
Developing Client/Server Applications
Version 4.3

October 1999

CONSTRUCT SPECTRUMTM
SDK

Sabine Winterbauer

Sabine Winterbauer

Sabine Winterbauer

Manual Order Number:SPV430-021IBW

Copyright © SAGA SOFTWARE, Inc., 1999. All rights reserved.

SAGA, SAGA SOFTWARE, the SAGA logo, Free Your Information, the FYI
logo, CRIS, Construct, Construct Spectrum, Construct Spectrum SDK,
iXpress, Sagacertify, Sagagallery, Sagavista, and Your Fastest Route to
Enterprise Integration are trademarks or registered trademarks of SAGA
SOFTWARE, Inc. in the U.S. and/or other countries. Adabas, Adabas Delta
Save Facility, Adabas Fastpath, Adabas SQL Server, Adabas Vista, Adaplex+,
Bolero, Com-plete, Entire, Entire Access, Entire Net-work, EntireX, EntireX
DCOM, Entire Broker, Entire Broker SDK, Entire Broker APPC, Entire SAF
Gateway, Natural, Natural Architecture, Natural Elite, Natural New
Dimension, Natural Lightstorm, Natural Vision, New Dimension, PAC,
Predict, Software AG, and Super Natural are developed by Software AG of
Darmstadt, Germany and are distributed in the U.S., Latin America,
Canada, Israel and Japan exclusively through SAGA SOFTWARE, Inc. and
its subsidiaries and distributors. Adabas and Natural are registered
trademarks of Software AG of Darmstadt, Germany. Except for Adabas and
Natural, these products developed by Software AG of Darmstadt, Germany
are either registered trademarks or trademarks of SAGA SOFTWARE, Inc.,
in the U.S. and/or other countries.

Other company or product names mentioned are used for informational
purposes only and may be trademarks or servicemarks of their respective
owners.

TABLE OF CONTENTS

PREFACE
Prerequisite Knowledge . 16
How to Use this Guide . 17

If You are Creating a New Client/Server Application . 17
If You are Moving an Existing Application to a Client/Server Architecture 18

Conventions Used in this Guide . 19
Related Documentation . 20

Construct Spectrum SDK. 20
Construct Spectrum . 20
Natural Construct . 21

Year 2000 Considerations . 22

1. INTRODUCTION
What is Construct Spectrum? . 24

Development Environments . 25
Architecture of a Construct Spectrum Client/Server Application 28

Mainframe Server. 29
Windows . 31

The Development Process . 33
Planning Your Application. 33

Decide What to Show the User . 33
Keep Window Design Simple . 34

Number and Structure of Windows . 34
Content of Each Window . 35

Plan Your Code . 35
Use a Consistent Style . 35
Anticipate Translation Issues . 35

Setting Up Your Application Environment on the Mainframe 36
Predict Definitions . 36
Steplib Chains and Domains . 36
– 3 –

Developing Client/Server Applications ___
Security for Domains, Steplibs, Users, and Groups . 36
 Generating Application Components . 37

Using the Super Model. 37
Using Individual Models . 37
Deciding Which Modules to Generate . 37
Generation Process . 37

Server Modules . 38
Client Modules . 39

Setting Up Your Project . 39
Transferring Your Generated Code to the Project . 39

Customizing Your Application and Environment. 40
Testing and Debugging Your Application . 40
Deploying Your Application . 41

2. USING THE DEMO APPLICATION
Overview . 44
Setting Up Prerequisites . 45
Opening the Construct Spectrum Demo Project. 46

Understanding the Construct Spectrum Add-In . 49
Understanding the Demo Project . 50

Framework Components . 50
Generated Modules. 53

Running the Demo Application . 56
Application Interface . 59

Menu Options . 60
Toolbar Options . 62
Application Workspace. 64
Status Bar . 65

Additional Options . 65
Error Notification Options . 65
Remote Dispatch Service Options . 66

Using the Demo Application . 68
Opening a Business Object . 68
Maintaining a Business Object . 73

Validations . 73
Business Data Types (BDTs) . 75
– 4 –

___ Table of Contents
Grids . 78
Nested Grids . 79
Nested Drop-Down Grids . 79
Keyboard Shortcuts for Grids . 81

Browsing For Business Object . 81
Selecting Data With a Browse . 82

Open a Business Object With a Browse . 82
Open a Second Order to Work On . 84
Open Foreign File Information . 84

Specifying Browse Customization Options . 86
Specifying Selection Options . 87
Specifying Display Options . 88

Troubleshooting . 91

3. USING THE SUPER MODEL TO GENERATE APPLICATIONS
Overview . 94
Preparing to Generate with the Super Model. 97

Using a Naming Convention . 97
Understanding the Object Factory . 99
Which Modules to Generate. 100

Modules to Generate for a Maintenance Dialog . 101
Modules to Generate for a Browse Dialog. 102
Dependent Models . 103

Generating with the Super Model . 104
Using the Super Model Wizard in the Construct Windows Interface 104

Step 1 — Invoke the Super Model Wizard . 104
Step 2 — Define General Package Parameters . 106
Step 3 — Define Specific Package Parameters . 109
Step 4 — Generate the Modules . 113

Generating Modules from the Model Wizard . 113
Generating Modules in Batch . 113

Using the Super Model in the Generation Subsystem . 114
Step 1 — Invoke the Super Model . 114
Step 2 — Define General Package Parameters . 115
Step 3 — Define Specific Package Parameters . 117
Step 4 — Generate the Modules . 119
– 5 –

Developing Client/Server Applications ___
What to Do If Something Goes Wrong . 121
Transferring Your Application to the Client. 122

4. CREATING A CONSTRUCT SPECTRUM PROJECT
Overview . 124
Are You Ready? . 126
Creating the Project . 127

Prior to Downloading . 130
Downloading the Generated Modules . 131

Hand-Coding the Object Factory . 133
What’s Next?. 134

Modifying the Dialogs . 134
Testing the Application . 134
Deploying the Application . 135
Setting Up Security . 135

5. CREATING AND CUSTOMIZING MAINTENANCE DIALOGS
Overview of the Maintenance Dialog . 138

Ways to Generate Maintenance Dialogs . 139
The Process of a Maintenance Dialog . 139

Are You Ready? . 140
Using Individual Models to Generate Maintenance Modules 141

Generating the Object Maintenance Subprogram and PDAs 141
Generating the Maintenance Subprogram Proxy. 142
Generating the Visual Basic Maintenance Object . 142

Business Validations . 142
Browse Functions . 143

Generating a Maintenance Dialog. 147
Downloading Client Modules. 151
Integrating a New Maintenance Dialog . 154
Strategies for Customizing a Maintenance Dialog. 155

Doing the Predict Data Dictionary Work Up Front . 155
Choosing an Appropriate Place to Add Hand-Written Code 156
Adding New User Exits . 157
Making a Copy Before You Regenerate. 158
– 6 –

___ Table of Contents
Customizing on the Server. 159
Deriving Variable Names. 159

Deriving GUI Control Names . 159
GUI Control Identifier . 159
Object Identifier . 160
Field Identifier . 160

Deriving Label Captions for GUI Controls . 160
Overriding GUI Controls . 160

Step 1 — Search for GUI Keywords on Field Definitions 161
Generating a ComboBox Control to Display External Values 164

Step 2 — Search for GUI Keywords on Verification Definitions 164
Step 3 — Search for Business Data Type Keywords on Field Definitions 166
Step 4 — Use Default Derivation . 167

Repeating Field Threshold . 171
Option Button Threshold . 171
Foreign Field Threshold . 171

Setting Generation GUI Standards. 172
Controlling the Size of a Maintenance Dialog . 173

Overflow Conditions . 174
Customizing on the Client . 175

Creating Calculated Fields . 175
Does a GUI Control Exist for the Calculated Field?. 175
Coding the Calculation. 176

Integrating Maintenance and Browse Functions . 176
Validating Data Using the Visual Basic Maintenance Object 177
Tailoring the Maintenance Dialog. 177

Working with Overflow Frames. 179
Multi-column Layout . 181
Tabbed Layout . 182
State-Dependent Layout . 183

Adding a New Field by Hand. 185
Adding a Scalar Field by Hand . 185
Adding a Regular Grid Column for a Field . 189

Removing a Field by Hand. 202
Using the Grid . 202

Nested Grids . 202
– 7 –

Developing Client/Server Applications ___
Nested Drop-Down Grids . 204
Displaying Grids . 205
Resizing Grids. 206

Adding Sound to Error Notifications. 208
Understanding How a Sound File is Associated With an Error 209

Multilingual Support for Maintenance Dialogs . 211
Uploading Changes to the Server . 212

6. CREATING AND CUSTOMIZING BROWSE DIALOGS
Overview of the Browse Dialog . 216

About Browse Dialogs . 216
The Browse Process . 216

Browse Object Subprogram . 217
Browse Object Subprogram Proxy . 218
Visual Basic Browse Object . 218

Data Cache . 219
Framework Components . 219

Creating a Browse Dialog . 220
Setting up Predict for the Browse Dialog . 220

Business Data Types . 220
Descriptive Fields . 220

Using the Construct Models to Generate Browse Modules 221
Generating the Browse Subprogram and PDAs . 222
Generating the Subprogram Proxy . 222
Generating the Visual Basic Browse Object . 223
Defining Alternate Browse Data Sources . 226

Downloading the Client Modules . 229
Updating the Project . 231

Extend Object Factory . 231
Customizing On the Client . 232

Adding Command Handlers. 232
Customizing the Generic Browse Dialog. 232
Understanding the BrowseManager Class . 232

Display the Browse Dialog . 232
Support a Browse Command Handler. 233
Return a Specific Row of Data . 233
– 8 –

___ Table of Contents
Return All Rows of Data . 233
Using the BrowseManager. 233

BrowseManager Methods. 237
Understanding Browse Command Handlers . 238

Creating Browse Command Handlers. 240
Coding the Custom Browse Command Handler . 241

Enabling Commands on the Browse Toolbar and Menu 242
Coding the UICommandTarget() Method . 242
Marking Updated Rows Using the UpdateListViewIcons Method 243

7. MOVING EXISTING APPLICATIONS TO CONSTRUCT SPECTRUM
Overview . 246
Moving Natural Construct Object Applications . 247
Moving Non-Object Natural Construct Applications . 248

Step 1 — Set Up Your Server Environment . 248
Step 2 — Evaluate Your Application Data . 249
Step 3 — Perform Optional Predict Set Up . 249
Step 4 — Generate the Client/Server Modules. 249
Step 5 — Update Your Object Subprograms with Existing Business Rules. 251

Considerations for Implementing Business Rules . 251
Step 6 — Set Up and Run Your Construct Spectrum Project 252

8. UNDERSTANDING AND CUSTOMIZING THE CLIENT FRAMEWORK
Introduction to the Client Framework . 254
About Box . 257

Customizing the About Box . 258
Application Preferences . 260
Application Settings . 262

Customizing the Application Settings. 262
Browse Support . 265
Internationalization Support. 267
Maintenance Classes . 268

Grid Support . 268
Menu and Toolbar Support . 270

Understanding Menu and Toolbar Command Handling . 271
Class Summary. 272
– 9 –

Developing Client/Server Applications ___
Defining, Sending, and Handling Commands . 273
Step 1 — Declare a Global Instance of the UICommands Class 273
Step 2 — Define the Commands . 274
Step 3 — Code Menu and Toolbar Events to Send the Commands 274
Step 4 — Code the Command Handlers . 276
Step 5 — Link the Commands to the Command Handlers 277

Updating User Interface Controls . 278
Step 1 — Code Events to Update the Menu Controls. 279
Step 2 — Code the Logic that Determines the State of a Command. 281
Step 3 — Code Events to Update the Toolbar Buttons . 282

Displaying a Disabled Bitmap . 282
Displaying a Message . 283
Update Cycles . 284

Additional Methods For Command Handling. 288
Unhooking Commands . 288

Customizing the Menu and Toolbar in the Client Framework 289
Changing the Menu Structure. 289
Example of Changing the Menu Bar and Its Menu Items . 294
Changing the Toolbar Structure . 298
Example of Adding Buttons to the Toolbar. 299

Multiple-Document Interface (MDI) Frame Form . 301
Object Factory. 302

Understanding the Open Dialog . 303
Understanding the Object Factory . 304
Using the Object Factory . 305
Example of Using the Object Factory . 306
Customizing the Object Factory . 307
Setting Up. 307
Making your Application Aware of New Business Objects 311

Step 1 — Update the InitializeOpenDialog Procedure. 312
Step 2 — Update the CreateForm Procedure . 313
Step 3 — Update the GetBrowser Procedure . 315
Step 4 — Update the BrowserExists Procedure . 317

Spectrum Dispatch Client Support . 319
Logon Dialog . 321
Error Messages . 322
– 10 –

___ Table of Contents
Dispatcher Selection Dialog. 322
Utility Procedures . 323

9. VALIDATING YOUR DATA
Overview . 328

Basic Data Type Validation . 328
Business Data Type Validation . 328
Local Business Validation . 328
Business Object Validation . 329

Client Validation . 331
Validation in Maintenance Dialogs . 333

Using BDTs. 333
Hand-Coded Validations in Generated Dialogs . 333

Validation in Visual Basic Maintenance Objects . 334
Adding Validations in the CLIENT-VALIDATION User Exit. 334
Validations from Predict . 335

Creating Verification Rules in Predict . 336
Deciding Where To Implement a Validation Rule . 336

Coding User Type Rules. 337
Order of Precedence in Data Validation . 339
Validation Error Handling. 340

Framework Components . 340
Handling Business Object Validation Errors . 341

10. UNDERSTANDING THE BROWSE AND MAINTENANCE
INTEGRATION
Overview . 344

Drill-Down Capabilities from a Browse Dialog. 344
Active Help on Maintenance Dialogs . 345

Primary Key Field Active Help . 345
Foreign Field Active Help . 346

Design Objectives . 349
Application Component Independence . 349
Simplified Generated Components . 350

Overview of Foreign Key Field Relationships . 351
Fields that can be Used in a Foreign Key Relationship . 351
– 11 –

Developing Client/Server Applications ___
Simple Field . 351
Repeating Field. 352

When Not to Use a Foreign Field Relationship . 353
List of Values is Static . 353
List of Values is Small . 353
List of Values Contains Two Choices Only . 354

Foreign Field Support Provided By Maintenance Dialogs. 355
GUI Control Representations of Foreign Fields . 355

Foreign Fields On the Primary Part of a Maintenance Dialog 355
GUI Controls in a Grid. 357
How Construct Spectrum Determines Which GUI Control to Use 358
Displaying Descriptions for a Foreign Field . 359

Examples of Descriptive Fields . 360
Supporting Multiple Descriptive Values and Derived Values 360

How Foreign Field Descriptions Are Refreshed . 361
Supporting Code for Drop-Down lists . 363

Initializing a Drop-Down List . 363
Support for Value Selection . 364

Supporting Code for Command Buttons . 364
Initializing a Command Button . 364
Click Events on the Command Button . 365

11. INTERNATIONALIZING YOUR APPLICATION
Planning Your Internationalized Application . 368
Internationalizing Using the Client Framework . 369
Resource File Syntax . 372

Text Values . 372
Binary Values . 373
Links . 373

Using the Client Framework’s Internationalization Components 374
Methods. 374

GetResourceGroup . 374
LocalizeForm. 375
LoadBinaryResource . 375
LoadStringResource . 376
Message. 376
– 12 –

___ Table of Contents
MessageEx . 376
SetDefaultMessageGroup . 377

Properties . 377
Language. 377
LanguageRegistryKey . 378
LanguageINIKey . 379
ResourceFilePath . 379

Hints for Developers. 380
Automatically Setting the Language. 380
Strategy for Using Resource Files and Groups. 380
Starting an Application in a Specific Language . 381

Associating Windows Locale Setting with a Language . 383
Changing Language at Runtime . 383

APPENDIX: MODIFYING SPECTRUM MODELS 385
VB-Maint-Dialog Model . 386
VB API . 388

Components of the VB API . 388
How the VB API Works . 389
GUI Controls with VB API . 391
Parameter Data Area (PDA) Used . 397
– 13 –

Developing Client/Server Applications ___
– 14 –

P

PREFACE

Developing Client/Server Applications is designed to help developers create and
customize applications using the Construct Spectrum software development kit
(SDK) and Visual Basic.

This preface will help you get the most out of the guide and find other sources of
information about creating Construct Spectrum applications.

The following topics are covered:

• Prerequisite Knowledge, page 16

• How to Use this Guide, page 17

• Conventions Used in this Guide, page 19

• Related Documentation, page 20

• Year 2000 Considerations, page 22
– 15 –

Developing Client/Server Applications ___P
Prerequisite Knowledge
Developing Client/Server Applications does not provide information about the fol-
lowing topics. We assume that you are either familiar with these topics or have
access to other sources of information about them.

• Natural Construct

• Microsoft® Visual Basic®

• Predict®

• Natural® programming language and environment

• Entire Broker™

• Entire Net-Work®
– 16 –

__Preface P
How to Use this Guide
Developing Client/Server Applications describes how to create and customize cli-
ent/server applications using Construct Spectrum SDK and Visual Basic. In
particular, it provides information about:

• Creating new client/server applications

• Moving existing server-based applications to a client/server architecture

The following sections explain how to use this and related Construct Spectrum
guides to perform these tasks.

If You are Creating a New Client/Server Application
If you want to use Construct Spectrum’s tools to create a client/server application
to run on Windows® 95 or Windows NT, we recommend that you first read the fol-
lowing chapters in Construct Spectrum Programmer’s Guide:

• Chapter 1, Introduction
Contains an overview of the product, development process, and applications you
can develop.

• Chapter 2, Setting Up Your Application Environment on the Mainframe
Contains detailed information on how to define domains and security options that
control what data application users can access on the mainframe.

Developing Client/Server Applications contains detailed information on using the
VB-Client-Server super model to generate all of your application’s components. It
explains how to set up a Visual Basic project, customize maintenance and browse
dialogs, and internationalize your application.

As you customize and regenerate application components, you will find the follow-
ing chapters in Construct Spectrum Programmer’s Guide useful:

• Chapter 6, Using the Subprogram Proxy Model

• Chapter 7, Using Business Data Types

• Chapter 8, Debugging Your Client/Server Application

• Chapter 9, Deploying Your Client/Server Application
– 17 –

Developing Client/Server Applications ___P
If You are Moving an Existing Application to a Client/
Server Architecture

Before moving any existing server-based applications to the Construct Spectrum
client/server architecture, we recommend that you gain familiarity with Construct
Spectrum by creating a new application. The best way to become familiar with Con-
struct Spectrum is described in If You are Creating a New Client/Server
Application, page 17.

To learn how to migrate your existing server-based applications to the Construct
Spectrum client/server architecture, refer to Moving Existing Applications to
Construct Spectrum, page 245.
– 18 –

__Preface P
Conventions Used in this Guide
This guide uses the following typographical conventions:

Example Description

Introduction Bold text in cross references indicates chapter and section
titles.

“A” Quotation marks indicate values you must enter.

Browse model,
GotFocus, Enter

Mixed case text indicates names of:

• Natural Construct and Construct Spectrum editors,
fields, files, functions, models, panels, parameters,
subsystems, variables, and dialogs

• Visual Basic classes, constants, controls, dialogs,
events, files, menus, methods, properties, and variables

• Keys

Alt+F1 A plus sign (+) between two key names indicates that you
must press the keys together to invoke a function. For
example, Ctrl+S means hold down the Ctrl key while
pressing the S key.

CHANGE-HISTORY Upper case text indicates the names of Natural command
keywords, command operands, data areas, helproutines,
libraries, members, parameters, programs, statements,
subprograms, subroutines, user exits, and utilities.

Construct Spectrum
Administrator’s Guide,
variable name

Italicized text indicates:

• Book titles

• Place holders for information you must supply

[variable] In syntax and code examples, values within square
brackets indicate optional items.

{WHILE|UNTIL} In syntax examples, values within brace brackets indicate
a choice between two or more items; each item is separated
by a vertical bar (|).
– 19 –

Developing Client/Server Applications ___P
Related Documentation
The documentation sets for Construct Spectrum and Natural Construct consist of
the following manuals:

Construct Spectrum SDK
• Construct Spectrum Programmer’s Guide

This guide is for developers creating Natural modules and ActiveX Business Ob-
jects to support applications that will run in the Natural mainframe environment
and a Windows environment and/or an internet server.

• Developing Web Applications
This guide is for developers creating the web components of applications. It ex-
plains how to use the Construct Spectrum wizards in Visual Basic to generate
HTML templates, page handlers, and object factory entries. It also contains de-
tailed information about customizing, debugging, deploying, and securing web
applications.

• Construct Spectrum Reference Manual
This manual is for application developers and administrators who need quick ac-
cess to information about Construct Spectrum application programming interfaces
(APIs) and utilities.

• Construct Spectrum Messages
This manual is for application developers, application administrators, and system
administrators who want to investigate messages returned by Construct Spectrum
run-time and SDK components.

Construct Spectrum
• Construct Spectrum Client Installation

This manual describes how to install and set up the Construct Spectrum runtime
and SDK components on the client.

• Construct Spectrum Mainframe Installation
This manual describes how to install and set up the Construct Spectrum runtime
and SDK components on the mainframe.

• Construct Spectrum Administrator’s Guide
This guide is for administrators. It describes how to use the Construct Spectrum
Administration subsystem to set up and manage Construct Spectrum applications.
– 20 –

__Preface P
Natural Construct
• Natural Construct Installation and Operations Manual for Mainframes

This manual provides essential information for setting up the latest version of Nat-
ural Construct, which is needed to operate the Construct Spectrum programming
environment.

• Natural Construct Generation User’s Manual
This manual describes how to use the Natural Construct models to generate appli-
cations that will run in a mainframe environment.

• Natural Construct Administration and Modeling User’s Manual
This manual describes how to use the Administration subsystem of Natural Con-
struct and how to create new models.

• Natural Construct Help Text User’s Manual
This manual describes how to create online help for applications that run on server
platforms.
– 21 –

Developing Client/Server Applications ___P
Year 2000 Considerations
We strongly recommend that you work with the preferred Y2K-capable date format
of alphanumeric eight (A8) and numeric eight (N8). Although you can use alpha-
numeric six (A6) and numeric six (N6) date formats for some functionality, full
functionality, inclusive of Y2K capability, is contingent upon the use of the A8 and
N8 date formats. A8, A6, N8 and N6 formats are used in examples throughout the
documentation.

Year 2000 capability as it relates to Natural Construct, Construct Spectrum, and
Construct Spectrum SDK requires the use of the A8 and N8 date formats.

With regard to products or services, SAGA SOFTWARE defines Year 2000 “readi-
ness” or “capability”, or the fact that a product or service is Year 2000 “ready” or
“capable”, to mean that the product or service is capable of accurately processing,
providing, and receiving data from, into, and between the 20th and 21st centuries,
and that it will correctly create, store, process, and output information related to
or including dates on or after January 1, 2000, provided that all other products, in-
cluding hardware or software, used in combination with the product or service,
properly exchange date information with the product or service.
– 22 –

1

INTRODUCTION

This chapter describes the components of Construct Spectrum and the architecture
of the client/server applications you can create with the software development kit
(SDK). An overview of the steps involved in developing an application prepares you
for the detailed procedures in the chapters that follow.

The following topics are covered:

• What is Construct Spectrum?, page 24

• Architecture of a Construct Spectrum Client/Server Application, page 28

• The Development Process, page 33
– 23 –

Developing Client/Server Applications ___1
What is Construct Spectrum?
Construct Spectrum comprises a set of middleware and framework components, as
well as integrated tools, that use the specifications you supply to generate all the
components of distributed applications.

Construct Spectrum works with other products in the following partnership:

• Natural is an open server that provides access to databases such as Adabas, DB2,
and VSAM

• Predict provides a comprehensive repository

• Entire Broker provides message-oriented communication

You define and manage data and business rules for your application in a repository
managed by Predict. Using Natural Construct, you can then generate the Natural
modules that process data. Using Construct Spectrum SDK, you can also generate
the Visual Basic client code and download the appropriate components to the cli-
ent. You define the security privileges in the Construct Spectrum Administration
subsystem and then deploy the application.

Construct Spectrum includes two components for delivering the performance and
security that mission-critical applications require:

• Spectrum Dispatch Client (SDC) on the client

• Spectrum dispatch service on the mainframe server

When the client makes a communication request, the SDC translates the request
into a compact, secure message and transmits it to the server via Entire Broker.
On the server, the Spectrum dispatch service converts the incoming request for
processing by the server application while enforcing multi-level security. Construct
Spectrum then uses a similar technique to return the processed result to the client.

This guide describes how to generate and customize client/server applications us-
ing the Construct Spectrum SDK. Refer to Construct Spectrum Programmer’s
Guide for information about:

• Setting up your application environment on the mainframe

• Using business data types (BDTs)

• Debugging and deploying your application

• Creating client/server applications without the Construct Spectrum
– 24 –

___ Introduction 1
Development Environments
As you develop applications, you will be working in at least three environments:
the Construct Spectrum Administration subsystem, Construct Windows interface,
and Visual Basic (using the Construct Spectrum Add-In).

You manage system and application data for your applications in the Construct
Spectrum Administration subsystem:

Construct Spectrum Administration Main Menu

 BS__MAIN ***** Construct Spectrum Administration Subsystem ***** CDLAYMN1
 Jul 30 - Main Menu - 10:14 AM

 Functions

 SA System Administration
 AA Application Administration

 ? Help
 . Terminate

 Function __

 Command ___
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit flip main

– 25 –

Developing Client/Server Applications ___1
You use wizards to generate Natural and Visual Basic modules for your application
in the Construct Windows interface on your PC:

New Specification Window in the Construct Windows Interface

The wizards available in the Construct Windows interface are also available in the
Generation subsystem in your Natural Construct mainframe environment.
– 26 –

___ Introduction 1
You use the Construct Spectrum Add-In in Visual Basic to create projects, down-
load modules from the mainframe server, and set configuration options:

Construct Spectrum Options on the Add-Ins Menu

Information about how to access and use these environments is presented where
you need it throughout the documentation.
– 27 –

Developing Client/Server Applications ___1
Architecture of a Construct Spectrum Client/Server
Application

Construct Spectrum generates high-performance, distributed components using
COM-enabled clients to access Natural application servers. The following diagram
shows the architecture of a Construct Spectrum client/server application:

Architecture of a Construct Spectrum Client/Server Application

Windows

Entire Net-Work or TCP/IP

Mainframe Server

Spectrum
Administration

Security Service

Subprogram Proxy

Natural Subprogram

Entire Broker

Spectrum Dispatch Service

Dispatch
Service

Data

Entire Broker

Spectrum Dispatch Client

Visual Basic Business Object

GUI Dialog

Library
Image

File

Generated
Spectrum
System
– 28 –

___ Introduction 1
The following sections explain these components according to the platforms on
which the components run.

