
Database Access
This section describes various aspects of accessing data in a database with Natural. It covers the following topics:

DDMs (Data Definition Modules)
Database Arrays
DEFINE DATA Views
Statements for Database Access
READ Statement
FIND Statement
HISTOGRAM Statement
Database Processing Loops
Database Update - Transaction Processing
Statements ACCEPT and REJECT
AT START/END OF DATA Statements

DDMs (Data Definition Modules)
For Natural to be able to access a database file, a logical definition of the physical database file is required. Such a
logical file definition is called a DDM (data definition module).

The DDM contains information about the individual fields of the file - information which is relevant for the use of
these fields in a Natural program. A DDM constitutes a logical view of a physical database file.

For each physical file of a database, one or more DDMs can be defined.

DDMs are defined by the Natural administrator with Predict (or, if Predict is not available, with the corresponding
Natural function, as described in your Natural User’s Guide for Mainframes documentation).

For each database field, a DDM contains the database-internal field name as well as the "external" field name, that is,
the name of the field as used in a Natural program. Moreover, the formats and lengths of the fields are defined in the
DDM, as well as various specifications that are used when the fields are output with a DISPLAY or WRITE
statement (column headings, edit masks, etc.).

1Copyright Software AG 2001

Database AccessDatabase Access

The following topics are covered below:

Displaying a DDM
Components of a DDM

Displaying a DDM

If you do not know the name of the DDM you want, you can use the system command LIST DDM to get a list of all
existing DDMs that are available. From the list, you can then select a DDM for display.

To display a DDM whose name you know, you use the system command LIST DDM ddm-name.

For example:

LIST DDM EMPLOYEES

A list of all fields defined in the DDM will then be displayed, along with information about each field:

Components of a DDM

For each field, a DDM contains the following information:

Column Explanation

T The type of the field:

blank Elementary field. This type of field can have only one value within a record.

M Multiple-value field. This type of field can have more than one value within a record.

P Periodic group. A periodic group is a group of fields that can have more than one occurrence
within a record.

G Group. A group is a number of fields defined under one common group name. This makes it
possible to reference several fields collectively by using the group name instead of the names of
all the individual fields.

* Comment line.

L The level number assigned to the field.
Levels are used to indicate the structure and grouping of the field definitions. This is relevant with view
definitions, redefinitions and field groups.

DB The two-character database-internal field name.

Name The 3- to 32-character external field name. This is the field name used in a Natural program to reference
the field.

HD= indicates a default column header to appear above the field when the field is output via a
DISPLAY statement. If no header is specified, the field name is used as column header.

EM= indicates a default edit mask to be used when the field is output via a DISPLAY statement.

F The format of the field (A=alphanumeric, N=numeric unpacked, P=packed numeric, etc.).

Len The length of the field.
For numeric fields, length is specified as "nn.m", where "nn" is the number of digits before the decimal
point and "m" is the number of digits after the decimal point.

Copyright Software AG 20012

Database AccessDisplaying a DDM

Column Explanation

S The type of suppression assigned to the field:

N indicates null-value suppression, which means that null values for the field will not be returned
when the field is used to construct a basic search criterion (WITH clause of a FIND statement), in a
HISTOGRAM statement, or in a READ LOGICAL statement.

F indicates that the field is defined with the fixed storage option (that is, the field is not compressed).

A blank indicates normal compression, which means that trailing blanks in alphanumeric fields and
leading zeros in numeric fields are suppressed.

D The descriptor type of the field; for example:

D elementary descriptor,

N non-descriptor,

P phonetic descriptor.

U subdescriptor,

S superdescriptor,

A blank in this column indicates that the field is not a descriptor.

A descriptor can be used as the basis of a database search. A field which has a "D" or "S" in this column
can be used in the BY clause of the READ statement. Once a record has been read from the database
using the READ statement, a DISPLAY statement can reference any field which has either a "D" or a
blank in the "D" column.

Remarks This column can contain comments about the field.

Above the list of fields, the following is displayed: the number of the file from the DDM is derived (DDM FNR), the
number of the database where that file is stored (DDM DBID), and the "Default Sequence" field, that is, the name of
the field used to control logical sequential reading of the file if no such field is specified in the READ LOGICAL
statement of a program.

Database Arrays
Adabas supports array structures within the database in the form of multiple-value fields and periodic groups.

Multiple-Value Fields
Periodic Groups
Referencing Multiple-Value Fields and Periodic Groups
Multiple-Value Fields Within Periodic Groups
Referencing Multiple-Value Fields Within Periodic Groups
Referencing the Internal Count of a Database Array

Multiple-Value Fields

A multiple-value field is a field which can have more than one value (up to 191) within a given record.

Example:

3Copyright Software AG 2001

Database ArraysDatabase Access

Assuming that the above is a record in an employees file, the first field (Name) is an elementary field, which can
contain only one value, namely the name of the person; whereas the second field (Languages), which contains the
languages spoken by the person, is a multiple-value field, as a person can speak more than one language.

Copyright Software AG 20014

Database AccessMultiple-Value Fields

Periodic Groups

A periodic group is a group of fields (which may be elementary fields and/or multiple-value fields) that may have
more than one occurrence (up to 191) within a given record.

The different values of an multiple-value field are usually called occurrences; that is, the number of occurrences is
the number of values which the field contains, and a specific occurrence means a specific value. Similarly, in the
case of periodic groups, occurrences refer to a group of values.

