
Macro Facility
Natural ISPF provides a macro feature that allows you to use the Natural language to generate text of any kind. In a
process known as macro expansion, text is generated, which can consist of substituting variables, repeating blocks,
generating blocks conditionally, even performing screen or file I/Os.

The macro feature is useful when you are creating different sources, all of the same structure but with different
content.

The macro feature thus supports you in editing programs and other sources, offering many uses within Natural ISPF.

This section describes macro syntax and the objects in which the macro feature can be used, including some
examples.

This section covers the following topics:

Macro Syntax
Examples of Macro Usage
Using the Macro Feature in Natural ISPF
Macro Objects
RUN / EXECUTE a Macro
COPY / SUBMIT a Macro
Edit Macro
Using Macro Objects in other Natural Applications
PLAY a Macro
Inline Macros
Splitting Macro Objects into Modules
Saving Macro Output in the User Workpool

Macro Syntax
The macro feature is an extension of the Natural language and consists of two types of statement, identified in the
source by the macro character (in the given examples, the paragraph sign, § is used). These statements are:

Processing Statements

Executed during macro expansion; these statements must be preceded by the macro character followed by a blank.
The full Natural language is available for processing statements. You can work in either structured or report mode as
normal.

Example

0010 § MOVE ’PERSONNEL’ TO #FILE-NAME (A32)
 0020 § MOVE ’NAME’ TO #KEY (A32)

Text lines

Copied to the generated output of the macro; text lines can contain variables that are substituted by their current
values during macro expansion. Variables in text lines are identified by the macro character, for example:

0030 READ §#FILE-NAME BY §#KEY
 0040 WRITE ’RECORD READ’

1Copyright Software AG 2002

Macro FacilityMacro Facility

Variables can also be used as part of names. To concatenate a variable value with the rest of the name during macro
expansion, you must use the vertical line as concatenation character (|).

Note:
If your keyboard does not have the vertical line, use the character that has hexadecimal value 4F.

Examples

For example, using the values in the examples above, the line:

0030 FIND §#FILE-NAME|-VIEW BY §#KEY

generates the following text:

0030 FIND PERSONNEL-VIEW BY NAME

Note:
The concatenation character need only be typed after the macro variable, and need not be typed before a
variable to be substituted after a concatenated string.

For example, the JCL line:

0040 // DD DSN=§#DSNIN|(§#MEMBER|)

generates the following text using current variable values:

0040 // DD DSN=ISP.COMN.DATA(ISPJCL)

In this example, the concatenation character is used to concatenate the parentheses.

If the macro character itself is to appear in the macro output, you must write a double macro character in the
source.

For example, the following line:

0010 * this macro uses the §§ char as macro char.

generates the following text:

 0010 * this macro uses the § char as macro char.

Examples of Macro Usage

1. Straight Substitution of Variables

The source lines:

§ MOVE ’PERSONNEL’ TO #FILE-NAME(A32)
 § MOVE ’NAME’ TO #KEY (A32)
 READ §#FILE-NAME BY §#KEY
 WRITE ’RECORD READ’ §#KEY

Copyright Software AG 20022

Macro FacilityExamples of Macro Usage

produce the following output text:

READ PERSONNEL BY NAME
 WRITE ’RECORD READ’ NAME

2. Define Loops

The following source lines generate a Natural data definition:

§ DEFINE DATA LOCAL
 § 1 #FIELD (A32/5) INIT <’MAKE’,’MODEL’,’COLOR’>
 § 1 #I (N2)
 § END-DEFINE
 § *
 DEFINE DATA LOCAL
 1 AUTOMOBILES-VIEW
 § FOR #I = 1 TO 5
 § IF #FIELD(#I) = ’ ’ ESCAPE BOTTOM END-IF
 2 §#FIELD(#I)
 § END-FOR
 END-DEFINE

The following text lines are produced:

DEFINE DATA LOCAL
 1 AUTOMOBILES-VIEW
 2 MAKE
 2 MODEL
 2 COLOR
 END-DEFINE

3. Screen I/O

The following source lines prompt you for a member name:

§ RESET #MEMBER(A8)
 § INPUT #MEMBER
 //§*INIT-USER|A JOB
 //ASM EXEC ASMM,MEM=§#MEMBER

The resulting output text using input member name EDRBPM is:

//MBEA JOB
 //ASM EXEC ASMM,MEM=EDRBPM

4. File I/O

The following source lines read the first three records from the PERSONNEL file, and if the persons are male,
addresses them with a specified text:

3Copyright Software AG 2002

2. Define LoopsMacro Facility

§ READ(3) PERSONNEL BY NAME STARTING FROM ’A’
 § IF SEX =’M’ DO
 DEAR MR. §NAME
 CONGRATULATIONS....
 § DOEND
 § LOOP

The resulting output text reads as follows:

DEAR MR. ALCOCK
 CONGRATULATIONS....
 DEAR MR. ALLAN
 CONGRATULATIONS....
 DEAR MR. AZOVEDA
 CONGRATULATIONS....

5. Conditional Text Generation

Examples 2 and 4 above contain a macro text line which makes generation of text dependent on a specific condition:

§ IF #FIELD(#I) = ’ ’ ESCAPE BOTTOM END-IF in example 2, and
 § IF SEX=’M’ DO in example 4

Using the Macro Feature in Natural ISPF
You can use the macro feature in Natural ISPF in any of the following ways:

In a special Natural object called a macro object. Macro objects reside in Natural libraries and can be accessed
as any other Natural object (specify TYPE=MACRO). Macro expansion is performed when the macro is
executed; the macro output can be accessed for further handling in the user workpool facility. Additionally,
macro objects can be referenced from various places within Natural ISPF.
Inline macros in other sources (for example, PDS members, VSE/ESA members, LMS elements, Natural
programs). The macros are executed as a result of certain function commands. The actual function is performed
on the macro output, which can be seen as an intermediate file and is also written to the user workpool.

The following subsections describe each possibility in detail.

Macro Objects
You can access and maintain macro objects as any other Natural object if you specify TYPE=MACRO (see the
subsection Natural Objects in the Section Common Objects in the Natural ISPF User’s Guide). However, please note
the following when maintaining macro objects using the Editor:

You must not use the END statement in macro objects;
The CHECK command checks the processing statements and variables to be substituted in macro expansion for
correct Natural syntax;

Note:
The CHECK command does not check that the text resulting from macro expansion is a valid Natural
source. To do this, execute the macro object and store the resulting output from the user workpool as a
Natural program (see the subsection User Workpool in the Section Common Objects in the Natural ISPF
User’s Guide).

Copyright Software AG 20024

Macro FacilityUsing the Macro Feature in Natural ISPF

The CATALOG and STOW commands compile the macro and create the ’compiled’ macro.

