
Third Generation Languages
Predict provides functions for documentation, development and redocumentation of 3GL applications and programs.
The following third generation languages are supported:

BAL/Assembler 
C 
COBOL 
FORTRAN 
PL/I 
Ada 

Not all facilities are available for all of these languages. On the other hand there are areas in Predict where additional
user-specified languages are supported. In other areas, special classes of programs are used that are treated by Predict
like languages. These restrictions and extensions are either mentioned here or in the relevant section of this
documentation or the External Objects in Predict documentation.

This section covers the following topics:

Documenting 3GL Applications 
Documenting 3GL Programs 
XRef Data for 3GL Applications and Programs 
Using Predict Functions When Developing 3GL Applications 
Redocumenting of 3GL Applications 
Redocumenting COBOL Record Structures 

Documenting 3GL Applications
3GL applications are documented in Predict with system objects of type 3GL Application (code G). 

The system object and the 3GL application it represents are connected by an implementation pointer. 

Implementation Pointer for 3GL Application

Parameters 

Library This name can be freely chosen when an object of type system is added or modified, and
represents one or more source or load libraries/directories or parts thereof.
Once defined here, this name can be used to document 3GL programs belonging to the
application and for creating and retrieving XRef data.
If XRef data related to this library exists, the name may no longer be changed. 

User system
Fnr, DBnr

These attributes are used to distinguish 3GL libraries from Natural libraries. Both must be set to
255 for 3GL applications. 

Documenting a 3GL Application with a Predict Object of Type System

1Copyright Software AG 2002

Third Generation LanguagesThird Generation Languages



System implementation pointer Library represents for Predict one or more source or load libraries/directories or parts 
thereof.

Documenting 3GL Programs
3GL programs are documented in Predict with objects of type Program, with one of the languages listed on page 2
and one of the following subtypes, depending on the programming language.

copy code 
documented 
program 
function 
subprogram. 

Other languages can be defined in the user exit U-PGMLAN. See the section User Exits in the Predict
Administration documentation for more information.

Predict also knows the pseudo-languages System program and Static SQL.

As with applications, the program object and the implemented 3GL member it represents are connected by an
implementation pointer.

Implementation Pointer for 3GL Programs

If Member is not entered for the program implementation pointer, it is not possible to enter a value for Library. If a
Member is specified, the possible values for Library depend on how the maintenance option Implementation library
described below has been defined by your DDA in the General Defaults function.

Copyright Software AG 20022

Third Generation LanguagesDocumenting 3GL Programs



Presetting 

Implementation 
library

F 
Force. A library that is documented as a 3GL application must be entered. A default library -
for example *SYSCOB* - may not be entered.

A 
Allowed. Either a library documented as a 3GL application or a default library must be
entered. See next table for a complete list of default libraries for 3GL programs.

D 
Disallowed. Library concept is not used. Library *SYSALL* must be entered.

Parameters 

Member Corresponds to the name of the implemented program as it is stored in a source or load
library/directory. 

Library The possible values for this parameter depend on the maintenance option Implementation Library.
See Presetting above.
Corresponds to the implemented application to which the program belongs. If a non-default library
is specified, it must be defined in an object of type system if XRef data is to be created for the 
program.
The program object does not have to be linked in Predict to the system object containing the library 
name.
If Member is specified but Library is left blank, and if Implementation Library is set to A, the
program object is connected automatically to the corresponding default library:

Language Default Library 

COBOL *SYSCOB* 

BAL/Assembler *SYSBAL* 

PL/I *SYSPLI* 

FORTRAN *SYSFOR* 

C *SYSCCC* 

ADA *SYSADA* 

Pseudo-LanguageDefault Library 

Static SQL *SYSSTA* 

System program *SYSSYS* 

Default libraries do not need to be defined explicitly in a system object. 

Note:
Programs of language System program must be linked to library *SYSSYS*. Programs of all
other languages in the above list can be linked either to their default library or to a user-defined
library defined in a system object. 

