Class Builder Class Builder

Class Builder

The following topics are covered below:

Introduction

What is the Class Builder?
Class Builder Interface

Class Builder Nodes

Node Properties

Adding Class Components
Renaming Class Components
Removing Class Components
Editing Class Components
Using Interfaces from several Classes
Locking Concept

Tutorial

Glossary

Introduction

The Class Builder is a tool which can be used to display a Natural class in a structured hierarchical order, and also to
manage the class and its components efficiently.

A Natural class can be composed of various components: "real" Natural objects (for example, an object data area) or
objects which exist only in the class source (for example, interface components).

The Class Builder represents each component of the class in the form of a node. By selecting these nodes, the class
and its components can be managed in a context-sensitive manner.

This section explains how to create and modify a Natural class with the Class Builder. Please reffattodahé
documentation to become acquainted with the general usage of Natural classes.

Copyright Software AG 2001 1

What is the Class Builder? Class Builder

What is the Class Builder?

The Class Builder provides the following features:

e |[tis fully integrated in the general Natural user interface.

® The components of a class are displayed as nodes (library workspace or list view) in the same way as Natural
modules. Every type of node has a special icon assigned which provides detailed information for that
component.

® Natural objects which are used by a class (for example, ODA), can be managed (edit, stow, ...) by the Class
Builder.

e Class and interface GUIDs (Global Unique IDs) are generated and hidden.

e Class comments (one comment for every class component) can be created and changed by the Class Builder.

® The class source is generated automatically.

“ Object View Library Tools Help

ER=EL A E =R

| x
El-) Local Environment -
Eca User Libraries
g sYSTEM
Eca System Libraties
-y 5¥SD0M
-1y SYSERR
-3 SYSERBAT
-y SYSERCOC
5@ SYSERCOM
[+-{{7y Programs
Elﬁ Classes
=28 DEPARTMENTLIST —
=l Object Data
e DEPLST-O
Elﬁ Local Data
L e EMPGUIDS
Elﬁ Interfaces
=142 ITERATE
Eﬁ. Methods
[-afmy POSITIONTO
- 7 oposn
Eﬁ' Patameter Data
gy, DPOS-A
[]-2k=y, GETHEXT
(7R DMEXT-M
Eﬁ' Parameter Data
gy, DNEXT-A

- 28 EMPLOYEE
(- 38 EMPLOYEESLIST =

= Logical View | ey FIat View] pay File View]

Which Classes can be handled by the Class Builder?

The Class Builder can manage any class which can be successfully checked. No special statements must be written

in the class source. This means that it is possible to change classes which have been generated with the Class Builder
with the program editor and vice versa. This is especially important if a class is used on several platforms in that the
Class Builder is not available on all Natural platforms.

The class syntax is highly "flexible", i.e., it is possible to obtain the same runtime behavior with different syntax
constructs. This was important for earlier Natural versions, because the user had to type all class code himself. With
the Class Builder, this is no longer necessary; the Class Builder will generate the class code and create Natural
objects, which are used by the class. The Class Builder will generate only the most reasonable code.

For this reason, the following features are not supported by the Class Builder:

2 Copyright Software AG 2001

Class Builder Which Classes can be handled by the Class Builder?

® create a new GUID LDA The Class Builder generates a GUID for the class and the interfaces of the class. If
you wish to define the GUID yourself, you must create a LDA outside of the Class Builder and then link it to
the class.

® create new inline data definitions The Class Builder only provides for the creation of new data areas. This is
because data definitions are usually used in several places (for example, method parameter in class and method
subprogram) and it is fault-prone if the same inline data definitions have to be used more than once.

® use data from inline data definitions for assignments in the Class Buildelf data definitions have to be
assigned to class components in the case of unique IDs and property implementations, the Class Builder offers a
list of all data definitions from the corresponding data areas. Data from inline data definitions will not be
included in these lists. This means, for example, that the object data variable which is defined inline cannot be
used as property implementation.

Although the Class Builder does not permit the creation of all class syntax constructs, it can nonetheless read
existing classes with these constructs and can be used to modify these constructs.

If the Class Builder cannot read a class because it is syntactically incorrect, it displays an error message and activates
the program editor. The syntax error must be corrected in the program editor. After the class has been saved, it can
be opened with the Class Builder.

Note: If you save a class with the Class Builder, the class source will be generated. This means that any special
source formats, such as indentation, will be lost.

Copyright Software AG 2001 3

When is a Class saved? Class Builder

When is a Class saved?

When a class is opened in the Class Builder, the contents are read from the class source and stored in an internal
structure. If you then change the class, these changes are performed only on the internal structures. The changes are
visible in all views of Natural. So, for example, when a new interface is added in the library workspace, a node for

this interface will also be created in the "Interfaces" list view of the class. If you want to save your changes, you

must execute "Save", "Save As" or "Stow" for the class.

If you create a new class, this does not automatically create a new class module. This is only done when "Save",
"Save As" or "Stow" is executed for the class. For this reason, a "new" class will not be visible in the File View of
the library workspace until it is saved the first time.

If you want to remove the changes which you applied to a class, you can use the "Restore” command. This
command will restore the class as it is contained in the class module, i.e., the last saved state.

If Natural is ended and unsaved classes exits, the user will be asked if the classes should be saved.

Class Comments

The Class Builder tries to assign every comment found in the class source to one component of the class. A comment
is usually assigned to the following class component. For example a comment which is found before the definition of
an interface is taken as comment for this interface.

The comments can be changed and created via the "Properties” menu item, which is available for all class component
nodes. For more information, sdede Properties

Note: If a class is read by the Class Builder for the first time, it is possible that the Class Builder assigns the
comments to a component other than the one the user expects. No comment will be lost when the class is saved, but
the user should check if the comments are assigned to the correct components.

When a class is saved by the Class Builder for the first time, all comments will be marked with a special tag. This
ensures that the comment assignment is correct when this class is read later by the Class Builder.

4 Copyright Software AG 2001

Class Builder Class Builder Interface

Class Builder Interface

The Class Builder is available in the logical and flat view of Natural. It is fully integrated in the general Natural user
interface which shows the Natural objects as nodes of a tree or list view.

In theLibrary Workspacea class can be "opened" by expanding the class node. The class nodes are grouped
hierarchically. For example, the interface is a child of the class node and the method is a child of the interface node.
Every class node provides the same features as all other nodes, for example, a context menu which allows
node-specific actions. Most of the class nodes that have child nodes can be opened as a list view which displays all
children of this node. Thieist View shows some more information about the nodes (for example, the library in

which an object data area is located). The list view nodes offer the same context menu as the corresponding library
workspace nodes. The columns of a list view can be sorted alphabetically.

“ Ohjeck Miew Library Tools Help

|lErrmast|cdeD | BEREEElE S E | taexE]s -

i af X
=18 Local Enwironment -
Eca Iser Libraries
[efTmy SYSTEM

EH:E Syskem Libraries
-y SYSDOM

(3 SYSERR
{7y SYSEXBAT
By SYSERCOC
=g SYSEXCOM
{::J Programs
E-G
- 28 DEPARTMENTLIST
E|3;, EEPLO‘."EE
-Eg Object Data
- Fk EMPLOY-O
Elﬁ. Local Data
o EMPGUIDS
=g Interfaces
FH-{ala EMPLOY-T
(- 28 EMPLOYEESLIST
[+ 28 NEWEMPLOYEE
{7z Subprogramns
-7y Text LI

Lo I S ERPEY [o S g

= Logical View | s Flat View | gy File View

Classes

Copyright Software AG 2001 5

Logical View Class Builder

Logical View

The class nodes of the logical view are inscribed with the class name, i.e., the name that is used when an object of
this class is created with the CREATE OBJECT statement.

In the logical view the nodes are, as a basic principle, grouped by their type. This is also valid for the class nodes.
Class nodes of the same type are collected under a group node which describes the type with its contents. Therefore,
all object data nodes are children of the object data group node named "Object Data".

Library Workspace

You can expand and collapse nodes of a class in the Library Workspace. Expand displays all child nodes and
Collapse hides all child nodes of the selected class node.

The logical view provides you with a structured view of the class. You can then expand those class nodes on which
you wish to work. For more information, refer to thiatural Studiacdocumentation.