You can RUN a macro source, and use compiled macro objects in any of the following ways:

EXECUTE a macro;
Issue the COPY or SUBMIT function command for a macro;
Use the Edit macro feature;
Reference a macro from another object using the INCLUDE-MACRO statement;
Execute a macro from applications outside of Natural ISPF;
PLAY a macro to generate and execute a command script.

These uses are explained in the following subsections. Use of the INCLUDE-MACRO statement is described in the
subsection Inline Macros.

RUN / EXECUTE a Macro
When you issue the RUN command for a macro object, the macro source is executed, and the resulting output is
written to the user workpool.

When you issue the EXECUTE command for a macro object, the compiled macro is executed, and the resulting
output is written to the user workpool. If you are executing the macro from an application outside of Natural ISPF,
the output is written to the source area (see also the subsection Using Macro Objects in other Natural Applications).

The output of a macro object appears in the user workpool under the name of the macro and can be edited and saved
(see the subsection User Workpool in the Section Common Objects in the Natural ISPF User’s Guide).

The following are two examples of macro objects. The first illustrates the use of variables to generate a Natural
program, the second to generate job control lines.

Example 1: Using variables to generate a Natural program

This macro generates a part of a Natural program, which reads a specified number of records from a file in a logical
sequence and displays the descriptor value and some other fields on the screen.

Macro definition:

5Copyright Software AG 2002

RUN / EXECUTE a MacroMacro Facility

§ DEFINE DATA LOCAL
 § 1 #FILE-NAME(A32)
 § 1 #KEY (A32)
 § 1 #FIELD (A32/5)
 § 1 #I (N3)
 § END-DEFINE
 § *
 § SET CONTROL ’WL60C13B05/05F’
 § INPUT(AD=MIT’_’) ’ DISPLAY RECORD IN A FILE’
 § / ’ FILE NAME : ’ #FILE-NAME
 § / ’ KEY FIELD : ’ #KEY
 § / ’ FIELD : ’ #FIELD(1)
 § / ’ : ’ #FIELD(2)
 § / ’ : ’ #FIELD(3)
 § / ’ : ’ #FIELD(4)
 § / ’ : ’ #FIELD(5)
 READ(1) §#FILE-NAME!-VIEW BY §#KEY STARTING FROM #VALUE
 INPUT ’§#KEY : ’ 20T ’ ’ §#KEY (AD=OI)
 § FOR #I = 1 TO 5
 § IF #FIELD(#I) = ’ ’ ESCAPE BOTTOM END-IF
 / ’ §#FIELD(#I) : ’ 20T ’ ’ §#FIELD(#I) (AD=MI)
 § END-FOR
 END-READ

If you issue a RUN command from your Natural edit session, the macro is executed and you are prompted for input
of the following fields:

+--+
 ! !
 ! DISPLAY RECORD IN A FILE !
 ! FILE NAME : ________________________________ !
 ! KEY FIELD : ________________________________ !
 ! FIELD : ________________________________ !
 ! : ________________________________ !
 ! : ________________________________ !
 ! : ________________________________ !
 ! : ________________________________ !
 ! !
 ! !
 +--+

Assuming you specify the following values:

+--+
 ! !
 ! DISPLAY RECORD IN A FILE !
 ! FILE NAME : AUTOMOBILES_____________________ !
 ! KEY FIELD : MAKE____________________________ !
 ! FIELD : MODEL___________________________ !
 ! : COLOR___________________________ !
 ! : HORSEPOWER______________________ !
 ! : ________________________________ !
 ! : ________________________________ !
 ! !
 ! !
 +--+

Copyright Software AG 20026

Macro FacilityExample 1: Using variables to generate a Natural program

The variables are substituted with these values and the resulting output is written to the user workpool. You can see
the output in the user workpool using the local command OUTPUT:

READ(1) AUTOMOBILES-VIEW BY MAKE STARTING FROM #VALUE
 INPUT ’ MAKE : ’ 20T ’ ’ MAKE (AD=OI)
 / ’ MODEL : ’ 20T ’ ’ MODEL (AD=MI)
 / ’ COLOR : ’ 20T ’ ’ COLOR (AD=MI)
 / ’ HORSEPOWER : ’ 20T ’ ’ HORSEPOWER (AD=MI)
 END-READ

The resulting Natural program can be edited in the user workpool and saved (see the subsection User Workpool in
the Section Common Objects in the Natural ISPF User’s Guide).

Example 2: Using variables to generate JCL lines.

The following macro object generates a job to perform a SYSMAIN COPY function, with the source and destination
values given as variables:

§ RESET #JOBNAME(A8)
 § RESET #FD(N3) #FL(A8) #FF(N3)
 § RESET #TD(N3) #TL(A8) #TF(N3)
 § COMPRESS *INIT-USER ’SM’ INTO #JOBNAME LEAVING NO SPACE
 § SET CONTROL ’WL60C6B005/010F’
 § INPUT ’ENTER PARAMETERS FOR LIBRARY COPY:’
 § / ’FROM: DBID:’ #FD ’FNR:’ #FF ’LIB:’ #FL
 § / ’TO : DBID:’ #TD ’FNR:’ #TF ’LIB:’ #TL
 //§#JOBNAME JOB JWO,MSGCLASS=X,CLASS=G,TIME=1400
 //COPY EXEC PGM=NATBAT21,REGION=2000K,TIME=60,
 // PARM=(’DBID=9,FNR=33,FNAT=(,15),FSIZE=19’,
 // ’EJ=OFF,IM=D,ID=’’;’’,MAINPR=1,INTENS=1’)
 //STEPLIB DD DISP=SHR,DSN=OPS.SYSF.V5.ADALOAD
 // DD DISP=SHR,DSN=OPS.SYSF.PROD.LOAD
 //DDCARD DD *
 ADARUN DA=9,DE=3380,SVC=249
 //CMPRINT DD SYSOUT=X
 //CMPRT01 DD SYSOUT=X
 //CMWKF01 DD DUMMY
 //CMSYNIN DD *
 LOGON SYSMAIN2
 CMD C C * FM §#FL DBID §#FD FNR §#FF TO §#TL DBID §#TD FNR §#TF REP
 FIN

If you issue the RUN command from your Natural edit session, the macro is executed and you are prompted for
source and destination values in the following window:

 ENTER PARAMETERS FOR LIBRARY COPY:
 FROM: DBID: FNR: LIB:
 TO : DBID: FNR: LIB:

Assuming you enter 1 in the FROM: DBID and FNR fields, enter 2 in the TO: DBID and FNR fields, and enter
MYLIB in both LIB fields, the Natural program is run and the output generated in the user workpool (use the local
command OUTPUT):

