Creating an SQL Access Layer Creating an SQL Access Layer

Creating an SQL Access Layer

The following topics are covered below:

General Information

Different Database Accesses with Adabas C and SQL
Creating SQL Tables and DDMs

Access to SQL Tables

General Information

Encapsulating the Database Accesses
Various database systems can serve as a basis for holding the data of an information object.

This is made easier by encapsulating the database accesses. Then it is only necessary to create a new access layer fc
each target database.

Access to an "object type" by the application remains as described in the preceding sections of this documentation.
Modifications to the application programs are not necessary.

Creating an Access Layer

To create an access layer for an SQL database, for example, Adabas D, suggested codes are available. They are
handled similarly to the suggested codes for the Adabas C access layer.

To support the largest possible number of SQL databases, the lowest common denominator must be found, that is,
field lengths must be adjusted to the target platform with the most limitations. When SQL statements are used, they
must not use database specific syntax features.

Definition of the Access Layer

The following sections describe the definition of the access layer from the viewpoint of redoing an existing Adabas
C access layer.

They also contain notes on implementing a new system.

Different Database Accesses with Adabas C and SQL

Accesses to an SQL database differ in some ways from accesses to Adabas C data:

® Most differences are found primarily in the read loops which return multiple records.
® Single accesses can be reshaped easily.

These differences require a new access layer which can be largely derived from the Adabas C access layer.
The following topics are covered below:

Converting a Sequential Read Access
Converting a Single Access

Creating Read Accesses

Access using a Key with Several Components
Inserting a New Record

Copyright Software AG 2001 1

Converting a Sequential Read Access Creating an SQL Access Layer

Converting a Sequential Read Access
The conversion of a sequential read access involves use of the SQL ORDER BY statement.

Natural DML (Data Manipulation Language):

RLI. READ <view name> BY <key> STARTING FROM <#start key>

<further processing>

END-READ

SQL Syntax:

RLI. SELECT ALL * INTO VIEW <view name> FROM <table name>
WHERE <key> >= <#tcomparison key>
ORDER BY <key> ASC,
<further processing>

END-SELECT

Converting a Single Access
The counterpart of a single access to an object can be as follows:

Natural DML:

FRE. FIND <view name> WITH <key> = <#start key>
<further processing>
END-FIND

IF *NUMBER(FRE.) GT 0

MOVE 1 TO PZ AS REC_EXIST /*record exists
ELSE

MOVE 1 TO PZ_AS_RSP /* see PZ_AS_REC_EXIST
END-IF

SQL Syntax:

2 Copyright Software AG 2001

Creating an SQL Access Layer Creating Read Accesses

FRE. SELECT SINGLE * INTO VIEW <view name> FROM <table hame>
WHERE <key> = <#comparison key>

END-SELECT
IF *COUNTER(FRE.) GT 0

<further processing>

MOVE 1 TO PZ_AS_REC_EXIST /*record exists
ELSE

MOVE 1 TO PZ_AS_RSP I* see PZ_AS_REC_EXIST
END-IF

Creating Read Accesses
When creating the read access, you must ensure that, Adabas C-specific elements are converted.

Since periodic groups or multiple fields are not possible in SQL, these elements must be represented by
corresponding division into tables and DDMs. The database design of a relational database has a flat structure, which
means that the number of tables and relations increases in comparison to that of a design using Adabas C features.

See the following example for an illustration of what is involved.

e | anguage-dependent fields with several occurrences that are defined as keys are maintained in their own
sub-table.

® Access to this sub-table is carried out through a language-dependent key which consists of a main key and an
additional language identification.

® The language-independent information is read from the accompanying main table using the corresponding main
key.

Copyright Software AG 2001 3

Access using a Key with Several Components Creating an SQL Access Layer

SQL Syntax:

FREL. SELECT ALL * INTO VIEW <language view name> FROM <language table name>
WHERE <language key> = <#comparison language key>
AND <language> = <#comparison language>

<further processing>
END-SELECT

IF *COUNTER(FRE.) GT 0
MOVE 1 TO PZ_AS_REC_EXIST /*record exists

ELSE
MOVE 1 TO PZ_AS_RSP I* see PZ_AS_REC_EXIST
ESCAPE ROUTINE

END-IF

FRE. SELECT ALL * INTO VIEW <view name> FROM <table name>
WHERE <key> = <FREL.key>
/* Reading the main object using the <key>
/* of the language dependent value found

<further processing>

END-SELECT

Access using a Key with Several Components

If an SQL access uses a key that consists of several components, the counterpart to a READ statement in Natural
DML can be implemented by an appropriate request.

