted to a Natural application;
all users of the Natural subsystem within the same IMS system as the sender of the message, but
additionally restricted to a Natural application and to a given FUSER system file.

When a session comes to a terminal output, a check is made to see whether the session has to receive a message
or not. If not, the normal Natural output is sent. If yes, the message is sent instead of the normal output and,
when pressing ENTER, the Natural nucleus is instructed to re-send the last screen. In this way, you first see the
message and afterwards receive the normal Natural output screen.

If more than one broadcast message is available, the messages are displayed one after the other until the last
message has been shown. Afterwards, the normal Natural output screen is displayed.

A broadcast message will be displayed only if its expiration time specified in the message creation procedure
has not been exceeded.

When a broadcast message is sent, you must press RESET before you can press ENTER again. All possible
attention IDs have the same effect as pressing ENTER.

The utility SYSTP can be used to create broadcast messages and to display the contents of all active messages
together with the LTERM/IMSID of the sender. The text of a message is limited to 72 bytes.

Messages to be broadcast are saved in a pool maintained by the SIP server. They remain there until you delete
them using the SYSTP utility or until you shut down the Authorized Services Manager.

When a broadcast message is deleted or created, all expired messages are
deleted as well.

125Copyright © Software AG 2002

BroadcastingNatural under IMS/TM - Special Functions

Multi-Session Feature

Functionality of the Multi-Session Feature

The multi-session feature is only available in dialog-oriented environments. It is activated by setting the Natural
IMS parameter MSACTV to "YES" and allows to run up to nine simultaneous Natural sessions on the same
logical terminal.

With the Natural IMS Interface Version 2.3, new sessions are created and suspended sessions are resumed in a
different way as with Natural IMS Interface Version 2.2. The Natural IMS Interface Version 2.2 mode is still
supported for compatibility reasons, but is no longer documented. The old Version 2.2 mode is activated by
setting the Natural IMS parameter MSCMPTB to "YES".

With the Natural IMS Interface Version 2.3, creating and resuming Natural sessions is controlled using PF keys.
The Natural IMS parameters MSCRKEY and MSRSKEY define the create and resume keys.

If the create key is pressed, the current Natural session is suspended and a new Natural session is created.
If the resume key is pressed, any input field may contain the string x, with x between 1 and MSSESMX. In
this case, the currently active session is suspended and the specified session is resumed. If x is greater than
MSSESMX, the input is passed to the active application.
If the resume key is entered without any input, the next suspended session is resumed in a wrap-around
manner. If, for example, the active session is session number 4, the next suspended session in the range 5
through MSSESMX or 1 through 3 is resumed. If there is no suspended session, the input is passed to the
active application.
If the session to be resumed is using a different transaction code than the current session, an implicit
program-to-program switch is done in order to resume the suspended session with the correct transaction
code.
If conversational and non-conversational environments are used in parallel, the modnames NIIMODNC and
NIIMODMS are used for switching between the environments. The format definitions are delivered in the
source modules NIIMODMS and NIIMODNC and have to be defined to MFS using MFSUTL.
If the active session is terminated, the next suspended session (if there is any) is resumed in the same order
as with the resume key.
If the Natural IMS parameter MSMAX is set to "2" (two parallel sessions are allowed), the create key must
be identical with the resume key. In this case, pressing the create key creates a second session if only one
session is active, if not, it switches the session.

Copyright © Software AG 2002126

Natural under IMS/TM - Special FunctionsMulti-Session Feature

Session ID

The session ID is the internally used unique identification of a session. It has the form XXXXXXxY, where
XXXXXXx is the prefix and Y is the session number in the form of a numeric digit in the range of 1 to 9.

The session prefix is built by compressing the logical terminal name into a 6-byte binary number XXXXXX and
by setting x to binary zero.

If the compression algorithm is not suitable for the LTERM names used (error 3635 is issued in this case), the
user exit NIIXMSSP must be used in order to build a unique 7-byte prefix of the session ID.

Multi-Session Database

The multi-session database is a HDAM root-only database which contains the Natural-reserved area of the SPA
for each suspended session.

The model DBD for the description of the multi-session database is delivered in the source module NIIMSDBD
and must be defined to IMS/TM.

The DBD name must be specified in the Natural IMS parameter module using the parameter MSDBD. The PCB
number must be specified in the transaction code table using the parameter MSPCB of macro NIMTRNTG.

Server Environment
The server environment allows 3GL applications to execute Natural programs using a call interface. It is
available in all supported IMS/TM environments and consists of a special Natural IMS driver, NIISRVD, of the
call interface NIIBOOTS and of the service API NIIPCOM.

NIISRVD and NIIBOOTS are delivered as source modules and must be assembled and link-edited on your site.
For details, see Installing the Natural IMS Interface (in the Natural Installation Guide for Mainframes).

The server environment allows you to start a Natural session by calling NIIBOOTS from any 3GL program.
After the Natural session has been started, it returns to the calling 3GL program and waits for further input. The
input would normally be expected from CMSYNIN, which means that the 3GL program has to simulate
Natural’s primary input dataset.

It is strongly recommended to always put the server Natural on the NEXT line. This allows the next call to
NIIBOOTS to either execute a Natural command or a Natural program. Otherwise, the next call to NIIBOOTS
would be treated as input for a Natural program which had been started by a previous call to NIIBOOTS.

Similarly as with the message-oriented interface, all output normally written to CMPRINT is sent to the IMS/TM
destination specified with the Natural profile parameter SENDER.

In an MPP Environment, the same server Natural will be used by all
transactions scheduled in this region.

127Copyright © Software AG 2002

Server EnvironmentNatural under IMS/TM - Special Functions

Call Interface NIIBOOTS

NIIBOOTS is the default name as used in the documentation and in the delivered sample programs. This default
name can be changed during installation.

NIIBOOTS requires the following parameters:

the PSB address (the address of the PCB address list),
the command area,
the reply area.

In the command area, the following may be passed:

the startup parameters,
any Natural command followed by its input data,
the NIIBOOTS-specific commands, such as STAT and REFR (in combination with the startup parameters).

The startup parameters are passed in two contiguous 80-byte areas. The first area contains the name of the
environment table to be used as follows:

 ENV-TAB= environment-table-name

The second area contains the dynamic Natural parameters with which the Natural session is to be started.

The reply area is the area in which a reply is to be entered from the executed Natural program using the service
API NIIPCOM.

Each time it is invoked, NIIBOOTS checks whether the server Natural has been initialized.

If Natural has not been initialized, a new Natural session is started and the received command is passed to
Natural as a dynamic parameter.
If Natural has been initialized, the string received in the command area is passed to Natural as a Natural
command or as a Natural program.

The NIIBOOTS-specific commands STAT and REFR do the following:

STAT returns "COLD" in the reply area if Natural has not been initialized and "WARM" if it has been
initialized.
REFR forces the initialization/reinitialization of Natural, regardless of the current state of Natural.

Copyright © Software AG 2002128

Natural under IMS/TM - Special FunctionsCall Interface NIIBOOTS

ON ERROR Routine Recommended

It is highly recommended to use an ON ERROR routine in the executed Natural programs in order to give back
to the calling 3GL program some information in the reply area using NIIPCOM.

Return Codes

NIIBOOTS passes the return code provided by Natural on the termination of Natural.

Sample Programs

To illustrate usage of NIIBOOTS and NIIPCOM, the sample programs NIPBOOTS and NIPPCOM are
provided. NIPBOOTS plays the role of the calling 3GL program, NIPPCOM is a sample Natural program
executed in the server environment and writes the string "NIISRVR" into the reply area. The ON ERROR
routine places the Natural error number in the reply area.

With the sample programs, you can go through the following scenario:

1. Pass the command STAT. The string "COLD" is returned to the reply area.
2. Pass the command: STACK=(LOGON SYSEXTP),SENDER=S0201

S0201 is the LTERM name of the assigned printer device in the server Natural.
Natural will be initialized and will be ready to receive a Natural command in library SYSEXTP.
The successful logon message is issued on the assigned printer. Nothing is returned in the reply area.

3. Pass the command STAT. The string "WARM" is returned to the reply area.
4. Pass the command NIPPCOM. Program NIPPCOM is executed and the string "NIPSRVR" is returned to

the reply area. Natural is ready to accept the next command in library SYSEXTP.
5. Pass the command: REFR STACK=(LOGON SYSEXTP;NIPPCOM),SENDER=S0201

Natural is reinitialized and program NIPPCOM in library SYSEXTP is executed. The reply area contains
the string "NIPSRVR".

6. Pass the command FIN.
Natural is terminated and no information is passed to the reply area. The return code will contain the return
code of the Natural termination. The Natural termination message is issued on the assigned printer device.

7. Pass the command STAT. The string "COLD" is returned to the reply area.

129Copyright © Software AG 2002

ON ERROR Routine RecommendedNatural under IMS/TM - Special Functions

Natural under IMS/TM - Recovery
Handling
This section describes recovery handling in the Natural IMS Interface. The following topics are covered:

System and User Abends
Non-Recoverable Errors
Recoverable Errors

Additional Information

Natural IMS/TM Error Codes - for a list of the error codes and messages that may be issued by the
Natural IMS Interface (NII) refer to Natural IMS/TM Error Codes in the Natural Messages and Codes
documentation.
Installation - refer to Installing the Natural IMS Interface in the Natural Installation Guide for Mainframes.
Further information - refer to the following topics:
Environments | Components | Configuration Macros | Service Programs | Service Modules | Special
Functions | User Exits | Special Functions

Copyright © Software AG 2002130

Natural under IMS/TM - Recovery HandlingNatural under IMS/TM - Recovery Handling

System and User Abends
The Natural IMS interface is protected by an ESTAEX environment which takes control in case of an abend.

If a user abend is detected, resources are cleaned up and the abend is percolated without giving control to
Natural.
If a system abend is detected, Natural is informed about the abend and, depending on the setting of the
Natural profile parameter DU, Natural contines with an error message or terminates the session.

In both cases, you can produce a dump which represents the situation at the time when the error occurred
(register contents, PSW, etc.). The dump is produced if DU=ON or if the user abend has requested this.

Non-Recoverable Errors
A non-recoverable error is a logical error detected by the Natural IMS interface which cannot be handled by
Natural. These situations typically occur during startup, termination or terminal I/O. In all cases, the Natural
runtime is not active and can thus not react to the error.

If a non-recoverable error is detected, the Natural IMS interface issues a NII error and terminates the session.
The error message is also written to the IMS log and to the system log. Depending on the dump option in the
error message table, a snap dump is produced.

If you do not wish a message to be written to the IMS log, set the ERRLHDR parameter of the NIMPARM
macro explicitely to null, i.e. you specify "ERRLHDR=,".

If it is not possible to send the error message (for example if the GU has failed), the session abends (user abend).

Recoverable Errors
If a logical error is detected by the Natural IMS interface which can be handled by Natural, for example an
invalid destionation for a report, a Natural error message is issued and Natural proceeds with its standard error
handling.

131Copyright © Software AG 2002

System and User AbendsNatural under IMS/TM - Recovery Handling

Natural under TIAM
This section describes how to run Natural under TIAM. It covers the following topics:

Structure of the Natural TIAM Interface
Common Memory Pools under TIAM
Natural Shared Nucleus

For information on the following topics, refer to:

Installing the Natural TIAM Interface (in the Natural Installation Guide for Mainframes)
Parameters in Macro NAMTIAM (in the Natural Installation Guide for Mainframes)
Natural under BS2000/OSD (in the Natural Operations documentation for Mainframes).

Structure of the Natural TIAM Interface
The Natural TIAM interface consists of two components:

the non-reentrant front-end part
the reentrant part "NATRENT" (default)

Both components are elements of the macro NAMTIAM and are generated with two separate assembly runs; see
also Parameters in Macro NAMTIAM, parameter CODE (in the Natural Installation Guide for Mainframes).

The front-end part is generally linked with the Adabas interface module ADALNK to form the initialization
routine which is run once only during the establishment of a Natural under TIAM session. During the
initialization phase, based on the operand values of the corresponding parameters, various functions, for
example, the establishment/connection to the Natural buffer pool, loading or linking of the Natural nucleus,
establishing the physical terminal buffer, are executed. The front-end part must be loaded for each user (task).

The reentrant part NATRENT is linked as a modular element to the Natural nucleus and contains various entry
points for TP system dependent routines (memory management, terminal communication, etc.). If a shared
Natural nucleus is to be used, the generated NATRENT module must be linked to the front-end part.

The Natural nucleus is completely environment-independent (shared code) and must be loaded only once for all
users.

Common Memory Pools under TIAM
You use macro ADDON (which assembles module BS2STUB) either to generate the local common memory
pools, or to define attachment to the global common memory pools.

The programs CMPSTART and CMPEND start and stop global common memory pools. They are described in
the section Global Common Memory Pools (in the Natural Operations documentation for Mainframes).

A Natural TIAM application needs the following common memory pools:

Natural load pool
The linked reentrant part of Natural is loaded into this common memory pool.
Natural buffer pool
The executable Natural programs and the Natural global data areas are loaded into this common memory
pool. Those compiled Natural programs whose objects are reentrant are executed from this memory pool.
Natural/Adabas nucleus communication memory pool

Copyright © Software AG 2002132

Natural under TIAMNatural under TIAM

Natural connects to an additional common memory pool which is established by Adabas during startup.

The sum of the memory assigned to common memory pools, as well as the front-end work area, must completely
fit into the virtual user address space.

If the Adabas pool exceeds the user address space, error message 148 is produced during the OP command
execution. At the beginning of the session, Natural issues the error message NAT8148 and in the following
session termination with the message NAT9989 (incorrect system file).

Natural Shared Nucleus
For TIAM applications, it is possible to use a common shared Natural nucleus. The rules that apply in this case
are documented in the section Natural Shared Nucleus under BS2000/OSD (in the Natural Operations
documentation for Mainframes)

133Copyright © Software AG 2002

Natural Shared NucleusNatural under TIAM

Natural under TSO
This section covers the following topics:

General Information about the Natural TSO Interface
Natural/TSO Datasets
Issuing TSO Commands from Natural

See also:

Installing the Natural TSO Interface (in the Natural Installation Guide for mainframes).
Natural Server Monitor (in the Natural Operations documentation for mainframes).

General Information about the Natural TSO Interface
The Natural TSO interface NATTSO consists of a number of service routines interfacing with the OS/390
operating system.

NATTSO is supplied as a source module and can be customized to meet your requirements; see also Step 3 of
the NATTSO installation (section Installing the Natural TSO Interface in the Natural Installation Guide for
Mainframes).

NATTSO is fully reentrant and can run above the 16 MB line.

Natural TSO Datasets
The following optional sequential datasets are used during a Natural session:

DD Name RECFM/LRECL Purpose

CMHCOPY FB/133 Hardcopy output if no HCDEST has been specified (default).

CMPRMIN FB/80 Dynamic profile parameter input. For more information on CMPRMIN, refer
to Natural in Batch Mode in the Natural Operations for Mainframes
documentation.

CMTRACE FB/133 External trace output.

NATRJE FB/80 Submit job output.

STEPLIB Load library for external modules.

Copyright © Software AG 2002134

Natural under TSONatural under TSO

CMHDEST Hardcopy output destination. This dataset’s name can be changed with the HCDEST profile
parameter.

If the default dataset name CMHCOPY is used, the hardcopy dataset will be closed upon session
termination. If a different name is used, the hardcopy dataset will be closed with the next screen
I/O. To release and to reallocate the hardcopy dataset after the closure, the DYNALLOC program
can be used (see the sample library SYSEXTP).

CMTRACE If the profile parameter ETRACE is set to ON, all trace output is written to this dataset during the
session.

NATRJE This dataset is used for the Natural job submitting utility. If it is not defined, it will be allocated
dynamically with SYSOUT=(A,INTRDR) when the first job is submitted.

STEPLIB This is the default library name for loading external modules, for example the shared nucleus, the
Adabas link routine (ADALNK), the session back-end program and any external subprograms not
linked to the Natural parameter module. The load library name can be overwritten by profile
parameter LIBNAM. In this case, the correct library name must be specified in the job control
(instead of STEPLIB).

Issuing TSO Commands from Natural
You can use the Natural example program TSO in library SYSEXTP to issue TSO commands; for example:

TSO LISTALC STATUS

If you enter TSO without parameters, a menu prompts you for a TSO command. To exit from the menu enter a
period (.) in the first position, or press PF3.

135Copyright © Software AG 2002

Issuing TSO Commands from NaturalNatural under TSO

Natural under UTM - Overview
The Natural UTM Interface documentation is divided into four parts and covers the following topics:

Part 1

Structure of the Natural UTM Interface
Formatting Messages - FREXIT
Embedding Natural in a UTM Application
Common Memory Pools
Other Storage Areas
Generating KDCROOT
Defining the UTM Resources - KDCDEF
UTM DC-Transaction Exit Routine NUERROR
UTM Startup Function
UTM Shutdown Function

Part 2

NATUTM Macro Keyword Parameters
NATUTM Macro Entries
NURENT Macro Keyword Parameters

Part 3

User Exits
Asynchronous Transaction Processing under UTM
Printing under UTM
Calling Non-Natural Programs
Calling UTM Chained Partial Programs
Calling Adabas from Non-Natural Programs in a Natural UTM Application
Terminating a UTM Task Abnormally

Part 4

Accounting for Natural UTM Applications
Utility Programs for Use with Natural under UTM
Software Exchange
UTM TACCLASS Concept (Priority Control)
Generating a Natural UTM Application
Optimizing Natural UTM Applications
Several Applications with one Common Natural
Entering and Defining Dynamic Natural Parameters
UTM User Restart
Adabas Priority Control

See also:

Installing the Natural UTM Interface (in the Natural Installation Guide for Mainframes)
Natural under UTM Error Messages (in the Messages and Codes documentation for Mainframes).
Error Messages from the Natural Swap Pool Manager Valid under CICS and UTM (in the Messages and
Codes documentation for Mainframes).
Natural under BS2000/OSD (in the Natural Operations documentation for Mainframes).

Copyright © Software AG 2002136

Natural under UTM - OverviewNatural under UTM - Overview

Notation vrs or vr

If used in the following document, the notation vrs or vr stands for the relevant version, release, system
maintenance level numbers.

137Copyright © Software AG 2002

Natural under UTM - OverviewNatural under UTM - Overview

Natural under UTM - Part 1
This part of the Natural UTM Interface documentation covers the following topics:

Structure of the Natural UTM Interface
Formatting Messages - FREXIT
Embedding Natural in a UTM Application
Common Memory Pools
Other Storage Areas
Generating KDCROOT
Defining the UTM Resources - KDCDEF
UTM DC-Transaction Exit Routine NUERROR
UTM Startup Function
UTM Shutdown Function

Installation - refer to Installing the Natural UTM Interface in the Natural Installation Guide for Mainframes.

Notation_vrs_or_vr">Notation vrs or vr: If used in the following document, the notation vrs or vr stands for
the relevant version, release, system maintenance level numbers.

Copyright © Software AG 2002138

Natural under UTM - Part 1Natural under UTM - Part 1

Structure of the Natural UTM Interface
The Natural UTM Interface consists of the macros NATUTM, BS2STUB and NURENT and of several utility
programs, which enable special requirements to be accommodated.

The macro NATUTM is used to generate the front-end part of the Natural UTM Interface to suit the particular
application based on appropriate operand definitions for the keyword parameters. The default values of the
parameters are chosen so that, in general, they can be used without alteration for an initial generation. The
front-end part is present once per UTM task and consists principally of the following components:

KDCROOT of UTM,
assembled macro NATUTM,
assembled macro BS2STUB,
format exit module FREXIT,
Adabas interface module.

The reentrant part of the Natural UTM Interface is generated by assembling the macro NURENT. This is linked
with the reentrant part of the Natural UTM application. If a shared Natural nucleus is to be used, the generated
"NURENT" module must be linked to the front-end part.

The reentrant part of the Natural UTM application consists of the following components:

NATINV (address module) (must be included as the first module),
Natural nucleus,
Natural buffer pool manager,
NURENT (CSECT name of the assembled macro NURENT),
NATSWPMG (Natural swap pool manager),
Natural parameter module,
NATLAST (end definition) (must be included as the last module).

The reentrant part of the Natural UTM Interface is only present once in a Natural UTM application (reentrant) if
it is loaded into class 4 storage or into a common memory pool in class 6 storage. The latter is recommended. A
further possibility is to link the reentrant part with the non-reentrant front-end part of the Natural UTM
application. The Natural and UTM macro libraries are required when assembling NATUTM, NURENT and all
utility programs.

139Copyright © Software AG 2002

Structure of the Natural UTM InterfaceNatural under UTM - Part 1

Formatting Messages - FREXIT
Natural uses its own formatting routines when sending messages to the VDU (UTM format type "-"). Messages
are processed by the format exit module FREXIT (transfer from logical to physical I/O domain and vice versa,
producing RESTART and LOGOFF messages, etc.). The module FREXIT must be linked with the front-end part
of the Natural UTM application and it must be defined as the format exit module when generating KDCROOT or
KDCDEF.

Example:

 PROGRAM FREXIT,COMP=ASSEMB
 EXIT PROGRAM=FREXIT,USAGE=FORMAT

The program FREXIT supports the format name "-END" for the LOGOFF message. See the description of the
keyword parameter LOFFMAP of the macro NATUTM. No more UTM administration commands (KDCINF,
KDCSHUT N, etc.) can be entered after the format name "-END" has been used and the LOGOFF message has
been output. The LOGOFF message is output in formatted mode; however, UTM expects administration
commands in line mode and therefore any input results in a syntax error. After this error message has been
received, all valid administration commands can be input with the administration ID. The messages for
asynchronous messages, RESTART and LOGOFF can be changed to suit specific requirements by changing the
appropriate text constants in the program FREXIT.

The program FREXIT has a user exit INPTEX that can be satisfied by the utility program INPTEX. See the
descriptions of the programs NATDUE and INPTEX in the section Utility Programs.

Another user exit in program FREXIT is TRMIOEX, which can be used for input/output message control.

The macro FREXIT contains the following keyword parameters:

AMSG=ASAP If there are any "free-running" (asynchronous) messages, a further dialogue with Natural is
only possible if these messages have previously been read with the command KDCOUT.

AMSG=WAIT A further dialogue with Natural is possible even if any "free-running" messages have not yet
been read with the command KDCOUT. This is the default.

KDCDISP=YES (Default) KDCDISP is supported by a restart message with an automatic ENTER. The last
screen output will be refreshed.

KDCDISP=NO KDCDISP is supported by a restart message with a following refresh screen.

If you want to change a default operand of macro FREXIT, you must reassemble FREXIT.

Copyright © Software AG 2002140

Natural under UTM - Part 1Formatting Messages - FREXIT

Embedding Natural in a UTM Application

141Copyright © Software AG 2002

Embedding Natural in a UTM ApplicationNatural under UTM - Part 1

Common Memory Pools
The following topics are covered:

Natural Buffer Pool under UTM
Natural Swap Pool under UTM
Loading Natural in a Common Memory Pool (Natural Load Pool)
Natural Monitor Pool

Natural Buffer Pool under UTM

Natural requires a common area into which Natural programs can be read from the Adabas database and where
they are also executed. This common memory pool is the Natural buffer pool.

You use the keyword parameters of macro "ADDON" (which assembles module "BS2STUB") either to define a
local Natural buffer pool, or to define the connection to a global Natural buffer pool. For more information, see
ADDON Macro in the Natural Operations for Mainframes documentation.

You use the keyword parameters of module "CMPSTART" to define a global Natural buffer pool. For more
information on this module, see CMPSTART Program in the Natural Operations for Mainframes documentation.

To display statistical information about the buffer pool, use the Natural utility SYSBPM (which is described in
the section Debugging and Monitoring).

Natural Swap Pool under UTM

A Natural user work area is required for each online Natural user. This user work area must be in the computer’s
main store whenever the user initiates any form of dialogue transaction. To reduce the frequency with which the
user work area is rolled out to the swap file and rolled in again, it is possible to set up a Natural Swap Pool. For
details on the swap pool, please refer to Natural Swap Pool in the Natural Operations for Mainframes
documentation.

You use the keyword parameters of macro "ADDON" (which assembles module "BS2STUB") either to define a
local Natural swap pool, or to define the connection to a global Natural swap pool. For more information, see
ADDON Macro in the Natural Operations for Mainframes documentation.

You use the keyword parameters of module "CMPSTART" to define a global Natural swap pool. For more
information, see CMPSTART Program in the Natural Operations for Mainframes documentation.

Copyright © Software AG 2002142

Natural under UTM - Part 1Common Memory Pools

Loading Natural in a Common Memory Pool - Natural Load Pool

The reentrant part of the Natural UTM application can be loaded in class 4 storage or linked with the front-end
part of the Natural UTM application. Alternatively, it can be loaded in a common memory pool in class 6
storage. This last method is recommended. The amount of storage required in the common memory pool depends
upon the size of the linked reentrant part of the Natural UTM application; this can be read from the linker listing.
The following keyword parameter of macro NATUTM is used if Natural is to be loaded into a common memory
pool in class 6 storage:

Parameter Explanation

NUCNAME This parameter specifies the name of the linked, reentrant Natural
nucleus. This is also the name of the Natural load pool.