7Copyright Software AG 2002

Example 2: Using variables to generate JCL lines.Macro Facility

//MBESM JOB JWO,MSGCLASS=X,CLASS=G,TIME=1400
 //COPY EXEC PGM=NATBAT21,REGION=2000K,TIME=60,
 // PARM=(’DBID=9,FNR=33,FNAT=(,15),FSIZE=19’,
 // ’EJ=OFF,IM=D,ID=’’;’’,MAINPR=1,INTENS=1’)
 //STEPLIB DD DISP=SHR,DSN=OPS.SYSF.V5.ADALOAD
 // DD DISP=SHR,DSN=OPS.SYSF.PROD.LOAD
 //DDCARD DD *
 ADARUN DA=9,DE=3380,SVC=249
 //CMPRINT DD SYSOUT=X
 //CMPRT01 DD SYSOUT=X
 //CMWKF01 DD DUMMY
 //CMSYNIN DD *
 LOGON SYSMAIN2
 CMD C C * FM MYLIB DBID 1 FNR 1 TO MYLIB DBID 2 FNR 2 REP
 FIN
 /*

COPY / SUBMIT a Macro
Macro objects are separate objects in Natural ISPF and can be accessed directly by the COPY and SUBMIT function
commands from any system screen using the object-type MAC in the command syntax. Available commands are:

Command Parameter Syntax

COPY library(member),object-type object-parameters,REP

SUBMIT library(member),TARGET=node-id

Example: COPY 1

The function command:

COPY MAC MYLIB(MYPROG),NAT NEWLIB(NEWPROG)

executes macro object MYPROG in Natural library MYLIB and saves the output as Natural object NEWPROG in
library NEWLIB.

Example: COPY 2

The macro program EXHEADER in Natural library SYSISPE dynamically creates a program header subsection with
some information as to the edited object:

Copyright Software AG 20028

Macro FacilityCOPY / SUBMIT a Macro

§ *
 § * MACRO GENERATES A STANDARD PROGRAM HEADER FOR THE PROGRAM
 § * BEING CURRENTLY EDITED
 § *
 § DEFINE DATA
 § LOCAL USING ISPN---L
 § LOCAL
 § 1 #OBJECT (A2)
 § 1 #FUNCTION(A2)
 § 1 #DATA (A200)
 § 1 #PROGRAM (A8)
 § 1 #TEXT (A50/5)
 § 1 #I (N2)
 § END-DEFINE
 § *
 § * GET NATURAL SESSION DATA
 § *
 § CALLNAT ’ISP-U000’ #OBJECT #FUNCTION #DATA
 § MOVE #DATA TO #SES-DATA-N
 § MOVE #MEMBER TO #PROGRAM
 § SET KEY PF3
 § SET CONTROL ’WL70C10B005/005F’
 § SET CONTROL ’Y45’
 § INPUT (AD=MIL’_’)
 § WITH TEXT ’----- PROGRAM HEADING INFORMATION -------------’
 § ’PROGRAM:’ #PROGRAM (AD=OI) ’TYPE:’ #OBJTYPE (AD=OI)
 § ’LIBRARY:’ #LIBRARY (AD=OI)
 § / ’PURPOSE:’ #TEXT (1)
 § / ’ ’ #TEXT (2)
 § / ’ ’ #TEXT (3)
 § / ’ ’ #TEXT (4)
 § / ’ ’ #TEXT (5)
 § IF #TEXT(1) = ’ ’
 § REINPUT WITH TEXT ’PURPOSE IS REQUIRED’
 § END-IF

9Copyright Software AG 2002

Example: COPY 2Macro Facility

 * OBJECT : §#PROGRAM DATE CREATED: §*DATD BY: §*USER
 * ---
 * PURPOSE:
 § FOR #I = 1 TO 5
 § IF #TEXT(#I) NE ’ ’
 * §#TEXT(#I)
 § END-IF
 § END-FOR
 * ---
 * PROGRAM HISTORY
 * DATE USER-ID REF-NO DESCRIPTION

 *
 § IF #OBJTYPE NE ’C’
 DEFINE DATA
 § IF #OBJTYPE NE ’N’
 GLOBAL USING
 § ELSE
 PARAMETER
 § END-IF
 LOCAL USING
 LOCAL
 END-DEFINE
 *
 * ----------
 * Mainstream
 * ----------
 *
 *
 *
 * --------------------
 * Internal subroutines
 * --------------------
 *
 END
 § END-IF

Note:
For a specification of the subprogram ISP-U000 and the Local Data Area ISPN---L referenced in this example,
see the Section Application Programming Interface.

If you start an editing session with a different object and issue the command:

COPY MAC SYSISPE(EXHEADER)

from the Editor command line, marking the place at which you want to see the header with the Editor line command
A, the following window prompts you to input the required information:

 PROGRAM HEADING INFORMATION
 PROGRAM: MYPROG TYPE: P LIBRARY: SYSISPE
 PURPOSE: __
 __
 __
 __
 __

Copyright Software AG 200210

Macro FacilityExample: COPY 2

The header information includes the program name, type and library name and you can add a description of the
program purpose. Assuming you enter: Program to perform a function and press Enter, the following header is
inserted at the specified place in your program:

 * OBJECT : MYPROG DATE CREATED: 31.08.90 BY: MBE
 * ---
 * PURPOSE:
 * PROGRAM TO PERFORM A FUNCTION
 * ---
 * PROGRAM HISTORY
 * DATE USER-ID REF-NO DESCRIPTION

 *
 DEFINE DATA
 GLOBAL USING
 LOCAL USING
 LOCAL
 END-DEFINE
 *
 * ----------
 * Mainstream
 * ----------
 *
 *
 *
 * --------------------
 * Internal subroutines
 * --------------------
 *
 END

Example: SUBMIT

The function command:

SUBMIT MAC MYLIB(MYPROG),TARGET=69

submits on Node 69 the output generated by the macro object MYPROG which resides in the Natural library
MYLIB.

Note:
(for OS/390 only) In a similar way, with the function parameter TYPE=TSO or TYPE=IDCAMS, macro
expansion can be used to pass the generated source lines to the TSO batch interface or to the IDCAMS utility.

Edit Macro
In the Edit macro field on the entry screens of some Natural ISPF objects (for example, PDS objects, Natural
objects), you can specify the name of a macro object to be used as a model when editing a member. When starting
the edit session with function command syntax, you must use the MACRO= keyword parameter.

The specified macro is executed, and the output appears in the edit area of the new member (the macro object
referenced must be in the current library or in the library SYSTEM or STEPLIB).

Note:
All lines generated by the macro are protected and cannot be modified.

