Programming Language Programming Language

Programming Language

The following programming enhancements are provided with Natural 4.1:

New Statements

Enhanced Statements

Dynamic Variables

Optional Parameters

SPECIFIED Option Logical Condition
MASK Option in Logical Condition
New System Variables

New Statements

The following new Natural statements will be available with Natural Version 4.1:

EXPAND
REDUCE

EXPAND Statement

The new statement EXPAND will be used to increase the allocated memory size of a dynamic variable.

In the statement, you specify the name of the variable and its desired size. If that size is smaller than the size
currently allocated for that dynamic variable, the EXPAND statement will have no effect.

For further information, se@ynamic Variables

REDUCE Statement

The new statement REDUCE will be used to reduce the allocated memory size of a dynamic variable.

In the statement, you specify the name of the variable and its desired size.

The allocated memory of the dynamic variable which is beyond the given size is released immediately when the
statement is executed.

If the currently used size (as contained in the new system variable *LENGTH) of the dynamic variable is greater
than the given size, *LENGTH is set to the given size and the content of the variable is truncated (but not modified).
If the specified size is larger than the currently allocated size of the dynamic variable, the REDUCE statement will
be ignored.

For further information, se@ynamic Variables

Enhanced Statements

The following Natural statements will be enhanced with Natural Version 4.1:

CALL

CALLNAT

DEFINE DATA
DEFINE WORK FILE
ESCAPE

Copyright Software AG 2002 1



CALL Statement Programming Language

FIND
HISTOGRAM
INPUT
INTERFACE
METHOD
PERFORM
PROPERTY
READ

SEND METHOD

CALL Statement
The CALL statement will provide the following enhancements:

® The limit of 32KB for the maximum length per parameter will be removed.

® A new option, INTERFACEA4, will provide for enhanced parameter descriptions. Also, with this option the
number of parameters to be passed to the invoked non-Natural program (currently 40) will no longer be
restricted.

CALLNAT Statement
The CALLNAT statement will provide the following enhancements:

e Notation "nX" - seeOptional Parameters
® Parameter Transfer with Dynamic Variables- seeDynamic Variables

DEFINE DATA Statement

The DEFINE DATA statement will provide two new options to be specified ipan@meter-data-definitionf a
DEFINE DATA PARAMETER statement:

DYNAMIC |If you define a parameter as DYNAMIC, its length will be determined at runtime. For further
information, se®ynamic Variables

OPTIONAL |By default, parameter is defined without OPTIONAL, which means that a ralagmust be
passed from the invoking object to the parameter. If you define a parameter as OPTIONAL, & value
can - but need not - be passed from the invoking object to this parameter. For further information,

seeOptional Parameters

DEFINE WORK FILE Statement

The new option TYPE STREAM will allow you to specify that a work file is to be used in stream mode (instead of
record-oriented mode).

ESCAPE Statement

The ESCAPE statement will provide the following enhancements:

e ESCAPE TOP REPOSITION
e ESCAPE OBJECT

2 Copyright Software AG 2002



Programming Language FIND Statement

ESCAPE TOP REPOSITION

This new option will allow you to dynamically reposition within a READ statement loop that is being executed, and
restart the READ loop with another start value.

When an ESCAPE TOP REPOSITION statement is executed, Natural will immediately continue processing at the
top of the active READ loop, using the current value of the search variable as new start value.

At the same time, ESCAPE TOP REPOSITION will reset the system variable *COUNTER to "0".

ESCAPE TOP REPOSITION can be specified within a READ statement loop accessing an Adabas, DL/I or VSAM
database. The READ statement concerned must contain the option WITH REPOSITION.

ESCAPE OBJECT

This new option will allow you to stop an inline subroutine and continue processing with the programming object
which has invoked the object containing the inline subroutine.

When used within a subroutine, the existing option ESCAPE ROUTINE causes processing to continue with the
statement following the PERFORM statement that has invoked the subroutine. In the casénaf subroutine this

would be within the same programming object. If nested subroutines are used, that is, if the PERFORM statement is
itself contained within another inline subroutine, it would take a lot of coding to leave the active programming object
entirely.

The new option ESCAPE OBJECT, however, will not only stop the processing of the inline subroutine, but also of
the programming object containing the inline subroutine; processing will then continue with the object invoking that
programming object. This will be particularly useful when multiple nested inline subroutines are used, as a single
ESCAPE OBJECT statement will suffice to leave the programming object altogether.

ESCAPE OBJECT will only be relevantimline subroutines. In external subroutines, subprograms and invoked
programs, its would have the same effect as ESCAPE ROUTINE.

As with ESCAPE ROUTINE, the IMMEDIATE option to suppress loop-end processing will also be available with
ESCAPE OBJECT.

