
Interface Subprograms
Several Natural and non-Natural subprograms are available to provide you with either internal information from the
Natural interface to DB2 or specific functions that are not available within the interface itself.

From within a Natural program, Natural subprograms are invoked with the CALLNAT statement and non-Natural
subprograms are invoked with the CALL statement.

This section covers the following topics:

Natural Subprograms
DB2SERV Interface

Natural Subprograms
The following Natural subprograms are provided:

NDBDBRM Subprogram
NDBDBR2 Subprogram
NDBERR Subprogram
NDBISQL Subprogram
NDBNOERR Subprogram
NDBNROW Subprogram
NDBSTMP Subprogram

Subprogram Function

NDBDBRM Checks whether a Natural program contains SQL access and whether it has been modified for static
execution.

NDBDBR2 Checks whether a Natural program contains SQL access and whether it has been modified for static
execution.

NDBERR Provides diagnostic information on the most recently executed SQL call.

NDBISQL Executes SQL statements in dynamic mode.

NDBNOERR Suppresses normal Natural error handling.

NDBNROW Obtains the number of rows affected by a Natural SQL statement.

NDBSTMP Provides a DB2 TIMESTAMP column as an alphanumeric field and vice versa.

All these subprograms are provided in the library SYSDB2 and should be copied to the SYSTEM or steplib library,
or to any library where they are needed. In addition, the subprogram DBTLIB2N and the subroutine DBDL219S
have to be copied from SYSDB2. They are used by NDBDBRM and NDBDBR2. The corresponding parameters
must be defined in a DEFINE DATA statement.

NDBDBRM Subprogram

The Natural subprogram NDBDBRM is used to check whether a Natural program contains SQL access and whether
it has been modified for static execution. It is also used to obtain the corresponding DBRM name from the header of
a Natural program generated as static (see also Preparing Natural Programs for Static Execution).

1Copyright Software AG 2002

Interface SubprogramsInterface Subprograms

A sample program called CALLDBRM is provided on the installation tape; it demonstrates how to invoke
NDBDBRM. A description of the call format and of the parameters is provided in the text member NDBDBRMT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBDBRM’ #LIB #MEM #DBRM #RESP

The various parameters are described in the following table:

Parameter Format/Length Explanation

#LIB A8 Contains the name of the library of the program to be checked.

#MEM A8 Contains the name of the program (member) to be checked

#DBRM A8 Returns the DBRM name.

#RESP I2 Returns a response code. The possible codes are listed below.

The #RESP parameter can contain the following response codes:

Code Explanation

0 The member #MEM in library #LIB has SQL access; it is static if #DBRM contains a value.

-1 The member #MEM in library #LIB has no SQL access.

-2 The member #MEM in library #LIB does not exist.

-3 No library name has been specified.

-4 No member name has been specified.

-5 The library name must start with a letter.

<-5 Further negative response codes correspond to error numbers of Natural error messages.

> 0 Positive response codes correspond to error numbers of Natural Security messages.

Copyright Software AG 20022

Interface SubprogramsNDBDBRM Subprogram

NDBDBR2 Subprogram

The Natural subprogram NDBDBR2 is used to check whether a Natural program contains SQL access and whether it
has been modified for static execution. It is also used to obtain the corresponding DBRM name from the header of a
Natural program generated as static (see also Preparing Natural Programs for Static Execution) and the time stamp
generated by the precompiler.

A sample program called CALLDBR2 is provided on the installation tape; it demonstrates how to invoke
NDBDBR2. A description of the call format and of the parameters is provided in the text member NDBDBR2T.

The calling Natural program must use the following syntax:

CALLNAT ’NDBDBR2’ #LIB #MEM #DBR2 #TIMESTAMP #PCUSER #PCRELLEV #ISOLLEVL #DATEFORM #TIMEFORM #RESP

The various parameters are described in the following table:

Parameter Format/Length Explanation

#LIB A8 Contains the name of the library of the program to be checked.

#MEM A8 Contains the name of the program (member) to be checked

#DBR2 A8 Returns the DBR2 name.

