
Class Builder
The following topics are covered below:

Introduction
What is the Class Builder?
Class Builder Interface
Class Builder Nodes
Node Properties
Adding Class Components
Renaming Class Components
Removing Class Components
Editing Class Components
Using Interfaces from several Classes
Locking Concept
Tutorial
Glossary

Introduction
The Class Builder is a tool which can be used to display a Natural class in a structured hierarchical order, and also to
manage the class and its components efficiently.

A Natural class can be composed of various components: "real" Natural objects (for example, an object data area) or
objects which exist only in the class source (for example, interface components).
The Class Builder represents each component of the class in the form of a node. By selecting these nodes, the class
and its components can be managed in a context-sensitive manner.

This section explains how to create and modify a Natural class with the Class Builder. Please refer to the NaturalX
documentation to become acquainted with the general usage of Natural classes.

1Copyright Software AG 2001

Class BuilderClass Builder

What is the Class Builder?
The Class Builder provides the following features:

It is fully integrated in the general Natural user interface.
The components of a class are displayed as nodes (library workspace or list view) in the same way as Natural
modules. Every type of node has a special icon assigned which provides detailed information for that
component.
Natural objects which are used by a class (for example, ODA), can be managed (edit, stow, ...) by the Class
Builder.
Class and interface GUIDs (Global Unique IDs) are generated and hidden.
Class comments (one comment for every class component) can be created and changed by the Class Builder.
The class source is generated automatically.

Which Classes can be handled by the Class Builder?

The Class Builder can manage any class which can be successfully checked. No special statements must be written
in the class source. This means that it is possible to change classes which have been generated with the Class Builder
with the program editor and vice versa. This is especially important if a class is used on several platforms in that the
Class Builder is not available on all Natural platforms.

The class syntax is highly "flexible", i.e., it is possible to obtain the same runtime behavior with different syntax
constructs. This was important for earlier Natural versions, because the user had to type all class code himself. With
the Class Builder, this is no longer necessary; the Class Builder will generate the class code and create Natural
objects, which are used by the class. The Class Builder will generate only the most reasonable code.
For this reason, the following features are not supported by the Class Builder:

Copyright Software AG 20012

Class BuilderWhat is the Class Builder?

create a new GUID LDA: The Class Builder generates a GUID for the class and the interfaces of the class. If
you wish to define the GUID yourself, you must create a LDA outside of the Class Builder and then link it to
the class.
create new inline data definitions: The Class Builder only provides for the creation of new data areas. This is
because data definitions are usually used in several places (for example, method parameter in class and method
subprogram) and it is fault-prone if the same inline data definitions have to be used more than once.
use data from inline data definitions for assignments in the Class Builder: If data definitions have to be
assigned to class components in the case of unique IDs and property implementations, the Class Builder offers a
list of all data definitions from the corresponding data areas. Data from inline data definitions will not be
included in these lists. This means, for example, that the object data variable which is defined inline cannot be
used as property implementation.

Although the Class Builder does not permit the creation of all class syntax constructs, it can nonetheless read
existing classes with these constructs and can be used to modify these constructs.

If the Class Builder cannot read a class because it is syntactically incorrect, it displays an error message and activates
the program editor. The syntax error must be corrected in the program editor. After the class has been saved, it can
be opened with the Class Builder.

Note: If you save a class with the Class Builder, the class source will be generated. This means that any special
source formats, such as indentation, will be lost.

3Copyright Software AG 2001

Which Classes can be handled by the Class Builder?Class Builder

When is a Class saved?

When a class is opened in the Class Builder, the contents are read from the class source and stored in an internal
structure. If you then change the class, these changes are performed only on the internal structures. The changes are
visible in all views of Natural. So, for example, when a new interface is added in the library workspace, a node for
this interface will also be created in the "Interfaces" list view of the class. If you want to save your changes, you
must execute "Save", "Save As" or "Stow" for the class.

If you create a new class, this does not automatically create a new class module. This is only done when "Save",
"Save As" or "Stow" is executed for the class. For this reason, a "new" class will not be visible in the File View of
the library workspace until it is saved the first time.

If you want to remove the changes which you applied to a class, you can use the "Restore" command. This
command will restore the class as it is contained in the class module, i.e., the last saved state.

If Natural is ended and unsaved classes exits, the user will be asked if the classes should be saved.

Class Comments

The Class Builder tries to assign every comment found in the class source to one component of the class. A comment
is usually assigned to the following class component. For example a comment which is found before the definition of
an interface is taken as comment for this interface.

The comments can be changed and created via the "Properties" menu item, which is available for all class component
nodes. For more information, see Node Properties.

Note: If a class is read by the Class Builder for the first time, it is possible that the Class Builder assigns the
comments to a component other than the one the user expects. No comment will be lost when the class is saved, but
the user should check if the comments are assigned to the correct components.

When a class is saved by the Class Builder for the first time, all comments will be marked with a special tag. This
ensures that the comment assignment is correct when this class is read later by the Class Builder.

Copyright Software AG 20014

Class BuilderWhen is a Class saved?

Class Builder Interface
The Class Builder is available in the logical and flat view of Natural. It is fully integrated in the general Natural user
interface which shows the Natural objects as nodes of a tree or list view.
In the Library Workspace, a class can be "opened" by expanding the class node. The class nodes are grouped
hierarchically. For example, the interface is a child of the class node and the method is a child of the interface node.
Every class node provides the same features as all other nodes, for example, a context menu which allows
node-specific actions. Most of the class nodes that have child nodes can be opened as a list view which displays all
children of this node. The List View shows some more information about the nodes (for example, the library in
which an object data area is located). The list view nodes offer the same context menu as the corresponding library
workspace nodes. The columns of a list view can be sorted alphabetically.

5Copyright Software AG 2001

Class Builder InterfaceClass Builder

Logical View

The class nodes of the logical view are inscribed with the class name, i.e., the name that is used when an object of
this class is created with the CREATE OBJECT statement.
In the logical view the nodes are, as a basic principle, grouped by their type. This is also valid for the class nodes.
Class nodes of the same type are collected under a group node which describes the type with its contents. Therefore,
all object data nodes are children of the object data group node named "Object Data".

Library Workspace

You can expand and collapse nodes of a class in the Library Workspace. Expand displays all child nodes and
Collapse hides all child nodes of the selected class node.
The logical view provides you with a structured view of the class. You can then expand those class nodes on which
you wish to work. For more information, refer to the Natural Studio documentation.