11Copyright Software AG 2002

Edit MacroMacro Facility

Macro objects used as a model in this way are called edit macros. They offer the following additional functions:

Save variable values in the generated source;
Define your own blocks of code in the generated source (user-edited blocks);
Change the syntax of the information lines generated by the macro to match the syntax of the comments in the
target language.

These functions are described in more detail below.

Save/Get Variable Values

You can save variable values specified during the execution of a macro object used for the Edit macro option (for
example, if the macro prompts you for input values). If you wish to change any value and regenerate the macro
output in the new source, use the REGENERATE command from the Editor command line, the other specified
values remain in place.

A regeneration also takes place each time the member is selected for EDIT using the Edit macro option. If you select
the member for EDIT without using the Edit macro option, the generated lines from the last generation are in place.

Variables used can be simple variables or arrays of any type. If you use arrays, you can reference variables in the
following format:

#VAR(1)
 #VAR(1:5)

Note:
The notation #VAR(*) must not be used.

Variable values are saved using the SAVE-DATA statement after a GET-DATA clause in the macro object, as
detailed below.

GET-DATA Statement

GET-DATA
 {USING local-name}
 { var-name}
END-GET

Note:
Any line of this processing statement must be preceded by the macro character. The keyword GET-DATA must
be the first string in the line.

Meaning of the variable parts:

Variable Meaning

local-name Name of local data area object

var-name Variable name, optionally followed by an array definition, for example: A(5), A(2:4), A(3,5), A(2:3,6),
A(1:3,1:3,7:9).

Copyright Software AG 200212

Macro FacilitySave/Get Variable Values

Function

When editing a new member with an Edit macro, the GET-DATA statement has no effect at all. However, when a
subsequent REGENERATE command is executed, the GET-DATA statement restores variable field contents to the
values of the last SAVE-DATA from the edited member. The field names are taken from the data areas, or are typed
in explicitly.

Restrictions

1. The total number of fields is restricted to 128.
2. Length of field name must not exceed the following values:

32 Scalar field
27 One-dimensional array
23 Bi-dimensional array
19 3-dimensional array

3. When using data areas:
only fields of level one are taken;
fields can be scalar or array (any dimension).

4. The notation #var-name(*) is not valid.

Examples

1. § GET-DATA
 § #ALFA
 § #NUM
 § #VEC(3)
 § #VEC(2:5)
 § #VEC(4,6:7)
 § #VEC(4,4,4)
 § END-GET

2. § GET-DATA USING G-LOCAL END-GET

3. § GET-DATA
 § #MY-VAR
 § USING G-LOCAL
 § END-GET

SAVE-DATA Statement

SAVE-DATA ALL

or:

SAVE-DATA
 {USING local-name}
 {var-name}
END-SAVE

13Copyright Software AG 2002

SAVE-DATA StatementMacro Facility

Note:
Any line of this processing statement must be preceded by the macro character. The keyword SAVE-DATA
must be the first string in the line.

Meaning of the variable parts:

Variable Meaning

local-name Name of local data area object

var-name Variable name, optionally followed by an array definition, for example: A(5), A(2:4), A(3,5), A(2:3,6),
A(1:3,1:3,7:9).

Function

The SAVE-DATA statement saves the variable contents in the generated source. These values can later be retrieved
using the GET-DATA statement. The SAVE-DATA ALL option refers to the variable list of the previous
GET-DATA statement. The SAVE-DATA ALL option is valid only if the GET-DATA statement is contained in the
same macro object. The field values are taken from the data areas, or are typed in explicitly.

Restrictions

The same restrictions apply as for the GET-DATA statement (see above).

Compatibility

SAVE-DATA syntax coded under versions of Natural ISPF earlier than Version 1.2.3 corresponds to the
SAVE-DATA ALL option. These programs execute as normal under Natural ISPF 1.2.3, but when they are
compiled, all SAVE-DATA statements must be changed to SAVE-DATA ALL.

Examples

1. § SAVE-DATA ALL

2. § SAVE-DATA USING G-LOCAL END-SAVE

3. § SAVE-DATA
 § #MY-VAR
 § USING G-LOCAL
 § END SAVE

Note:
The GET-DATA clause has no effect when the Edit macro option is used to create a new member. However,
when editing an existing member, or when issuing the REGENERATE command, it reads the variable data for
the previous execution, the SAVE-DATA statement writes the data to the generated source.

Example: Save Variable Values

The following macro object named EXMOD generates a program to invoke any application:

Copyright Software AG 200214

Macro FacilitySAVE-DATA Statement

0010 § DEFINE DATA LOCAL

 0040 § 1 #M-LIB (A8)
 0050 § 1 #M-START(A8)
 0060 § END-DEFINE
 0070 § *
 0080 § GET-DATA
 0090 § #M-LIB
 0100 § #M-START
 0110 § END-GET
 0120 § *
 0130 § INPUT (AD=IM) ’APPLICATION :’ #M-LIB /
 0140 § ’STARTPROGRAM:’ #M-START
 0150 § IF #M-LIB EQ ’ ’ STOP END-IF
 0160 § SAVE-DATA ALL
 0170 DEFINE DATA
 0180 LOCAL
 0190 01 DUMMY (A1)
 0200 § BEGIN-BLOCK ’DATA’
 0210 ** HERE YOU CAN DEFINE YOUR OWN FIELDS
 0220 § END-BLOCK
 0230 END-DEFINE
 0240 § BEGIN-BLOCK ’START’
 0250 ** HERE YOU CAN ENTER YOUR OWN STATEMENTS
 0260 § END-BLOCK
 0270 § IF #M-START NE ’ ’
 0280 STACK TOP COMMAND ’§#M-START’
 0290 § END-IF
 0300 STACK TOP COMMAND ’LOGON §#M-LIB’
 0310 STACK TOP COMMAND ’SETUP * SPF’
 0320 *
 0330 END

If you specify this macro as edit macro when starting an edit session with new Natural member MYPROG in the
library MYLIB using the command:

EDIT NAT MYLIB(MYPROG) MACRO=EXMOD

you are prompted for the input values:

APPLICATION
 STARTPROGRAM

The following output is written to the edit session using input values MYAPPL for APPLICATION and STARTUP
for PROGRAM:

15Copyright Software AG 2002

SAVE-DATA StatementMacro Facility

=P0001 ***M GENERATED USING:EXMOD
 =P0010 ***MSV #M-LIB = MYAPPL
 =P0020 ***MSV #M-START = STARTUP
 =P0030 DEFINE DATA
 =P0040 LOCAL
 =P0050 01 DUMMY (A1)
 =P0060 ***MBB DATA
 000070 ** HERE YOU CAN DEFINE YOUR OWN FIELDS
 =P0080 ***MBE
 =P0090 END-DEFINE
 =P0100 ***MBB START
 000110 ** HERE YOU CAN ENTER YOUR OWN STATEMENTS
 =P0120 ***MBE
 =P0130 STACK TOP COMMAND ’STARTUP’
 =P0140 STACK TOP COMMAND ’LOGON MYAPPL’
 =P0150 STACK TOP COMMAND ’SETUP * SPF’
 =P0160 *
 =P0170 END

If you now enter the command:

REGENERATE

in the Editor command line, the macro program is regenerated and the prompt for application and start program
reappears with the values last specified. You can modify any value and press Enter to load the new output in your
edit session. Any unchanged variable retains its old value.