#TIMESTAMP B8 Consistency token generated by precompiler

#PCUSER A1 User ID used at precomplile (only SQL/DS)

#PCRELLEV A1 Release level of precompiler (only SQL/DS)

#ISOLLEVL A1 Precomplier isolation level (only SQL/DS)

#DATEFORM A1 Date format (only SQL/DS)

#TIMEFORM A1 Time format (only SQL/DS)

#RESP I2 Returns a response code. The possible codes are listed below.

The #RESP parameter can contain the following response codes:

Code Explanation

0 The member #MEM in library #LIB has SQL access; it is static if #DBRM contains a value.

-1 The member #MEM in library #LIB has no SQL access.

-2 The member #MEM in library #LIB does not exist.

-3 No library name has been specified.

-4 No member name has been specified.

-5 The library name must start with a letter.

<-5 Further negative response codes correspond to error numbers of Natural error messages.

> 0 Positive response codes correspond to error numbers of Natural Security messages.

3Copyright Software AG 2002

NDBDBR2 SubprogramInterface Subprograms

NDBERR Subprogram

The Natural subprogram NDBERR replaces the "E" function of the DB2SERV interface, which is still provided but
no longer documented. It provides diagnostic information on the most recent SQL call. It also returns the database
type which returned the error. NDBERR is typically called if a database call returns a non-zero SQL code (which
means a NAT3700 error); see also Error Handling.

A sample program called CALLERR is provided on the installation tape; it demonstrates how to invoke NDBERR.
A description of the call format and of the parameters is provided in the text member NDBERRT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBERR’ #SQLCODE #SQLSTATE #SQLCA #DBTYPE

The various parameters are described in the following table:

Parameter Format/Length Explanation

SQLCODE I4 Returns the SQL return code.

SQLSTATE A5 Returns a return code for the output of the most recently executed SQL statement.

SQLCA A136 Returns the SQL communication area of the most recent DB2 access.

DBTYPE B1 Returns the identifier (in hexadecimal format) for the currently used database
(where X’02’ identifies DB2).

Copyright Software AG 20024

Interface SubprogramsNDBERR Subprogram

NDBISQL Subprogram

The Natural subprogram NDBISQL is used to execute SQL statements in dynamic mode. The SELECT statement
and all SQL statements which can be prepared dynamically (according to the DB2 documentation) can be passed to
NDBISQL.

A sample program called CALLISQL is provided on the installation tape; it demonstrates how to invoke NDBISQL.
A description of the call format and of the parameters is provided in the text member NDBISQLT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBISQL’ #FUNCTION #TEXT-LEN #TEXT (*) #SQLCA #RESPONSE

The various parameters are described in the following table:

Parameter Format/Length Explanation

#FUNCTION A8 For valid functions, see below.

#TEXT-LEN I2 Length of the SQL statement or of the buffer for the return area.

#TEXT A1(1:V) Contains the SQL statement or receives the return code.

#SQLCA A136 Contains the SQLCA.

#RESPONSE I4 Returns a response code.

Valid functions for the #FUNCTION parameter are:

Function Parameter Explanation

CLOSE Closes the cursor for the SELECT statement.

EXECUTE #TEXT-LEN
#TEXT (*)

Executes the SQL statement.
Contains the length of the statement.
Contains the SQL statement.
The first two characters must be blank.

FETCH #TEXT-LEN
#TEXT (*)

Returns a record from the SELECT statement.
Size of #TEXT (in bytes).
Buffer for the record.

TITLE #TEXT-LEN
#TEXT (*)

Returns the header for the SELECT statement.
Size of #TEXT (in bytes);
receives the length of the header (= length of the record).
Buffer for the header line.

5Copyright Software AG 2002

NDBISQL SubprogramInterface Subprograms

The #RESPONSE parameter can contain the following response codes:

Code Function Explanation

5 EXECUTE The statement is a SELECT statement.

6 TITLE, FETCH Data are truncated; only set on first TITLE or FETCH call.

100 FETCH No record / end of data.

-2 Unsupported data type (for example, GRAPHIC).

-3 TITLE, FETCH No cursor open;
probably invalid call sequence or statement other than SELECT.