Mainframe Server

Component Description

Natural subprograms Perform maintenance and browse functions on the
mainframe server. The same set of business objects can be
accessed from character-based Natural applications,
client/server applications, and web applications. This
ensures that the integrity of business data is preserved,
independent of the presentation layer.

Natural subprograms may be either written by hand or
generated by Construct models. The VB-Client-Server-
Super-Model, Object-Maint-Subprogram, and Object-
Browse-Subprogram models generate subprograms and
parameter data areas (PDAs) for client/server applications.

Subprogram proxy Acts as a bridge between a specific subprogram and the
Spectrum dispatch service. It performs a number of vital
functions, including translating parameter data into a
format that can be transmitted between client and server,
issuing CALLNATs to subprograms, and validating the
format and length of data received from the client.

For more information, see Generating a Subprogram
Proxy, page 132, in Construct Spectrum Programmer’s
Guide.
– 29 –

Developing Client/Server Applications ___1
Spectrum dispatch
services

Ensure that the current user is allowed to perform the
requested function. Once the service has performed user
authentication, it activates the correct Natural
subprogram to handle the request. After the target
subprogram finishes processing, the results are
transferred back to the client. Depending on user options,
the service may also be required to compress and
decompress and/or encrypt and decrypt messages.

For more information, see Defining and Managing
Construct Spectrum Services, page 47, in Construct
Spectrum Administrator’s Guide.

Dispatch service data Information defined and maintained in the Spectrum
Administration subsystem and accessed by Spectrum
dispatch services anywhere on the network via Entire
Broker.

Spectrum
administration

Allows system administrators, application administrators,
and application developers to set up and manage system
and application environments.

For more information, see Construct Spectrum
Administrator’s Guide.

Security service Checks client requests against the security settings
defined in the Construct Spectrum Administration
subsystem. This stand-alone service operates
independently of the Spectrum dispatch services. This
allows the security service to process, in one central
location, the requests of several Spectrum dispatch
services, which may be located on nodes throughout the
network.

For more information about security services and security
settings, see Construct Spectrum Administrator’s Guide.

Entire Broker Transfers messages between Windows and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Component Description (continued)
– 30 –

___ Introduction 1
Windows
Construct Spectrum client/server applications run on Windows or Windows NT.

Component Description

Entire Broker Transfers messages between the client and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Spectrum Dispatch
Client (SDC)

Component Object Model (COM) middleware component
that enables client/server applications to read from, and
write to, variables in a Natural parameter data area (PDA)
and to issue CALLNAT statements to Natural
subprograms. Its main functions are simulating PDAs and
CALLNATs, encapsulating Entire Broker calls, and
controlling database transactions. As the client
counterpart of Spectrum dispatch services, it is also
responsible for data marshaling, encryption, compression,
error-handling, and all Entire Broker communication.

For more information, see Understanding The
Spectrum Dispatch Client, page 243, in Construct
Spectrum Programmer’s Guide.

Library image files Define information to the client component of a client/
server application that it needs to assemble data and call
the mainframe server. This file contains the following
information:

• Parameter data area (PDA) definitions that specify
information required for communication with the
server. They are an image of the PDAs used by the
Natural subprograms.

• Application service definitions that specify to the client
the names of the available subprograms.

• Steplib definitions. The SDC allows chaining of library
image files. The entries are used to point to other
library image files in the same directory. The SDC
checks all library image files in the chain for the
required parameter or application service definition.
– 31 –

Developing Client/Server Applications ___1
Visual Basic business
object

Visual Basic class that acts as an intermediary between a
dialog and the Spectrum Dispatch Client. This class
invokes the methods of subprograms on behalf of dialogs
and instantiates all the data areas required to
communicate with a subprogram. Visual Basic business
objects can also perform local data validation to provide
immediate feedback to the user without involving a
network call.

GUI dialogs Represent graphical interface screens that communicate
with the user and interact with the Visual Basic business
objects and other framework components to implement
business processes.

Component Description (continued)
– 32 –

___ Introduction 1
The Development Process
If you are creating a new application, you must decide on the nature of your appli-
cation and its uses. If you are planning to reuse an existing application, evaluate
the character screen displays and decide how to improve them using the power of
a graphical user interface.

For more information about reusing existing Natural Construct applications, see
Moving Existing Applications to Construct Spectrum, page 245.

To develop an application:

1 Plan your application.

2 Set up your application environment on the mainframe.

3 Generate application components.

4 Customize your application.

5 Test and debug your application.

6 Deploy your application.

The following sections describe these steps in detail.

Planning Your Application
Decide what the main purpose of your application is and what features you must
provide to address it. After you determine the core features, consider the advanced
functionality you may want to provide.

Decide What to Show the User

Before you begin creating a new application, decide on the purpose of your applica-
tion, how it will be presented to the user, and how it will communicate with other
applications. Decide what you want users to do with your application and deter-
mine what you need to provide in your application so that they can do it.

During the planning stages of your project, identify and itemize what the user will
need to do. Then, design what the users will see when they use your application,
such as the content, number, and order of windows in the application.
– 33 –

Developing Client/Server Applications ___1
Plan to help your users, who will have varying degrees of experience with your cli-
ent environment. Consider providing online help tailored for the level of knowledge
of your typical user. You may choose to include all three types of online help:

• context-sensitive help

• task help

• window-level help

Provide customized error messages that are clear and informative. If you’ve
planned your application, the chances of error are reduced. Since you cannot plan
for every possibility, plan how your application will inform users about an action it
cannot interpret. For example, you may want to display a message if a user tries to
exit a file without saving the changes made during an edit session.

Note: Many error messages provided by Construct Spectrum will be available to your us-
ers. However, you must provide error messages for application-specific windows.

Design windows that are clear and intuitive. Try to give users all information they
require to complete a task. Provide meaningful prompts and labels on GUI win-
dows. To help minimize the amount of information your users need to provide, pre-
set default values.

Keep Window Design Simple

When designing windows for your application, keep the window design simple.
First determine the number and structure of windows, then determine the content.

Number and Structure of Windows

When designing the number and structure of windows, consider the following tips:

• Have one main window from which the user can initiate all of the main tasks.

• Provide secondary windows for additional information the user must specify to
complete a task.

• Avoid a lot of nested windows, which can:

– make a simple task look complex

– clutter the user’s screen (especially if the more than one application is open)

– cause the user to become lost
– 34 –

___ Introduction 1
Content of Each Window

When determining the content of each window, consider the following tips:

• Group related information together

• Use graphic images and icons to identify tasks or complement the words

• Position information in a neat, logical manner

• Position common information in the same place throughout your application. This
makes it easier for your users to navigate.

Plan Your Code

After designing the application windows, decide what code is required to support
actions users will perform with your application. When you generate your applica-
tion, Construct Spectrum supplies many actions and default values. While several
routine tasks are predefined and contain default attributes, you must explicitly set
others for your application.

Use a Consistent Style

To help your users learn to navigate through your application, use consistent ter-
minology. To help minimize confusion, use consistent mnemonics in all application
windows.

Anticipate Translation Issues

When planning your application, consider whether the user interface will be trans-
lated into other languages. Construct Spectrum supplies translation facilities to
support translation.

To minimize the effort required for translation, anticipate any issues when design-
ing your application. For example, you may have to change mnemonic characters
for different languages (if you are using mnemonics) or translation may change the
size requirements for window text (such as text boxes, labels, and command but-
tons). Frequently, translated text is longer than the original text.

For more information, see Internationalizing Your Application, page 367.
– 35 –

Developing Client/Server Applications ___1
Setting Up Your Application Environment on the
Mainframe

Before you can create a Construct Spectrum application, ensure that Predict defi-
nitions, steplib chains, domains, users, groups, and security settings are defined.

Predict Definitions

Set up file and field definitions in Predict for all database applications generated
using Construct Spectrum. This includes your application files and their intra- and
inter-object relationships. For more information, see Setting Up Predict Defini-
tions, page 47, in Construct Spectrum Programmer’s Guide.

Steplib Chains and Domains

Define the steplib chains and domains for your applications. The application envi-
ronment includes users, application libraries, business objects, and associated
modules. Users are combined into larger entities called “groups”. Application li-
braries, business objects, and associated modules are combined into larger entities
called “domains”. For more information, see Define a Steplib Chain, page 52, and
Define a Domain, page 54, in Construct Spectrum Programmer’s Guide.

Security for Domains, Steplibs, Users, and Groups

Define user IDs for users of your application, the groups to which each user be-
longs, and security privileges for each user. Then, assign users and security
privileges for each group. Finally, grant groups applicable access to the domain for
your application. Granting access to a domain enables users to access the objects
and methods within the domain. For more information, see Define Security for
the Domain, page 57, in Construct Spectrum Programmer’s Guide.
– 36 –

___ Introduction 1
 Generating Application Components
After planning your application and setting up your environment, use the Con-
struct Spectrum models to generate the application-specific components of your
application. These components interact with the client framework components to
form your complete application. To generate your application modules, use either
the VB-Client-Server-Super-Model or the individual models.

Using the Super Model

Use the VB-Client-Server-Super-Model to quickly create a new application or add
a graphical front-end to an existing application. For more information, see Using
the Super Model to Generate Applications, page 93.

Using Individual Models

Use the individual models to fine-tune your application. Using individual models
provides more opportunity to create unique model specifications. Additionally, you
can add user exit code to further refine your application modules. For more infor-
mation, see Creating and Customizing Maintenance Dialogs, page 137, and
Creating and Customizing Browse Dialogs, page 215.

Deciding Which Modules to Generate

Regardless of how you generate your application modules, the same modules must
exist to create a client/server application. These modules are grouped by function:
maintenance or browse. To application users, these functions appear as either a
window or dialog.

For a description of the modules that must be generated for either a maintenance
or browse function, see Using the Super Model to Generate Applications,
page 93.

Generation Process

The following diagram illustrates the process of generating application modules.
The following sections describe how the server and client modules function.
– 37 –

Developing Client/Server Applications ___1
Server Modules

Modules for the server portion of your application are generated in Natural, lever-
aging the existing Natural Construct object methodology. You can reuse existing
Natural Construct modules generated using the Object-Maint-Subp or Object-
Browse-Subp model as components of a client/server application.

For more information about moving existing applications, see Moving Existing
Applications to Construct Spectrum, page 245.

Server Client

Construct
Client
Module

Server Framework Client Framework

Client
Module

Server
Module

Generate

Generate Download
– 38 –

___ Introduction 1
Client Modules

Modules for the client portion of your application are also generated on the server.
These modules are generated as Visual Basic code and stored as text members in
the Natural library in which you generate them. When you are ready to set up your
application on the client, use the Construct Spectrum Add-In to download the Vi-
sual Basic source code from the generation library to your client.

As you become more experienced in developing Construct Spectrum applications,
you will want to create modules (or regenerate existing ones to add customizations)
using individual models. The two types of objects you will create with Construct
Spectrum are Visual Basic maintenance objects and Visual Basic browse objects.

You can access the models that generate application components either in the Gen-
eration subsystem on the server or in the Construct Windows interface. In both
cases, modules are generated on the server.

For more information about using the Super model, see Using the Super Model
in the Generation Subsystem, page 114.

For more information about generating with individual models, see:

• Creating and Customizing Maintenance Dialogs, page 137

• Creating and Customizing Browse Dialogs, page 215

• Generating a Subprogram Proxy, page 132, in Construct Spectrum Program-
mer’s Guide

Setting Up Your Project

When you create a new project using the Construct Spectrum Add-In in Visual Ba-
sic, Construct Spectrum automatically adds the client framework components to a
standard Visual Basic project. For more information, see Creating a Construct
Spectrum Project, page 123.

Transferring Your Generated Code to the Project

Use the Construct Spectrum Add-In from the Visual Basic Add-Ins menu to down-
load your generated components to the client. The components are added to your
Construct Spectrum project, which includes the client framework components.
– 39 –

Developing Client/Server Applications ___1
After integrating the generated components into your project, you can modify them
and test your application. The following section describes this in more detail.

For more information about transferring your application to the client, see Down-
loading the Generated Modules, page 131.

Customizing Your Application and Environment
After creating your application, use Visual Basic on the client to tailor the user in-
terface for your application.

For more information about customizing your application, see:

• Understanding and Customizing the Client Framework, page 253

• Creating and Customizing Maintenance Dialogs, page 137

• Creating and Customizing Browse Dialogs, page 215

Testing and Debugging Your Application
As your application becomes more stable, thoroughly test each component. In your
test plan, include tests for each of the objects and their associated actions, each
form, all local validations, and all remote methods.

While you can fix many errors you may encounter while creating your application
on the client, you must fix others on the server. Construct Spectrum supplies meth-
ods that help track the origin and reason for errors. For more information, see
Debugging Your Client/Server Application, page 201, in Construct Spectrum
Programmer’s Guide.

Once satisfied with the appearance and robustness of your application, you can be-
gin to deploy your application for users. The following section describes how to
make your application accessible to users.
– 40 –

___ Introduction 1
Deploying Your Application
Deploy your Construct Spectrum applications in the same way as you deploy any
Visual Basic application.

To deploy your client/server application:

1 Create the executable file.

2 Collect the files to be installed.

3 Create a set of installation disks.

4 Install the client application on the user’s PC.

5 Run the application.

Note: To run the application, the Construct Spectrum runtime environment must be in-
stalled on the user’s PC.

For more information, see Deploying Your Client/Server Application, page
237, in Construct Spectrum Programmer’s Guide.
– 41 –

Developing Client/Server Applications ___1
– 42 –

2

USING THE DEMO APPLICATION

This chapter provides a guided tour of a demo application created using Construct
Spectrum. It also describes the underlying structure of the demo application. Use
this chapter to familiarize yourself with the basic features available for client/serv-
er applications created with Construct Spectrum.

The following topics are covered:

• Overview, page 44

• Setting Up Prerequisites, page 45

• Opening the Construct Spectrum Demo Project, page 46

• Running the Demo Application, page 56

• Using the Demo Application, page 68

• Troubleshooting, page 91
– 43 –

Developing Client/Server Applications ___2
Overview
The demo application is a Customer Order Maintenance program. This application
is designed to demonstrate the features and functions of a typical application cre-
ated with Construct Spectrum. As a demo application, certain “real-world”
features, such as ensuring invoice numbers are sequential or order numbers are
not duplicated, have been left out. You can add this type of application-specific
checking when customizing your applications. Use the demo application to become
familiar with using the application controls and components. Understanding the
potential of Construct Spectrum is crucial to planning and developing an applica-
tion that meets your needs.

Construct Spectrum is a flexible tool and your generated applications can be as
simple or complex as you require. Additionally, you can implement features, such
as a browse lookup, in many different ways. Therefore, you can give your applica-
tions a look and feel that is best suited to your organization’s needs.
– 44 –

__ Using the Demo Application 2
Setting Up Prerequisites
Ensure the following items are in place before you begin generating applications
using Construct Spectrum:

Installation and configuration is complete.
Ensure that all client and server software has been installed as described in the
Construct Spectrum and SDK Client Installation Guide.

Entire Net-Work kernel is running on your PC (if you are using Entire Net-Work).
An Entire Net-Work kernel that enables communication between the client and
server must be running on your PC.

Your PC is attached to an Entire Broker node.
Your PC must be attached to an Entire Broker node that enables access to the
demo database files and modules on the server. Use Spectrum Service Manager to
configure the Entire Broker node.

The demo project’s AppSettings.bas file is set up correctly.
The AppSettings.bas file must specify the database ID (DBID) and file number
(FNR) of the FUSER file in which you installed the Construct Spectrum demo
application on the server. The default Natural library name for the demo
application is SPECDEMO.

The AppSettings.bas file for the demo project is located in the same directory as
your demo application files. You can modify this file using a text editor, such as the
Windows Notepad editor.

Consult with your system administrator to ensure that all of the listed prerequi-
sites have been met before using the Construct Spectrum demo project.
– 45 –

Developing Client/Server Applications ___2
Opening the Construct Spectrum Demo Project
This section describes how to open the Construct Spectrum demo project. A project
is a container for all of the components required in the client portion of your appli-
cation. All Construct Spectrum projects, including the demo project, are created
using the Construct Spectrum Add-In in Visual Basic. Use this add-in to create the
project and, if necessary, to download the required components from the server. For
the demo application, these two steps are done for you. The demo project and the
Construct Spectrum Add-In are described in more detail later in this section.

Note: Ensure that all of the prerequisites described in Setting Up Prerequisites, page
45, have been met before opening the demo project.

To open the demo project:

1 On the Start menu, click Programs.

2 On the Programs submenu, click Construct Spectrum and then Construct
Order Entry Project Demo, as shown in the following diagram:
– 46 –

__ Using the Demo Application 2
Opening the Demo Application

The Construct Spectrum demo project opens. If Visual Basic is not running, it also
opens. The project window contains references to all of the components required to
compile and run your demo application:
– 47 –

Developing Client/Server Applications ___2
Construct Spectrum Demo Project

Tip: You can set up an icon or shortcut to open the Construct Spectrum demo
project. For information, refer to your Windows help.

Once you have opened the project, you must run it to create a working application.
This is described in Running the Demo Application, page 56.

Visual Basic Main Menu
and Toolbar

Construct Spectrum
Demo Project
– 48 –

__ Using the Demo Application 2
Understanding the Construct Spectrum Add-In
Use the Construct Spectrum Add-In to manage the development of the client por-
tion of your application. The add-in is available from the Add-Ins menu on the
Visual Basic menu:

Construct Spectrum Add-In

Each Construct Spectrum Add-In option is described in the following table:

Add-In Option Description

Download Generated
Modules

Downloads generated modules from the server to your
application project. For the demo application, this has
already been done.

Upload Modules Preserves user exit code that has been added on the client.
For example, if you add user exit code to a Visual Basic
maintenance object on the client, use this option to upload
the business object module to the server so the code is
preserved upon future regenerations of the business object.
– 49 –

Developing Client/Server Applications ___2
Understanding the Demo Project
The demo project contains all client components required to make a fully functional
client/server application. The client components consist of framework components
and generated modules. These are briefly described in the following sections. Also
included in the following sections are diagrams showing both a framework compo-
nent and a generated module as they appear before and after the project is run.

Framework Components

Framework components are reusable application components. These components
provide a skeleton of functionality that interacts with generated and hand-coded
Construct Spectrum modules to create a client/server application. When you create
a project using the Create New Project option on the Construct Spectrum Add-In
menu, framework components are automatically included in your project.

Create New Project Creates a project for your Construct Spectrum client/server
application. For the demo application, this has already
been done.

Preferences Allows you to select a remote dispatch service. To allow
access to the mainframe for downloading, enter your user
ID and password in the appropriate fields.

About Identifies the Construct Spectrum version level you are
using and contains PC resource information, such as
available memory.

Add-In Option Description (continued)
– 50 –

__ Using the Demo Application 2
The diagram on the following page shows one of the framework components in your
project: the Construct Spectrum Multiple Document Interface (MDI) frame.

MDI Frame Before Running Project

When you run the project to create your demo application, this frame looks similar
to the diagram on the following page:
– 51 –

Developing Client/Server Applications ___2
MDI Frame After Running Project

Use this window to access standard options, such as Open, Close, business objects
and maintenance actions such as update, delete, move, next. For more information
about framework components, see Understanding and Customizing the Client
Framework, page 253.
– 52 –

__ Using the Demo Application 2
Generated Modules

Generated modules are specific to your application. For example, the demo has a
number of dialogs to maintain customer orders and products. Other generated
modules include, but are not limited to, Visual Basic maintenance and browse ob-
jects, subprogram proxies, and PDA definitions. Generated modules are created on
the server; those required on the client are downloaded to your Construct Spectrum
project using the Download Generated Modules option on the Visual Basic Add-Ins
menu.

The generated modules required for the demo have already been downloaded for
you. The following diagram shows one of the generated components in your demo
project: the Order Maintenance dialog.
– 53 –

Developing Client/Server Applications ___2
Order Maintenance Form Before Running the Project

When you run the project to create your demo application, the dialog looks similar
to the following diagram:
– 54 –

__ Using the Demo Application 2
Order Maintenance Form After Running the Project

Using this dialog, you can maintain customer order information for your demo ap-
plication. For more information about generated components, see The
Development Process, page 33.
– 55 –

Developing Client/Server Applications ___2
Running the Demo Application
This section describes how to run the demo application to add, delete, and update
records to your Customer Order demo application. Experiment to become familiar
with the user interface and various features that you get with any Construct Spec-
trum application.

This section also contains information about some of the standard features that
you get with every application developed with Construct Spectrum.

To create the demo application:

1 Open the demo project as described in Opening the Construct Spectrum Demo
Project, page 46.

2 On the Run menu, click Start.

3 Click OK.
Do not type a user ID or password in this dialog; the default user ID for the demo
application is SYSTEM and there is no password.
– 56 –

__ Using the Demo Application 2
When the project successfully compiles, the MDI frame is displayed:

MDI Frame
– 57 –

Developing Client/Server Applications ___2
You can use the demo application as long as the Visual Basic development environ-
ment is running. Steps 4 to 7 describe how to create an executable file from which
you can use the demo application independent of the Visual Basic development
environment.

4 On the Run menu, click End.
The MDI frame closes.

5 On the File menu, click Make EXE File.
The Make Project dialog is displayed:

Make Project Dialog

By default, the executable file (DEMO.exe) is saved in the ConstructOrderEntry di-
rectory in your Demo folder.
– 58 –

__ Using the Demo Application 2
6 To save the executable file to another directory or with a different name, type new
information in this dialog. When you are ready to replace the existing executable
file, click OK.
The executable file is compiled and saved.

7 Locate and execute the file using the Run option on the Taskbar.
Alternatively, you can create a Windows shortcut to the file and double-click the
shortcut icon.
When the Logon dialog is displayed, click OK to start the demo application.

Application Interface
This section describes the user interface provided by default with all Construct
Spectrum applications. The first dialog displayed when you start the demo is the
Construct Spectrum Multiple Document Interface (MDI) frame. This is the work-
space from which you manage your business objects, such as:

• Order object

• Customer object

• Product object

• Warehouse object

• Province object

Note: The Province object is a table in a Predict validation rule.

On the MDI frame, you can select an object for an action, such as to open it to main-
tain or browse records. The MDI frame consists of the components shown in the
following diagram:
– 59 –

Developing Client/Server Applications ___2
MDI Frame Dialog

Menu Options

The following table describes each menu option on the MDI Frame dialog

Menu Option Description

File Contains options to open or close a business object, log off,
or exit the application.

Edit Contains options to cut, copy, paste, undo or delete typing.
Also contains options to add or delete rows of information;
for example, when maintaining a customer order, you can
add or delete rows of order information.

Actions Contains methods for working with your application, for
example, methods to add, delete, or get an object record.
The methods available from this menu correspond to the
methods associated with the business object.

Menu

Toolbar

Application

Status Bar

Workspace
– 60 –

__ Using the Demo Application 2
Options Contains notification options for handling errors when
they are encountered. For example, when an error occurs,
you can chose to be notified by a sound, an error message,
or both.

Also contains a Services option to select between different
dispatch services. For an example, see Additional
Options, page 65.

Window Contains options to manage the windows that are
currently open on your MDI frame. For example, you can
move between open windows using this menu.

Help Contains options to access help for your application. Also
contains an About option from which you can display
standard information about the application as well as
standard system resource information.

Menu Option Description (continued)
– 61 –

Developing Client/Server Applications ___2
Toolbar Options

Toolbar button options are available for the most commonly used menu options.
These are described in the following table.

Note: To display the name of a toolbar button, place your cursor on the button for at least
two seconds; a tooltip containing the name is displayed.

Toolbar Button Description

Displays the Open dialog, where you can select a business
object and one of its associated actions for opening.

Cuts the selection to the Windows Clipboard.

Copies the selection to the Windows Clipboard.

Pastes the selection to the Windows Clipboard.

Deletes the selected characters.

Undoes the last typing sequence you did; for example, if
you delete a line of information using the Backspace key,
clicking this button restores the line of information.

Displays online help for Construct Spectrum.

Adds a new record.

Retrieves a listing of records from the server. You can
select a record from the list to do some further action to it.

Clears the currently displayed record from your desktop. If
there are unsaved changes, you will be asked to save them;
otherwise, changes will be lost.
– 62 –

__ Using the Demo Application 2
Deletes the current record.

Retrieves the specified record.

Retrieves the next record. If there are unsaved changes to
the currently displayed record, you will be asked to save
them; otherwise, they will be lost.

Updates the currently displayed record to the server
database.

Prints the selected object in the MDI frame.

Toolbar Button Description (continued)
– 63 –

Developing Client/Server Applications ___2
Application Workspace

The Application workspace is where you work with your business objects. When
you open one or more business objects, such as a customer order or a warehouse
browse object, they are displayed on this workspace:

Open Documents on the Application Workspace
– 64 –

__ Using the Demo Application 2
The MDI frame is a parent window to all business objects. You can manage your
business objects through the MDI frame. For example, you can move between open
objects using the MDI window menu commands. The previous diagram depicts a
number of open objects on the application workspace.

Status Bar

The status bar displays messages and information about the current state of your
application. For example, if you attempt an action that is not currently available,
the status bar displays the following message:

Status Bar

Additional Options
The following sections describe additional options available from the MDI frame:

• Error notification options

• Remote dispatch service options

Error Notification Options

Users can specify how they are to be notified when an error is encountered while
using an application. For example, users can specify that the text box containing
the error be highlighted and that information about the error be displayed imme-
diately or only when the text box is selected.