List Views

Most of the parent nodes of a class have an assigned list view which can be opened with the "Open" command from
the context menu. This section describes the information which is shown in the list views of the logical view.For
more information about List Views, refer to tNatural Studiadocumentation.

Class List View
The class list view consists of group nodes. The list view for a group node can be opened with the "Open" command.
The following group nodes exist:

® "Object Data" group : is displayed if the class uses a ODA

® "Local Data" group : is displayed if the class uses a LDA for class or interface GUIDs

e ‘"Interface Modules" group : is displayed if the class uses an Interface ModulelYse®y Interfaces from
several Classgs

® ‘"Interfaces" group : is displayed if the class has defined interfaces (internal or external)

The class list view has the following columns:

® Type: type of the node (e.g. Object Data)
® Count: number of components of the specified type

6 Copyright Software AG 2001

Class Builder Logical View

Object Data Group List View

The "Object Data" group list view consists of object data nodes. Choosing the "Open" command for a node will open
the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Object Data" group list view has the following columns:

o Name name of the object data module or "Inline" in the case of an inline data definition

e Library : library where the object data module is located (is empty for inline data definitions or if the data area
has not yet been created)

e Type: Natural type of the object data module ("Local Data Area", "Parameter Data Area" or "Inline Definition")

Local Data Group List View

The "Local Data" group list view consists of local data nodes. Choosing the "Open" command for a node will open
the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Local Data" group list view has the following columns:

® Name name of the local data module or "Inline” for an inline data definition.

® Library : library where the local data module is located (empty for inline data definitions or if the data area has
not yet been created).

e Type: Natural type of the local data module ("Local Data Area", "Parameter Data Area" or "Inline Definition").

Interface Modules Group List View

The "Interface Modules" group list view consists of interface module nodel{edace Module List Vieyw
Choosing the "Open" command for a node will open the list viewl{siwy Interfaces from several Classfs this
particular interface module.

The "Interface Modules" group list view has the following columns:

® Name name of the interface module (copycode name)
® Library : library where interface module is located.

Interface Module List View

The interface module list view consists of interface nodes. Choosing the "Open" command for a node will open the
list view (sednterface List View for this particular interface.

The interface module list view has the following columns:

e Name name of the interface.

Copyright Software AG 2001 7

Logical View Class Builder

Interfaces Group List View

The "Interfaces" group list view consists of interface nodes. Choosing the "Open" command for a node will open the
list view (sednterface List View for this particular interface.

The "Interfaces" group list view has the following columns:

® Name name of the interface.

e Component Type "Internal Interface" for interfaces which are defined in the class and "External Interface" for
interfaces which are defined in an interface module included in this class.

e Defined In: interface module name for externally defined interfaces (empty for internal interfaces).

Interface List View

The interface list view consists of group nodes. Choosing the "Open" command for a node will open a list view for
this particular group.

The following group nodes exist:

® "Properties” group : is displayed if the interface contains property definitions
® "Methods" group : is displayed if the interface contains method definitions.

The interface list view has the following columns:

e Type: type of the node (e.g. Properties).
e Count: number of components of the specified type.

Properties Group List View

The "Properties” group list view consists of property nodes. The "Property” group list view has the following
columns:

Name name of the property.

Format: format of property.

Length: length of property.

Dimensiorn dimension of property.

Read-only: shows whether property is read-only or not.
ODA Variable: name of assigned ODA variable

8 Copyright Software AG 2001

Class Builder Logical View

Methods Group List View

The "Methods" group list view consists of method implementation and parameter data nodes. For every method of
the interface, it contains one method implementation (subprogram) node and one node for every parameter data

definition of the method.
Choosing the "Open" command for a node of this list view will open the editor for the particular node type (for

example, program editor for method implementation node).
The "Methods" group list view has the following columns:

o Name name of the method. The parameter data nodes are numbered from 1 to n (for example, INIT (2) for the
second parameter data node of method INIT).
o Implementation: only for method implementation node: the name of the subprogram which implements the

method
e Parameter Data only for method parameter data node: the name of the parameter data module or "Inline" for

an inline data definition
e Library : depending on the node type, library where implementation or parameter data module is located (empty
for inline data definitions or if the Natural module has not yet been created).

Method Parameter Data Group List View

The "Parameter Data" group list view consists of parameter data nodes. Choosing the "Open" command for a node
will open the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Parameter Data" group list view has the following columns:

® Name name of the parameter data module or "Inline" for an inline data definition.

e Library : library where parameter data module is located (empty for inline data definitions or if the data area
has not yet been created)

e Type: Natural type of parameter data module ("Parameter Data Area" or "Inline Definition")

Copyright Software AG 2001 9

Logical View

Class Builder

” e, Object Wiew Lbrary Tools Window Help ;lilﬂ
H=H o= B T—il
lBrrmast|cddp EREElE SE | s a2exEls ol
} | =] | [Mame | Implementation | Farameter Daka | Library
=8 Local Enviranment o || fE ELOAD-H SYSEXCOM
=L@ User Libraries e INIT (1) ELOAD-A SYSERCOM
o el SYSTEM [cET EGET-M SYSEXCOM
=L@ System Libraries e GET (1) EGET-A SYSEXCOM
- SYSDDM = seT ESET-M SYSEXCOM
G- SYSERR 2 SET (1) EGET-4 SYSERCOM
{3 SYSERBAT || =R e EMEW-M SYSERCOM
-2 SYSEXCOC 2t MEWY (1) ENEW-A SYSEXCOM
E"' SYSEXCOM f= upDaTE EURDAT-N SYSEXCOM
=5
E% C:zsgsr:;n) g UPDATE (1) ELIPDAT-A SYSEXCOM
198 DEPARTMENTLIST F= CELETE EDEL-M SYSEXCOM
£ B8 EMPLOVEE Qi DELETE 1) EDEL-A SYSERCOM
- Ohject Data = STREAM ESTRM-N SYSERCOM
-7y Local Data e STREAM (1) ESTRM-& SYSERCOM
-G Interfaces = UMSTREAM ELISTRM-I SYSERCOM
=68 EMPLOY-T e UMSTREAM (1) ELISTRM-& SYSEXCOM
{3 Properties
{:;] Methods
(- 28 EMPLOYEESLIST
- 38 MEWEMPLOYEE L|
poa Logical Yiew |— Flat "v"lewl rsa FilE Yiew « |_P|
2

10

Copyright Software AG 2001

Class Builder Flat View

Flat View

The class nodes of the flat view show the class module name.

Unlike the logical view, the flat view does not contain any group nodes. The flat view has the advantage that the
level where a specific class component is displayed is lower compared to the logical view, and thereby provides you
with a better class overview.

Library Workspace

You can expand and collapse nodes of a class in the Library Workspace. Expand displays all child nodes and
Collapse hides all child nodes of the selected class node. The flat view provides you with a general overview of the
class. It lists all sub-components of a class component on the same level. For example, if an interface node is
expanded, all properties and methods of the interface will be displayed as child nodes of the interface node. For more
information, sedatural Application Development Environment

List Views

The flat view supports only a few list views because of the low node nesting level. The list views can be opened with
the "Open" command from the context menu. This section describes the information which is shown in the list views
of the flat view. For more information about List Views, refer toNlatural Studiadocumentation.

Class List View
The class list view contains a node for every child component.
The following nodes exist:

® Object Data nodefor every ODA of the class. Choosing the "Open” command of the node opens the data area
editor for data areas and a special Class Builder dialog for inline definitions

® | ocal Data nodefor every GUID LDA of the class. Choosing the "Open" command of the node opens the data
area editor for data areas and a special Class Builder dialog for inline definitions.

e Interface Module nodefor every interface module which is used by the class.Choosing the "Open" command
of the node will open the interface module list view.

e |Interface nodefor every interface of the class (external and internal). Choosing the "Open" command of the
node will open the interface list view.

The class list view has the following columns:

e Name name of the component.

® Component Type indicates the type of the component ("Object Data", "Local Data", "Interface Module",
"External Interface" or "Internal Interface").