List Views

Most of the parent nodes of a class have an assigned list view which can be opened with the "Open" command from
the context menu. This section describes the information which is shown in the list views of the logical view.For
more information about List Views, refer to the Natural Studio documentation.

Class List View

The class list view consists of group nodes. The list view for a group node can be opened with the "Open" command.

The following group nodes exist:

"Object Data" group : is displayed if the class uses a ODA
"Local Data" group : is displayed if the class uses a LDA for class or interface GUIDs
"Interface Modules" group : is displayed if the class uses an Interface Module (see Using Interfaces from
several Classes).
"Interfaces" group : is displayed if the class has defined interfaces (internal or external)

The class list view has the following columns:

Type: type of the node (e.g. Object Data)
Count: number of components of the specified type

Copyright Software AG 20016

Class BuilderLogical View

Object Data Group List View

The "Object Data" group list view consists of object data nodes. Choosing the "Open" command for a node will open
the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Object Data" group list view has the following columns:

Name: name of the object data module or "Inline" in the case of an inline data definition
Library : library where the object data module is located (is empty for inline data definitions or if the data area
has not yet been created)
Type: Natural type of the object data module ("Local Data Area", "Parameter Data Area" or "Inline Definition")

Local Data Group List View

The "Local Data" group list view consists of local data nodes. Choosing the "Open" command for a node will open
the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Local Data" group list view has the following columns:

Name: name of the local data module or "Inline" for an inline data definition.
Library : library where the local data module is located (empty for inline data definitions or if the data area has
not yet been created).
Type: Natural type of the local data module ("Local Data Area", "Parameter Data Area" or "Inline Definition").

Interface Modules Group List View

The "Interface Modules" group list view consists of interface module nodes (see Interface Module List View).
Choosing the "Open" command for a node will open the list view (see Using Interfaces from several Classes) for this
particular interface module.

The "Interface Modules" group list view has the following columns:

Name: name of the interface module (copycode name)
Library : library where interface module is located.

Interface Module List View

The interface module list view consists of interface nodes. Choosing the "Open" command for a node will open the
list view (see Interface List View) for this particular interface.

The interface module list view has the following columns:

Name: name of the interface.

7Copyright Software AG 2001

Logical ViewClass Builder

Interfaces Group List View

The "Interfaces" group list view consists of interface nodes. Choosing the "Open" command for a node will open the
list view (see Interface List View) for this particular interface.

The "Interfaces" group list view has the following columns:

Name: name of the interface.
Component Type: "Internal Interface" for interfaces which are defined in the class and "External Interface" for
interfaces which are defined in an interface module included in this class.
Defined In: interface module name for externally defined interfaces (empty for internal interfaces).

Interface List View

The interface list view consists of group nodes. Choosing the "Open" command for a node will open a list view for
this particular group.

The following group nodes exist:

"Properties" group : is displayed if the interface contains property definitions
"Methods" group : is displayed if the interface contains method definitions.

The interface list view has the following columns:

Type: type of the node (e.g. Properties).
Count: number of components of the specified type.

Properties Group List View

The "Properties" group list view consists of property nodes. The "Property" group list view has the following
columns:

Name: name of the property.
Format: format of property.
Length: length of property.
Dimension: dimension of property.
Read-only: shows whether property is read-only or not.
ODA Variable: name of assigned ODA variable

Copyright Software AG 20018

Class BuilderLogical View

Methods Group List View

The "Methods" group list view consists of method implementation and parameter data nodes. For every method of
the interface, it contains one method implementation (subprogram) node and one node for every parameter data
definition of the method.
Choosing the "Open" command for a node of this list view will open the editor for the particular node type (for
example, program editor for method implementation node).

The "Methods" group list view has the following columns:

Name: name of the method. The parameter data nodes are numbered from 1 to n (for example, INIT (2) for the
second parameter data node of method INIT).
Implementation: only for method implementation node: the name of the subprogram which implements the
method
Parameter Data: only for method parameter data node: the name of the parameter data module or "Inline" for
an inline data definition
Library : depending on the node type, library where implementation or parameter data module is located (empty
for inline data definitions or if the Natural module has not yet been created).

Method Parameter Data Group List View

The "Parameter Data" group list view consists of parameter data nodes. Choosing the "Open" command for a node
will open the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Parameter Data" group list view has the following columns:

Name: name of the parameter data module or "Inline" for an inline data definition.
Library : library where parameter data module is located (empty for inline data definitions or if the data area
has not yet been created)
Type: Natural type of parameter data module ("Parameter Data Area" or "Inline Definition")

9Copyright Software AG 2001

Logical ViewClass Builder

Copyright Software AG 200110

Class BuilderLogical View

Flat View

The class nodes of the flat view show the class module name.
Unlike the logical view, the flat view does not contain any group nodes. The flat view has the advantage that the
level where a specific class component is displayed is lower compared to the logical view, and thereby provides you
with a better class overview.

Library Workspace

You can expand and collapse nodes of a class in the Library Workspace. Expand displays all child nodes and
Collapse hides all child nodes of the selected class node. The flat view provides you with a general overview of the
class. It lists all sub-components of a class component on the same level. For example, if an interface node is
expanded, all properties and methods of the interface will be displayed as child nodes of the interface node. For more
information, see Natural Application Development Environment.

List Views

The flat view supports only a few list views because of the low node nesting level. The list views can be opened with
the "Open" command from the context menu. This section describes the information which is shown in the list views
of the flat view. For more information about List Views, refer to the Natural Studio documentation.

Class List View

The class list view contains a node for every child component.

The following nodes exist:

Object Data node for every ODA of the class. Choosing the "Open" command of the node opens the data area
editor for data areas and a special Class Builder dialog for inline definitions
Local Data node for every GUID LDA of the class. Choosing the "Open" command of the node opens the data
area editor for data areas and a special Class Builder dialog for inline definitions.
Interface Module node for every interface module which is used by the class.Choosing the "Open" command
of the node will open the interface module list view.
Interface node for every interface of the class (external and internal). Choosing the "Open" command of the
node will open the interface list view.

The class list view has the following columns:

Name: name of the component.
Component Type: indicates the type of the component ("Object Data", "Local Data", "Interface Module",
"External Interface" or "Internal Interface").
Type: only for component type "Object Data" and "Local Data": Natural type of data module ("Local Data
Area", "Parameter Data Area" or "Inline Definition")

11Copyright Software AG 2001

Flat ViewClass Builder

Interface Module List View

The interface module list view consists of interface nodes. Choosing the "Open" command of a node will open the
list view (see List View) for this particular interface.