To modify error notification options:

1 Start the Demo.exe file created in Running the Demo Application, page 56.
The Logon dialog is displayed.

2 Click OK.
The Construct Demo Application MDI frame is displayed.

3 On the Options menu, click Validation Errors.
The Error Notification dialog is displayed:
– 65 –

Developing Client/Server Applications ___2
Error Notification Options

4 Select the check box(es) corresponding to the error notification options you want to
enable.

5 If you selected the Highlight color on the error field option, choose the highlight
colors by clicking the Set Foreground and Set Background buttons.

Later in this chapter, you will experiment with text box validations by entering in-
correct values in a text box. At this point, try experimenting with your error
notification options. Text box validations are described in Validations, page 73.

Remote Dispatch Service Options

Spectrum dispatch services can be set up for distinct units in your organization.
For example, you could have one Spectrum dispatch service for your inventory con-
trol users and another one for your payroll users. Users who have been set up to
access multiple Spectrum dispatch services do so by selecting the appropriate ser-
vice from the MDI frame. For more information about Spectrum dispatch services,
see the Construct Spectrum Administrator’s Guide.
– 66 –

__ Using the Demo Application 2
To select a remote dispatch service:

1 Start the Demo.exe file that you created in Running the Demo Application,
page 56.

2 Click OK.
The Construct Demo Application MDI frame is displayed.

3 On the Options menu, click Service.
The Select Remote Dispatch Service dialog is displayed:

Select Remote Service Dispatch Services Dialog

4 Select the Spectrum dispatch service you want to use.
Any open dialogs on the MDI frame are closed and you are prompted to save any
unsaved changes.

You can now access the business objects available from the specified Spectrum dis-
patch service.
– 67 –

Developing Client/Server Applications ___2
Using the Demo Application
This section describes many of the features and functions of the demo application
by taking you on a guided tour of the customer order maintenance and browse func-
tions. Some of the features and functions are provided by default with every
application developed with Construct Spectrum, while others are provided based
on the Predict setup of your application files and fields on the server. In each of the
following sections, those features provided by default or provided based on your
Predict set up are identified. For those features provided based on your Predict set
up, you are also provided with information about the particular Predict set up that
was required to make these features available.

This section also contains a listing of the standard keyboard shortcuts available
with all Construct Spectrum applications.

Your tour of the demo application involves working with customer orders. You will
maintain and browse customer orders. As you do this, you will perform various
tasks to give you an idea of what the application can do. You should be able to de-
velop applications that are at least as functionally rich as the demo application. At
this point, do not worry about the details of how things work, but try to get an un-
derstanding of what features you can provide in your own application.

Opening a Business Object
In this section, you will open a order business object. The order business object will
be used to demonstrate most of the Construct Spectrum features described in the
remainder of this chapter.

To open a customer order business object:

1 Start the Demo.exe file created in Running the Demo Application, page 56.
The Logon dialog is displayed.

2 Click OK.
The Construct Demo Application MDI frame is displayed.

3 On the File menu, click Open.
Alternatively, you can click the Open toolbar button. The Select an Object/Action
dialog is displayed:
– 68 –

__ Using the Demo Application 2
Select an Object/Action

4 In the Object list box, click Order.
The available actions for the Order object are displayed in the Actions list box.

5 In the Actions list box, click Maintenance and then click OK.
Alternatively, you can double-click Maintenance. The Order Maintenance dialog is
displayed:
– 69 –

Developing Client/Server Applications ___2
Order Maintenance Dialog
– 70 –

__ Using the Demo Application 2
Note: This procedure assumes that you are opening a business object to perform a main-
tenance function. To browse for a record or records, select Browse from the Actions
list.

6 On the File menu, click Next.
Alternatively, you can click the Next toolbar button. The first customer order
record is displayed.
– 71 –

Developing Client/Server Applications ___2
Order Maintenance Dialog With an Open Order

In the next section of this demo, you will learn about some of the standard features
of the demo application by using an order object.
– 72 –

__ Using the Demo Application 2
Maintaining a Business Object
This section demonstrates some of the standard features available to help users
maintain their business objects. This section covers:

• Validations

• Business data types (BDTs)

• Grids

The features described in this section are demonstrated using the customer order
object that you opened in Opening a Business Object, page 68. In addition to ex-
perimenting with the features described in this section, try adding, deleting and
updating customer orders.

Validations

When a LostFocus event is triggered on a text box, it is validated. For example,
when you type a value in a text box and tab to the next text box, a LostFocus event
is triggered and the text box is validated. There are four types of validations that
occur on the client:

• Basic data type

• Business data type

• Local business type

• Foreign field type

Basic data type validations verify that the format and length of an entered value
is acceptable for the particular field.

Business data type (BDT) validations ensure that data is formatted consistently
and in a way that is easily understood. For example, if all dates in your organiza-
tion should be formatted with forward slash (/) delimiters, you can assign a BDT to
format such values. If a user enters a valid date without forward slash delimiters,
the BDT formats the date when a LostFocus event occurs on the date text box. BDT
validations are described in Business Data Types (BDTs), page 75.
– 73 –

Developing Client/Server Applications ___2
A local business validation performs more complex validations based on your busi-
ness rules. For example, a local business validation can ensure that one of a finite
set of valid values is allowed in the field, such as a valid province code. A more com-
plex local business validation could calculate the provincial tax amount on an order
based on the province code entered.

When a field on a maintenance dialog is a key field in a foreign file, Construct Spec-
trum generates code to validate the field using the foreign file. For example, the
Order maintenance dialog in the demo application has a Warehouse ID text box
which is a key field in a foreign file: the Warehouse file. When a LostFocus event
is triggered on the Warehouse ID text box, Construct Spectrum verifies that the
Warehouse ID entered is a valid ID.

For more information about basic data type, business data type, and local business
type validations, see Validating Your Data, page 327. For more information
about foreign field validations, see Understanding the Browse and Mainte-
nance Integration, page 343.

To test how a validation works:

1 Open a Order object.
For information, see Opening a Business Object, page 68.

2 Type an invalid warehouse ID in the Warehouse ID text box.

3 On the Actions menu, click Update.
Alternatively, you can click the Update toolbar button. The Warehouse ID text box
is highlighted and, depending on how your Error Notification options are set up,
an error message is displayed. Or you can select the highlighted text box to display
the message. For more information about Error Notification options, see Error
Notification Options, page 65.
– 74 –

__ Using the Demo Application 2
Validation in the Warehouse ID Text Box

4 To correct the problem, type a valid warehouse ID in the text box (or select a valid
warehouse from the drop-down list box).

5 On the Actions menu, click Update.
Alternatively, you can click the Update toolbar button.

Business Data Types (BDTs)

Business data types (BDTs) help to ensure that information is displayed in a way
that is consistent and easy to understand. For example, a BDT can automatically
reformat a telephone number that was entered without dashes or round a numeric
value.
– 75 –

Developing Client/Server Applications ___2
Construct Spectrum comes with a number of predefined BDTs you can customize
and attach to any field based on your business requirements. When a user enters
a value in the field, formatting is applied automatically when a lost focus event oc-
curs (for example, when the user selects another field or option).

To test how a BDT works:

1 Open a Customer Order object. If you need help opening a business object, see
Opening a Business Object, page 68.

2 Place your cursor in the Order Amount text box and type “1500” as shown in the
following diagram:

Value Before BDT Formatting Occurs

3 Click outside the Order Amount text box.
The value you entered is formatted with a decimal and two trailing zeros:
– 76 –

__ Using the Demo Application 2
Value After BDT Formatting Occurs

Enter an alphabetical character in the Order Amount text box to see what happens.
In this case, the BDT for the Order Amount text box was set up to convert alpha-
betical characters to zeros. Another option could be to display an error if
alphabetical characters are entered.
– 77 –

Developing Client/Server Applications ___2
Grids

Grids display rows of related information about a business object. The Order object
contains the Product grid, which displays the individual lines for a particular cus-
tomer order. Each row corresponds to a separate order line. In the following
diagram, there is one order line, Cat Nuggets, for the customer order:

Grid Showing Order Lines for a Customer Order

Experiment with the grid by adding and deleting additional order lines.

To add an order line:

1 Open a Customer Order object.
For information, see Opening a Business Object, page 68.

2 Place your cursor on an empty order line and complete the cells.
Use the horizontal scroll bar to access additional information on the grid.

3 On the Actions menu, click Update.
Alternatively, you can click the Update toolbar button.

To add a new order line between two lines:

1 Select the row immediately above the location where you want to add a new row.

2 On the Edit menu, click Insert Row.
An empty row is added below the selected row.

To delete an order line:

1 Select the order line.

2 On the Edit menu, click Delete Row.
The selected order line is deleted.

Grids can also be linked to nested grids and browse functions. Nested grids are de-
scribed in Nested Grids, page 79. Using a browse from a grid is described in
Browsing For Business Object, page 81.
– 78 –

__ Using the Demo Application 2
Nested Grids

Nested grids show additional information related to a row or a single cell in a grid.
The Order object has a nested grid containing the distribution information for each
order line. The distribution grid is nested to each order line in the Product grid. In
the following diagram, two lines of distribution have been set up for our order of
Cat Nuggets.

Nested Grid Showing Distribution for an Order Line

Select the first order line in your order object and then another order line; notice
that the distribution grid changes depending on the order line you select. This is
because you can have multiple lines of distribution for each order line. To accom-
plish this, the distribution grid was set up as a nested grid.

Nested Drop-Down Grids

You can set up a nested grid to drop-down for a cell within a grid. When a user se-
lects the drop-down grid, additional information is displayed in a drop-down list
box. For example, suppose you had a grid showing customer accounts and one of
the cells in this grid showed the first of up to five lines of the customer’s address.
You could set up a nested grid containing the remaining lines of address
information.

The demo application does not have a drop-down grid. The following procedure con-
tains a diagram of a sample drop-down grid to show you what one looks like.

Tip: Cells containing drop-down grids are identified with gray shading and an oc-
currence number in brackets () for each repeating value in the grid.
– 79 –

Developing Client/Server Applications ___2
To display a drop-down grid:

1 Select the cell containing a drop-down grid.
A down arrow is displayed in the cell.

2 Select the down arrow.
The drop-down grid is displayed:

Sample Drop-Down Grid

To learn more about working with drop-down grids, see Keyboard Shortcuts for
Grids, page 81.

Drop-down
column —
placeholder for
drop-down grid

Drop-down grid
for repeating
field (Bonus)
– 80 –

__ Using the Demo Application 2
Keyboard Shortcuts for Grids

The first two keyboard shortcuts apply to a selected grid row. Select a grid row by
highlighting the number to the left of the grid row. The remaining shortcuts apply
only to nested drop-down grids.

Browsing For Business Object
Browses enable you to search for and select records. For example, if you want to
update an existing order but do not remember the order number, you can locate
and select the order using the order browse. Construct Spectrum provides you with
a number of methods to browse for a business object. Browses can be initiated from
a menu option or from a maintenance dialog. This section describes some of the
ways users can browse for data, as well as some of the features available to custom-
ize a browse. This section covers:

• Selecting a business object with a browse

• Specifying browse customization options

Keystroke Action

Del Deletes the selected row of information from a grid. If the
row has child grids, these are also deleted.

Ins Inserts a blank row above the selected row. If the selected
row has child grids, these are inserted as well.

Alt+Down Arrow Displays the drop-down grid.

Alt+Up Arrow or Esc Hides the drop-down grid.

Shift+Alt+Down ArrowDisplays the next value in a drop-down column without
displaying the entire drop-down grid.

Shift+Alt+Up Arrow Displays the previous value in a drop-down column
without displaying the entire drop-down grid.
– 81 –

Developing Client/Server Applications ___2
Selecting Data With a Browse

This section describes a number of ways to search for and open records with a
browse. Browses can be opened directly, from the File menu, or from a mainte-
nance dialog.

Open a Business Object With a Browse

In the following procedure, you open an Order Browse dialog from the File menu.

To open a browse from the File menu:

1 On the File menu, click Open.
Alternatively, you can click the Open toolbar button. The Select an Object/Action
dialog is displayed.

2 In the Object list box, click Orders.
The available actions for the Order object are displayed in the Actions list box.

3 In the Actions list box, click Browse and then OK.
Alternatively, you can double-click Browse. The Order Browse dialog is displayed:
– 82 –

__ Using the Demo Application 2
Order Browse Dialog

4 Click Get.
A list of orders is displayed in the browse dialog.

5 Click an order.

6 Click Update.
The Order Maintenance dialog is displayed with the selected order.

The Update and Delete options shown in the previous browse dialog were created
by adding update and delete commands to the demo application’s command
handler.

For information about adding these and other commands, see Creating and Cus-
tomizing Browse Dialogs, page 215.
– 83 –

Developing Client/Server Applications ___2
Open a Second Order to Work On

In this procedure, you will browse for and open a second order while the first busi-
ness object is currently open.

To browse for and open a second order:

1 Open an Order object to perform a maintenance activity.
For information, see Opening a Business Object, page 68.

2 On the Actions menu, click Browse.
Alternatively, you can click the Browse toolbar button. The Order Browse dialog is
displayed.

3 Click Get.
A list of customer orders is displayed in the browse dialog.

4 Select an order (a different order than the one currently displayed on the Order
Maintenance dialog).

5 Click OK.
The selected order replaces the order currently displayed on the maintenance
dialog.

Open Foreign File Information

When a maintenance dialog contains text box or grid information that is defined in
a another file (foreign file), Construct Spectrum automatically adds a browse func-
tion to the foreign field or grid information. For example, the Order Maintenance
dialog includes the Customer Number text box, which is defined in a foreign file:
the Customer file. You can browse on this field to locate and select a customer num-
ber for your order. In the following procedure, you will open the Customer browse
from the Order Maintenance dialog.

To open a browse from the Order Maintenance dialog:

1 Open the Order maintenance dialog.

2 Select the Down arrow to the right of the Customer Number text box.
The Customer Browse dialog is displayed:
– 84 –

__ Using the Demo Application 2
Customer Browse Dialog

3 Click Get.
A list of customer records is displayed in the Customer Browse dialog.

4 Select a customer number.

5 Click OK.
The selected customer number is displayed in the Customer Number text box on
the Order Maintenance dialog.

The Order Maintenance dialog also has a browse linked to the Product grid. Use
this browse to select a product.
– 85 –

Developing Client/Server Applications ___2
To open the Product browse from the Product grid:

1 Click a cell in the first column of the grid.
A Down arrow is displayed:

Grid with Down Arrow Displayed

2 Click the Down arrow.
The Product browse is displayed with a list of products.

3 Click a product.

4 Click OK.
The selected product is displayed in the Product grid on the Order maintenance
dialog.

Specifying Browse Customization Options

Construct Spectrum browses include options that enable you to narrow your search
criteria and to customize the information displayed on your browse dialog. The fol-
lowing topics are covered in this section:

• Specifying selection options

• Specifying display options
– 86 –

__ Using the Demo Application 2
Specifying Selection Options

You can specify selection options in your browse to display as many or as few
records as you want.

To specify selection options:

1 Open the Order Browse dialog.
For information, see Selecting Data With a Browse, page 82.

2 Click Options.
The Browse Options dialog is displayed with the Key Options tab selected:

Browse Options - Key Options Tab

Ensure that the Show Selection Key and Show Range Options check boxes are se-
lected, as shown in the previous diagram.

3 Click OK.
The Browse Options dialog closes and the Order Browse dialog is displayed.

4 Select Customer Number from the Selection Key drop-down list box.

5 Select the greater than symbol (>) from the Range Filter drop-down list box.
– 87 –

Developing Client/Server Applications ___2
6 Type “777” in the Order Number text box.

7 Click Get (or press Enter).
The Order Browse dialog displays all customer order numbers greater than 777:

Order Browse

Specify your own selection options by experimenting with Selection Key, Range Fil-
ter, and Order Number.

Specifying Display Options

You can customize your browse dialog to show as many or few columns of browse
information as required.

To customize the display options on your browse:

1 Open the Order Browse dialog.
For information, see Selecting Data With a Browse, page 82.

2 Click Options.
The Browse Options dialog is displayed.
– 88 –

__ Using the Demo Application 2
3 Select the Column Visibility tab:

Browse Options - Column Visibility Tab

4 Clear all of the check boxes except for the Order Number, Order Amount, and
Customer Number check boxes.

5 Clear the Save Data Columns check box.
Optionally, if you want to save your column selections on closing the Order Browse
dialog, click this check box.

6 Click OK.
The Order Browse dialog is displayed with the Order Number, Order Amount, and
Customer Number columns only:
– 89 –

Developing Client/Server Applications ___2
Order Browse After Specifying Display Options

Specify your own display options by experimenting with the Column Visibility tab
on the Browse Options dialog.
– 90 –

__ Using the Demo Application 2
Troubleshooting
If you encounter errors while using the demo application, ensure that all prerequi-
sites listed in Setting Up Prerequisites, page 45, have been met. Your system
administrator can help you with this.

In diagnosing the problem, refer to the Construct Spectrum and SDK Client Instal-
lation Guide and Construct Spectrum and SDK Mainframe Installation Guide to
ensure that the client and server components have been installed correctly.
– 91 –

Developing Client/Server Applications ___2
– 92 –

3

USING THE SUPER MODEL TO GENERATE
APPLICATIONS

This chapter describes how to generate all of the application modules required to
create a Construct Spectrum client/server application using the super model (VB-
Client-Server-Super-Model).

The following topics are covered:

• Overview, page 94

• Preparing to Generate with the Super Model, page 97

• Preparing to Generate with the Super Model, page 97

• Generating with the Super Model, page 104

• What to Do If Something Goes Wrong, page 121

• Transferring Your Application to the Client, page 122
– 93 –

Developing Client/Server Applications ___3
Overview
The super model (VB-Client-Server-Super-Model) is designed to be used as part of
a rapid application development (RAD) process, where it is important to be able to
generate a working client/server application from a minimum of input parameters.

The super model drives the generation of all the required modules for a client/serv-
er application using a single high-level model specification. For example, given a
set of database file names defined in Predict, all the client and server modules re-
quired for fully functioning maintenance and browse services can be generated.

A single super model specification can generate all of the maintenance and browse
modules required for up to 12 packages. A package contains the modules required
to provide both browse and maintenance services for a business object. For exam-
ple, the modules that make up the maintenance and browse services for a
Customer Order business object are referred to as a package.

If you are creating a new application or adding a graphical front-end to an existing
application, the fastest way to do this is by using the super model. The super model
invokes each of the models necessary to produce your application.

Tip: The super model does not allow you to specify user exits. To specify user ex-
its, regenerate using the specific model which supports the desired user exit.
– 94 –

___________________________________ Using the Super Model to Generate Applications 3
Super Model Generation Overview

Using the super model, you can specify one or more high-level specifications. Each
high-level specification corresponds to a business object such as a Customer Order
object. Together, these specifications define the business objects in your client/serv-
er application. Next, select the models to run for each high-level specification.
These models, using information derived from the business object’s Predict file and
field definitions, supply the specifications required to produce the Visual Basic and
Natural modules for your application.

Because the super model requires few specifications, it uses many default values.
If necessary, you can fine-tune and customize a module by re-generating it individ-
ually. Re-generating with the individual model enables you to override default
values, add additional specifications, and add user exit code.

Another advantage to using the super model is that you can select to create an ob-
ject factory module that defines all business objects within the application. The
object factory performs many functions, for example, it enables you to use the Open
dialog box by providing the names of all business objects within the application
along with the actions they support.

Models (up to 9) for
each

Business Object

Super Model
(high level specification)

Generate

Module6
Module5

Module4

Module3
Module2

Module 1

Object
Factory

Generate

Module12
Module11

Module10

Module9
Module8

Module 7
– 95 –

Developing Client/Server Applications ___3
Tip: If your application requires more than 12 packages, generate with the super
model as many times as necessary to create all of the required modules.

Typically, you will use the super model to generate application modules when you
develop the first iteration of your application. As you refine your application, you
will likely need to regenerate certain application modules. In most cases, you will
regenerate these modules separately using the individual models. Step-by-step in-
structions for generating application modules with the individual models are
provided in the following chapters:

• Generating a Subprogram Proxy, page 132

• Object-Maint Models, page 479

Tip: The super model does not allow you to specify user exits. To specify user ex-
its, regenerate using the specific model which supports the desired user exit.
– 96 –

___________________________________ Using the Super Model to Generate Applications 3
Preparing to Generate with the Super Model
Before using the super model, do some planning and research to make your gener-
ation procedure go smoothly. The preparation you need to do includes:

• Establishing a naming convention

• Determining the domain name

• Understanding the object factory

• Determining the Predict default values

• Deciding which modules to generate

These tasks are described in the following sections.

Using a Naming Convention
Establishing a naming convention is important because modules for up to 12 pack-
ages can be created with the super model at one time. Knowing the naming
convention allows you to easily identify the package a module belongs to and what
type of module it is.

If you use the super model, all the modules belonging to a package are given the
four-character prefix you assign. If you assign a prefix that is less than four char-
acters, the prefix is padded with dashes.

The module name suffix is defaulted by the super model. The suffix identifies the
module type and can be up to four characters in length.
– 97 –

Developing Client/Server Applications ___3
The default naming conventions applied to the module name are illustrated in the
following diagram:

Naming Convention for a Generated Module

Note: These naming conventions apply only to modules generated by the super model.

Each suffix name that the super model uses as a default is described in the follow-
ing table:

Default Module Suffix Module Description

MSD
MSA
MSR

Object maintenance subprogram and two parameter
data areas: object PDA and restricted PDA.

MSP Object maintenance subprogram’s proxy.

MCPV Visual Basic maintenance object.

MCDV Maintenance dialog.

BSO
BPRI
BROW
BKEY

Object browse subprogram and three parameter data
areas: key PDA, row PDA, and restricted PDA.

CUSTMCPV

Four-Character Prefix
You Assign

Four-Character Suffix
Assigned By System

Either “M” for Maintenance
or “B” for Browse

Either “C” for Client
or “S” for Server

Identifies the Purpose of
the Module
– 98 –

___________________________________ Using the Super Model to Generate Applications 3
Note: The parameter data areas MSA and MSR are created by the Object-Maint-Subp
model. The parameter data areas BPRI, BROW, and BKEY are created by the Ob-
ject-Browse-Subp model. The PDAs cannot be individually selected for generation.

Tip: You can override a default name by typing over the default value in the super
model.

Understanding the Object Factory
Each Construct Spectrum application contains a module called the object factory.
The purpose of the object factory is to make an application aware of its objects and
the actions, such as a maintenance or browse action, associated with the objects.
Each application also has an Open dialog (Open.frm) that enables users to select
an object and one of its corresponding actions. When a user displays the Open dia-
log, the object factory populates it with a list of the application objects and their
associated actions.

The super model allows you to generate an object factory. During subsequent iter-
ations of your application, you have the option of regenerating an object factory
with the super model or modifying the existing object factory by hand.

Tip: Because the super model can generate modules for up 12 business objects at
a time, you must generate with the super model multiple times if your appli-
cation includes more than 12 business objects. In this situation, generate a
unique object factory each time you generate with the super model. Later, do
some coding to merge each object factory into a single object factory module.

For more information, see Customizing the Object Factory, page 307.

BSP Object browse subprogram’s proxy.

BCPV Visual Basic browse object.

Default Module Suffix Module Description (continued)
– 99 –

Developing Client/Server Applications ___3
Which Modules to Generate
A package consists of two groups of modules, each bundling services for either a
maintenance or browse function. For either group of services to be complete, all the
modules belonging to a group must be generated and deployed. The modules are
generated on the server but are deployed to either the server or the client.

You may choose to generate only certain modules. For example, if you already have
an existing maintenance subprogram and you only want to generate a mainte-
nance dialog, generate the following models: Subprogram-Proxy, VB-Maint-Object,
and VB-Maint-Dialog. Later, if you decide to generate only a browse dialog, select
only the Object-Browse-Subp, Subprogram-Proxy, and VB-Browse-Object models.

Tip: You must generate browse modules for a package if you want to allow users
to browse the business objects in the package. Additionally, browse modules
must be generated for the package if the business object is linked by a foreign
field relationship to another business object. Foreign field relationships en-
able a user to browse and select key field values for foreign fields on a dialog.

For more information about foreign field relationships, see Understanding the
Browse and Maintenance Integration, page 343.
– 100 –

___________________________________ Using the Super Model to Generate Applications 3
Modules to Generate for a Maintenance Dialog

The following table shows the modules that you must generate to implement a cli-
ent/server maintenance dialog. When you generate these modules individually,
rather than using the super model, generate them in the order shown.

Module Model Name Result

Object maintenance
subprogram, object
PDA, restricted PDA

Object-Maint-Subp Subprogram used to maintain a
business object. This model also
generates the PDA and restricted
PDA for the object.

Object maintenance
subprogram proxy

Subprogram-Proxy Proxy used to communicate
information between the Spectrum
Dispatch Service and an object
maintenance subprogram.

Visual Basic
maintenance object

VB-Maint-Object Visual Basic class instantiated by a
maintenance dialog to encapsulate
calls to the Spectrum Dispatch
Client and implement local
validations.

Visual Basic
maintenance dialog

VB-Maint-Dialog Dialog that provides graphical
interface between the maintenance
application and the user.

Object factory VB-Client-Server-
Super-Model

Visual Basic code module that
identifies all business objects
within an application and
instantiates objects upon request.
– 101 –

Developing Client/Server Applications ___3
Modules to Generate for a Browse Dialog

The following table shows the modules that you must generate to implement a cli-
ent/server browse dialog. When you generate these modules individually, rather
than using the super model, generate them in the order shown.

Unlike maintenance subprograms, which use a specific Visual Basic form for each
maintenance dialog, all generated browse subprograms use the same underlying
browse form. This browse dialog form communicates with a BrowseBase class to
obtain information needed to configure itself for a particular browse subprogram
and to retrieve data from the BrowseBase class.

Module Model Result

Object browse
subprogram, key PDA,
row PDA, restricted
PDA

Object-Browse-Subp Natural subprogram used to
encapsulate access to data on the
server and return records as a
series of rows. The parameter data
areas (PDAs) communicate
information to and from an object
browse subprogram.

Object browse
subprogram proxy

Subprogram Proxy Proxy used to communicate
information between the Spectrum
Dispatch Service and an object
browse subprogram.

Visual Basic browse
object

VB-Browse-Object For each object browse subprogram
on the server, you must generate a
supporting Visual Basic class. This
class describes the object browse
subprogram to the BrowseBase
class, which in turn provides
information to a browse dialog that
is configured at runtime.