User-Edited Blocks in Generated Source

You can define your own blocks of code in the source generated by the macro object executed using the Edit macro
option. Each block starts with a line signalling the beginning of the block, indicating a string or variable
(BEGIN-BLOCK statement). The block closes with a line signalling the end of the block (END-BLOCK statement).
The corresponding syntax in the macro object is:

BEGIN-BLOCK block-identifier
 text-line ...
END-BLOCK

Note:
The lines beginning with the keywords BEGIN-BLOCK and END-BLOCK must be preceded by the macro
character. The keywords BEGIN-BLOCK and END-BLOCK must be the first string in the respective lines.

Meaning of the variables:

Variable Meaning

block-identifier Can either be an alphanumeric constant or a variable of format A.

text-line A line used to initialize the block when a new source is generated.

Function

After macro execution, you can write your own lines of code at the designated place when editing the output
generated by the Edit macro option. The next time you start an edit session with the member and you wish to
regenerate the source using the Edit macro option, your user-edited blocks remain intact.

Copyright Software AG 200216

Macro FacilityUser-Edited Blocks in Generated Source

Restrictions

The block-identifier must not exceed 8 characters and must be unique within the scope of the generated source
(that is, different blocks must carry different identifiers).
No macro processing statements are allowed within a user-edited block.

Example

0200 § BEGIN-BLOCK ’string’ (or: #variable)
 0210 <text lines to initialize the block for the first time>
 0220 § END-BLOCK

The following figure illustrates the sequence of events described above:

Example: User-Defined Blocks in Generated Source

Using the example macro object EXMOD illustrated in the above example of saving variables, consider the text
generated by the command:

EDIT NAT MYLIB(MYPROG) MACRO=EXMOD

17Copyright Software AG 2002

User-Edited Blocks in Generated SourceMacro Facility

specifying MYAPPL and STARTUP as input values for the prompted application and start program:

=P0001 ***M GENERATED USING:EXMOD
 =P0010 ***MSV #M-LIB = MYAPPL
 =P0020 ***MSV #M-START = STARTUP
 =P0030 DEFINE DATA
 =P0040 LOCAL
 =P0050 01 DUMMY (A1)
 =P0060 ***MBB DATA
 000070 ** HERE YOU CAN DEFINE YOUR OWN FIELDS
 =P0080 ***MBE
 =P0090 END-DEFINE
 =P0100 ***MBB START
 000110 ** HERE YOU CAN ENTER YOUR OWN STATEMENTS
 =P0120 ***MBE
 =P0130 STACK TOP COMMAND ’STARTUP’
 =P0140 STACK TOP COMMAND ’LOGON MYAPPL’
 =P0150 STACK TOP COMMAND ’SETUP * SPF’
 =P0160 *
 =P0170 END

You can now define your own lines of code in the lines containing the comment HERE YOU CAN DEFINE YOUR
OWN FIELDS/STATEMENTS, for example:

=P0001 ***M GENERATED USING:EXMOD
 =P0010 ***MSV #M-LIB = MYAPPL
 =P0020 ***MSV #M-START = STARTUP
 =P0030 DEFINE DATA
 =P0040 LOCAL
 =P0050 01 DUMMY (A1)
 =P0060 ***MBB DATA
 000070 01 #STARTDATA (A10) INIT <’INIT’>
 =P0080 ***MBE
 =P0090 END-DEFINE
 =P0100 ***MBB START
 000110 SET CONTROL ’MT’
 000120 STACK TOP DATA #STARTDATA
 =P0130 ***MBE
 =P0130 STACK TOP COMMAND ’STARTUP’
 =P0130 STACK TOP COMMAND ’LOGON MYAPPL’
 =P0160 STACK TOP COMMAND ’SETUP * SPF’
 =P0170 *
 =P0180 END

You can save this source using the SAVE command. If you now start an edit session with this member, regenerating
the source by specifying the macro object EXMOD in the command:

EDIT NAT MYLIB(MYPROG) MACRO=EXMOD

and specifying other values in the APPLICATION and STARTPROGRAM prompt, for example YOURAPPL and
START, the following output is loaded in the edit area:

Copyright Software AG 200218

Macro FacilityUser-Edited Blocks in Generated Source

=P0001 ***M GENERATED USING:EXMOD
 =P0010 ***MSV #M-LIB = YOURAPPL
 =P0020 ***MSV #M-START = START
 =P0030 DEFINE DATA
 =P0040 LOCAL
 =P0050 01 DUMMY (A1)
 =P0060 ***MBB DATA
 000070 01 #STARTDATA (A10) INIT <’INIT’>
 =P0080 ***MBE
 =P0090 END-DEFINE
 =P0100 ***MBB START
 000110 SET CONTROL ’MT’
 000120 STACK TOP DATA #STARTDATA
 =P0130 ***MBE
 =P0140 STACK TOP COMMAND ’START’
 =P0150 STACK TOP COMMAND ’LOGON YOURAPPL’
 =P0160 STACK TOP COMMAND ’SETUP * SPF’
 =P0170 *
 =P0180 END

Change Syntax Format

Source lines generated using the Edit macro option can be adapted to match the syntax of the target language. This is
done using the DATA-FORMAT statement as the first executable macro statement in the macro object:

DATA-FORMAT= [sssssss] [yyy]

Note:
This statement can only occur as the first executable macro statement. It must be preceded by the macro
character, and the keyword DATA-FORMAT must be the first string in the line.

Meaning of the variables:

Variable Meaning

sssssss Prefix string of up to 7 characters (default: ***M)

yyy Suffix string of up to 3 characters (default: <empty>)

Notes:

1. The notation MODEL-DATA-FORMAT is also valid. The equal sign (=) is optional and can be omitted if the
keyword DATA-FORMAT is followed by at least one separating blank, followed by the prefix and/or suffix
strings.

2. The prefix and/or suffix string can optionally be enclosed in apostrophes (’). This notation is required if the
specified string contains one or more blanks, or if it is a prefix string ending with a blank character (that is, if
the prefix must be separated from remaining text by a blank).

Function

In some cases, the invoked macro writes its own data into the source area (for example, saved variables). The
DATA-FORMAT statement provides a prefix and suffix for that data. This definition must reflect a comment in the
target language.