The interface module list view has the following columns:

Name: name of the interface.

Copyright Software AG 200112

Class BuilderFlat View

Interface List View

The interface list view contains all nodes for the properties and methods of the interface.

The following nodes exist:

Property node for every property of the interface.
Method implementation node for every method of the interface. Choosing the "Open" command for the node
will open the program editor with the specified implementation (subprogram).
Method parameter data node for every parameter data component of every method of the interface. Choosing
the "Open" command for the node will open the data area editor for data areas and a special Class Builder
dialog for inline definitions.

The interface list view has the following columns:

Name: name of the property or method; the parameter data nodes for methods are numbered from 1 to n (for
example, INIT (2) for the second parameter data node of method INIT).
Implementation: only for properties and method implementation node: the name of the assigned ODA variable
for properties and the name of the subprogram which implements the method for methods.
Parameter Data: only for method parameter data node: the name of the parameter data module or "Inline" for
an inline data definition.
Library : only for methods: depending on the node type, library where implementation or parameter data
module is located (empty for inline data definitions or if the Natural module has not yet been created).
Format: only for properties: format of property.
Length: only for properties: length of property.
Dimension: only for properties: dimension of property.
Read-only: only for properties: shows whether property is read-only or not.

13Copyright Software AG 2001

Flat ViewClass Builder

Class Builder Nodes
Related to the user interface, every component of a class is represented by a node. Nodes are displayed both in the
library workspace and in the list views.
Every node has an icon and textual information about the component which can be the name of the component (in
the library workspace) or the name of the component and additional information (in the list views).

The following table lists all available Class Builder nodes with their icons and a short description:

Type Icon Description

new class new class which has not yet been saved

class (src) class which is only available as source

class (gp) class which is only available as generated program

class (src & gp) class which is available as source and generated program

ODA object data defined in a data area module

inline ODA object data defined with an inline data definition

LDA local data (for GUIDs) defined in a data area module

inline LDA local data (for GUIDs) defined with an inline data definition

Interface Module interface module, i.e., copycode which defines interfaces

internal interface interface which is defined in the class

external interface interface which is defined in an interface module that is used by the class

internal property property which is defined in an internal interface

external property property which is defined in an external interface

internal method method which is defined in an internal interface

external method method which is defined in an external interface

method implementation subprogram which implements a method

method PDA method parameter data defined in a data area module

inline method PDA method parameter data defined with an inline data definition

In the following section, the Class Builder nodes are described in more detail. The commands of a specific node can
be invoked from the context menu of the node or the "Classes" toolbar.

Copyright Software AG 200114

Class BuilderClass Builder Nodes

Class Nodes

The class node represents the class itself. The name displayed in the class node is either the class name (logical view)
or the class module name (flat view).

Types

New Class

If a new class is created, it is displayed with the new class icon until it is saved the first time. Therefore, new class
means that the class is only "transient" in the current Natural session and is not available in source format. For this
reason, the new class will not be shown in the File View which shows the source and gp files of the Natural objects.
In addition, it is not possible to execute all class node commands on a new class.

Source-Only

The source-only class icon is displayed if the class is only available in source format but has not yet been cataloged.

GP-only (icon)

The GP-only class icon is displayed if the class is only available in GP format. Classes of this type cannot be handled
with the Class Builder and the context menu of these classes is the same as for all other Natural objects which are
only available in GP format.

Source-and-GP

The Source-and-GP class icon is displayed if the class is available in source and GP format.

Commands

Command available for Description

Open
new
source-only
source-and-GP

Opens the class list view. For more information, see List Views

List
new
source-only
source-and-GP

Opens the program editor in read-only state with the internal source format of
the current class structure.

Cat
source-only
source-and-GP

Catalogs the current class.

Save
new
source-only
source-and-GP

Saves the current class structure in the given class module.

Save As
new
source-only
source-and-GP

Saves the current class structure in a new Natural module.

Stow
new
source-only
source-and-GP

Stows the current class structure in the given class module.

New ODA
new
source-only
source-and-GP

Creates a new object data area for the class.

15Copyright Software AG 2001

Class NodesClass Builder

Command available for Description

New Interface
new
source-only
source-and-GP

Creates a new interface for the class.

New Interface
Module

new
source-only
source-and-GP

Creates a new interface module. This interface module is linked to the class.

Link LDA
new
source-only
source-and-GP

Uses an existing data area as GUID LDA for the class. See Link.

Link ODA
new
source-only
source-and-GP

Uses an existing data area as ODA for the class. See Link.

Link Interface
Module

new
source-only
source-and-GP

Uses an existing copycode as interface module for the class. All interfaces
defined in the Interface Module will be included in the class. See Link.

Register source-and-GP
Registers the class in the system registry. For more information, see the
NaturalX documentation.

Unregister source-and-GP
Unregisters the class from the system registry. For more information, see the
NaturalX documentation.

Rename
new
source-only
source-and-GP

Changes either the class name or the class module name depending on the
current view of the library workspace. For more information, see Renaming
Class Members.

Delete
new
source-only
source-and-GP

Deletes the Natural module of the class (for source-only and source-and-GP) or
only the internal structure of the class (new).

Restore
source-only
source-and-GP

Removes all changes of the class which have not yet been saved. This command
will close all list views of the class and collapse the class node in the library
workspace.

Cut
source-only
source-and-GP

Cuts the class module.

Copy
source-only
source-and-GP

Copies the class module.

Paste
source-only
source-and-GP

Pastes the class module.

Print
new
source-only
source-and-GP

Prints the source format of the current class structure.

Properties
new
source-only
source-and-GP

Opens the Properties dialog which shows class-specific information. For more
information, see Node Properties.

Copyright Software AG 200116

Class BuilderClass Nodes

Object Data Nodes

An object data node represents an object data area module or an inline object data definition. A class can have
several object data nodes. If more than one object data node exists, you must take care to follow the correct object
data sequence when you use these nodes in method implementations.

Types

Data Area

This type indicates that the object data is defined in a separate Natural module of type local data area or parameter
data area. The name which is displayed in the node is the name of the Natural data area module.

Inline Data Definition

This type indicates that the object data is defined direct in the class source with a DEFINE DATA OBJECT
statement. In this case, the object data has to be defined again in every method implementation which uses the object
data. A node of this type is always named "Inline".

Commands

Command available for Description

Open data area Opens the data area module with the data area editor.