Object factory VB-Client-Server-
Super-Model or hand
coded

Visual Basic code module that
identifies all business objects
within an application and
instantiates objects upon request.
– 102 –

___________________________________ Using the Super Model to Generate Applications 3
Although many objects interact to produce a typical browse dialog, the important
thing to know is that most of these are standard, reusable client framework com-
ponents. For more information about browse processes, see Creating and
Customizing Browse Dialogs, page 215.

Dependent Models

Some of the models used to generate the individual modules have dependencies on
one another. This means you have to generate individual modules in an established
order.

Note: If you use the super model to generate all the modules for a client/server object, the
order of generation is managed for you.

The following table shows the dependencies between models:

Model and Module Prerequisite Module

Object-Maint-Subp
Object maintenance subprogram

None

Subprogram-Proxy
Object maintenance subprogram
proxy

Object maintenance subprogram

VB-Maint-Object
Visual Basic maintenance object

Object maintenance subprogram proxy

VB-Maint-Dialog
Visual Basic maintenance dialog

Visual Basic maintenance object

Object-Browse-Subp
Object browse subprogram

None

Subprogram-Proxy
Object browse subprogram proxy

Object browse subprogram

VB-Browse-Object
Visual Basic browse object

Object browse subprogram’s proxy
– 103 –

Developing Client/Server Applications ___3
Generating with the Super Model
Generating with the super model involves four main tasks:

1 Invoking the super model to create a new specification.

2 Defining general parameters.

3 Defining specific package parameters.

4 Generating the modules.

Each task is described in the following sections, along with the steps you must fol-
low to complete the task.

The super model is available in both the Generation subsystem on the server and
in the Construct Windows interface. If you are using the model wizard, see Using
the Super Model Wizard in the Construct Windows Interface, page 104. If
you are using the model on the server, see Using the Super Model in the Gen-
eration Subsystem, page 114.

If you encounter problems, see What to Do If Something Goes Wrong, page 121.

Using the Super Model Wizard in the Construct Windows
Interface

A model wizard is provided for the super model in the Construct Windows inter-
face. For general information, see Using the Construct Windows Interface,
page 77, in Natural Construct Generation User’s Manual.

Step 1 — Invoke the Super Model Wizard

To invoke the wizard:

1 On the File menu, click New, or click on the toolbar.
The Create New Specification dialog box is displayed.

2 On the Packages tab, double-click VB-CLIENT-SERVER-SUPER-MODEL.
The model wizard is displayed.

3 Click Standard Parameters in the wizard navigator to view the Standard
Parameters step:
– 104 –

___________________________________ Using the Super Model to Generate Applications 3
VB-CLIENT-SERVER-SUPER-MODEL Wizard — Standard Parameters

The Standard Parameters step is similar for all model wizards. The parameters
in this step are described in Standard Parameters Wizard Step, page 269, in
Natural Construct Generation User’s Manual.

Click Message Numbers to use message numbers rather than message text for
all REINPUT and INPUT messages in the generated subprogram.

Click Next to proceed to Step 2.
– 105 –

Developing Client/Server Applications ___3
Step 2 — Define General Package Parameters

In the Packages and Object Factory step, identify the domain, object factory,
and generation preferences for your application:

VB-CLIENT-SERVER-SUPER-MODEL — Packages and Object Factory
– 106 –

___________________________________ Using the Super Model to Generate Applications 3
To complete this wizard step:

1 Enter or select a domain.
For more information, see Understanding the Object Factory, page 99.

2 Type “OFACTORY” in the Object factory module text box.

3 Click Generate object factory to generate the object factory.

Tip: Use “OFACTORY” to identify your object factory as this is the default name
used by the client framework.

Note: If you do not generate an object factory module, you must code it by hand on the
client. This procedure is described in Customizing the Object Factory, page 307.

For more information about the object factory, see Understanding the Object
Factory, page 99.

4 Select Generate package modules to generate the package modules.

5 Do one of the following:

• If you are creating a new specification, click Next to proceed to the next step.

or

• If modules already exist for the super model specification, select one of the follow-
ing options:

– By default, Regenerate it, preserving all custom code is selected. When
you regenerate existing modules, any modified parameters in the specification
will not be used during the regeneration. However, the model will:

– Keep user exits

– Apply updates from Predict (such as a new field or a BDT keyword)

– Apply updates that have been added to the model’s code frames

– To replace all existing modules with newly generated ones, click Delete it and
generate a new copy.

In the next step, you can select the modules you want to regenerate or replace.
– 107 –

Developing Client/Server Applications ___3
Tip: If you are regenerating some but not all modules for a package and have
added custom actions that need to be reflected in the object factory:

1 Regenerate the modules.

2 In a separate procedure, regenerate the object factory. Similarly, if you
are adding modules to an existing package, for example, adding modules
to support a browse service where currently only a maintenance service is
provided, generate the new modules first and, in a separate procedure,
regenerate the object factory.

3 When you regenerate the object factory, select Generate object factory,
but do not select Generate package modules.

4 When you define the specific package parameters in the next step,
Defining Specific Package Parameters, select all of the modules in
your package so that the object factory is updated with all of the required
information about your package.
– 108 –

___________________________________ Using the Super Model to Generate Applications 3
Step 3 — Define Specific Package Parameters

In this step, specify details for each package in your application:

VB-CLIENT-SERVER-SUPER-MODEL Wizard — New Package

If you are working on an existing super model specification, the packages are dis-
played in the wizard navigator. Click a package in the wizard navigator to view it,
or click Next to proceed through the packages.
– 109 –

Developing Client/Server Applications ___3
To add a new package, do one of the following:

• While viewing the last package, click Next or Add.

or

• Click New Package in the wizard navigator.

Note: The maximum number of packages you can create at one time is 12.

To delete an existing package, go to that package and click Delete.

To define specific package parameters:

1 Provide a package prefix, which will be used to identify each module generated for
the package. The prefix can be up to four characters long and should enable you to
easily identify the package to which the generated modules belong. The importance
of establishing a logical naming convention is explained in Using a Naming
Convention, page 97.
Once you provide a prefix for a new package, the Package modules grid is
populated.

2 Specify a Predict view.

3 Provide the primary key, hold field, and object description.

Tip: Click Defaults to use default values for these three fields. You can also spec-
ify your own default override values using Predict keywords. Rather than
typing these values directly, set up your file definition in Predict to default
the required values.

For more information, see Setting Up Predict Definitions, page 47, in Construct
Spectrum Programmer’s Guide.
– 110 –

___________________________________ Using the Super Model to Generate Applications 3
4 Determine which package modules to generate. The Package modules grid
contains the following information:

Column Description

Module All of the modules that can be generated with the super
model are listed. Each module is identified by the package
prefix, followed by the standard suffix for the module type.
For more information about suffixes, see Using a Naming
Convention, page 97.

Gen. Use the Generate check boxes to specify which modules
will be generated. For more information about selecting
modules, see Which Modules to Generate, page 100.

Model Individual models the super model invokes to generate the
package modules. Although seven models are listed, up to
12 modules can be generated. The Object-Browse-Subp
model generates a subprogram, Key PDA, Row PDA, and
Restricted PDA. The Object-Maint-Subp model generates a
subprogram, Object PDA, and Restricted PDA.

G/R/O • “G” indicates that modules do not currently exist in
source form and will be generated and saved in the
current library.

• “R” indicates that modules currently exist in source
form and will be regenerated and saved in the current
library. This status occurs when you select Regenerate
it, preserving custom code in Step 2.

• “O” indicates that modules currently exist in source
form and will be overwritten and saved in the current
library. This status occurs when you select Delete it,
and generate a new copy in Step 2.
– 111 –

Developing Client/Server Applications ___3
5 When you have finished specifying the parameters for all packages, click Finish.

6 In the Finish step, either:

• Click Finish to proceed to the Code window, where you can view the specification
lines. The super model does not allow you to specify user exits. To specify user ex-
its, regenerate using the specific model which supports the desired user exit. When
you have finished viewing the Code window, proceed to Step 4.

Or

• Click Generate to proceed to Step 4.

Library Displays any of the following information:

• A question mark (?) indicates that you must click
Check to determine if there is existing source or
compiled (object) code for the module.

• No content indicates that a check has been made, but
there is no existing code for the module.

• “S” indicates that source code exists. If the “S” is black,
the source code is in the current library. If the “S” is red,
the source code is in another library. To view the
location of the source code, place the mouse pointer over
the “S.” A pop-up window shows the library or libraries.

“C” indicates that compiled (object) code exists. If the “C” is
black, the source code is in the current library. If the “C” is
red, the source code is in another library. To view the
location of the source code, place the mouse pointer over the
“C.” A pop-up window shows the library or libraries.

Column Description (continued)
– 112 –

___________________________________ Using the Super Model to Generate Applications 3
Step 4 — Generate the Modules

You have two options for generating modules using the super model: you can gen-
erate in batch or you can generate from the model wizard.

Tip: If you are generating a number of modules, generate in batch to avoid tying
up system resources.

Generating Modules from the Model Wizard

When you click Generate in the Finish step, the following process occurs as the
super model generates:

• The super model specification is saved.

• All the specifications for the individual modules are created and saved.

• The Generate window is displayed. The Module pane provides information such
as the module name, type, and action status. The Message pane provides a scrol-
lable list of status messages from the server regarding the generation process. The
Message pane displays the word “Done” when generation is complete.

To terminate the generation process, click Cancel.

Generating Modules in Batch

To generate in Batch:

1 On the File menu, click Save to save the specification.

2 In a mainframe session, log on to the library where the specification is saved.

3 Use the NCSTBGEN utility in batch to generate, specifying the name of your super
model specification and the model name: VB-Client-Server-Super-Model.

For information about using this utility, see Multiple Generation Utility, page
1009, in Natural Construct Generation User’s Manual.
– 113 –

Developing Client/Server Applications ___3
Using the Super Model in the Generation Subsystem

Step 1 — Invoke the Super Model

To invoke the super model:

1 On the Natural Construct Generation Main menu, type “M” in the Function field.

2 Type an eight-character name for the super model specification in Module.
This name identifies the super model specification you are creating. The name
should be descriptive so you can easily identify it as the super model specification
for the application you are creating.

3 Enter “VB-Client-Server-Super-Model” in the Model field.
Alternatively, you can enter “VB-C”. The Standard Parameters panel is displayed:

Super Model Multi-Module — Standard Parameters Panel

The Standard Parameters panel is similar for all models. For information about
the fields on this panel, refer to General Model Specifications, page 263, in Nat-
ural Construct Generation User’s Manual.

 CUSSMA VB-CLIENT-SERVER-SUPER-MODEL Multi-module CUSSMA0
 May 28 Standard Parameters 1 of 3

 Module OE-SPEC_
 System DEMO____________________________

 Title Multi-Object spec________
 Description Order Entry demo system for Spectrum___________________

 Message numbers X

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 right help retrn quit right main
– 114 –

___________________________________ Using the Super Model to Generate Applications 3
Step 2 — Define General Package Parameters

On the General Package Parameters panel, identify the application packages for
which you want to generate modules. You can generate up to 12 packages:

Super Model Multi-Object Specification General Package Parameters Panel

Tip: If you are regenerating some but not all modules for a package and have
added custom actions that need to be reflected in the object factory:

1 Regenerate the modules.

2 In a separate procedure, regenerate the object factory. Similarly, if you
are adding modules to an existing package, generate the new modules
first, and in a separate procedure, regenerate the object factory.

3 When you regenerate the object factory, select the Gen object factory field
and the Only gen object factory field.

4 When you define the specific package parameters, select modules in your
package so the object factory is updated with all required information.

CUSSMB VB-CLIENT-SERVER-SUPER-MODEL Multi-module CUSSMB0
May 28 General Package Parameters 2 of 3

 Domain DEMO____ *
 Gen object factory X Object factory module OFACTORY *
 Only gen object factory _ Replace existing modules ... _

 Package prefix Predict view
 ORD- NCST-ORDER-HEADER_______________ *
 CUST NCST-CUSTOMER___________________
 PROD NCST-PRODUCT____________________
 WH-- NCST-WAREHOUSE__________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
right help retrn quit left right main
– 115 –

Developing Client/Server Applications ___3
To define general package parameters:

1 Type the domain name for this application in the Domain field.
To display a list of domains from which to select a value, place the cursor in the
field and press PF1. You must enter a value in this field. For more information
about domains, see Understanding the Object Factory, page 99.

2 To generate an object factory module, mark Gen object factory.

Note: If you do not generate an object factory module, you must code it by hand on the
client. This procedure is described in Customizing the Object Factory, page 307.

For more information about the object factory, see Understanding the Object
Factory, page 99.

3 Type “OFACTORY” in the Object factory module field.

Tip: Use “OFACTORY” to identify your object factory as this is the default name
used by the client framework.

To generate only an object factory module, without regenerating any other mod-
ules, mark the Only gen object factory field. You must also select the package
modules for which the object factory will be generated in the next step, Step 3 —
Define Specific Package Parameters, page 117.

4 If you are using the super model to regenerate modules, you must decide whether
you want to replace or regenerate existing modules. If you select the Replace
existing modules option, the super model will replace any existing modules,
including their user exit code. If you do not select this option, it will regenerate the
existing modules but not the user exit code.

When you regenerate an existing module, any modified parameters in the specifi-
cation will not be used during the regeneration. However, the model will:

– Keep user exits

– Apply updates from Predict (such as a new field or a BDT keyword)

– Apply updates that have been added to the model’s code frames
– 116 –

___________________________________ Using the Super Model to Generate Applications 3
5 Type the prefix that will be added to each module generated for this package in the
Package prefix field.
The prefix can be up to four characters in length and should enable you to easily
identify the package to which the generated modules belong. The importance of
establishing a logical naming convention is explained in Using a Naming
Convention, page 97.

6 Type the primary file name for which the package is being generated in the Predict
view field.
This is the file that represents your business object. This file must exist in Predict.

7 When you have added all of the primary files to be included in your application,
together with a prefix name for each of the files, press Enter or PF11 to display the
Specific Package Parameters panel.

Step 3 — Define Specific Package Parameters

In this step, specify generation details for each package included in your
application.

Super Model Multi-Module — Specific Package Parameters Panel

 VB-CLIENT-SERVER-SUPER-MODEL Multi-module CUSSMC0
 May 28 Specific Package Parameters 3 of 3

 >> 01 Package prefix ORD-

 Predict view NCST-ORDER-HEADER_______________ *
 Primary key ORDER-NUMBER____________________ *
 Hold field ORDER-TIMESTAMP_________________ *
 Description Order_______________

 ---- Modules to Generate --

 Model Module Source Object G/R/O
 X Maint Object Subp ORD-MSO_ * G
 X Maint Object Proxy ORD-MSP_ G
 X Maint VB Object ORD-MCPV G
 X Maint VB Dialog ORD-MCDV G
 X Browse Object Subp ORD-BSO_ G
 X Browse Object Proxy ORD-BSP_ G
 X Browse VB Object ORD-BCPV G

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit selct bkwrd frwrd left main
– 117 –

Developing Client/Server Applications ___3
Note: You must complete this panel for each package in your application.

This panel allows you to scroll through the packages in the application. The Pack-
age prefix field automatically shows the prefix defined in the General Package
Parameters panel for the first package. The >> field shows which package is cur-
rently displayed.

To scroll between packages, either:

• Press PF8 (frwrd) and PF7 (bkwrd).

Or

• Enter a package number in the field following the two angle brackets (>>).

To define specific package parameters:

1 Specify a Predict view.

2 Specify the primary key, hold field, and object description of your package file in
the Primary key, Hold field, and Description fields, respectively.

Tip: Based on how the file is defined in Predict, the super model attempts to pro-
vide default values for these fields. You can also specify your own default
override values using Predict keywords. Rather than typing these values di-
rectly, set up your file definition in Predict to default the required values.

For more information, see Setting Up Predict Definitions, page 47, in Construct
Spectrum Programmer’s Guide.

3 If you are generating both a maintenance and a browse function for this package,
press PF5 (selct) to select all modules. Otherwise, mark the ones that you want to
generate.

For information about determining which modules to generate, see Which Mod-
ules to Generate, page 100.

Note: Although only seven models are displayed on this screen, up to 12 modules can be
generated. The Browse-Object-Subp model creates three additional modules: Key
PDA, Row PDA, and Restricted PDA. The Maint-Object-Subp model generates two
additional modules: Object PDA and Restricted PDA.
– 118 –

___________________________________ Using the Super Model to Generate Applications 3
If you marked the Replace existing modules field on the General Package Param-
eters panel, any existing modules marked for generation will be replaced, including
user exit code. For these modules, “O” is displayed in the G/R/O field. If you did not
mark this field, existing modules will be regenerated and user exit code will be pre-
served. For these modules, “R” is displayed in the G/R/O field.

4 Press PF8 (frwrd) to display the next package in your application.
Complete the panel as described in steps 1 and 2. When you have entered
specifications for all of your packages, return to the Natural Construct Generation
Main menu.

5 Save your super model specification.
You are now ready to generate the modules.

Step 4 — Generate the Modules

You have two options for generating modules using the super model: you can gen-
erate in batch or you can generate from the main menu.

Tip: If you are generating a number of modules, generate in batch to avoid tying
up system resources.

To generate from the Natural Construct Generation main menu:

1 Type “R” in the Function field.

2 Type the name of the super model specification in the Module field and press Enter.
This reads the super model specification into Natural Construct.

3 Enter “G” in the Function field.

The following steps occur as the super model generates:

• The super model specification is saved.

• All the specifications for the individual modules are created and saved.

• The standard generation status window is displayed. You will also see a generated
module status panel that lists the modules as they are generated and stowed by the
super model.

• When all of the modules have been generated and stowed, a summary report is dis-
played listing the status of each module that was generated, detailing any errors
that may have occurred.
– 119 –

Developing Client/Server Applications ___3
To generate in Batch:

1 Save the specification from the Natural Construct Generation main menu.

2 Use the NCSTBGEN utility in batch to generate, specifying the name of your super
model specification, and the model name: VB-Client-Server-Super-Model.

For information about using this utility, see Multiple Generation Utility, page
1009, in Natural Construct Generation User’s Manual.
– 120 –

___________________________________ Using the Super Model to Generate Applications 3
What to Do If Something Goes Wrong
After generating with the super model, you should review the generation status re-
port to reconcile any errors that may have occurred.

If a module was generated but not stowed because of a missing DDM, for example,
you can regenerate the missing modules at a later time after the error has been
corrected.

If there was a generation error for a specific module because of a missing depen-
dent module, for example, you can regenerate the individual module from its model
specification after you have corrected the error.

If the generation errors affect several of the individual modules, you may find it
easier to regenerate them from the original super model specification after you cor-
rect the error. Re-read the original super model specification into Construct
Spectrum and mark only those modules that require regeneration. Then repeat the
generation step until all the modules have been successfully generated and stowed.

Tip: Ensure that the SYNERR parameter is set to “ON” in your user profile’s
NATPARM. Otherwise, compilation errors in the code generated by the su-
per model may cause cycling.
– 121 –

Developing Client/Server Applications ___3
Transferring Your Application to the Client
If you have successfully generated all the modules of a package, or minimally all
the modules of a browse or maintenance function, you are ready to download your
client application modules to the PC and complete the process of creating a client/
server application.

Using Visual Basic and the Construct Spectrum Add-In, you will set up a Construct
Spectrum project, download application modules to your project, and compile the
project to create a fully functional client/server application.

These steps are described in Creating a Construct Spectrum Project, page
123.
– 122 –

4

CREATING A CONSTRUCT SPECTRUM
PROJECT

This chapter describes the process of setting up a Construct Spectrum project on
your client. Follow the instructions in this chapter once you have generated your
application modules on the server and are ready to download them to the client.
This chapter also describes how to test, deploy, and set up security for your
application.

The following topics are covered:

• Overview, page 124

• Are You Ready?, page 126

• Creating the Project, page 127

• Downloading the Generated Modules, page 131

• What’s Next?, page 134
– 123 –

Developing Client/Server Applications ___4
Overview
All Visual Basic client/server projects that use Construct Spectrum must include
the Construct Spectrum client framework. Client framework components are reus-
able application components that provide a skeleton of functionality that interacts
with generated and hand-coded Construct Spectrum modules to create a client/
server application.

The client framework also includes forms, classes, procedures, global variables,
and constants that are shared among various generated modules. This reduces the
size of the generated modules and allows generated modules to interact through
the shared components.

Construct Spectrum includes an Add-In that extends the Visual Basic Add-Ins
menu with commands to:

• Create a Construct Spectrum project and add the client framework components to
the project.

• Download generated modules from the server to the client and automatically add
them to your project.

• Upload generated modules from the client to the server when you have customized
the modules and need to regenerate them, preserving all of your customizations.
– 124 –

___ Creating a Construct Spectrum Project 4
Construct Spectrum Add-In
– 125 –

Developing Client/Server Applications ___4
Are You Ready?
Before you use the Construct Spectrum Add-In to create a new project and down-
load generated modules, use the following checklist to ensure that all prerequisites
have been met:

You have used the super model to generate the client and server modules of your
application.
For information about using the super model, refer to Using the Super Model to
Generate Applications, page 93.

You know the library name, the database ID (DBID), and the file number (FNR) of
the FUSER that contains the library where your generated modules reside.

A Spectrum dispatch service is running.
For information about running a Spectrum dispatch service, refer to Defining
Construct Spectrum Services, page 51, and Managing Construct Spectrum
Services, page 72, in Construct Spectrum Administrator’s Guide.
– 126 –

___ Creating a Construct Spectrum Project 4
Creating the Project
The Construct Spectrum Add-In can create an entirely new project with all neces-
sary client framework components or it can add client framework components to
an existing project.

To create a Construct Spectrum project:

1 Start Visual Basic.

2 Select Create New Project from the Construct Spectrum submenu.
The Create New Project dialog is displayed:

Create New Project

3 Type the name of the library containing your generated modules and the database
ID (DBID) and file number (FNR) of the library’s FUSER file.

This information will be used as the default whenever you want to download or up-
load generated modules and will be stored in the AppSettings.bas module in your
project.

4 Type the folder and project name in the Project filename text box and click OK.

Alternatively, you can click the Browse button to display a dialog from which you
can select a folder (directory) and enter the name of your project.
– 127 –

Developing Client/Server Applications ___4
Save New Visual Basic Project

5 When selecting a folder for your project using the Save New Visual Basic
Project dialog, select Open.
The Create New Project dialog is displayed:

6 Click OK.
Construct Spectrum creates the new project and prompts you to open it.
– 128 –

___ Creating a Construct Spectrum Project 4
Prompt to Open New Project

7 Click Yes to open your new project or click No to open at a later time.

Most client framework components are not copied to your project folder. Instead,
your Construct Spectrum project points to the FrameWrk5 folder in your Construct
Spectrum installation directory. You can see this by choosing a client framework
component such as Open.frm and choosing the Save As command on the Visual Ba-
sic File menu. These client framework components are shared among all Construct
Spectrum projects created with the Construct Spectrum Add-In. Be aware that if
you change one of these shared components and save it back to the FrameWrk5 di-
rectory, you could be affecting other projects.

For more information about customizing client framework components, see Un-
derstanding and Customizing the Client Framework, page 253.

The following client framework components are copied to your project folder be-
cause they are different for every application.

Name Description

OFactory.bas Contains the object factory; this module identifies all
business objects within an application and instantiates
objects upon request.

AppSettings.bas Contains application-specific settings, such as the
application name, library name, DBID, and FNR. You can
change these settings by editing them in the module.
– 129 –

Developing Client/Server Applications ___4
The Construct Spectrum Add-In also creates a new library image file for your ap-
plication and places it in the project folder. The name of this file will be the library
name with a “.lif” extension.

After the Construct Spectrum Add-In creates your project, you can run it and test
the default functionality provided by the client framework. For more information
about the client framework, see Understanding and Customizing the Client
Framework, page 253.

Prior to Downloading

To allow access to the mainframe:

1 Select Remote Dispatch Service Preferences:

Remote Dispatch Service Preferences Dialog

2 Enter your user ID and password.

For more information about this option, see Understanding the Construct
Spectrum Add-In, page 49.
– 130 –

___ Creating a Construct Spectrum Project 4
Downloading the Generated Modules
Next, download the client modules generated by the super model and add them to
your project.

To download the client modules and add them to your project:

1 On the Add-In menu, click Construct Spectrum/Download Generated
Modules.
The Download Generated Modules dialog is displayed:

Download Generated Modules

Use this dialog to list the modules in a given library on the server and to select one
or more modules to download.

2 The library name, DBID (database ID), and FNR (file number) default to the
values entered for the last project created. If necessary, type the library name,
DBID, and FNR that was specified for the project to which you are downloading.

3 In the Module name field, enter the package prefix followed by an asterisk.
– 131 –

Developing Client/Server Applications ___4
4 Click List.
After a few seconds, a list of modules that match the module name pattern you
entered are displayed.

Tip: If you know the name of the module you want to download, type it in Module
name. When you click List or press Enter, the module is downloaded.

Note: When you have selected one or more modules in the list, the List button changes to
Download.

Tip: To view your list in a different order, click a column header. The list is sorted
according to the header item. If the list is already sorted, selecting the same
header toggles the sort order between ascending and descending.

The following table lists the modules to download:

Module Description

Parameter data areas Parameter data area (PDA) definitions in a library image
file. PDAs generated using the super model have “MSA”,
“MSR”, “BKEY”, “BROW”, and “BPRI” suffixes.

Application service
definitions

Application service definitions in a library image file.
Modules have “App Service” type and “SUBPROGRAM-
PROXY” model in the list. Subprogram proxies generated
using the super model have “MSP” and “BSP” suffixes.

Visual Basic forms Dialog definitions that are saved in the project folder with
the extension “.frm” and automatically added to the
project. Forms generated using the super model have a
“MCDV” suffix.
– 132 –

___ Creating a Construct Spectrum Project 4
Tip: The lower part of the Download Generated Modules dialog shows the name
of the project folder to which the modules will be downloaded and the name
of the library image file where definitions will be saved. To change either of
these, select the corresponding Change button.

5 To download modules, select one or more from the list and click Download or press
Enter.
Or, type the module names in the Module name text box and click Download or
press Enter.

Hand-Coding the Object Factory
If you generated the object factory using the super model and downloaded it, you
should be able to run your application without having to do any hand-coding. On
the File menu, click Open to invoke the Open dialog; the objects and actions that
you generated should be listed in the dialog.