See also Keyword Parameters of Macro NATUTM.

You use the keyword parameters of macro "ADDON" (which assembles module "BS2STUB") either to define a
local Natural load pool, or to define the connection to a global Natural load pool (shared Natural nucleus). For
more information, see ADDON Macro in the Natural Operations for Mainframes documentation.

You use the keyword parameters of module "CMPSTART" to define a global Natural load pool (shared Natural
nucleus). For more information, see CMPSTART Program in the Natural Operations for Mainframes
documentation.

Natural Monitor Pool

The Natural Monitor utility requires a common memory pool for data storage. This common memory pool is
allocated when the Monitor utility is activated, and released when the Monitor utility is deactivated.

You use the keyword parameters of macro "ADDON" (which assembles module "BS2STUB") either to define a
local Natural monitor pool, or to define the connection to a global Natural monitor pool. For more information,
see ADDON Macro in the Natural Operations for Mainframes documentation.

You use the keyword parameters of module "CMPSTART" to define a global Natural monitor pool. For more
information, see CMPSTART Program in the Natural Operations for Mainframes documentation.

For details on the Monitor utility, see SYSTP Utility in the section Debugging and Monitoring.

143Copyright © Software AG 2002

Loading Natural in a Common Memory Pool - Natural Load PoolNatural under UTM - Part 1

Other Storage Areas

Natural User Thread

For each UTM task a storage area with a size of MAXSIZE is generated. This area contains the Natural user area
in decompressed form.

Natural User Work Area Asynchronous Write Buffer

The Natural user work area can be written out either asynchronously ("write without wait") or synchronously
("write with wait").

If the asynchronous option is used (this is the default option), a write buffer having the size of defined operand
for parameter ROLLTSZ is generated for each UTM task. Using this technique, the compressed user work area
is copied from the swap pool into the write buffer, the asynchronous write is started and processing can continue
immediately. This option gives better performance, but at the cost of increased storage.

If roll-outs are to be performed synchronously, the keyword parameter ROLLACC must have the value
"UPAM-SY". In this case, it is not necessary to allocate a write buffer. Processing is suspended until the user
work area has successfully been written to the swap file.

Natural User Area for Asynchronous Transactions

A storage area of MAXSIZE is allocated for each asynchronous transaction in a Natural UTM application
(Natural user work area for this transaction). It is released at the end of the transaction. The Natural swap pool is
not used to store the user work area associated with asynchronous transactions. Every Natural program that runs
asynchronously must end with TERMINATE; that is, the UTM DC transaction is ended with PEND ’FI(NISH)’.
This applies to asynchronous transactions both within an application and between two Natural UTM
applications; see also Asynchronous Transaction Processing .

Natural Roll File - LINK=PAMNAT

A PAM file is required for swapping the Natural user work areas. Writing to and reading from this file is done by
physical chained PAM-I/O. However, this is only possible as long as the swap file does not cross an extent
boundary. This can be checked using SPCCNTRL.

The LINK name of the Natural swap file is PAMNAT. The size of the roll file can be computed as follows:

NP = ([(MS + 4 + 31) / 32] * 32 * NT + 4) / 2

where:
NP = Size of dataset in PAM pages;
MS = Parameter ROLLTSZ in KB, rounded up to next even number;
NT = Number of terminals online.

Copyright © Software AG 2002144

Natural under UTM - Part 1Other Storage Areas

Example:
ROLLTSZ = 80 KB (per user) Number of terminals online = 40

 Size of dataset = ([(80 + 4 + 31) / 32] * 32 * 40 + 4) / 2
 = ([115 / 32] * 32 * 40 + 4) / 2
 = ([3.59375] * 32 * 40 + 4) / 2
 = (3 * 32 * 40 + 4) / 2
 = 3844 / 2
 = 1922 PAM pages

 FILE statement:

 /FILE NATUTM.SWAPFILE,LINK=PAMNAT,SPACE=(1922,96)

When a local swap pool is used, each Natural UTM application requires its own Natural swap file. When a user
logs on to the application, the Natural UTM Interface checks whether there is sufficient space available for the
new user in the Natural roll file. If there is not enough space, error message NUS0033 is output.

When a global swap pool is used, all Natural UTM applications which are connected to the same global swap
pool must use the same Natural roll file.

145Copyright © Software AG 2002

Natural Roll File - LINK=PAMNATNatural under UTM - Part 1

Generating KDCROOT
The following Natural-specific definitions must be entered when generating KDCROOT for a Natural UTM
application:

 MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=5120 (see Note 1)
 PROGRAM NUSTART,COMP=ASSEMB (see Note 2)
 PROGRAM NUERROR,COMP=ASSEMB (see Note 2)
 TAC NAT,PROGRAM=NUSTART,EXIT=NUERROR (see Note 2)
 EXIT PROGRAM=FREXIT,USAGE=FORMAT (see Note 3)
 PROGRAM FREXIT,COMP=ASSEMB (see Note 3)

Note

1 The area needed for the UTM KB has a minimum length of 400 bytes. The necessary KB length for
operand KB=nnn in the MAX parameter of KDCDEF must be calculated as follows:
Fixed KB length is 400 bytes
+ length of KB user extension (keyword parameter KBUSEXT)
+ length of dynamic parameter save area (keyword parameter SVDYPRM)
+ (only if MULTI-PASS is used) length of session key areas, which has to be calculated
as follows: n*72 where n is the number of parallel session minus 1
The UTM I/O areas NB and TRMSLGTH need a length of 5120 bytes.

2 In a Natural UTM application there is as a rule only one user-specific UTM partial program.

This program is the front-end part of the Natural UTM Interface, which must be defined in the adequate
parameters of KDCDEF under the name specified in the operand of the keyword parameter CSECT of
macro NATUTM (default = NUSTART).

Any number of UTM transaction codes can be assigned, providing the naming rule is observed.

The name of the DC transaction exit routine NUERROR must be defined for the front-end part of the
Natural UTM Interface and for each other UTM partial program.

3 The format exit module FREXIT must be defined with the parameters EXIT and PROGRAM.

All other definitions relating to the generation of KDCROOT are either specific to UTM or else they are
dependent upon the values defined in the operands of the appropriate keyword parameters of macro NATUTM.

Copyright © Software AG 2002146

Natural under UTM - Part 1Generating KDCROOT

Defining the UTM Resources - KDCDEF
The following Natural-specific points must be observed when defining the UTM resources:

Special Definition for Type 9755/9756 Terminals

The TERMN operand of the PTERM command must be set to the value "X1" or "FG" for 9755-type terminals
and to the value "X2" for 9756-type terminals. These are special values and not described in the appropriate table
in the Siemens UTM documentations.

For all other types of terminals, the TERMN operand must be set to the value shown in the tables.

Example:

 PTERM ss19,lterm=ltdf1900,pronam=vr,ptype=t9755,TERMN=X1

Treatment of K Keys and F Keys

The Natural UTM Interface supports the function keys K1, K2, K3, K4, F1, F2, F3, F4 and F5 (for P keys). The
function key which has been pressed can be identified by means of the UTM return code, which must be defined
using the SFUNC statement of KDCDEF:

 SFUNC K1,RET=26Z
 SFUNC K2,RET=27Z
 SFUNC K3,RET=28Z
 SFUNC K4,RET=29Z
 SFUNC F1,RET=21Z
 SFUNC F2,RET=22Z
 SFUNC F3,RET=23Z
 SFUNC F4,RET=24Z
 SFUNC F5,RET=25Z
 SFUNC nn,RET=nnZ (for the PRKEY; see the keyword parameter PRKEY)

Using other function keys or using valid function keys that have not been defined in KDCDEF results in an error
message.

147Copyright © Software AG 2002

Defining the UTM Resources - KDCDEFNatural under UTM - Part 1

Support of IBM Type 3270 Terminals

In an appropriate system configuration of IBM SNA (VTAM) and Siemens TRANSDATA DC 3270-type
terminals are supported by the Natural UTM Interface.

This means that Siemens terminals as well as 3270 terminals can be connected to a Natural UTM application.
Natural adjusts screen output to the specific terminal type used. 3270-type terminals have to be defined as such
to KDCDEF in the PTERM command (see Siemens UTM documentations).

For the support of Siemens and IBM function keys, the SFUNC statements of KDCDEF have to be defined as
follows:

Siemens Key IBM Key UTM Return Code

F1 PF1 21Z

F2 PF2 22Z

F3 PF3 23Z

F4 PF4 24Z

F5 PF5 25Z

K1 PA1 26Z

K2 PA2 27Z

K3 PF6 + PF13 28Z

K4 PF7 + PF14 29Z

K5 PF8 + PF15 30Z

K6 PF9 + PF16 31Z

K7 PF10 + PF1732Z

K8 PF11 + PF1833Z

K9 PF12 + PF1934Z

K10 PF20 35Z

K11 PF21 36Z

K12 PF22 37Z

K13 PF23 38Z

K14 PF24 39Z

Copyright © Software AG 2002148

Natural under UTM - Part 1Support of IBM Type 3270 Terminals

Support of TTY Terminals

For terminals which are to be used in TTY mode, the TERMN operand of the PTERM command must be set to
TERMN=X9.

The following restrictions apply to TTY mode:

Asynchronous transaction processing is not supported.
MULTI-PASS is not supported.

149Copyright © Software AG 2002

Support of TTY TerminalsNatural under UTM - Part 1

UTM DC-Transaction Exit Routine NUERROR
A UTM DC-transaction exit routine is defined in the front-end part of the Natural UTM Interface. This routine is
called at the beginning of a DC transaction, when a DC transaction is restarted, at normal termination and at
abnormal termination (PEND ER). The user exit UVGEXIT can be used in any of these circumstances.

In the case of abnormal termination, the affected user is deleted from the internal terminal control table, the
Natural recovery procedures are executed and the user’s user area is released from the swap pool directory if
necessary.

The DC-transaction exit routine NUERROR must be defined in the adequate parameters of KDCDEF for the
front-end part of the Natural UTM Interface (generation of KDCROOT); see also Generating KDCROOT.

UTM Startup Function
If the user exit STARTEX (default value of keyword parameter STRTALL) is to be used, "EXIT
PROGRAM=NUSTART,USAGE=START" must be defined in the KDCDEF parameter for the front-end part of
the Natural UTM Interface.

One of the effects of this is that the task initialization routines (allocation of common memory pools, loading
Natural, etc.) are activated immediately following the start of each UTM task. Errors that occur are output on the
console and all users are sent an appropriate message; if SYSLST=YES (see keyword parameter SYSLST),
errors are also output to SYSLST.

If the UTM startup function is not used, the UTM task(s) are not initialized until they are activated when a user
logs on. If an error occurs under these circumstances, the error message is sent to the terminal that caused the
error. All other users are given an appropriate message when they try to log-on to the application.

Copyright © Software AG 2002150

Natural under UTM - Part 1UTM DC-Transaction Exit Routine NUERROR

UTM Shutdown Function
If the user exits SHUTEX1 and/or SHUTEX2 (default values of keyword parameters SHUTALL and
SHUTLST) are to be used, "EXIT PROGRAM=NUSTART,USAGE=SHUT" must be defined in the KDCDEF
parameters (KDCROOT) for the front-end part of the Natural UTM Interface. The statistics of the Natural UTM
Interface are output when the last UTM task terminates.

If the UTM shutdown function is not used, the user exits defined with SHUTALL and SHUTLST cannot be used
and the statistics are not available.

The statistics that are collected and output by the Natural UTM Interface are:

 MAIN DIRECTORY IS RESIDENT, N O T P A G E A B L E
 --
 INITIALIZED WITH CONTROL DATA FROM NAT SYSTEM FILE
 TOTAL SIZE OF SWAP POOL IN KB : 32760
 SIZE OF MAIN DIRECTORY IN KB : 2
 TOTAL NO. OF SWAP POOL THREADS: 209
 TOTAL NO. OF LOGICAL SWP(S) : 10

 LAST STATUS OF THE SWAP POOL STATISTICS
 +---+
 I Natural USER THREADS WITH LENGTH I
 I GREATER LOWER I
 I 152 KB I
 +-----------------------+-----------------------+
 I + 2 KB: 0 I - 2 KB: 0 I
 I + 4 KB: 0 I - 4 KB: 17 I
 I + 6 KB: 0 I - 6 KB: 0 I
 I + 8 KB: 0 I - 8 KB: 1 I
 I + 10 KB: 0 I - 10 KB: 0 I
 I + 12 KB: 0 I - 12 KB: 0 I
 I + 14 KB: 0 I - 14 KB: 0 I
 I + 16 KB: 0 I - 16 KB: 0 I
 I + 18 KB: 0 I - 18 KB: 0 I
 I + NN KB: 0 I - NN KB: 0 I
 I AVER.LNG.NN: 0 KB I AVER.LNG.NN: 0 KB I
 +---+

 LOGICAL SWP NO. 01 LOGICAL SWP NO. 02
 ------------------ ------------------
 LOGICAL SWP SIZE IN KB: 2402 LOGICAL SWP SIZE IN KB: 2690
 DIRECTORY SIZE IN KB : 2 DIRECTORY SIZE IN KB : 2
 SWP THREAD SIZE IN KB : 120 SWP THREAD SIZE IN KB : 128
 NO. OF SWP ENTRIES : 20 NO. OF SWP ENTRIES : 21
 MAX. USED ENTRIES : 0 MAX. USED ENTRIES : 0
 NO. OF SWP GUESTS : 0 NO. OF SWP GUESTS : 0
 NO. SUCCESSFUL LOCATES: 0 NO. SUCCESSFUL LOCATES: 0
 NO. FAILED LOCATES : 0 NO. FAILED LOCATES : 0

 LOGICAL SWP NO. 03 LOGICAL SWP NO. 04
 ------------------ ------------------
 LOGICAL SWP SIZE IN KB: 2858 LOGICAL SWP SIZE IN KB: 3026
 DIRECTORY SIZE IN KB : 2 DIRECTORY SIZE IN KB : 2
 SWP THREAD SIZE IN KB : 136 SWP THREAD SIZE IN KB : 144
 NO. OF SWP ENTRIES : 21 NO. OF SWP ENTRIES : 21
 MAX. USED ENTRIES : 0 MAX. USED ENTRIES : 1
 NO. OF SWP GUESTS : 0 NO. OF SWP GUESTS : 0
 NO. SUCCESSFUL LOCATES: 0 NO. SUCCESSFUL LOCATES: 1
 NO. FAILED LOCATES : 0 NO. FAILED LOCATES : 0

151Copyright © Software AG 2002

UTM Shutdown FunctionNatural under UTM - Part 1

 LOGICAL SWP NO. 05 LOGICAL SWP NO. 06
 ------------------ ------------------
 LOGICAL SWP SIZE IN KB: 3194 LOGICAL SWP SIZE IN KB: 3362
 DIRECTORY SIZE IN KB : 2 DIRECTORY SIZE IN KB : 2
 SWP THREAD SIZE IN KB : 152 SWP THREAD SIZE IN KB : 160
 NO. OF SWP ENTRIES : 21 NO. OF SWP ENTRIES : 21
 MAX. USED ENTRIES : 1 MAX. USED ENTRIES : 0
 NO. OF SWP GUESTS : 0 NO. OF SWP GUESTS : 0
 NO. SUCCESSFUL LOCATES: 17 NO. SUCCESSFUL LOCATES: 0
 NO. FAILED LOCATES : 0 NO. FAILED LOCATES : 0

 LOGICAL SWP NO. 07 LOGICAL SWP NO. 08
 ------------------ ------------------
 LOGICAL SWP SIZE IN KB: 3530 LOGICAL SWP SIZE IN KB: 3698
 DIRECTORY SIZE IN KB : 2 DIRECTORY SIZE IN KB : 2
 SWP THREAD SIZE IN KB : 168 SWP THREAD SIZE IN KB : 176
 NO. OF SWP ENTRIES : 21 NO. OF SWP ENTRIES : 21
 MAX. USED ENTRIES : 0 MAX. USED ENTRIES : 0
 NO. OF SWP GUESTS : 0 NO. OF SWP GUESTS : 0
 NO. SUCCESSFUL LOCATES: 0 NO. SUCCESSFUL LOCATES: 0
 NO. FAILED LOCATES : 0 NO. FAILED LOCATES : 0

 LOGICAL SWP NO. 09 LOGICAL SWP NO. 10
 ------------------ ------------------
 LOGICAL SWP SIZE IN KB: 3866 LOGICAL SWP SIZE IN KB: 4118
 DIRECTORY SIZE IN KB : 2 DIRECTORY SIZE IN KB : 2
 SWP THREAD SIZE IN KB : 184 SWP THREAD SIZE IN KB : 196
 NO. OF SWP ENTRIES : 21 NO. OF SWP ENTRIES : 21
 MAX. USED ENTRIES : 0 MAX. USED ENTRIES : 0
 NO. OF SWP GUESTS : 0 NO. OF SWP GUESTS : 0
 NO. SUCCESSFUL LOCATES: 0 NO. SUCCESSFUL LOCATES: 0
 NO. FAILED LOCATES : 0 NO. FAILED LOCATES : 0

 --
 USAGE STATISTICS OF SWAP POOL AND NATURAL USER THREADS

 SWP SLOT NO. NAT. % DIAGRAM
 NO. LNG KB THREADS
 --- ------ ------- ----- -----------------------------------
 01 120 0 0,0
 02 128 0 0,0
 03 136 0 0,0
 04 144 1 5,5 ***
 05 152 17 94,4 ***********************************
 06 160 0 0,0
 07 168 0 0,0
 08 176 0 0,0
 09 184 0 0,0
 10 196 0 0,0
 DESERTERS: 0 0,0

 M A I N D I R E C T O R Y S T A T I S T I C S A R E A
 NATSHARE: SWAP POOL START DATE 97-02-25
 NATSHARE: SWAP POOL START TIME 16:11:39
 NATSHARE: TOTAL NUMBER OF SWP SYNC. WAITS: 0
 NATSHARE: TOTAL NUMBER OF ASYN. WRITE WAITS: 0
 NATSHARE: TOTAL NUMBER OF DIALOGUE STEPS: 19
 NATSHARE: TOTAL NUMBER OF SWAPS: 0
 NATSHARE: TOTAL NUMBER OF WRITES TO ROLL FILE: 0
 NATSHARE: TOTAL NUMBER OF SYNCHRONOUS WRITES: 0
 NATSHARE: MAX NUMBER OF USER: 1
 NATSHARE: MAX NUMBER OF DIALOGUES WITHOUT SWAPS: 19

Copyright © Software AG 2002152

Natural under UTM - Part 1UTM Shutdown Function

 NATSHARE: NUMBER OF SWAP POOL REORGANIZATION: 0
 NATSHARE: NUMBER OF SWAP POOL REPAIR: 0
 NATSHARE: NUMBER OF ABNORMAL ENDED SESSIONS: 0
 NATSHARE: MAX. COMPR. L’ OF NAT USER THREAD IN KB: 148
 NATSHARE: REAL MAXSIZE NEEDED FROM Natural IN KB: 386
 NATSHARE: SWP STATISTICS PRINT DATE: 97-02-25
 NATSHARE: SWP STATISTICS PRINT TIME: 17:20:40

153Copyright © Software AG 2002

UTM Shutdown FunctionNatural under UTM - Part 1

Natural under UTM - Macro Keyword
Parameters
This part of the Natural UTM Interface documentation covers the following topics:

NATUTM Macro Keyword Parameters
NATUTM Macro Entries
NURENT Macro Keyword Parameters

Installation - refer to Installing the Natural UTM Interface (in the Natural Installation Guide for Mainframes).

Notation_vrs_or_vr">Notation vrs or vr: If used in the following document, the notation vrs or vr stands for
the relevant version, release, system maintenance level numbers.

NATUTM Macro Keyword Parameters
The following parameters are available:

ADACALL | ADACOM | ADAPRI | ADAUTM | AFPNAME | APPLNAM | APRISTD | ASAPPLI |
ASYNTAC | BADTAC | BTX | CDYNAM | CLRKEY | CURPRO | ICONTRL | INITPRG | KB | KBSAVE |
KBUSEXT | LFH | LINK | LINK2/LINK3/LINK4 | LOFFMAP | NATMON | NUAADDR | NUCNAME |
PARMOD | PENDPR | PFK | PRKEY | REFRKEY | ROLLACC | ROLLTSZ | RSTCNT | RSTWARM |
SCRNOPT | SHUTALL | SHUTLST | SPOOL | STRTALL | STRTFST | SVDYPRM | SWAMODE |
SWDPAGE | SWPUSID | SYAPPLI | SYNTAC | SYSLST | TACEND | TCLA1 | TCLA2, TCLA3, TCLA4 |
TCLS1 | TCLS2, TCLS3, TCLS4 | TERMTAB | TID | TRACE | TTYLS | TTYPS | UMODE

ADACALL - Access to Adabas

This parameter defines an entry in the Natural UTM Interface for the subroutine ADACALL. This subroutine
must be called each time a non-Natural program accesses Adabas. ADACALL generates a valid Adabas user ID
and subsequently invokes the Adabas interface module ADALNN. Possible values are:

ADACALL= name name of the entry.

ADACALL=NO Subroutine ADACALL is not generated. This is the default value.

ADACOM - Adabas Link Module Usage

This parameter determines which Adabas link module is to be used.

ADACOM=ADABAS The modules ADAUSER and SSFB2C are linked to the front-end part (Adabas
Version 7.1 and higher).

ADACOM=ADALINK The modules ADALNK, ADAL2P and SSFB2C are linked to the front-end part
(Adabas Version 7.1 and higher).

ADACOM=, The module ADALNN is linked to the front-end part (Adabas versions lower than
7.1). This is the default value.

Copyright © Software AG 2002154

Natural under UTM - Macro Keyword ParametersNatural under UTM - Macro Keyword Parameters

ADAPRI - Activation of Adabas Priority Control for UTM Application

ADAPRI=YES Activates Adabas priority control for a Natural UTM application.

ADAPRI=NO The Adabas priority for all UTM transactions is the same. This is the default value.

See Adabas Priority Control for details.

ADAUTM - Synchronization of Async UTM/Adabas Transactions

This parameter enables you to realize synchronized processing and coordinated restart of asynchronous
transactions between UTM and Adabas. This requires that the module "ADAUTM" is available; this module
must be linked to the front-end part of the Natural UTM application. Possible values are:

ADAUTM=YES Synchronized processing and coordinated restart of asynchronous transactions between
UTM and Adabas are enabled.

If ADAUTM=YES is specified, the ADACALL parameter must not be set to "Adabas".

ADAUTM=NO This is the default value.
Warning: Do not change the default value of this parameter without prior consultation of
Software AG support.

AFPNAME - Name of Common Memory Pool

This parameter specifies the name of the common memory pool of Adabas Fast Path. This name must be used
for the common memory pool definition in macro ADDON (this macro is used for assembling BS2STUB).
Possible values are:

AFPNAME=name Maximum 16 characters.

AFPNAME=, Setting only a comma means no name. This is the default value.

APPLNAM - Name of Natural UTM Application

With this parameter, you specify the name of the Natural UTM application. The value of this parameter must be
identical with the value of parameter APPLINAME in KDCDEF. This name is used to create a name for a
task-specific SYSLST file. Possible values are:

APPLNAME=name Up to 8 characters long. No default value provided.

The specified name is also used to construct a serialization marker for the initialization routine in the Natural
UTM Interface; an "S" is inserted in the first free character position (for example, if APPLNAM=NATUTM, the
name of the serialization marker is NATUTMS).

Furthermore, this name is used to create an Adabas user ID if TID=N is specified.

A defined character position of the operand of APPLNAM can be used for constructing the Adabas user ID; see
keyword parameter TID.

155Copyright © Software AG 2002

ADAPRI - Activation of Adabas Priority Control for UTM ApplicationNatural under UTM - Macro Keyword Parameters

APRISTD - Adabas Priority for Standard UTM TAC

APRISTD=nnn Adabas priority nnn for the standard UTM TAC (default "NAT")

APRISTD=144 This is the default value.

This parameter can be used to define the Adabas priority nnn for the standard UTM TAC (default "NAT"). The
APRISTD parameter is only in effect if the ADAPRI parameter is set to "YES". For individual TACs, individual
priorities can be defined with the parameters TCLSn and TCLAn; see also Adabas Priority Control.

ASAPPLI - Name of Logical UTM Communications Partner

This parameter specifies the name of the logical UTM communications partner (as defined in KDCDEF) of the
asynchronous UTM application. This name is only relevant in the case of asynchronous transaction processing
between two UTM applications. Possible values are:

ASAPPLI=name name specifies the name of the logical UTM communications partner.

ASAPPLI=NO This is the default value.

If ASAPPLI=name is specified, the operand of the keyword parameter SYAPPLI must also be defined.

ASYNTAC - UTM Transaction Code for Asynchronous UTM Task or
Application

With this parameter you define the UTM transaction code (TAC) for the UTM task or application that runs
asynchronously. Possible values are:

ASYNTAC=tac UTM TAC for the UTM task or application that runs asynchronously.