Edit
inline data
definition

Opens a dialog which shows the contents of the inline data definition for editing.

List data area Lists the data area module.

Cat data area Catalogs the data area module.

Stow data area Stows the data area module.

Unlink data area
Unlinks the data area module from the class, i.e. it is no longer used as Object Data
Area for the class.

Rename data area
Renames the Object Data Area link, i.e. uses another data area module as Object Data
Area for the class. For more information, see Renaming Class Members.

Delete
inline data
definition

Deletes the inline data definition from the class.

Print data area Prints the data area module.

Properties
data area
inline data
definition

Opens the Properties dialog which shows object data-specific information. For more
information, see Node Properties.

17Copyright Software AG 2001

Object Data NodesClass Builder

GUID Local Data Nodes

An GUID Local Data node represents a local data area module or an inline local data definition which contains
GUID definitions. A class can have several local data nodes.

Types

Data Area

This type indicates that the GUID local data is defined in a separate Natural module of type local data area or
parameter data area. The name which is displayed in the node is the name of the Natural data area module.

Inline Data Definition

This type indicates that the GUID local data is defined direct in the class source with a DEFINE DATA LOCAL
statement. A node of this type is always named "Inline".

Commands

Command available for Description

Open data area Opens the data area module with the data area editor.

Edit
inline data
definition

Opens a dialog which shows the contents of the inline data definition for editing.

List data area Lists the data area module.

Cat data area Catalogs the data area module.

Stow data area Stows the data area module.

Unlink data area
Unlinks the data area module from the class, i.e. the data area module is no longer
used as GUID Local Data Area for the class.

Rename data area
Renames the GUID Local Data Area link, i.e. uses another data area module as GUID
Local Data Area for the class. For more information, see Renaming Class Members.

Delete
inline data
definition

Deletes the inline data definition from the class.

Print data area Prints the data area module.

Properties
data area
inline data
definition

Opens the Properties dialog which shows local data-specific information. For more
information, see Node Properties.

Copyright Software AG 200118

Class BuilderGUID Local Data Nodes

Interface Module Nodes

An Interface Module node represents an interface module. The interface module is a Natural module of type
copycode which defines interfaces that can be included in several classes. For more information about interface
modules and their usage, see Using Interfaces from several Classes.

Commands

Command Description

Open Opens the interface module list view. For more information, see List View.

List
Opens the program editor in read-only state with the source format of the current Interface Module
structure.

Save Saves the current Interface Module structure in the given Natural copycode module.

New
Interface

Creates a new interface in the Interface Module.

Unlink
Unlinks the Interface Module from the class, i.e. the interfaces defined in the Interface Module are
no longer available in the class.

Print Prints the source format of the current Interface Module structure.

Properties
Opens the Properties dialog which shows Interface Module-specific information. For more
information, see Node Properties.

19Copyright Software AG 2001

GUID Local Data NodesClass Builder

Interface Nodes

An interface node represents an interface of an interface module or a class. For more information about internal and
external interfaces, see Using Interfaces from several Classes.

Types

Internal

The parent of an internal interface is either an interface module or a class. If its parent is an interface module, this
means that the interface is defined in the interface module which is used by the class. In this case, the interface will
be displayed a second time as an external interface of the class (For more information, see Using Interfaces from
several Classes). If the internal interface is a child of the class itself, this means that the interface is defined direct in
the class.

External

An external interface can appear only as sub-node of a class, which uses an interface module which defines this
interface. The commands which can be executed on an external interface node are only a subset of the commands
available for an internal interface. Basically you can only change the implementation of such an interface. For more
information, see Using Interfaces from several Classes.

Commands

Command
available for

Description

Open
internal
external

Opens the interface list view. For more information, see List View.

New
Method

internal Creates a new method for the interface.

New
Property

internal Creates a new property for the interface.

Rename internal Renames the interface. For more information, see Renaming Class Members.

Delete internal Deletes the interface and all its dependent components.

Properties
internal
external

Opens the Properties dialog which shows interface-specific information. For
more information, see Node Properties.

Copyright Software AG 200120

Class BuilderInterface Nodes

Property Nodes

A property node represents a property of an internal or external interface.

Types

Internal

If a property appears as sub-node of an internal interface, it will be displayed as internal property. An internal
property node always has a dedicated external property node.

External

If a property appears as sub-node of an external interface, it will be displayed as external property. The commands
which can be executed on an external property are only a subset of the commands which are available for internal
properties.

Commands

Command
available
for

Description

Rename internal Renames the property. For more information, see Renaming Class Members.

Delete internal Deletes the property.

Properties
internal
external

Opens the Properties dialog which shows property-specific information. For more
information, see Node Properties.

21Copyright Software AG 2001

Property NodesClass Builder

Method Nodes

A method node represents a method of an internal or external interface.

Types

Internal

If a method appears as sub-node of an internal interface, it will be displayed as an internal method. An internal
method node always has a dedicated external method node.

External

If a method appears as sub-node of an external interface, it will be displayed as external method. The commands
which can be executed on an external method are only a subset of the commands which are available for internal
methods.

Commands

Command
available
for

Description

New PDA internal Creates a new method parameter data area for the method.

Link PDA internal Uses an existing parameter data area as method PDA. See Link.

Link
implementation

internal
external

Uses an existing subprogram as method implementation. See Link.

Rename internal Renames the method. For more information, see Renaming Class Members.

Delete internal Deletes the method and all its dependent components.

Properties
internal
external

Opens the Properties dialog which shows method-specific information. For
more information, see Node Properties.

Copyright Software AG 200122

Class BuilderMethod Nodes

Method Implementation Nodes

A method implementation node represents the Natural subprogram which is executed when the method is called.

Commands

Command Description

Open Opens the subprogram of the method implementation in the program editor.

List Lists the subprogram of the method implementation in read-only mode in the program editor.

Cat Catalogs the subprogram of the method implementation.

Stow Stows the subprogram of the method implementation.

Rename
Renames the method implementation, i.e. uses another subprogram for the method implementation.
For more information, see Renaming Class Members.

Print Prints the subprogram of the method implementation.

Properties
Opens the Properties dialog which shows method implementation-specific information. For more
information, see Node Properties.

23Copyright Software AG 2001

Method Implementation NodesClass Builder

Method Parameter Data Nodes

A method parameter data node represents a parameter data area module or an inline parameter data definition. A
method can have several method parameter data nodes, which define the parameter used by the method
implementation. If more than one method parameter data node exists, you must ensure that the correct parameter
data sequence is used in method implementations.