Example:

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which contains the
name of a person; Cars is a periodic group which contains the automobiles owned by that person. The periodic group
consists of three fields which contain the registration number, make and model of each automobile. Each occurrence
of Cars contains the values for one automobile.

5Copyright Software AG 2001

Periodic GroupsDatabase Access

Referencing Multiple-Value Fields and Periodic Groups

To reference one or more occurrences of a multiple-value field or a periodic group, you specify an index notation
after the field name.

Examples:

The following examples use the multiple-value field LANGUAGES and the periodic group CARS from the previous
examples.

The various values of the multiple-value field LANGUAGES can be referenced as follows.

LANGUAGES (1) References the first value ("SPANISH").

LANGUAGES (X) The value of the variable X determines the value to be referenced.

LANGUAGES (1:3) References the first three values ("SPANISH", "CATALAN" and "FRENCH").

LANGUAGES (6:10) References the sixth to tenth values.

LANGUAGES (X:Y) The values of the variables X and Y determine the values to be referenced.

The various occurrences of the periodic group CARS can be referenced in the same manner:

CARS (1) References the first occurrence ("B-123ABC/SEAT/IBIZA").

CARS (X) The value of the variable X determines the occurrence to be referenced.

CARS (1:2) References the first two occurrences ("B-123ABC/ SEAT/IBIZA" and "B-999XYZ/VW/GOLF").

CARS (4:7) References the fourth to seventh occurrences.

CARS (X:Y) The values of the variables X and Y determine the occurrences to be referenced.

Copyright Software AG 20016

Database AccessReferencing Multiple-Value Fields and Periodic Groups

Multiple-Value Fields Within Periodic Groups

An Adabas array can have up to two dimensions: a multiple-value field within a periodic group.

Example:

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which contains the
name of a person; Cars is a periodic group which contains the automobiles owned by that person. The periodic group
consists of three fields which contain the registration number, servicing dates and make of each automobile. Within
the periodic group Cars, the field Servicing is a multiple-value field, containing the different servicing dates for each
automobile.

7Copyright Software AG 2001

Multiple-Value Fields Within Periodic GroupsDatabase Access

Referencing Multiple-Value Fields Within Periodic Groups

To reference one or more occurrences of a multiple-value field within a periodic group, you specify a
"two-dimensional"index notation after the field name.

Examples:

The following examples use the multiple-value field SERVICING within the periodic group CARS from the
example above. The various values of the multiple-value field can be referenced as follows:

SERVICING (1,1) References the first value of SERVICING in the first occurrence of CARS ("31-05-97")

SERVICING (1:5,1) References the first value of SERVICING in the first five occurrences of CARS.

SERVICING (1:5,1:10) References the first ten values of SERVICING in the first five occurrences of CARS.

Referencing the Internal Count of a Database Array

It is sometimes necessary to reference a multiple-value field or a periodic group without knowing how many
values/occurrences exist in a given record. Adabas maintains an internal count of the number of values in each
multiple-value field and the number of occurrences of each periodic group. This count may be read in a READ
statement by specifying "C*" immediately before the field name.

The count is returned in format/length N3. See the Natural Reference documentation for further details.

Examples:

C*LANGUAGES Returns the number of values of the multiple-value field LANGUAGES.

C*CARS Returns the number of occurrences of the periodic group CARS.

C*SERVICING(1) Returns the number of values of the multiple-value field SERVICING in the first occurrence
of a periodic group (assuming that SERVICING is a multiple-value field within a periodic
group.)

Copyright Software AG 20018

Database AccessReferencing Multiple-Value Fields Within Periodic Groups

DEFINE DATA Views
To be able to use database fields in a Natural program, you must specify the fields in a view.

In the view, you specify the name of the DDM from which the fields are taken, and the names of the database fields
themselves (that is, their long names, not their database-internal short names).

You define such a database view either within the DEFINE DATA statement of the program, or in a local or global
data area outside the program with the DEFINE DATA statement referencing that data area (as described in the
section Defining Fields.

At level 1, you specify the view name as follows:

1 view-name VIEW OF ddm-name

where view-name is the name you choose for the view, and ddm-name is the name of the DDM from which the fields
specified in the view are taken. Below that, at level 2, you specify the names of the database fields from the DDM.

In the illustration above, the name of the view is "ABC", and it comprises the fields NAME, FIRST-NAME and
PERSONNEL-ID from the DDM "XYZ".

The format and length of a database field need not be specified in the view, as these are already defined in the
underlying DDM.

The view may comprise an entire DDM or only a subset of it. The order of the fields in the view need not be the
same as in the underlying DDM.

As shown later in this section, the view name is used in database access statements to determine which database is to
be accessed.

9Copyright Software AG 2001

DEFINE DATA ViewsDatabase Access

Statements for Database Access
To read data from a database, the following statements are available:

READ
This statement is used to select a range of records from a database in a specified sequence.
FIND
This statement is used to select from a database those records which meet a specified search criterion.
HISTOGRAM
This statement is used to read only the values of one database field, or determine the number of records which
meet a specified search criterion.

READ Statement
The READ statement is used to read records from a database. The records can be retrieved from the database:

in the order in which they are physically stored in the database
(READ IN PHYSICAL SEQUENCE), or
in the order of Adabas Internal Sequence Numbers
(READ BY ISN), or
in the order of the values of a descriptor field
(READ IN LOGICAL SEQUENCE).

In this documentation, only READ IN LOGICAL SEQUENCE is discussed, as it is the most frequently used form of
the READ statement; for information on the other two options, please refer to the description of the READ statement
in the Natural Statements documentation.