If you did not generate an object factory, you must code it by hand. If you generated
multiple object factories for your application, you must do some hand-coding to
merge each object factory into one object factory module.

For information about hand-coding the object factory, see Customizing the Ob-
ject Factory, page 307.

Visual Basic classes Modules saved in the project folder with a “.cls” extension
and automatically added to the project. Classes generated
using the super model have “MCPV” and “BCPV” suffixes.

Object factory Visual Basic code module that identifies all business
objects within an application and instantiates objects upon
request. The name of this module is entered on the first
panel of the super model. When downloaded, it is saved in
the project folder with the extension “.bas”.

Module Description (continued)
– 133 –

Developing Client/Server Applications ___4
What’s Next?
Once you have created the project and downloaded the generated components, you
have the option of modifying the dialogs, testing and deploying the application, or
setting up security.

Modifying the Dialogs
If this is an early iteration of your application, keep your dialog customizations to
a minimum because you will lose these customizations when you regenerate the di-
alog. There are some modifications, however, that you need to do so that you can
evaluate your application more effectively.

For more information about these modifications, see Integrating a New Mainte-
nance Dialog, page 154.

Testing the Application
At this point, compile and run your application. Test the following things:

• On the File menu, click Open and test all objects and their associated actions to en-
sure each invokes the correct form.

• Check that each dialog displays correctly and that you have moved the controls in
overflow frames onto the dialog form or onto separate tabs of a tab control.

• Test any local validations that were generated into the maintenance objects.

• Invoke and test the remote methods: Get, Next, Update, Add, and Delete.

Note: The first communication to the server typically takes a few seconds. This is because
the EntireX Broker and DLLs must be loaded into memory and initialized. Subse-
quent calls to the server will be faster.

If you require more debugging information, see Debugging Your Client/Server
Application, page 201, in Construct Spectrum Programmer’s Guide.
– 134 –

___ Creating a Construct Spectrum Project 4
Deploying the Application
Once your application has been tested, you can distribute it to your users. The pro-
cedure to deploy your application include:

• Creating the executable

• Collect the files to be installed

• Install the client application

• Run the application

For more information about deploying your application, see Deploying Your Cli-
ent/Server Application, page 237, in Construct Spectrum Programmer’s Guide.

Setting Up Security
Before allowing users to work with your application, you must implement security
for their environment. You must define these users to a group. If users require dif-
ferent access privileges, set up one group for each type of user. You set up your
application security based on these groups.

For information about setting up groups, see Defining Groups and Users, page
95, in Construct Spectrum Administrator’s Guide.

Grant access to business objects by group and domain combination. You can grant
a particular group/domain combination access to as many or as few business ob-
jects as necessary. Additionally, you can grant access to only specific methods
within a group/domain and business object combination.

For more information about setting up security, see Setting Construct Spec-
trum Security Options, page 123, in Construct Spectrum Administrator’s Guide.
– 135 –

Developing Client/Server Applications ___4
– 136 –

5

CREATING AND CUSTOMIZING
MAINTENANCE DIALOGS

This chapter provides step-by-step instructions for generating the modules re-
quired to maintain server information from a maintenance dialog on the client. It
describes how to generate the necessary modules, download them to the client, in-
tegrate them into an existing Construct Spectrum project, and maintain server
database information from your maintenance dialog. Also included is information
on how to customize the maintenance dialog. It provides conceptual information,
suggestions on the best way to approach customization problems, and step-by-step
instructions for particular customization tasks.

The following topics are covered:

• Overview of the Maintenance Dialog, page 138

• Are You Ready?, page 140

• Using Individual Models to Generate Maintenance Modules, page 141

• Downloading Client Modules, page 151

• Integrating a New Maintenance Dialog, page 154

• Strategies for Customizing a Maintenance Dialog, page 155

• Customizing on the Server, page 159

• Customizing on the Client, page 175

• Uploading Changes to the Server, page 212
– 137 –

Developing Client/Server Applications ___5
Overview of the Maintenance Dialog
Maintenance dialogs are built on the foundation provided by the existing Natural
Construct object methodology. A maintenance dialog generated with Construct
Spectrum can share data access modules with a character-based maintenance
dialog.

The modules that must be generated to create a working Construct Spectrum
maintenance dialog are:

• Object maintenance PDA

• Object maintenance PDR

• Object maintenance subprogram

• Maintenance subprogram proxy

• Visual Basic maintenance object

• Visual Basic maintenance dialog

The following example shows the relationship between these generated modules:

Relationships Between Client and Server Maintenance Components

Server Client

Maintenance
Object PDR

Maintenance
Subprogram

Proxy

Visual Basic
Maintenance

Object

Maintenance
Object PDA

Maintenance
Object

Subprogram

Visual Basic
Maintenance

Dialog
– 138 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Ways to Generate Maintenance Dialogs
Each module that a maintenance dialog requires can be generated with the VB-Cli-
ent-Server-Super-Model or generated one at a time using individual models. To
determine which generation approach is best for you, consider the following
guidelines:

• If you are creating a new application or a new business object, use the super model.

• If you are making major changes to the Predict file definitions of one or more busi-
ness objects in an existing application, use the super model.

• If you want more control over the generation results, such as customized code for
user exits, use the individual models.

This section explains how to generate maintenance modules from the individual
models. For information about using the super model, see Using the Super Mod-
el to Generate Applications, page 93.

The Process of a Maintenance Dialog
The first part of this chapter describes the tasks required to create a maintenance
dialog. These include:

• Use the Construct models to generate modules

• Download the modules to the client using the Construct Spectrum Add-In

• Integrate a new maintenance dialog into your application

Once you have completed these steps, it is time to compile the application and test
the new maintenance dialog.

The second part of this chapter discusses various strategies for customizing a
maintenance dialog and different customization mechanisms available on both the
client and server. It also explains how to upload client changes to the server.
– 139 –

Developing Client/Server Applications ___5
Are You Ready?
Before generating a module for a maintenance dialog, use this checklist to ensure
that the following prerequisites are met:

The necessary Predict file(s) have been created, along with any relevant Predict
definitions such as file relationships and verification rules.

An object PDA, a restricted PDA, and an object maintenance subprogram exist for
the target Predict file(s). If these modules do not exist as part of a previously
generated Construct Spectrum application, create them now.

For information about creating these modules, see Object-Maint Models, page
479, in Natural Construct Generation User’s Manual.

The Entire Net-Work kernel is running on your client (if you are using Entire Net-
Work) so that you can access the server used by the Spectrum dispatch service and
the Spectrum security service. Your system administrator should ensure that this
prerequisite is met.

A Spectrum dispatch service and security service are set up to service requests
from your client. To determine whether these services are available, ping the
service using the Spectrum Service Manager. Your system administrator should
ensure that these services are available on the client.

For information about managing Construct Spectrum services, see Defining and
Managing Construct Spectrum Services, page 47, in Construct Spectrum Ad-
ministrator’s Guide.

You are set up as a user with a password to access the Construct Spectrum
environment.

You have created a Construct Spectrum project. If you have not done so, create one
now.

For information about creating a Construct Spectrum project, see Creating a
Construct Spectrum Project, page 123.
– 140 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Using Individual Models to Generate Maintenance
Modules

The modules required to run a maintenance dialog share many files and parame-
ters. If you are using individual models to generate your maintenance modules, you
must generate the models in a specific order. Each model reads the source code gen-
erated by earlier models to make generation decisions.

Generate the dialog models in the following order:

1 Object-Maint-Subp model (object maintenance subprogram)

2 Subprogram-Proxy model (maintenance subprogram proxy)

3 VB-Maint-Object model (Visual Basic maintenance object)

4 VB-Maint-Dialog model (maintenance dialog)

Tip: Use the same four-character prefix to name all generated modules pertaining
to a single business object. This convention makes it easier to select modules
for downloading. For example, to download all client modules related to a
Customer business object, type “CUST*” (where “*” is the wildcard charac-
ter) to narrow the list of available items to those starting with CUST.

The models are available in the Generation subsystem on the server or you can use
the model wizards in the Construct Windows interface.

Generating the Object Maintenance Subprogram and
PDAs

The Object Maintenance subprogram is used to maintain a business object. This
model also generates the PDA and restricted PDA for the object. Before generating
a module for a maintenance dialog, ensure that an object PDA, a restricted PDA
and an object maintenance subprogram exists for the target Predict file(s).

For more information on creating a PDA, see Create the External PDA, page
242, and Create the Restricted PDA, page 245, in Natural Construct Generation
User’s Manual.
– 141 –

Developing Client/Server Applications ___5
Generating the Maintenance Subprogram Proxy
A subprogram proxy is required to access the generated object maintenance sub-
program from the client application. The subprogram proxy calls an object
maintenance subprogram, which fulfills a request on behalf of a maintenance dia-
log. It is also responsible for converting data between the network transfer format
and the Natural data format used in the object maintenance PDA and restricted
object maintenance PDA. Typically, you will not have to customize or provide any
user exit code for this model — just generate and catalog it.

For information, refer to Generating a Subprogram Proxy, page 132, in Con-
struct Spectrum Programmer’s Guide.

Generating the Visual Basic Maintenance Object
The VB-Maint-Object model generates a Visual Basic maintenance object that pro-
vides maintenance dialogs with access to the business object data and methods in
the Spectrum Dispatch Client.

Business Validations

A Visual Basic maintenance object is an ideal place to code simple business valida-
tions such as verification rules. The model provides the CLIENT-VALIDATION
user exit for this purpose.

The VB-Maint-Object model also extracts verification rules that are attached to
your Predict file and field definitions and generates validation code into a subrou-
tine called “Validate”. The following code example illustrates the type of validation
code that would be generated if the Predict verification type, Range, was attached
to a field called “CUSTOMER-NUMBER”.
– 142 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Example of validation code generated by the VB-Maint-Object model

...
Case "CUSTOMER-NUMBER"
 If Value < 2 or Value > 4 Then
 Err.Raise Number:=csterrValueOutOfRange, _
 Source:=OBJECT_PDA_NAME, _
 Description:=csterrValueOutOfRangeMsg
...

For more information about validating data, see Validating Your Data, page 327.

Browse Functions

The VB-Maint-Object model also generates methods that enable your maintenance
dialog to have browse functions automatically linked to the primary key and all for-
eign keys on the dialog.

For more information about linking browse and maintenance functions, see Un-
derstanding the Browse and Maintenance Integration, page 343.

You can generate the Visual Basic Maintenance Object in the Generation sub-
system on the server or using the VB-Maint-Object wizard in the Construct
Windows interface. The following example shows the Standard Parameters step in
the VB-Maint-Object wizard:
– 143 –

Developing Client/Server Applications ___5
VB-MAINT-OBJECT Wizard — Standard Parameters

The Standard Parameters step is similar for all model wizards. The common pa-
rameters Module, System, Title, and Description are described in Standard
Parameters Wizard Step, page 269, in Natural Construct Generation User’s
Manual.

For general information, see Using the Construct Windows Interface, page 77,
in Natural Construct Generation User’s Manual.
– 144 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
The parameters on this panel are:

Parameter Description

Subprogram proxy Name of the subprogram proxy that communicates with
the object browse subprogram for this Visual Basic browse
object.

Compress network
data

Indicates whether the parameters sent to the server are
compressed to reduce transmission time.

Encrypt network data Indicates whether the parameters sent to the server are
encrypted. Encryption secures sensitive data.

Extra PDA Additional parameter for your maintenance object
subprogram (for example, to update foreign field
descriptions on a maintenance dialog without having to
make an extra call to the server).

For more information about defining extra PDAs, see How
Foreign Field Descriptions Are Refreshed, page 361.
– 145 –

Developing Client/Server Applications ___5
Note: The Compress data and Encrypt data flags only apply to data sent from the client
to the server. To enable compression and encryption for data sent from the server to
the client, set the Compress data and Encrypt data flags in the subprogram proxy,
which is described in Generating a Subprogram Proxy, page 132, in Construct
Spectrum Programmer’s Guide.

After supplying model parameters, you can customize the generation results by
creating user exit code for the module. The following example shows the available
user exits in the Code window for a Visual Basic maintenance object:

Code Window — VB-MAINT-OBJECT

The icon indicates that sample code can be generated for the user exit. To do so,
right-click the user exit and select Generate Sample from the shortcut menu. You
can then modify the code as required.
– 146 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
For more information about using the Code window, see Using the Construct
Windows Interface, page 77, in Natural Construct Generation User’s Manual.

For more information about the user exists for this model, see User Exits for the
Natural Construct Models, page 575, in Natural Construct Generation User’s
Manual.

Generating a Maintenance Dialog
The VB-Maint-Dialog model generates a maintenance dialog that provides users
with a graphical user interface to data and a business object (the object mainte-
nance subprogram) on the server. A maintenance dialog is used to maintain
information for a given business object. The dialog can support any object PDAs
that can be generated.

All tailoring for maintenance dialogs should be performed within the Visual Basic
environment. In most cases, you will have to reposition and resize the GUI controls
on the form. By default, the VB-Maint-Dialog model generates GUI controls in two
columns with labels on the left and input controls on the right. The need for visual
tailoring is especially evident when generating dialogs that have many fields. For
more information about tailoring forms, see Integrating a New Maintenance
Dialog, page 154.

Unlike other Construct Spectrum models, the VB-Maint-Dialog model does not
support full regeneration capabilities and, therefore, supplies few user exits. You
can, however, add your own user exits to preserve hand-written code and to mini-
mize the changes required after regenerating your dialogs.
– 147 –

Developing Client/Server Applications ___5
Customizations made to Visual Basic forms are not preserved during regeneration.
If this is an early iteration of the application, limit any modifications to those de-
scribed in the following table:

For more information about overflow conditions, see Overflow Conditions, page
174.

For more information about resizing grids, see Resizing Grids, page 206.

Before regenerating a maintenance dialog, see Strategies for Customizing a
Maintenance Dialog, page 155, for information about saving customizations in
your maintenance dialog.

Modification Description

Correcting overflow
conditions

Overflow conditions occur when there are more fields than
can be displayed on a dialog. Unless you correct the
problem, these fields will be hidden.

Resizing grid controls A grid control is a table with rows and columns that
displays related information on a dialog. For example, a
list of line items on a purchase order dialog. You can adjust
the size of a grid to suit your GUI layout.
– 148 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
You can use the VB-Maint-Dialog model in the Generation subsystem on the server
or use the model wizard in the Construct Windows interface. The following exam-
ple shows the Standard Parameters step for the VB-Maint-Dialog wizard:

VB-Maint-Dialog Wizard — Standard Parameters

The Standard Parameters step is similar for all model wizards. The common pa-
rameters (Module, System, Title, and Description) are described in Standard
Parameters Wizard Step, page 269, in Natural Construct Generation User’s
Manual.
– 149 –

Developing Client/Server Applications ___5
The parameters on this dialog are:

Once you generate the required modules, download them to your client.

Note: Ensure that all modules generated on the server are cataloged before downloading
to the client.

Parameters Description

VB Maint Object Name of the Visual Basic maintenance object. Click the
browse button to select a module.

Abbreviated object
description

Used in naming GUI controls on a form generated by the
VB Maint Dialog model. For example, a GUI control for a
field named CUSTOMER-NUMBER in an object named
Customer might have a GUI control name of
txt_CUST_CustomerNumber, where CUST represents the
abbreviated object description. The default value for the
abbreviated object description is the first four characters of
the module name.

Window caption Caption for the resulting maintenance dialog.
– 150 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Downloading Client Modules
After generating all required maintenance modules, you must download those
modules required on the client. The following table lists the modules that are re-
quired on the client and provides a brief description of their roles.

Note: The module suffixes listed in the table are suggestions only. However, when gener-
ating with the super model, modules are given these suffix names automatically.

Model Module
Suffix

Visual Basic
Extension

Description

Object-Maint-
PDA

MSA n/a Encapsulates a business object. This
parameter data area definition is
incorporated into the library image file
used by the project.

Object-Maint-
PDA-R

MSR n/a Contains private data used by the
business object. This restricted PDA
definition is incorporated into the
library image file used by the project.

Subprogram-
Proxy

MSP n/a Communicates information between
the Spectrum dispatch service and an
object maintenance subprogram. Also
updates the library image file with
application service definitions that
contain information about the object
maintenance subprogram’s methods
and the data they require.

VB-Maint-
Object

MCPV .cls Communicates with the object
subprogram on the server on behalf of
the maintenance dialog. Also
implements validations on the client.

VB-Maint-
Dialog

MCDV .frm Provides the graphical interface
between the maintenance application
and the user.
– 151 –

Developing Client/Server Applications ___5
To download modules from the server to the client:

1 Open the Construct Spectrum project that you are updating.
For information about setting up a project, see Creating a Construct Spectrum
Project, page 123.

2 On the Construct Spectrum Add-In, click Download Generated Modules.
The Download Modules dialog is displayed:

Download Modules

Note: Ensure that you are pointing to the correct Natural library and FUSER system file
on the server.

3 If the default values in the Library, DBID (database ID), and FNR (file number)
text boxes do not specify the server library from which you want to download, type
the correct values in these fields.

Tip: The project folder to which the modules will be downloaded and the name of
the library image file where definitions will be updated are shown in text
boxes at the bottom of the dialog. To change either of these, select the corre-
sponding Change button.
– 152 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
4 Enter a pattern (such as CUST*) in the Module name text box to list all modules
matching that pattern.

5 Click List or press Enter.
A list of server modules is displayed. The maintenance modules you generated will
be among them.

6 Select the maintenance modules you generated and click Download.
You can identify the maintenance modules based on their module suffixes, which
are shown in the table at the beginning of this section.

The Visual Basic maintenance object and the maintenance dialog (.frm file) are au-
tomatically added to your Construct Spectrum project.

For more information about downloading modules to the client and about setting
up a Construct Spectrum project, see Creating a Construct Spectrum Project,
page 123.

For more information about tailoring on the client, see Tailoring the Mainte-
nance Dialog, page 177.
– 153 –

Developing Client/Server Applications ___5
Integrating a New Maintenance Dialog
If you are creating a new maintenance dialog and wish to add it to an existing Con-
struct Spectrum application, hand-code the object factory to link the maintenance
dialog to your application. You need to hand-code the object factory only if you are
adding a new dialog to your application or you have changed the actions available
for an existing business object. An example of changing the available actions for a
business object is a situation where you add a maintenance action to a business ob-
ject that had been available to the user only through a browse action.

Tip: To determine whether you need to hand-code the object factory, access the
Open dialog and select each object and its associated action. If the selected
object action does not open or if the Open dialog does not display all of the
object actions, do some hand-coding to add the required object actions.

For information about hand-coding the object factory, see Customizing the Ob-
ject Factory, page 307.
– 154 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Strategies for Customizing a Maintenance Dialog
This section describes some strategies you can use to reduce the effort required to
maintain your maintenance dialogs. These include:

• Doing the Predict data dictionary work up front

• Choosing the most appropriate place to add hand-written code

• Adding new user exits

• Making a copy of your changes

Doing the Predict Data Dictionary Work Up Front

Before tailoring the dialog, ensure that your data design is sound. If your data de-
sign is unstable, but you want to test the functionality of your dialog, consider
postponing tailoring tasks such as creating calculated fields or rearranging the lay-
out of your dialog until your data design is stable.

Construct Spectrum has added new points of integration with Predict that make it
possible to generate robust dialogs with minimal tailoring, provided you take the
time to enter the information into Predict. Following are some ways that you can
enhance your generated dialog by providing Predict information:

• Enter values for Header1, 2, and 3 in the field definitions. The VB-Maint-Dialog
model uses this information to generate meaningful label captions. For more infor-
mation about how label captions are derived, see Deriving Variable Names,
page 159.

• Create and attach table status verifications to fields whenever you know there is a
finite set of valid values. The model uses verifications to decide what type of GUI
control to generate. If a table status verification is attached to the field, the model
will create either a ComboBox or a Frame and series of OptionButtons. The code
that gets generated for these types of controls is different than the code generated
for TextBox controls. For information about using Predict verification rules, see
Overriding GUI Controls, page 160.

• Supply GUI and BDT keywords to help the model determine which type of GUI
control to use or to fine-tune the behavior of a TextBox control. For information
about how Predict keywords affect GUI generation, see Overriding GUI Con-
trols, page 160.
– 155 –

Developing Client/Server Applications ___5
Choosing an Appropriate Place to Add Hand-Written Code

There are many places in a Construct Spectrum-generated application to place cus-
tom code — like a Visual Basic maintenance object or in a separate Visual Basic
module that you add to the application. When adding custom code to a mainte-
nance dialog, determine if this code can be placed elsewhere and still work.

The primary reason for placing code in the dialog is to have the ability to respond
directly to specific events. In such cases, you have no choice but to put code in the
dialog. However, rather than writing 10 or 20 lines of event code directly in the di-
alog, write one line of code in the form that calls a routine in another module that
can do the work for you. The following examples illustrate the difference between
these two approaches:

Significant Impact on Dialog Code

Private Sub txt_EMPL_Salary_Change()
 ‘my custom code - start
 Dim Result As String
 If CCur(txt_EMPL_Salary.Text) > 100000 Then
 txt_EMPL_Salary.BackColor = vbRed
 txt_EMPL_Salary.ForeColor = vbYellow
 Result = InformAuthorities(EmployeeName)
 Select Case Result
 Case “EmployeeHasAcknowledged”
 PublishSalaryAtPressRelease EmployeeName
 Case “SalaryIsIncorrect”
 Beep
 Case “TerminateEmployee”
 PerformAction “DELETE”
 End Select
 End If
 ‘my custom code -end

 If DetectChanges Then
 ObjectChanged = True
 End If
End Sub
– 156 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Minimal Impact on Dialog Code

Private Sub txt_EMPL_Salary_Change()
 ‘my custom code - start
 CheckSalary EmployeeName
 ‘my custom code -end

 If DetectChanges Then
 ObjectChanged = True
 End If
End Sub

Using the second approach simplifies and minimizes the modifications that you
must re-implement if the dialog is regenerated.

Adding New User Exits

Unlike other Construct and Construct Spectrum models, the VB-Maint-Dialog
model comes with few predefined user exits. You can, however, add your own user
exits to the dialog code. These user exits are saved when you regenerate your main-
tenance dialog and, therefore, reduce the effort required to maintain your dialogs
on an ongoing basis.

To add new user exits to the maintenance dialog:

1 Define the user exit.
Each custom user exit must be delimited with comment lines that indicate where
your custom code begins and ends. Use the standard ‘SAG DEFINE EXIT abc’ and
‘SAG END-EXIT’ delimiters to mark the beginning and ending of your user exit.
Provide a unique name for the user exit. A good convention to follow is to name the
user exit after the code block in which it is found. For example, if you add custom
code to the lost focus event for the txt_CUST_CustomerNumber GUI control, use
the following delimiters to block your custom code:

‘SAG DEFINE EXIT txt_CUST_CustomerNumber_LostFocus
 txt_CUST_CustomerNumber.ForeColor = vbGreen
‘SAG END-EXIT

2 Upload, regenerate, and download the maintenance dialog.
Before regenerating the dialog, upload the dialog to the server to preserve your
custom coding changes. After regenerating, download the maintenance dialog.

Note: You cannot preserve tailoring to the visual appearance of a maintenance dialog with
user-defined user exits.
– 157 –

Developing Client/Server Applications ___5
3 Reposition user exit code.
As part of the regeneration process, the user exits you created earlier are moved to
the bottom of the maintenance dialog’s source area. Move each user exit code block
to the appropriate location in code. This should be an easy task if you have named
the user exits after the code blocks in which they belong.

Making a Copy Before You Regenerate

If many changes have been made to your data design, or other changes on the serv-
er have had an impact on your dialog, decide whether to implement the changes by
hand or to generate a new copy of your form. If you generate a new copy of the form,
you must re-implement any tailoring you have done. This decision depends on
which approach represents less work for you.

If you decide to generate a new copy of your dialog, save your old dialog with a dif-
ferent name. You can view the old dialog while tailoring the new dialog.
Additionally, you can cut and paste code from one dialog to the other.
– 158 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Customizing on the Server
This section describes the mechanisms available on the server for customizing your
maintenance dialog.

Deriving Variable Names
When performing customizations to a maintenance dialog, it is useful to under-
stand how variable names are derived. This will help you maintain a consistent
naming convention and make it easier for you to determine what the code is doing.

Deriving GUI Control Names

GUI control names are made up of three components: a GUI Control Identifier, an
Object Identifier, and a Field Identifier. Each one is separated by underscores. For
example, a field called CUSTOMER-NUMBER on a Customer file might be repre-
sented by a TextBox GUI control named txt_CUST_CustomerNumber.

GUI Control Identifier

A GUI control identifier is a three-character abbreviation in the GUI control name
that uniquely identifies the GUI control type. The following table lists the different
types of GUI controls (along with their abbreviations) that are used in a typical
Construct Spectrum project:

GUI Control Abbreviation GUI Control Abbreviation

CheckBox chk Label lbl

ComboBox cbo ListBox lst

CommandButton cmd Menu mnu

Form frm OptionButton opt

Frame fra StatusBar sta

Grid grd, ddg TextBox txt
– 159 –

Developing Client/Server Applications ___5
Object Identifier

An object identifier is a four-character abbreviation that uniquely identifies the
business object represented on the dialog. The object identifier is obtained from the
Abbreviated Object Description parameter of the VB-Maint-Dialog model. By de-
fault, this value contains the first four characters of the dialog form (.frm file)
name. Using the Object Identifier as a component of the GUI control name is useful
if you want to represent more than one business object on a single dialog.

Field Identifier

A field identifier uniquely identifies a field within a business object. The name is
derived from the Predict field name — converting the letters to mixed case and re-
moving any characters which are illegal in Visual Basic, such as hyphens. The field
identifier for grid controls that are derived from intra-object relationships are ob-
tained from the Predict relationship name.

Deriving Label Captions for GUI Controls

A label caption is a name that identifies a GUI control to the user. The label caption
is usually displayed to the left of an associated input GUI control, for example, a
text box. The caption for the label is obtained from one of two places. First, the mod-
el looks for header information stored in Predict’s Elementary Field definition. If
none is found, the label caption is derived from the field name in the same way the
field Identifier is created. Label captions for grid controls that are derived from in-
tra-object relationships are obtained from the Predict relationship name.