Types

Data Area

This type indicates that the method parameter data is defined in a separate Natural module of type parameter data
area. The name which is displayed in the node is the name of the Natural parameter data area module.

Copyright Software AG 200124

Class BuilderMethod Parameter Data Nodes

Inline Data Definition

This type indicates that the method parameter data is defined direct in the class source (or interface module source)
with a DEFINE DATA PARAMETER statement. In this case, the parameter data must be defined again in every
method subprogram. A node of this type is always named "Inline".

Commands

Command available for Description

Open data area Opens the data area module with the data area editor.

Edit
inline data
definition

Opens a dialog which shows the contents of the inline data definition for editing..

List data area Shows the listing of the data area module.

Cat data area Catalogs the data area module.

Stow data area Stows the data area module.

Unlink data area
Unlinks the data area module from the method, i.e. the data area module is no longer
used as parameter data area for the method.

Rename data area
Renames the method parameter data area link, i.e. uses another data area module as
parameter data area for the method. For more information, see Renaming Class
Members.

Delete
inline data
definition

Deletes the inline data definition.

Print data area Prints the data area module.

Properties
data area
inline data
definition

Opens the Properties dialog which shows method parameter data-specific information.
For more information, see Node Properties.

25Copyright Software AG 2001

Method Parameter Data NodesClass Builder

Node Properties
The Class Builder provides node-specific information on Natural classes and their elements if context-menu entry
"Properties" is chosen. This context-menu entry is available if an object is selected in the library workspace or in a
list view. The property sheet provides no information on group nodes.

The information itself is presented in a property sheet. The actual number of property pages shown depends on the
type of the selected object.

OK Accept modifications.
Cancel Skip modifications.

For all class elements, property pages "General" and "Comment" are available. The other property pages depend on
the selected node type.

General

This property page shows general information on the selected object. Its contents vary with the corresponding type of
node and are described in the following sections.

Copyright Software AG 200126

Class BuilderNode Properties

Class

Name Class Name

Defined in Class Module

Library Library

Object and Local Data Area

Name Name of Object or Local Data Area

Used in Class Name

Library Library

Inline Data Definition

Name "Inline Definition"

Defined in Class Name

Interface Module

Name Name of Interface Module

Used in Class Name

Library Library

Interface

Name Name of Interface

Defined in Class Name

Interface Module If the interface is defined in an interface module this field shows the corresponding name.

Method

Name Name of Method

Defined in Name of the interface that offers this method.

Interface Module If the method is defined in an interface module this field shows the corresponding name.

27Copyright Software AG 2001

GeneralClass Builder

Implementation

Name Name of Subprogram

Used in Name of the method that is implemented by this subprogram.

Library Library

Parameter Data Area

Name Name of Parameter Area

Used in Name of Method

Library Library

Property

Name Name of Property

Defined in Name of the interface that offers this property.

Interface Module If the property is defined in an interface module this field shows the corresponding name.

Copyright Software AG 200128

Class BuilderGeneral

Comments

Each component has its own comment.
This property page shows the comment and allows adding new or modifying existing comments. They are entered
and listed without any special syntactic notation.

The comment is changed if the property sheet is left by pressing "OK". Pressing "Cancel" leaves the comment
unchanged.

29Copyright Software AG 2001

CommentsClass Builder

Identification

This property page is available for class and interface nodes. For interfaces, the list box below is only enabled if the
interface is defined direct as part of the class. The list box is not visible if the interface is defined in an interface
module.

The upper control "Unique ID" shows the current Global Unique ID of a class or an interface as read-only
information.

This list box offers all data variables contained in local data areas that are linked to the class. These variables can be
used as unique identifiers. Inline definitions of variables are not supported.

To exchange the current Global Unique ID that is displayed in the upper control with another value, select a variable
from the list. The name control is then updated with the newly selected variable name. The Global Unique ID is
exchanged if a variable has been selected and the property sheet is left by pressing "OK". Pressing "Cancel" leaves
the identification unchanged. There is no check whether a selected variable represents a valid Global Unique ID .

Copyright Software AG 200130

Class BuilderIdentification

Settings

This property page is available for class nodes only. It allows setting the class"s activation policy within the Class
Builder.

A class"s activation policy can be

External Single
Internal Multiple
External Multiple

Or it is set to default.

More information on the meaning of these values can be found in the NaturalX documentation.

To change the current activation policy select the required value.
The value is changed if the property sheet is left by pressing "OK". Pressing "Cancel" leaves the identification
unchanged.

31Copyright Software AG 2001

SettingsClass Builder

Definition

This property page is available for properties of interfaces only. It allows modifying the definition of an existing
property.

The property"s name cannot be changed. The following changes are possible:

An Object Data Variable can be assigned to the property.
The available Object Data Variables are listed in the page"s list box together with their format definition and
dimension.
They are taken from the Object Data Areas that are linked to the current class. Inline definitions of variables are
not supported.
Existing assignments of Object Data Variables to properties can be changed. The corresponding control is then
updated with the newly selected variable"s name.
The property"s format definition can be added or changed if it is different from the Object Data Variable"s
definition.
Otherwise format and length definition are taken from the assigned Object Data Variable.
It can be defined whether this property is used read only.

The definition of the property is changed if the property sheet is left by pressing "OK". Pressing "Cancel" leaves the
definition unchanged.

Copyright Software AG 200132

Class BuilderDefinition

Adding Class Components
To make the development of a class more comfortable the Class Builder offers two ways to add components to a
class.

Link

Existing Natural objects can be linked to a class component.
If context menu item "Link" is activated for an object node a dialog is opened. It lists all objects of the required type
that can be found in the current library or its steplibs.

If an object has been selected and the dialog is left by pressing "OK", a reference to the selected object is added to
the class structure. "Cancel" leaves the class structure unchanged.

Link to Class

A GUID Local Data Area, an Object Data Area or an Interface Module can be linked to a class. The dialog shows
object name and library.

Link to Method

Each method requires a method implementation. The existing implementation can be exchanged by linking another
subprogram to a selected method. Moreover, one or more Parameter Data Areas can be linked to a method. The
dialog shows object name and library.

33Copyright Software AG 2001

Adding Class ComponentsClass Builder

New

New class components are created with context menu item "New".

In the library workspace, class components are created using in-place editing. List views use dialogs to query the
necessary data and create new objects. This applies to all nodes apart from class properties: They are always created
using a dialog.