® Type: only for component type "Object Data" and "Local Data": Natural type of data module ("Local Data
Area", "Parameter Data Area" or "Inline Definition")

Copyright Software AG 2001 11

Flat View Class Builder

B2 Ohject Wiew Lbrary Tools Window Help ;lilﬁl

ErrNEsl sl EHEEPE & F| teexE|-
|

A [Marne | Cormponent Type | Twpe

Elg Local Environment s ! EMPLOY -0 JRalay e o) Local Data Area
=L@ FUSER FREMPGUIDS | Local Data Local Data Area
- {lzy SYSTEM (= EMPLOY-T | Internal Interface
=L@ FraT
-y SYSDOM
-3 SYSERR
[y SYSEXBAT
-y SYSERCOC
=l SYSEXCOM
& A-README
E_Elé A-REG
{8 A-UNRES
[+ 28 DEPLST
----- DEPLST-O
- Eyg DMEXT-A
- {E8 DMNEXT-M

- Eyg DPOS-A
{78 oPos-N
- Byg EDEL-A
{58 EDEL-N
- By EGET-A
- {{E8 EGET-M

- Byg ELOAD-A

{58 ELOAD-N

----- EMPGLIDS

[+ 28 EMPLOY

----- EMPLOY-L =

W

—l:. Logical Yiew ; Flat Yiew E File "-.-"iEWI

Interface Module List View

The interface module list view consists of interface nodes. Choosing the "Open" command of a node will open the
list view (seelist View) for this particular interface.

The interface module list view has the following columns:

® Name name of the interface.

12 Copyright Software AG 2001

Class Builder Flat View

Interface List View

The interface list view contains all nodes for the properties and methods of the interface.

The following nodes exist:

Property node for every property of the interface.

Method implementation nodefor every method of the interface. Choosing the "Open" command for the node
will open the program editor with the specified implementation (subprogram).

Method parameter data nodefor every parameter data component of every method of the interface. Choosing
the "Open" command for the node will open the data area editor for data areas and a special Class Builder
dialog for inline definitions.

The interface list view has the following columns:

Name name of the property or method; the parameter data nodes for methods are numbered from 1 to n (for
example, INIT (2) for the second parameter data node of method INIT).

Implementation: only for properties and method implementation node: the name of the assigned ODA variable
for properties and the name of the subprogram which implements the method for methods.

Parameter Data only for method parameter data node: the name of the parameter data module or "Inline" for
an inline data definition.

Library : only for methods: depending on the node type, library where implementation or parameter data
module is located (empty for inline data definitions or if the Natural module has not yet been created).
Format: only for properties: format of property.

Length: only for properties: length of property.

Dimension only for properties: dimension of property.

Read-only: only for properties: shows whether property is read-only or not.

Copyright Software AG 2001 13

Class Builder Nodes Class Builder

Class Builder Nodes

Related to the user interface, every component of a class is represented by a node. Nodes are displayed both in the
library workspace and in the list views.

Every node has an icon and textual information about the component which can be the name of the component (in
the library workspace) or the name of the component and additional information (in the list views).

The following table lists all available Class Builder nodes with their icons and a short description:

Type Icon | Description

new class new class which has not yet been saved

class (src) E class which is only available as source

class (gp) 28 |class which is only available as generated program

class (src & gp) 28 | class which is available as source and generated program
ODA Eﬂ object data defined in a data area module

inline ODA :: object data defined with an inline data definition

LDA local data (for GUIDs) defined in a data area module
inline LDA local data (for GUIDs) defined with an inline data definition

Interface Module interface module, i.e., copycode which defines interfaces

B EE D

internal interface interface which is defined in the class

interface which is defined in an interface module that is used by thg class

v

external interface

internal property property which is defined in an internal interface

M ﬁ

external property property which is defined in an external interface

internal method ==y | method which is defined in an internal interface

external method e=, | method which is defined in an external interface

method implementatio _'*_, subprogram which implements a method

method PDA Et method parameter data defined in a data area module
inline method PDA £+ | method parameter data defined with an inline data definition

In the following section, the Class Builder nodes are described in more detail. The commands of a specific node can
be invoked from the context menu of the node or the "Classes" toolbar.

14 Copyright Software AG 2001

Class Builder Class Nodes

Class Nodes

The class node represents the class itself. The name displayed in the class node is either the class name (logical view)
or the class module name (flat view).

Types
New Class

If a new class is created, it is displayed with the new class icon until it is saved the first time. Therefore, new class
means that the class is only "transient" in the current Natural session and is not available in source format. For this
reason, the new class will not be shown in the File View which shows the source and gp files of the Natural objects.
In addition, it is not possible to execute all class node commands on a new class.

Source-Only E
The source-only class icon is displayed if the class is only available in source format but has not yet been cataloged.
GP-only (icon)

The GP-only class icon is displayed if the class is only available in GP format. Classes of this type cannot be handled
with the Class Builder and the context menu of these classes is the same as for all other Natural objects which are
only available in GP format.

Source-and-GP E‘E

The Source-and-GP class icon is displayed if the class is available in source and GP format.

Commands

Command available for | Description

new
Open source-only | Opens the class list view. For more information,l9eeViews
source-and-G

new
List source-only
source-and-G

Opens the program editor in read-only state with the internal source formajt of
the current class structure.

source-only

Cat source-and-G

Catalogs the current class.

new
Save source-only | Saves the current class structure in the given class module.
source-and-G

new
Save As source-only | Saves the current class structure in a new Natural module.
source-and-G

new
Stow source-only | Stows the current class structure in the given class module.
source-and-G

new
New ODA source-only | Creates a new object data area for the class.
source-and-G

Copyright Software AG 2001 15

Class Nodes Class Builder
Command available for | Description
new
New Interface |source-only |Creates a new interface for the class.

source-and-G

source-and-G

new
'\N/Iiv&/ullr;terface source-only | Creates a new interface module. This interface module is linked to the class.
source-and-G
new
Link LDA source-only | Uses an existing data area as GUID LDA for the classLiB&e
source-and-G
new
Link ODA source-only | Uses an existing data area as ODA for the classLiBke

. new
Link Interface ssurce-onl Uses an existing copycode as interface module for the class. All interfaces
Module Y| defined in the Interface Module will be included in the class LBde
source-and-G
. Registers the class in the system registry. For more information, see the
Register source-and-G .
NaturalX documentatian
. Unregisters the class from the system registry. For more information, see
Unregister source-and-G .
NaturalX documentatian
new Changes either the class name or the class module name depending on the
Rename source-only | current view of the library workspace. For more information,Rsegaming
source-and-G| Class Members
new
Deletes the Natural module of the class (for source-only and source-and-GP) or
Delete source-only .
only the internal structure of the class (new).
source-and-G
Removes all changes of the class which have not yet been saved. This commmand
source-only . N . .
Restore will close all list views of the class and collapse the class node in the librany
source-and-G
workspace.
Cut source-only |~ o the class module.
source-and-G
source-only :
Copy source-and-G Copies the class module.
Paste source-only Pastes the class module.
source-and-G
new
Print source-only | Prints the source format of the current class structure.
source-and-G
new : : . . .
: Opens the Properties dialog which shows class-specific information. For more
Properties source-only |. . .
information, sedode Properties
source-and-G
16 Copyright Software AG 2001

Class Builder Object Data Nodes

Object Data Nodes

An object data node represents an object data area module or an inline object data definition. A class can have
several object data nodes. If more than one object data node exists, you must take care to follow the correct object
data sequence when you use these nodes in method implementations.

Types

Data Area EH

This type indicates that the object data is defined in a separate Natural module of type local data area or parameter
data area. The name which is displayed in the node is the name of the Natural data area module.

e
Inline Data Definition A"k

This type indicates that the object data is defined direct in the class source with a DEFINE DATA OBJECT
statement. In this case, the object data has to be defined again in every method implementation which uses the object
data. A node of this type is always named "Inline".

Commands

Command| available for | Description

Open data area Opens the data area module with the data area editor.

Edit g]e”fri]r(leit(ijoi[a Opens a dialog which shows the contents of the inline data definition for editing.
List data area Lists the data area module.

Cat data area Catalogs the data area module.

Stow data area Stows the data area module.

Unlinks the data area module from the class, i.e. it is no longer used as Object Data

Unlink data area Area for the class.