FIND Statement

The FIND statement will provide the following enhancement:

Multi-Fetch

Traditionally, Natural retrieves database records one by one. However, Adabas’s Multi-Fetch functionality makes it
possible to retrieve more than one database record per database access. To make use of this functionality, the FIND
statement will provide a new MULTI-FETCH option. With this option, you will be able to specify the number of
records to be retrieved per database access when the statement is executed. The MULTI-FETCH option will be
available for accesses to Adabas databases only. For database updates, the MULTI-FETCH option cannot be used.

MULTI-FETCH only affects the way in which the records are retrieved from the database. The program’s

record-processing logic will not be affected; that is, the number of FIND processing loops executed will be the same
as without MULTI-FETCH, and the records will still be processed one by one.

HISTOGRAM Statement

The HISTOGRAM statement will provide the following enhancements:

Copyright Software AG 2002 3



HISTOGRAM Statement Programming Language

Dynamic Change of Reading Direction
New Comparators

Multi-Fetch

ENDING AT Controlled by Database

Dynamic Change of Reading Direction

With Natural 3.1, the database field values to be retrieved by a HISTOGRAM statement can be read in ascending or
descending sequence. This is determined by the keywords ASCENDING and DESCENDING in the SEQUENCE
clause. Also, the VARIABLE option allows you to determine the reading direction at runtime. However, once the
HISTOGRAM statement is executed, you cannot change the reading direction.

With Natural 4.1, the new keyword DYNAMIC will be provided for the SEQUENCE clause: It will allow you to
change the reading direction from ascending to descending (or vice versa) within an active HISTOGRAM processing
loop that is being executed, without having to restart the loop. After the keyword DYNAMIC, you will specify a
variable to which the values "A" (for "ascending") or "D" (for "descending") can be assigned. The DYNAMIC

option will be available for accesses to Adabas and DB2 databases.

New Comparators

In addition to the comparators EQUAL TO, STARTING FROM and ENDING AT, Natural 4.1 will provide the
possibility to specify start/end values with the following options:

e |ESS THAN

® GREATER THAN
® LESS EQUAL

e GREATER EQUAL

These new comparators will be available for accesses to Adabas, DB2, DL/I and VSAM databases.

Multi-Fetch

Traditionally, Natural retrieves database records one by one. However, Adabas’s Multi-Fetch functionality makes it
possible to retrieve more than one database record per database access. To make use of this functionality, the
HISTOGRAM statement will provide a new MULTI-FETCH option. With this option, you will be able to specify

the number of records to be retrieved per database access when the statement is executed. The MULTI-FETCH
option will be available for accesses to Adabas databases only.

MULTI-FETCH only affects the way in which the records are retrieved from the database. The program’s
record-processing logic will not be affected; that is, the number of HISTOGRAM processing loops executed will be
the same as without MULTI-FETCH, and the records will still be processed one by one.

ENDING AT Controlled by Database

With Natural 3.1, if the ENDING AT clause is used to limit the range of values to be read, Natural internally reads
one value beyond the specified ENDING AT value in order to determine the end of the range to be read. This has
been necessary due to restrictions inherent in the underlying databases.

With Natural 4.1, these restrictions no longer apply, and the ENDING AT value can now be determined by the
accessed databases themselves. This means that Natural will be able to read the values only until including the
specified ENDING AT value, but not beyond.

As this may lead to different results and so as not confuse the "old" end-value mechanism with the "new" one, a new
keyword, TO, will be provided for the specification of the database-controlled end value. The existing ENDING AT
clause will not be affected and will continue to yield the same results as before.

4 Copyright Software AG 2002



Programming Language INPUT Statement

The new keyword TO will be available for Adabas, DB2, DL/I and VSAM databases.

INPUT Statement

The INPUT statement will provide the following enhancement:

Selection Boxes

Natural 4.1 will provide the possibility to attach selection boxes to input fields. These selection boxes are similar to
those used in graphical user interfaces and are a comfortable alternative to helproutines attached to fields.

To assign a selection box to a field, the INPUT statement will provide the new field attribute SB. With SB, you
specify the contents of the selection box, that is, the values, or the name of an array field that provides the values, to
be displayed within the selection box. The size and position of the selection box will be determined automatically
(using the same algorithm as for help windows).

For a field for which the field attribute SB is specified, a selection-box indicator "V" will be displayed next to the

field. To invoke the selection box, the user positions the cursor on the "V" and presses the help key. The selection
box will then be displayed as a window on the screen. If the list of values within the selection box is longer than the
selection box itself, the user can scroll by placing the cursor on the "More/Top/Bottom™ lines of the selection box

and pressing ENTER. To select a value from the selection box, the user positions the cursor on the desired value and
presses ENTER. The selected value will then be copied into the input field.