The following topics are covered below:

Syntax
Limiting the Number of Records to be Read
The STARTING/ENDING Clauses
The WHERE Clause

Copyright Software AG 200110

Database AccessStatements for Database Access

Syntax

The basic syntax of the READ statement is:

READ view IN LOGICAL SEQUENCE BY descriptor

or shorter:

READ view LOGICAL BY descriptor

view is the name of a view defined in the DEFINE DATA statement (as explained earlier in this section).

descriptor is the name of a database field defined in that view. The values of this field determine the order in which
the records are read from the database.

If you specify a descriptor, you need not specify the keyword "LOGICAL":

READ view BY descriptor

If you do not specify a descriptor, the records will be read in the order of values of the field defined as default
descriptor (under "Default Sequence") in the DDM. However, if you specify no descriptor, you must specify the
keyword "LOGICAL":

READ view LOGICAL

Example:

 ** Example Program ’READX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 JOB-TITLE
 END-DEFINE
 READ (6) MYVIEW BY NAME
 DISPLAY NAME PERSONNEL-ID JOB-TITLE
 END-READ
 END

With the READ statement in the above example, records from the EMPLOYEES file are read in alphabetical order
of their last names.

11Copyright Software AG 2001

SyntaxDatabase Access

The above program will produce the following output, displaying the information of each employee in alphabetical
order of the employees’ last names:

Page 1 99-08-19 13:16:04

 NAME PERSONNEL CURRENT
 ID POSITION
 -------------------- --------- -------------------------

 ABELLAN 60008339 MAQUINISTA
 ACHIESON 30000231 DATA BASE ADMINISTRATOR
 ADAM 50005800 CHEF DE SERVICE
 ADKINSON 20008800 PROGRAMMER
 ADKINSON 20009800 DBA
 ADKINSON 2001100

If you wanted to read the records to create a report with the employees listed in sequential order by date of birth, the
appropriate READ statement would be:

 READ MYVIEW BY BIRTH

You can only specify a field which is defined as a "descriptor" in the underlying DDM (it can also be a
subdescriptor, superdescriptor or hyperdescriptor).

Limiting the Number of Records to be Read

As shown in the previous example program, you can limit the number of records to be read by specifying a number
in parentheses after the keyword READ:

 READ (6) MYVIEW BY NAME

In that example, the READ statement would read no more than 6 records.

Without the limit notation, the above READ statement would read all records from the EMPLOYEES file in the
order of last names from A to Z.

Copyright Software AG 200112

Database AccessLimiting the Number of Records to be Read

The STARTING/ENDING Clauses

The READ statement also allows you to qualify the selection of records based on the value of a descriptor field.
With an EQUAL TO/STARTING from option in the BY or WITH clause, you can specify the value at which
reading should begin. By adding a THRU/ENDING AT option, you can also specify the value in the logical
sequence at which reading should end.

For example, if you wanted a list of those employees in the order of job titles starting with "TRAINEE" and
continuing on to "Z", you would use one of the following statements:

 READ MYVIEW WITH JOB-TITLE = ’TRAINEE’
 READ MYVIEW WITH JOB-TITLE STARTING from ’TRAINEE’
 READ MYVIEW BY JOB-TITLE = ’TRAINEE’
 READ MYVIEW BY JOB-TITLE STARTING from ’TRAINEE’

Note that the value to the right of the equal sign (=) or STARTING from option must be enclosed in apostrophes. If
the value is numeric, this text notation is not required.

If a BY option is used, a WITH option cannot be used and vice versa.

The sequence of records to be read can be even more closely specified by adding an end limit with a THRU or
ENDING AT clause.

To read just the records with the job title "TRAINEE", you would specify:

 READ MYVIEW BY JOB-TITLE STARTING from ’TRAINEE’ THRU ’TRAINEE’
 READ MYVIEW WITH JOB-TITLE EQUAL TO ’TRAINEE’
 ENDING AT ’TRAINEE’

To read just the records with job titles that begin with "A" or "B", you would specify:

 READ MYVIEW BY JOB-TITLE = ’A’ THRU ’C’
 READ MYVIEW WITH JOB-TITLE STARTING from ’A’ ENDING AT ’C’

The values are read up to and including the value specified after THRU/ENDING AT. In the two examples above,
all records with job titles that begin with "A" or "B" are read; if there were a job title "C", this would also be read,
but not the next higher value "CA".

The WHERE Clause

The WHERE clause may be used to further qualify which records are to be read.

For instance, if you wanted only those employees with job titles starting from "TRAINEE" who are paid in US
currency, you would specify:

 READ MYVIEW WITH JOB-TITLE = ’TRAINEE’
 WHERE CURR-CODE = ’USD’

The WHERE clause can also be used with the BY clause as follows:

 READ MYVIEW BY NAME
 WHERE SALARY = 20000

The WHERE clause differs from the WITH/BY clause in two respects:

The field specified in the WHERE clause need not be a descriptor.
The expression following the WHERE option is a logical condition. The following logical operators are
possible in a WHERE clause:

13Copyright Software AG 2001

The STARTING/ENDING ClausesDatabase Access

EQUAL EQ =

NOT EQUAL TO NE ¬=

LESS THAN LT <

LESS THAN OR EQUAL TO LE <=

GREATER THAN GT >

GREATER THAN OR EQUAL TO GE >=

The following program illustrates the use of the STARTING from, ENDING AT and WHERE clauses:

 ** Example Program ’READX02’
 DEFINE DATA LOCAL
 1 MYEMP VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 INCOME (1:2)
 3 CURR-CODE
 3 SALARY
 3 BONUS (1:1)
 END-DEFINE
 *
 READ (3) MYVIEW WITH JOB-TITLE = ’TRAINEE’ THRU ’TRAINEE’
 WHERE CURR-CODE (*) = ’USD’
 DISPLAY NOTITLE NAME / JOB-TITLE 5X INCOME (1:2)
 SKIP 1
 END-READ
 END

It produces the following output:

 NAME INCOME
 CURRENT
 POSITION CURRENCY ANNUAL BONUS
 CODE SALARY
 ------------------------- -------- ---------- ----------

 SENKO USD 23000 0
 TRAINEE USD 21800 0

 BANGART USD 25000 0
 TRAINEE USD 23000 0

 LINCOLN USD 24000 0
 TRAINEE USD 22000 0

Further Example of READ Statement:

See program READX03 in library SYSEXPG.

FIND Statement
The FIND statement is used to select from a database those records which meet a specified search criterion.

Copyright Software AG 200114

Database AccessFIND Statement

The following topics are covered below:

Syntax
Limiting the Number of Records to be Processed
The WHERE Clause
IF NO RECORDS FOUND Condition

Syntax

The basic syntax of the FIND statement is:

FIND RECORDS IN view WITH field = value

or shorter:

FIND view WITH field = value

view is the name of a view defined in the DEFINE DATA statement (as explained earlier in this section).

field is the name of a database field defined in that view. You can only specify a field which is defined as a
"descriptor" in the underlying DDM (it can also be a subdescriptor, superdescriptor, hyperdescriptor or phonetic
descriptor).

Limiting the Number of Records to be Processed

In the same way as with the READ statement, you can limit the number of records to be processed by specifying a
number in parentheses after the keyword FIND:

 FIND (6) RECORDS IN MYVIEW WITH NAME = ’CLEGG’

In the above example, only the first 6 records that meet the search criterion would be processed.

Without the limit notation, all records that meet the search criterion would be processed.

Note:
If the FIND statement contains a WHERE clause (see below), records which are rejected as a result of the WHERE
clause are not counted against the limit.

The WHERE Clause

With the WHERE clause of the FIND statement, you can specify an additional selection criterion which is evaluated
after a record (selected with the WITH clause) has been read and before any processing is performed on the record.

Example of WHERE Clause:

 ** Example Program ’FINDX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 JOB-TITLE
 2 CITY
 END-DEFINE
 *
 FIND MYVIEW WITH CITY = ’PARIS’
 WHERE JOB-TITLE = ’INGENIEUR COMMERCIAL’
 DISPLAY NOTITLE CITY JOB-TITLE PERSONNEL-ID NAME
 END-FIND
 END

15Copyright Software AG 2001

SyntaxDatabase Access

Note that in this example only those records which meet the criteria of the WITH clause and the WHERE clause are
processed in the DISPLAY statement.

 CITY CURRENT PERSONNEL NAME
 POSITION ID
 -------------------- ------------------------- --------- --------------------

 PARIS INGENIEUR COMMERCIAL 50007300 CAHN
 PARIS INGENIEUR COMMERCIAL 50006500 MAZUY
 PARIS INGENIEUR COMMERCIAL 50004400 VALLY
 PARIS INGENIEUR COMMERCIAL 50002800 BRETON
 PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX

IF NO RECORDS FOUND Condition

If no records are found that meet the search criteria specified in the WITH and WHERE clauses, the statements
within the FIND processing loop are not executed (for the previous example, this would mean that the DISPLAY
statement would not be executed and consequently no employee data would be displayed).

However, the FIND statement also provides an IF NO RECORDS FOUND clause, which allows you to specify
processing you wish to be performed in the case that no records meet the search criteria.

Example of IF NO RECORDS FOUND Clause:

 ** Example Program ’FINDX02’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 END-DEFINE
 *
 FIND MYVIEW WITH NAME = ’BLACKMORE’
 IF NO RECORDS FOUND
 WRITE ’NO PERSON FOUND.’
 END-NOREC
 DISPLAY NAME FIRST-NAME
 END-FIND
 END

The above program selects all records in which the field NAME contains the value "BLACKMORE". For each
selected record, the name and first name are displayed. If no record with NAME = ’BLACKMORE’ is found on the
file, the WRITE statement within the IF NO RECORDS FOUND clause is executed:

Page 1 97-08-19 11:44:00

 NAME FIRST-NAME
 -------------------- --------------------

 NO PERSON FOUND.

Further Examples of FIND Statement:

See programs FINDX07, FINDX08, FINDX09, FINDX10 and FINDX11 in library SYSEXPG.

Copyright Software AG 200116

Database AccessIF NO RECORDS FOUND Condition

HISTOGRAM Statement
The HISTOGRAM statement is used to either read only the values of one database field, or determine the number of
records which meet a specified search criterion.

The HISTOGRAM statement does not provide access to any database fields other than the one specified in the
HISTOGRAM statement.

The following topics are covered below:

Syntax
Limiting the Number of Values to be Read
The STARTING/ENDING Clauses
The WHERE Clause

Syntax

The basic syntax of the HISTOGRAM statement is:

HISTOGRAM VALUE IN view FOR field

or shorter:

HISTOGRAM view field

view is the name of a view defined in the DEFINE DATA statement (as explained earlier in this section). field is the
name of the database field defined in that view.