19Copyright Software AG 2002

Change Syntax FormatMacro Facility

Restrictions

1. The whole DATA-FORMAT statement cannot exceed one line.
2. The prefix or suffix string cannot contain commas or apostrophes. If any string contains blanks, the whole string

must be enclosed in apostrophes.

Examples

1. § DATA-FORMAT ******C

2. § DATA-FORMAT=/*,*/ /* for PL1

3. § DATA-FORMAT ’/REMA ’ /* for BS2000/OSD job control

An example macro using the DATA-FORMAT statement follows on the next page.

Example: Change Syntax Format

The following macro object generates a job to perform a tape scan on a specified volume. The DATA-FORMAT
statement specifies JCL as the syntax format for the generated source:

0010 § DATA-FORMAT //*
 0020 § RESET #VOL(A6)
 0030 § GET-DATA
 0040 § #VOL
 0050 § END-GET
 0060 § SET CONTROL ’WL60C10B005/005F’
 0070 § INPUT (AD=MI’_’) WITH TEXT ’ENTER VOLSER FOR TAPESCAN’
 0080 § / ’ VOLSER ’ #VOL
 0090 § SAVE-DATA
 0100 //JWOTP12 JOB JWO,CLASS=1,MSGCLASS=X,REGION=2500K
 0110 //SCAN EXEC TAPESCAN,TAPE=§#VOL

The following source is generated using the command:

EDIT NAT MYLIB(TAPESC) MACRO=EXJCL

and specifying volume COM811 in the prompt window that appears during macro execution:

=P0001 //* GENERATED USING:EXJCL
 =P0010 //*FR //*
 =P0020 //*SV #VOL = COM811
 =P0030 //JWOTP12 JOB JWO,CLASS=1,MSGCLASS=X,REGION=2500K
 =P0040 //SCAN EXEC TAPESCAN,TAPE=COM811

Using Macro Objects in other Natural Applications
When you wish to execute macro objects from a Natural application or program outside Natural ISPF, the generated
output is written to the source area, where it can be edited using the standard Natural program editor, and run in a
production environment. A more detailed description follows in the subsections below.

Macro objects are invoked from other applications using the statement:

FETCH RETURN ’name’ parameters

Copyright Software AG 200220

Macro FacilityUsing Macro Objects in other Natural Applications

where name is the name of the macro to be invoked and parameters the parameters to be passed to the macro as
required.

Note:
The macro must be a cataloged object in the library SYSTEM or STEPLIB.

Generating Natural Code in Natural Applications

Macro objects to be invoked in Natural applications outside Natural ISPF must carry their own generation
parameters. This is done by coding an appropriate SET-MACRO statement in the macro as follows:

SET-MACRO
 parameter-definition ...
END-SET

where parameter-definition takes the following format:

NAME = object-name
SMODE = {S}
 {R}
TYPE = {P}}
 = {C}
 = {S}
 = {N}
 = {A}
 = {L}
 = {M}
 = {G}
 = {H}
 = {T}

Note:
Any line of this processing statement must be preceded by the macro character. The keyword SET-MACRO
must be the first string in the respective line.

Meaning of variable:

Variable Meaning

object-nameName given to the generated code. It must not exceed 8 characters and can be specified as an
alphanumeric constant or the content of an alphanumeric variable.

The values of the other keywords refer to the type and structure of the generated code.

Function

The SET-MACRO statement defines the macro generation parameters described under Syntax above. Note that if
invoked using the Edit macro option, the NAME parameter specified using the SET-MACRO statement in the
invoked macro is overridden by the name specified in the Edit macro call.

21Copyright Software AG 2002

Generating Natural Code in Natural ApplicationsMacro Facility

Examples

1. § SET-MACRO NAME=’MY-PROG’ END-SET

2. § SET-MACRO
 § NAME=#INPUT-PROG
 § TYPE=N
 § SMODE=S
 § END-SET

An example that demonstrates the use of this statement can be found in the Example Library, objects MAC-RUNZ
and MAC-RUNP. Executing the program MAC-RUNP causes a Natural object to be generated, cataloged and
executed.

Using Macro Objects with GET-DATA / SAVE-DATA Statements

If the invoked macro uses GET-DATA/SAVE-DATA statements (see the subsection Edit Macro), the Natural
subprogram ISP--RVU must be called. This subprogram extracts the data from the source area and clears the source
area. It must be called before the macro is executed, and expects the output of the last execution of the macro in the
source area. Additionally, the subprogram ISP--RVU provided has the following parameters:

Name Type I/O Meaning

1 #MACRO (A8) I/O ’-empty-’If source area is empty when called.
’ ’ No appropriate text found in source area.
’name’Name of the macro program which
generated the source.

1 #ERROR-CODE(N3) O Non-zero if error occurred.

1 #ERROR-TEXT A75) O Explanation of error.

If you wish to use this feature, the following programs must be copied from the Natural ISPF user exit library to your
application or to a valid STEPLIB:

 ISP--RVU
 ISP--RVN

PLAY a Macro

PLAY Command

The Natural ISPF function command PLAY allows you to execute sequences of Natural ISPF commands stored as
any of a number of Natural ISPF objects (PDS member, Natural object, VSE/ESA member, LMS element, workpool
output, or, as explained below, as a macro object). For details on the PLAY feature, see the subsection Executing
Command Scripts in the Section Useful Features in the Natural ISPF User’s Guide.

Generate Command Script

A command script can be generated by a macro, allowing scripts to be created and played dynamically. This can be
done with the following syntax, valid from any system screen:

PLAY MAC library(member)

Copyright Software AG 200222

Macro FacilityPLAY a Macro

Here, the member must be a cataloged Natural object of type O (macro) or of type P (program). For special
considerations applying to type P, see the subsection Splitting Macro Objects into Modules.

Example

For example, executing the following macro with the PLAY command generates a prompt for a CHANGE command
to be used on a member, with a choice of a STOW or SAVE command after the change is made:

§ RESET #MEMBER(A8) #FROM(A16) #TO(A16) #STOW(A1)
 § INPUT(AD=MI) ’Change’ #FROM ’To’ #TO ’in member’ #MEMBER
 / ’Stow?’ #STOW(A1)
 EDIT NAT §#MEMBER
 CHANGE ’§#FROM’ ’§#TO’ all
 § IF #STOW NE ’ ’
 STOW
 § ELSE
 SAVE
 § END-IF
 END

For another example, see member VERIFY in the Example Library. This macro generates a script that verifies
whether or not Natural ISPF has been installed correctly in your environment.