User system
Fnr, DBnr

These attributes are used to distinguish implemented 3GL programs from Natural programs. Both
must be set to 255 for 3GL programs. 

3Copyright Software AG 2002

Implementation Pointer for 3GL ProgramsThird Generation Languages



Documenting a 3GL Program with a Predict Object of Type Program

Program implementation pointer Member corresponds to the implemented program as it is stored in the source or
load library/directory.
Library must be defined in an object of type System if XRef data is to be created for the program.

Creating XRef Data for Implemented Programs

Copyright Software AG 20024

Third Generation LanguagesDocumenting a 3GL Program with a Predict Object of Type Program



An implemented program is known to Predict only if XRef data exist.
In this example, the XRef data for COBOL program FREDPRG1 are created by assigning the program source as
Workfile 1 and then processing it with the Predict Preprocessor.

The different methods of creating XRef data are listed in the section XRef Data for 3GL Applications and Programs.

Connecting External and Documentation Objects by Implementation Pointer

The Predict system object is now connected to external library, and the program object is now connected to the
implemented program.

Documenting Entry Points for 3GL Programs

Entry points can be documented in Predict for the following languages:

Assembler 
C 
COBOL 
FORTRAN 
PL/I 
Ada 
Other (language code O) 

If a member name is entered in the implementation pointer of a program object, this name is automatically entered as
an entry point. Other entry points can be entered using one of the following methods:

Documenting entry points manually
with program maintenance function Edit entry-points (Code R) 
or by setting "Attribute" to Y, and then selecting Entry points in the "Additional attributes" window. 

Documenting entry points with editor commands
If XRef data already exists for the implemented program, call the function Edit Entry Points with one of the

5Copyright Software AG 2002

Connecting External and Documentation Objects by Implementation PointerThird Generation Languages



methods above and enter command ACTIVE or UPDATE in the editor command line.
ACTIVE reads the entry names from the XRef data of the program into the editor workspace and marks
them as < active. Entry names that have been entered manually but are not in the XRef data are marked <
unused. 
UPDATE additionally deletes the entries marked < unused from the editor workspace. 

See Program List Editor Commands in the section Program in the Predefined Object Types in Predict 
documentation.

Documenting entry points with function Redocument program
See Redocumenting of 3GL Applications or Redocument Program section Program in the Predefined Object
Types in Predict documentation for more information.

XRef Data for 3GL Applications and Programs
XRef data for 3GL programs plays two important roles in Predict:

It contains information on the dependencies among implemented programs and between programs and other
objects they use. 
It represents the implemented program in Predict. This means an XRef member corresponding to the
implemented program must exist if the program is to be known to Predict. 

How is XRef Data Created?

XRef data for applications is created by creating XRef data for one or more programs contained within the
application. The method used for creating XRef data for programs depends on the program type: 

For 3GL Programs

By Adabas Native SQL (ADA, COBOL, FORTRAN and PL/I). 
By the Predict Preprocessor (Assembler, COBOL and PL/I). See the section Preprocessor in the External
Objects in Predict documentation 
By Adabas SQL Server precompiler (C, COBOL, FORTRAN and PL/I).
See XRef Data for Adabas SQL Objects. 

For Static SQL

If Natural for DB2 is installed, the function CREATE DBRM of Natural for DB2 creates XRef data for Static SQL
access modules (DBRMs) and for Natural programs that use Static SQL. See Static SQL. 

For System Programs

It is not always possible to create XRef data for a 3GL program using one of the above methods. This applies
particularly to operating system routines, TP Monitor programming interfaces or other programs that are invoked
from within a 3GL application but for which no source code is available.
However, these programs can be documented as program objects of type Documented or External program (subtypes
D or E) with pseudo-language System program (language code Z). 

For each program object of this type, Predict creates a minimal set of XRef data, containing directory information
and a list of entry points. 