Limiting the Number of Values to be Read

In the same way as with the READ statement, you can limit the number of values to be read by specifying a number
in parentheses after the keyword HISTOGRAM:

 HISTOGRAM (6) MYVIEW FOR NAME

In the above example, only the first 6 values of the field NAME would be read.

Without the limit notation, all values would be read.

The STARTING/ENDING Clauses

Like the READ statement, the HISTOGRAM statement also provides a STARTING from clause and an ENDING
AT (or THRU) clause to narrow down the range of values to be read by specifying a starting value and ending value.

Examples:

 HISTOGRAM MYVIEW FOR NAME STARTING from ’BOUCHARD’
 HISTOGRAM MYVIEW FOR NAME STARTING from ’BOUCHARD’ ENDING AT ’LANIER’
 HISTOGRAM MYVIEW FOR NAME from ’BLOOM’ THRU ’ROESER’

The WHERE Clause

The HISTOGRAM statement also provides a WHERE clause which may be used to specify an additional selection
criterion that is evaluated after a value has been read and before any processing is performed on the value. The field
specified in the WHERE clause must be the same as in the main clause of the HISTOGRAM statement.

17Copyright Software AG 2001

HISTOGRAM StatementDatabase Access

Example of HISTOGRAM Statement:

 ** Example Program ’HISTOX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 CITY
 END-DEFINE
 *
 LIMIT 8
 HISTOGRAM MYVIEW CITY STARTING from ’M’
 DISPLAY NOTITLE CITY ’NUMBER OF/PERSONS’ *NUMBER *COUNTER
 END-HISTOGRAM
 END

 CITY NUMBER OF CNT
 PERSONS
 -------------------- --------- ---------

 MADISON 3 1
 MADRID 41 2
 MAILLY LE CAMP 1 3
 MAMERS 1 4
 MANSFIELD 4 5
 MARSEILLE 2 6
 MATLOCK 1 7
 MELBOURNE 2 8

In the above program, the system variables *NUMBER and *COUNTER are also evaluated by the HISTOGRAM
statement, and output with the DISPLAY statement. *NUMBER contains the number of database records that
contain the last value read; *COUNTER contains the total number of values which have been read.

Database Processing Loops
Natural automatically creates the necessary processing loops which are required to process data that have been
selected from a database as a result of a FIND, READ or HISTOGRAM statement.

Example:

 ** Example Program ’FINDX03’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
 END-DEFINE
 *
 FIND MYVIEW WITH NAME = ’ADKINSON’
 DISPLAY NAME FIRST-NAME CITY
 END-FIND
 END

The above FIND loop selects all records from the EMPLOYEES file in which the field NAME contains the value
"ADKINSON" and processes the selected records. In this example, the processing consists of displaying certain
fields from each record selected.

If the FIND statement contained a WHERE clause in addition to the WITH clause, only those records that were
selected as a result of the WITH clause and met the WHERE criteria would be processed.

Copyright Software AG 200118

Database AccessDatabase Processing Loops

The following diagram illustrates the flow logic of a database processing loop:

19Copyright Software AG 2001

Database Processing LoopsDatabase Access

Hierarchies of Processing Loops

The use of multiple FIND and/or READ statements creates a hierarchy of processing loops, as shown in the
following example:

Example of Processing Loop Hierarchy:

 ** Example Program ’FINDX04’
 DEFINE DATA LOCAL
 1 PERSONVIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 1 AUTOVIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 2 MODEL
 END-DEFINE
 *
 EMP. FIND PERSONVIEW WITH NAME = ’ADKINSON’
 VEH. FIND AUTOVIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)
 DISPLAY NAME MAKE MODEL
 END-FIND
 END-FIND
 END

The above program selects from the EMPLOYEES file all people with the name "ADKINSON". Each record
(person) selected is then processed as follows:

1. The second FIND statement is executed to select the automobiles from the VEHICLES file, using as selection
criterion the PERSONNEL-IDs from the records selected from the EMPLOYEES file with the first FIND
statement.

2. The NAME of each person selected is displayed; this information is obtained from the EMPLOYEES file. The
MAKE and MODEL of each automobile owned by that person is also displayed; this information is obtained
from the VEHICLES file.

The second FIND statement creates an inner processing loop within the outer processing loop of the first FIND
statement, as shown in the following diagram.

Copyright Software AG 200120

Database AccessHierarchies of Processing Loops

The diagram illustrates the flow logic of the hierarchy of processing loops in the previous example program:

21Copyright Software AG 2001

Hierarchies of Processing LoopsDatabase Access

Example of Nested FIND Loops Accessing the Same File:

It is also possible to construct a processing loop hierarchy in which the same file is used at both levels of the
hierarchy:

 ** Example Program ’FINDX05’
 DEFINE DATA LOCAL
 1 PERSONVIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
 1 #NAME (A40)
 END-DEFINE
 *
 WRITE TITLE LEFT JUSTIFIED
 ’PEOPLE IN SAME CITY AS:’ #NAME / ’CITY:’ CITY SKIP 1
 FIND PERSONVIEW WITH NAME = ’JONES’
 WHERE FIRST-NAME = ’LAUREL’
 compress NAME FIRST-NAME INTO #NAME
 FIND PERSONVIEW WITH CITY = CITY
 DISPLAY NAME FIRST-NAME CITY
 END-FIND
 END-FIND
 END

The above program first selects all people with name"JONES" and first name "LAUREL" from the EMPLOYEES
file. Then all who live in the same city are selected from the EMPLOYEES file and a list of these people is created.
All fields values displayed by the DISPLAY statement are taken from the second FIND statement.