ASYNTAC=NATAS This is the default value.

The specified UTM TAC must be distinct from the "standard" Natural TAC and also from the TAC used for the
synchronous UTM application (if asynchronous transaction processing is used between two UTM applications).

The first five characters determine the unique identifier for asynchronous UTM TACs.

BADTAC - Activation of UTM Function "BADTACS"

This parameter enables you to activate the UTM function "BADTACS", which means that in the assembled
program of macro NATUTM, the startup program "AUTOTAC" is generated for undefined UTM transaction
codes. Possible values are:

BADTAC=YES Activates the UTM function "BADTACS".

BADTAC=NO This is the default value.

BADTAC=YES requires that the following additional definitions must be supplied when defining KDCDEF and
generating KDCROOT:

Copyright © Software AG 2002156

Natural under UTM - Macro Keyword ParametersAPRISTD - Adabas Priority for Standard UTM TAC

KDCDEF:

PROGRAM AUTOTAC,COMP=ASSEMB
TAC KDCBADTC,CALL=FIRST,PROGRAM=AUTOTAC,EXIT=NUERROR,TYPE=D
TAC AUTOCONN,TYPE=D,PROGRAM=NATUTM,EXIT=NUERROR,CALL=BOTH

BTX - Support of BTX System

This parameter specifies whether a preliminary BTX system is supported ("Siemens
Bildschirmtext-Verarbeitung") or not. Possible values are:

BTX=YES A preliminary BTX system is supported.

BTX=NO This is the default value.

If BTX=YES is specified, the logical UTM terminal names must begin with "LBX".

BTXFTAC defines the BTX startup transaction code (default value: NATFIRST); BTXNTAC defines the
transaction code for further BTX transactions (default value: NAT); BTXMAP defines a BTX logoff mask.

You must specify a value for parameter BTX if you want to assemble macro NURENT.

CDYNAM - Maximum Number of Programs to be Dynamically Loaded

This parameter specifies the maximum number of programs to be dynamically loaded (for example, COBOL or
Assembler subroutines) and/or the number of programs which have been linked with the front-end part and
declared with parameters LINK to LINK4. Possible values are:

CDYNAM=nn nn defines the number of programs.

CDYNAM=15 This is the default value.

The programs to be dynamically loaded must be either in the load library specified in the Natural parameter
module or in the BLSLIB(s) specified in the start job.

CLRKEY - Activation/Deactivation of CLEAR Key

This parameter activates or deactivates the CLEAR key. Possible values are:

CLRKEY=ON Activates the CLEAR key (keys LSP and ENTER). This is the default value.

CLRKEY=OFF Deactivates the CLEAR key, which means that after pressing CLEAR, the entire last Natural
screen is displayed again.

CURPRO - Cursor Positioning to Protected Field

This parameter controls whether the cursor can be positioned to a protected field. Possible values are:

CURPRO=ON The cursor cannot be positioned to a protected field. This is the default value.

CURPRO=OFFThe cursor can also be placed in a protected field (for example, for field-specific help
functions).

157Copyright © Software AG 2002

BTX - Support of BTX SystemNatural under UTM - Macro Keyword Parameters

ICONTRL - UTM Input Exit for Messages in Minus Format

This parameter allows you to generate an UTM input exit for messages in minus ("-") format; that is, messages
from a Natural screen. Such an input exit controls the allowed (or not-allowed) user KDC commands. Possible
values are:

ICONTRL=(YES,KDCxxxx(,KDCxxxx,...))

ICONTRL=(YES)

Any KDC command not allowed must be defined with this
parameter by specifying YES and the name of the KDC command.
See examples below.

ICONTRL=(NO) This is the default value.

Examples:

ICONTRL=(NO) This example does not generate an input exit and allows all UTM
commands.

ICONTRL=(YES) This example generates an input exit with the name ICONTRL and
prohibits usage of all UTM commands.

ICONTRL=(YES,KDCOUT,KDCOFF) This example generates an input exit with the name ICONTRL and
prohibits usage of the commands KDCOUT and KDCOFF.

If YES is specified as first operand, the generated input exit must be defined in KDCDEF and KDCROOT as
follows:

EXIT PROGRAM=ICONTRL,USAGE=(INPUT,USERFORM)
PROGRAM ICONTRL,COMP=ASSEMB

INITPRG - Value for Natural Variable *INIT-PROGRAM

This parameter defines the value for the Natural variable *INIT-PROGRAM. Possible values are:

INITPRG=APPLNAM The Natural variable *INIT-PROGRAM contains the value of the keyword parameter
APPLNAM. This is the default value.

INITPRG=KCTACVG The Natural variable *INIT-PROGRAM contains the value of the UTM KB field
KCTACVG (UTM start TAC).

KB - Pass KB Address as First Parameter

This parameter specifies whether the address of the UTM communication area (Kommunikationsbereich, KB) is
passed as the first parameter address each time Natural calls a non-Natural program. This has been taken account
of in the subroutines and utility programs of the Natural UTM Interface. Possible values are:

KB=YES The address of the UTM communication area (KB) is passed as the first parameter address each
time Natural calls a non-Natural program.

KB=NO This is the default value.

KBSAVE - Saving of UTM KB via SPUT

This parameter specifies whether the UTM KB will be saved via SPUT or not. Possible values are:

Copyright © Software AG 2002158

Natural under UTM - Macro Keyword ParametersICONTRL - UTM Input Exit for Messages in Minus Format

KBSAVE=YES The UTM KB will be saved via SPUT, starting from the end of the KB header plus twelve
bytes. This information will be saved in the LSSB before a PEND PR(ogram) is executed for
a user-specific partial UTM program.

KBSAVE=NO The UTM KB will not be saved. This is the default value.

To be able to use this parameter, you must set the following KDCDEF definition:

MAX LSSBS=1

If the user-specific partial UTM program resumes, the original communication area will be refreshed via SGET.
This allows the partial UTM program to use the KB from the end of the UTM communication area header plus
twelve bytes. Therefore, the program must not destroy these twelve bytes. If a KB user extension is defined, this
area will not be saved.

KBUSEXT - Length of UTM KB User Extension

This parameter specifies the length of a UTM KB (Kommunikationsbereich) user extension. Possible values are:

KBUSEXT=nnnnn nnnnn specifies the length of a UTM KB user extension. The maximum length allowed is
30720 bytes.

KBUSEXT=0 This is the default value.

Length and address of a user extension are stored in the KB:

USEREXTL DS H length in bytes

USEREXTA DS F address

For more information, see the DSECT macro CMBS2TP.

LFH - Use of Adabas LFH

This parameter specifies that the Adabas large file handler (LFH) is to be used. Possible values are:

LFH=YES Specifies that you are using the Adabas LFH .

LFH=NO This is the default value.

If you specify YES, you also must define the buffer size for the Adabas LFH in the Natural parameter module
(parameter VSIZE).

LINK - Programs and Modules Called from Natural

This parameter enables you to specify the names of programs and modules that are called from Natural programs
and linked with the non-reentrant part. Possible values are:

LINK= name
(name,name,...)

The names of programs and modules that are called from Natural programs and linked with
the non-reentrant part must be specified in the operand of this parameter.
Conversely, the programs and modules whose names are specified must be linked with the
non-reentrant part, otherwise the application is put into status SYSTEMERROR and all users
are rejected with an error message.

Default value: none

159Copyright © Software AG 2002

KBUSEXT - Length of UTM KB User ExtensionNatural under UTM - Macro Keyword Parameters

A "TABLE" macro call is performed for the specified programs and modules, which enters their load addresses
into the dynamic loader’s link table. It is therefore not necessary to dynamically load these programs when they
are called by Natural programs.

Example:

LINK=PROG1
LINK=(PROG1,PROG2,MODUL111)

LINK2/LINK3/LINK4 - Extensions of Keyword Parameter LINK

These parameters are an extension of the keyword parameter LINK. Possible values are:

LINK2/LINK3/LINK4= name
(name,name,...)

The syntax is in analogy to that of LINK. See examples below.

Default value: none

Since an operand definition must not be longer than 127 characters (including parentheses), the parameters
LINK2 to LINK4 are provided for cases where the operand of parameter LINK would be too long.

Examples:

NATUTM LINK=(PROG1,PROG2,...),
 LINK2=(PROG54,...)
 NATUTM LINK=(PROG1,PROG2,PROG3,PROG4)

LOFFMAP - Format Name for Logoff Message

With this parameter, a format name for the logoff message can be specified. Possible values are:

LOFFMAP=’-END’ The message defined in the format exit module FREXIT is output:

NAT9994 - YOUR SESSION WAS SUCCESSFULLY FINISHED.
PLEASE GIVE "KDCOFF" (LEAVE THE APPLICATION) OR
"UTM-TAC".

The message is output in the language specified by parameter UMODE; if required, it
can be modified in the program FREXIT.

This is the default value.

LOFFMAP=’ ’ The following message is output in line mode:

NAT9994 - Natural TERMINATED NORMALLY

LOFFMAP=’name’

("-" or "*" format)

The user-defined message is output.

The message is defined with "-" format in FREXIT or with "*" format with IFG and
FHS.

LOFFMAP=’KDCOFF’ An automatic "KDCOFF" is performed for the user when a FIN system command or
TERMINATE statement is executed.

In any case, the operand specified with the LOFFMAP parameter is used as the format name for UTM. The
operand is therefore restricted to a maximum of 8 characters.

Copyright © Software AG 2002160

Natural under UTM - Macro Keyword ParametersLINK2/LINK3/LINK4 - Extensions of Keyword Parameter LINK

NATMON - Automatic Activation of Natural Monitor during Application
Startup

This parameter specifies whether the Natural monitor is activated automatically during application startup or not.
Possible values are:

NATMON=ON The Natural monitor is activated automatically during application startup.

NATMON=OFF The Natural monitor is not activated automatically during application startup.
This is the default value.

NUAADDR - Natural User Thread Address

With this parameter, you specify a Natural user thread address. The following happens if you specify a particular
value:

NUAADDR=, (comma) Comma means no value. The Natural user thread will be allocated in the
next free address below the 16-MB line.
This is the default value.

NUAADDR=XXXXX The Natural user thread will be allocated on the hexadecimal address in the
class 6 memory below the 16-MB line. This address must be aligned to the
4-KB segment limit. The result of address plus Natural user thread’s length
in bytes (MAXSIZE) must not be greater than address X’DF0000’. The
highest possible address is X’DEFFFF’.

NUAADDR=ABOVE The Natural user thread will be allocated above the 16-MB line.

NUAADDR=(ABOVE,NNNNN) The Natural user thread will be allocated above the 16-megabyte line where
NNNNN denotes the decimal number of megabytes above the
16-MB line.

Examples:

NUAADDR=ABOVE The Natural user thread will be allocated in the next free address above the
16-MB line.

NUAADDR=(ABOVE,258) The hexadecimal address of the Natural user thread is X’10200000’ (above the
16-MB line).

NUAADDR=6E000I The hexadecimal address of the Natural user thread is X’6E000’ (below the
16-MB line).

When the Natural user thread is allocated above the 16-MB line, the asynchronous write buffer and the thread for
asynchronous transactions will also be allocated above the 16-MB line. In this case, the 31-bit address mode will
not be switched back to 24-bit address mode before a 3GL program is called. This means the called 3GL
program must be able to run in 31-bit address mode.

NUCNAME - Name of Bounded Reentrant Natural Module

This parameter specifies the name of the bounded, reentrant Natural module. Possible values are:

NUCNAME=name name of the bounded, reentrant Natural module.

Default value: none

161Copyright © Software AG 2002

NATMON - Automatic Activation of Natural Monitor during Application StartupNatural under UTM - Macro Keyword Parameters

You must use the name of the bounded, reentrant Natural module for the Natural pool and load information in
macro ADDON (macro ADDON assembles BS2STUB) and for program CMPSTART when a shared nucleus is
to be used.

PARMOD - Generation of Front-End and Reentrant Parts

This parameter applies to the generation of both the front-end and reentrant parts. Possible values are:

PARMOD=nn,loc

nn: 24/31
loc: BELOW/ABOVE

The first value of this parameter (nn) is used to define an addressing mode (24-bit
or 31-bit mode) for the Natural UTM application.
The second value of this parameter (loc) is used to define the front part location of
the Natural UTM application.

PARMOD=(24,BELOW) This is the default value.

If you load the front part of the application above 16 MB, this must be defined in the front part’s link procedure
as follows:

LOADPT=*XS or
 LOADPT=X’ address ’

Example:

/EXEC TSOLINK
 PROG NAT vrs ,FILENAM=NATvrs ,LOADPT=*XS,...
 TRAITS RMODE=ANY,AMODE=31
 INCLUDE....
 /* PARMOD=(nn, loc) MUST ALSO BE DEFINED FOR ASSEMBLING MACRO NURENT, WHICH
 /* BELONGS TO THE REENTRANT PART OF Natural/UTM; OPERANDS MUST BE IDENTICAL FOR
 /* THE FRONT-END AND REENTRANT PARTS.

PENDPR - Define UTM TAC for "PEND PR"

This parameter defines a UTM TAC for a "PEND PR". Possible values are:

PENDPR=’zzzzzzzz’ zzzzzzzz (maximum 8 characters) defines the UTM TAC.

PENDPR=’ ’ This is the default value (no TAC for PEND PR) .

When PENDPR=’zzzzzzzz’ is specified, a "PEND PR(OGRAM)" is executed instead of a "PEND FI(NISH)"
when the FIN system command is entered or a TERMINATE statement is executed or the PEND PR function
key is pressed. The UTM partial program that has been associated with the specified UTM TAC is started after
the PEND PR.

PFK - Function Key Modes

This parameter is used to set one of the following function-key modes:

Copyright © Software AG 2002162

Natural under UTM - Macro Keyword ParametersPARMOD - Generation of Front-End and Reentrant Parts

PFK=(KN,y) The literals "%K1" to "%K20" and send-key code "DÜ1" are loaded to the function keys.

PFK=(KO,y) The literals "01" to "20" and send-key code "F5" are loaded to the function keys.

PFK=(KS,y) The literals "A" to "T" and send-key code "F5" are loaded to the function keys; in addition, with
every output message a dummy field is generated at the last two positions of the screen, which is
used to receive and pass the key value.

PFK=OFF No function key mode is generated.

PFK=KS,L This is the default value.

Where y can be:
"L" - function keys are loaded, or
"N" - function keys are not loaded.

PRKEY - UTM Return Code for Function Key

This parameter is used to define a UTM return code for a function key (F1 to F5 or K1 to K14). Possible values
are:

PRKEY=nnZ Possible values are 20Z to 39Z.

PRKEY=35Z Default value for K10 (keys ESC + ">").

Whenever a function key defined with this parameter is activated in the Natural dialogue, the Natural session is
suspended and if a UTM TAC for another UTM partial program is available, a PEND PR(OGRAM) is executed.

This UTM TAC can be defined in several ways:

with the Natural profile parameter PROGRAM=tac,
with the keyword parameter PENDPR=tac,
with the utility program TACSWTCH.

On return from the called UTM partial program via the PEND PR(OGRAM) to the Natural UTM Interface, the
Natural session is continued at the point where it has been suspended.

The same return code as specified with the PRKEY parameter must also be defined with an SFUNC statement in
KDCDEF.

REFRKEY - Definition of UTM Function Key

This parameter can be used to define a UTM function key. Possible values are:

REFRKEY=nnZ Possible values for nn are in the range from 26 to 39 (K1 to K14).

REFRKEY=NO No UTM function key defined.

REFRKEY=39Z Default value for K14 (keys ESC + ":").

If the defined function key is pressed, the last full Natural screen is refreshed. Thus it is possible to continue the
dialog with Natural after the screen has been overwritten by messages from the operator or the operating system.
The send key code is not passed to the Natural application. The interface sets the Natural key code to "ENTER".

163Copyright © Software AG 2002

PRKEY - UTM Return Code for Function KeyNatural under UTM - Macro Keyword Parameters

ROLLACC - Access Method for Natural Roll File

This parameter defines the access method for the Natural roll file. Possible values are:

ROLLACC=UPAM-SY The access method for the Natural roll file is UPAM with synchronous
roll file I/Os. This access method is not allowed with global swap
pools.

ROLLACC=UPAM-AS The access method for the Natural roll file is UPAM with P1-eventing
for asynchronous writes.
This is the default value.

ROLLACC=(UPAM-AS,PAMWAIT) The NATURAL UTM interface waits with a VPASS SVC from the
completed asynchronous write before a PEND RE is executed. This
option is needed because a UTM task which is inactive (P2 wait)
cannot be posted via P1-eventing. Instead, the user session must be
terminated with the error message "Timeout for asynchronous write."

ROLLACC=FASTPAM The access method for the Natural roll file is FASTPAM with Forward
Eventing for asynchronous writes (high performance). See
prerequisites described below.

Prerequisites for ROLLACC=FASTPAM

To use the FASTPAM option, the following prerequisites apply:

BS2000/OSD Version 1.0 or above.

Parameter TERMTAB must be defined as SWP.
The class II definition in the batch job for starting the resident FASTPAM environment and the FASTPAM
I/O pool must be:
/EXEC NATUTM,CLASSII=(nnn,yy)

The FASTPAM authorization in the user catalog must be:
/SHOW-USER-ATTRIBUTES
 FIELD: DMS-TUNING-RESOURCES=*EXCLUSIVE
/*OR ALTERNATIVELY:
/MODIFY-USER
 FIELD: DMS-TUNING-RESOURCES=EXCLUSIVE-USE

The BIAS for the BS2000/OSD operating system must be defined as follows:
/MODIFY-SYSTEM-BIAS MAX-RESIDENT-PAGES=nnn

To calculate the necessary number of resident core pages, use the following formula (ignore all rest values):

ROLLTSZ + 3 / 4 * 2 = N1 (FASTPAM I/O areas)

ROLLTSZ + 31 / 32 * 36 + 4095 / 4096 * 2 = N2 (FASTPAM access lists)

N1 + N2 = number of resident pages for one Natural/UTM task

ROLLTSZ - Maximum Roll Thread Size

This parameter determines the maximum roll thread size nnn (in KB); that is, the maximum size of a compressed
user thread on the Natural roll file. Possible values are:

Copyright © Software AG 2002164

Natural under UTM - Macro Keyword ParametersROLLACC - Access Method for Natural Roll File

ROLLTSZ=nnn nnn must be a multiple of 4 (roll file block size).

ROLLTSZ=160 Default value: 160 KB

If ROLLACC=UPAM-AS, valid values for ROLLTSZ are 4 to 1600 (KB).

If ROLLACC=UPAM-SY or ROLLACC=FASTPAM, valid values for ROLLTSZ are 4 to 3200 (KB).

To calculate the size of the Natural roll file, use the following formula:

ROLLTSZ / 2 * maximum number of users = nnn

nnn is the number of PAM pages for the Natural roll file.

As user threads are generally written to the roll file in compressed form, an optimum roll thread size contributes
considerably to saving disc storage.

The optimum value for nnn can be ascertained with the Natural Swap Pool Statistics; see the SYSLST parameter.

RSTCNT - Control of Restart Situations

This parameter can be used to control restart situations in which the "lifetime" of a user results from an old
Natural/UTM session. Possible values are:

RSTCNT=YES In such a restart situation a message is displayed to the user and the UTM task is finished with
"PEND FI(NISH)"; the user must restart his/her UTM task by entering the UTM TAC.

RSTCNT=NO In such a restart situation the Natural session is newly initialized without a message being
displayed. This is the default value.

RSTWARM - Control of Restart Situations

This parameter can be used to control restart situations. Possible values are:

RSTWARM=YES There will be a warm start of a Natural session if there is a UTM restart situation. The last
terminal screen will be displayed, prerequisite for this function is a global Natural swap
pool.

RSTWARM=NO There will be a restart of a Natural session if there is a UTM restart situation.
This is the default value.

SCRNOPT - Terminal Types with Deactivated Natural Screen
Optimization

This parameter can be used to define (one or two) terminal types for which Natural screen optimization is to be
de-activated. Possible values are:

SCRNOPT=(yy=zz) yy must be a valid terminal name TERMN as defined in KDCDEF.
zz is a synonym for yy.
For terminal types defined in KDCDEF with TERMN=zz, screen optimization is
then de-activated.

SCRNOPT=(yy=zz,yy=zz) Same as above, but two terminals defined.

SCRNOPT=NO Screen optimization is active for all terminal types. This is the default value.

165Copyright © Software AG 2002

RSTCNT - Control of Restart SituationsNatural under UTM - Macro Keyword Parameters

Example:

SCRNOPT=(FL=Z9)

"FL" is a valid TERMN name for IBM 3270-type terminals; "Z9" is a synonym for 3270-type terminals. This
example would deactivate screen optimization for those 3270-type terminals which are defined as TERMN=Z9
in KDCDEF.

SHUTALL - Name of User Exit

With this parameter, you can specify the name of a user exit. Possible values are:

SHUTALL=name Specifies the name of a user exit.

SHUTALL=SHUTEX1 This is the default value.

This user exit is invoked by the Natural UTM interface whenever a UTM task is terminated with "KDCSHUT",
provided that the UTM SHUTDOWN function has been defined in KDCDEF.

SHUTLST - Name of User Exit

With this parameter, you can specify the name of a user exit. Possible values are:

SHUTLST=name Specifies the name of a user exit.

SHUTLST=SHUTEX2 This is the default value.

This user exit is invoked by Natural/UTM when the last UTM task is terminated with "KDCSHUT", provided
that the UTM SHUTDOWN function has been defined in KDCROOT.

SPOOL - Automatic Start and Termination of Printer Task

This parameter enables you to specify a spooling system. Possible values are:

SPOOL=(NATSPOOL,’enter-parms’,n) For use with NATSPOOL (Natural Advanced Facilities), see Using
NATSPOOL.

SPOOL=REPRO-2000 For use with a remote spooling system, see Using REPRO-2000
Remote Spooling System.

SPOOL=RMSPOOL For use with your own user exit program, see Using RMSPOOL User
Exit.

Default value: None.

Using NATSPOOL

When using NATSPOOL (Natural Advanced Facilities), the SPOOL parameter can be used to indicate that the
printer task(s) required by NATSPOOL are to be started up automatically by means of ENTER calls whenever
the Natural UTM application is started, and terminated whenever the application is shut down. In this case, the
operands of the keyword parameter must be:

SPOOL=(NATSPOOL,’enter-parm ’,n)

where ’enter-parms’ are the parameters for the ENTER call (in apostrophes) and n is the number of printer tasks
to be started (in the range 1 to 30).

Copyright © Software AG 2002166

Natural under UTM - Macro Keyword ParametersSHUTALL - Name of User Exit

Example:

The following ENTER job is to be automatically started and terminated. The file name is "AF.E.PRINT":

/LOGON
/OPTION MSG=FHL
/SYSFILE FILE=SYSLST
/EXEC NAFPTTSK
/LOGOFF

Operand definition for the keyword parameter SPOOL:

SPOOL=(NATSPOOL,’AF.E.PRINT,TIME=999’,2)

In this example, "NATSPOOL" is the name of the Natural spooling system; "AF.E.PRINT" is the file name of
the ENTER job to be started and terminated; "TIME=999" is an additional, optional parameter for the ENTER
call (see the description of the BS2000/OSD ENTER macro); and "2" means that two NATSPOOL printer
tasks are to be started/terminated.

The second suboperand can contain any valid operands (enclosed in apostrophes) for the ENTER macro call.

The operand of keyword parameter SPOOL in macro NURENT must be "NATSPOOL".

NATSPOOL Processing Logic

The specified number of NATSPOOL printer tasks according to the operand definition in the keyword parameter
SPOOL is started when the application is started up. Interprocess communication is then used to check that at
least one printer task is running. If this condition is not satisfied, the application is set to status
SYSTEMERROR, an error message is output on the console and users who attempt to logon are rejected with
the message:

NUI0036 - SYSTEMERROR ... PLEASE GIVE KDCOFF

For more information on this system error, see NUI0036.

Using REPRO-2000 Remote Spooling System

If a remote spooling system is used (for example, TD-SPOOL or REPRO-2000), set SPOOL=REPRO-2000 in
the macros NATUTM and NURENT. This function is not supported by Software AG.

The logic used by Natural offline reports must be considered when implementing the interface module for a
remote spooling system (see macro NURENT, label CMWHC). When an offline report is activated, Natural
transfers output a record at a time. The logic for sending and accepting print records, the layout of the print
record, etc., are in macro NURENT, subroutine CMWHC.

Using RMSPOOL User Exit

If you use your own user exit program named "RMSPOOL" as remote spooling interface, set
SPOOL=RMSPOOL in the macros NATUTM and NURENT. See User Exits for details on the user exit
"RMSPOOL".

STRTALL - Name of User Exit for All UTM Tasks

With this parameter, you can specify the name of a user exit. This user exit is invoked by Natural/UTM
whenever a UTM task is started. Possible values are:

167Copyright © Software AG 2002

STRTALL - Name of User Exit for All UTM TasksNatural under UTM - Macro Keyword Parameters

STRTALL=name Specifies the name of a user exit.

STRTALL=STARTEX This is the default setting.