Renames the Object Data Area link, i.e. uses another data area module as Object Data

Rename |data area) .)
Area for the class. For more information, Samaming Class Members

Delete '”"r.‘e. glata Deletes the inline data definition from the class.
definition
Print data area Prints the data area module.
data area e .
N Opens the Properties dialog which shows object data-specific information. For more
Properties | inline data . :)
definition information, sedNode Properties

Copyright Software AG 2001 17

GUID Local Data Nodes Class Builder

GUID Local Data Nodes

An GUID Local Data node represents a local data area module or an inline local data definition which contains
GUID definitions. A class can have several local data nodes.

Types

Data Area ﬂ

This type indicates that the GUID local data is defined in a separate Natural module of type local data area or
parameter data area. The name which is displayed in the node is the name of the Natural data area module.

Inline Data Definition ﬁ

This type indicates that the GUID local data is defined direct in the class source with a DEFINE DATA LOCAL
statement. A node of this type is always named "Inline".

Commands

Command| available for | Description

Open data area Opens the data area module with the data area editor.

Edit g]e”fri]r(leit(ijoi[a Opens a dialog which shows the contents of the inline data definition for editing
List data area Lists the data area module.

Cat data area Catalogs the data area module.

Stow data area Stows the data area module.

Unlinks the data area module from the class, i.e. the data area module is no lorjger

Unlink data area used as GUID Local Data Area for the class.

Renames the GUID Local Data Area link, i.e. uses another data area module a$ GUID

Rename | data area Local Data Area for the class. For more information,Reeaming Class Members

Delete '”"r.‘e. glata Deletes the inline data definition from the class.
definition
Print data area Prints the data area module.
. qa.ta area Opens the Properties dialog which shows local data-specific information. For mpre
Properties | inline data . . .
definition information, sedNode Properties

18 Copyright Software AG 2001

Class Builder GUID Local Data Nodes

Interface Module Nodes
An Interface Module node represents an interface module. The interface module is a Natural module of type

copycode which defines interfaces that can be included in several classes. For more information about interface
modules and their usage, $¢sing Interfaces from several Classes

Commands

Command | Description

Open Opens the interface module list view. For more information|sté&/iew.

List Opens the program editor in read-only state with the source format of the current Interface Module
structure.

Save Saves the current Interface Module structure in the given Natural copycode module.

New . .
Creates a new interface in the Interface Module.

Interface

Unlink Unlinks the Interface Module from the class, i.e. the interfaces defined in the Interface Modyle are
no longer available in the class.

Print Prints the source format of the current Interface Module structure.

Properties Opens the Properties dialog which shows Interface Module-specific information. For more

information, sedNode Properties

Copyright Software AG 2001 19

Interface Nodes Class Builder

Interface Nodes

An interface node represents an interface of an interface module or a class. For more information about internal and
external interfaces, séésing Interfaces from several Classes

Types

Internal .

The parent of an internal interface is either an interface module or a class. If its parent is an interface module, this
means that the interface is defined in the interface module which is used by the class. In this case, the interface will
be displayed a second time as an external interface of the class (For more informatismgé#erfaces from

several Classgslf the internal interface is a child of the class itself, this means that the interface is defined direct in
the class.

External ?J

An external interface can appear only as sub-node of a class, which uses an interface module which defines this
interface. The commands which can be executed on an external interface node are only a subset of the commands
available for an internal interface. Basically you can only change the implementation of such an interface. For more
information, sedJsing Interfaces from several Classes

Commands
Command available for Description
internal . L . : o
Open Opens the interface list view. For more information, see List View.
external
New . .
internal Creates a new method for the interface.
Method
New . .
internal Creates a new property for the interface.
Property
Rename internal Renames the interface. For more information,Reeeaming Class Members
Delete internal Deletes the interface and all its dependent components.
. internal Opens the Properties dialog which shows interface-specific information. Fgr
Properties . . .
external more information, seMode Properties

20 Copyright Software AG 2001

Class Builder Property Nodes

Property Nodes

A property node represents a property of an internal or external interface.
Types

Internal E

If a property appears as sub-node of an internal interface, it will be displayed as internal property. An internal
property node always has a dedicated external property node.

External P&

If a property appears as sub-node of an external interface, it will be displayed as external property. The commands
which can be executed on an external property are only a subset of the commands which are available for internal
properties.

Commands
Command }';:)vrallable Description
Rename |internal Renames the property. For more information,Reeaming Class Members
Delete internal Deletes the property.
. __|internal Opens the Properties dialog which shows property-specific information. For more
Properties . . .
external information, seéNode Properties

Copyright Software AG 2001 21

Method Nodes Class Builder

Method Nodes

A method node represents a method of an internal or external interface.
Types

Internal =

If a method appears as sub-node of an internal interface, it will be displayed as an internal method. An internal
method node always has a dedicated external method node.

External 1

If a method appears as sub-node of an external interface, it will be displayed as external method. The commands
which can be executed on an external method are only a subset of the commands which are available for internal
methods.

Commands

Command]iac)\/ra|lable Description

New PDA internal Creates a new method parameter data area for the method.
Link PDA internal Uses an existing parameter data area as method PDAiIrtkee
Link internal

. . Uses an existing subprogram as method implementation.isiee
implementation external

Rename internal Renames the method. For more information Reeaming Class Members
Delete internal Deletes the method and all its dependent components.

. internal Opens the Properties dialog which shows method-specific information. Fqr
Properties

external more information, seMode Properties

22 Copyright Software AG 2001

Class Builder Method Implementation Nodes

Method Implementation Nodes

A method implementation node represents the Natural subprogram which is executed when the method is called.

Commands

Command| Description

Open Opens the subprogram of the method implementation in the program editor.

List Lists the subprogram of the method implementation in read-only mode in the program editor.
Cat Catalogs the subprogram of the method implementation.

Stow Stows the subprogram of the method implementation.

Renames the method implementation, i.e. uses another subprogram for the method implementation.

Rename For more information, sdeenaming Class Members
Print Prints the subprogram of the method implementation.
Properties Opens the Properties dialog which shows method implementation-specific information. For mare

information, sedNode Properties

Copyright Software AG 2001 23

Method Parameter Data Nodes Class Builder

Method Parameter Data Nodes

A method parameter data node represents a parameter data area module or an inline parameter data definition. A
method can have several method parameter data nodes, which define the parameter used by the method
implementation. If more than one method parameter data node exists, you must ensure that the correct parameter
data sequence is used in method implementations.

Types

Data Area g

This type indicates that the method parameter data is defined in a separate Natural module of type parameter data
area. The name which is displayed in the node is the name of the Natural parameter data area module.

24 Copyright Software AG 2001

Class Builder

Inline Data Definition Ej‘

Method Parameter Data Nodes

This type indicates that the method parameter data is defined direct in the class source (or interface module source)
with a DEFINE DATA PARAMETER statement. In this case, the parameter data must be defined again in every
method subprogram. A node of this type is always named "Inline".

onger

mation.

Commands
Command| available for |Description
Open data area Opens the data area module with the data area editor.

. inline data . . . _— -
Edit definition Opens a dialog which shows the contents of the inline data definition for editingj.
List data area Shows the listing of the data area module.

Cat data area Catalogs the data area module.
Stow data area Stows the data area module.
. Unlinks the data area module from the method, i.e. the data area module is no
Unlink data area
used as parameter data area for the method.
Renames the method parameter data area link, i.e. uses another data area modlule as
Rename |data area parameter data area for the method. For more informatioRReseming Class
Members
Delete |nI|r_1e_ glata Deletes the inline data definition.
definition
Print data area Prints the data area module.
. .da.ta area Opens the Properties dialog which shows method parameter data-specific infor
Properties | inline data : : X
definition For more information, sedode Properties

Copyright Software AG 2001

25

Node Properties Class Builder

Node Properties

The Class Builder provides node-specific information on Natural classes and their elements if context-menu entry
"Properties" is chosen. This context-menu entry is available if an object is selected in the library workspace or in a
list view. The property sheet provides no information on group nodes.

The information itself is presented in a property sheet. The actual number of property pages shown depends on the
type of the selected object.

e OK Accept modifications.
® Cancel Skip modifications.

For all class elements, property pages "General" and "Comment" are available. The other property pages depend on
the selected node type.

General
x
| En:lmmentl Identifin:atin:unl Settingsl
Hame IDEP‘&HTMENTLIST
Defined in IDEF'LST
Library |5Y5E><EDM
k. Carncel

This property page shows general information on the selected object. Its contents vary with the corresponding type of
node and are described in the following sections.