-4 Too many columns in result table.

-5 SQL code from call.

-6 Version mismatch.

-7 Invalid function.

-10 Interface not available.

-11 EXECUTE First two bytes of statement not blank.

Call Sequence

The first call must be an EXECUTE call. If the statement is a SELECT statement (that is, response code 5 is
returned), any sequence of TITLE and FETCH calls can be used to retrieve the data. A response code of 100
indicates the end of the data.

The cursor must be closed with a CLOSE call.

Function code EXECUTE implicitly closes a cursor which has been opened by a previous EXECUTE call for a
SELECT statement.

In TP environments, no terminal I/O can be performed between an EXECUTE call and any TITLE, FETCH or
CLOSE call that refers to the same statement.

Copyright Software AG 20026

Interface SubprogramsNDBISQL Subprogram

NDBNOERR Subprogram

The Natural subprogram NDBNOERR is used to suppress Natural NAT3700 errors caused by the next SQL call.
This allows a program controlled continuation if an SQL statement produces a non-zero SQL code. After the SQL
call has been performed, NDBERR is used to investigate the SQL code; see also Error Handling.

A sample program called CALLNOER is provided on the installation tape; it demonstrates how to invoke
NDBNOERR. A description of the call format and of the parameters is provided in the text member NDBNOERT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBNOERR’

There are no parameters provided with this subprogram.

Note:
Only NAT3700 errors (that is, non-zero SQL response codes) are suppressed, and also only errors caused by the next
following SQL call.

Restrictions with Database Loops

If NDBNOERR is called before a statement that initiates a database loop and an initialization error occurs, no
processing loop will be initiated, unless the IF NO RECORDS FOUND clause has been specified.
If NDBNOERR is called within a database loop, it does not apply to the processing loop itself, but only to the
SQL statement subsequently executed inside this loop.

NDBNROW Subprogram

The Natural subprogram NDBNROW is used to obtain the number of rows affected by the Natural SQL statements
"searched" UPDATE, "searched" DELETE, and INSERT. The number of rows affected is read from the SQL
communication area (SQLCA). A positive value represents the number of affected rows, whereas a value of "-1"
indicates that all rows of a table in a segmented tablespace have been deleted (see also *NUMBRT).

A sample program called CALLNROW is provided on the installation tape; it demonstrates how to invoke
NDBNROW. A description of the call format and of the parameters is provided in the text member NDBNROWT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBNROW’ #NUMBER

The parameter #NUMBER (I4) contains the number of affected rows.

7Copyright Software AG 2002

NDBNOERR SubprogramInterface Subprograms

NDBSTMP Subprogram

For DB2, Natural provides a TIMESTAMP column as an alphanumeric field (A26) of the format
"YYYY-MM-DD-HH.MM.SS.MMMMMM".

Since Natural does not yet support computation with such fields, the Natural subprogram NDBSTMP is provided to
enable this kind of functionality. It converts Natural time variables to DB2 time stamps and vice versa and performs
DB2 time stamp arithmetics.

A sample program called CALLSTMP is provided on the installation tape; it demonstrates how to invoke
NDBSTMP. A description of the call format and of the parameters is provided in the text member NDBSTMPT.

The functions available are:

Code Explanation

ADD Adds time units (labeled durations) to a given DB2 time stamp and returns a Natural time variable and a
new DB2 time stamp.

CNT2 Converts a Natural time variable (format T) into a DB2 time stamp (column type TIMESTAMP) and
labeled durations.

C2TN Converts a DB2 time stamp (column type TIMESTAMP) into a Natural time variable (format T) and
labeled durations.

DIFF Builds the difference between two given DB2 time stamps and returns labeled durations.

GEN Generates a DB2 time stamp from the current date and time values of the Natural system variable *TIMX
and returns a new DB2 time stamp.

SUB Subtracts labeled durations from a given DB2 time stamp and returns a Natural time variable and a new
DB2 time stamp.

TEST Tests a given DB2 time stamp for valid format and returns "TRUE" or "FALSE".

Note:
Labeled durations are units of year, month, day, hour, minute, second and microsecond.