Overriding GUI Controls
The VB-Maint-Dialog model must choose the appropriate GUI control to represent
your field as it is defined in Predict. This includes representing complex data, such
as one-to-many relationships. To accomplish this, the model employs derivation
logic based on information such as a field’s data type, the number of occurrences,
whether it is in a repeating group of fields, etc. The following steps in this section
describe the derivation logic. Each topic is included in the same order in which the
logic is applied by the model.
– 160 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
In addition to this default derivation logic, the model provides several mechanisms
for you to override the default selection of a GUI control for a given field. These are
described in steps 1, 2, and 3 of this section.

Note: An asterisk (*) appended to any GUI control name in this section indicates that the
GUI control could also apply to a column of a grid, depending on the cardinality of
the associated field. Therefore, TextBox* can be read as TextBox or TextBoxColumn.
For more information about using GUI controls with grid columns, see Using the
Grid, page 202.

Step 1 — Search for GUI Keywords on Field Definitions

The model starts by looking for specific keywords that begin with GUI on the Pre-
dict field definition. The following example shows a hypothetical M-PROVINCE
field being mapped to a ComboBox using the GUI_COMBOBOX keyword:

Predict Modify Field Panel

12:53:21 ***** P r e d i c t 3.4.1 ***** 99-01-28
 - Modify Field -
 Field ID M-PROVINCE Modified: 97-01-16 at 09:32
 File ID NCST-CUSTOMER by: DEVMT1
 Keys .. GUI_COMBOBOX Zoom: N

 Ty L Field name F Length Occ D U DB N NAT-l
 *- - -------------------------------- *- -------- ----- * * -- * -----
 2 M-PROVINCE A 20.0 X4 N

 Natural attributes
 Header1 Province
 Header2
 Header3
 Edit mask ..
 Comments Zoom: N

 EDIT: Owner: N Desc: N * Veri: N MORE Attr.: N
– 161 –

Developing Client/Server Applications ___5
The model recognizes the following keywords:

GUI Control Description

GUI_ALPHA
MULTILINE

Generates a TextBox* control with the MultiLine property
set to True. This gives the GUI control the feel of a mini-
word processor. The control will word-wrap its contents
and provide scroll bars as required.

Use this keyword to represent a repeating alphanumeric
field as a single piece of information such as a long
description.

GUI_CHECKBOX Generates a CheckBox* control. This keyword can be used
in combination with a field of any format. If a table
verification with two or more values is attached to the data
field, the first value represents false and the second value
represents true. If no verification is attached to the field,
the model derives true and false values based on the field’s
format. If the field is alphanumeric, blank represents false
and non-blank represents true.

When updating the object PDA, the VB maintenance dialog
uses “X” to represent true. If the field is numeric, zero
represents false and non-zero represents true. When
updating the object PDA, the maintenance dialog uses 1 to
represent true.

GUI_COMBOBOX Generates a drop-down ComboBox* control. This model
looks for a table-style verification. If one has been set up,
the values are used as the entries for the combo box. If a
verification does not exist, the model generates one dummy
entry for the combo box.

Generate a dummy entry if the combo box is to be
populated with data from an external source such as a PC
on your LAN. For information about populating a combo
box with external data, see Generating a ComboBox
Control to Display External Values, page 164.
– 162 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Note: Option buttons are not supported in a grid control. If the GUI_OPTIONBUTTON
keyword is attached to the field definition and the field is part of a repeating group
of fields (PE) or is a stand-alone repeating field (MU), it is mapped to a ComboBox
instead of OptionButtons.

GUI_NULL Prevents the generation of a GUI control definition for the
field or any code pertaining to the field. Use this keyword
if you defined fields that should not be displayed on the
dialog.

GUI_OPTION
BUTTON

Generates a frame and a series of OptionButtons. The
model uses the table-style verification attached to the field.
For this keyword to work, you must attach values to the
table-style verification because each of the values maps to
an option button.

GUI_PROTECTED Treats the associated field as read-only. The user cannot
modify the contents of the field. This keyword can be used
in conjunction with the other keywords described in this
section except when the GUI_NULL keyword is used.

Use this keyword if the contents of the field is to be
determined programmatically, as with a calculated field.
For more information about calculated fields, see
Creating Calculated Fields, page 175.

GUI_TEXTBOX Generates a TextBox*. Text box GUI controls can have
BDT (business data types) definitions attached to them.
For more information about using BDTs with text box GUI
controls, see Step 3 — Search for Business Data Type
Keywords on Field Definitions, page 166.

GUI Control Description (continued)
– 163 –

Developing Client/Server Applications ___5
Generating a ComboBox Control to Display External Values

Use the GUI_COMBOBOX keyword in Predict to force generation of a ComboBox
control that displays values from an external source (for example, a LAN
database).

To set up a ComboBox control to display values from an external source:

1 Set up a field definition for the field in Predict.

2 Add the GUI_COMBOBOX keyword to the Predict field definition.

3 On the client, write code in the Form_Load event for the dialog to populate the
ComboBox with values by reading the external source when the form is loaded.

Step 2 — Search for GUI Keywords on Verification
Definitions

If the model did not derive a GUI control in Step 1, it looks next for a GUI keyword
on any attached table-style verifications. However, it only considers the
GUI_COMBOBOX and GUI_OPTIONBUTTON keywords as valid. Other key-
words are ignored.
– 164 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
The following example shows a hypothetical VALID-PROVINCE verification being
mapped to a ComboBox using the GUI_COMBOBOX keyword:

Predict Modify Verification Panel

Tip: Improve the readability of a verification value by adding its concise term in
the Comments field. Construct Spectrum displays the comment value in the
drop-down combo box or caption name of an option button. In the previous
panel, the full name of each province has been entered in the Comment field
that corresponds to its database verification value. If comment values are not
supplied, the database verification values are displayed.

Consider attaching a GUI keyword to a verification definition, rather than a field
definition, to implement a standard GUI representation for any field using the
same type of verification. This also eliminates the need to assign the keyword to
each field definition. You can override the GUI keyword on the verification defini-
tion by supplying one for the field definition.

13:12:21 ***** P r e d i c t 3.4.1 ***** 99-01-28
 - Modify Verification -
 Verification ID . VALID-PROVINCE Modified: 97-01-28 at 13:11
 Status Natural Construct by: DEVMT
 Keys .. GUI_COMBOBOX Zoom: N

 Format* A Alphanumeric Modifier Zoom: N
 Type* T Table of values
 Message nr 1112
 Replacement 1 ...
 Replacement 2 ...
 Replacement 3 ...
 Message text

 Comments Zoom: N Values * Zoom: N
 British Columbia BC
 Alberta ALTA
 Saskatchewan SASK
 Manitoba MAN
 Ontario ONT
 Quebec QC
 New Brunswick NB
 EDIT: Owner: N Desc: N * Rule: N
– 165 –

Developing Client/Server Applications ___5
For more information about these keywords, see the description for the
GUI_OPTIONBUTTON and GUI_COMBOBOX keywords in Step 1 — Search for
GUI Keywords on Field Definitions, page 161.

For more information about verifications, see Validating Your Data, page 327.

Step 3 — Search for Business Data Type Keywords on Field
Definitions

If the model could not derive a GUI control in Step 1 or 2, it next looks for a Busi-
ness Data Type (BDT) keyword in the Predict field definition. This panel is shown
in Step 1. Since you can augment the standard set of Spectrum supplied BDTs with
your own BDTs, the model will accept any keyword which begins with BDT.

If the model finds a BDT-prefixed keyword on the field definition, it uses a Text-
Box* GUI control to represent the field. Additionally, the model looks in the
keyword comments for an actual BDT type and modifier. If a BDT exists in the
comments, it is used.

Example of a BDT type with a modifier specified in the keyword comments

BDT=BDT_NUMERIC
MOD=”ZERO=OFF”

If no BDT or modifier is found, the model uses the BDT implied by the keyword it-
self. If no modifier was specified with the BDT, the BDT manager in the Construct
Spectrum client framework defaults a modifier.

You can create your own BDT keywords which only exist on the server and map
them to combinations of BDTs and modifiers on the client PC. For example, you
could create two BDT keywords, BDT_NUMERIC_ZERO and
BDT_NUMERIC_ROUND.

• Attach the BDT_NUMERIC_ZERO keyword to the field definition
The comments of the BDT_NUMERIC_ZERO keyword could contain
BDT=BDT_NUMERIC and MOD=”ZERO=ON”.

• Attach the BDT_NUMERIC_ROUND keyword to the field definition
The comments of the BDT_NUMERIC_ROUND keyword could contain
BDT=BDT_NUMERIC and MOD=”ROUND=ON”.
– 166 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Step 4 — Use Default Derivation

If the model has been unable to derive a GUI control in Step 1, 2, or 3, it uses its
built-in GUI derivation logic. This logic is best described pictorially in the following
diagram.
– 167 –

Developing Client/Server Applications ___5
Default Derivation of GUI Control - Part 1 of 2

User
Mapp ing?Yes

Use user mapping f rom
step 1, 2, or 3

(ensure i t is val id)

No

Fie ld Type

Data

Group

Scalar?

Gr id F rame

YesNo

in Repeat ing
Group?

Repeat ing
Fie ld?

YesNo

Format
CheckBox

Co lumn

Table
Veri f icat ion?

D, T, N, P,
I, F,A

No

ComboBox
Co lumn

No

Yes

L

Regular
Column wi th

BDT

Format
Dropdown Gr id ,

CheckBox Co lumn

D, T, N, P,
I, F,A

Dropdown
Grid,

ComboBox
Co lumn

Yes

L

Dropdown Gr id ,
Regular Co lumn

wi th BDT

Table
Veri f icat ion?

2

Drop-down Gr id
Co lumnsGr id Columns

No

D Date T Time
N Numeric P Packed
I Integer F Float
A A lphanumer ic

Key

Yes
– 168 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Default Derivation of GUI Control - Part 2 of 2

Repeat ing
Fie ld?

Yes

NoFormatCheckBox

Table
Veri f icat ion?

D, T, N, P,
I, F, A

Number o f
table values

Yes

Frame,
number of

Opt ion But tons

Label ,
ComboBox

5 or more

Label ,
Tex tBox
wi th LDT

Number o f
occurances

4 or
less

L

No

1 to
4

Format
Label, Grid,
CheckBox

Co lumn

Table
Veri f icat ion?

D, T, N, P,
I, F, A

No

Label, Grid,
ComboBox

Co lumn
Yes

L

Label, Grid,
Regular

Column wi th BDT

D, T, N, P,
I, F,A

No

Label ,
number of

ComboBoxes
Yes

Label , number
of TextBoxes

wi th BDT

Table
Veri f icat ion?

5 or
more

D Date T Time
N Numeric P Packed
I Integer F Float
A A lphanumer ic

Key

1

Scalar GUI
Contro ls

1-Co lumn
Grid Controls

GUI Contro l
Arrays

Format
Label , number of

CheckBoxes L
– 169 –

Developing Client/Server Applications ___5
The previous diagram illustrates that the choice of GUI control(s) used to represent
a database field depends on several threshold variables. You can control these
threshold points at a corporate level; that is, your default threshold values affect
all VB Maintenance Dialogs. This is accomplished by using Construct’s corporate
defaulting mechanism.

The corporate defaults that affect Construct Spectrum’s choice of a GUI control are
described in the following sections:

• Repeating Field Threshold

• Option Button Threshold

• Foreign Field Threshold

To assign a corporate default:

• Use the following code example as a guide to assigning a corporate default value.
The example illustrates how a work file number and column delimiter values are
defaulted.

Example of assigning corporate defaults

/*
/* Retrieve all model constants that are stored using the standard
/* defaulting method.
INCLUDE CCDEFLTN '''MAX-OPTION-BUTTON-COUNT'''
 'CUMDPDA.#MAX-OPTION-BUTTON-COUNT'
INCLUDE CCDEFLTN '''MAX-MU-COUNT''' 'CUMDPDA.#MAX-MU-COUNT'
INCLUDE CCDEFLTN '''MAX-DIALOG-WIDTH'''
 'CUMDPDA.#PDA-MAX-DIALOG-WIDTH'
INCLUDE CCDEFLTN '''MAX-DIALOG-HEIGHT'''
 'CUMDPDA.#PDA-MAX-DIALOG-HEIGHT'
INCLUDE CCDEFLTN '''FK-AS-COMBO-THRESH-HOLD'''
 'CUMDPDA.#PDA-FK-AS-COMBO-THRESH-HOLD'
** Note that there are 3 separate INCLUDE members: one for numeric
** defaults (CCDEFLTN), one for alphanumeric defaults (CCDEFLTA), and
** one for logical defaults (CCDEFLTL)
** Continue normal processing and the initial values may have been
** overridden by a corporate-supplied defaulting routine.

To apply the changes corporation-wide, you must add the initial variable name and
its initial value in the CSXDEFLT user exit routine.
– 170 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Note: The internal defaulting mechanism may be affected when you use this defaulting
mechanism to initialize the specification panel default keyword. Use the same key-
word for both mechanisms. The specification panel default keyword overrides the
internal default keyword.

Repeating Field Threshold

A repeating field that is not in a repeating group of fields is represented either by
a GUI control array, such as an array of TextBoxes, or by a one-column Grid
control.

The choice of GUI control depends on the MAX-MU-COUNT default value. If the
number of occurrences of a repeating field is less than or equal to MAX-MU-
COUNT, the field will be represented with a GUI control array.

The VB Maintenance Dialog model copies the MAX-MU-COUNT default value into
the #MAX-MU-COUNT variable of the model PDA (CUMDDPA) in the model’s
pre-generation subprogram (CUMDPR).

Option Button Threshold

A scalar field that has a table verification attached to it is represented either by a
Frame and series of OptionButtons or by a Label and ComboBox.

The choice of GUI control depends on the MAX-OPTION-BUTTON-COUNT
threshold default value. If the number of table verification values is less than or
equal to MAX-OPTION-BUTTON-COUNT, the field will be represented with a
Frame and OptionButtons.

The VB Maintenance Dialog model copies the MAX-OPTION-BUTTON-COUNT
default value into the #MAX-OPTION-BUTTON-COUNT variable of the model
PDA (CUMDDPA) in the model’s pre-generation subprogram (CUMDPR).

Foreign Field Threshold

If a scalar field represents a foreign field in another file, the maintenance dialog
provides additional GUI controls to allow the selection of these foreign values. The
maintenance dialog will either provide a button that opens a modal browse dialog
or generate a ComboBox and populate it at form-load time.
– 171 –

Developing Client/Server Applications ___5
The choice of GUI control depends partially on the FK-AS-COMBO-THRESH-
HOLD default. If the number of foreign key values is less than or equal to FK-AS-
COMBO-THRESH-HOLD, the field is represented with a ComboBox.

The VB Maintenance Dialog model copies the FK-AS-COMBO-THRESH-HOLD
default value into the #PDA-FK-AS-COMBO-THRESH-HOLD variable of the mod-
el PDA (CUMDPDA) in the model’s pre-generation subprogram (CUMDPR).

For more information about how foreign fields are represented with GUI controls,
see Understanding the Browse and Maintenance Integration, page 343.

Setting Generation GUI Standards
Construct generation technology enables you to standardize your code. Construct
Spectrum extends the benefits of standardization to the GUI realm. Default values
for properties of GUI controls, such as Font and ForeColor, are centrally estab-
lished. This means that if your company standard is to use a 10 pt. Arial font for
all labels on GUI screens, you need only change one line of code.

Construct Spectrum uses a series of utility Natural subprograms to control gener-
ation of GUI dialogs. Collectively, these subprograms are known as the Visual
Basic API. For each type of GUI control supported, there is a property default sub-
program which is responsible for supplying default properties for that GUI control.
The Visual Basic API always calls the property default subprogram for a GUI con-
trol before generating the definition for the GUI control. For example, the Visual
Basic API callnats CSVBDLBL, the property default subprogram for Label GUI
controls, before generating the definition for a label. This subprogram sets the de-
fault Height of a Label with the following line of code:

ASSIGN CSVALCTN.HEIGHT = 285

Following is a list of all the GUI controls supported by Construct Spectrum and the
associated property default subprogram for the GUI control.

GUI Control Subprogram GUI Control Subprogram

CheckBox CSVBDCHK ComboBox CSVBDCBO

CommandButton CSVBDCMD Form CSVBDFRM
– 172 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
You can change the default assignments made in any of the property default sub-
program standards through the Generated Maintenance classes API. For
information about changing these defaults, see Utility Subroutines on the Cli-
ent, page 477, in Construct Spectrum Reference Manual.

Note: Some properties, such as Top, Left, and Caption, are dependent on the data field as-
sociated with the GUI control or the field’s relative position in a Predict file. Do not
attempt to provide standards for this type of control. The model controls the values
for this type of property and will override any changes you specify.

Controlling the Size of a Maintenance Dialog
You can control the maximum dimensions of generated dialogs by specifying cor-
porate default values. Generated dialogs will not exceed these dimensions. The
maximum height and width values are supplied in a unit of measurement known
as TWIPS. The following table shows the TWIP value equivalent of pixels for com-
mon monitor resolutions.

Frame CSVBDFRA Grid CSVBDGRD

Label CSVBDLBL ListBox CSVBDLST

OptionButton CSVBDOPT StatusBar CSVBDSTA

TextBox CSVBDTXT Timer CSVBDTMR

Resolution In Pixels TWIPS - Small Fonts
(factor of 15)

TWIPS - Large Fonts
(factor of 12)

640 x 480 9600 x 7200 7680 x 5760

800 x 600 12000 x 9000 9600 x 7200

1024 x 768 15360 x 11520 12288 x 9216

1280 x 1024 19200 x 15360 15360 x 12288

GUI Control Subprogram GUI Control Subprogram
– 173 –

Developing Client/Server Applications ___5
Know the lowest resolution monitor your application will be used on and generate
dialogs to fit that monitor. You can set default values for the maximum height and
width of your dialog by using Construct’s corporate defaulting mechanism. The de-
fault values are MAX-DIALOG-HEIGHT and MAX-DIALOG-WIDTH.

The VB-Maintenance-Dialog model obtains these defaults in its pre-generation
subprogram (CUMDPR) and copies them into the #PDA-MAX-DIALOG-HEIGHT
and #PDA-MAX-DIALOG-WIDTH variables of the model PDA (CUMDPDA).

For information about changing a corporate default value, see Step 4 — Use De-
fault Derivation, page 167.

Overflow Conditions

Overflow conditions occur when a dialog cannot display all of its controls. Consider
the following scenario. You are developing an application on a monitor with a res-
olution of 9600 x 7200 TWIPS and you generate a dialog that reaches a height of
10000 TWIPs. When you open the dialog in the Visual Basic editing environment,
a third of the GUI controls extend off the bottom of the screen. This is known as an
overflow condition. The only way to work with the hidden GUI controls is to select
the control from the Properties panel and manually manipulate their Left and Top
properties — not a visual solution! For information about correcting overflow con-
ditions, see Working with Overflow Frames, page 179.
– 174 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Customizing on the Client
This section describes the different mechanisms available on the client platform for
customizing the generation results of a Visual Basic maintenance object and a
maintenance dialog.

Creating Calculated Fields
Creating GUI controls whose values are based on the values of other GUI controls
is a common customization task. This task involves modifications to both the main-
tenance dialog and the Visual Basic maintenance object.

For information about deriving values from a foreign field on a maintenance dialog,
see Supporting Multiple Descriptive Values and Derived Values, page 360.

Does a GUI Control Exist for the Calculated Field?

The first step in creating a calculated field is to ensure that a GUI control exists on
the maintenance dialog to hold the calculated value. If the field is defined in Pre-
dict, it will already exist on the dialog. Make sure that the control is not enabled.
If the control is a scalar GUI control — such as a TextBox or ComboBox, set the
control’s Enabled property to False. If the control is a grid, modify the code in the
LoadGridNameGrid (where GridName is a unique variable) routine.

Tip: In Predict, add the GUI_PROTECTED keyword to a calculated field. This
keyword can be added to both input and output-only fields.

If a GUI control does not exist to hold the calculated value and it will not be stored
in the database, add the GUI control by hand. For information about adding a GUI
control by hand, see Adding a New Field by Hand, page 185.
– 175 –

Developing Client/Server Applications ___5
Coding the Calculation

The calculation must be triggered whenever the value of one of the fields involved
in the calculation changes. Use the LostFocus event to trigger such a calculation.

Note: The calculation should not be performed in the dialog code. Keep customized code
in the dialog to a minimum. Rather, add the calculation code to the Visual Basic
maintenance object. The function call might look similar to the following example.

Example of a function call in the maintenance dialog

txt_Empl_Pay.Text = InternalObject. _
 Calc_Pay(CLng(txt_Empl_Rate.Text), CLng(txt_Empl_Hours.Text))

The function can also accept the parameters required to perform the calculation
and return the result, such as in the following example.

Example of calculation code in the Visual Basic maintenance object

Public Function Calc_Pay(Rate As Long, Hours as Long) As Currency
 Calc_Pay = Rate * Hours
End Function

Integrating Maintenance and Browse Functions
When a foreign key field is included in a Predict defined file and you generate a
maintenance dialog for the file, Construct Spectrum automatically includes browse
capabilities for the foreign field. A browse linked to a maintenance dialog can be
implemented as a drop-down list or as a dialog.

For more information about how maintenance and browse functions are integrat-
ed, see Understanding the Browse and Maintenance Integration, page 343.
– 176 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Validating Data Using the Visual Basic Maintenance
Object

The Visual Basic maintenance object is an ideal place to code simple business val-
idations. The model provides the CLIENT-VALIDATION user exit for this
purpose. Coding validations on the client reduces the number of data entry errors
on your dialog before the data is transmitted across the network, thus enhancing
the overall performance of your application. Avoid coding validations in the Visual
Basic maintenance object that involve network calls; these could trigger a network
call every time you change focus from one field to the next. For more information
about validating your data, see Validating Your Data, page 327.

Tailoring the Maintenance Dialog
This section describes how to tailor your maintenance dialog. This section contains
information about tailoring the dialog’s appearance, adding and removing fields,
and working with special types of fields.

The most common tailoring task you will encounter is altering the layout of GUI
controls as they were generated on the dialog. By default, GUI controls are gener-
ated in two columns from top to bottom, with labels on the left and input controls
on the right. Following is an image of a typical maintenance dialog as it would ap-
pear after generation.
– 177 –

Developing Client/Server Applications ___5
Typical Generated Maintenance Dialog

When tailoring the dialog’s appearance, the changes should enhance the usability
of the application. For example, group related fields so the user can easily see that
they are related. The user should be able to move from field to field in a way that
coincides with how they would logically perform their tasks.

There are many reasons why you would alter the appearance of your dialog, such
as conforming to layout standards used by your organization. For example, there
may be users whose monitor resolution is 640 by 400 pixels. Your organization
wants all of your applications to run effectively on these users’ machines. For more
information about generating dialogs based on a specific monitor resolution, see
Controlling the Size of a Maintenance Dialog, page 173.
– 178 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Following are several suggestions on how to lay out your maintenance dialogs so
that they meet your organization’s requirements. Each suggestion contains a dia-
gram that depicts the layout. Each diagram is based on layout changes that were
applied to the generated maintenance dialog shown previously.

Note: Many of the procedures described in this section require you to perform tasks specific
to Visual Basic. For more information, see the documentation that comes with Visu-
al Basic.

Working with Overflow Frames

Overflow conditions occur when a dialog cannot display all of its controls. When an
overflow condition is encountered by the VB-Maint-Dialog model, it responds by
generating a Frame control that is the same size as the dialog itself. The frame
overlays the other GUI controls on the dialog. The model then continues generating
new GUI controls in the Frame container control. If the first frame becomes filled,
the model generates another frame. The process continues until all the fields in the
Predict file are represented by a GUI control.

The following example shows what a dialog looks like when an overflow condition
is encountered:

Dialog Overflow Conditions
– 179 –

Developing Client/Server Applications ___5
When a dialog generates overflow frames, rearrange the GUI controls using one of
the layouts described in this section. This will largely be a job of cutting and past-
ing GUI controls from the overflow frame(s) onto the dialog itself.

To work with an overflow frame:

1 Open the Construct Spectrum project that contains the dialog form (.frm) file you
want to modify.

2 On the Project Window, select the dialog form and then select View Form.
The dialog is displayed.

3 Make the dialog as large as you can and drag the frame to a free area of the screen.
All of the controls within the frame are moved as well. If the frame is blocking your
view of other controls, shrink the size of the frame.

4 Rearrange the GUI controls using one of the layouts described in the following
sections.
– 180 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Multi-column Layout

Use a multi-column layout when your dialog contains a large number of fields. For
example, if a dialog will be too long and can be wider.

To create a multi-column layout:

1 Drag some of your GUI controls over to create a second column of information.

2 If one or two fields are significantly wider than others and are impeding your
attempts to create a second column, consider shrinking the width of these controls.
Users can still type in large data values although they cannot see the entire value
in the field.
The following example shows the same maintenance dialog presented at the
beginning of this section, this time in a two-column layout:

Maintenance Dialog in a Multi-Column Layout
– 181 –

Developing Client/Server Applications ___5
Tabbed Layout

If your dialog is larger than you would like and there is not sufficient room to create
multiple columns, consider placing some or most of the GUI controls inside tab
pages.

To create a layout with tab pages:

1 Using the Sheridan tab which comes with Visual Basic Professional Edition, move
GUI controls to a tab page by cutting them from the dialog (or overflow frame)

2 Select the tab control and paste the GUI controls onto the tab.
You can now drag them to the appropriate location.

Tip: To place a group of GUI controls on the same tab page, cut and paste all the
controls at the same time. The GUI controls will maintain there position rel-
ative to one another. In general, do not place key field(s) on a tab page. Key
field(s) should always be visible and easily accessible.

The following example shows the same maintenance dialog presented at the begin-
ning of this section, this time in a tabbed layout:
– 182 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Maintenance Dialog with Tab Pages

State-Dependent Layout

A state-dependent layout is the most difficult type of layout to create. Use this lay-
out when many of the fields on the dialog are mutually exclusive (displayed and
enabled only when the dialog is in a specific state).