26 Copyright Software AG 2001

Class Builder General

Class

Name Class Name

Defined in| Class Modulg

Library Library

Object and Local Data Area

Name |Name of Object or Local Data Arga

Used in | Class Name

Library |Library

Inline Data Definition

Name "Inline Definition"

Defined in| Class Name

Interface Module

Name | Name of Interface Module

Used in | Class Name

Library |Library

Interface
Name Name of Interface
Defined in Class Name

Interface Module | If the interface is defined in an interface module this field shows the corresponding name.

Method
Name Name of Method
Defined in Name of the interface that offers this method.

Interface Module | If the method is defined in an interface module this field shows the corresponding name.

Copyright Software AG 2001 27

General

Implementation

Name | Name of Subprogram

Used in | Name of the method that is implemented by this subprog

Library |Library

Parameter Data Area

Name |Name of Parameter Arg¢a

Used in | Name of Method

Library |Library

ram.

Class Builder

Property

Name Name of Property

Defined in Name of the interface that offers this property.

Interface Module | If the property is defined in an interface module this field shows the corresponding name.

28

Copyright Software AG 2001

Class Builder Comments

Comments

x

| [dentification I Seftings |

r o

k. Cancel

Each component has its own comment.
This property page shows the comment and allows adding new or modifying existing comments. They are entered

and listed without any special syntactic notation.

The comment is changed if the property sheet is left by pressing "OK". Pressing "Cancel" leaves the comment
unchanged.

Copyright Software AG 2001 29

Identification Class Builder

Identification

x

| Settings |

Unique D

IGUID-DEF‘.&HTMENTLIST

— Data Wanable

GUID-DEPARTMEMTLIST
GUID-EMPLOYEE
GUID-EMPLOYEESLIST
GUID-MEWFID
ND-DEPARTMEMTLIST
D-EMPLOYEE
ND-EMPLOYEESLIST
ND-MEWFID

k. Cancel

This property page is available for class and interface nodes. For interfaces, the list box below is only enabled if the
interface is defined direct as part of the class. The list box is not visible if the interface is defined in an interface
module.

The upper control "Unique ID" shows the curr@ibal UniquelD of a class or an interface as read-only
information.

This list box offers all data variables contained in local data areas that are linked to the class. These variables can be
used as unique identifiers. Inline definitions of variables are not supported.

To exchange the curre@®obal UniquelD that is displayed in the upper control with another value, select a variable
from the list. The name control is then updated with the newly selected variable nar@do@ddéniquelD is

exchanged if a variable has been selected and the property sheet is left by pressing "OK". Pressing "Cancel" leaves
the identification unchanged. There is no check whether a selected variable representlabailighiquelD.

30 Copyright Software AG 2001

Class Builder Settings

Settings

x

Generall Eummentl | dentification |

.............

— Activation Policy

o Default
" External Single
™ Intemnal Multiple

" Extermal Muliple

k. Cancel

This property page is available for class nodes only. It allows setting the class"s activation policy within the Class
Builder.

A class"s activation policy can be

e External Single
® |Internal Multiple
® External Multiple

Or it is set to default.
More information on the meaning of these values can be found Metiueal X documentation.

To change the current activation policy select the required value.
The value is changed if the property sheet is left by pressing "OK". Pressing "Cancel" leaves the identification
unchanged.

Copyright Software AG 2001 31

Definition Class Builder

Definition

Properties Ed |

Generall Comment D efinitian |

Froperty erzonnel-id

Eormat I & j [~ BeadOnly

Lengh [50

— Object Data Yarniable
Mame | Farmat | Lenath | Dlimensior -
EMPL-ST... A a -
EMPLST... A 20
EMPL-ST... A 20 b
4| | &
k. Cancel | Sl

This property page is available for properties of interfaces only. It allows modifying the definition of an existing
property.

The property"s name cannot be changed. The following changes are possible:

® An Object Data Variable can be assigned to the property.
The available Object Data Variables are listed in the page"s list box together with their format definition and
dimension.
They are taken from the Object Data Areas that are linked to the current class. Inline definitions of variables are
not supported.

® Existing assignments of Object Data Variables to properties can be changed. The corresponding control is then
updated with the newly selected variable"s name.

® The property"s format definition can be added or changed if it is different from the Object Data Variable"s
definition.
Otherwise format and length definition are taken from the assigned Object Data Variable.

® [t can be defined whether this property is used read only.

The definition of the property is changed if the property sheet is left by pressing "OK". Pressing "Cancel" leaves the
definition unchanged.

32 Copyright Software AG 2001

Class Builder Adding Class Components

Adding Class Components

To make the development of a class more comfortable the Class Builder offers two ways to add components to a
class.

Link

Existing Natural objects can be linked to a class component.
If context menu item "Link" is activated for an object node a dialog is opened. It lists all objects of the required type
that can be found in the current library or its steplibs.

If an object has been selected and the dialog is left by pressing "OK", a reference to the selected object is added to
the class structure. "Cancel" leaves the class structure unchanged.

Link Object Data Area |
To IEMF‘LDY
M ame | Library -
MGULDDEN SYSTEM .
MGULFCT1 SYSTEM
MGULKEY SYSTEM
ZAPASO0A SYSCOMP
ZCAAMOD, SYSCOMP
ZLAAMS O, SvYSCOMP
ZLAAMS 20, SYSCOMP
ZCAASODA SYSCOMP
ZLAASO2A, SvYSCOMP
ZCFASOLS, SYSCOMP
ZCLASOA, SYSCOMP &
1| | »

k. Carcel |
Link to Class

A GUID Local Data Area, an Object Data Area or an Interface Module can be linked to a class. The dialog shows
object name and library.

Link to Method

Each method requires a method implementation. The existing implementation can be exchanged by linking another
subprogram to a selected method. Moreover, one or more Parameter Data Areas can be linked to a method. The
dialog shows object name and library.

Copyright Software AG 2001 33

New Class Builder

New

New class components are created with context menu item "New".

In the library workspace, class components are created using in-place editing. List views use dialogs to query the
necessary data and create new objects. This applies to all nodes apart from class properties: They are always created

using a dialog.

The following sections describe how the different class components are created.

New Class

A new class is first created as an internal class structure. At this time the class name is defined. The class module
name, i.e. the name of the actual Natural object, is assigned when the class is saved the first time.

Library Workspace

A new class name, for example NEWCLS, is generated. The corresponding tree node is selected and made available
for in-place editing. The name can be changed to any valid class name.

“ Object | Wiew Library Tools Help

|Brrasdcudp FaEELs|SE || teexEs

=8 Local Environment
EH:a User Libraries
. (I SYSTEM
EH:E System Libraries
-y SYSDOM
{77y SYSERR
-y SYSEXEAT
-y SYSEXCOC
@ SYSEXCOM
--1::] Prograrns
Elﬁ- Classes
38 DEPARTMENTLIST
- 28 EMPLOYEE
i Bz Interfaces
- 58 EMPLOYEESLIST

38 NEWEMPLOYEE
F-{I7 Subprograms

-y Texk

F-{{7y Local Data Areas
-{I73 Parameter Data Areas
[T SYSERMNE

o~ Logical View | o Flat View | gay File View

34 Copyright Software AG 2001

Class Builder

List View

A dialog is opened that asks for the name of the new class.

New Class

”ﬁol;iect View Lbrary Tools Window Help

lBxzrEass sl | EREE =55

=l

=B} Local Environment
EIEa User Libraries
(I SYSTEM
EH:a System Libraries
[y S¥SDOM
1:‘;] SYSERR.
E‘;] SYSEXBAT
1::] SYSEXCOC
-G SYSERCOM
{7y Programs
I Classes
{33 Subprograms
gy Text
{3 Local Data Areas
[-{Zz3 Parameter Data Areas
(I3 SYSEXDDE
{3 SYSEXDOM
{3 SYSEHEVT
(3 SYSEXING
[
[
[

H-{7y SYSEXMGR,
H-{7y SYSEXMLS
]1::] SYIERMEKE
-7 SYSFEPG

Y

Type | Mumber | Size: |
(73 Programs 2 3435
(@ Classes & 9593
{3y Subprograms 14 27096
o Text 1 4415
{[Tylocal Daka Areas 3 6510
(ZyParameter Daka Areas 13 Ta15

Mame IMYNEWEL.-’-\S E

] I Cancel

> Logical View | e Flat View | ra File View

Copyright Software AG 2001

35

New Object Data Area Class Builder

New Object Data Area

Creating a new object data area adds a reference to a new component to the class structure. The corresponding
Natural object is not yet created. It is created if you confirm such when you open it.