RLIA. SELECT ALL * INTO VIEW <view name>
FROM <table name>
WHERE <key-1> > <#comparison key-1> OR

<key-1> = <#fcomparison key-1>
AND <key-2> > <#comparison key-2> OR

<key-1> = <#fcomparison key-1>
AND <key-2> = <#comparison key-2>
AND <key-3> >= <#comparison key-3> OR

ORDER BY <key-1> ASC,
<key-2> ASC,
<key-3> ASC

4 Copyright Software AG 2001

Creating an SQL Access Layer Inserting a New Record

Inserting a New Record

The insertion of a new record is created using the available DDM and table fields. The individual fields of the DDM
are transferred into the table by the appropriate SQL syntax .

*

* Store record
*
INSERT INTO <table name> (
<field-1>,
<field-2> ,
<field-3>)
VALUES (
<view name.field-1> ,
<view name.field-2> ,
<view name.field-3>)

Copyright Software AG 2001 5

Creating SQL Tables and DDMs Creating an SQL Access Layer

Creating SQL Tables and DDMs

The communication of the access layer with the database uses DDMs even with SQL database systems.
The interface must be modified according to the target database.
When creating the tables and DDMs, the limitations of the target systems must be accommodated. These are:

e no multiple fields or periodic groups;
® no definition of super-/sub-descriptors;
e [imitations in the field lengths differ from Adabas C.

The limitations lead to different DDMs. The following sections describe some of the possible modifications.

Short Fields with Occurrences

Long Fields with Occurrences

Multiple Fields that are Descriptors

Converting Formats

Example of an Unsupported Field Format Conversion
Defining Tables

Short Fields with Occurrences

Multiple fields that are not part of a descriptor and are shorter than 251 bytes are converted into individual fields
with redefinitions.

DDM for Adabas C

V 1 <view name>
M 2xxx_LNAME_LC A 16 (1:9)
R 2 xxx_ LNAME_LC
3 xxx_LNAME_LC_G (1:9)
4 xxx_NAME_LC_LONGN 1
4 xxx_NAME_LC A 15

DDM for SQL Databases with Longer Redefinition

V 1 <view name>
2xxx_LNAME_LC_R A 144

R 2 xxx_LNAME_LC_R
3xxx_LNAME_LC A 16 (1:9)

R 3 xxx_LNAME_LC
4 xxx_LNAME_LC_G (1:9)
5xxx_NAME_LC_LONGN 1
5xxx_ NAME_LCA 15

This type of DDM is advantageous in that only a few fields must be defined.

Dialogs and programs access the variables via redefinition. Access to the SQL data is through the unredefined whole
fields.

DDM for SQL Databases with Individual Fields Numbered

6 Copyright Software AG 2001

Creating an SQL Access Layer Long Fields with Occurrences

V 1 <view name>
2xxx_LNAME_LC_1 A 16
R 2xxx_LNAME_LC_1

3 xxx_LNAME_LC_G_1
4 xxx_NAME_LC_LONG_1 N 1
4xxx NAME_ LC 1 A 15

This form of definition in a DDM has the disadvantage that many fields must be defined.

Access to all variables and SQL data is through the individual fields. The redefinitions here allow access to
individual components.

Long Fields with Occurrences

Multiple fields or periodic groups that are not part of a descriptor but, including all occurrences, are longer than 251
bytes, can be converted into large individual fields with the redefinition of the group.

The allocation of the variables is through a redefinition.
The access to the SQL data is through the individual whole fields.

DDM for Adabas C

V 1 <view name>
P 2xxx_field A 80 (1:9)

DDM for SQL Databases

G 2 xxx_field_G
3 xxx_field_1 A 240
3 xxx_field_2 A 240
3 xxx_field_3A 24
R 2 xxx_field_G
3 xxx_field A 80 (1:9)

When processing multiple fields, conversion must be carried out in the same way.

To remove blank entries within the array, an appropriate routine must be written.

Multiple Fields that are Descriptors

Searching within a multiple field is possible with Adabas C. The SQL-specific conversion must then convert the
multiple field by defining a main table and a sub table.

A second DDM consists of the fields via which a read access is possible.

Redundant holding of data is avoided since the information in the first DDM contains only the non-descriptor
components. If a record is read through the multiple field, the data of the first view of the main table must be read
through the common main key.

DDM for Adabas C

Copyright Software AG 2001 7

Converting Formats Creating an SQL Access Layer

V 1 <view name>
2xxx_IDA 4
2 xxx_FIELD1 A 20

<further fields>
*
M 2xxx_LNAME A 16 (1:9)/* Descriptor
R 2 xxx_LNAME

3 xxx_LNAME_G (2:9)

4 xxx_NAME_LONG N 1

4 xxx_ NAME A 15

DDM for SQL Databases

V 1 <view name>
2xxx_IDA 4
2 xxx_FIELD1 A 20
<additional fields>

V 1 <view name 1>
2xxx_IDA 4
2xxx_LONG N 1
2xxx_NAME A 15

Converting Formats

Some formats must be converted into a corresponding SQL target database format. Here again, a common
denominator must be used.