To create a state-dependent layout:

1 Add a State field to the dialog.
This field is always visible and controls the current state.

2 Assign other fields on the dialog to a specific state.

3 Move the GUI controls on the screen so that fields belonging to one state overlap
those in the other states.

4 Write code to make the fields from one state visible and the fields from the other
states invisible whenever the state field changes.
– 183 –

Developing Client/Server Applications ___5
Tip: It may be easier to create two frames and place the state-dependent fields in-
side the frames. Make the frames visible or invisible depending on the cur-
rent state.

In the following example, there is a new GUI control called Address Toggle; its la-
bel is Primary Address. This GUI control is the State field. It controls when to
display Mailing Address information and when to display Shipping Address
information:

Maintenance Dialog with a State-Dependent Layout
– 184 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Adding a New Field by Hand

If you add a new field to your Predict file definition and have already generated a
dialog, it may be more efficient to manually add the new field to your dialog rather
than regenerating the dialog. This is especially true if you have already tailored the
generated form.

The tasks required to add a new field to a dialog by hand vary depending on the
cardinality of the field (whether the field can display one, two, or more dimensions
of information). One-dimensional information is displayed within a scalar GUI con-
trol. Information with two, three, or four dimensions is displayed either in a
column in a grid control or in a control array such as an array of text boxes.

Adding a Scalar Field by Hand

A scalar GUI control represents one-dimensional information. Most controls on a
dialog are scalar; for example, a name, an address, or an order number are typically
represented with scalar fields.

To add a scalar field:

1 Determine the type of GUI control to represent your new database field. GUI
controls for scalar data include:

• TextBox

• ComboBox

• CheckBox

• Frame with a group of OptionButtons.

2 Drag the desired type of GUI control onto the dialog from the Visual Basic toolbox.

3 Add a label and GUI control input name for the control.

Tip: Choose your names based on the naming conventions used by other Con-
struct Spectrum GUI controls.
For information about Construct Spectrum naming conventions, see Deriv-
ing Variable Names, page 159.
– 185 –

Developing Client/Server Applications ___5
4 Follow the instructions provided in this section for the type of control you are
adding. These procedures contain information about creating event code blocks for
the new control and about adding code to some standard subroutines to implement
the control.

A ComboBox control utilizes a single drop-down list from which users can select a
value. The user cannot, however, type additional values in the list. The client
framework includes the ComboClass.cls, which is useful for populating ComboBox
GUI controls and Combo columns of a grid. The ComboClass allows you to define
pairs of values: a database value and a display value.

If the new database field is a repeating field (MU field), create a control and use
the same techniques described in this section. Ensure that the code blocks use an
Index parameter. Control arrays are zero-based whereas array information stored
in the Object PDA is one-based.

To add a TextBox GUI control for a field:

1 Add a new assignment statement to the CopyObjectToForm subroutine.
This copies the Object PDA field value to the GUI control. The following code is a
sample assignment statement:

txt_CUST_NewField.Text =
 BDT.ConvertToDisplay(.Field("NEW-FIELD"), _
 NatFormatLength:="A6")

2 Add a new case statement to the CheckRemoteError subroutine.
This statement enables the dialog to assign an error object to the field if the
maintenance object subprogram on the server encountered a validation error for
the field. The following code is a sample case statement:

Case "NEW-FIELD": Set ErrControl = txt_CUST_NewField

3 Add Change event code for the new GUI control.
This code indicates to the dialog that the value of the field has changed. It also
indicates that at least one field in the business object has changed. The following
code is a sample Change event:

Private Sub txt_CUST_NewField_Change()
 ValueChanged = True
 ObjectChanged = True
End Sub
– 186 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
4 Add GotFocus event code for the new GUI control.
This code displays an error tip for the field if there is an object error attached to
the field. The following code is a sample GotFocus event:

Public Sub txt_CUST_BusinessName_GotFocus()
 ValueChanged = False
 cstSelectContents
 CSTUtils.cstDisplayErrorTip Me
End Sub

5 Add LostFocus event code for the new GUI control.
If the user changed the value of the control, this code removes any object errors
from the control and assigns the control’s value to the field in the Object PDA. If
an error was detected during the assignment, an object error is applied to the
control. The following code is a sample LostFocus event:

Public Sub txt_CUST_NewField_LostFocus()
 Dim Value As String
 CSTUtils.ErrorTip.HideErrorTip
 If ValueChanged Then
 ErrorMsg = ""
 RemoveUnneededControlErrors Me, _
 txt_CUST_NewField, ValueChanged
 Value = txt_CUST_NewField.Text
 ValidAssignment Value, InternalObject, _
 "NEW-FIELD", ErrorMsg, NatFormatLength:="A6"
 txt_CUST_NewField.Text = Value
 If ErrorMsg <> "" Then
 ParseErrorString ErrorMsg, ErrorNr, ErrorSrc
 SetObjectError Me, txt_CUST_NewField, ErrorNr, _
 ErrorMsg, ErrorSrc

 End If
 End If
End Sub

To add a ComboBox GUI control for a field:

1 Add code to the Form_Load event to load and initialize a ComboClass instance with
the valid values. The following code is a sample load/initialize statement:

ProvList.Load cbo_CUST_Prov
ProvList.AddItem "British Columbia"
…

Note: If you are loading values from an external source such as a PC connected to your
LAN, code the necessary logic to load these values now.
– 187 –

Developing Client/Server Applications ___5
2 Add code to the CopyObjectToForm subroutine to update the ComboBox with
values.
The update is accomplished by assigning a value from the ComboClass.cls to the
ListIndex property of the ComboBox control. The following is a sample statement
to update the ComboBox with values:

cbo_CUST_Prov.ListIndex = ProvList.GetIndex(.Field("PROV"))

3 Add code to update the business object when the selected value of the ComboBox is
changed, as occurs when a Click event is triggered.
The following is a sample statement executed on the client to update the business
object with a new database value:

Value = _
 ProvList.DBValue(cbo_CUST_Prov.ItemData(cbo_CUST_Prov.ListIndex))
ValidAssignment Value, InternalObject, "PROV", ErrorMsg, _
 NatFormatLength:="A20"

For more information about using the ComboClass, see Maintenance Classes,
page 249, in Construct Spectrum Reference Manual.

To add a CheckBox field:

Note: The sample code for this procedure assumes that the new database field is
Alphanumeric.

1 Add a new assignment statement to the CopyObjectToForm subroutine.
This copies the object PDA’s field value to the GUI control. The following code is a
sample assignment statement:

chk_CUST_NewField.Value = IIf(.Field("NEW-FIELD") <> "", _
 vbChecked, vbUnchecked)

2 Add a new case statement to the CheckRemoteError subroutine.
This statement enables the dialog to assign an error object to the field if the object
maintenance subprogram on the server encountered a validation error for the field.
The following code is a sample case statement:

Case "NEW-FIELD": Set ErrControl = chk_CUST_NewField

3 Add Click event code for the new GUI control.
The functions performed in the Click event are to indicate that the field value has
changed, remove any object errors from the control, assign the new value to the
Object PDA (client’s version), set an object error for the control if an error was
encountered during the assignment, and finally display an error tip if an error is
attached to the control. The following code is a sample Click event:
– 188 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Private Sub chk_CUST_NewField_Click()
 Dim ErrorMsg As String

Public Sub chk_CUST_NewField_GotFocus()
 ValueChanged = False
 cstSelectContents
 CSTUtils.cstDisplayErrorTip Me
End Sub

 End If
 NewFieldNdx = Index
 CSTUtils.cstDisplayErrorTip Me
 End If
End Sub

4 Add GotFocus event code for the new GUI control.
This code displays an error tip for the field if there is an object error attached to
the field. The following code is a sample GotFocus event:

Public Sub chk_CUST_NewField_GotFocus(Index As Integer)
 ValueChanged = False
 cstSelectContents
 CSTUtils.cstDisplayErrorTip Me
End Sub

Adding a Regular Grid Column for a Field

Grid controls are used to represent two, three, or four-dimensional information. If
the field you are adding is part of a grid, you must perform modifications to the col-
umn indexing values of some of the grid variables. For information about
manipulating grid controls, see Using the Grid, page 202.

Each column within a grid is associated with a database field. The grid code must
know the relative position of a column to identify its associated database field.
Therefore, when adding a grid column, you must adjust the column indices in the
dialog code as described in the following steps.
– 189 –

Developing Client/Server Applications ___5
To add a Regular Grid Column for a field:

1 In the Global Declarations section, increase the MAX_GridName_COLS constant
by one.

Sample code before

Public IncomeGrid As New TrueGridClass
Const MAX_NCSTORDERHASLINES_COLS = 8
Const MAX_NCSTORDERHASLINES_ROWS = 30

Sample code after

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS = 9
Const MAX_INCOME_ROWS = 30

2 In the CheckRemoteError sub section, increase the ErrColumn value in the case
statement for every field in the same grid with a higher column number than the
new column.

Sample code before

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 5

Sample code after

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "NEW-FIELD"
 Set ErrControl = IncomeGrid
 ErrColumn = 5
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 6
– 190 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
3 In the grd_ObjectName_GridName_UpdateObject sub section (where ObjectName
and GridName are unique variables), increase the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

Sample code before

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
Case 5
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"

Sample code after

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"Case 5
 FieldName = "NEW-FIELD(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "A10"
Case 5
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
– 191 –

Developing Client/Server Applications ___5
4 In the LoadGridNameGrid sub section, add a call to the ColumnAdd method. If the
new column is not to be modified, include the Modifiable:=False parameter.

Sample code before

.ColumnAdd "Product/Suffix", BDT_ALPHA, "A2"

.ColumnAdd "Line/Description", BDT_ALPHA, "A40"

Sample code after

.ColumnAdd "Product/Suffix", BDT_ALPHA, "A2"

.ColumnAdd "New/Field", BDT_ALPHA, "A5", Modifiable:=False

.ColumnAdd "Line/Description", BDT_ALPHA, "A40"

5 In the CopyGridNameToForm subroutine, for each assignment statement within
the for loop(s), increase the second index of the array variable on the left side of the
assignment if the column number is higher than the new column.
Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new
field is defined on the database, add an assignment statement for the field.
– 192 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Sample code before

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
 IncomeGrid.GridData(i, 5) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")

Sample code after

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
IncomeGrid.GridData(i, 5) = _
 BDT.ConvertToDisplay(.GetField("NEW-FIELD", i), _
 NatFormatLength:="A10")
IncomeGrid.GridData(i, 6) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")

6 In the grd_ObjectName_GridName_KeyDown section, increase the
ColumnNumber by one if there is an If or ElseIf statement such as If CurrCol =
ColumnNumber where ColumnNumber is greater than or equal to the number of
the new column.

Sample code before

ElseIf CurrCol = 5 Then
 If KeyCode = ..

Sample code after

ElseIf CurrCol = 6 Then
 If KeyCode = ..
– 193 –

Developing Client/Server Applications ___5
To add a ComboBox Grid Column for a field:

1 In the Form_Load event, add code to populate the ComboClass object for the
selection list associated with the new field.

Sample code

NewFieldList.Load NewFieldColumn
NewFieldList.AddItem "CDN", "Canadian Dollar"
NewFieldList.AddItem "USA", "American Dollar"
NewFieldList.AddItem "GER", "German Mark"
NewFieldList.AddItem "FRA", "French Franc"

2 In the Global Declarations section, declare a variable as type Column. This
variable is used in the Form_Load event and the Load_GridName_Grid sub. Also
increase the MAX_GridName_COLS constant by one.

Sample code before

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS = 8
Const MAX_INCOME_ROWS = 30

Sample code after

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS = 9
Const MAX_INCOME_ROWS = 30
Private NewFieldColumn As Column

3 In the CheckRemoteError sub section, increase the ErrColumn value in the case
statement for every field in the same grid which has a higher column number than
the new column.
– 194 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Sample code before

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 5

Sample code after

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "NEW-FIELD"
 Set ErrControl = IncomeGrid
 ErrColumn = 5
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 6

4 In the grd_ObjectName_GridName_UpdateObject sub section (where ObjectName
and GridName are unique variables), increase the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

Sample code before

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
Case 5
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
– 195 –

Developing Client/Server Applications ___5
Sample code after

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
Case 5
 FieldName = "NEW-FIELD(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "A10"
Case 6
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"

5 In the LoadGridNameGrid sub section, add a call to the ColumnAdd method. If the
new column is not to be modified, include the Modifiable:=False parameter. In
this example, the Presentation argument is set to dbgSortedComboBox. It is this
setting which makes the column behave like a ComboBox.

Sample code before

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"

.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

Sample code after

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"

.ColumnAdd "New/Field", BDT_ALPHA, "A10", _
 Presentation:=dbgSortedComboBox
.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

6 In the CopyGridNameToForm sub section, for each assignment statement within
the for loop(s), increase the second index of the array variable on the left side of the
assignment if the column number is higher than the new column.
Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new
field is defined on the database, add an assignment statement for the field.
– 196 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Sample code before

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
 IncomeGrid.GridData(i, 5) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")

Sample code after

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
IncomeGrid.GridData(i, 5) = _
 BDT.ConvertToDisplay(.GetField("NEW-FIELD", i), _
 NatFormatLength:="A10")
IncomeGrid.GridData(i, 6) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")

7 In the grd_ObjectName_GridName_KeyDown section, increase the
ColumnNumber by one if there is an If or ElseIf statement such as If CurrCol =
ColumnNumber where ColumnNumber is greater than or equal to the number of
the new column.

Sample code before

ElseIf CurrCol = 5 Then
 If KeyCode = ..

Sample code after

ElseIf CurrCol = 6 Then
 If KeyCode = ..
– 197 –

Developing Client/Server Applications ___5
To add a CheckBox Grid Column for a field:

1 In the Global Declarations section, declare constants to represent true and false
database values. This variable is used in the grd_GridName_UpdateObject and
CopyGridNameToForm subs. Also increase the MAX_GridName_COLS constant
by one.

Sample code before

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS = 8
Const MAX_INCOME_ROWS = 30

Sample code after

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS = 9
Const MAX_INCOME_ROWS = 30
Const NEWFIELD_FALSE_CONST = "AAA"
Const NEWFIELD_TRUE_CONST = "BBB"

2 In the CheckRemoteError sub section, increase the ErrColumn value in the case
statement for every field in the same grid which has a higher column number than
the new column.

Sample code before

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 5
– 198 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Sample code after

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "NEW-FIELD"
 Set ErrControl = IncomeGrid
 ErrColumn = 5
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 6

3 In the grd_ObjectName_GridName_UpdateObject sub section (where ObjectName
and GridName are unique variables), increase the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

Sample code before

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
Case 5
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
– 199 –

Developing Client/Server Applications ___5
Sample code after

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
Case 5
 FieldName = "NEW-FIELD(" & IncomeRow & ")"
 Value = IIf(grd_EMPL_Income.Columns(ColIndex).Value = _
 TRUE_STRING, NEWFIELD_TRUE_CONST, _
 NEWFIELD_FALSE_CONST)
 NatFormatLength = "A10"
Case 6
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"

4 In the LoadGridNameGrid sub section, add a call to the ColumnAdd method. In
this example, the BDT argument is set to BDT_BOOLEAN, regardless of the
format of the underlying database field. It is this setting which makes the column
behave like a CheckBox.

Sample code before

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"

.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

Sample code after

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"

.ColumnAdd "New/Field", BDT_BOOLEAN, "A10"

.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

5 In the CopyGridNameToForm sub section, for each assignment statement within
the for loop(s), increase the second index of the array variable on the left side of the
assignment if the column number is higher than the new column.
Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new
field is defined on the database, add an assignment statement for the field.
– 200 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Sample code before

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
 IncomeGrid.GridData(i, 5) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")

Sample code after

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
If NEWFIELD_FALSE_CONST = 0 Then
 IncomeGrid.GridData(i, 5) = _
 IIf(.GetField("NEW-FIELD", i) <> "", _
 TRUE_STRING, FALSE_STRING)
Else
 IncomeGrid.GridData(i, 5) = _
 IIf(.GetField("NEW-FIELD", i) = NEWFIELD_TRUE_CONST, _
 TRUE_STRING, FALSE_STRING)
End If
IncomeGrid.GridData(i, 6) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")

6 In the grd_ObjectName_GridName_KeyDown section, increase the
ColumnNumber by one if there is an If or ElseIf statement such as If CurrCol =
ColumnNumber where ColumnNumber is greater than or equal to the number of
the new column.

Sample code before

ElseIf CurrCol = 5 Then
 If KeyCode = ..

Sample code after

ElseIf CurrCol = 6 Then
 If KeyCode = ..
– 201 –

Developing Client/Server Applications ___5
Removing a Field by Hand

The steps required to remove a field are the reverse of those for adding a field. To
remove a scalar field by hand, see Adding a Scalar Field by Hand, page 185, and
reverse the procedure. To remove a grid column field by hand, see Adding a Reg-
ular Grid Column for a Field, page 189, and reverse the procedure.

Using the Grid

Construct Spectrum supports business object data with up to four dimensions.
Business objects with two or more dimensions are referred to as complex business
objects. The VB-Maint-Dialog model uses the True DBGrid control to present com-
plex objects on dialogs. To the user, the grid is displayed as a table with each row
displaying a unique record, for example, a customer order line. Each column in the
grid displays a specific type of information such as a name, a quantity, a price, and
so on. The Construct Spectrum client framework comes with the TrueGridClass.cls
— a class that encapsulates the True DBGrid control and shields the developer
from many of the intricacies of using the grid.

You can write your own code to use Construct Spectrum’s TrueGridClass.cls, you
can write code to directly manipulate the True DBGrid control, or you can custom-
ize the TrueGridClass.cls to meet your specific needs.

For information about the methods and property interfaces of the TrueGrid-
Class.cls, see Maintenance Classes, page 249, in Construct Spectrum Reference
Manual.

For information about working with the True DBGrid directly, refer to the True-
Grid folder located in Spectrum SDK.

Nested Grids

A single grid can only display data which has the same cardinality — that is, the
same number of dimensions. Therefore, if a business object contains both two and
three-dimensional information, two grids are required to display all the data.
– 202 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
The demo application (described in Chapter 2) contains an Order Entry example
that is a complex business object. The Order Entry example has two grids: one
showing order line details and one showing distribution details for each order line.
Using the Order Entry as an example, consider the following diagram which shows
the relationships between the Order object files and the GUI controls.

Relationship Between a Complex Business Object and GUI Controls In a Grid

In this example, there is a one-to-many relationship between the Order Lines grid
and the Distributions grid. The Distributions grid is said to be nested within the
Order Lines grid. Because it is nested, it only displays the rows that are related to
the row that is currently selected in the Order Lines grid.

NCST-DISTRIBUTIONS

NCST-ORDER-LINES

NCST-ORDER-HEADER

various scalar GUI
controls

Distribution grid

Order Lines grid
control

(1,n)

(1)

(1)

(1,n)
– 203 –

Developing Client/Server Applications ___5
Nested Drop-Down Grids

A drop-down grid is a special type of nested grid that can be used to display nested
information. Drop-down grids are used when there is a single repeating field (an
MU field) within a block of grid information. In the following data definition exam-
ple, the Address field maps to a drop-down grid.

01 EMPLOYEE-INFO(1:10)
 02 NAME(A10)
 02 ADDRESS(A20/1:3)
 02 SALARY(P10.2)

Drop-down grids appear to drop-down out of a parent grid. The parent grid has a
placeholder column from which to invoke a drop-down grid. This column is referred
to as a drop-down column. Drop-down columns are distinguished from other grid
columns because each cell contains a down button from which drop-down data is
accessed and because drop-down data is prefixed with an occurrence number:

Drop-Down Grid

Nested drop-down grids differ from regular grids in two major ways. First, the GUI
control name is prefixed with ddg rather than grd. Second, the size and position of
the nested drop-down grid is controlled by the code at runtime. Therefore, do not
tailor the size and position of the drop-down grid.

Drop-down
column —
placeholder for
drop-down grid

Drop-down grid
for repeating
field (Bonus)
– 204 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Note: Nested drop-down grids share the same container as their parent grid, that is, the
grid from which the nested drop-down grid is accessed.

Displaying Grids

When the VB-Maint-Dialog model generates a grid control on the dialog, it does not
set the grid’s properties and, therefore, the grid does not appear properly formatted
within the Visual Basic design environment. The following example shows what
the grid looks like in the Visual Basic design environment:

Unformatted Grid

Instead, the model generates a subroutine, called LoadGridNameGrid, which is
called from the Form_Load event at run time. One load subroutine is generated for
each grid on the dialog. Each load subroutine is responsible for formatting a grid
before it is displayed to the user. The load subroutine makes a call to the TrueGrid-
Class.cls Load method to initialize the grid. It then calls the class ColumnAdd
method for each field column to be added to the grid. When the Load subroutine is
finished executing, the grid is displayed as follows:

Formatted Grid

For more information about the load and add methods, see Maintenance Classes,
page 249, in Construct Spectrum Reference Manual.
– 205 –

Developing Client/Server Applications ___5
Resizing Grids

The load subroutine described in Adding a Regular Grid Column for a Field,
page 189, makes one final method call (SetWidth) to the TrueGridClass.cls to re-
size the width of the grid based on the length and format of the fields represented
in the grid. The TrueGridClass.cls makes the grid as wide as required to display
all the columns of information, unless it exceeds the right border of the dialog. In
this case, a horizontal scroll bar is displayed on the grid, allowing you to scroll the
grid to see hidden fields.

Because the TrueGridClass.cls automatically resizes the grid, this can cause prob-
lems when working on the layout of other GUI controls surrounding the grid. For
example, if you want to place GUI controls to the right of the grid, it is difficult to
determine at design time whether the grid will overlap the controls at runtime.

You can deal with this situation in two ways: resize the grid using the Grid Sizing
dialog or resize the grid manually. The first option involves working with the au-
tomatic grid resizing feature. The second option involves disabling this feature and
sizing your grid manually. Use the second option when you require more control
over the width of your grid and do not require all grid columns to be visible at once.
– 206 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
To resize your grid using the Grid Sizing Information dialog:

1 Run the application.
As the dialog loads, the Grid Sizing Information dialog is displayed:

Grid Sizing Information Dialog

This modal dialog indicates how big to make grids on your form at design time so
all grid information is visible and scroll bars are not necessary. Note this informa-
tion and stop the running application.

2 Re-enter the Visual Basic design mode and resize the grid(s) based on the
information you gathered from the Grid Sizing Information dialog.
Now you can determine where you can safely place other GUI controls that are in
close proximity to the grid.

3 Suppress the display of the Grid Sizing Information dialog when you no longer
need this information.
To suppress the dialog, comment out the following event code in the Form_Activate
event:

If Not RepressGridSizingDisplay Then
 DisplayGridSizingInfo
 RepressGridSizingDisplay = True
End If
– 207 –

Developing Client/Server Applications ___5
To resize your grid manually:

1 Disable automatic grid resizing by commenting out the SetWidth call in the load
subroutine.
Commenting out this call will not affect the calculated width of each column but
will keep the grid from resizing itself to make all columns visible.

2 Resize the height and width of the grid manually in the Visual Basic design
environment.

Tip: At runtime, if there are more columns than can be displayed in the specified
width, a horizontal scroll bar is displayed at the bottom of the grid. Users can
click the scroll bar to see the remaining columns.

3 Comment out the code that displays the Grid Sizing Information dialog (as
described in the previous procedure).

Adding Sound to Error Notifications
This section explains how to add sound support to your error notification informa-
tion. When a field is in error, a Construct Spectrum application can notify the user
in several ways. First, the background color of the field can be set to a different col-
or such as red. Second, when the user tabs into the field, the application can display
an error tip which looks similar to a Windows tooltip. Construct Spectrum also
gives you the option of including sound information with an error.

A Construct Spectrum application can play an error sound file that you provide
when the user tabs into a field which is in error or when the user clicks on the
sound icon in an error tip. These options can be set by the user.

For more information about setting error notification preferences, see Using the
Demo Application, page 68.

Construct Spectrum uses the .wav file format for error sound files. You can use
Window’s Sound Recorder application to record .wav files for your application
errors.

Note: If no error sound file exists for a specific GUI control and error, no sound icon is dis-
played in the error tip — even if the user has selected the sound icon as an error
notification preference.
– 208 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Understanding How a Sound File is Associated With an Error

When an error sound is to be played, a Construct Spectrum application uses a pre-
defined convention to associate a .wav file with a specific error. The components re-
quired to create this association are outlined in the following table:

Error
Component

Source of Error
Component

Description

Sound File
Path

ERROR_SOUND_
PATH constant

Location of the .wav files. (declared in
CSTObjectConstants.bas). If the constant is
empty, the application defaults to the value of
App.Path.

Language
Indicator

Res.Language Language indicator. By default, Construct
Spectrum applications use the language
indicators used by Natural (for example,
1=English, 2=German, 3=French).

For a list of language indicators, see System
Variables in Natural Reference Manual.

Error Source ObjectError.
MsgType

Error source. Construct Spectrum applications
recognize four distinct error sources:

• Business data type (BDT) errors

• Spectrum Dispatch Client (SDC) errors

• Local business validation errors
(originating in a Visual Basic maintenance
object)

• Server errors (originating in an object
subprogram)

Valid error source values are represented by
constants stored in CSTObjectConstants.bas.
These constants are:

• ERROR_SOURCE_SDC

• ERROR_SOURCE_BDT

• ERROR_SOURCE_VALIDATE

• ERROR_SOURCE_SERVER
– 209 –

Developing Client/Server Applications ___5
These components are assembled as follows:

Sound File Path + \ + Language Indicator + Sound File Delimiter + Error Source
+ Sound File Delimiter + Error Number + .wav

The following example shows how the application attempts to associate a .wav file
with an error:

Example input

ERROR_SOUND_PATH = blank
Res.Language = 1
ObjectError.MsgType = ERROR_SOURCE_SDC (1)
ObjectError.ErrorNr = 522
SOUND_FILE_DELIMITER = "-"

Example output

C:\Program Files\Construct Spectrum\MyApp\1-1-522.wav

Error Number ObjectError.
ErrorNr

Error within the specified error source.

Sound File
Delimiter

SOUND_FILE_
DELIMITER
constant

Character used to delimit the components of an
error sound file.