The field attribute SB will only be available for alphanumeric fields.

INTERFACE Statement

The new option EXTERNAL will allow you to declare a NaturalX interface definition to be external.

METHOD Statement

The new ID clause will allow you to specify a dispatch ID for a NaturalX interface definition.

PERFORM Statement

The PERFORM statement will provide the following enhancements:

e Notation "nX" - seeOptional Parameters
® Parameter Transfer with Dynamic Variables- seeDynamic Variables

PROPERTY Statement

The new ID clause will allow you to specify a dispatch ID for a NaturalX interface definition.

READ Statement

The READ statement will provide the following enhancements:

Dynamic Change of Reading Direction

New Comparators

Multi-Fetch

ENDING AT Controlled by Database

WITH REPOSITION for Non-VSAM Databases

Copyright Software AG 2002 5



READ Statement Programming Language

Dynamic Change of Reading Direction

With Natural 3.1, the records to be retrieved by a READ statement can be read in ascending or descending sequence.
This is determined by the keywords ASCENDING and DESCENDING is¢heence/range-specificatiofilso,

the VARIABLE option allows you to determine the reading direction at runtime. However, once the READ

statement is executed, you cannot change the reading direction.

With Natural 4.1, the new keyword DYNAMIC will be provided for geguence/range-specificatidbwill allow

you to change the reading direction from ascending to descending (or vice versa) within an active READ processing
loop that is being executed, without having to restart the loop. After the keyword DYNAMIC, you will specify a
variable to which the values "A" (for "ascending") or "D" (for "descending") can be assigned. The DYNAMIC

option will be available for accesses to Adabas and DB2 databases.

New Comparators

In addition to the field/value comparators EQUAL TO, STARTING FROM and ENDING AT, Natural 4.1. will
provide the possibility to specify start/end values with the following options:

e LESS THAN
e GREATER THAN
e LESS EQUAL

e GREATER EQUAL

These new comparators will be available for accesses to Adabas, DB2, DL/I and VSAM databases.

Multi-Fetch

Traditionally, Natural retrieves database records one by one. However, Adabas’s Multi-Fetch functionality makes it
possible to retrieve more than one database record per database access. To make use of this functionality, the READ
statement will provide a new MULTI-FETCH option. With this option, you will be able to specify the number of

records to be retrieved per database access when the statement is executed. The MULTI-FETCH option will be
available for accesses to Adabas databases only. For database updates, the MULTI-FETCH option cannot be used.

MULTI-FETCH only affects the way in which the records are retrieved from the database. The program’s
record-processing logic will not be affected; that is, the number of READ processing loops executed will be the same
as without MULTI-FETCH, and the records will still be processed one by one.

ENDING AT Controlled by Database

With Natural 3.1, if the ENDING AT clause is used to limit the range of values to be read, Natural internally reads
one value beyond the specified ENDING AT value in order to determine the end of the range to be read. This has
been necessary due to restrictions inherent in the underlying databases.

With Natural 4.1, these restrictions no longer apply, and the ENDING AT value can now be determined by the
accessed databases themselves. This means that Natural will be able to read the values only until including the
specified ENDING AT value, but not beyond.

As this may lead to different results and so as not confuse the "old" end-value mechanism with the "new" one, a new
keyword, TO, will be provided for the specification of the database-controlled end value. The existing ENDING AT
clause will not be affected and will continue to yield the same results as before.

The new keyword TO will be available for Adabas, DB2, DL/I and VSAM databases.

6 Copyright Software AG 2002



Programming Language Dynamic Variables

WITH REPOSITION for Non-VSAM Databases

Due to the introduction of the ndaSCAPEstatement option TOP REPOSITION, the WITH REPOSITION option
of the READ statement will no longer be restricted to VSAM databases, but will also be available for Adabas and
DL/l databases.

SEND METHOD Statement

The SEND METHOD statement will provide the following enhancement:

e Notation "nX" - seeOptional Parameters

Dynamic Variables

In addition to removing the size limitations for alphanumeric and binary variableSi¢seef Alphanumeric and
Binary Variable}, Natural Version 4.1 will make it possible to allocate the length of such variables dynamically at
runtime.

As the maximum size of large data structures (for example, pictures, sounds, videos) may not exactly be known at
the time an application is developed, Natural provides for the definition of alphanumeric and binary variables with
the attribute DYNAMIC. The value space of variables which are defined with this attribute will be extended
dynamically at runtime when it becomes necessary (for example, during an assignment operation: #picturel :=
#picture2). This means that large binary and alphanumeric data structures may be processed in Natural without
having to define a length at development time.

The new Natural system variable *LENGTH will be provided to obtain the value space (number of bytes) currently
used for a given dynamic variable at runtime.