The following sections describe how the different class components are created.

New Class

A new class is first created as an internal class structure. At this time the class name is defined. The class module
name, i.e. the name of the actual Natural object, is assigned when the class is saved the first time.

Library Workspace

A new class name, for example NEWCLS, is generated. The corresponding tree node is selected and made available
for in-place editing. The name can be changed to any valid class name.

Copyright Software AG 200134

Class BuilderNew

List View

A dialog is opened that asks for the name of the new class.

35Copyright Software AG 2001

New ClassClass Builder

New Object Data Area

Creating a new object data area adds a reference to a new component to the class structure. The corresponding
Natural object is not yet created. It is created if you confirm such when you open it.

Library Workspace

A new object data area, for example NEWODA, is generated. The corresponding node is selected and is made
available for in-place editing. The name can be changed to any valid data area name.

List View

A dialog is opened that asks for the name of the new object data area.

New Interface Module

Creating a new interface module adds a reference to a new component to the class structure. The corresponding
Natural object is not yet created. It is created if it contains interfaces at the time the class is saved.

Library Workspace

A new interface module, for example NEWEIF, is generated. The corresponding node is selected and is made
available for in-place editing. The name can be changed to any valid copycode name.

List View

A dialog is opened that asks for the name of the interface module.

New Interface

Library Workspace

A new interface, for example NEWIIF, is generated. The corresponding node is selected and is made available for
in-place editing. The name can be changed to any valid interface name.

List View

A dialog is opened that asks for the name of the interface.

Copyright Software AG 200136

Class BuilderNew Object Data Area

New Method

Library Workspace

A new method, for example NEWMET, is generated. The corresponding node is selected and is made available for
in-place editing. The name can be changed to any valid method name. The new method name is also taken as the
name of the method implementation. Both are added to the class structure. If the method name is longer than a valid
Natural subprogram name, only the first characters are used to guarantee a valid implementation name.

List View

A dialog is opened that asks for the name of the method. The new method name is also taken as the name of the
method implementation. Both are added to the class structure. If the method name is longer than a valid Natural
subprogram name the first characters are used to guarantee a valid implementation name.

New Property

New properties are always created using a dialog.

37Copyright Software AG 2001

New MethodClass Builder

This dialog retrieves the following information:

Property
name:

A valid property name. This is either a new name or the name of the selected ODA variable. For
fully qualified ODA variable names the dot is replaced by an underscore.

ODA
variable:

The list box lists all variables that are defined in the linked ODAs.
If property name, format and length are not changed, these values are taken from the selected ODA
variable.

Format: Format and length can be changed if they must be different from the ODA variable"s definitions.

Read-Only: The property can be marked as read-only.

Copyright Software AG 200138

Class BuilderNew Property

Renaming Class Components
Like any other Natural object that can be modified in the Natural Studio, the components of a class are renamed by
editing their identifier in place. This is done using the mouse or by pressing F2 or by choosing context menu entry
"Rename" which is enabled for every class component.

During the edit process the new name is checked for syntactical correctness. If it is not a valid Natural name the edit
mode cannot be left. Pressing ESCAPE cancels the edit mode and resets the old identifier.

If class components refer to Natural objects such as Object Data Areas, Parameter Data Areas or Interface Modules,
only the references within the class are changed. The corresponding Natural objects are not renamed. They have to
be changed explicitly if required.

39Copyright Software AG 2001

Renaming Class ComponentsClass Builder

Removing Class Components

Unlink

Context menu entry "Unlink" is available for class components that refer to Natural objects like Data Areas or
Interface Modules. If these modules have been linked to a class previously they can be removed using "Unlink".

This action only removes the reference to selected components from the class. It does not delete an existing Natural
object.

Copyright Software AG 200140

Class BuilderRemoving Class Components

Delete

Context menu entry "Delete" is available for classes and those of their components that do not refer to Natural
objects.

If this context menu item is selected, a dialog is displayed.
It displays the name of the selected component in a read-only field together with a list of references that shows the
dependent Natural objects. These objects are identified by name, library and Natural object type if required. The list
serves for information purposes only. The dependent Natural sources are not affected.

If the selected component is the class itself, the internal structure is deleted and the corresponding Natural source and
cataloged modules are removed from the library.

OK
Closes the dialog and deletes the selected component.
If the selected component is the class itself, the internal structure is deleted and the Natural source
and GP objects are removed from the library. The referenced Natural objects are not deleted.

CANCEL Closes the dialog without deleting anything.

41Copyright Software AG 2001

DeleteClass Builder

Editing Class Components

Classes

At the time a new class is created, the corresponding new class module is not yet created. This occurs only if "Save",
"Save As" or "Stow" is called for the class.

Save

"Save" called for an existing class writes the class source to the class module.
If "Save" is called for a new class that does not yet have a corresponding class module then "Save" is treated like
"Save As...". If such a class module does not yet exist in the current library, the class module is created and the
source is written to this object.

Save As

If "Save As..." is called, a dialog is opened that prompts for the class module. The input length is restricted to
guarantee a valid Natural class module name and the input is checked for validity. If such a class module does
already exist or if the name is invalid, an error message is issued.

Cat

If the command "Cat" is called, the class source is cataloged and a corresponding class GP is generated. This does
not apply to new classes.

Stow

As for other Natural objects "Stow" internally saves and catalogs a class. If a new class is to be stowed, you are
prompted for the class module as described for "Save As".

Natural Objects

Natural objects that can act as class components can also be modified in the context of the class structure. References
to Object Data Areas, Parameter Data Areas and Interface Modules can be created by "New". Existing objects can be
edited, saved and stowed.
Local Data Areas and method implementations cannot be created in the class"s context. Here only existing objects
can be linked to the class. But they can be edited, saved and stowed.

Other Class Components

Other class components such as interfaces, methods and properties cannot be saved, cataloged or stowed
independently. They can only be modified in the context of a class.

Copyright Software AG 200142

Class BuilderEditing Class Components

Using Interfaces from Several Classes
For some applications, it is useful to implement the same interface in several classes. For this purpose, it is possible
to define the interface in a Natural copycode module and include this copycode module in the class which wants to
implement the interface. The implementation-specific settings, like method implementations, can be defined in the
copycode as a default setting, and they can be overwritten in the class, to use class specific implementations.
Natural copycode modules which define interfaces are called Interface Modules in the Class Builder environment.
Interface Modules are fully integrated in the Class Builder, so that interfaces defined in an Interface Module can be
handled in the same way as interfaces of a class. However, an Interface Module can only be changed with the Class
Builder when it is included from a class.