STRTFST - Name of User Exit for First UTM Task

With this parameter, you can specify the name of a user exit. This user exit is invoked by Natural/UTM when the
first UTM task is started, provided that the UTM STARTUP function has been defined in KDCDEF. Possible
values are:

STRTFST=name Specifies the name of a user exit.

STRTFST=STAPPLX This is the default setting.

SVDYPRM - Save Area Length for Dynamic Natural Parameters

This parameter determines the length in bytes of a save area for dynamic Natural parameters in the UTM KB.
These parameters are used when a Natural/UTM session is restarted. Possible values are:

SVDYPRM=nnnn Specifies the length in bytes of a save area for dynamic Natural parameters in the UTM
KB. Possible values are 0/8...2048 (bytes).

SVDYPRM=0 This is the default value.

SWAMODE - Switching from 31 to 24-Bit Address Mode

This parameter determines whether a 31-bit address mode is switched to 24-bit mode or not before a PEND
PR(ogram) is executed. What you must set depends on whether the partial UTM program can run in 31-bit
address mode (NO) or not (YES). Possible values are:

SWAMODE=YES 31-bit address mode is switched to 24-bit mode.

SWAMODE=NO This is the default value.

SWDPAGE - Pageability of Swap Pool Main Directory

This parameter determines whether the swap pool main directory is pageable or not. Possible values are:

SWDPAGE=NO Specifies that the swap pool main directory is not pageable.

SWDPAGE=YES This is the default value.

A swap pool directory that is not pageable improves performance considerably. In that case, the BS2000/OSD
macro CSTAT will be used to declare the swap pool directory as not pageable. To be able to specify
SWDPAGE=NO, you must define the maximum and minimum of resident core pages in the startup job.

Example: /EXEC E.NAT vrs ,CLASSII=(4,2)

For more information, see the description of BS2000/OSD macro CSTAT or the description of BS2000/OSD
command EXECUTE, operand CLASSII or, when SDF is used, the description of BS2000/OSD command
START-PROGRAM, operand RESIDENT-PAGES=PARAMETERS....

If the call to macro CSTAT fails, the application is still able to run.

Copyright © Software AG 2002168

Natural under UTM - Macro Keyword ParametersSTRTFST - Name of User Exit for First UTM Task

SWPUSID - Swap Pool User Identification

This parameter determines the swap pool user identification. Possible values are:

SWPUSID=KCLOGTER This is the UTM KB’s logical terminal name. This is the default value.

SWPUSID=KCBENID This is the UTM KB’s user name.

SWPUSID=INTERNID This is the internal terminal ID (serial number).

SYAPPLI - Name of Logical UTM Communications Partner

With this parameter, you can specify the name of the logical UTM communications partner (as defined in
KDCDEF) of the synchronous UTM application. Possible values are:

SYAPPLI=name The operand of the keyword parameter ASAPPLI must also be defined.

SYAPPLI=NO This is the default value.

The operand is only significant in the case of asynchronous transaction processing between two UTM
applications.

SYNTAC - UTM TAC for Sending Messages from Async to Sync UTM
Applications

This parameter defines the UTM transaction code used to send free messages for a terminal from the
asynchronous to the synchronous UTM application. Possible values are:

SYNTAC=tac Specifies the UTM transaction code.

SYNTAC=NATSY This is the default value (synchronous TAC).

The UTM TAC specified in this parameter must be distinct from the "standard" Natural TAC and also from the
TAC used for the asynchronous UTM application.

SYSLST - SYSLIST File Generation for UTM Task

This parameter defines whether a SYSLST file is generated for each UTM task or not. The SYSLST file contains
statistics data and error information (if a UTM task ends abnormally). Possible values are:

SYSLST=YES A SYSLST file is generated for each UTM task. This is the default value.

SYSLST=NO No SYSLST file is generated.

The name of a SYSLST file is "LST.name.tsn", which is generated from the following components:

LST - prefix,
name - the value of keyword parameter APPLNAM,
tsn - the 4-digit task sequence number of the UTM task.

169Copyright © Software AG 2002

SWPUSID - Swap Pool User IdentificationNatural under UTM - Macro Keyword Parameters

TACEND - Action at PEND

This parameter defines the action to be taken in conjunction with the UTM operation key "PEND". Possible
values are:

TACEND=KP Each dialogue step is terminated with a "PEND KP" (KEEP). The UTM-KB is written to the
page pool of KDCFILE only if no additional space in UTM CACHE storage is available. It is
to be noted that no synchronized processing between UTM(s) and Adabas can be performed.

TACEND=RE Each dialogue step is terminated with a "PEND RE" (RETURN); that is, the end of a UTM
transaction. The UTM-KBs in the page pool of KDCFILE are saved with each dialogue step.
This processing mode is required when a synchronized processing between UTM(s) and
Adabas is to take place. This is the default value.

TCLA1 - UTM TACs for Async Transaction w. Priority Level 1

This parameter allocates UTM TACs for asynchronous transactions with priority level 1 using the UTM
TACCLASS concept. A TAC table is constructed that can be accessed from Natural programs by means of the
subroutine NATTAC, passing a priority level as parameter; see UTM TACCLASS Concept (Priority Control).

Possible values are:

TCLA1=tac
TCLA1=(tac,nn)
TCLA1=-
(-, 0)

nn can be specified to control Adabas priority for the corresponding UTM TAC
(TACCLASS); see Adabas Priority Control.
Specifying TCLA1=- (note that the dash is not enclosed in apostrophes) denotes that
no UTM TAC is to be allocated.

TCLA1=(NATAS1,64) This is the default value.

TCLA2, TCLA3, TCLA4 - UTM TACs for Async Transaction w. Priority
Levels 2, 3, 4

These parameters allocate UTM TACs for asynchronous transactions with priority levels 2, 3 and 4 using the
UTM TACCLASS concept. Their values are used analogous to TCLA1 (see above). Possible values are:

TCLAn=tac
TCLAn=(tac,nn)
TCLAn=-

Analogous to TCLA1, but for priority levels n=2, 3, 4.

TCLA2=(NATAS2,48)
TCLA3=(NATAS3,32)
TCLA4=(NATAS4,16)

These are the default values.

TCLS1 - UTM TACs for Async Transaction w. Priority Level 1

This parameter allocates UTM TACs for synchronous transactions with priority level 1 using the UTM
TACCLASS concept. A TAC table is constructed that can be accessed from Natural programs by means of the
subroutine NATTAC, passing a priority level as parameter; see UTM TACCLASS Concept (Priority Control).

Possible values are:

Copyright © Software AG 2002170

Natural under UTM - Macro Keyword ParametersTACEND - Action at PEND

TCLS1=tac
TCLS1=(tac,nn)
TCLS1=-
(-, 0)

nn can be specified to control Adabas priority for the corresponding UTM TAC
(TACCLASS); see Adabas Priority Control.
Specifying TCLS1=- (note that the dash is not enclosed in apostrophes) denotes that no
UTM TAC is to be allocated.

TCLS1=(NAT1,128) This is the default value.

TCLS2, TCLS3, TCLS4 - UTM TACs for Async Transaction w. Priority
Levels 2, 3, 4

These parameters allocate UTM TACs for asynchronous transactions with priority levels 2, 3 and 4 using the
UTM TACCLASS concept. Their values are used analogous to TCLS1 (see above).

Possible values are:

TCLSn=tac
TCLSn=(tac,nn)
TCLSn=-

Analogous to TCLS1, but for priority levels n=2, 3, 4.

TCLS2=(NAT2,112)
TCLS3=(NAT3,96)
TCLS4=(NAT4,80)

These are the default values.

TERMTAB - Terminal Control Table for Natural Roll File Management

This parameter defines the terminal control table needed to manage the Natural roll file. Possible values are:

TERMTAB=(SWP,TERMNAME,CHECKPNT)
TERMTAB=(SWP,INTERNID,CHECKPNT)
TERMTAB=(SWP,TERMNAME)
TERMTAB=(SWP,INTERNID)
TERMTAB=(N,TERMNAME)
TERMTAB=(N,INTERNID)

20 bytes long
12 bytes
10 bytes
2 bytes
10 bytes
2 bytes

TERMTAB=(SWP,TERMNAME) Default value.

The terminal control table is allocated either in the Natural swap pool or in the Natural roll file. It contains a
header (48 bytes) and an entry for each active user or active session. Its size depends on the size of the Natural
roll file, on the value of the parameter ROLLTSZ and on the length of its own entries.

The Natural UTM Interface computes the length of the terminal control table as follows:

Roll file pages / (ROLLTSZ / 2) = N
 N * terminal control table entry length + 48 = length of the terminal control
 table

171Copyright © Software AG 2002

TCLS2, TCLS3, TCLS4 - UTM TACs for Async Transaction w. Priority Levels 2, 3, 4Natural under UTM - Macro Keyword Parameters

SWP The terminal control table is allocated in the Natural swap pool.

TERMNAME The logical terminal name will be used to identify an entry in the terminal control table.

INTERNID The internal terminal ID (serial number) will be used to identify an entry in the terminal control
table. INTERNID is two bytes long.

CHECKPNT Is only allowed when the terminal control table is allocated in the Natural swap pool.
It is necessary if terminals are defined with RESTART=NO or if a terminal pool is defined in
KDCDEF.
The terminal control table entry contains a checkpoint (timestamp) for the last Natural user
thread that has been rolled out. A user thread in the Natural roll file should not be overwritten
by a thread with a timestamp lower than the timestamp in the terminal control table entry.
CHECKPNT is 10 bytes long.

N The number of PAM pages for the terminal control table in the Natural roll file. Possible values
of this operand are 1...16 (PAM pages). For each terminal, 10 bytes are needed in the terminal
control table. For each session, two bytes are needed.

Examples:

TERMTAB=(2,TERMNAME)

The maximal number of entries in the terminal control table: 2 * 2048 - 48 / 10 = 404

TERMTAB=(1,INTERNID)

The maximal number of entries in the terminal control table: 1 * 2048 - 48 / 2 = 1000

TID - Adabas User ID Construction Method

This parameter specifies the method to be used to construct the "unique" Adabas user ID. Possible values are:

TID=n The Adabas user ID is constructed from the defined (n) character of the operand of the keyword
parameter APPLNAM (default value: N) and the last two characters of the user’s first
SWAPPAMKEY. n must be a number in the range of 1 to 8.

Important: If you specify TID=n, the "defined character" of the value specified with the keyword
parameter APPLNAM must be different from that of other Natural UTM applications if these use
the same Adabas; otherwise, the uniqueness of the Adabas user IDs - and thus data consistency -
cannot be guaranteed.

TID=(T,n) A unique 4-byte user ID is constructed by taking characters n to (max. n+3) of the logical UTM
terminal name (KCLOGTER). n must be a number in the range 1 - 8. The resulting character string
must consist of valid characters (0 - 9 and A - F) and must be unique.
See example below.

TID=(U,n) The characters are taken from the UTM user ID (KCBENID), starting at the position specified by
the second subparameter. The resulting character string must consist of valid characters and must
be unique.

(TID=1) This is the default value. The Adabas user ID consists of the first digit from the operand of
keyword parameter APPLNAM and of the two-byte entry number in the terminal control table.

Example:

Copyright © Software AG 2002172

Natural under UTM - Macro Keyword ParametersTID - Adabas User ID Construction Method

TID=(T,4) KCLOGTER Adabas User ID

1st terminal LTU9A110 X’00009A11’

2nd terminal LTU9F110 X’00009F11’

3rd terminal LTU9F120 X’00009F12’

If "mixed" Adabas calls occur within one Natural UTM application (that is, calls from both Natural and
non-Natural programs), the Adabas user ID can be found using the "ENTRY CMTRMID" in macro NATUTM.
The current Adabas user ID (4 bytes) can be found at address CMTRMID; see also the keyword parameter
ADACALL .

Example:

EXTRN CMTRMID
.
.
L R1,CMTRMID
MVC ADAID(4),0(R1)

With Adabas Version 5.2:

With Adabas Version 5.2, the Adabas user IDs are constructed either from the logical UTM terminal name
(KCLOGTER) or from the UTM user ID (KCBENID); this depends on the setting of the keyword parameter
TID. For compatibility reasons, the second digit of the operand specified with TID must be a number from 1 to
8. For example:

KCLOGTER=LTU9A110 KCBENID=HARRIS

 TID=(T,3) -> Adabas user ID: D9A110
 TID=(U,1) -> Adabas user ID: HARRIS__

Note: For "mixed" Adabas calls no particular considerations have to be observed.

In the case of asynchronous transaction processing, the Adabas user ID is constructed from the "packed" TSN of
the asynchronous task.

With Adabas Version 5.3 and above:

With Adabas Version 5.3 and above, for the Adabas user ID, the full terminal name (KCLOGTER) will be used
when TID=(T,n) or the full user ID (KCBENID) will be used when TID=(U,n). Default is TID=((T,1).

TRACE - Trace File Number and Trace Print Record Length

With this parameter, you specify the number of a trace file and the maximal length of a trace print record.
Possible values are:

TRACE=(nn,ll)
nn is the number for the SYSLSTnn trace file. Possible range: 01...99
ll is the maximal length in characters of a trace print record. Possible range: 71...132

TRACE=(99,71) This is the default value.

If any external Natural trace function is active, the trace records will be written to SYSLSTnn. In this case, the
Natural/UTM driver creates the following trace file:

173Copyright © Software AG 2002

TRACE - Trace File Number and Trace Print Record LengthNatural under UTM - Macro Keyword Parameters

Example:

applname .Natural.TRACE,SPACE=(90,60)
SYSFILE SYSLST nn=applname. Natural.TRACE
/* applname is the application name

This file will be used by all tasks of the Natural UTM application. Before the Natural UTM application is
terminated, the trace file will be closed as follows:

SYSFILE SYSLST nn=(PRIMARY)

To activate the Natural trace functions, see the parameters ETRACE and ITRACE of the Natural parameter
module.

TTYLS - Physical Line Size for TTY Devices

With this parameter you can adjust Natural’s physical line length to different paper formats used with a telex
machine. Possible values are:

TTYLS=nn nn specifies the physical line size for TTY devices.

TTYLS=80 This is the default value.

TTYPS - Physical Page Size for TTY Devices

With this parameter you can adjust Natural’s physical page size to different paper formats used with a telex
machine. Possible values are:

TTYPS=nn nn specifies the physical page size (number of lines) for TTY devices.

TTYPS=24 This is the default value.

UMODE - Session Processing Mode

This parameter determines the Natural session processing mode. Possible values are:

UMODE=(S,y) S specifies the mode of operation.
y is the language indicator.

See explanation of operands below.

UMODE=(S,E) This is the default value.

Explanation of Operands

Copyright © Software AG 2002174

Natural under UTM - Macro Keyword ParametersTTYLS - Physical Line Size for TTY Devices

Operand Meaning:

S Mode of operation = single; that is, one Natural session can be started from one terminal/user.

y Language indicator for the restart message, the message for "free-running messages" and the logoff
message.
D=Danish
E=English
F=French
G=German
I=Italian
N=Dutch
S=Spanish

175Copyright © Software AG 2002

UMODE - Session Processing ModeNatural under UTM - Macro Keyword Parameters

NATUTM Macro Entries
CMKBADR - Current Address of UTM KB
User Area in the Swap Pool Directory

CMKBADR - Current Address of UTM KB

The entry CMKBADR holds the current address of the UTM communication area (Kommunikationsbereich,
KB).

The communication area can be accessed as shown in the following example, which illustrates an Assembler
program that could be called from a Natural program.

Example:

EXAMPLE CSECT
STM 14,12,12(13)
USING EXAMPLE,15
L 2,VCONST LOAD ADDRESS OF KB-ADDRESS
L 3,0(,2) LOAD ADDRESS OF KB
.
.
LM 14,12,12(13)
BR 14
VCONST DC V(CMKBADR) ENTRY ADDRESS
END

In this case, the program name "EXAMPLE" must be defined with the keyword parameter LINK or LINK2 of
macro NATUTM, and the program itself must be linked with the front-end part of the Natural UTM Interface.

User Area in the Swap Pool Directory

One fullword is available for user-defined purposes in the Natural swap pool directory - see label USERWRD in
DSECT MEMPOOL of macro NAMSWDIR. This word can be used for synchronization, for example, for
switching accounting on and off, whilst the Natural/UTM application is running.

The following example shows how this area can be addressed.

Example:

WXTRN CMKBADR ENTRY IN MACRO NATUTM
PROG CSECT
STM 14,12,12(13) SAVE REGISTERS
USING PROG,15 BASE OF PROGRAM
USING KB,4 BASE OF UTM KB
USING MAINDIR,5 BASE OF SWAP POOL DIRECTORY
L 3,KBADR LOAD ADDRESS OF KB ADDRESS
L 4,0(,3) LOAD ADDRESS UTM KB
L 5,ASWPDIR ADDRESS SWAP POOL DIRECTORY
OI USERWRD+3,1 SET THE LOW ORDER BIT OF FIELD
* USERWRD TO 1
LM 14,12,12(13) RELOAD REGISTERS
BR 14 RETURN
KBADR DC A(CMKBADR) ENTRY IN MACRO NATUTM
NAMSWDIR MACRO CALL FOR SWAP POOL DSECT
MAINDIR DSECT

Copyright © Software AG 2002176

Natural under UTM - Macro Keyword ParametersNATUTM Macro Entries

.

.
USERWRD DS F DIRECTORY USER AREA
.
CMKBNEX MACRO CALL FOR UTM KB DSECT
KB DSECT
.
.
ADRSWAP DS F ADDRESS OF Natural SWAP POOL
.
END

When working in this area, the user must take care not to overwrite any other data in the swap pool directory.
Mistakes could lead to abnormal termination of the UTM task.

NURENT Macro Keyword Parameters
The following parameters are available:

ACCNT | ATTKEY | BTX | CALLM31 | CLR3270 | EXTAPPL | ILCS | PARMOD | SCRNTRC | SPOOL | UDS
| UINPEX | UOUTEX

ACCNT - Call Logic for User Account Routine

This parameter is used to define the logic for call of the user account routine (user exit ACCEXIT). Possible
values are:

ACCNT=APPL ACCEXIT is called at change of application (new Natural logon ID).
This is the default value.

ACCNT=DIAL ACCEXT is called after every dialog step.

ATTKEY - Attention Interrupt Key

This parameter is used to define an attention interrupt key. Such a key definition only makes sense for output in
non-conversational mode. Possible values are:

ATTKEY=nnZ nnZ can be in the range of 26Z to 39Z.

ATTKEY= Default value: no value

BTX - Support of BTX System

This parameter enables the support of a BTX system. Possible values are:

BTX=YES BTX support is enabled.

BTX=NO BTX support is disabled. This is the default value.

The value for this parameter must be the same as the value for the BTX parameter in macro NATUTM.

177Copyright © Software AG 2002

NURENT Macro Keyword ParametersNatural under UTM - Macro Keyword Parameters

CALLM31 - Switching from 31 to 24-Bit Address Mode

This parameter is only relevant if Natural is generated for the 31-bit addressing mode and the front part is loaded
below (PARMOD=31, see below).

CALLM31=YES A call from a Natural program to a 3GL program will be executed in 31-bit addressing
mode.

CALLM31=NO Call in 24-bit mode. The addressing mode is switched from 31-bit to 24-bit before a 3GL
program will be called from a Natural program. This is the default value.

Exceptions:

The 3GL program is loaded above the 16-MB line.
The address of the parameter list is above the 16-MB line.

CLR3270=xxx - Definition of CLEAR Key

This parameter defines the CLEAR key in the AID character table V (AID3270) for 3270-type devices (IBM).

CLR3270=xxx xxx defines the CLEAR key.

CLR3270=PA1 By default, PA1 is the CLEAR key.

EXTAPPL - UTM TERMN Name of External DCAM or PDN Applications

This parameter defines the UTM TERMN name (see the parameter PTERM of UTM KDCDEF) of external
DCAM or PDN applications. For these TERMN names, the MGET return code "05Z" (format changed) is
ignored. Possible values are:

EXTAPPL=xx
EXTAPPL=(xx,yy)

xx and yy define the UTM TERMN name.
No default value is provided.

ILCS - Support of CRTE or ILCS

This parameter specifies whether the common runtime environment for calls (CRTE) or the ILCS interface for
calls of 3GL programs will be supported. Possible values are:

ILCS=CRTE The common runtime environment for calls of 3GL programs will be supported. Prerequisite:
The program "IT0SL#" must be included in the front part.

INCLUDE IT0SL#,SYSLNK.CRTE.010
RESOLVE,SYSLNK.CRTE.010

ILCS=YES Only the ILCS interface for calls of 3GL programs will be supported. Prerequisite: The program
"IT0INITS" must be included in the front part.

INCLUDE IT0INITS,SYSLNK.ILCS
RESOLVE,SYSLNK.ILCS

ILCS=NO CRTE or ILCS are not supported. This is the default value.

Copyright © Software AG 2002178

Natural under UTM - Macro Keyword ParametersCALLM31 - Switching from 31 to 24-Bit Address Mode

PARMOD - Generation of Front-End and Reentrant Parts

This parameter applies to the generation of both the front-end and reentrant parts. Possible values are:

PARMOD=(nn,loc)
nn=24/31
loc=BELOW/ABOVE

The first part of this parameter (nn) is used to define an addressing mode (24-bit or
31-bit mode) for the Natural/UTM application.

The second part of this parameter (loc) is used to define the front part location of the
Natural/UTM application.

PARMOD=(24,BELOW) This is the default value.

PARMOD=(nn,loc) must also be defined for assembling macro NATUTM. Operands must be identical for the
front-end and reentrant parts.

SCRNTRC - Tracing of Screen I/Os

This parameter is used for debugging screen I/O to find out the reason for certain error situations. If this
parameter is set to ON/(ON,nn), a special debug buffer for each user will be allocated (default buffer size is 3
KB). Possible values are:

SCRNTRC=ON A debug buffer for each user is allocated with a default buffer size of 3 KB.

SCRNTRC=(ON,nn) A debug buffer for each user is allocated where nn is used to define a specific screen
debug buffer size other than the default value of 3 KB.

SCRNTRC=OFF This is the default value.

You should only set this parameter to ON/(ON,nn) after having consulted with Software AG Technical Support.

SPOOL - Automatic Start and Termination of Printer Task

This parameter enables you to specify a spooling system. The value for this parameter must be the same as the
value for the SPOOL parameter in macro NATUTM. Possible values are:

SPOOL=(NATSPOOL,’enter-parms’,n) For use with NATSPOOL (Natural Advanced Facilities), see Using
NATSPOOL.

SPOOL=REPRO-2000 For use with a remote spooling system, see Using REPRO-2000
Remote Spooling System.

SPOOL=RMSPOOL For use with your own user exit program, see Using RMSPOOL User
Exit.

Default value: None.

UDS - Use of Natural for UDS

This parameter specifies whether Natural for UDS is to be used under UTM. Possible values are:

UDS=YES Natural for UDS is to be used under UTM.

UDS=NO This is the default value.

179Copyright © Software AG 2002

PARMOD - Generation of Front-End and Reentrant PartsNatural under UTM - Macro Keyword Parameters

UINPEX - Name of User Exit

With this parameter, you can specify the name of a user exit. This user exit is invoked by Natural/UTM after a
terminal message has been sent; see also User Exits. Possible values are:

UINPEX=name name specifies the name of a user exit

UINPEX=INPSCR By default, user exit INPSCR is used.

UOUTEX - Name of User Exit

With this parameter, you can specify the name of a user exit. This user exit is invoked by Natural/UTM before a
terminal message is to be sent; see also User Exits.

UOUTEX=name name specifies the name of a user exit

UOUTEX=OUTSCR By default, user exit OUTSCR is used.

Copyright © Software AG 2002180

Natural under UTM - Macro Keyword ParametersUINPEX - Name of User Exit

Natural under UTM - Part 3
This part of the Natural UTM Interface documentation covers the following topics:

User Exits
Asynchronous Transaction Processing unter UTM
Printing under UTM
Calling Non-Natural Programs
Calling UTM Chained Partial Programs
Calling Adabas from Non-Natural Programs in a Natural UTM Application
Terminating a UTM Task Abnormally

Installation - refer to Installing the Natural UTM Interface in the Natural Installation Guide for Mainframes.

Notation_vrs_or_vr">Notation vrs or vr: If used in the following document, the notation vrs or vr stands for
the relevant version, release, system maintenance level numbers.

181Copyright © Software AG 2002

Natural under UTM - Part 3Natural under UTM - Part 3

User Exits
Several user exits are provided in the Natural UTM Interface. These are described below.

To use any of these exits, the corresponding user program must be linked with the front-end part of the
Natural/UTM application. The user exit RP2PRNT is an exception.

User exit routines are called with the customary register conventions.

ACCEXIT - Macro NATUTM

The user exit ACCEXIT can be used to retrieve accounting information. Depending on the value of the keyword
parameter ACCNT in macro NURENT, this user exit is activated either at the end of each dialogue step or at
each change of application (new Natural logon ID); see also Accounting for Natural UTM Applications .

ACCINIT - Macro NATUTM

The user exit ACCINIT can be used to gather accounting information. It is activated at the beginning of each
dialogue step; see also Accounting for Natural UTM Applications .

