Concepts of the Natural Debugger Concepts of the Natural Debugger

Concepts of the Natural Debugger

The Natural Debugger can be used to temporarily take over control of a Natural session for debugging purposes
while a Natural program is executing.

The execution flow of an application is not influenced by the Natural Debugger being applied to it; that is, the
application itself need not be adapted to or prepared for its being debugged. By setting debug entries in a program,
you can follow the processing flow of the program. The Natural Debugger receives control at any debug entry set,
thus allowing various program investigations. This helps you to understand poorly written or poorly documented
programs, and to identify redundant or dead (never gets executed) program code. This can be useful, for example,
when you take over an application from another developer to maintain, improve or expand it.

In addition, when you write an interface to a program, you can use the Natural Debugger to check the contents of
variables at the point when parameters are passed between the program and the interface and thus make sure that
parameters are passed correctly.

When Test Mode is set to ON (set Test Mode ON/OFFthe Natural Debugger receives control whenever a
Natural error occurs during the execution of a program, irrespective of any debug entries defined. You can then, for
example, review the contents of the variables in the program to determine the reason for the error.

Below is information on:

® Debug Entries/Spies
® Debug Window

Debug Entries/Spies

Debug entries are also referred to as spies in the Natural Debugger environment. Two types of debug entries (spies)
are available: breakpoints and watchpoints. Debug entries for the current debug session can be set, modified, listed,
displayed, activated, deactivated and deleted. Debug entries can also be saved for future use as described in Debug
Environment Maintenance.

When a debug entry is set or modified, Natural internally stores the library, database ID and file number where the
object is located. The object may be located in the current library or in one of its steplibs. If an object of the same
name is later executed from another library, the corresponding debug entry is not executed.

The Natural Debugger assigns a name and a unique number (Spy Number) to each debug entry. The name assigned
to a debug entry (also referred to as Spy Name) can be either a name specified by the user or a default name created
by the Natural Debugger. A debug entry can be selected by its number with the corresponding Natural Debugger
commands. If more than one debug entry has to be executed at a specific statement line, they are executed in
ascending order of their numbers.

Each debug entry has an initial state and a current state. Possible valuiéadiee) and (inactive). The initial

value is specified when setting or modifying the breakpoint or watchpoint and determines the state of the debug entry
at environment start or after reset. During the debug session, the state can be changed with the debug commands
ACTIVATE and DEACTIVATE (see also the syntax diagrams in Command Summary and Syntax).

Each debug entry has an event count, which is increased every time the debug entry is executed. A debug entry is not
executed if the current state is "inactive". The event count of the breakpoint or watchpoint is not increased either.

The number of executions of a debug entry can be restricted in two ways:

® A number of skips can be specified before the debug entry is executed. The debug entry is then ignored until the
event count is higher than the number of skips specified.
® A maximum number of executions can be specified, so that the debug entry is ignored, as soon as the event

Copyright Software AG 2002 1



Debug Window Concepts of the Natural Debugger

count exceeds the specified number of executions.

For each debug entry (breakpoint or watchpoint), up to six debug commands can be specified. These commands are
executed at execution time of the breakpoint or watchpoint. You can use all Natural Debugger commands that can be
applied during a debug interrupt. The default command is the BREAK command, which displays the Debug

Window, as shown below.

Attention:
If you delete the BREAK command when setting a debug entry and you do not enter any command that issues a
dialog, there is no way to assume control during program interruption.

Debug Window
When the Natural Debugger receives control of the session, the Debug Window is displayed.

The Debug Window shows the type and name of the debug entry that has caused the break (that is, the name of the
corresponding breakpoint or watchpoint), its source-code line number, and the name of the interrupted object. For a
detailed description of the functions listed below Erecution Control Commands

From the Debug Window, you can select the following functions:

Function Code| Description
Go G Continues the execution of the program up to the next debug entry specified.
List Break L Lists the program code currently active. The last statement executed is highlightgd.

Invokes the Debug Main Menu which provides all functions needed to maintain debug

Debug Main Meny M entries at which control is to be assumed.

Next N Executes the next command specified for the current breakpoint or watchpoint.
Run R Continues the program with test mode OFF.
Step S Continues the program in step mode.

Displays the program variables currently active and modifies the contents of thege

Variable Function|V !
variables.

2 Copyright Software AG 2002



	Concepts of the Natural Debugger
	Debug Entries/Spies
	Debug Window