PEOPLE IN SAME CITY AS: JONES LAUREL
 CITY: BALTIMORE

 NAME FIRST-NAME CITY
 -------------------- -------------------- --------------------

 JENSEN MARTHA BALTIMORE
 LAWLER EDDIE BALTIMORE
 FORREST CLARA BALTIMORE
 ALEXANDER GIL BALTIMORE
 NEEDHAM SUNNY BALTIMORE
 ZINN CARLOS BALTIMORE
 JONES LAUREL BALTIMORE

Further Examples of Nested READ and FIND Statements:

See programs READX04 and LIMITX01 in library SYSEXPG.

Copyright Software AG 200122

Database AccessHierarchies of Processing Loops

Database Update - Transaction Processing
Logical Transaction
Record Hold Logic
Backing Out a Transaction
Restarting a Transaction

Logical Transaction

Natural performs database updating operations based on transactions, which means that all database update requests
are processed in logical transaction units. A logical transaction is the smallest unit of work (as defined by you) which
must be performed in its entirety to ensure that the information contained in the database is logically consistent.

A logical transaction may consist of one or more update statements (DELETE, STORE, UPDATE) involving one or
more database files. A logical transaction may also span multiple Natural programs.

A logical transaction begins when a record is put on "hold"; Natural does this automatically when the record is read
for updating, for example, if a FIND loop contains an UPDATE or DELETE statement.

The end of a logical transaction is determined by an END TRANSACTION statement in the program. This statement
ensures that all updates within the transaction have been successfully applied, and releases all records that were put
on "hold" during the transaction.

Example:

 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 END-DEFINE
 FIND MYVIEW WITH NAME = ’SMITH’
 DELETE
 END TRANSACTION
 END-FIND
 END

Each record selected would be put on "hold", deleted, and then - when the END TRANSACTION statement is
executed - released from "hold".

Note:
The OPRB parameter, as set by the Natural administrator, determines whether or not Natural will generate an END
TRANSACTION statement at the end of each Natural program. Ask your Natural administrator for details.

Example of STORE Statement:

See program STOREX01 in library SYSEXPG.

23Copyright Software AG 2001

Database Update - Transaction ProcessingDatabase Access

Record Hold Logic

If Natural is used with Adabas, any record which is to be updated will be placed in "hold" status until an END
TRANSACTION or BACKOUT TRANSACTION statement is issued or the transaction time limit is exceeded.

When a record is placed in "hold" status for one user, the record is not available for update by another user. Another
user who wishes to update the same record will be placed in "wait" status until the record is released from "hold"
when the first user ends or backs out his/her transaction.

To prevent users from being placed in wait status, the session parameter WH (Wait Hold) can be used (see the
Natural Reference documentation).

When you use update logic in a program, you should consider the following:

The maximum time that a record can be in hold status is determined by the Adabas transaction time limit
(Adabas parameter TT). If this time limit is exceeded, you will receive an error message and all database
modifications done since the last END TRANSACTION will be made undone.
The number of records on hold and the transaction time limit are affected by the size of a transaction, that is, by
the placement of the END TRANSACTION statement in the program. Restart facilities should be considered
when deciding where to issue an END TRANSACTION. For example, if a majority of records being processed
are not to be updated, the GET statement is an efficient way of controlling the "holding" of records. This avoids
issuing multiple END TRANSACTION statements and reduces the number of ISNs on hold. When you process
large files, you should bear in mind that the GET statement requires an additional Adabas call. An example of a
GET statement is shown below.

Example of GET Statement:

 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 SALARY (1)
 END-DEFINE
 RD. READ EMPLOY-VIEW BY NAME
 IF SALARY (1) > 30000
 GE. GET EMPLOY-VIEW *ISN (RD.)
 compute SALARY (1) = SALARY (1) * 1.15
 UPDATE (GE.)
 END TRANSACTION
 END-IF
 END-READ
 END

On mainframe computers, the placing of records in "hold" status is also controlled by the profile parameter RI, as set
by the Natural administrator.

Copyright Software AG 200124

Database AccessRecord Hold Logic

Backing Out a Transaction

During an active logical transaction, that is, before the END TRANSACTION statement is issued, you can cancel the
transaction by using a BACKOUT TRANSACTION statement. The execution of this statement removes all updates
that have been applied (including all records that have been added or deleted) and releases all records held by the
transaction.

Restarting a Transaction

With the END TRANSACTION statement, you can also store transaction-related information. If processing of the
transaction terminates abnormally, you can read this information with a GET TRANSACTION DATA statement to
ascertain where to resume processing when you restart the transaction.

Example of Using Transaction Data to Restart a Transaction:

The following program updates the EMPLOYEES and VEHICLES files. After a restart operation, the user is
informed of the last EMPLOYEES record successfully processed. The user can resume processing from that
EMPLOYEES record. It would also be possible to set up the restart transaction message to include the last
VEHICLES record successfully updated before the restart operation.