Copyright Software AG 20026

Third Generation LanguagesXRef Data for 3GL Applications and Programs



What is Contained in 3GL XRef Data?

The following information is stored for 3GL programs:

The name of the program and the application to which it belongs. 
The program type (only main program). 
The date and time the program was last cataloged. 
ID of the user who cataloged the program. 
ID of the terminal from which the program was cataloged. In batch mode the job name is given. 
The entry points defined in the program. The member name is always entered as one of the entry points. 
The entry points of invoked 3GL programs and the methods used to invoke them (only CALL, static SQL). 
The names of files used in the program and the type of file usage. 
Names of fields of files used in the program and the type of field usage. 

How is XRef Data Used?

There are three main areas where XRef data is used:

Active Retrieval
Predict active retrieval functions evaluate XRef data and Predict documentation data to determine 

if objects documented in the dictionary are not yet implemented 
if implemented programs are not yet documented or 
if documentation data differs from the implementation. 

XRef data also provides answers to questions such as

which programs refer to file ABC* 
which programs call the entry point MAIN in program START in library FREDLIB. 

For more information see the section Active Retrieval in the Predict Reference documentation. 

LIST XREF
XRef data for third generation languages is retrieved with functions of the Predict XRef menu. There are
essentially three groups of functions: those which 

retrieve information on specific types of objects in an application 
retrieve information on the consistency of an application as a whole 
manage sets. 

For more information see the section LIST XREF for Third Generation Languages in the Predict Reference 
documentation. 
Redocumenting of 3GL Applications
3GL applications for which XRef data exists can be redocumented automatically in Predict. See Redocumenting
of 3GL Applications. 

Using Predict Functions When Developing 3GL Applications
Two major features are available for the development of 3GL applications:

Generation of file layouts from Predict file objects in the syntax of several third generation languages. See
appropriate sections in the section Generation in the External Objects in Predict documentation. 
Insertion of Predict generated file layouts and Adabas format buffers into 3GL source programs by the Predict
Preprocessor. See the section Preprocessor in the External Objects in Predict documentation for more
information. 

7Copyright Software AG 2002

Using Predict Functions When Developing 3GL ApplicationsThird Generation Languages



Redocumenting of 3GL Applications
3GL applications for which XRef data exists can be automatically redocumented in Predict. The XRef data must
have been created using one of the methods described in XRef Data for 3GL Applications and Programs. 

The Redocument program function (see the section Program in the Predefined Object Types in Predict 
documentation) creates for each implemented program a new Predict Program object or updates an existing object
and evaluates the XRef data to establish links to other program and file objects. 

This results in a basic documentation of the application objects and their relationships, which can be extended by an
abstract, extended description, keywords, owners etc. 

Redocumenting COBOL Record Structures
Data definitions in the form of COBOL Copy Code members can be redocumented in Predict using the function
Incorporate COBOL. A file object of type Sequential is created for each Copy Code member. See appropriate part of
section Incorporation in the External Objects in Predict documentation for more information.

Copyright Software AG 20028

Third Generation LanguagesRedocumenting of 3GL Applications


	Third Generation Languages
	Documenting 3GL Applications
	Implementation Pointer for 3GL Application
	Documenting a 3GL Application with a Predict Object of Type System

	Documenting 3GL Programs
	Implementation Pointer for 3GL Programs
	Documenting a 3GL Program with a Predict Object of Type Program
	Creating XRef Data for Implemented Programs
	Connecting External and Documentation Objects by Implementation Pointer
	Documenting Entry Points for 3GL Programs

	XRef Data for 3GL Applications and Programs
	How is XRef Data Created?
	For 3GL Programs
	For Static SQL
	For System Programs

	What is Contained in 3GL XRef Data?
	How is XRef Data Used?

	Using Predict Functions When Developing 3GL Applications
	Redocumenting of 3GL Applications
	Redocumenting COBOL Record Structures