Copyright Software AG 20028

Interface SubprogramsNDBSTMP Subprogram

DB2SERV Interface
DB2SERV is an Assembler program entry point which can be called from within a Natural program.

DB2SERV performs either of the following functions:

Function "D", which performs the SQL statement EXECUTE IMMEDIATE;
Function "P", which is used to establish the DB2 connection (TSO and batch mode only).

The parameter or variable values returned by each of these functions are checked for their format, length, and
number.

Function "D"

Function "D" performs the SQL statement EXECUTE IMMEDIATE. This allows SQL statements to be issued from
within a Natural program.

The SQL statement string that follows the EXECUTE IMMEDIATE statement must be assigned to the Natural
program variable STMT. It must contain valid SQL statements allowed with the EXECUTE IMMEDIATE statement
as described in the relevant IBM documentation. Examples can be found below and in the demonstration programs
DEM2* in library SYSDB2.

Note:
The conditions that apply to issuing the Natural END TRANSACTION or BACKOUT TRANSACTION statements
also apply when issuing the SQL COMMIT or ROLLBACK statements.

9Copyright Software AG 2002

DB2SERV InterfaceInterface Subprograms

Command Syntax

CALL ’DB2SERV’ ’D’ STMT STMTL SQLCA RETCODE

The variables used in this command are described in the following table:

Variable Format/Length Explanation

STMT Annn Contains a command string which consists of SQL syntax as described above.

STMTL I2 Contains the length of the string defined in STMT.

SQLCA A136 Returns the current contents of the SQL communication area.

RETCODE I2 Returns an interface return code. The following codes are possible:

0 No warning or error occurred.

4 SQL statement produced an SQL warning.

8 SQL statement produced an SQL error.

12 Internal error occurred;
the corresponding Natural error message number can be displayed with
SQLERR.

The current contents of the SQLCA and an interface return code (RETCODE) are returned. The SQLCA is a
collection of variables that are used by DB2 to provide an application program with information on the execution of
its SQL statements.

Copyright Software AG 200210

Interface SubprogramsFunction "D"

The following two examples show you how to use DB2SERV with function "D":

Example of Function "D" - DEM2CREA:

 **
 * DEM2CREA - CREATE TABLE NAT.DEMO *
 **
 *
 DEFINE DATA
 LOCAL USING DEMSQLCA
 LOCAL
 * Parameters for DB2SERV
 1 STMT (A250)
 1 STMTL (I2) CONST <250>
 1 RETCODE (I2)
 *
 END-DEFINE
 *
 COMPRESS ’CREATE TABLE NAT.DEMO’
 ’(NAME CHAR(20) NOT NULL,’
 ’ ADDRESS VARCHAR(100) NOT NULL,’
 ’ DATEOFBIRTH DATE NOT NULL,’
 ’ SALARY DECIMAL(6,2),’
 ’ REMARKS VARCHAR(500))’
 INTO STMT
 CALL ’DB2SERV’ ’D’ STMT STMTL SQLCA RETCODE
 *
 END TRANSACTION
 *
 IF RETCODE = 0
 WRITE ’Table NAT.DEMO created’
 ELSE
 FETCH ’SQLERR’
 END-IF
 END
 **

Note:
The functionality of the DB2SERV function "D" is also provided with the PROCESS SQL statement (see also SQL
Statements in the Natural Statements documentation).

11Copyright Software AG 2002

Function "D"Interface Subprograms

Example of Function "D" - DEM2SET:

 **
 * DEM2SET - Set Current SQLID *
 **
 *
 DEFINE DATA
 LOCAL USING DEMSQLCA
 LOCAL
 * Parameter for DB2SERV
 1 STMT (A250)
 1 STMTL (I2) CONST <250>
 1 RETCODE (I2)
 1 OLDSQLID (A8)
 1 NEWSQLID (A8)
 *
 END-DEFINE
 *
 SELECT DISTINCT CURRENT SQLID
 INTO OLDSQLID
 FROM SYSIBM.SYSTABLES
 ESCAPE BOTTOM
 END-SELECT
 *
 MOVE ’SET CURRENT SQLID="PROD"’;
 TO STMT
 CALL ’DB2SERV’ ’D’ STMT STMTL SQLCA RETCODE
 *
 IF RETCODE > 0
 FETCH ’SQLERR’
 ELSE
 SELECT DISTINCT CURRENT SQLID
 INTO NEWSQLID
 FROM SYSIBM.SYSTABLES
 ESCAPE BOTTOM
 END-SELECT
 *
 WRITE ’ Old SQLID was :’ OLDSQLID
 WRITE ’ New SQLID is :’ NEWSQLID
 END-IF
 *
 END
 **