 ** Example Program ’GETTRX01’
 DEFINE DATA LOCAL
 01 PERSON VIEW OF EMPLOYEES
 02 PERSONNEL-ID (A8)
 02 NAME (A20)
 02 FIRST-NAME (A20)
 02 MIDDLE-I (A1)
 02 CITY (A20)
 01 AUTO VIEW OF VEHICLES
 02 PERSONNEL-ID (A8)
 02 MAKE (A20)
 02 MODEL (A20)
 01 ET-DATA
 02 #APPL-ID (A8) INIT <’ ’>
 02 #USER-ID (A8)
 02 #PROGRAM (A8)
 02 #DATE (A10)
 02 #TIME (A8)
 02 #PERSONNEL-NUMBER (A8)
 END-DEFINE
 *
 GET TRANSACTION DATA #APPL-ID #USER-ID #PROGRAM
 #DATE #TIME #PERSONNEL-NUMBER
 *
 IF #APPL-ID NOT = ’NORMAL’ /* IF LAST EXECUTION ENDED ABNORMALLY
 AND #APPL-ID NOT = ’ ’
 INPUT (AD=OIL)
 // 20T ’*** LAST SUCCESSFUL TRANSACTION ***’ (I)
 / 20T ’***********************************’
 /// 25T ’APPLICATION:’ #APPL-ID
 / 32T ’USER:’ #USER-ID
 / 29T ’PROGRAM:’ #PROGRAM
 / 24T ’COMPLETED ON:’ #DATE ’AT’ #TIME
 / 20T ’PERSONNEL NUMBER:’ #PERSONNEL-NUMBER
 END-IF
 REPEAT
 INPUT (AD=MIL) // 20T ’ENTER PERSONNEL NUMBER:’ #PERSONNEL-NUMBER
 IF #PERSONNEL-NUMBER = 99999999
 ESCAPE bottom
 END-IF

25Copyright Software AG 2001

Backing Out a TransactionDatabase Access

 FIND1. FIND PERSON WITH PERSONNEL-ID = #PERSONNEL-NUMBER
 IF NO RECORDS FOUND
 REINPUT ’SPECIFIED NUMBER DOES NOT EXIST; ENTER ANOTHER ONE.’
 END-NOREC
 FIND2. FIND AUTO WITH PERSONNEL-ID = #PERSONNEL-NUMBER
 IF NO RECORDS FOUND
 WRITE ’PERSON DOES NOT OWN ANY CARS’
 END-NOREC
 IF *COUNTER (FIND1.) = 1 /* FIRST PASS THROUGH THE LOOP
 INPUT (AD=M)
 / 20T ’EMPLOYEES/AUTOMOBILE DETAILS’ (I)
 / 20T ’----------------------------’
 /// 20T ’NUMBER:’ PERSONNEL-ID (AD=O)
 / 22T ’NAME:’ NAME ’ ’ FIRST-NAME ’ ’ MIDDLE-I
 / 22T ’CITY:’ CITY
 / 22T ’MAKE:’ MAKE
 / 21T ’MODEL:’ MODEL
 UPDATE (FIND1.) /* UPDATE THE EMPLOYEES FILE
 ELSE /* SUBSEQUENT PASSES THROUGH THE LOOP
 INPUT NO ERASE (AD=M) //////// 20T MAKE / 20T MODEL
 END-IF
 UPDATE (FIND2.) /* UPDATE THE VEHICLES FILE
 MOVE *APPLIC-ID TO #APPL-ID
 MOVE *INIT-USER TO #USER-ID
 MOVE *PROGRAM TO #PROGRAM
 MOVE *DAT4E TO #DATE
 MOVE *TIME TO #TIME
 END TRANSACTION #APPL-ID #USER-ID #PROGRAM
 #DATE #TIME #PERSONNEL-NUMBER
 END-FIND /* FOR VEHICLES (FIND2.)
 END-FIND /* FOR EMPLOYEES (FIND1.)
 END-REPEAT /* FOR REPEAT
 STOP /* Simulate abnormal transaction end
 END TRANSACTION ’NORMAL ’
 END

Copyright Software AG 200126

Database AccessRestarting a Transaction

Statements ACCEPT and REJECT
The statements ACCEPT and REJECT are used to select records based on user-specified logical criteria.

The statements ACCEPT and REJECT can be used in conjunction with the database access statements READ, FIND
and HISTOGRAM.

Example of ACCEPT Statement:

 ** Example Program ’ACCEPX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 CURR-CODE (1:1)
 2 SALARY (1:1)
 END-DEFINE
 READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = ’USD’
 ACCEPT IF SALARY (1) >= 40000
 DISPLAY NAME JOB-TITLE SALARY (1)
 END-READ
 END

Page 1 97-08-13 17:26:33

 NAME CURRENT ANNUAL
 POSITION SALARY
 -------------------- ------------------------- ----------

 ADKINSON DBA 46700
 ADKINSON MANAGER 47000
 ADKINSON MANAGER 47000
 AFANASSIEV DBA 42800
 ALEXANDER DIRECTOR 48000
 ANDERSON MANAGER 50000
 ATHERTON ANALYST 43000
 ATHERTON MANAGER 40000

ACCEPT/REJECT statements allow you to specify logical conditions in addition to those that were specified in
WITH and WHERE clauses of the READ statement. The logical condition criteria in the IF clause of an
ACCEPT/REJECT statement are evaluated after the record has been selected and read.

27Copyright Software AG 2001

Statements ACCEPT and REJECTDatabase Access

Logical condition operators include the following (see the Natural Reference documentation for more detailed
information):

EQUAL EQ :=

NOT EQUAL TO NE ¬=

LESS THAN LT <

LESS EQUAL LE <=

GREATER THAN GT >

GREATER EQUAL GE >=

Logical condition criteria in ACCEPT/REJECT statements may also be connected with the Boolean operators AND,
OR, and NOT. Moreover, parentheses may be used to indicate logical grouping.