Interfaces which are defined in an Interface Module are always visible in two places of a class: they are shown as an
internal interface under the Interface Module node and they are shown as an external interface under the class node.
The commands available for an external interface can be used to change the implementation of the interface.

You can save a changed Interface Module without saving the whole class. If an Interface Module is changed and the
class which is the parent of the Interface Module node is saved, the Class Builder asks the user if he wants to save
the Interface Module as well.

The locking principles for Interface Modules are described in Locking Concept.

Note: If you change an Interface Module, you should always be aware that this Interface Module can also be used by
other classes. After saving the changes other classes can possibly no longer be stowed without errors. The Class
Builder cannot check if your Interface Module is used by other classes!

Creating a new Interface Module

The class command "New Interface Module" (see Class Builder Nodes) creates a new Interface Module.
An Interface Module node is added in the tree and list views and you can then create new interfaces for the Interface
Module, methods and properties for the interfaces and so on. If a new component is created for the Interface Module,
the corresponding external node will be added for the class. For example, if a new interface INT1 as added to the
Interface Module, an external interface node named INT1 will be created as sub-node of the class. The new Interface
Module is saved just as an existing Interface Module. As soon as the Interface Module exists as Natural module, it
can be linked from other classes.

43Copyright Software AG 2001

Using Interfaces from Several ClassesClass Builder

Linking an existing Interface Module

The class command "Link Interface Module" (see Class Builder Nodes) uses an existing Interface Module for the
class. A dialog is shown which lists all Natural copycode modules of the current step libraries (Note: the dialog will
list all copycode modules and not only the Interface Modules). If you select a copycode module from this list which
defines class interfaces, these interfaces are added to the current class interfaces. An error will be generated if you
select a copycode module which does not define interfaces or if the selected copycode module contains an interface
which is already defined in the class. In this case, the Interface Module is not linked to the class.

If the Interface Module was linked successfully to the class, a node for it will be added to the class tree. Opening the
Interface Module node will show the interfaces of the Interface Module. Furthermore all interfaces of the Interface
Module are added as external interfaces nodes to the class itself.

Copyright Software AG 200144

Class BuilderLinking an existing Interface Module

Unlinking an Interface Module

If the "Unlink" command (see Interface Module Nodes) is executed for an Interface Module, the interfaces of this
Interface Module are no longer used by the class.
This has the effect that the Interface Module node itself and all external interface nodes from this Interface Module
are removed from the class.

Note:
If you unlink an Interface Module from a class, all class-specific settings contained in the class source module, such
as method implementations for the interfaces of this Interface Module, will be deleted as well.

Interface Nodes

If an Interface Module is used by a class, every interface defined in the Interface Module is represented by two
nodes: an internal interface node which is a sub-node of the Interface Module and an external interface node which is
a sub-node of the class. These two interface node types can be distinguished by their icon (see Interface Nodes). The
same is of course valid for the property and method nodes: if they are children of an internal interface, they are
represented by an internal node and if they are children of an external interface, they are represented by an external
node (see Property Nodes and Method Nodes).
Furthermore the commands which can be executed on external interfaces, properties and methods are only a subset
of the commands available on internal interfaces, properties and methods. For example, the name of an interface can
only be changed for an internal interface. External interfaces allow only the redefinition of the implementation of the
interface, i.e. changing the method implementation and the ODA variable which is assigned to a property.

45Copyright Software AG 2001

Unlinking an Interface ModuleClass Builder

Locking Concept
Natural must ensure that a Natural module cannot be changed at the same time from different places. Therefore,
related to the Class Builder, this means that a Natural user must be prevented from changing a Natural module with
the program editor which has already been changed with the Class Builder and vice versa.
The Class Builder can be used to change Natural classes and Interface Modules which are special copycode modules
(see Using Interfaces from several Classes).
Because of the different requirements, the locking concept for classes differs from the Interface Module locking
concept. In the following sections both concepts are described.

Locking of Classes

The locking of classes is done very flexibly. The Class Builder does not lock a class until it is changed. This means
that a class which is opened with the Class Builder can be opened in the program editor as well.
If a class is opened in the program editor, the class nodes can be viewed in the Class Builder, but it is not possible to
apply any changes. Before changing the class, the program editor session has to be closed first.
If a class is visible in the Class Builder and the user changed the class in the program editor, the changes will also be
shown in the Class Builder when the class is saved. If a class has been changed with the Class Builder it is no longer
possible to open this class with the program editor.

Locking of Interface Modules

The locking of Interface Modules is a bit more restrictive than the locking of classes. A two stage locking exists for
the Interface Modules. For the first time the Class Builder must ensure that the Interface Module cannot be changed
with the Class Builder and the program editor at the same time: if a class which uses an Interface Module is opened
in the Class Builder, the Interface Module is locked. This means on the one hand, that an Interface Module can no
longer be opened with the program editor, when a class which uses it is opened in the Class Builder. On the other
hand, a class cannot be opened with the Class Builder when it uses an Interface Module which is already open in the
program editor.
Moreover, an Interface Module can be opened several times in the Class Builder if it is included from several
classes. The Class Builder must ensure that an Interface Module is opened only once, when the user wants to change
it, because the other Interface Module instances are then no longer up-to-date: it will try to close all other instances,
to make sure that only the current instance of the Interface Module remains visible. The Class Builder will display a
confirmation dialog for this purpose which allows the user to stop the process.
If one of the classes was already changed, the user will be asked, if the changes are to be saved . After saving a
changed Interface Module, it is again possible to open other classes which use the Interface Module.

Copyright Software AG 200146

Class BuilderLocking Concept

Tutorial
This chapter provides a short introduction on the usage of the Class Builder.
The example shows how class EMPLOYEE in library SYSEXCOM can be built using the Class Builder.

New class

Activate the logical view in the library workspace and create a new library MYEXCOM that contains the local data
areas EMPGUIDS and EMPLOY-O. These are just copies of the objects in SYSEXCOM.
EMPGUIDS contains GUID definitions and EMPLOY-O contains object data definitions. To create a new class
MYEMPLOYEE select the library node and then select context menu item "New > Class". A new tree node labeled
"NEWCLS" is presented for in-place editing. Just change its name to "MYEMPLOYEE".