INPTEX - Program FREXIT

The user exit INPTEX is activated whenever an input message is read. See also the description of the program
INPTEX in the section Utility Programs for Use with Natural/UTM.

RP2PRNT - Macro NURENT

The user exit RP2PRNT is intended as an interface to other manufacturers’ spooling systems. The user exit
routine (spooling program) must be reentrant and linked with the reentrant part of the Natural/UTM application.
See also Other Spooling Systems and the description of the keyword parameter SPOOL in the section Keyword
Parameters of Macro NATUTM.

Copyright © Software AG 2002182

Natural under UTM - Part 3User Exits

RMSPOOL - Macros NATUTM and NURENT

If you wish to write your own spooling interface program, call it "RMSPOOL". The program "RMSPOOL" can
be linked to the (non-reentrant) front-end part or to the reentrant part of the Natural/UTM application. If it is to
be linked to the reentrant part, the program itself must be written so as to be reentrant.

Important:

If program "RMSPOOL" is to be used, the SPOOL parameter in macros NATUTM and NURENT must be set
to SPOOL=RMSPOOL.

The Natural UTM Interface passes the following parameters to program "RMSPOOL":

Address
(Format/Length)

Contents

1st Address (A2) Function code.
Possible function codes are:

OP - The print file has to be opened,
and the first print record is passed.
PR - Any subsequent print record is passed.
CL - The print file has to be closed.

2nd Address Print record (data to be printed).
The first byte of the print record contains the line/form feed character. (If function code
"CL", this is a dummy address.)

3rd Address (B2) Length of print record (including feed character).
(If function code "CL", this is a dummy address.)

4th Address (A8) Printer name.

5th Address Print buffer.
This buffer can be used as work area by RMSPOOL (also if RMSPOOL is reentrant) for
any purpose. The buffer is available for exclusive use by RMSPOOL between dialogue
input and dialogue output.

6th Address (B2) Length of print buffer.

7th Address (A8) Current user ID (as in the system variable *USER).

8th Address (A8) Current terminal ID (as in the system variable *INIT-ID).

9th Address (A8) Current Natural library name
(as in the system variable *LIBRARY-ID).

10th Address (A8) Current Natural program name
(as in the system variable *PROGRAM).

11th Address
(A4/B4)

Return code.
When RMSPOOL is invoked, the Natural UTM Interface sets this field to binary "0".
Upon return of control from RMSPOOL, any value other than binary "0" is interpreted as
error code and (if displayable) is displayed to the user on the terminal screen and also
output to "SYSLST".

183Copyright © Software AG 2002

RMSPOOL - Macros NATUTM and NURENTNatural under UTM - Part 3

SHUTALL - Macro NATUTM

The user exit specified with the SHUTALL parameter in macro NATUTM is activated whenever a UTM task is
terminated (KDCSHUT n). By default, this user exit is "SHUTEX1".

If the user exit specified with SHUTALL is to be used, the parameter USAGE=SHUT in KDCDEF for the
Natural UTM Interface must have been set when generating KDCROOT.

SHUTLST - Macro NATUTM

The user exit specified with the SHUTLST parameter in macro NATUTM is activated when the last UTM task is
terminated (KDCSHUT n). By default, this user exit is "SHUTEX2".

If the user exit specified with SHUTLST is to be used, the parameter USAGE=SHUT in KDCDEF for the
Natural UTM Interface must have been set when generating KDCROOT.

STRTALL - Macro NATUTM

The user exit specified with the STRTALL parameter in macro NATUTM is activated whenever a UTM task is
started. By default, this user exit is "STARTEX".

STRTFST - Macro NATUTM

The user exit specified with the STRTFST parameter in macro NATUTM is activated when the first UTM task is
started. By default, this user exit is "STAPPLX".

TRMIOEX - Program FREXIT

The user exit TRMIOEX is activated with each formatted input or output message.

Copyright © Software AG 2002184

Natural under UTM - Part 3SHUTALL - Macro NATUTM

UINPEX - Macro NURENT

The user exit specified with the UINPEX parameter in macro NURENT is activated after a terminal message has
been sent. By default, this user exit is "INPSCR".

Natural/UTM passes the following parameters to the user exit:

Address (Format/Length) Contents

1st Address Address input buffer.

2nd Address (B2) Address message length.

UOUTEX - Macro NURENT

The user exit specified with the UOUTEX parameter in macro NURENT is activated before a terminal message
is to be sent. By default, this user exit is "OUTSCR".

Natural/UTM passes the following parameters to the user exit:

Address (Format/Length) Contents

1st Address Address output buffer.

2nd Address (B2) Address message length.

UVGEXIT - Macro NATUTM

The user exit UVGEXIT is activated at the start, restart and end (normal or abnormal) of a UTM DC transaction.
The current task ID (Vorgangskennzeichen, KCKNZVG) is passed to the user exit routine.

WHCEXT - Macro NURENT

The user exit WHCEXT can be used to modify an output which is to be printed before it is passed by FPUT to
UTM. When WHCEXT is called, register 9 contains the address of the output to be printed and register 13 the
address of the save area.

WHCEXT must be reentrant and it must be linked to the reentrant part of the Natural/UTM application. For
further information, please refer to the source listing of the assembled macro NURENT (Label ’NUWHC’).

185Copyright © Software AG 2002

UINPEX - Macro NURENTNatural under UTM - Part 3

Asynchronous Transaction Processing under UTM
To start an asynchronous transaction, the service routine NATASYN in the Natural UTM Interface has to be
called. The start of an asynchronous transaction in a Natural program is done by passing dynamic parameters
according to the following pattern:

...
COMPRESS dynamic parameters INTO field
CALL ’NATASYN’ [parameter area]
SET CONTROL ’H’
WRITE NOTITLE NOHDR field
[WRITE ...]
INPUT ’text’ ifield (A1)
END

If the length of the dynamic parameters exceeds 250 bytes (that is, if more than one WRITE statement is
required), a parameter area has to be passed with the CALL ’NATASYN’ statement.

The parameter area is also required if the asynchronous transaction is to be started with UTM DPUT; that is, at a
specific time. The aggregate length of the dynamic parameters must not exceed 3750 bytes. The parameter area
for the CALL ’NATASYN’ has the following structure:

Bytes Contents

01-02 Number of WRITE statements.

03 DPUT time indicator:
R = a relative time,
A = an absolute time,
blank = FPUT.

04-06 Day of the year.

07-08 Hours.

09-10 Minutes.

11-12 Seconds.

For the contents of bytes 03 - 12, the same rules apply as described for DPUT calls in the respective Siemens
UTM documentation. Natural programming examples can be found in the Natural application SYSEXTP
(programs STARTAS1, ASYNMULT, STARTAS, READAUTO, AWINDOW1, AWINDOW2).

For asynchronous transaction processing, KDCROOT, KDCDEF and the UTM startup job must be modified as
necessary (see the Siemens UTM documentation).

Copyright © Software AG 2002186

Natural under UTM - Part 3Asynchronous Transaction Processing under UTM

All UTM TACs for asynchronous transactions must begin with the character sequence which is defined as a
unique identifier for asynchronous TACs in parameter ASYNTAC of macro NATUTM. Conversely, the first
five characters of UTM TACs for synchronous transactions must not be this character string.

Mixed transaction processing (that is, both within a single UTM application and between two UTM applications)
is not possible.

Asynchronous Processing within a Natural UTM Application

If transactions are to be processed asynchronously within a Natural/UTM application, the operands of the
keyword parameters SYAPPLI and ASAPPLI of macro NATUTM must be set to "NO" (this is the default
value).

Example:

This is an example of a Natural program that initializes an asynchronous transaction within a Natural/UTM
application.

* STARTAS - EXAMPLE OF THE INITIALIZATION FOR ASYNCHRONOUS
* TRANSACTION WORKING WITHIN ONE UTM APPLICATION
* PARMS ARE SEPARATED BY ’,’
* SUBLIST IN STACK IS SEPARATED BY ’;’
FORMAT LS=145
RESET PARM1(A144) PRDEST(A8) LTDEST(A8)
MOVE ’PRINTER1’ TO PRDEST /* --> 1
MOVE *INIT-ID TO LTDEST /* --> 2
COMPRESS ’SENDER=’ PRDEST ’,OUTDEST=’ LTDEST ’,’
’MENU=F,STACK=(LOGON APPL1;READAUTO)’
INTO PARM1 LEAVING NO /* --> 3
CALL ’NATASYN’ /* --> 4
SET CONTROL ’H’ /* --> 5
WRITE NOTITLE NOHDR PARM1 /* --> 6
INPUT ’ASYNTASK INVOKED - HOPEFULLY’ IFELD(A1) /* --> 7
END

187Copyright © Software AG 2002

Asynchronous Processing within a Natural UTM ApplicationNatural under UTM - Part 3

Note

1 The name (dummy) of a printer is moved into field PRDEST.

2 The logical name of the UTM terminal is moved into field LTDEST.

3 The message that is to be sent and processed by Natural is assembled, with the following information:

the printer name (in this example, an arbitrary 8-character name),

the logical name (KCLOGTER) of the terminal to which the message is to be sent,

suppression of the main menu (this must be specified),

the application name (Natural logon ID),

the name of the program to be started and to be run in an asynchronous UTM transaction (READAUTO
in the example).

4 When the subroutine NATASYN (in macro NATUTM) is called, a marker is set to indicate that an
asynchronous transaction is to be initialized. The subroutine NATASYN conforms to the conventions for
calling non-Natural programs.

5 The Natural offline report is activated.

6 The message (PARM1) is output by FPUT as an asynchronous transaction.

7 The Natural offline report is "switched off" by means of an INPUT statement that must have at least one
input field.

An example of the program that is to be executed asynchronously:

* READAUTO - EXAMPLE FOR ASYNCHRONOUS TRANSACTION WORKING
READ (75) AUTOMOBILES BY MAKE
WRITE MAKE MODEL HORSEPOWER YEAR
LOOP
ON ERROR DO /* --> 1
ERRNO(A4) = *ERROR
WRITE ’**’
/’ERROR NO.: ’ ERRNO ’ IN ASYNCHRONOUS PROGRAM ’ *PROGRAM
/’**’
TERMINATE
DOEND
TERMINATE /* --> 2
END

Note

1 An "ON ERROR" routine must be defined in each program that is to be executed asynchronously. The
routine must end with a TERMINATE statement.

2 Each program that is to be executed asynchronously must end with a TERMINATE statement.

Copyright © Software AG 2002188

Natural under UTM - Part 3Asynchronous Processing within a Natural UTM Application

Logic of an Asynchronous Transaction within one Natural UTM Application:

Asynchronous Processing between two Natural UTM Applications

When processing transactions asynchronously between two Natural/UTM applications, the logical UTM terminal
name (LTERM name) of the synchronous application must be defined with the keyword parameter SYAPPLI of
macro NATUTM, and the logical UTM terminal name (LTERM name) of the asynchronous application must be
defined with the keyword parameter ASAPPLI of macro NATUTM.

Example:

NUSTART NATUTM SYAPPLI=LNATUTM,ASAPPLI=LNATASY,...
ASYNDRV NATUTM SYAPPLI=LNATUTM,ASAPPLI=LNATASY,...

KDCROOT and KDCDEF must be generated as appropriate for both applications.

189Copyright © Software AG 2002

Asynchronous Processing between two Natural UTM ApplicationsNatural under UTM - Part 3

Example for Synchronous Application:

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATS
ROOT.KDCNATS
MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=520
MAX APPLINAME=NATUTM,APPLIMODE=S,KDCFILE=(NATUTM,S)
MAX TASKS=10,ASYNTASKS=5
.
.
EXIT PROGRAM=NUSTART,USAGE=START
EXIT PROGRAM=NUSTART,USAGE=SHUT
EXIT PROGRAM=FREXIT,USAGE=FORMAT
.
.
DEFAULT PROGRAM COMP=ASSEMB
PROGRAM NUSTART
PROGRAM FREXIT
PROGRAM NUERROR
.
.
DEFAULT TAC TYPE=D,PROGRAM=NUSTART,EXIT=NUERROR,CALL=BOTH,...
TAC NAT,ADMIN=NO,TIME=0
TAC NAT1,ADMIN=NO,TIME=0
.
.
DEFAULT TAC TYPE=A,PROGRAM=NUSTART,EXIT=NUERROR,CALL=FIRST,...
TAC NATSY
TAC NATAS
.
.
PTERM NATASY,PRONAM=HOST,PTYPE=APPLI,TERMN=A1,LTERM=LNATASI
DEFAULT PTERM PRONAM=PCDF,PTYPE=T9750,TRMN=FE,CONNECT=N,STATUS=ON
PTERM DFDSS001,LTERM=DF97501
PTERM DFDSS002,LTERM=DF97502
.
.
LTERM LNATASY
DEFAULT LTERM USAGE=D,STATUS=ON,ANNOAMSG=Y,RESTART=YES
LTERM DF97501
LTERM DF97502
.
.
SFUNC F1,RET=21Z
.
.
END

Copyright © Software AG 2002190

Natural under UTM - Part 3Asynchronous Processing between two Natural UTM Applications

Example of Asynchronous Application:

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATA
ROOT.KDCNATA
MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=520
MAX APPLINAME=NATASY,APPLIMODE=S,KDCFILE=(NATASY,S)
MAX TASKS=10,ASYNTASKS=5
.
.
EXIT PROGRAM=ASYNDRV,USAGE=START
EXIT PROGRAM=ASYNDRV,USAGE=SHUT
EXIT PROGRAM=FREXIT,USAGE=FORMAT
.
.
DEFAULT PROGRAM COMP=ASSEMB
PROGRAM ASYNDRV
PROGRAM FREXIT
PROGRAM NUERROR
.
.
DEFAULT TAC TYPE=D,PROGRAM=ASYNDRV,EXIT=NUERROR,CALL=BOTH,...
TAC NAT,ADMIN=NO,TIME=0
TAC NAT1,ADMIN=NO,TIME=0
.
.

Please see also the Siemens UTM documentations. If the asynchronous application is primarily intended for
processing asynchronous transactions, storage can be saved by generating this application with a small (local)
Natural swap pool of about 64 KB.

Important:

The TAC that was defined with the keyword parameter SYNTAC (the default value is "NATSY") must always
be defined for KDCDEF with "TYPE=A"; this is an exception to the rules for naming UTM TACs. If, in
addition, the synchronous application uses the UTM TACCLASS concept, an asynchronous TAC class must
also be allocated to this TAC.

191Copyright © Software AG 2002

Asynchronous Processing between two Natural UTM ApplicationsNatural under UTM - Part 3

Example of a Natural Program to Initialize an Asynchronous Transaction between two Natural UTM
Applications:

* ASYNAPPL - EXAMPLE OF INITIALIZATION FOR ASYNCHRONOUS
* TRANSACTION WORKING BETWEEN TWO UTM APPLICATIONS
FORMAT LS=145
RESET PARM1(A144) PRDEST(A8) LTDEST(A8) ASYNTAC(A8)
MOVE ’PRINTER1’ TO PRDEST /* --> Note 1
MOVE *INIT-ID TO LTDEST /* --> Note 2
MOVE ’NATSY’ TO ASYNTAC /* --> Note 3
COMPRESS ’NATAS’ ’ SENDER=’ PRDEST ’,OUTDEST=’ LTDEST
’,ASYNNAME=’ ASYNTAC ’,’
’MENU=F,STACK=(LOGON APPL1;READAUTO)’
INTO PARM1 LEAVING NO /* --> Note 4
CALL ’NATASYN’ /* --> Note 5
SET CONTROL ’H’ /* --> Note 6
WRITE NOTITLE NOHDR PARM1 /* --> Note 7
INPUT ’ASYNTASK INVOKED - HOPEFULLY’ IFELD(A1) /* --> Note 8
END

Note

1 The name of a printer (simulation) is moved into the field PRDEST.

2 The logical name of the UTM terminal (KCLOGTER) is moved into the field LTDEST.

3 The standard TAC for sending "free-running" messages from the asynchronous application to the
synchronous application is put in the field ASYNTAC. See also the description of the keyword
parameter SYNTAC of macro NATUTM.

4 The message that is to be sent and processed by Natural is assembled, with the following information:

transaction code for the asynchronous transaction (NATAS),

printer name (in this example, an arbitrary 8-character string),

the logical name (KCLOGTER) of the terminal to which the message is to be sent,

the name of the standard TAC for sending free-running messages from the asynchronous application to
the synchronous application,

main menu suppression (this must be specified),

the name of the application (Natural logon ID),

the name of the Natural program to be started and to be run in the asynchronous transaction/application
(in this example, READAUTO).

5 When subroutine NATASYN (in macro NATUTM) is called, a marker for the initialization of an
asynchronous transaction is set. The subroutine conforms to the conventions for calling non-Natural
programs.

6 The Natural offline report is activated.

7 The message (PARM1) is output with FPUT as an asynchronous transaction.

8 The Natural offline report is "switched off" by means of an INPUT statement with at least one input
field.

Copyright © Software AG 2002192

Natural under UTM - Part 3Asynchronous Processing between two Natural UTM Applications

The program to be executed asynchronously (READAUTO) must conform to the conventions that apply to
asynchronous transaction processing within one Natural/UTM application.

193Copyright © Software AG 2002

Asynchronous Processing between two Natural UTM ApplicationsNatural under UTM - Part 3

Logic of Asynchronous Transaction between two Natural UTM Applications:

Copyright © Software AG 2002194

Natural under UTM - Part 3Asynchronous Processing between two Natural UTM Applications

Printing under UTM

Using Local Non-Spooled Printers

A Natural program that wishes to use local printers without spooling (that is, with FPUT via UTM), should
proceed as shown in the following example.

Example:

* TESTPRNT - TEST FOR THE Natural OFFLINE REPORT
RESET PARAM(A9)
REDEFINE PARAM (PARAM1(A1) PARAM2(A8))
MOVE ’H’ TO PARAM1 /* --> Note 1
MOVE ’PRINTER1’ TO PARAM2 /* --> Note 2
SET CONTROL PARAM /* --> Note 3
READ (50) AUTOMOBILES BY MAKE
WRITE NOTITLE NOHDR MAKE MODEL HORSEPOWER YEAR /* --> Note 4
LOOP
EJECT
INPUT ’PRINT ORDER WAS EXECUTED’ IFELD(A1) /* --> Note 5
END

Note

1 The Natural offline report is activated by putting an "H" in the first position of the field PARAM.

2 The logical UTM printer name is defined starting at the second position of the field PARAM.

3 The SET CONTROL statement, together with the content of the field PARAM, activates the Natural
offline report and specifies the name of the printer. To ensure compatibility for existing programs written
using Natural Version 1, the programs CMLIST and NATPRNT continue to be available; see Utility
Programs for Use with Natural/UTM.

4 The print records are passed to UTM from the Natural UTM Interface using FPUT.

5 The INPUT statement (which must have at least one input field) deactivates the Natural offline report.

All the necessary steps for using local printers must have been taken when generating UTM; for further details,
please refer to the Siemens UTM documentation. The appropriate UTM administration commands can be used to
verify that a connection to the defined printers exists.

195Copyright © Software AG 2002

Printing under UTMNatural under UTM - Part 3

Using NATSPOOL (Natural Advanced Facilities)

The keyword parameter SPOOL of macro NATUTM is provided for using NATSPOOL under UTM. Further
details are given in the section Keyword Parameters of Macro NATUTM. Please refer also to the
BS2000/OSD-specific installation information in the Natural Advanced Facilities documentation.

If in an asynchronous UTM transaction printing is to be done with NATSPOOL, the TERMINATE statement
must be preceded by an END OF TRANSACTION statement.

Other Spooling Systems

The user exit RP2PRNT is provided for interfacing to other spooling systems. This user exit is activated if
"REPRO-2000" is specified with the keyword parameter SPOOL in macro NURENT. (This value should be used
for all spooling systems.)

Since it must be linked with the reentrant part of the Natural/UTM application, the user exit routine RP2PRNT
must be reentrant.

The logic of the transfer of print records from Natural, buffer processing, etc., can be seen in macro NURENT
(labels CMWTERM and CMWHC) and the appropriate routines in macro NATUTM.

As an alternative, it is possible to use the user exit RMSPOOL; see User Exits.

Software AG does not provide support for this interface to other spooling systems except as described in the
preceding paragraphs.

Copyright © Software AG 2002196

Natural under UTM - Part 3Using NATSPOOL (Natural Advanced Facilities)

Calling Non-Natural Programs
Non-Natural programs are called using the standard register conventions for inter-program communication. If the
program to be called is reentrant (uses shared code), it can be defined with CSTATIC in the Natural parameter
module (macro NTPRM) and linked with the reentrant part of the UTM application. Otherwise, one of the
following procedures can be used:

The programs can be dynamically loaded at runtime.
To do this, the programs must be in the library defined by the LIBNAM parameter in the Natural parameter
module or in the BLSLIB libraries specified in the UTM start job;
The programs can be linked with the front-end part of the Natural/UTM application. To do this, the names
of the programs must be defined in the operand of the keyword parameter LINK, LINK2, LINK3 or LINK4
of macro NATUTM.
This procedure is always necessary for programs that contain an EXTRN reference to an ENTRY that is
already present in the front-end part of the Natural UTM Interface. The Natural UTM Interface executes a
TABLE macro call for the programs that have been defined in this way. This makes an entry in the dynamic
loader’s LINK table, indicating that it is not necessary to dynamically load the programs when they are
called by the Natural program.

In both cases, the maximum number of called non-Natural programs must be defined with the keyword
parameter CDYNAM of macro NATUTM; see Keyword Parameters of Macro NATUTM.

Attention: If keyword parameter KB in macro NATUTM is set to "YES", Natural always passes the address of
the UTM communication area (Kommunikationsbereich, KB) as the first parameter address. This does not apply
to programs which are defined with CSTATIC.

197Copyright © Software AG 2002

Calling Non-Natural ProgramsNatural under UTM - Part 3

Calling UTM Chained Partial Programs
Several methods are provided for ending a Natural session (FIN or TERMINATE) with a PEND PR(OGRAM)
instead of a PEND FI(NISH), so that another UTM partial program is called:

The UTM TAC for the UTM partial program that is to be called can be passed using the Natural dynamic
parameter PROGRAM at the start of the Natural session.
Example: STACK=(LOGON APPL1;MENU),PROGRAM=NAT10
The UTM TAC for the UTM partial program that is to be called can be defined in the operand of the
keyword parameter PENDPR of macro NATUTM.
Example: NATUTM PENDPR=’NAT10’
The utility program TACSWTCH can be used.

In all cases, the Natural UTM Interface would execute a PEND PR(OGRAM) with the UTM TAC NAT10 at the
end of the Natural session, which means that the UTM partial program associated with this TAC would be
started.

Another way to execute a PEND PR(OGRAM) is by activating the function key defined for this purpose, which
suspends, but not terminates, the Natural session. On return from the UTM partial program with PEND
PR(OGRAM), the Natural session can be continued from the point at which it has been suspended; see also the
keyword parameter PRKEY. If the function key for PEND PR(OGRAM) is activated without a UTM TAC for
another UTM partial program being defined, an appropriate error message is displayed.

Note:
The programs NUEXAMPL, UTMNAV and UTMCOB show examples of the logic necessary in a UTM
partial program that wishes to communicate with the Natural UTM Interface (and therefore with Natural itself)
- see the descriptions of programs UTMCOB and UTMNAV in the section Software Exchange.

Calling Adabas from Non-Natural Programs in a Natural
UTM Application
If a Natural program calls a non-Natural program that also includes Adabas calls, the appropriate field in the
Adabas control block must be supplied with the current Adabas user ID. In this case, generate the CSECT
ADACALL in the Natural UTM Interface.

ADACALL contains an entry which is defined with the keyword parameter ADACALL in macro NATUTM (the
default value of this parameter is "Adabas").

This entry is activated for every "CALL [Adabas] USING ...". The current Adabas user ID is passed to the field
ADDITIONS2 of the Adabas command block, and subsequent processing of the Adabas call is passed to the
Adabas interface module ADALNN; see also the keyword parameter ADACALL .

Terminating a UTM Task Abnormally
The Natural session (and thereby also the UTM task) can be abnormally terminated by entering the CANCEL
parameter’s value of the Natural parameter module (default is *CANCEL in upper-case letters).

Copyright © Software AG 2002198

Natural under UTM - Part 3Calling UTM Chained Partial Programs

Natural under UTM - Part 4
This part of the Natural UTM Interface documentation covers the following topics:

Accounting for Natural UTM Applications
Utility Programs for Use with Natural/UTM
Software Exchange
UTM TACCLASS Concept - Priority Control
Generating a Natural UTM Application
Optimizing Natural UTM Applications
Several Applications with one Common Natural
Entering and Defining Dynamic Natural Parameters
UTM User Restart
Adabas Priority Control

Installation - refer to Installing the Natural UTM Interface in the Natural Installation Guide for Mainframes.

Notation_vrs_or_vr">Notation vrs or vr: If used in the following document, the notation vrs or vr stands for
the relevant version, release, system maintenance level numbers.