Library Workspace

A new object data area, for example NEWODA, is generated. The corresponding node is selected and is made
available forin-place editing. The name can be changed to any valid data area name.

List View

A dialog is opened that asks for the name of the new object data area.

New Interface Module

Creating a new interface module adds a reference to a new component to the class structure. The corresponding
Natural object is not yet created. It is created if it contains interfaces at the time the class is saved.

Library Workspace

A new interface module, for example NEWEIF, is generated. The corresponding node is selected and is made
available for in-place editing. The name can be changed to any valid copycode name.

List View

A dialog is opened that asks for the name of the interface module.

New Interface

Library Workspace

A new interface, for example NEWIIF, is generated. The corresponding node is selected and is made available for
in-place editing. The name can be changed to any valid interface name.

List View

A dialog is opened that asks for the name of the interface.

36 Copyright Software AG 2001

Class Builder New Method

New Method
Library Workspace

A new method, for example NEWMET, is generated. The corresponding node is selected and is made available for
in-place editing. The name can be changed to any valid method name. The new method name is also taken as the
name of the method implementation. Both are added to the class structure. If the method name is longer than a valid
Natural subprogram name, only the first characters are used to guarantee a valid implementation name.

List View

A dialog is opened that asks for the name of the method. The new method name is also taken as the name of the
method implementation. Both are added to the class structure. If the method name is longer than a valid Natural
subprogram name the first characters are used to guarantee a valid implementation name.

New Property

New properties are always created using a dialog.

Mew Property |

Hame IMYNEWF‘HDF’EHTY

Eormat I j [~ BeadOnly

— Ohject D ata Wariable

M ame | Format | Li =~
EMPL-STRUCT.PERSOMMEL-ID A a
EMPL-STRUCT.FIRST-MAME B, 20

EMPL-STRUCT MIDDLE-MAME A 2l

EMPL-STRUCT .HAME B, 2=
EMPL-STRUCT.DEPT B, B
&
M

EMPL-STRUCT.ADDRESS-LIME

2l
CkdDl CTOLICT 1T] r
4T | Y

] Cancel |

Copyright Software AG 2001 37

New Property

Class Builder

This dialog retrieves the following information:

Property A valid property name. This is either a new name or the name of the selected ODA variablg. For
name: fully qualified ODA variable names the dot is replaced by an underscore.
ODA The list box lists all variables that are defined in the linked ODAs.
variable: If property name, format and length are not changed, these values are taken from the selegted ODA
' variable.

Format: Format and length can be changed if they must be different from the ODA variable"s definifions.
Read-Only: | The property can be marked as read-only.

38

Copyright Software AG 2001

Class Builder Renaming Class Components

Renaming Class Components

Like any other Natural object that can be modified in the Natural Studio, the components of a class are renamed by
editing their identifier in place. This is done using the mouse or by pressing F2 or by choosing context menu entry
"Rename" which is enabled for every class component.

Objeck Wiew Library Tools Help

BrrEidd s e EBEEE | S B starXxE

Y -3
B=- Q Local Environmment -
EI q IUser Libraries
(I3 SYSTEM

Ell:a System Libraries
G-y S¥SDOM
-7y SVSERR
{13 SYSEXBAT
By SVSEXCOC |
-G SYSENCOM
G- #1-(y Programs
=2 ﬁ. Classes
& 3;, DEPARTMENTLIST
{7y Object Data
I 1::] Local Data
=- @. Interfaces
[+-{s8s) ITERATE
- 28 EMPLOYEE
-28 EMPLOYEESLIST
-[B= mynEWCLASS
--|‘1_', MEWCLS
98 MEWEMPLOYEE

[T S |hn|-'nnr:hrnr

L|:|g||:a|"-,-"|ew I_ Flat "-.-"IEWI e Fle "v"lewl

Commatd: I j Library: ISYSEXEDM Ervvironment: |L|:u:a|

Vi

During the edit process the new name is checked for syntactical correctness. If it is not a valid Natural name the edit
mode cannot be left. Pressing ESCAPE cancels the edit mode and resets the old identifier.

If class components refer to Natural objects such as Object Data Areas, Parameter Data Areas or Interface Modules,

only the references within the class are changed. The corresponding Natural objects are not renamed. They have to
be changed explicitly if required.

Copyright Software AG 2001 39

Removing Class Components Class Builder

Removing Class Components
Unlink

Context menu entry "Unlink" is available for class components that refer to Natural objects like Data Areas or
Interface Modules. If these modules have been linked to a class previously they can be removed using "Unlink".

Object Wiew Library Tools Help

BrrMEdY sl | BRI &8

7] X

=2 Local Ervironment -
EH:B User Libraries
- i SYSTEM
Ell:a Syskem Libraries
’C:J SYSDDM
[#-{77y SYSERR.
[y SYSEXBAT
[y SYSEXCOC
-G SYSENCOM —
1::' Programs
Elﬁ. Classes
Eni DEPARTMEMTLIST
-7y Local Data
=G Object Data

Do

LAR 3 Open Chrl+0
3 Interface la# Op

.88 EMpLOYEE | o List

- 28 EMPLOYEESL B Catalog
B8 MyNEWCLAS B
B8 nEwcls EH Stew

{7y Subprograms

[Ty Text Rename Fz
r Y - B
i i | Flat Wi |
nea LogicalView | = X E mint ke
Command: I Properties g ISYSEKEDM E nvironment: IL-:u:aI
Urlinks the selected object: from the Class -

This action only removes the reference to selected components from the class. It does not delete an existing Natural
object.

40 Copyright Software AG 2001

Class Builder Delete

Delete

Context menu entry "Delete" is available for classes and those of their components that do not refer to Natural
objects.

If this context menu item is selected, a dialog is displayed.

It displays the name of the selected component in a read-only field together with a list of references that shows the
dependent Natural objects. These objects are identified by name, library and Natural object type if required. The list
serves for information purposes only. The dependent Natural sources are not affected.

If the selected component is the class itself, the internal structure is deleted and the corresponding Natural source and
cataloged modules are removed from the library.

Object Wew Library Tools Help

BermEsty S EI@@II’@%EHEISIE‘

Elg Local Environrment -

EI l:a User Libraries
(o SYSTEM
E| Ca Swskem Libraries
(- SYSDDM
-y SYSERR N .
[+-{73 SYSEXBA eferences:
B SYSERCE — = — |

E[ﬁ; SYSERCC EMPGLIDS LDA SYSE=COM
- Progr @ NGULDDET

Eﬁ.class
ElE;,E
E‘E

Mame |DEPLST

® |

l 28 E

-8 9 EHFLOVEESLEET

[F'_, MYHEWCLASS

{28 NEWCLS

(- B8 NEWEMPLOYEE

{77y Subprograms

-y Text ;l

= Logical View | = Flat View | g File View]

Enmmand:l j Librany: |SYSEXCOM Enwironment; |Local |

&

Closes the dialog and deletes the selected component.
OK If the selected component is the class itself, the internal structure is deleted and the Naturfal source
and GP objects are removed from the library. The referenced Natural objects are not delefed.

CANCEL | Closes the dialog without deleting anything.

Copyright Software AG 2001 41

Editing Class Components Class Builder

Editing Class Components

Classes

At the time a new class is created, the corresponding new class module is not yet created. This occurs only if "Save",
"Save As" or "Stow" is called for the class.

Save

"Save" called for an existing class writes the class source to the class module.

If "Save" is called for a new class that does not yet have a corresponding class module then "Save" is treated like
"Save As...". If such a class module does not yet exist in the current library, the class module is created and the
source is written to this object.

Save As

If "Save As..." is called, a dialog is opened that prompts for the class module. The input length is restricted to
guarantee a valid Natural class module name and the input is checked for validity. If such a class module does
already exist or if the name is invalid, an error message is issued.

Cat

If the command "Cat" is called, the class source is cataloged and a corresponding class GP is generated. This does
not apply to new classes.