Linking Object Data

The object data for MYEMPLOYEE have to be defined in an object data area. This object data area can either be
created by selecting context menu item "New" of node "MYEMPLOYEE" or by linking an existing object data area
via context menu item "Link > Object Data Area...".
A dialog pops up and shows a list of all local and parameter data areas in MYEXCOM and its steplibs. These objects
can be used as object data areas. Select EMPLOY-O.

47Copyright Software AG 2001

TutorialClass Builder

Creating an Interface

To create the first interface select context menu item "New > Interface" of node "MYEMPLOYEE". A new tree node
labeled "NEWIIF" is presented for in-place editing. Just change its name to "EMPLOY-I". Further interfaces can be
created accordingly or by selecting "New" in the context menu for "Interfaces" (group node).

Creating Methods

To create the first method select context menu item "New > Method" of interface node "EMPLOY-I". A new tree
node labeled "NEWMET" is presented for in-place editing. Rename this node to "INIT". A method implementation
node with the same name is created automatically.
To use subprogram ELOAD-N (copied from SYSEXCOM) to implement this method, select the method"s
context-menu item "Link > Implementation..." and change the method implementation.
Parameter Data Area ELOAD-A (copied from SYSEXCOM) can be linked using "Link > Parameter Data Area..."
and then selecting the appropriate module. Further methods can be created accordingly or by selecting "New" in the
"Methods" (group node) context menu.

Creating Properties

To create the first property, select context-menu item "New > Property..." of interface node "EMPLOY-I". The
dialog lists all object data variables that are defined in linked object data areas and can be assigned to a property.
They are shown together with their format and length definition and dimension. If one of these variables is selected
without entering any information in the other control, this variable name is taken as property name and format and
length definition are generated accordingly.
But the Class Builder allows assigning the property another name and format and length can be adapted as long as
the new format is data-transfer compatible (see the NaturalX documentation). The new property can be marked as
read only.

Using an Interface Module

So far class MYEMPLOYEE only defines interfaces internally. But there might be interfaces defined in modules that
were adequate to incorporate.
For this purpose an interface module can be linked using the Class"s context-menu item "Link > Interface
Module...". The interfaces that are defined in this module are then inserted under the corresponding interface module
in group "Interface Modules" and at the same time under the group node "Interfaces". To implement their methods,
select the corresponding node that can be found under "Interfaces".

Copyright Software AG 200148

Class BuilderCreating an Interface

Linking a GUID Local Data Area

The Class Builder generates Global Unique IDs for classes and interfaces automatically. But if variables are to be
used instead of the generated identifiers, a local data area with the corresponding definition can be linked to
MYEMPLOYEE.
The existing Global Unique ID of MYEMPLOYEE can then be changed. Select context menu item "Properties" and
activate page "Identifiers". This page is available for classes and interfaces.

The generated GUID is displayed in the upper control. Local variables that are defined in EMPGUIDS are listed in
the lower box. Select EMPGUID and leave the property sheet with OK.

Activation Policy

The Class Builder allows setting a class"s activation policy explicitly. The current activation policy of
MYEMPLOYEE can be viewed under "Settings" if context menu item "Properties" is selected. This option is
available for classes only. Select "External Multiple" and leave the property sheet with OK.

49Copyright Software AG 2001

Linking a GUID Local Data AreaClass Builder

Save and Stow Class

Up to now the new class MYEMPLOYEE has only existed as an internal class structure. To save all changes the
class can be saved and stowed in the class module. This change of state is indicated by the changed icon.

Register

And finally register MYEMPLOYEE by selecting context menu item "Register" on the class node.

Copyright Software AG 200150

Class BuilderSave and Stow Class

Glossary

External Interface

An external interface is an interface which is defined in an interface module, that is included by the class.

Interface Module

An Interface Module is a Natural copycode module which defines interfaces. The Interface Module can be used in a
class to define the contained interfaces. The class can overwrite the method and property implementations, but all
other settings of the interface are used as defined in the Interface Module.

Internal Interface

An internal interface is an interface which is defined direct in the class, or an interface of an Interface Module, which
is defined in the Interface Module.

Method Implementation

A method implementation is a Natural subprogram which is assigned to the method and executed when this method
is called for a class object.

Property Implementation

A property implementation is the object data variable that is assigned to a property.

51Copyright Software AG 2001

GlossaryClass Builder

	Class Builder
	Introduction
	What is the Class Builder?
	Which Classes can be handled by the Class Builder?
	When is a Class saved?
	Class Comments

	Class Builder Interface
	Logical View
	Library Workspace
	List Views
	Class List View
	Object Data Group List View
	Local Data Group List View
	Interface Modules Group List View
	Interface Module List View
	Interfaces Group List View
	Interface List View
	Properties Group List View
	Methods Group List View
	Method Parameter Data Group List View

	Flat View
	Library Workspace
	List Views
	Class List View
	Interface Module List View
	Interface List View

	Class Builder Nodes
	Class Nodes
	Types
	Commands

	Object Data Nodes
	Types
	Commands

	GUID Local Data Nodes
	Types
	Commands
	Interface Module Nodes
	Commands

	Interface Nodes
	Types
	Commands

	Property Nodes
	Types
	Commands

	Method Nodes
	Types
	Commands

	Method Implementation Nodes
	Commands

	Method Parameter Data Nodes
	Types
	Commands

	Node Properties
	General
	Class
	Object and Local Data Area
	Inline Data Definition
	Interface Module
	Interface
	Method
	Implementation
	Parameter Data Area
	Property

	Comments
	Identification
	Settings
	Definition

	Adding Class Components
	Link
	Link to Class
	Link to Method

	New
	New Class
	Library Workspace
	List View

	New Object Data Area
	Library Workspace
	List View

	New Interface Module
	Library Workspace
	List View

	New Interface
	Library Workspace
	List View

	New Method
	Library Workspace
	List View

	New Property

	Renaming Class Components
	Removing Class Components
	Unlink
	Delete

	Editing Class Components
	Classes
	Save
	Save As
	Cat
	Stow

	Natural Objects
	Other Class Components

	Using Interfaces from Several Classes
	Creating a new Interface Module
	Linking an existing Interface Module
	Unlinking an Interface Module
	Interface Nodes

	Locking Concept
	Locking of Classes
	Locking of Interface Modules

	Tutorial
	New class
	Linking Object Data
	Creating an Interface
	Creating Methods
	Creating Properties
	Using an Interface Module
	Linking a GUID Local Data Area
	Activation Policy
	Save and Stow Class
	Register

	Glossary
	External Interface
	Internal Interface
	Method Implementation
	Property Implementation