Example of ACCEPT Statement with AND Operator:

The following program illustrates the use of the Boolean operator AND in an ACCEPT statement.

 ** Example Program ’ACCEPX02’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 CURR-CODE (1:1)
 2 SALARY (1:1)
 END-DEFINE
 READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = ’USD’
 ACCEPT IF SALARY (1) >= 40000
 AND SALARY (1) <= 45000
 DISPLAY NAME JOB-TITLE SALARY (1)
 END-READ
 END

Example of REJECT Statement with OR Operator:

The following program, which uses the Boolean operator OR in a REJECT statement, produces the same output as
the ACCEPT statement above, as the logical operators are reversed.

 ** Example Program ’ACCEPX03’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 CURR-CODE (1:1)
 2 SALARY (1:1)
 END-DEFINE
 READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = ’USD’
 REJECT IF SALARY (1) < 40000
 OR SALARY (1) > 45000
 DISPLAY NAME JOB-TITLE SALARY (1)
 END-READ
 END

Copyright Software AG 200128

Database AccessStatements ACCEPT and REJECT

Page 1 97-08-18 12:21:09

 NAME CURRENT ANNUAL
 POSITION SALARY
 -------------------- ------------------------- ----------

 AFANASSIEV DBA 42800
 ATHERTON ANALYST 43000
 ATHERTON MANAGER 40000

Further Examples of ACCEPT and REJECT Statements:

See programs ACCEPX04, ACCEPX05 and ACCEPX06 in library SYSEXPG.

29Copyright Software AG 2001

Statements ACCEPT and REJECTDatabase Access

AT START/END OF DATA Statements
AT START OF DATA Statement

The AT START OF DATA statement is used to specify any processing that is to be performed after the first of a set
of records has been read in a database processing loop.

The AT START OF DATA statement must be placed within the processing loop.

If the AT START OF DATA processing produces any output, this will be output before the first field value. By
default, this output is displayed left-justified on the page.

AT END OF DATA Statement

The AT END OF DATA statement is used to specify processing that is to be performed after all records for a
database processing loop have been processed.

The AT END OF DATA statement must be placed within the processing loop.

If the AT END OF DATA processing produces any output, this will be output after the last field value. By default,
this output is displayed left-justified on the page.

Example of AT START OF DATA and AT END OF DATA Statements

The following example program illustrates the use of the statements AT START OF DATA and AT END OF
DATA. The system variable *TIME has been incorporated into the AT START OF DATA statement to display the
time of day. The system function OLD has been incorporated into the AT END OF DATA statement to display the
name of the last person selected.

 ** Example Program ’ATSTAX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 JOB-TITLE
 2 INCOME (1:1)
 3 CURR-CODE
 3 SALARY
 3 BONUS (1:1)
 END-DEFINE
 WRITE TITLE ’XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT’ /
 READ (3) MYVIEW BY CITY STARTING from ’E’
 DISPLAY GIVE SYSTEM FUNCTIONS
 NAME (AL=15) JOB-TITLE (AL=15) INCOME (1)
 AT START OF DATA
 WRITE ’RUN TIME:’ *TIME /
 END-START
 AT END OF DATA
 WRITE / ’LAST PERSON SELECTED:’ OLD (NAME) /
 END-ENDDATA
 END-READ
 AT END OF PAGE
 WRITE / ’AVERAGE SALARY:’ AVER (SALARY(1))
 END-ENDPAGE
 END

The program produces the following output:

Copyright Software AG 200130

Database AccessAT START/END OF DATA Statements

 XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT

 NAME CURRENT INCOME
 POSITION
 CURRENCY ANNUAL BONUS
 CODE SALARY
 --------------- --------------- -------- ---------- --------

 RUN TIME: 11:18:58.2

 DUYVERMAN PROGRAMMER USD 34000 0
 PRATT SALES PERSON USD 38000 9000
 MARKUSH TRAINEE USD 22000 0

 LAST PERSON SELECTED: MARKUSH

 AVERAGE SALARY: 31333

Further Examples of AT START OF DATA and AT END OF DATA Statements:

See programs ATENDX01, ATSTAX02 and WRITEX09 in library SYSEXPG.

31Copyright Software AG 2001

AT START/END OF DATA StatementsDatabase Access

	Database Access
	DDMs †Data Definition Modules‡
	Displaying a DDM
	Components of a DDM

	Database Arrays
	Multiple-Value Fields
	Periodic Groups
	Referencing Multiple-Value Fields and Periodic Groups
	Multiple-Value Fields Within Periodic Groups
	Referencing Multiple-Value Fields Within Periodic Groups
	Referencing the Internal Count of a Database Array

	DEFINE DATA Views
	Statements for Database Access
	READ Statement
	Syntax
	Limiting the Number of Records to be Read
	The STARTING/ENDING Clauses
	The WHERE Clause

	FIND Statement
	Syntax
	Limiting the Number of Records to be Processed
	The WHERE Clause
	IF NO RECORDS FOUND Condition

	HISTOGRAM Statement
	Syntax
	Limiting the Number of Values to be Read
	The STARTING/ENDING Clauses
	The WHERE Clause

	Database Processing Loops
	Hierarchies of Processing Loops

	Database Update - Transaction Processing
	Logical Transaction
	Record Hold Logic
	Backing Out a Transaction
	Restarting a Transaction

	Statements ACCEPT and REJECT
	AT START/END OF DATA Statements