Stow

As for other Natural objects "Stow" internally saves and catalogs a class. If a new class is to be stowed, you are
prompted for the class module as described for "Save As".

Natural Objects

Natural objects that can act as class components can also be modified in the context of the class structure. References
to Object Data Areas, Parameter Data Areas and Interface Modules can be created by "New". Existing objects can be
edited, saved and stowed.

Local Data Areas and method implementations cannot be created in the class"s context. Here only existing objects
can be linked to the class. But they can be edited, saved and stowed.

Other Class Components

Other class components such as interfaces, methods and properties cannot be saved, cataloged or stowed
independently. They can only be modified in the context of a class.

42 Copyright Software AG 2001

Class Builder Using Interfaces from Several Classes

Using Interfaces from Several Classes

For some applications, it is useful to implement the same interface in several classes. For this purpose, it is possible
to define the interface in a Natural copycode module and include this copycode module in the class which wants to
implement the interface. The implementation-specific settings, like method implementations, can be defined in the
copycode as a default setting, and they can be overwritten in the class, to use class specific implementations.
Natural copycode modules which define interfaces are called Interface Modules in the Class Builder environment.
Interface Modules are fully integrated in the Class Builder, so that interfaces defined in an Interface Module can be
handled in the same way as interfaces of a class. However, an Interface Module can only be changed with the Class
Builder when it is included from a class.

Interfaces which are defined in an Interface Module are always visible in two places of a class: they are shown as an
internal interface under the Interface Module node and they are shown as an external interface under the class node.
The commands available for an external interface can be used to change the implementation of the interface.

You can save a changed Interface Module without saving the whole class. If an Interface Module is changed and the
class which is the parent of the Interface Module node is saved, the Class Builder asks the user if he wants to save
the Interface Module as well.

The locking principles for Interface Modules are describddiking Concept

Note: If you change an Interface Module, you should always be aware that this Interface Module can also be used by
other classes. After saving the changes other classes can possibly no longer be stowed without errors. The Class
Builder cannot check if your Interface Module is used by other classes!

Creating a new Interface Module

The class command "New Interface Module" (€tsss Builder Nodgsreates a new Interface Module.

An Interface Module node is added in the tree and list views and you can then create new interfaces for the Interface
Module, methods and properties for the interfaces and so on. If a new component is created for the Interface Module,
the corresponding external node will be added for the class. For example, if a new interface INT1 as added to the
Interface Module, an external interface node named INT1 will be created as sub-node of the class. The new Interface
Module is saved just as an existing Interface Module. As soon as the Interface Module exists as Natural module, it
can be linked from other classes.

Copyright Software AG 2001 43

Linking an existing Interface Module Class Builder

Linking an existing Interface Module

The class command "Link Interface Module" (§#ass Builder Nodgauses an existing Interface Module for the

class. A dialog is shown which lists all Natural copycode modules of the current step littateeshe dialog will

list all copycode modules and not only the Interface Modules). If you select a copycode module from this list which
defines class interfaces, these interfaces are added to the current class interfaces. An error will be generated if you
select a copycode module which does not define interfaces or if the selected copycode module contains an interface
which is already defined in the class. In this case, the Interface Module is not linked to the class.

Objeck Wiew Library Tools Help

BrrEad cEHes EEBEEZ| S|

1 af X

=18 Local Environment -
E‘Q User Libraries
- {Iy SVSTEM
EIG System Libraries
F-{y S¥SDDM
-7y SYSERR
-y SYSEXBAT
By SYSERCOC
-G SYSENCOM
{7y Programs
Elﬁ. Classes
(- 28 DEPARTMENTLIST
EE; EMPLOYEE
BRF=RInterfaces
_ -2 EMPLOY-T
- 38 EMPLOYEESLIST
[+ (B2 MyNEWCLASS
o[B8 NEWHCLS
- 38 NEWEMPLOYEE
Fe+{7z3 Subprograms ll

o~ Logical View | Flat View | s File View |

Command: I j Librany: IS"KSEHEDM E nvironment; IL::u:aI

v

If the Interface Module was linked successfully to the class, a node for it will be added to the class tree. Opening the
Interface Module node will show the interfaces of the Interface Module. Furthermore all interfaces of the Interface
Module are added as external interfaces nodes to the class itself.

44 Copyright Software AG 2001

Class Builder Unlinking an Interface Module

Unlinking an Interface Module

If the "Unlink" command (selterface Module Nodéss executed for an Interface Module, the interfaces of this
Interface Module are no longer used by the class.

This has the effect that the Interface Module node itself and all external interface nodes from this Interface Module
are removed from the class.

Note:
If you unlink an Interface Module from a class, all class-specific settings contained in the class source module, such
as method implementations for the interfaces of this Interface Module, will be deleted as well.

Interface Nodes

If an Interface Module is used by a class, every interface defined in the Interface Module is represented by two
nodes: an internal interface node which is a sub-node of the Interface Module and an external interface node which is
a sub-node of the class. These two interface node types can be distinguished by their ictarféseeNodes The

same is of course valid for the property and method nodes: if they are children of an internal interface, they are
represented by an internal node and if they are children of an external interface, they are represented by an external
node (se®roperty NodesandMethod Nodeps

Furthermore the commands which can be executed on external interfaces, properties and methods are only a subset
of the commands available on internal interfaces, properties and methods. For example, the name of an interface can
only be changed for an internal interface. External interfaces allow only the redefinition of the implementation of the
interface, i.e. changing the method implementation and the ODA variable which is assigned to a property.

Copyright Software AG 2001 45

Locking Concept Class Builder

Locking Concept

Natural must ensure that a Natural module cannot be changed at the same time from different places. Therefore,
related to the Class Builder, this means that a Natural user must be prevented from changing a Natural module with
the program editor which has already been changed with the Class Builder and vice versa.

The Class Builder can be used to change Natural classes and Interface Modules which are special copycode modules
(seeUsing Interfaces from several Classes

Because of the different requirements, the locking concept for classes differs from the Interface Module locking
concept. In the following sections both concepts are described.

Locking of Classes

The locking of classes is done very flexibly. The Class Builder does not lock a class until it is changed. This means
that a class which is opened with the Class Builder can be opened in the program editor as well.

If a class is opened in the program editor, the class nodes can be viewed in the Class Builder, but it is not possible to
apply any changes. Before changing the class, the program editor session has to be closed first.

If a class is visible in the Class Builder and the user changed the class in the program editor, the changes will also be
shown in the Class Builder when the class is saved. If a class has been changed with the Class Builder it is no longer
possible to open this class with the program editor.

Locking of Interface Modules

The locking of Interface Modules is a bit more restrictive than the locking of classes. A two stage locking exists for
the Interface Modules. For the first time the Class Builder must ensure that the Interface Module cannot be changed
with the Class Builder and the program editor at the same time: if a class which uses an Interface Module is opened
in the Class Builder, the Interface Module is locked. This means on the one hand, that an Interface Module can no
longer be opened with the program editor, when a class which uses it is opened in the Class Builder. On the other
hand, a class cannot be opened with the Class Builder when it uses an Interface Module which is already open in the
program editor.

Moreover, an Interface Module can be opened several times in the Class Builder if it is included from several
classes. The Class Builder must ensure that an Interface Module is opened only once, when the user wants to change
it, because the other Interface Module instances are then no longer up-to-date: it will try to close all other instances,
to make sure that only the current instance of the Interface Module remains visible. The Class Builder will display a
confirmation dialog for this purpose which allows the user to stop the process.

If one of the classes was already changed, the user will be asked, if the changes are to be saved . After saving a
changed Interface Module, it is again possible to open other classes which use the Interface Module.

46 Copyright Software AG 2001

Class Builder Tutorial

Tutorial

This chapter provides a short introduction on the usage of the Class Builder.
The example shows how class EMPLOYEE in library SYSEXCOM can be built using the Class Builder.

New class

Activate the logical view in the library workspace and create a new library MYEXCOM that contains the local data
areas EMPGUIDS and EMPLOY-O. These are just copies of the objects in SYSEXCOM.

EMPGUIDS contains GUID definitions and EMPLOY-O contains object data definitions. To create a new class
MYEMPLOYEE select the library node and then select context menu item "New > Class". A new tree node labeled
"NEWCLS" is presented for in-place editing. Just change its name to "MYEMPLOYEE".