Accounting for Natural/UTM Applications
To better control the use of resources by Natural/UTM applications, accounting records are made available by
the user exits ACCINIT and ACCEXIT.

The user exit ACCINIT is activated by the Natural UTM Interface at the beginning of each dialogue step.

The user exit ACCEXIT is activated by the Natural UTM Interface depending on the keyword parameter
ACCNT in macro NURENT:

ACCNT=DIAL Tthe user exit ACCEXIT is activated at the end of each dialogue step.

ACCNT=APPL The user exit ACCEXIT is activated at each change of application (new Natural logon ID).

In both cases, an accounting record is also provided at the end of the session (FIN system command or
TERMINATE statement).

199Copyright © Software AG 2002

Natural under UTM - Part 4Natural under UTM - Part 4

Structure of the Accounting Record

0 - 7 Logical UTM terminal name DS CL8

8 - 15 User ID DS CL8

16 - 23 Current Natural application name DS CL8

24 - 27 Number of Adabas calls DS F

28 - 31 Accumulated message length DS F

32 - 35 Elapsed time in Natural including
subroutines (milliseconds)

DS F

36 - 37 Number of pages printed DS H

38 - 39 Number of terminal I/O transfers DS H

40 - 49 (user area) DS CL10

50 - 51 unused DS CL2

52 - 55 Adabas command time (milliseconds)DS F

56 - 63 Name of last transaction program DS CL8

The user area of the accounting record can (if required) be used for additional application-specific accounting
information. The accounting area is in the user-specific UTM communication area (Kommunikationsbereich,
KB).

The current address of the UTM KBs can be found with the entry "CMKBADR" of macro NATUTM as
necessary; otherwise, the operand of the keyword parameter KB of macro NATUTM must be set to "YES". In
this case, Natural passes the address of the communication area as the first parameter of every subroutine call.

The user exit routine ACCEXIT can store the accounting records in an Adabas file, in a shared sequential PAM
dataset or in a task-specific SAM dataset. The program ACCEXIT shows an example of the method for storing
accounting records; see Software Exchange.

Copyright © Software AG 2002200

Natural under UTM - Part 4Structure of the Accounting Record

Utility Programs for Use with Natural/UTM
Several utility programs are provided for use with Natural under UTM. The following rules apply to their usage:

The Natural and UTM macro libraries must be used when assembling these utilities.
When a particular program is to be used:

its name must be specified with the keyword parameter LINK or LINK2 of macro NATUTM
and the program itself must be linked with the front-end part of the Natural/UTM application.

A detailed description, including the interface, valid parameter values and a summary of the logic, can be found
in each program’s maintenance log.

Utility Program NATDUE

The program NATDUE can be used to find out within a Natural program whether the user has entered data in the
current dialogue step or whether merely EM/DÜ or DÜ was entered.

The utility program INPTEX must be used if NATDUE is to be called. The program INPTEX satisfies the user
exit INPTEX in the format exit module FREXIT and checks at each dialogue step whether data were entered.
According to the result of this test, a flag that is subsequently interrogated by the program NATDUE is set in the
communication area (Kommunikationsbereich, KB).

Example of a Natural Program that Calls NATDUE:

* PROG1 - EXAMPLE FOR CALLING THE SUBROUTINE ’NATDUE’
RESET P1(A1) ...
...
INPUT USING MAP ...
CALL ’NATDUE’ P1
IF P1 = ’Y’ DO ... /* INPUT FROM USER
IF P1 = ’N’ DO ... /* NO INPUT FROM USER
IF P1 = ’E’ DO ... /* ERROR
...
END

201Copyright © Software AG 2002

Utility Programs for Use with Natural/UTMNatural under UTM - Part 4

Utility Program INPTEX

The utility program INPTEX satisfies the user exit of the same name in the format exit FREXIT.

Important: INPTEX must be linked with the front-end part of the Natural/UTM application.

Warning: Any modifications that can be made to this program, for example, ignoring data entered in a particular
line on the terminal screen, are made at the user’s risk.

Function: This program checks each input message for the presence of input from the terminal, or whether
merely EM/DÜ or DÜ was pressed.

It is not necessary to define the program name INPTEX with the keyword parameter LINK or LINK2 of macro
NATUTM.

Utility Program NATPRNT

The program NATPRNT provides the following special service functions for operating local printers:

accepting the logical name of the target printer;
verifying the printer name against a list of valid printer names;
setting a marker for building variable length print records.

Utility Program UTMTAC

The program UTMTAC, which can be called from a Natural program, yields the current UTM TAC. This makes
it possible for a central Natural program to perform UTM TAC-controlled "navigation" within a Natural/UTM
application.

Copyright © Software AG 2002202

Natural under UTM - Part 4Utility Program INPTEX

Utility Program TACSWTCH

The utility program TACSWTCH is a macro which can be used to dynamically assign a UTM TAC for a PEND
PR(OGRAM) from within a Natural program. The specified UTM TAC is checked against the generated UTM
table and saved accordingly. Also, information can be passed to the PEND PR(OGRAM). To use this utility,
proceed as follows:

1. Define the valid UTM TACs and assemble the TACSWTCH macro:

For Example: TACSWTCH TAC=(tac1,tac2,tac3,...tacn)

These TACs have to be defined in KDCDEF as well, and for the generation of KDCROOT they have to be
assigned to the corresponding UTM partial programs.

1. Define the program TACSWTCH with the keyword parameters LINK to LINK4 in macro NATUTM.
2. Link program TACSWTCH to the front-end part of the Natural UTM Interface.
3. Interface description: CALL ’TACSWTCH’ P1 [P2] P3

P1
(A8)

Contains the UTM TAC to be used for a PEND PR.

P2
(An)

Is optional and contains the length and data of a message to the PEND PR

The structure of P2 is: LLLDDD.....

LLL = Message length (3 digits, no length field); minimum length: 000, maximum length: 160.

DDD = Message area.

P3
(A1)

Has two functions:

On call and if P3 contains the value "G" (Go), the PEND PR(OGRAM) is executed at the next Natural
output (INPUT, WRITE, DISPLAY). After calling the Natural UTM Interface with PEND PR, the
Natural session is continued where it had been suspended, which means that the last output is displayed
to the user.

On return, P3 contains the return code from TACSWTCH.

Possible return codes are:

0 = The operation has been executed without error.
1 = TAC has not been found in the TAC table.
2 = Message length was less than "000".
3 = Message length was over "160".

Once TACSWTCH has been called without error, a PEND PR(OGRAM) can be executed by either
issuing a FIN command or with a TERMINATE statement or by activating the function key for PEND
PR; see the keyword parameter PRKEY.

203Copyright © Software AG 2002

Utility Program TACSWTCHNatural under UTM - Part 4

Special TACSWTCH Functions

You can use the first TACSWTCH parameter with the following values:

RESET The UTM TAC currently available will be cleared, that is, the session will be terminated with PEND
FI.

GETP Data will be moved from the print buffer to the adequate data area of the calling Natural program.

GETU Data will be moved from the KB user extension to the adequate data area of the calling Natural
program.

The first two bytes (format: binary) in the print buffer or in the KB user extension must contain the data length
(including these first two bytes).

PUTP Data will be moved from the adequate data area of the calling Natural program to the print buffer.

PUTU Data will be moved from the adequate data area of the calling Natural program to the KB user
extension.

The first two bytes (format: binary) in the data area of the Natural program must contain the data length
(including these first two bytes). The data will be moved including the first two bytes.

Copyright © Software AG 2002204

Natural under UTM - Part 4Utility Program TACSWTCH

Example for PUTP and GETP:

DEFINE DATA LOCAL
01 P1(A8) /* FUNCTION CODE/UTM TAC
01 P2(A252) /* FIRST PART OF DATA AREA
01 REDEFINE P2
02 P21(B2) /* DATA LENGTH INCLUDING FIRST TWO BYTES
02 P22(A250)
01 A1(A250) /* SECOND PART OF DATA AREA
01 P3(N1) /* RETURN CODE
END-DEFINE
... /* PROGRAM LOGIC
MOVE ’PUTP’ TO P1 /* MOVE FUNCTION CODE FOR TACSWTCH
MOVE 502 TO P21 /* MOVE TOTAL LENGTH OF DATA
CALL ’TACSWTCH’ P1 P2 P3 /* PUT DATA INTO PRINT BUFFER
IF P2 NE 0 /* RETURN CODE CONTROLLING
DO... /* ERROR LOGIC
MOVE ’NAT1’ TO P1 /* MOVE ADEQUATE UTM TAC
MOVE ’G’ TO P3 /* EXECUTE PEND PR WITH TAC NAT1
CALL ’TACSWTCH’ P1 P3
IF P3 NE 0 /* RETURN CODE CONTROLLING
DO... /* ERROR LOGIC
INPUT ’ ’ /* DUMMY MESSAGE FOR DRIVER CONTROL

Now the Natural/UTM driver gets control and runs with the following logic:

1. It ignores the dummy message (INPUT ’ ’).

2. MPUT with LENGTH=0 and PEND PR with TAC ’NAT1’ for the UTM partial program.

3. The UTM partial program gets the Natural program data through the print buffer. The print buffer is located
in the UTM SPAB and the address of the print buffer is defined in the field ’KBAPBUFF’, which is located in
the UTM KB:

- It moves data for the Natural program into the print buffer (the first two bytes must contain the data length in
binary format, including the two-byte length field).

- It executes an MPUT with LENGTH=0 and a PEND PR with the TAC defined for the Natural/UTM driver.

4. The Natural/UTM driver gets control (INIT/MGET).

5. It simulates ONLY ENTER for Natural.

6. It resumes with Natural as follows:

MOVE ’RESET’ TO P1 /* MOVE FUNCTION CODE FOR TACSWTCH
CALL ’TACSWTCH’ P1 P3 /* RESET PEND PR TAC (NAT1)
IF P3 NE 0 /* RETURN CODE CONTROLLING
DO... /* ERROR LOGIC
MOVE ’GETP’ TO P1 /* MOVE FUNCTION CODE FOR TACSWTCH
CALL ’TACSWTCH’ P1 P2 P3 /* GET DATA FROM PRINT BUFFER
IF P3 NE 0 /* RETURN CODE CONTROLLING
DO... /* ERROR LOGIC
... /* PROGRAM LOGIC
END

205Copyright © Software AG 2002

Utility Program TACSWTCHNatural under UTM - Part 4

If the keyword parameter KBSAVE of macro NATUTM is set to YES, the called UTM partial program may use
the UTM KB (from the end of the header plus first twelve bytes). In this case, the UTM KB will be saved
(beginning from KB header plus first twelve bytes) with SPUT and will be refreshed with SGET.

When defining UTM transaction codes for the transaction logic between Natural and other UTM partial
programs, the following rule applies:

For a PEND PR(ogram) from another UTM partial program to the Natural/UTM driver, the preceding start TAC
may never be used. The fact that the Natural/UTM driver was called by a PEND PR(ogram) can only be
recognized if the contents of the preceding start TAC in field KCTACVG are different from the current TAC in
field KCTACAL. (Normally, field KCTACVG contains the TAC with which the user has entered the
application.)

Copyright © Software AG 2002206

Natural under UTM - Part 4Utility Program TACSWTCH

Software Exchange
Software AG’s customers have developed programs that meet certain specific needs found in their Natural/UTM
applications. These programs are made available to all interested users via the "Software Exchange". This also
applies to programs developed by Software AG that demonstrate example solutions to particular problems.

These programs, which are available free of charge, are not maintained by Software AG. The documentation of
each program is usually included in the maintenance log of the source listing.

Program XAMDUSA

This program saves and restores the current user-specific WORKING-STORAGE SECTION of the calling
COBOL program.

This enables user-specific data areas, for example tables, to be accessible over many dialogue steps and without
regard to the UTM task in which the user is currently running. The data are saved in a PAM file using
logical/physical chained PAM-I/O.

Program UTMCOB

Program UTMCOB is an example of a user-specific UTM partial program within a Natural/UTM application. It
shows the fundamental logical structure of a program that, as a UTM partial program:

Can be activated by the user by associated UTM TACs.
Activates the Natural UTM Interface and hence the Natural application by means of PEND PR(OGRAM)
with dynamic Natural parameters.
Can be activated from the Natural UTM Interface by means of PEND PR(OGRAM).

See also Calling UTM Chained Partial Programs.

Program UTMNAV

Program UTMNAV is another example of a user-specific UTM partial program within a Natural/UTM
application:

It can be activated by the user or with PEND PR(OGRAM) by the associated UTM TAC.
It interprets passed messages as dynamic Natural parameters.
It provides screen output of information on the program logic.
Previously received screen input (Natural dynamic parameters) is sent with MPUT and passed to the
Natural UTM Interface with PEND PR(OGRAM).

Program UTMNAV contains an example of how the UTM KB can be used as a "common" user area.

207Copyright © Software AG 2002

Software ExchangeNatural under UTM - Part 4

Program NUEXAMPL

Program NUEXAMPL is an example of a user-specific UTM partial program which can exchange data with a
Natural program. The program logic of NUEXAMPL and of the calling Natural program is described in the
maintenance log of NUEXAMPL.

Program ACCEXIT

Program ACCEXIT is an example of a program that saves accounting data on a shared ISAM dataset. The user
exits ACCEXIT and SHUTEX2 of the Natural UTM Interface are used. See also Accounting for Natural/UTM
Applications.

Program TABMOD

The program TABMOD, which can be called from a Natural program, performs the following functions:

load data records, for example a table, into a common memory pool using a unique key when an application
is started and whilst an application is running;
transfer data records according to the requirements of the calling Natural program.

This makes it possible to load frequently-needed data into storage once only and then keep them resident.

TABMOD is available as a macro in the library NUTnnn.MAC. It contains all information necessary for its
installation and usage.

UTM TACCLASS Concept - Priority Control
Natural programs can allocate UTM TAC classes to optimize resource control using the UTM TACCLASS
concept in a Natural/UTM application.

The following procedure should be followed when generating the Natural/UTM application and creating the
Natural program:

Step 1: Specify UTM TACs and TAC Classes in the KDCDEF and KDCROOT
Definitions

Copyright © Software AG 2002208

Natural under UTM - Part 4UTM TACCLASS Concept - Priority Control

Example:

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATP
ROOT KDCNATP
MAX APPLINAME=NATUTM,APPLIMODE=S,KDCFILE=(NATUTM,S)
MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=5120
MAX TASKS=10
MAX ASYNTASKS=3
...
EXIT PROGRAM=NUSTART,USAGE=START
EXIT PROGRAM=NUSTART,USAGE=SHUT
EXIT PROGRAM=FREXIT,USAGE=FORMAT
...
DEFAULT PROGRAM COMP=ASSEMB
PROGRAM NUSTART
PROGRAM FREXIT
PROGRAM NUERROR
PROGRAM KDCADM,COMP=SPL4
...
DEFAULT TAC TYPE=D,PROGRAM=NUSTART,EXIT=NUERROR,CALL=BOTH,...
TAC NAT,TIME=(3600000,5400),TACCLASS=1,...
TAC NAT1,TIME=(3600000,5400),TACCLASS=2,...
...
DEFAULT TAC TYPE=A,PROGRAM=NUSTART,EXIT=NUERROR,CALL=FIRST,...
TAC NATAS,TACCLASS=9
TAC NATAS1,TACCLASS=10
...
TACCLASS 1,TASKS=3
TACCLASS 2,TASKS=1
TACCLASS 9,TASKS=2
TACCLASS 10,TASKS=1
...
END

See also the Siemens documentation "UTM Generierung und Administration" (UTM Generation and
Administration).

Notes on the UTM TACs Defined

NAT This is the UTM TAC for less resource-intensive synchronous transactions; that is, transactions of
short duration.

NAT1 This is the UTM TAC for more resource-intensive synchronous transactions; that is, transactions of
longer duration.

NATAS This is the UTM TAC for less resource-intensive asynchronous transactions.

NATAS1 This is the UTM TAC for more resource-intensive asynchronous transactions.

209Copyright © Software AG 2002

UTM TACCLASS Concept - Priority ControlNatural under UTM - Part 4

Step 2: The Structure of the UTM Start Job

The name of the job is "EN.NATUTM".

Example:

/.NATUTM LOGON Natural,E,,TIME=10000
/SYSFILE SYSOUT=PROT.UTMSTAT
/FILE NATUTM.KDCA,LINK=KDCFILE
/ERASE NATUTM.PRINTCONTROL
/STEP
/FILE LOG.NATUTM,LINK=SYSLOG
/FILE NATUTM.SWAPFILE,LINK=PAMNAT,SHARUPD=Y
/SYSFILE TASKLIB=NAT210.MOD
/.REPEAT EXEC NATUTM.E
.UTM START FILEBASE=NATUTM
START TASKS=7
START ASYNTASKS=3
START STARTNAME=EN.NATUTM
.UTM END
/SKIP .REPEAT
/STEP
/SYSFILE SYSOUT=(PRIMARY)
/STEP
/SYSFILE SYSLST=(PRIMARY)
/CAT NATUTM.PRINTCONTROL,SHARE=YES
/PRINT LST.NATUTM.,SPACE=E
/ERASE LST.NATUTM.
/STEP
/LOGOFF NOSPOOL

Copyright © Software AG 2002210

Natural under UTM - Part 4UTM TACCLASS Concept - Priority Control

Step 3: Change the TAC Class of Synchr. Transactions by a Natural Program

The TAC-class of synchronous UTM transactions can be changed by a Natural program with the statements:

 CALL ’NATTAC’ operand1 [operand2] [operand3]
 INPUT ’TACCLASS’

operand1 Must contain the value "S=n", where "S" denotes "synchronous" and "n" is an integer value (0 - 4)
that denotes the priority level of the transaction in subroutine NATTAC’s table of transaction codes
for synchronous TACs.

 If "n" is 0, the table of transaction codes is not used. The TAC to be used is passed explicitly in
operand2 when NATTAC is called.

 If "n" is a value in the range 1 - 4, the priority level of the desired TAC is taken from the appropriate
keyword parameter TCLS1 - TCLS4 (for synchronous transactions) or TCLA1 - TCLA4 (for
asynchronous transactions).

 If the subroutine NATTAC detects an error in operand1, it returns immediately to the calling
program with an error code in operand1:

 E01: The first two characters of operand1 were neither "S=" nor "A=".

 E02: The third character of operand1 was <0 or >4.

 E03: No UTM TAC was defined for the specified priority level when the Natural/UTM application
was generated, which means that the corresponding keyword parameter (TCLSn or TCLAn) has the
value "-".

operand2 Optional. Must contain the UTM TAC for the desired TAC class if the third character of operand1
is "0".

operand3 Optional. Must contain the value "Y" if the current user’s subsequent dialogue is to be executed with
the UTM TAC defined in operand1 or operand2. If operand3 is omitted when NATTAC is called,
or if operand3 has some value other than "Y", the START transaction code for the current user is
used again with the first terminal output (standard function). If operand3 has the value "Y" when
NATTAC is called, further processing for the current user takes place with the UTM TAC specified
in operand1 (implicit) or operand2 (explicit).

The statement INPUT ’TACCLASS’ does not perform any terminal I/O; its function is merely to control the
TACCLASS allocation.

Alternatively, a Natural program can call the Natural subprogram "NATTAC" with a CALLNAT statement. For
this, the INPUT ’NATTAC’ statement is omitted; the operands are the same as for the CALL statement (see
above):

 CALLNAT ’NATTAC’ operand1 [operand2] [operand3]

This procedure can be used with synchronous as well as asynchronous transactions. NATTAC is contained in the
library SYSTEM.

211Copyright © Software AG 2002

UTM TACCLASS Concept - Priority ControlNatural under UTM - Part 4

Example 1:

A Natural program that allocates a UTM TAC explicitly to assign a new TAC class and then changes over to
the START UTM TAC.

* TACCLASS - EXAMPLE FOR A TACCLASS SWITCH
RESET CONTROL(A3) NEWTAC(A8) NR(N3)
REDEFINE CONTROL (ERRFLD(A1))
INPUT ’TEST FOR A TACCLASS SWITCH - NEW TAC: NAT1’ IFELD(A1)
MOVE ’S=0’ TO CONTROL /* SYNCHR. TAC, EXPLICIT --> Note 1
MOVE ’NAT1’ TO NEWTAC /* SET NEW TAC --> Note 2
CALL ’NATTAC’ CONTROL NEWTAC /* INVOKE TAC SWITCH --> Note 3
IF ERRFLD = ’E’ DO /* ERROR CHECK --> Note 4
DISPLAY ’ERROR’ CONTROL ’FROM NATTAC’
TERMINATE
DOEND
INPUT ’TACCLASS’ /* ACTIVATE NEW TAC --> Note 5
READ (50) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS --> Note 6
ADD 1 TO NR
WRITE NOTITLE NOHDR NR MAKE MODEL /* START TAC IS USED --> Note 7
LOOP
ON ERROR DISPLAY ’ERROR IN PROGRAM TACCLASS’
END

Note

1 The value "S=0" indicates that it is a synchronous transaction and that the TAC is passed explicitly in the
second parameter of the CALL ’NATTAC’, which means that the TAC table is not used.

2 The new TAC (NAT1) is set up for the call to NATTAC.

3 The change of TAC class is initialized by calling NATTAC.

4 An error check is performed after returning from subroutine NATTAC.

5 A "pseudo"-MPUT and a "PEND PA" are executed with the new TAC.

6 The program is now running in the TAC class for NAT1.

7 When the first terminal output starts, the START UTM TAC takes effect again.

In this example, the AUTOMOBILE file is read using the UTM TAC NAT1. When the first terminal output
begins, the START UTM TAC (NAT) takes effect again.

Internal Processing Logic: When NATTAC is called, a flag is set in the UTM communication area
(Kommunikationsbereich, KB) indicating that a change of TACCLASS is pending.

The UTM TAC passed by the program is also stored in the user-specific communication area. The operation
INPUT ’TACCLASS’ causes terminal output from Natural, which causes the UTM interface to issue an MPUT
and a PEND ’PA’ with the new UTM TAC (the message is received by the Natural UTM Interface itself). When
the message is received (in the new TAC class), the presence of the TACCLASS change flag causes the interface
to simulate an ETX/DÜ in its input area. Further processing runs in the new TAC class.

Depending upon the value of the operand in the previous call of NATTAC, the first message sent to the terminal
can cause an MPUT and a PEND ’PR’ with the user’s START UTM TAC; that is, a further TACCLASS change
may take place.

Copyright © Software AG 2002212

Natural under UTM - Part 4UTM TACCLASS Concept - Priority Control

Example 2:

A Natural program that allocates a UTM TAC explicitly to assign a new TAC class without changing over to
the START UTM TAC.

* TACCLAS1 - EXAMPLE FOR A TACCLASS SWITCH
RESET CONTROL(A3) NEWTAC(A8) SWOFF(A1)
INPUT ’TEST FOR A TACCLASS SWITCH - NEW TAC: NAT1’ IFELD(A1)
MOVE ’S=0’ TO CONTROL /* SYNCHR. TAC, EXPLICIT
MOVE ’NAT1’ TO NEWTAC /* SET NEW TAC
MOVE ’Y’ TO SWOFF /* NO RESET TO START TAC
CALL ’NATTAC’ CONTROL NEWTAC SWOFF /* INVOKE TAC SWITCH
INPUT ’TACCLASS’ /* ACTIVATE NEW TAC
FETCH ’TACCLAS2’ /* NOW IN NEW TACCLASS
END
* TACCLAS2 - THIS PROGRAM IS FETCHED FROM PROGRAM TACCLAS1
RESET NR(N3)
READ (25) AUTOMOBILES BY MAKE /* TACCLASS IS NAT1
ADD 1 TO NR
WRITE NOTITLE NOHDR NR MAKE MODEL HORSEPOWER YEAR
LOOP
FETCH ’MAINMENU’ /* TACCLASS = NAT1
END

In this example, processing is assigned to a new TAC class with TAC NAT1. Switching to the user’s START
UTM TAC is avoided by the presence of the third parameter (SWOFF) in the call to NATTAC with value "Y".

It is also possible to perform several TACCLASS changes within one Natural program.

Example 3:

A Natural program that performs two explicit and one implicit TACCLASS changes.

*TACMULT - EXAMPLE FOR TWO TACCLASS SWITCHES IN ONE PROGRAM
RESET CONTROL(A3) NEWTAC(A8) SWOFF(A1) NR(N4)
INPUT ’TEST FOR 2 TACCLASS SWITCHES’ IFELD(A1)
MOVE ’S=0’ TO CONTROL /* SYNCHR. TAC, EXPLICIT
MOVE ’NAT1’ TO NEWTAC /* SET NEW TAC
MOVE ’Y’ TO SWOFF /* NO RESET TO START TAC
CALL ’NATTAC’ CONTROL NEWTAC SWOFF /* INVOKE TAC SWITCH
INPUT ’TACCLASS’ /* ACTIVATE NEW TAC
READ (50) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
ADD 1 TO NR
WRITE NR MAKE MODEL YEAR
LOOP
EJECT /* ACTIVATE NEW OUTPUT *****
MOVE ’S=0’ TO CONTROL /* SYNCHR. TAC, EXPLICIT
MOVE ’NAT2’ TO NEWTAC /* SET NEW TAC
CALL ’NATTAC’ CONTROL NEWTAC /* INVOKE TAC SWITCH
INPUT ’TACCLASS’ /* ACTIVATE NEW TAC
READ (100) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
WRITE MAKE MODEL YEAR /* NOW START TAC IS USED
LOOP
ON ERROR DISPLAY ’ERROR IN PROGRAM TACMULT’
END

213Copyright © Software AG 2002

UTM TACCLASS Concept - Priority ControlNatural under UTM - Part 4

The UTM TAC NAT2 has not been considered in the preceding examples; it must be defined in KDCROOT and
KDCDEF.