Inline Macros
Apart from macro objects, other sources, such as PDS members, Natural programs, PANVALET members etc., can
use the macro feature by including inline macros. Inline macros are processing statements and variables included in a
member. As a result of certain function commands, the member is checked for macro statements, and if any are
found, the member is run as a macro object: the output is held in an intermediate file written to the user workpool.
The invoked function is then performed on the intermediate file.

Inline macros also allow the use of a special INCLUDE-MACRO statement that can invoke a macro object and
include its output in the member. The INCLUDE-MACRO statement takes the following format:

INCLUDE-MACRO name [parameter]

Note:
This statement must be preceded by the macro character.

Meaning of the variables:

Variable Meaning

name Identifies the compiled macro to be included. It can be an alphanumeric constant or variable and must
not exceed 8 characters in length.

parameterParameters that can be sent to the macro to be received by means of the INPUT statement.

Note:
The macro object invoked by the INCLUDE-MACRO statement must be a cataloged (CATALOG or STOW
command) object in the current Natural library, or library SYSTEM or STEPLIB.

The function commands that perform macro expansion of inline macros and INCLUDE-MACRO statements are:

23Copyright Software AG 2002

Inline MacrosMacro Facility

For Natural programs: CHECK, RUN, CATALOG, STOW, SUBMIT;
For other sources (PDS, LIBRARIAN members, etc.): SUBMIT.

Note:
The macro facility must be enabled either with the command MACRO ON or by setting the MACRO EXPAND
option in the user defaults of your user profile to Y.

Important:

When using inline macros in any non-Natural source, you must specify the Natural programming mode before
starting an edit session or issuing a SUBMIT command. You do this via the MACRO SMODE setting in the user
defaults of your user profile (see the Section Profile Maintenance in the Natural ISPF User’s Guide). If no mode is
specified in your user profile, the default is the mode defined by the system administrator.

Hint:
Instead of submitting non-Natural members containing inline macros, a better performance can be achieved by
copying the member as a macro object to a Natural library, compiling it, and then submitting it.

The following figure illustrates the use of inline macros:

Note:
If the macro facility is disabled (for example with the MACRO OFF session command), the function is
executed directly on the source.

Copyright Software AG 200224

Macro FacilityInline Macros

Example: Inline Macros in a Natural Program:

Below is an example of a Natural program which contains an INCLUDE-MACRO statement. The program reads
specified records from the file AUTOMOBILES:

DEFINE DATA LOCAL
 1 AUTOMOBILES-VIEW VIEW OF AUTOMOBILES
 2 MAKE
 2 MODEL
 2 COLOR
 1 #VALUE(A20)
 END-DEFINE
 *
 INPUT #VALUE (AD=MIT’_’)
 § INCLUDE-MACRO ’EXF1’ ’AUTOMOBILES’ ’MAKE’ ’MODEL’ ’COLOR’
 END

Below is the macro object EXF1 called by the INCLUDE-MACRO statement:

§ DEFINE DATA
 § LOCAL USING EXFL
 § LOCAL
 § 1 #I(N3)
 § END-DEFINE
 § *
 § DEFINE WINDOW WIND1 SIZE 13 * 60
 § BASE 10/10
 § CONTROL SCREEN
 *
 § SET WINDOW ’WIND1’
 § INPUT(AD=MIT’_’) ’ DISPLAY RECORD IN A FILE’
 § / ’ FILE NAME : ’ #FILE-NAME 0007 JWO 94-12-14 18:02
 § / ’ KEY FIELD : ’ #KEY
 § / ’ FIELD : ’ #FIELD(1) 2 0006 JWO 94-02-18 11:02
 § / ’ : ’ #FIELD(2)
 § / ’ : ’ #FIELD(3)
 § / ’ : ’ #FIELD(4)
 § / ’ : ’ #FIELD(5)
 § SET WINDOW OFF
 READ(1) §#FILE-NAME BY §#KEY STARTING FROM #VALUE
 INPUT ’ §#KEY : ’ 20T ’ ’ §#KEY (AD=OI)
 § FOR #I = 1 TO 5
 § IF #FIELD(#I) = ’ ’ ESCAPE BOTTOM END-IF
 / ’ §#FIELD(#I) : ’ 20T ’ ’ §#FIELD(#I) (AD=OD)
 § END-FOR
 END-READ

If you issue the RUN command from your Natural edit session, you are prompted for the variable VALUE which
corresponds to the starting value of the records to be read. If you enter the required value (for example, FERRARI),
you are prompted for the fields MAKE, MODEL and COLOR. Type in the required values and press Enter. The
output of the program is written to the user workpool under the name ##INLINE.

25Copyright Software AG 2002

Example: Inline Macros in a Natural Program:Macro Facility

DEFINE DATA LOCAL /* L0060
 1 AUTOMOBILES-VIEW VIEW OF AUTOMOBILES /* L0070
 2 MAKE /* L0080
 2 MODEL /* L0090
 2 COLOR /* L0100
 1 #VALUE(A20) /* L0110
 END-DEFINE /* L0120
 INPUT #VALUE (AD=MIT’_’) /* L0150
 READ(1) AUTOMOBILES-VIEW BY MAKE STARTING FROM #VALUE
 INPUT ’ MAKE : ’ 20T ’ ’ MAKE (AD=OI)
 / ’ MODEL : ’ 20T ’ ’ MODEL (AD=MI)
 / ’ COLOR : ’ 20T ’ ’ COLOR (AD=MI)
 END-READ
 END /* L0170

Example: Inline Macros in a PDS Member.

The macro object used as an example for the substitution of variables in JCL lines described in the subsection Macro
Objects could also be a PDS member: the job performs a SYSMAIN COPY function, with the source and destination
values given as variables:

§ RESET #JOBNAME(A8)
 § RESET #FD(N3) #FL(A8) #FF(N3)
 § RESET #TD(N3) #TL(A8) #TF(N3)
 § COMPRESS *INIT-USER ’SM’ INTO #JOBNAME LEAVING NO SPACE
 § INPUT ’ENTER PARAMETERS FOR LIBRARY COPY:’
 § / ’FROM: DBID:’ #FD ’FNR:’ #FF ’LIB:’ #FL
 § / ’TO : DBID:’ #TD ’FNR:’ #TF ’LIB:’ #TL
 //§#JOBNAME JOB JWO,MSGCLASS=X,CLASS=G,TIME=1400
 //COPY EXEC PGM=NATBAT21,REGION=2000K,TIME=60,
 // PARM=(’DBID=9,FNR=33,FNAT=(,15),FSIZE=19’,
 // ’EJ=OFF,IM=D,ID=’’;’’,MAINPR=1,INTENS=1’)
 //STEPLIB DD DISP=SHR,DSN=OPS.SYSF.V5.ADALOAD
 // DD DISP=SHR,DSN=OPS.SYSF.PROD.LOAD
 //DDCARD DD *
 ADARUN DA=9,DE=3380,SVC=249
 //CMPRINT DD SYSOUT=X
 //CMPRT01 DD SYSOUT=X
 //CMWKF01 DD DUMMY
 //CMSYNIN DD *
 LOGON SYSMAIN2
 CMD C C * FM §#FL DBID §#FD FNR §#FF TO §#TL DBID §#TD FNR §#TF REP
 FIN