Cbject Wiew Library Tools Help

HrrMEsl sl BEaEElE | SR || serXxE

) af X

=8} Local Environment -
I__—_ll:a User Libraries
=G5> MR
Elﬁ. Classes

- #-[EE MYEMPLOY

Elﬁ. Local Data Areas
: X EMPGUIDS
Loy SYSTEM
EI--CB System Libraries

-7y S¥SDDM

Hl-{7y SYSERR

-7y SYSEXBAT

By SYSERCOC

-7y SYSEXCOM

By SYSEXDDE

-7y SYSEXDDM

-y SYSEXEWT

-y SYSEXINO

By SYSEXNGR

By SYSEXNLS |

o> Logical View | ems Flat View | s Fie View]

El:ummanl:l:l j Library: |MYE=COM Environment: |Local

Linking Object Data

The object data for MYEMPLOYEE have to be defined in an object data area. This object data area can either be
created by selecting context menu item "New" of node "MYEMPLOYEE" or by linking an existing object data area
via context menu item "Link > Object Data Area...".

A dialog pops up and shows a list of all local and parameter data areas in MYEXCOM and its steplibs. These objects
can be used as object data areas. Select EMPLOY-O.

Copyright Software AG 2001 a7

Creating an Interface Class Builder

Creating an Interface

To create the first interface select context menu item "New > Interface" of node "MYEMPLOYEE". A new tree node
labeled "NEWIIF" is presented for in-place editing. Just change its name to "EMPLOY-I". Further interfaces can be
created accordingly or by selecting "New" in the context menu for "Interfaces" (group node).

Creating Methods

To create the first method select context menu item "New > Method" of interface node "EMPLOY-I". A new tree
node labeled "NEWMET" is presented for in-place editing. Rename this node to "INIT". A method implementation
node with the same name is created automatically.

To use subprogram ELOAD-N (copied from SYSEXCOM) to implement this method, select the method"s
context-menu item "Link > Implementation..." and change the method implementation.

Parameter Data Area ELOAD-A (copied from SYSEXCOM) can be linked using "Link > Parameter Data Area..."
and then selecting the appropriate module. Further methods can be created accordingly or by selecting "New" in the
"Methods" (group node) context menu.

Creating Properties

To create the first property, select context-menu item "New > Property..." of interface node "EMPLOY-I". The

dialog lists all object data variables that are defined in linked object data areas and can be assigned to a property.
They are shown together with their format and length definition and dimension. If one of these variables is selected
without entering any information in the other control, this variable name is taken as property name and format and
length definition are generated accordingly.

But the Class Builder allows assigning the property another name and format and length can be adapted as long as
the new format is data-transfer compatible (sedtteralX documentation). The new property can be marked as

read only.

Using an Interface Module

So far class MYEMPLOYEE only defines interfaces internally. But there might be interfaces defined in modules that
were adequate to incorporate.

For this purpose an interface module can be linked using the Class"s context-menu item "Link > Interface

Module...". The interfaces that are defined in this module are then inserted under the corresponding interface module
in group "Interface Modules" and at the same time under the group node "Interfaces". To implement their methods,
select the corresponding node that can be found under "Interfaces".

48 Copyright Software AG 2001

Class Builder Linking a GUID Local Data Area

Linking a GUID Local Data Area

The Class Builder generates Global Unique IDs for classes and interfaces automatically. But if variables are to be
used instead of the generated identifiers, a local data area with the corresponding definition can be linked to
MYEMPLOYEE.

The existing Global Unique ID of MYEMPLOYEE can then be changed. Select context menu item "Properties" and
activate page "ldentifiers". This page is available for classes and interfaces.

The generated GUID is displayed in the upper control. Local variables that are defined in EMPGUIDS are listed in
the lower box. Select EMPGUID and leave the property sheet with OK.

Activation Policy
The Class Builder allows setting a class"s activation policy explicitly. The current activation policy of

MYEMPLOYEE can be viewed under "Settings" if context menu item "Properties" is selected. This option is
available for classes only. Select "External Multiple" and leave the property sheet with OK.

Copyright Software AG 2001 49

Save and Stow Class Class Builder

Save and Stow Class

Chject Wiew Library Tools Help

HrMEEY sl BEEEIE | S| seexE

] i
= g Local Environment -
= Q User Libraties
= ﬁ- MYERCOM
Elﬁ. Classes
=-[B2) MYEMPLOY

=- [ﬁ, ohject Diata

EI ﬁ, Interfaces
=-fese) EMPLOY-I
El ﬁ Propetties
P 23 PERSOMNAL-ID
@. Methu:uds
= ﬂ} IMIT

Elﬁ. Local Data Areas
o EMPGLIDS
~{{y SYSTEM
EI--Ea awskem Libraries
-y SYSDDM
[y SYSERR
[+-{{1y SYSEXBAT hd

= Logical View | — Flat View | ygs File View]

I:::ummand:l j Library: |MYEXCOM Ervironment; |Local

4

Up to now the new class MYEMPLOYEE has only existed as an internal class structure. To save all changes the
class can be saved and stowed in the class module. This change of state is indicated by the changed icon.

Register

And finally register MYEMPLOYEE by selecting context menu item "Register" on the class node.

50 Copyright Software AG 2001

Class Builder Glossary

Glossary

External Interface
An external interface is an interface which is defined in an interface module, that is included by the class.
I nterfaceM odule

An Interface Module is a Natural copycode module which defines interfaces. The Interface Module can be used in a
class to define the contained interfaces. The class can overwrite the method and property implementations, but all
other settings of the interface are used as defined in the Interface Module.

Internal Interface

An internal interface is an interface which is defined direct in the class, or an interface of an Interface Module, which
is defined in the Interface Module.

Method Implementation

A method implementation is a Natural subprogram which is assigned to the method and executed when this method
is called for a class object.

Property Implementation

A property implementation is the object data variable that is assigned to a property.

Copyright Software AG 2001 51

	Class Builder
	Introduction
	What is the Class Builder?
	Which Classes can be handled by the Class Builder?
	When is a Class saved?
	Class Comments

	Class Builder Interface
	Logical View
	Library Workspace
	List Views
	Class List View
	Object Data Group List View
	Local Data Group List View
	Interface Modules Group List View
	Interface Module List View
	Interfaces Group List View
	Interface List View
	Properties Group List View
	Methods Group List View
	Method Parameter Data Group List View

	Flat View
	Library Workspace
	List Views
	Class List View
	Interface Module List View
	Interface List View

	Class Builder Nodes
	Class Nodes
	Types
	Commands

	Object Data Nodes
	Types
	Commands

	GUID Local Data Nodes
	Types
	Commands
	Interface Module Nodes
	Commands

	Interface Nodes
	Types
	Commands

	Property Nodes
	Types
	Commands

	Method Nodes
	Types
	Commands

	Method Implementation Nodes
	Commands

	Method Parameter Data Nodes
	Types
	Commands

	Node Properties
	General
	Class
	Object and Local Data Area
	Inline Data Definition
	Interface Module
	Interface
	Method
	Implementation
	Parameter Data Area
	Property

	Comments
	Identification
	Settings
	Definition

	Adding Class Components
	Link
	Link to Class
	Link to Method

	New
	New Class
	Library Workspace
	List View

	New Object Data Area
	Library Workspace
	List View

	New Interface Module
	Library Workspace
	List View

	New Interface
	Library Workspace
	List View

	New Method
	Library Workspace
	List View

	New Property

	Renaming Class Components
	Removing Class Components
	Unlink
	Delete

	Editing Class Components
	Classes
	Save
	Save As
	Cat
	Stow

	Natural Objects
	Other Class Components

	Using Interfaces from Several Classes
	Creating a new Interface Module
	Linking an existing Interface Module
	Unlinking an Interface Module
	Interface Nodes

	Locking Concept
	Locking of Classes
	Locking of Interface Modules

	Tutorial
	New class
	Linking Object Data
	Creating an Interface
	Creating Methods
	Creating Properties
	Using an Interface Module
	Linking a GUID Local Data Area
	Activation Policy
	Save and Stow Class
	Register

	Glossary
	External Interface
	Internal Interface
	Method Implementation
	Property Implementation