If an explicit TACCLASS change is to take place after a WRITE, PRINT or DISPLAY statement, an EJECT
must be issued before assigning the new TAC. This operation performs an unconditional output to the terminal
before executing the INPUT ’TACCLASS’. Instead of the EJECT, the following statements can be used:

 STACK TOP DATA ’A’
 INPUT A(A1)

This sequence also performs an unconditional output to the terminal before executing the INPUT ’TACCLASS’.

Example 4:

A Natural program that allocates a UTM TAC implicitly to assign a new TAC class and then changes over to
the START UTM TAC. This example uses the TAC table for synchronous transactions in the subroutine
NATTAC.

* TACIMP1 - EXAMPLE FOR AN IMPLICIT TACCLASS SWITCH
RESET CONTROL(A3) NR(N3)
REDEFINE CONTROL (ERRFLD(A1))
INPUT ’TEST FOR AN IMPLICIT TACCLASS SWITCH’ IFELD(A1)
MOVE ’S=1’ TO CONTROL /* USE 1ST TAC IN TABLE --> NOTE
CALL ’NATTAC’ CONTROL /* INVOKE TAC SWITCH
IF ERRFLD = ’E’ DO /* ERROR CHECK
DISPLAY ’ERROR’ CONTROL ’FROM NATTAC’
TERMINATE
DOEND
INPUT ’TACCLASS’ /* ACTIVATE NEW TAC
READ (100) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
ADD 1 TO NR
WRITE NOTITLE NOHDR NR MAKE MODEL /* START TAC IS USED
LOOP
ON ERROR DISPLAY ’ERROR IN PROGRAM TACIMP1’
END

The value "S=1" indicates that it is a synchronous transaction and that the TAC is to be taken from the first
entry in the TAC table. This is the TAC that was defined as the value of the operand of the keyword parameter
TCLS1 (default value: NAT1).
The third character of the first parameter in the CALL ’NATTAC’ indicates which of the four keyword
parameters TCLS1 to TCLS4 applies.

Copyright © Software AG 2002214

Natural under UTM - Part 4UTM TACCLASS Concept - Priority Control

Example 5:

A Natural program that allocates a UTM TAC implicitly to assign a new TAC class but does not change over to
the START UTM TAC. This example uses the TAC table for synchronous transactions in the subroutine
NATTAC, and processing continues with this TAC.

* TACIMP2 - EXAMPLE FOR AN IMPLICIT TACCLASS SWITCH
RESET CONTROL (A3) SWOFF(A1) NR(N3)
REDEFINE CONTROL (ERRFLD(A1))
MOVE ’S=4’ TO CONTROL /* USE 4TH TAC IN TABLE --> NOTE
MOVE ’Y’ TO SWOFF /* NO RESET TO START TAC
CALL ’NATTAC’ CONTROL SWOFF /* INVOKE TAC SWITCH
IF ERRFLD = ’E’ DO /* ERROR CHECK
DISPLAY ’ERROR’ CONTROL ’FROM NATTAC’
TERMINATE
DOEND
INPUT ’TACCLASS’ /* ACTIVATE NEW TAC
READ (100) AUTOMOBILES BY MAKE /* NOW IN NEW TACCLASS
ADD 1 TO NR
WRITE NR MAKE MODEL YEAR
LOOP
ON ERROR DISPLAY ’ERROR IN PROGRAM TACIMP2’
END

The value "S=4" indicates that it is a synchronous transaction and that the TAC is to be taken from the fourth
entry in the TAC table. This is the TAC that was defined as the value of the operand of the keyword parameter
TCLS4 (default value: NAT4).
The TAC NAT4 is not defined in the examples of KDCROOT and KDCDEF; in practice, the user must supply
suitable definitions.

Using the TAC table has the advantage that the UTM TAC does not have to be coded explicitly in the Natural
program. The Natural programs contain merely the relative priority "weights" of the transactions to be executed.
The system administrator can allocate and change the names of the UTM TACs without having to change the
Natural programs.

For testing Natural programs with TACCLASS change for synchronous transactions, please note the following:
To verify correct operation of the TACCLASS change, the Natural program can be tested without the
statement(s) "CALL ’NATTAC’ operand1 (operand2) (operand3)". If the INPUT ’TACCLASS’ statement
produces only the output ’TACCLASS’ on the terminal, the program is correct. The operand(s) for the call to
NATTAC must be set correctly. The UTM processing terminates with error code KM01 whenever a UTM TAC
that is not defined in KDCROOT and KDCDEF is used.

215Copyright © Software AG 2002

UTM TACCLASS Concept - Priority ControlNatural under UTM - Part 4

Step 4: Allocation of TAC Classes for Asynchronous Transactions within one
Natural/UTM Application

The TAC class for asynchronous transactions within a Natural/UTM application can be changed with the
statement:

 CALL ’NATTAC’ operand1 [operand2]

operand1 Must contain the value "A=n", where "A" denotes "asynchronous" and "n" is an integer in the range
from 0 to 4 that denotes the priority level of the transaction in subroutine NATTAC’s table of
transaction codes for asynchronous TACs. The form of the operand is analogous to the form of the
operand for synchronous transactions.

operand2 Optional. Contains the UTM TAC for the required TAC class if operand1 has the value "A=0".

All UTM TACs for asynchronous transactions must begin with the character string which is defined as unique
identifier for asynchronous TACs in parameter ASYNTAC of macro NATUTM. Conversely, the UTM TACs for
synchronous transactions must not begin with this string.

Example 6:

A Natural program that performs initialization for asynchronous transaction processing, using the UTM TAC
NATAS. This is the standard TAC for asynchronous transactions. See also the description of the keyword
parameter ASYNTAC of macro NATUTM.

* STARTAS - EXAMPLE FOR ASYNCHRONOUS TRANSACTION WORKING
* WITHIN ONE APPLICATION - USING THE STANDARD TAC FORMAT LS=145
RESET PARM1(A144) PRDEST(A8) LTDEST(A8)
MOVE ’PRINTER1’ TO PRDEST
MOVE *INITID TO LTDEST
COMPRESS ’SENDER=’ PRDEST ’,OUTDEST=’ LTDEST ’,’
’MENU=F,STACK=(LOGON APPL1;READAUTO)’ INTO PARM1
LEAVING NO
CALL ’NATASYN’
SET CONTROL ’H’
WRITE NOTITLE NOHDR PARM1
INPUT ’ASYNTASK INVOKED - HOPEFULLY’ IFELD(A1)
END

Copyright © Software AG 2002216

Natural under UTM - Part 4UTM TACCLASS Concept - Priority Control

Example 7:

A Natural program that initializes asynchronous transaction processing and allocates the UTM TAC NATAS1
for assignment to another TAC class.

* STASTAC - EXAMPLE FOR ASYNCHRONOUS TRANSACTION WORKING
* WITHIN ONE APPLICATION
* AND SWITCH TO A NEW TACCLASS
FORMAT LS=145
RESET PARM1(A144) PRDEST(A8) LTDEST(A8) CONTROL(A3) NEWTAC(A8)
REDEFINE CONTROL (ERRFLD(A1))
MOVE ’PRINTER1’ TO PRDEST
MOVE *INIT-ID TO LTDEST
COMPRESS ’SENDER=’ PRDEST ’,OUTDEST=’ LTDEST ’,’
’MENU=F,STACK=(LOGON APPL1;READAUTO)’ INTO PARM1
LEAVING NO
MOVE ’A=0’ TO CONTROL /* ASYNCHR. TAC, EXPLICIT --> NOTE
MOVE ’NATAS1’ TO NEWTAC /* SET NEW TAC
CALL ’NATTAC’ CONTROL NEWTAC /* INVOKE TAC SWITCH
IF ERRFLD = ’E’ DO /* ERROR CHECK
DISPLAY ’ERROR’ CONTROL ’FROM NATTAC’
TERMINATE
DOEND
CALL ’NATASYN’ /* INVOKE ASYNCHRONOUS TAC
SET CONTROL ’H’
WRITE NOTITLE NOHDR PARM1
INPUT ’ASYNTAC INVOKED - HOPEFULLY’ IFELD(A1)
END

The value "A=0" indicates that it is an asynchronous transaction and that the TAC is passed explicitly in the
second parameter of the CALL ’NATTAC’, which means that the TAC table is not used.

MOVE ’A=1’ TO CONTROL
CALL ’NATTAC’ CONTROL

The procedure for using the TAC table (see keyword parameters TCLA1 - TCLA4 in the section Keyword
Parameters of Macro NATUTM) corresponds to the procedure for synchronous transactions.

An example of the program that is to be executed asynchronously (READAUTO):

* READAUTO - ASYNCHRONOUS Natural PROGRAM
READ (75) AUTOMOBILES BY MAKE
WRITE MAKE MODEL HORSEPOWER BODY-TYPE YEAR
LOOP
ON ERROR TERMINATE
TERMINATE
END

217Copyright © Software AG 2002

UTM TACCLASS Concept - Priority ControlNatural under UTM - Part 4

Example 7 (continued):

*+---+
*I PTERM 9750 DEFINITION I
*+---+
DEFAULT PTERM PRONAM=VR,PTYPE=T9750,TERMN=FE,CONNECT=N
PTERM DFDSS001,LTERM=DF97501
PTERM DFDSS002,LTERM=DF97502
PTERM DFDSS003,LTERM=DF97503
*+---+
*I LTERM DEFINITION I
*+---+
DEFAULT LTERM USAGE=D,STATUS=ON,ANNOAMSG=Y,RESTART=YES
LTERM=DF97501
LTERM=DF97502
LTERM=DF97503
*+---+
*I SFUNC DEFINITION I
*+---+
SFUNC F1,RET=21Z
SFUNC F2,RET=22Z
SFUNC F3,RET=23Z
SFUNC F4,RET=24Z
SFUNC F5,RET=25Z
SFUNC K1,RET=26Z
SFUNC K2,RET=27Z
SFUNC K3,RET=28Z
SFUNC K4,RET=29Z
END

The desired UTM TAC must always be allocated in the Natural program that initializes the asynchronous
transaction processing (the use of the standard TAC for asynchronous transaction processing is an exception; see
the description of the keyword parameter ASYNTAC in the macro NATUTM. The program that is to be
executed asynchronously then runs in the desired TAC class. Since each asynchronous Natural program must be
ended with the TERMINATE statement, the UTM DC transaction is also ended (PEND ’FI’) when the program
ends.

The program that initializes the asynchronous transaction processing always runs in a synchronous transaction.
Thus it is feasible to perform a change of TACCLASS using the procedure for synchronous transactions. This
change can take place before allocating the asynchronous TACs or after initializing the asynchronous transaction
(INPUT statement).

Step 5: Assign the TAC Class for Asynchronous Transactions between two
Natural/UTM Applications

It is not necessary to call NATTAC for asynchronous transaction processing between two Natural/UTM
applications. The necessary UTM TAC is allocated explicitly in the Natural program; see also Asynchronous
Transaction Processing.

UTM TACCLASS Switch

The following figure illustrates the logic of a UTM TACCLASS switch for synchronous transactions:

Copyright © Software AG 2002218

Natural under UTM - Part 4UTM TACCLASS Switch

219Copyright © Software AG 2002

UTM TACCLASS SwitchNatural under UTM - Part 4

Generating a Natural/UTM Application
The following programs and macros must be assembled to generate a Natural/UTM application:

KDCROOT UTM interface module.

NATUTM Front-end part of the Natural UTM Interface.

BS2STUB Common memory pool definition.

FREXIT Format exit module (only if the default parameter is to be changed).

NURENT Reentrant part of the Natural UTM Interface.

NTPRM Natural parameter module.

NTSWPRM Swap pool parameter module.

This list does not include the utility programs of the Natural UTM Interface.

The following example shows how to generate an application.

OPTION GEN=ALL,ROOTSRC=INPUT.KDCROOT.KDCNATP
ROOT KDCNATP
MAX APPLINAME=NATUTM,APPLIMODE=S,KDCFILE=(NATUTM,S)
MAX KB=400,SPAB=8192,NB=5120,TRMSGLTH=5120
MAX TASKS=10,ASYNTASKS=3
MAX GSSBS=0,KSSBS=1
MAX LOGACKWAIT=600,RESWAIT=(600,1200),TERMWAIT=(1800,0)
MAX PGPOOL=(88,80,95),CONRTIME=2,RECBUF=(400,2048)
MAX DPUTLIMIT1=(001,23,59,59),DPUTLIMIT2=(001,23,59,59)
MAX LPUTLTH=0
*+---+
*I EXIT DEFINITIONS: STARTUP (CSECT NAME OF NATUTM) I
*I SHUTDOWN (CSECT NAME OF NATUTM) I
*I FORMAT (FREXIT) I
*+---+
EXIT PROGRAM=NUSTART,USAGE=START
EXIT PROGRAM=NUSTART,USAGE=SHUT
EXIT PROGRAM=FREXIT,USAGE=FORMAT
*+---+
*I P R O G R A M D E F I N I T I O N S I
*+---+
DEFAULT PROGRAM COMP=ASSEMB
PROGRAM NUSTART
PROGRAM FREXIT
PROGRAM NUERROR
PROGRAM AUTOTAC
PROGRAM KDCADM,COMP=SPL4
*+---+
*I SYNCHRONOUS TACS FOR Natural/UTM I
*I THE ERROR EXIT ’NUERROR’ MUST BE DEFINED FOR EACH TAC I
*+---+
DEFAULT TAC TYPE=D,PROGRAM=NUSTART,EXIT=NUERROR,CALL=BOTH
TAC NAT,ADMIN=NO,TIME=0
TAC AUTOCONN
*+---+
*I BADTACS DEFINITION FOR Natural/UTM I
*I THE ERROR EXIT ’NUERROR’ MUST BE DEFINED FOR EACH TAC I
*+---+
TAC KDCBADTC,CALL=FIRST,PROGRAM=AUTOTAC,EXIT=NUERROR,TYPE=D
*+---+

Copyright © Software AG 2002220

Natural under UTM - Part 4Generating a Natural/UTM Application

*I ASYNCHRONOUS TACS FOR Natural/UTM I
*I THE ERROR EXIT ’NUERROR’ MUST BE DEFINED FOR EACH TAC I
*+---+
DEFAULT TAC TYPE=A,PROGRAM=NUSTART,EXIT=NUERROR,CALL=FIRST
TAC NATAS
TAC NATSY
*+---+
*I UTM ADMINISTRATOR TACS I
*+---+
DEFAULT TAC PROGRAM=KDCADM,ADMIN=Y,TYPE=D,CALL=BOTH
TAC KDCTAC
TAC KDCLOG
TAC KDCSHUT
TAC KDCAPPL
TAC KDCINF
TAC KDCUSER
TAC KDCSEND
TAC KDCDIAG
TAC KDCLTERM
TAC KDCPTERM
TAC KDCSWTCH
TAC KDCHELP

See also the Siemens documentation "UTM Generierung und Administration" (UTM Generation and
Administration).

Generating the Natural UTM Interface

1. The operands of the keyword parameters of macro NATUTM must be set to the correct values as required; the
macro NATUTM must then be assembled.

Example of NATUTM Macro Call:

NUSTART NATUTM APPLNAM=NATUTM, --> Note 1 -
NUCNAME=NATvrs , --> Note 2 -
LINK=TACSWTCH --> Note 3 -
PARMOD=24, --> Note 4 -
ROLLACC=UPAM-AS, --> Note 5 -
ROLLTSZ=180, --> Note 6 -
TERMTAB=(SWP,TERMNAME), --> Note 7 -
UMODE=(S,G) --> Note 8

221Copyright © Software AG 2002

Generating the Natural UTM InterfaceNatural under UTM - Part 4

Note

1 The CSECT name of the front-end part of the Natural UTM Interface is specified as NUSTART (default
value). The name of the Natural/UTM application is specified as NATUTM.

2 The name of the link-edited reentrant part of the Natural/UTM application is specified as NATvrs; this is
also the name of the common memory pool into which the reentrant part will be loaded.

3 A TABLE macro call is to be executed for program TACSWTCH. This means that this program must be
linked in the front-end part of the Natural/UTM application.

4 The Natural/UTM application runs in 24-bit addressing mode.

5 The access method to the Natural roll file is specified as UPAM with P1-Eventing for asynchronous
writes.

6 The maximum thread size of the Natural roll file is specified as 180 KB.

7 The internal terminal control table is allocated in the Natural swap pool; the logical terminal name will
be used for identifying the entries in the terminal control table.

8 The user dialogue with Natural is to take place in "single" mode; that is, one terminal can initiate one
Natural session. Messages at restart, logoff and also free-running messages (asynchronous processing)
are to be output in German.

The operands of the other keyword parameters of macro NATUTM are not specified since the default values
apply.

2. Assemble the macro NURENT (the reentrant part of the Natural UTM Interface). In this example, no changes
are required to the keyword parameters. The CSECT name of the assembled macro NURENT is "NURENT".

3. Assemble the macro BS2STUB with the common memory pool definitions specified in macro ADDON.

4. Assemble the Natural parameter module. The sample NTPRM macro call must be adapted to suit the local
environment.

5. Assemble the swap pool parameter module (macro NTSWPRM).

Linking the Non-Reentrant Front-End Part and the Reentrant Part

The front-end part and the reentrant part of the Natural UTM application can be linked using the JCL supplied.
This JCL should be checked and modified as required to suit the local environment (library names, etc.) before
being used. Special features in the JCL are indicated by REMARK statements.

Setting Up the Natural Roll File

The size of the Natural swap file must be calculated and the file must be allocated with link name PAMNAT.

The Start Job for a Natural UTM Application

JCL examples for starting the Natural UTM application are supplied. Before use, the JCL should be checked and
modified as required (UTM startup parameters, dataset names, etc.).

Copyright © Software AG 2002222

Natural under UTM - Part 4Linking the Non-Reentrant Front-End Part and the Reentrant Part

Optimizing Natural UTM Applications
The following points should be considered if the performance of a Natural UTM application is unsatisfactory:

Can poor performance be localized to one or more particular Natural programs? If so, optimize the
program(s) by redesigning. These programs can be identified by using the Natural monitor in library
SYSTP.
Is the swap I/O rate to high? By using the program MENU in library SYSTP you can check how efficiently
the Natural swap pool is being used. The statistical information provided about the swap pool also helps to
answer the following questions:

Is the number of logical swap pools and their slot lengths appropriate? Function SW in the main menu
of SYSTP offers various possibilities for controlling the Natural swap pool optimization.
Has the Natural swap pool been defined large enough? Increasing the size of the swap pool reduces the
swap I/O rate considerably.

Is the Natural buffer pool too small? Information about the size and occupancy of the Natural buffer pool
can be obtained with the Natural utility SYSBPM, which is described in the section Debugging and
Monitoring.
Has the number of UTM tasks been chosen correctly? This is strongly dependent upon the path lengths of
the individual transactions and the number of terminals connected.
Is it possible that particular transactions (so-called "long jobs") are loading the available UTM tasks so
heavily that the shorter transactions are suffering from poor throughput as a result? If this is the case, the
UTM TACCLASS concept and/or the asynchronous transaction processing facilities should be used.
Does the Natural Roll File consist of too many extents on one disk drive (physical chained I/O is not
possible over extent boundaries), or is the Natural Roll File on a very heavily used disk drive? If possible,
allocate the Natural Roll File to one or more lightly-used disk drives, with only one extent on each.

These suggestions should be considered in the light of the total system environment, including such factors as
available storage, storage paging rates, disk and channel I/O traffic loads, etc.

223Copyright © Software AG 2002

Optimizing Natural UTM ApplicationsNatural under UTM - Part 4

Several Applications with one Common Natural
See also: Natural Shared Nucleus under BS2000/OSD (in the Natural Operations for Mainframes
documentation).

To save storage space, it can be desirable for several Natural UTM applications to share a common Natural
reentrant part in a common memory pool in the class 6 storage. The following steps must be taken when
generating the Natural UTM application:

The global Natural load pool must be defined with the keyword parameters of module CMPSTART, for
example:

 NAME=NATSHARE,POSI=ABOVE,ADDR=250,PFIX=YES,SIZE=2MB
 LIBR=NAT vrs .USER.MOD

For more information, see CMPSTART Program (in the Natural Operations for Mainframes documentation).

Notes:

NATSHARE is the name of the linked Natural reentrant part. It is also the name of the common memory
pool.
The operand of parameter PFIX must be YES.
The operand of parameter ADDR must be defined.
The operand of parameter LIBR must contain the name of the module library from which the Natural
reentrant part is to be loaded.

The reentrant part of the Natural UTM driver (the assembled module of macro NURENT) must be linked to
the front-end part of several applications.
The operand of keyword parameter NUCNAME must be defined for each assembly of macro NATUTM as
the same (in this example: NUCNAME=NATSHARE).
The definition of the Natural load pool in the ADDON macro for the assembly of macro BS2STUB must be
the same for all applications, for example:

 STUBSHAR BS2STUB PARMOD=31,PROGMOD=ANY
 ADDON NAME=NATSHARE,STAT=GLOBAL

For more information, see ADDON Macro in the Natural Operations for Mainframes documentation.

Copyright © Software AG 2002224

Natural under UTM - Part 4Several Applications with one Common Natural

Lists of Shared and Application-Specific Parameter Modules

If application-specific Natural parameter modules are to be used, they must be linked to the front-end parts of the
Natural UTM applications, which means that there is a parameter module in each front-end part. This also
applies to the swap pool parameter module.

Only the addresses defined in the CSTATIC list of the parameter module of the front-end part are considered; if
any of these addresses cannot be resolved in the front-end part (because they refer to the reentrant part), Natural
tries to resolve these addresses with the CSTATIC list in the parameter module of the reentrant part. Thus it is
allowed to have unresolved CSTATIC addresses when linking the front-end part, provided they can be resolved
by the reentrant part.

As the CSTATIC list of the reentrant part is only used for those addresses which cannot be resolved by the
front-end part, all CSTATIC entries to be used (whether they are in the front-end part or in the reentrant part)
must be defined in the CSTATIC list of the parameter module of the front-end part.

Entering and Defining Dynamic Natural Parameters
The following possibilities exist for entering and defining the Natural dynamic parameters:

entering the dynamic parameters together with the UTM TAC when logging on to the application;
passing the dynamic parameters from another UTM partial program using "MPUT" and "PEND
PR(OGRAM)";
defining the dynamic parameters in the operand of the keyword parameter MSPAR1. They then apply to all
users of this application and cannot be changed.

UTM User Restart
When a Natural session is started, any Natural dynamic parameters defined are saved up to a length which is
defined in the operand of keyword parameter SVDYPRM in macro NATUTM. In case of a user restart situation,
these saved data are automatically reused when the Natural session is started again. This also applies when the
start of the Natural session results from a PEND PR(OGRAM) of another UTM partial program.

See also Global (Restartable) Swap Pool in the Natural Operations for Mainframes documentation.

225Copyright © Software AG 2002

Entering and Defining Dynamic Natural ParametersNatural under UTM - Part 4

Adabas Priority Control
Adabas priority control has no connection with the priority control of BS2000/OSD. Unlike with BS2000/OSD
priority control, for Adabas a higher priority value means higher priority. If several requests are in the Adabas
command queue at the same time, the request with the highest priority is processed first by Adabas and "1" is
added to the priority of the other requests that are in the command queue at this time.

Under certain conditions, it may be useful to assign to the Adabas task a lower BS2000/OSD priority than to the
UTM tasks.

The following keyword parameters in macro NATUTM can be used to control Adabas priority control for UTM
transactions:

ADAPRI Activation of Adabas priority control for UTM transactions.

APRISTD Assignment of standard Adabas priority for all UTM transactions to which no priority is assigned
individually.

TCLSn Assignment of Adabas priority for individual synchronous UTM transactions.

TCLA n Assignment of Adabas priority for individual asynchronous UTM transactions.

If Adabas priority control is activated for UTM transactions (parameter ADAPRI=YES), it is also in effect for
non-Natural programs which access Adabas via the subroutine ADACALL; see the keyword parameter
ADACALL in the macro NATUTM.

By defining different Adabas priorities for different transactions with the above parameters, and at the same time
using the UTM TACCLASS concept, it is possible to set up a very sophisticated system of priority control.
However, when you explicitly assign Adabas priorities to UTM transaction, you should take into consideration
the standard priorities Adabas assigns to other processes (for example, TIAM or batch processing).