The conversion of unsupported field formats is described in the section below.

Example of an Unsupported Field Format Conversion
In the following example, the conversion of a field not mappable in the length is performed.

In general, fields defined as numeric or integer are less problematic in a client/server environment than fields that are
either packed or binary.

DDM for Adabas C

1 xxx_ID P 20

DDM for SQL Databases

1xxx_ IDR A 20
R 1xxx ID_R
1 xxx_ID N 20

8 Copyright Software AG 2001

Creating an SQL Access Layer Defining Tables

Definition in the SQL Table

xxx_ID CHAR(20)

In all instances in which mapping is possible, a conversion to a simple format is carried out.

DDM for Adabas C

1 xxx_ID P 12

DDM for an SQL Database

1 xxx_ID N 12

SQL Table

xxx_ID DEC(12)

Defining Tables

How is a Table Created with DDMs?

The DDMs must be rewritten in a corresponding SQL database table definition.

The new definitions created are entered as SQL tables in the target database.

The conversion of unsupported formats depends on the target database.

The definition of the individual SQL table matches the DDMs that were converted for an SQL database.

DDM for Adabas C

V 1 <view name>
2xxx_ID A 4
2 xxx_FIELD1 A 20

<further fields>
*
M 2 xxx_LNAME A 16 (1:9)/* Descriptor
R 2 xxx_LNAME

3 xxx_LNAME_G (1:9)

4 xxx_NAME_LONG N 1

4 xxx_ NAME A 15

Copyright Software AG 2001 9

Defining Tables

DDM for SQL Databases

V 1 <view name>
2xxx_ID A 4
2 xxx_FIELD1 A 20
<further fields>

V 1 <viewl>
2 xxx_LANGUAGE_ID A 4
2xxx_LANG N 1
2xxx_NAME A 15

SQL Table

CREATE TABLE <table name>

(
xxx_ID CHAR(4),
xxx_FIELD1 CHAR(20),
<further fields>

)

CREATE INDEX <table name>.xxx_CODE
CREATE TABLE <table language>

(xxx_ID CHAR(4),

xxx_LANG DEC(1),
xxx_NAME CHAR(15)

)

CREATE INDEX xxx_LNAME ON <table language> (xxx_LANG, xxx_NAME)

10

Creating an SQL Access Layer

Copyright Software AG 2001

Creating an SQL Access Layer Access to SQL Tables

Access to SQL Tables

The following topics are covered below:

o Modifications of a Record

o Modifications of Individual Fields
® Optimizing Accesses

e Application of System Variables
® Allocation of Variables

Modifications of a Record

For the modification of an entire record, the field list in the form of the whole view is passed. The field list contains
the complete record from the view.

The modification of the record is carried out with a Searched update.

Natural DML

FUP. FIND <view name> WITH <xxx_key> = <xxx_key_FROM>
MOVE <#xxx_fields> TO <view name.xxx_{fields>

UPDATE
END-FIND

SQL Syntax

FUP. SELECT ALL COUNT INTO LZ_COUNT FROM <table name>
WHERE <xxx_key> = <xxx_key FROM>
END-SELECT
*
IFLZ_COUNT GT 0
MOVE 1 TO PZ_AS_REC_EXIST /*record exists
MOVE <#xxx_fields> TO <view name.xxx_fields>

UPDATE <view name> SET *

WHERE <xxx_key> = <xxx_key FROM>
*
ELSE

MOVE 1 TO PZ_AS_RSP /* see PZ_AS_REC_EXIST
END-IF

Modifications of Individual Fields

The modifications of individual fields are also carried out with this read access. The field list, however, does not
contain the entire record, but the fields that are actually modified.

SQL

UPDATE <table name>
SET <xxx_field1> = <view name>.<xxx_field1>
WHERE <xxx_key> = <xxx_key_FROM>

Example: Dating

Copyright Software AG 2001 11

Optimizing Accesses Creating an SQL Access Layer

UPDATE <table name>

SET <xxx_EFD_INV> = RUP.<xxx_EFD_INV> /* modified value of the view
WHERE <xxx_ID> = RUP.<xxx_ID> * key value found

AND <xxx_EFD_INV> =<#EFD_OLD> /* date of record read

Optimizing Accesses
Using SQL syntaxes enables transparent access to the data.

The exact handling of the individual key components and the conversion of data types are easier to apply with
embedded SQL statements.