When using SET CURRENT SQLID, the creator name of a table can be substituted by the current SQLID. This
enables you to access identical tables with the same table name but with different creator names. Thus, table names
should not be qualified by a creator name if this is to be substituted by the SQLID.

In all supported TP-monitor environments, the SQLID can then be kept across terminal I/Os until either the end of
the session or its resetting via DB2SERV.

Copyright Software AG 200212

Interface SubprogramsFunction "D"

Function "P"

Function "P" invokes an Assembler module named NDBPLAN, which is used to establish and/or terminate the DB2
connection under TSO and in batch mode. This allows a Natural application to perform plan switching under TSO
and in batch mode.

The program DEM2PLAN is an example for the use of DB2SERV with function "P".

The name of the current DB2 subsystem (#SSM) and the name of the new application plan (#PLAN) must be
specified. In addition, an interface return code (#RETCODE) and the DB2 reason code (#REASON) are returned.

Command Syntax

CALL ’DB2SERV’ ’P’ #SSM #PLAN #RETCODE #REASON

Variable Format/Length Explanation

#SSM A4 Contains the name of the current DB2 subsystem.

#PLAN A8 Contains the new plan name.

#RETCODE Returns an interface return code. The following codes are possible:

0 No warning or error occurred.

12 The specified new application plan is not scheduled.

99 The current environment is not a CAF environment.

nnn Return code from the CAF interface
(see also the relevant DB2 literature).

#REASON I4 Returns the reason code of the CAF interface (see also the relevant DB2 literature).

13Copyright Software AG 2002

Function "P"Interface Subprograms

Example of Function "P" - DEM2PLAN:

 **
 * DEM2PLAN - Switch application plan under TSO/Batch with CAF interface *
 **
 *
 DEFINE DATA
 LOCAL
 * Parameter for DB2SERV
 01 #SSM (A4)) CONST <’DB2’>
 01 #PLAN (A8
 01 #RETCODE (I2)
 01 #REASON (I4)
 *
 END-DEFINE
 *
 INPUT ’PLEASE ENTER NEW PLAN NAME’ #PLAN (AD=’_’I)
 *
 END TRANSACTION
 *
 CALL ’DB2SERV’ ’P’ #SSM #PLAN #RETCODE #REASON
 *
 DECIDE FOR FIRST VALUE OF #RETCODE
 *
 VALUE 0
 IGNORE
 VALUE 99
 INPUT 12/23 ’This is not a CAF environment !!’
 VALUE 8,12
 INPUT 12/18 ’New plan not scheduled, reason code’
 #REASON (AD=OI EM=H(4))
 NONE
 INPUT 12/15 ’CAF interface error’
 #RETCODE (AD=OI EM=Z(3))
 ’with reason code’
 #REASON (AD=OI EM=H(4))
 *
 END-DECIDE
 *
 END
 **

Important:
Plan switching under TSO and in batch mode is possible with the CAF interface only; see also the section Plan
Switching under TSO and in Batch Mode.

Copyright Software AG 200214

Interface SubprogramsFunction "P"

	Interface Subprograms
	Natural Subprograms
	NDBDBRM Subprogram
	NDBDBR2 Subprogram
	NDBERR Subprogram
	NDBISQL Subprogram
	Call Sequence

	NDBNOERR Subprogram
	Restrictions with Database Loops

	NDBNROW Subprogram
	NDBSTMP Subprogram

	DB2SERV Interface
	Function "D"
	Command Syntax

	Function "P"
	Command Syntax