Copyright © Software AG 2002226

Natural under UTM - Part 4Adabas Priority Control

	Cover Page
	page 2

	Table of Contents
	TP Monitor Interfaces - Overview
	Using Natural with TP Monitors
	TP Monitor Systems Supported by Natural
	Using Natural in a Teleprocessing Environment
	Embedding Natural in a TP Environment
	Calling Natural Transactions under a TP Monitor
	Terminating a Natural Session
	Example Programs

	Natural under CICS - Overview
	
	
	References to CICS Tables
	See also:

	Natural CICS Interface Functionality
	
	
	Related Documents

	NCISTART - Natural CICS Interface
	Natural Nucleus under CICS
	System Control under CICS
	OSCOR/GETVIS - Natural Components in CICS Dynamic or Operating System Storage
	
	Scenario 1: Single CICS Region
	Scenario 2: Single OS/390 With Single CICS Region, Single Roll Server
	Scenario 3: Single OS/390 With Multiple CICS Regions, Single Roll Server/Authorized Services Manager
	Scenario 4: Multiple OS/390 With Multiple CICS Regions, Multiple Roll Servers/Authorized Services Managers
	Parameter Settings Required for the Above Scenarios

	Natural Storage Threads under CICS
	Natural Roll Facilities under CICS
	CICS Roll Facilities
	Natural Local Buffer Pool under CICS
	Natural Swap Pool under CICS
	NCITIDEX Terminal ID Exit Interface
	NCIUIDEX - User ID Exit Interface
	NATUEX1 - User Exit

	Natural CICS Interface Debugging Facilities
	Using the TPF Parameter
	Using Asynchronous Natural Sessions

	Natural CICS Generation Parameters
	
	
	References to CICS Tables
	Related Documents

	NCISCPCB Generation Parameters
	NCMDIR Macro Parameters
	CICSPLX - Switching of CICS Application Region
	ROLLFLS - Maximum Number of VSAM Roll Files
	ROLLSRV - Roll Server Rolling
	SWPSIZE - Swap Pool Size
	TSKEY - Prefixes for Natural CICS Temporary Storage Key
	TSRECSZ - Record Sizes for Main and Auxiliary Temporary Storage
	USERS - Session Information Record

	NCMTGD Macro Parameters
	PFKEY - PF/PA Keys for Thread Group
	PRIMERF - Natural CICS Primary Roll Facility
	THRDSZE - Thread Size
	THREADS - Number of Threads or Tasks Per Thread Group
	TRAN - Transaction IDs for Thread Group
	TYPE - Thread Type for Group
	XTRAN - Hexadecimal Transaction IDs for Thread Group

	NTSWPRM Macro Parameters
	NCIPAPM Generation Parameters
	NCMPRM Macro Parameters
	ASA - Use ASA Control Characters For Natural Message Logging
	BACKEND - Back-End Program Invocation Control
	BACKOUT - Backout Transaction in the Case of Unrecoverable Abends
	CHAP - Change Task's Dispatching Priority
	COMACAL - CICS COMMAREA Usage for Subroutine Calls
	COMAMSG - CICS COMMAREA Usage for Termination Messages
	COMARET - CICS COMMAREA Usage for Task Control
	CONSOLE - CICS Terminal ID for the Operator Console
	FLDLEN - Supply Field Length List On External Program Call
	LOGDEST - Natural CICS Logging Destination
	MSGDEST - Destination ID for Natural Error Message Logging
	MSGTRAN - Internal Message Switching Transaction ID
	PREFIX - Common Prefix for Programs and Files
	PSTRNID - Control of *INIT-PROGRAM Variable Setting
	RESENDC - Check for Screen Re-sending after Subroutine Calls
	RESENDS - Screen Re-send Check after Pseudo-Conversational Session Resume
	RJEDEST - Name of the Natural CICS Submit Destination
	RJEUSER - Submit to POWER User ID Setting
	SIGNON - SIGNON Behavior
	Notes:

	SLCALL - Standard Linkage Call
	SNDLAST - LAST Option Usage for EXEC CICS SEND Commands
	TERMVAR - Terminal ID Variable for Natural Work Files
	TRANCHK - Check Input Map for Transaction ID
	UCTRAN - Lower/Mixed Case Support in Natural
	WAITIME - Wait Time Interval for a Local System Recovery Task

	NCISCPRI Warnings and Error Messages
	
	
	References to CICS Tables
	Related Documents

	NCISCPRI Warnings and Error Messages
	
	mmmmmmmm REQUEST FAILURE AT OFFSET xxxxx, RTC=rrrr, ERROR=eeee, FTNCD=ffff †E‡
	RECORD SIZE IS LESS THAN OPTIMUM OF CI-SIZE - 7 †W‡
	ACCESSED FILE IS NOT AN RRDS FILE †E‡
	RECORD SIZE IS LESS THAN ALLOWED MINIMUM OF 4089 †E‡
	PARAMETER INPUT OBSOLETE AND THEREFORE IGNORED †W‡

	Customizing VSAM RRDS Roll Files
	
	
	References to CICS Tables
	Related Documents

	Increasing the Number of VSAM RRDS Roll Files
	Decreasing the Number of VSAM RRDS Roll Files
	Changing the Characteristics of the VSAM RRDS Roll Files

	Natural in CICS MRO Environments
	
	
	References to CICS Tables
	Related Documents

	NCIPARM Parameter COMARET Set to YES
	NCIPARM Parameter COMARET Set to NO

	CICS Node Error Program Considerations for Natural
	Normal Situation
	Situations Not under Control of Natural CICS Interface
	Recovery Mechanisms
	Special Considerations
	Example Dummy Program

	CICS 3270 Bridge Support
	Default Support of CICS 3270 Bridge
	Full CICS 3270 Bridge Support
	NCIXFATU - NCI Source Module
	Profile Parameter DSC=OFF Recommended

	Special Natural CICS Functionality
	Calling Non-Natural Programs
	Calling Non-Natural Programs via Standard Linkage Conventions
	Calling Non-Natural Programs with Parameter Values in a COMMAREA

	Dummy Screen I/Os with Natural under CICS
	NCISTART - Natural CICS Nucleus
	Sample Programs
	In MRO Environments

	Natural CICS Sample Programs
	Sample Programs in Natural CICS Source Library
	XNCI3GC1 - Subprogram Call
	XNCIFRNX - Front-End Program
	XNCIFRNL - Front-End Program
	XNCIFRNS - Front-End Program
	XNCIFXC2 - Front-End Program
	XNCIFRNP - Initialization Program
	XNCIBACK - Termination Data Dump
	XNCIRDC1 - Exit for SYSRDC
	XNCIUIDX - User Exit
	XNCIUCTR - U/L Case Switch
	XNCINEP1 - Node Error Program
	XNCINEP2 - Node Error Program
	XNCITIDX - User Exit

	Sample Programs for Use with VSE/ESA

	Invoking Natural from User Programs
	Commands for Activating a Natural Session
	Using EXEC CICS XCTL or EXEC CICS LINK
	Using EXEC CICS START
	Sample Programs
	Using the External Subroutine CMTASK

	Front-End Parameters
	Front-End Invoked via LINK
	In CICSplex Environments

	Front-End Invoked via START
	Front-End Invoked via XCTL
	Invoking Front-End Program as Back-End

	Asynchronous Natural Processing under CICS
	Asynchronous Natural Processing
	Asynchronous Natural Sessions under CICS
	Testing and Debugging

	Logging Natural Sessions under CICS
	Logging Facility
	
	Special Considerations

	Natural Log File Definition
	Natural Log Records
	Natural CICS System Restart Record
	Natural Session Termination Record

	Natural CICS Performance Considerations
	Enironment-Specific Considerations
	Choosing the Roll Facility
	Control Interval
	VSAM Roll Files versus CICS Temporary Storage
	Using CICS Auxiliary Temporary Storage
	Using CICS Main Temporary Storage
	Using VSAM RRDS Roll Files
	In MRO Environments
	Separate LSR Pool for Natural

	Using the Natural Swap Pool under CICS

	Shared Storage Threads versus GETMAINed Threads
	Storage Usage
	Controlling Storage Usage
	Swapping/Rolling
	Considerations for CICS 4.1 and above
	Conclusion

	CICS Parameter Settings
	Line Compression Systems
	Pseudo-Conversational versus Conversational Transactions
	Natural and Adabas
	CICS Monitoring Products

	Natural Work Files under CICS
	Customizing Work File Usage
	CICS Temporary Storage Work Files
	In CICSplex Environment
	System Queues

	CICS Transient Data Work Files

	Natural under Com-plete
	Use of the Abend Exits
	Storage Usage
	Support of Back-end Programs
	Com-plete Support in Natural Batch Runs
	Support of Asynchronous Natural Processing
	Invoking Natural from User Programs
	Storage Thread Key Handling
	Support of User Exit Handling during Session Initialization

	Natural under IMS/TM - Overview
	Natural under IMS/TM - Environments
	IMS/TM Interface Overview
	IMS/TM Environments
	Natural in a Message Processing Region †MPP Environment‡
	Dialog-Oriented Natural
	Message-Oriented Natural

	Natural in a Batch Message Processing Region †BMP Environment‡
	Natural in an Off-line DL/I Batch Region

	Dialog-Oriented Environments
	Special Considerations for a Conversational Environment
	Special Considerations for a Non-Conversational Environment
	Special Considerations for an MSC Environment

	Message-Oriented Environment
	Introduction to the Message-Oriented Environment
	Operation of the Message-Oriented Environment
	Bootstrap Module NIIBOOT
	DRIVERN | ENVTNAM | DYNPARM

	Batch Message Processing Environment
	
	Using Both the CMPRMIN Dataset and the CONTROL File to Pass Dynamic Natural Parameters
	Working without CONTROL File

	Support of the Natural WRITE †n‡ Statement
	
	AM | DEST | BLKSIZE | DRIVER | NAME | FORMS | DISP | COPIES | CLASS | PRTY

	Hints Concerning NTPRINT and CLOSE PRINTER
	NTPRINT Settings
	Usage of CLOSE PRINTER or DEFINE PRINTER

	Natural under IMS/TM - Components
	Front-End Module
	Environment-Dependent Interfaces †Drivers‡
	Natural Parameter Module NATPARM
	Work File Handling Module NATWKFO
	Modules from Other Natural Products

	Natural IMS Interface Module NIIINTFM
	Natural IMS Nucleus
	Natural IMS Parameter Module NIIPARM
	Transaction Code Table NIITRTAB
	Message Text Module NIIMSGT
	DL/I Language Interface ASMTDLI

	Physical Input Edit Routine
	Roll File and Roll Server
	Using Roll Files
	Using the Roll Server

	Shared Natural Nucleus
	Natural Buffer Pool
	Adabas Interface
	Preload List

	Natural under IMS/TM - Configuration Macros
	NIMDRIV Macro Parameters
	NIMPARM Macro Parameters
	A
	B - C
	E - H
	L - M
	P
	
	Drivers for SCS Printers
	Drivers for Non-SCS Printers
	Drivers for JES API

	R - S
	T - U
	NIMTRNTG Macro Parameters
	
	HCPCB | MSGPCB | MSPCB | NIIPENT | NRASTART | PSBNAME | TRANCODE | TYPE | WRKPCBS
	Examples

	NIMLPCB Macro Parameters
	
	NAME | NUM

	NIMMSGT Macro Parameters
	NIMPIXT Macro Parameters
	
	NIA | PIXTE | SIPSE | SPATID | SVC | SVCE | WTO | USER

	Natural under IMS/TM - Service Programs
	Introduction to the Natural IMS/TM Interface Service Programs
	Purpose of Natural IMS/TM Interface Service Programs
	Location of Service Programs
	Common Return Codes
	Error Handling

	Description of the Natural IMS/TM Interface Service Programs
	NIIBRCST - Send Passed Message to Terminal
	
	
	Terminal_name | Message | Message_length | MOD_name | Return_code

	NIICMD - Pass IMS Command to IMS
	
	
	Command | Command_length | Reply_area | Reply_area_length | Reply_length | Status_code | Return_code

	NIIDEFT - Prepare Deferred Switch to Natural Transaction Code
	
	
	Transaction_code | Return_code

	NIIDEFTX - Prepare Deferred Switch to Non-Natural Transaction Code
	
	
	Transaction_code | Transaction_type | Suspend_flag | MOD_name | Message | Message_length | Return_code

	NIIDIRT - Prepare Direct Switch to Natural Transaction Code
	
	
	Transaction_code | Return_code

	NIIDIRTX - Prepare Direct Switch to Transaction Code
	
	
	Transaction_code | Transaction_type | Suspend_flag | Message | Message_length | Return_code

	NIIEMOD - Modify Setting of Module Output Descriptor
	
	
	MOD_name | Return_code

	NIIGCMD - Retrieve Next Reply Segment of Previous IMS/TM Command
	
	
	Reply_area | Reply_area_length | Reply_length | Status_code | Return_code

	NIIGMSG - Retrieve First Segment Next Message
	
	
	Message_area | Message_area_length | Return_code

	NIIGSEG - Retrieve Next Segment of Input Message
	
	
	Message_area | Message_area_length | Return_code

	NIIGSPA - Retrieve Data from SPA Beginning
	
	
	Offset | Length | Area | Return_code

	NIIIMSIN - Retrieve IMS Environment Info
	
	
	Reply_area | Reply_area_length | Return_code

	NIIISRTF - Create Multi-Segment Messages
	
	
	Destination | Message | Message_length | Return_code

	NIIISRTM - Insert Message Segment into Message Queue
	
	
	Message | Message_length | Return_code

	NIIPCBAD - Return PSB Name and PCB Address
	
	
	PSB_name | Logical_PCB_name | PCB_address | Return_code

	NIIPCOM - Move Data to Reply Area
	
	
	Offset | Data_area | Length | Return_code

	NIIPMSG - Send Message
	
	
	Message | Message_length | MOD_name | Return_code

	NIIPSBAD - Return PSB Address
	
	
	PSB_address | Return_code

	NIIPSPA - Replace Data in SPA
	
	
	Offset | Length | Data_area | Return_code

	NIIPURG - Issue PURG Call
	
	
	Return_code

	NIIRETRM - Move Data into Message Area
	
	
	Offset | Length | Message_area | Return_code

	NIISASD - Modify SENDER and OUTDEST Settings
	
	
	Sender | Outdest | Return_code

	NIIU3962 - Terminate Session
	
	
	Return_code

	Natural under IMS/TM - Service Modules
	Purpose of Service Modules
	Service Module Descriptions
	CMCMMND - Issue IMS Operator Commands
	CMDEFSW - Deferred Transaction Switch to Natural Transaction Code
	CMDEFSWX - Deferred Transaction Switch to Non-Natural Transaction Code
	CMDIRNMX - Switch to Another Conversational Transaction w/o Message
	CMDIRNMZ - Switch to Another Conversational Transaction w. Message
	CMDIRSWX - Switch to Another Conversational Transaction w. Message
	CMDIRSWZ - Switch to Another Conversational Transaction w. Message
	CMDISPCB - Get PCB Content
	CMEMOD - Modify MOD Name Dynamically
	CMGETMSG - Read Next Message
	CMGETSEG - Read Next Segment
	CMGETSPA - Transfer Data from SPA
	CMIMSID - Get MVS Subsystem ID
	CMIMSINF - System Environment Info
	CMPCBADR - Return PCB Address
	CMPRNTR - Change Default Hardcopy Destination
	CMPUTMSG - Insert Output Message into IO-PCB
	CMPUTSPA - Move Data into SPA
	CMQTRAN - Content of Current Transaction Code Table Entry
	CMQUEUE - Insert Message into First Alternate PCB
	CMQUEUEX - Complete Control over Message Content
	CMSNFPRT - Set Logical Device Name
	CMSVC13D - Terminate Natural Session
	CMTRNSET - Insert SPA via Alternate PCB
	NIIDDEFS - Deferred Switch to Foreign Transaction
	NIIDPURG - Insert Multi-Segment Message
	NIIDQUMS - Create Multi-Segment Message
	NIIDSETT - Get Foreign Transaction Code

	Natural under IMS/TM - User Exits
	NIIXACCT
	NIIXSTAR
	NIIXMSSP
	NIIXSSTA
	NIIXISRM
	NIIXISRT
	NIIXTGU0
	NIIXJESA
	NIIXPRT0
	NIIXRFNU
	NIIXTGN0

	Natural under IMS/TM - Special Functions
	Prerequisites
	Accounting
	Monitoring
	Broadcasting
	Multi-Session Feature
	Functionality of the Multi-Session Feature
	Session ID
	Multi-Session Database

	Server Environment
	Call Interface NIIBOOTS
	ON ERROR Routine Recommended
	Return Codes
	Sample Programs

	Natural under IMS/TM - Recovery Handling
	System and User Abends
	Non-Recoverable Errors
	Recoverable Errors

	Natural under TIAM
	Structure of the Natural TIAM Interface
	Common Memory Pools under TIAM
	Natural Shared Nucleus

	Natural under TSO
	General Information about the Natural TSO Interface
	Natural TSO Datasets
	Issuing TSO Commands from Natural

	Natural under UTM - Overview
	
	
	Notation vrs or vr

	Natural under UTM - Part 1
	Structure of the Natural UTM Interface
	Formatting Messages - FREXIT
	Embedding Natural in a UTM Application
	Common Memory Pools
	Natural Buffer Pool under UTM
	Natural Swap Pool under UTM
	Loading Natural in a Common Memory Pool - Natural Load Pool
	Natural Monitor Pool

	Other Storage Areas
	Natural User Thread
	Natural User Work Area Asynchronous Write Buffer
	Natural User Area for Asynchronous Transactions
	Natural Roll File - LINK=PAMNAT

	Generating KDCROOT
	Defining the UTM Resources - KDCDEF
	Special Definition for Type 9755/9756 Terminals
	Treatment of K Keys and F Keys
	Support of IBM Type 3270 Terminals
	Support of TTY Terminals

	UTM DC-Transaction Exit Routine NUERROR
	UTM Startup Function
	UTM Shutdown Function

	Natural under UTM - Macro Keyword Parameters
	NATUTM Macro Keyword Parameters
	ADACALL - Access to Adabas
	ADACOM - Adabas Link Module Usage
	ADAPRI - Activation of Adabas Priority Control for UTM Application
	ADAUTM - Synchronization of Async UTM/Adabas Transactions
	AFPNAME - Name of Common Memory Pool
	APPLNAM - Name of Natural UTM Application
	APRISTD - Adabas Priority for Standard UTM TAC
	ASAPPLI - Name of Logical UTM Communications Partner
	ASYNTAC - UTM Transaction Code for Asynchronous UTM Task or Application
	BADTAC - Activation of UTM Function "BADTACS"
	BTX - Support of BTX System
	CDYNAM - Maximum Number of Programs to be Dynamically Loaded
	CLRKEY - Activation/Deactivation of CLEAR Key
	CURPRO - Cursor Positioning to Protected Field
	ICONTRL - UTM Input Exit for Messages in Minus Format
	INITPRG - Value for Natural Variable *INIT-PROGRAM
	KB - Pass KB Address as First Parameter
	KBSAVE - Saving of UTM KB via SPUT
	KBUSEXT - Length of UTM KB User Extension
	LFH - Use of Adabas LFH
	LINK - Programs and Modules Called from Natural
	LINK2/LINK3/LINK4 - Extensions of Keyword Parameter LINK
	LOFFMAP - Format Name for Logoff Message
	NATMON - Automatic Activation of Natural Monitor during Application Startup
	NUAADDR - Natural User Thread Address
	NUCNAME - Name of Bounded Reentrant Natural Module
	PARMOD - Generation of Front-End and Reentrant Parts
	PENDPR - Define UTM TAC for "PEND PR"
	PFK - Function Key Modes
	PRKEY - UTM Return Code for Function Key
	REFRKEY - Definition of UTM Function Key
	ROLLACC - Access Method for Natural Roll File
	Prerequisites for ROLLACC=FASTPAM

	ROLLTSZ - Maximum Roll Thread Size
	RSTCNT - Control of Restart Situations
	RSTWARM - Control of Restart Situations
	SCRNOPT - Terminal Types with Deactivated Natural Screen Optimization
	SHUTALL - Name of User Exit
	SHUTLST - Name of User Exit
	SPOOL - Automatic Start and Termination of Printer Task
	Using NATSPOOL
	Using REPRO-2000 Remote Spooling System
	Using RMSPOOL User Exit

	STRTALL - Name of User Exit for All UTM Tasks
	STRTFST - Name of User Exit for First UTM Task
	SVDYPRM - Save Area Length for Dynamic Natural Parameters
	SWAMODE - Switching from 31 to 24-Bit Address Mode
	SWDPAGE - Pageability of Swap Pool Main Directory
	SWPUSID - Swap Pool User Identification
	SYAPPLI - Name of Logical UTM Communications Partner
	SYNTAC - UTM TAC for Sending Messages from Async to Sync UTM Applications
	SYSLST - SYSLIST File Generation for UTM Task
	TACEND - Action at PEND
	TCLA1 - UTM TACs for Async Transaction w. Priority Level 1
	TCLA2, TCLA3, TCLA4 - UTM TACs for Async Transaction w. Priority Levels 2, 3, 4
	TCLS1 - UTM TACs for Async Transaction w. Priority Level 1
	TCLS2, TCLS3, TCLS4 - UTM TACs for Async Transaction w. Priority Levels 2, 3, 4
	TERMTAB - Terminal Control Table for Natural Roll File Management
	TID - Adabas User ID Construction Method
	With Adabas Version 5.2:
	With Adabas Version 5.3 and above:

	TRACE - Trace File Number and Trace Print Record Length
	TTYLS - Physical Line Size for TTY Devices
	TTYPS - Physical Page Size for TTY Devices
	UMODE - Session Processing Mode

	NATUTM Macro Entries
	CMKBADR - Current Address of UTM KB
	User Area in the Swap Pool Directory

	NURENT Macro Keyword Parameters
	ACCNT - Call Logic for User Account Routine
	ATTKEY - Attention Interrupt Key
	BTX - Support of BTX System
	CALLM31 - Switching from 31 to 24-Bit Address Mode
	CLR3270=xxx - Definition of CLEAR Key
	EXTAPPL - UTM TERMN Name of External DCAM or PDN Applications
	ILCS - Support of CRTE or ILCS
	PARMOD - Generation of Front-End and Reentrant Parts
	SCRNTRC - Tracing of Screen I/Os
	SPOOL - Automatic Start and Termination of Printer Task
	UDS - Use of Natural for UDS
	UINPEX - Name of User Exit
	UOUTEX - Name of User Exit

	Natural under UTM - Part 3
	User Exits
	ACCEXIT - Macro NATUTM
	ACCINIT - Macro NATUTM
	INPTEX - Program FREXIT
	RP2PRNT - Macro NURENT
	RMSPOOL - Macros NATUTM and NURENT
	SHUTALL - Macro NATUTM
	SHUTLST - Macro NATUTM
	STRTALL - Macro NATUTM
	STRTFST - Macro NATUTM
	TRMIOEX - Program FREXIT
	UINPEX - Macro NURENT
	UOUTEX - Macro NURENT
	UVGEXIT - Macro NATUTM
	WHCEXT - Macro NURENT

	Asynchronous Transaction Processing under UTM
	Asynchronous Processing within a Natural UTM Application
	Logic of an Asynchronous Transaction within one Natural UTM Application:

	Asynchronous Processing between two Natural UTM Applications
	Logic of Asynchronous Transaction between two Natural UTM Applications:

	Printing under UTM
	Using Local Non-Spooled Printers
	Using NATSPOOL †Natural Advanced Facilities‡
	Other Spooling Systems

	Calling Non-Natural Programs
	Calling UTM Chained Partial Programs
	Calling Adabas from Non-Natural Programs in a Natural UTM Application
	Terminating a UTM Task Abnormally

	Natural under UTM - Part 4
	Accounting for Natural/UTM Applications
	Structure of the Accounting Record

	Utility Programs for Use with Natural/UTM
	Utility Program NATDUE
	Utility Program INPTEX
	Utility Program NATPRNT
	Utility Program UTMTAC
	Utility Program TACSWTCH
	Special TACSWTCH Functions

	Software Exchange
	Program XAMDUSA
	Program UTMCOB
	Program UTMNAV
	Program NUEXAMPL
	Program ACCEXIT
	Program TABMOD

	UTM TACCLASS Concept - Priority Control
	
	Step 1: Specify UTM TACs and TAC Classes in the KDCDEF and KDCROOT Definitions
	Step 2: The Structure of the UTM Start Job
	Step 3: Change the TAC Class of Synchr. Transactions by a Natural Program
	Step 4: Allocation of TAC Classes for Asynchronous Transactions within one Natural/UTM Application
	Step 5: Assign the TAC Class for Asynchronous Transactions between two Natural/UTM Applications

	UTM TACCLASS Switch

	Generating a Natural/UTM Application
	Generating the Natural UTM Interface
	Linking the Non-Reentrant Front-End Part and the Reentrant Part
	Setting Up the Natural Roll File
	The Start Job for a Natural UTM Application

	Optimizing Natural UTM Applications
	Several Applications with one Common Natural
	Lists of Shared and Application-Specific Parameter Modules

	Entering and Defining Dynamic Natural Parameters
	UTM User Restart
	Adabas Priority Control