The optimization is thereby more in sync on the target database system. When using SQL syntax, however, the
common denominator - i.e. using ANSI/ISO-SQL - must be taken into consideration.

The optimization of the accesses is influenced by the:

® design of the tables;
e definition of the primary key and of indices;
® read accesses using SQL syntax.

For the individual accesses and table creation, database-specific optimizations must be taken into consideration.
In the following example, only one variant of an SQL-specific optimization is presented.

Table Definition

CREATE TABLE <table name>
(

xxx_CLIENT_ID CHAR(2),
xxx_ID CHAR(12),
xxx_NAME CHAR(30)

PRIMARY KEY (xxx_CLIENT_ID, xxx_ID
)

Access to the Table

SELECT ALL * INTO VIEW <view name>
FROM <table name>
WHERE <xxx_CLIENT_ID> > <#xxx_CLIENT_ID> OR
<xxX_CLIENT_ID> = <#xxx_CLIENT_ID>
AND <xxx_ID> >= <#xxx_ID>

ORDER BY <xxx_CLIENT_ID> ASC,
<xxXx_ID> ASC

In this case the access uses the primary key of the table which provides the best performance. With the
corresponding number of indices that are created, further sorting sequences are mapped.

CREATE INDEX xxx_KEY ON <table name> (xxx_CLIENT_ID, xxx_ID, xxx_NAME)

Specifying the sorting sequence in the ORDER clause (in the above example) causes the SQL database system to use
the primary key as the preferred access path.

12 Copyright Software AG 2001

Creating an SQL Access Layer

This access can be optimized, when only a minimum of OR concatenations is used in the WHERE clause. As a result
of a logical OR concatenation, the SQL database creates two internal lists, which must be validated against each
other. This causes poor performance during multi-record accesses.

The optimized SELECT statement runs as follows:

SELECT ALL * INTO VIEW <view name>
FROM <table name>

WHERE <xxx_CLIENT_ID> = <#xxx_CLIENT_ID>
AND <xxx_ID> >= <#xxx_ID>

ORDER BY <xxx_CLIENT_ID> ASC,
<xxx_ID> ASC

Application of System Variables

The application of system variables within the access layer is also modified. The available variables are limited by

the use of SQL statements.

The variable *COUNTER can be used for checks. *NUMBER is no longer accessed. The visidlidenot

available.

Natural DML

FRE. FIND <view name> WITH <key> = <#start key>

END-FIND

*

IF *NUMBER(FRE.) GT 0

SQL Syntax

FRE. SELECT ALL * INTO VIEW <view name>
FROM <table name>
WHERE <key> = <#comparison key>

END-SELECT

*

IF *COUNTER(FRE.) GT 0

The number of records is established using another access. For this, a target variable is to be defined, into which the

value is put.

Copyright Software AG 2001

Application of System Variables

13

Allocation of Variables Creating an SQL Access Layer

DEFINE DATA LOCAL

01 LZ_COUNT (14)

END-DEFINE

*

FUP. SELECT ALL COUNT INTO LZ_COUNT FROM <table name>
WHERE <xxx_key> = <xxx_key_FROM>

END-SELECT

*

IFLZ_COUNT GT O

Allocation of Variables

The allocation of the values from the DDM to the parameter variables of the access module can, in most cases, be
implemented by a MOVE BY NAME statement.

If, with the transfer, a format or length is modified, the value must be set individually.
If, in the access layer, a conversion into several individual fields is required, these must be set.

It is also possible to define, in the DDM, a group over the individual fields. A redefinition in the corresponding
variables with occurrences is thus possible in the local data area.

The transfer can then be carried out with a MOVE BY NAME. In the parameter data area, the definition then
matches the view.

SQL View

V 1 <view name>

G 2 xxx_field_G
3 xxx_field_1 A 240
3 xxx_field_2 A 240
3 xxx_field_3 A 240

R 2 xxx_field_G
3 xxx_field A 80 (1:9)

Parameter Data Area Definition

1 <PDA group name>
2 xxx_field A 80 (1:9)

14 Copyright Software AG 2001

	Creating an SQL Access Layer
	General Information
	Encapsulating the Database Accesses
	Creating an Access Layer
	Definition of the Access Layer

	Different Database Accesses with Adabas C and SQL
	Converting a Sequential Read Access
	Converting a Single Access
	Creating Read Accesses
	Access using a Key with Several Components
	Inserting a New Record

	Creating SQL Tables and DDMs
	Short Fields with Occurrences
	Long Fields with Occurrences
	Multiple Fields that are Descriptors
	Converting Formats
	Example of an Unsupported Field Format Conversion
	Defining Tables

	Access to SQL Tables
	Modifications of a Record
	Modifications of Individual Fields
	Optimizing Accesses
	Application of System Variables
	Allocation of Variables