For performance optimization and also to avoid problems with too much or too little allocated memory space, the

new statement&8XPAND andREDUCEwiill be introduced. If the space allocated for a dynamic variable is no

longer needed, the REDUCE statement can be used to reduce the allocated space (to zero or any other desired size).
If the upper limit of memory usage is known for a specific dynamic variable, the EXPAND statement can be used to
set the used space for the dynamic variable to this specific size.

Dynamic variables can be used, for example, in CALLNAT or PERFORM statements.

Optional Parameters

Natural Version 4.1 will support the use of optional parameters in subprograms, external subroutines and dialogs.

An optional parameter is a field defined with the keyword OPTIONAL in the DEFINE DATA PARAMETER
statement of an invoked object (subprogram, external subroutine or dialog). To such a field, a value can - but need
not - be passed from an invoking object.

In the invoking statement (CALLNAT, PERFORM or SEND METHOD), the notatis used to indicate
optional parameters for which no values are passed.nXitfou specify that the nextparameters are to be
skipped; that is, for the nertparameters no values are passed to the invoked object.

For example:

Copyright Software AG 2002 7



SPECIFIED Option in Logical Condition

Programming Language

Subprogram:

DEFINE DATA PARAMETER
1#P1 (A10)

1 #P2 (A10)OPTIONAL

1 #P3 (A10)

1 #P4 (A10)OPTIONAL

1 #P5 (A10)OPTIONAL
END-DEFINE

Invoking Object:

CALLNAT 'MY-SUB'’ #A #B #C #D #E
or

CALLNAT 'MY-SUB’ #A 1X #C2X

or

CALLNAT 'MY-SUB’ #A #B #C 1X #E

To check in the invoked object whether or not an optional parameter has received a value from the invoking object,
the newSPECIFIED optiorto be used in a logical condition will be available.

SPECIFIED Option in Logical Condition

With the new SPECIFIED option to be specified in a logical condition, you will be able to check whether or not an
optional parametan an invoked object (subprogram, external subroutine or dialog) has received a value from the
invoking object.

If you process an optional parameter which has not received a value, this will cause a runtime error. To avoid such
an error, you use the SPECIFIED option in the invoked object to check whether an optional parameter has received a
value or not, and then only process it if it has.

For example:

IF #OPTFIELD1 SPECIFIED THEN ... ELSE ...
IF #OPTFIELD2 NOT SPECIFIED THEN ... ELSE ...

For a field not defined as OPTIONAL, the SPECIFIED condition will always be "TRUE".

MASK Option in Logical Condition

With Version 4.1, it will be possible to check positions of a field for a date in Julian format. This will be particularly
useful when a MASK option is used in conjunction with a MOVE EDITED statement that uses a Julian date in its
edit mask.

See also th€OMPOPT system commarfidr enhancements related to the MASK option.

New System Variables

The following new Natural system variables will be available with Natural Version 4.1:

8 Copyright Software AG 2002



Programming Language

New System Variables

System Variable

Description

*CPU-TIME

Contains the CPU time used by the Natural
process.

*DATV

Contains the current date in the format
dd-mon-yyyy

(wheremonis the name of the month,
abbreviated to 3 characters).

*DATVS

Contains the current date in the format
ddmonyyyy

(wheremonis the name of the month,
abbreviated to 3 characters).

*HOSTNAME

Contains the name of the machine on which
Natural is running.

*LENGTH(field)

Contains the currently used length (in bytes
afield defined as a dynamic variable. See al
Dynamic Variables

of
50

*NATVERS

Contains the Natural version number.

*PARM-USER

Contains the name of the parameter module]
currently in use.

*PATCH-LEVEL

Contains the Natural patch-level number.

*PID

Contains the current process ID.

Copyright Software AG 2002



	Programming Language
	New Statements
	EXPAND Statement
	REDUCE Statement

	Enhanced Statements
	CALL Statement
	CALLNAT Statement
	DEFINE DATA Statement
	DEFINE WORK FILE Statement
	ESCAPE Statement
	ESCAPE TOP REPOSITION
	ESCAPE OBJECT

	FIND Statement
	Multi-Fetch

	HISTOGRAM Statement
	Dynamic Change of Reading Direction
	New Comparators
	Multi-Fetch
	ENDING AT Controlled by Database

	INPUT Statement
	Selection Boxes

	INTERFACE Statement
	METHOD Statement
	PERFORM Statement
	PROPERTY Statement
	READ Statement
	Dynamic Change of Reading Direction
	New Comparators
	Multi-Fetch
	ENDING AT Controlled by Database
	WITH REPOSITION for Non-VSAM Databases

	SEND METHOD Statement

	Dynamic Variables
	Optional Parameters
	SPECIFIED Option in Logical Condition
	MASK Option in Logical Condition
	New System Variables