If you issue the SUBMIT command from your PDS edit session, the macro processing statements are executed and
you are prompted for source and destination values in the following window:

 ENTER PARAMETERS FOR LIBRARY COPY:
 FROM: DBID: FNR: LIB:
 TO : DBID: FNR: LIB:

Assuming you enter 1 in the FROM: DBID and FNR fields, enter 2 in the TO: DBID and FNR fields, and enter
MYLIB in both LIB fields, the JCL lines are generated and the job is submitted to the operating system. You can
access and maintain the generated JCL in the user workpool under the name ##SUBMIT:

Copyright Software AG 200226

Macro FacilityExample: Inline Macros in a PDS Member.

//MBESM JOB JWO,MSGCLASS=X,CLASS=G,TIME=1400
 //COPY EXEC PGM=NATBAT21,REGION=2000K,TIME=60,
 // PARM=(’DBID=9,FNR=33,FNAT=(,15),FSIZE=19’,
 // ’EJ=OFF,IM=D,ID=’’;’’,MAINPR=1,INTENS=1’)
 //STEPLIB DD DISP=SHR,DSN=OPS.SYSF.V5.ADALOAD
 // DD DISP=SHR,DSN=OPS.SYSF.PROD.LOAD
 //DDCARD DD *
 ADARUN DA=9,DE=3380,SVC=249
 //CMPRINT DD SYSOUT=X
 //CMPRT01 DD SYSOUT=X
 //CMWKF01 DD DUMMY
 //CMSYNIN DD *
 LOGON SYSMAIN2
 CMD C C * FM 1 DBID 1 FNR 1 TO 2 DBID 2 FNR 2 REP
 FIN
 /*

Splitting Macro Objects into Modules
When you are writing a macro designed to generate larger amounts of data (for example, large batch jobs), certain
technical limitations (for example, ESIZE restrictions) are encountered. To avoid these problems, the macro object
should be split into several modules to create entire macro applications.

Because a cataloged Natural object of type P (program) can also be used as a macro, the object can also be addressed
from Natural ISPF with the commands COPY MAC, PLAY MAC or SUBMIT MAC. The FETCH RETURN
statement can then be used to branch from such a program to a real macro object, that generates JCL, for example.
This statement works for macro objects in the same way as it does for Natural programs: the text lines generated by
several macro objects called in succession, are simply accumulated in the User Workpool.

Example

The following program IG-----P can be executed with the command:

SUBMIT MAC PROB-DE1(IG-----P)

It executes a screen dialog and then addresses various other Natural objects. Some of these are programs
(IGDOCM-P, IGDNEW-P), which perform online actions, but others are macro objects (IGJOBC-Z, IGIEBC-Z),
that generate JCL lines.

27Copyright Software AG 2002

Splitting Macro Objects into ModulesMacro Facility

000010 DEFINE DATA
 000020 GLOBAL USING IF-----G
 000030 LOCAL USING XXCTIT-A
 000040 LOCAL
 ------ -- 740 line(s) not displayed
 007450 INPUT USING MAP ’IGINP-1M’
 007460 SET CONTROL ’WB’
 007470 DECIDE ON EVERY VALUE OF ##TYPE(#K)
 007480 VALUE ’D’
 007490 FETCH RETURN ’IGDOCM-P’ /* Create documentation member
 007500 VALUE ’H’
 007510 FETCH RETURN ’IGDNEW-P’ ##PARM(#K) /* Update the news member
 007520 VALUE ’X’ /* user defined
 007530 FETCH RETURN ##PROGRAM(#K) ##PARM(#K)
 007540 VALUE ’S’, ’U’ , ’B’ , ’I’ , ’Z’
 007550 IF #JOB-CREATED EQ FALSE
 007560 FETCH RETURN ’IGJOBC-Z’ /* Job-card
 007570 MOVE TRUE TO #JOB-CREATED
 007580 END-IF
 007590 VALUE ’I’
 007600 FETCH RETURN ’IGIEBC-Z’ ##PARM(#K) /* IEBCOPY

Saving Macro Output in the User Workpool
The output of objects that use the Natural ISPF macro facility is written to the user workpool at execution time. This
subsection summarizes which commands can be used for which object types to write output to the workpool and
under what name the output appears in the workpool:

Object Type Command Name of Output in Workpool

Macro RUN
EXECUTE
PLAY

macro name
macro name
##PLAY

Natural program
with inline macros

STOW/CAT/RUN ##INLINE

Macro and other
objects with inline
macros

SUBMIT ##SUBMIT

Note:
Workpool files are intermediate files only. If you wish to keep source that was generated in the workpool, it is
strongly recommended that you store it as another object elsewhere in Natural ISPF. See the subsection Saving
Output in the Section Common Objects of the Natural ISPF User’s Guide).

Copyright Software AG 200228

Macro FacilitySaving Macro Output in the User Workpool

	Macro Facility
	Macro Syntax
	Processing Statements
	Text lines

	Examples of Macro Usage
	1. Straight Substitution of Variables
	2. Define Loops
	3. Screen I/O
	4. File I/O
	5. Conditional Text Generation

	Using the Macro Feature in Natural ISPF
	Macro Objects
	RUN / EXECUTE a Macro
	Example 1: Using variables to generate a Natural program
	Example 2: Using variables to generate JCL lines.

	COPY / SUBMIT a Macro
	Example: COPY 1
	Example: COPY 2
	Example: SUBMIT

	Edit Macro
	Save/Get Variable Values
	GET-DATA Statement
	Function
	Restrictions
	Examples

	SAVE-DATA Statement
	Function
	Restrictions
	Compatibility
	Examples
	Example: Save Variable Values

	User-Edited Blocks in Generated Source
	Function
	Restrictions
	Example
	Example: User-Defined Blocks in Generated Source

	Change Syntax Format
	Function
	Restrictions
	Examples
	Example: Change Syntax Format

	Using Macro Objects in other Natural Applications
	Generating Natural Code in Natural Applications
	Function
	Examples

	Using Macro Objects with GET-DATA / SAVE-DATA Statements

	PLAY a Macro
	PLAY Command
	Generate Command Script
	Example

	Inline Macros
	Example: Inline Macros in a Natural Program:
	Example: Inline Macros in a PDS Member.

	Splitting Macro Objects into Modules
	Saving Macro Output in the User Workpool