Error
Component

Source of Error
Component

Description (continued)
– 210 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Tip: Errors that originate in the SDC, BDT, or local validation layers are raised
using Visual Basic’s Err object. The error number used when raising the er-
ror is derived by adding a Visual Basic constant (vbObjectError) to a unique
application-specific number. Look at the constants defined in CSTConst.bas
for examples. These errors are all handled in the ValidAssignment subrou-
tine in the BDTSupport.bas module. To make the error number more read-
able (adding vbObjectError produces a large, negative number), the
ValidAssignment subroutine subtracts vbObjectError from the error num-
ber. Therefore, the original, unique, application-specific number is used to
associate a .wav file with an error.

Multilingual Support for Maintenance Dialogs
Construct Spectrum provides support for multilingual applications. To set up a
multilingual application, create language specific resource files for the application.

The generated maintenance dialog and Visual Basic maintenance object have code
that looks for resources in the application directory in a resource file called App.
For each supported language, create App.* resource files (where * is the language
code). The generated dialogs will then use the resource files.

For more information about setting up multilingual applications, see Interna-
tionalizing Your Application, page 367.
– 211 –

Developing Client/Server Applications ___5
Uploading Changes to the Server
Sometimes changes occur on the server, such as changes to the Predict file and field
definitions used by your maintenance dialog. It is often easier to regenerate the af-
fected modules than to implement the changes by hand. This includes modules that
were generated for the client — specifically, Visual Basic maintenance objects.

If you have tailored a Visual Basic maintenance object or a maintenance dialog on
the client (for example, by adding user exit code), upload the client version of the
Visual Basic maintenance object or maintenance dialog to the server to preserve
the user exit code during regeneration. Once regeneration is complete, you can
download the regenerated module(s).

Tip: Before regenerating a maintenance dialog, see Strategies for Customizing
a Maintenance Dialog, page 155, for information about saving customiza-
tions in your maintenance dialog.

To upload changes to the server:

1 Open the Construct Spectrum project that contains the changes you are uploading.

2 On the Construct Spectrum Add-In, select Upload Generated Modules.
The Upload Modules dialog is displayed:
– 212 –

___________________________________ Creating and Customizing Maintenance Dialogs 5
Upload Modules

3 The library name, DBID (database ID), and FNR (file number) default to the
values entered for the last open project. If necessary, type the library name, DBID,
and FNR for the server library to which you are uploading.

4 Click Upload.
The selected modules are uploaded to the server.
– 213 –

Developing Client/Server Applications ___5
– 214 –

6

CREATING AND CUSTOMIZING BROWSE
DIALOGS

This chapter provides step-by-step instructions for generating the modules re-
quired to provide browse services from the client. It describes how to generate the
necessary modules, download the client modules to your PC, integrate the new
browse modules into an existing Construct Spectrum project, and display server
database information from a browse dialog. Also included is information about
modifying the components so that you can customize the features and functions of
the resulting browse dialog.

The following topics are covered:

• Overview of the Browse Dialog, page 216

• Creating a Browse Dialog, page 220

• Customizing On the Client, page 232

• Understanding Browse Command Handlers, page 238
– 215 –

Developing Client/Server Applications ___6
Overview of the Browse Dialog
A browse dialog provides users with lists of data. Typically, this data is shown
within a browse dialog and represents rows of information from a remote database
table. Browse dialogs can also be set up to display data that is obtained locally —
from a PC server connected to your network, for example.

About Browse Dialogs
The underlying structure of a browse dialog is different from that of a maintenance
dialog. Unlike maintenance dialogs, which use a unique Visual Basic form for each
maintenance object in your application, all generated browse dialogs use the same
underlying browse form that is supplied with the Construct Spectrum client frame-
work. This generic form communicates with other client framework components
and with the browse modules you generate to configure itself at runtime for a par-
ticular object browse subprogram and to retrieve data. The browse dialog that is
displayed to the user is the result of this process.

Although you cannot modify a browse dialog directly, you can influence its behavior
based on:

• How the data file(s) used in the browse are set up in Predict

• Options you choose when you generate browse modules

• Customized code you write to work with your generated browse modules and their
related client framework components

The Browse Process
The browse dialog that a user works with is configured dynamically at runtime.
Unlike maintenance dialogs, which have a unique form that corresponds to each
dialog, there is no unique form that corresponds to each browse dialog. Rather, a
browse dialog is configured at runtime based on the interaction of the following:

• Object browse subprogram

• Object browse subprogram proxy

• Visual Basic browse object

• Client framework components
– 216 –

__ Creating and Customizing Browse Dialogs 6
The following diagram illustrates these components:

Components Included in the Browse Process

The features and functions of a particular browse dialog depend on how these com-
ponents are configured. You can modify these components to influence the features
and functions of a browse dialog.

Browse Object Subprogram

The browse object subprogram reads database records on the server and returns
them to the client. Each browse subprogram can support multiple keys to allow the
user to select the most appropriate access path to retrieve the desired records.

Generate a browse object subprogram using the Object-Browse-Subp model. You
can specify overrides to many of the default values selected by the model before
generating or regenerating. For example, you can specify the keys available for ac-
cessing records displayed in your browse dialog.

Server Client

Browse
Subprogram

Proxy

Visual Basic
Browse
Object

Browse
Framework

Components

Browse
Object

Subprogram

Visual Basic
Browse
Dialog

Database
– 217 –

Developing Client/Server Applications ___6
The characteristics of your browse object subprogram depend on the relationships
between the related database files and fields. You can perform a number of modi-
fications to the metadata that describes these relationships using Predict. For
more information, see Understanding Browse Command Handlers, page 238.

Browse Object Subprogram Proxy

A subprogram proxy is required to access the browse object subprogram from the
client application. The subprogram proxy calls an object subprogram that fulfills a
data request on behalf of a browse request. It is also responsible for converting data
between the network transfer format and the Natural variable used by the param-
eters of the browse object subprogram.

You can make a number of changes to the subprogram proxy that affect the func-
tioning of your browse dialog. Most of these changes are related to how browse
information is transmitted between the client and server. For information about
customizing the subprogram proxy, see Using the Subprogram Proxy Model,
page 129, in Construct Spectrum Programmer’s Guide.

Visual Basic Browse Object

The Visual Basic browse object delivers information about the columns and keys
supported by the browse subprogram to the client framework components.

The Visual Basic browse object is generated by the VB-Browse-Object model for a
specific database file. It uses the BrowseBase class to interface with other parts of
the client framework and with the application. The Visual Basic browse object in-
stantiates and initializes a BrowseBase object. The initialization performed by the
Visual Basic browse object sets up definitions for:

• logical search keys

• formatting information for data columns

• optionally, inserts data into the data cache for static lists

It also sets up a data cache area on the client to save the results of multiple re-
quests to minimize network congestion and speed up the re-display of previously
fetched data. The data cache is an object in its own right.
– 218 –

__ Creating and Customizing Browse Dialogs 6
Data Cache

The data cache is populated by the BrowseBase object Fetch method when a user
specifies a starting value and presses the Get button. This triggers a remote
CallNat that reads records from a database and returns them to the client. As
records are received, they are added to the data cache. From the data cache, they
are transferred to a ListView control on the browse dialog where the user sees the
data. If the user requests the next (contiguous) set of records, they are retrieved
from the server and appended to the data cache and ListView. This process contin-
ues until the user repositions the view to a new location in the file by selecting a
new starting value or changing the key value. Whenever the user repositions the
view, the data cache and ListView are cleared and a new list of rows is presented.

The data cache mechanism is significant for the following reasons:

• It enables the user to scroll backward through previously viewed data without hav-
ing to reread this data from the server.

• Because the data cache represents a copy of the data, it may not always reflect the
current state of data on the server. For example, if cached records are updated or
deleted, the user must issue a Refresh command to obtain the new values.

• It is possible to read server data into the data cache and retrieve it programmati-
cally, without having to invoke a browse dialog. For more information, see Browse
Classes, page 57, in Construct Spectrum Reference Manual.

• The data cache can be saved in memory when a browse dialog is closed and restored
when the browse dialog is requested again. This alleviates the need to continually
retrieve the same browse data from the server.

Framework Components

Several client framework components work together to provide browsing services
at runtime. These components are encapsulated in a single class, the BrowseMan-
ager class. This class provides an interface to perform common browsing activities,
for example, to get a specific row of information, get all rows of information, or dis-
play a modal or MDI browse dialog.

Internally, the BrowseManager uses several framework components, the most im-
portant of which is the browse dialog. There are two versions of the dialog: a modal
(GenericBrowse.frm) and an MDI (GenericMDIBrowse.frm) dialog. Each dialog is
dynamically configured at runtime to display specific browse data. This process is
described in Understanding Browse Command Handlers, page 238.
– 219 –

Developing Client/Server Applications ___6
Creating a Browse Dialog
The following tasks are required to create a browse dialog. Once you have complet-
ed these steps, you are ready to compile the application in Visual Basic and test the
new browse dialog.

• Review and optionally modify Predict set up

• Use the Construct models to generate modules

• Download the modules to the client using the Construct Spectrum Add-In

• Update the Construct Spectrum project

These tasks are described in detail in the following sections.

Setting up Predict for the Browse Dialog
Prior to generating the modules of your browse dialog, certain attributes can be de-
fined within Predict to extend the functionality of what is generated. You can
modify any of these attributes in Predict and regenerate your browse modules to
implement your changes. For information about regenerating browse modules, re-
fer to Construct Spectrum Programmer’s Guide.

Business Data Types

Browses make use of business data types (BDTs) to format the data that is shown
within the ListView control of the browse dialog. If you want special formatting of
the browse data, add business data types to the fields within Predict prior to gen-
erating the browse components. For information about working with business data
types, see Using Business Data Types, page 153, in Construct Spectrum Pro-
grammer’s Guide.

Descriptive Fields

When a browse is initiated from a field on a maintenance dialog, it is referred to as
a foreign key browse. For example, the Construct Spectrum demo application has
a foreign key browse set up for the Warehouse field located on the Order mainte-
nance dialog. When a foreign key browse is initiated, only the foreign key values
(warehouse numbers in this case) are displayed unless you designate other fields
in the foreign file as descriptive in Predict.
– 220 –

__ Creating and Customizing Browse Dialogs 6
In the demo application, the WAREHOUSE-NAME field is designated as descrip-
tive. When you browse on the Warehouse field from the Order maintenance dialog,
warehouse numbers and their corresponding names are displayed so that users can
easily select the appropriate warehouse. For more information about linking
browse and maintenance functions, see Understanding the Browse and Main-
tenance Integration, page 343.

Using the Construct Models to Generate Browse Modules
Each module that a browse dialog requires can be generated with the VB-Client-
Server-Super-Model, or you can generate them one at a time using their models.
Use the following guidelines to determine which generation approach is appropri-
ate for you.

• If you are creating a new application or a new object, use the super model.

• If you changed the file structure of a previously generated application, use the su-
per model.

• If you want finer control over the generation results, such as hand-coding user ex-
its, use the individual models.

This section explains how to generate a browse module from the individual models.
For information about using the super model, see Using the Super Model to
Generate Applications, page 93.

Generating browse modules involves the following steps, which must be performed
in this order:

1 Use the Object-Browse-Subp model to generate the object browse subprogram and
supporting parameter data areas (PDAs) on the server.

2 Use the Subprogram Proxy model to generate a proxy that enables the client to
access the browse subprogram.

3 Use the VB-Browse-Object model to generate a Visual Basic browse class that
supports the generated browse subprogram.

4 Extend the object factory for the application to include references to the browse
business object.

5 If the browse dialog is to support record selection and action buttons, you will also
need to create a command handler and link this to the object factory.
– 221 –

Developing Client/Server Applications ___6
These steps are described in more detail in the following sections and must be per-
formed in the order specified.

Tip: Use the same four-character prefix to name all generated modules belonging
to a single object. This convention makes it easier to select modules for down-
loading. For example, to download all client modules related to a Customer
object, type “CUST*” (where “*” is the wildcard character) to narrow the list
of available items to those starting with CUST.

Generating the Browse Subprogram and PDAs

A browse subprogram reads database records on the server and returns them to the
client. Each browse subprogram requires three application-specific parameter data
areas that contain information that is passed to, or received from, the subprogram.
Each browse subprogram can support multiple keys to allow the user to select the
most appropriate access path to retrieve the desired records.

The Object-Browse-Subp model is used to generate the object browse subprogram
and its three supporting parameter data areas: *BPRI, *BROW, and *BKEY,
where * represents a prefix that you specify.

For a detailed description of this model, see Object-Browse Models, page 417, in
Natural Construct Generation User’s Manual.

Generating the Subprogram Proxy

A subprogram proxy is required to access the generated browse subprogram (or any
other subprogram) on the server from the client application. The subprogram proxy
is responsible for converting data between the network transfer format and the
Natural parameter data format used by the browse subprogram.

For information about generating a subprogram proxy, see Using the Subpro-
gram Proxy Model, page 129, in Construct Spectrum Programmer’s Guide.
– 222 –

__ Creating and Customizing Browse Dialogs 6
Generating the Visual Basic Browse Object

Each object browse subprogram that will be accessed by users needs a supporting
class generated using the VB-Object-Browse model. This class delivers information
about the columns and keys supported by the browse subprogram to the client
framework components, which then populates a browse dialog with the requested
browse information.

You can access the VB-Object-Browse model in the Generation subsystem on the
server or use the model wizard in the Construct Windows interface.

The following example shows the Standard Parameters step in the VB-OBJECT-
BROWSE wizard:
– 223 –

Developing Client/Server Applications ___6
VB-OBJECT-BROWSE Wizard — Standard Parameters

The Standard Parameters step is similar for all model wizards. The common pa-
rameters (Module, System, Title, and Description) are described in Standard
Parameters Wizard Step, page 269, in Natural Construct Generation User’s
Manual.
– 224 –

__ Creating and Customizing Browse Dialogs 6
For general information about using the Construct Windows interface, see Using
the Construct Windows Interface, page 77, in Natural Construct Generation
User’s Manual.

The parameters on this dialog are:

Note: The Compression and Encryption options apply only to data sent from the client to
the server. To enable compression and encryption for data sent from the server to the
client, select the Compression and Encryption options for the Subprogram-Proxy
model, which is described in Using the Subprogram Proxy Model, page 129, in
Construct Spectrum Programmer’s Guide.

After supplying model parameters, you can customize the generation results by
creating user exit code for the module. The following example shows the User Exit
List for the VB-Browse-Object model:

Parameter Description

Subprogram proxy Name of the subprogram proxy that communicates with
the object browse subprogram for this Visual Basic browse
object.

Object class Name for the generated browse class to be used within
Visual Basic.

Compress network
data

Indicates whether the parameters sent to the server are
compressed to reduce transmission time. Compression is
typically not required for a Visual Basic browse object
because parameters sent to the server tend to be small.
Enabling compression in this situation may actually
increase demands on system resources because the
overhead associated with invoking compression routines is
not offset by the reduced volume of data being transferred.

Encrypt network data Indicates whether the parameters sent to the server are
encrypted. Encryption is used to secure sensitive data.
Typically, this check box is not selected because browse
data requests sent to the server usually do not contain
sensitive information.
– 225 –

Developing Client/Server Applications ___6
User Exit List

For more information about using the Code window, see Using the Construct
Windows Interface, page 77, in Natural Construct Generation User’s Manual.

For more information about the user exists for this model, see User Exits for the
Natural Construct Models, page 575, in Natural Construct Generation User’s
Manual.

Defining Alternate Browse Data Sources

The VB-Browse-Object model is used to retrieve server database records by making
requests to a generated object browse subprogram. There may be times when you
want to allow browsing of data that is not defined in a server database file. Instead,
you may have data that is defined within files or hard-coded on a client. In such
cases, you can present this data to the user with an interface that is similar to the
browse interface they are familiar with.
– 226 –

__ Creating and Customizing Browse Dialogs 6
To generate this type of browse dialog you would not use the Object-Browse-Subp,
Subprogram-Proxy, and VB-Browse-Object models as described above. Instead,
you would use the VB-Browse-Local-Data-Object model.

You can access this model in the Generation subsystem on the server or use the VB-
Browse-Local-Data-Object wizard in the Construct Windows interface. The follow-
ing example shows the Standard Parameters step for the model wizard:

VB-Browse-Local-Data-Object Wizard — Standard Parameters
– 227 –

Developing Client/Server Applications ___6
The Standard Parameters step is similar for all model wizards. The common pa-
rameters (Module, System, Title, and Description) are described in Standard
Parameters Wizard Step, page 269, in Natural Construct Generation User’s
Manual.

For general information about using the Construct Windows interface, see Using
the Construct Windows Interface, page 77, in Natural Construct Generation
User’s Manual.

The parameters on this dialog are:

Example of adding browse field definitions in the ADD-COLUMNS user
exit

DEFINE EXIT ADD-COLUMNS
'
' AddColumn Name, Heading, Business Data Type, Format, Show by Default
AddColumn "STATE-CODE", "State Code", "", "A2", True
AddColumn "STATE", "State Name", "", "A40", True
AddColumn "TAX", "Sales Tax", BDT_PERCENT, "N2.2", False
END-EXIT

In the previous example, the browse dialog shows the State Code and State Name
by default; however, the user could modify the options to also display the Sales Tax
column. A BDT has been associated with the Sales Tax column to provide special
formatting.

Parameter Description

Predict view Name of a Predict view (optional). The VB-Browse-Local-
Data-Object model allows you to define your file within
Predict as a means to document the required field names,
field lengths, and column headings. Be aware, however,
that no physical file is required to support this model. If
you do not want to create a definition of your browse fields
within a Predict file, you must define your browse fields in
the ADD-COLUMNS user exit as in the following example.

Object class Name for the generated browse class to be used within
Visual Basic.
– 228 –

__ Creating and Customizing Browse Dialogs 6
Additionally, you need to add code to the INSERT-ROWS user exit. This user exit
defines data that is to be shown in the browse by calling the AddData method as in
the following example.

Example of defining browse data from the INSERT-ROWS user exit

DEFINE EXIT ADD-COLUMNS
'
' AddData Unique ID, State code, State, Sales tax
AddData "1", "ALBA", "Alabama", 8.0
AddData "2", "AK", "Alaska", 5.5
etc.
END-EXIT

In addition to the values to be displayed on the browse screen, the first parameter
of the AddData method must contain a unique value that is used as an internal
record identifier.

Downloading the Client Modules
After generating all required browse modules on the server, you must download
the modules required on the client. The following table outlines which modules are
required on the client and includes brief descriptions of their roles:

Model Module
Suffix

Visual Basic
extension

Description

Object-Browse-
Subp

BKEY
BPRI
BROW

n/a Updates the library image file with
parameter definitions.
– 229 –

Developing Client/Server Applications ___6
Note: The module suffix names listed in the previous table are suggested names only.
However, when you generate with the super model, modules are given these suffix
names automatically.

To download modules to the client:

1 Open the Construct Spectrum project that you are updating.
For information, see Creating a Construct Spectrum Project, page 123.

2 On the Construct Spectrum submenu, click Download Generated Modules.

3 Ensure you are pointing to the correct library and FUSER on the server.

4 List the modules from the library you want to download by using wildcard notation
(*) in the File Download text box and then click List.
A list of modules on the server is displayed. The browse modules you generated
should be among them.

5 Select the browse modules you generated and click Download.
You can identify browse modules based on their module suffixes, which are shown
in the table at the beginning of this section. The Visual Basic browse object is
automatically added to your Construct Spectrum project.

For more information on downloading modules to the client and setting up a Con-
struct Spectrum project, refer to Creating a Construct Spectrum Project, page
123.

Subprogram-
Proxy

BSP n/a Updates the library image file with
application service definitions that
describe the object subprogram
browse method and the data it
requires.

VB-Browse-
Object

BCPV .cls Delivers information about the
columns and key fields supported
by the browse subprogram to the
client framework components.

Model Module
Suffix

Visual Basic
extension

Description (continued)
– 230 –

__ Creating and Customizing Browse Dialogs 6
Updating the Project
There may be times where you want to update the project using the extend object
factory. The following discusses when you would need to hand-code the object fac-
tory, and how to determine if you need to.

Extend Object Factory

You must hand-code the object factory only if you are adding a new browse dialog
to your application or you have changed the actions available for an existing busi-
ness object. An example of changing the available actions for a business object is
when you add a browse action to a business object that had been available to the
user only through a maintenance action.

Tip: To determine whether you need to hand-code the object factory, access the
Open dialog and select each object and its associated action. If the selected
object action does not display, do some hand-coding to add the required object
actions.

For information about hand-coding the object factory, see Customizing the Ob-
ject Factory, page 307.
– 231 –

Developing Client/Server Applications ___6
Customizing On the Client
Although you cannot modify browse dialogs directly, there are customizations you
can make on the client to modify or enhance the behavior of a browse dialog.

Adding Command Handlers
If the browse dialog is to support action buttons that perform specialized process-
ing on the selected records, define and create command handlers for these buttons.

For more information about adding command handlers for your browse dialog, see
Understanding Browse Command Handlers, page 238.

Customizing the Generic Browse Dialog
The generic browse dialog is the dialog from which all browse dialogs are config-
ured at runtime. This dialog can be customized through the Browse Dialog API.
For more information, see Browse Classes, page 57, in Construct Spectrum Refer-
ence Manual.

Understanding the BrowseManager Class
Every Construct Spectrum application contains a Visual Basic class called the
BrowseManager. This class encapsulates the handling of browse services in a sin-
gle class. Application components use instances of this class as described in the
following sections.

Display the Browse Dialog

The BrowseManager creates a browse dialog, links it to a specific browse data
source, and formats the dialog to display the data. The dialog can be a modal or an
MDI child dialog. Additionally, the dialog can be formatted to begin browsing with
a specific key field and key field value.
– 232 –

__ Creating and Customizing Browse Dialogs 6
Support a Browse Command Handler

The BrowseManager can link a custom browse command handler to a browse dia-
log. Browse command handlers add features to your browse form such as:

• Command buttons

• Toolbar buttons enabled on the MDI frame

• Actions for double-click or the Enter key

• Menus that are activated by the right mouse button

Return a Specific Row of Data

The BrowseManager returns a specific browse row of data from a data source,
based on a key name and key value. An example of a data source is a Natural da-
tabase residing on your server.

Return All Rows of Data

The BrowseManager returns all data rows in a specified table from a data source.

Using the BrowseManager
Applications use the global function, GetBrowser(tablename), to create instances
of the BrowseManager class for a specific database file. GetBrowser(), which is lo-
cated in the object factory, creates, initializes, and returns a reference to a
BrowseManager object. The tablename parameter is a logical name that identifies
which Visual Basic browse object to use when it initializes the BrowseManager.
For more information, see Using the Object Factory, page 305.

Some of the application components that use the BrowseManager class are:

• Object factory

• Visual Basic browse object

• Maintenance dialogs

• Custom browse command handlers

The following diagram shows how a Customer maintenance dialog can use the
BrowseManager class:
– 233 –

Developing Client/Server Applications ___6
Interaction Required to Display a Browse Dialog

Each numbered step in the diagram is explained below:

1 The user requests a browse from the Customer maintenance dialog. In this
example, the user requests to browse a list of customers on the CUSTOMER file.
The maintenance dialog calls the GetBrowser function in the object factory with
the parameter “CUSTOMER”.

2 The object factory creates a CustomerBrowse Visual Basic browse object. This
object contains information unique to the Customer browse such as:

– Column names and captions

– Column formats and business data types (BDTs) used to format data for display

– Key names and captions

3 Settings from the CustomerBrowse Visual Basic browse object are used to
configure a BrowseBase object.

4 The object factory instantiates a BrowseManager.

Object
Factory

Customer
Maintenance

Dialog

Browse
Manager

Customer
Browse Object

Browse
Base

Browse
 Dialog

1

2

3

4

5

6

7

8

9

– 234 –

__ Creating and Customizing Browse Dialogs 6
5 The BrowseManager object is initialized by setting its BrowseBase property to
point to the BrowseBase object created in step 3.

6 A reference to the initialized BrowseManager is returned to the Customer
maintenance dialog. At this point, the BrowseManager is configured to support the
services of the Customer browse.

7 The user’s initial request to browse a list of customers can be fulfilled. The list of
customers is displayed in a modal dialog. To do this, the following command is sent
from the Customer maintenance dialog:

BrMgr.ModalBrowseForm("CUSTOMER")

8 The BrowseManager configures and displays a modal browse dialog listing the
customers from the CUSTOMER file.

9 Any actions requested from the browse dialog are handled by the BrowseManager.
For example, if the user selects a customer record and then selects the OK button,
the browse dialog is closed and the selected record is returned to the Customer
maintenance dialog.

Tip: You can customize the BrowseManager class to support new properties and
methods. However, do not modify the interfaces of the current methods sup-
ported by the BrowseManager.

The following diagram depicts the structure of the BrowseManager:
– 235 –

Developing Client/Server Applications ___6
Internal Structure of the BrowseManager Class

The BrowseManager class bundles browsing functionality into several methods.
These methods are only enabled when the BrowseBase property has been set to an
initialized BrowseBase object. A command handler object is an optional property
that can be used to enhance the functionality of browse forms created by the
BrowseManager class.

GetAllRows()

BrowseManager

CommandHandler

BrowseBase

BrowseDialogBrowseByObjectKey()

BrowseDialogMDIBrowseForm()

BrowseDialog
ModalBrowseForm()

GetRow()

Property

Method() Method

Property

Object

Key

Object
– 236 –

__ Creating and Customizing Browse Dialogs 6
BrowseManager Methods

This table lists the methods or services offered by the BrowseManager:

For more information about BrowseManager methods, see Creating and Cus-
tomizing Browse Dialogs, page 215, in Construct Spectrum Reference Manual.

Service Description

BrowseByObjectKey Creates a modal browse dialog. The dialog’s search key
value(s) are set to the values in a parameter reference to a
NaturalDataArea object, where the NaturalDataArea is
the key structure used by maintenance dialogs.

If a row is selected, maps the key values in the row to the
NaturalDataArea parameter and returns True.

MDIBrowseForm Creates a child MDI (multiple-document interface) browse
dialog based on the GenericMDIBrowse.frm client
framework component. Optionally, links a command
handler to the dialog. Returns a reference to the dialog.

ModalBrowseForm Creates a modal browse dialog based on the
GenericBrowse.frm client framework component.
Optionally, sets the form’s search key to a key specified in
a parameter. If a row is selected, returns a reference to the
BrowseDataCache object.

GetRow Clears the data cache in the BrowseBase object unless it is
a static browse (fixed number of rows). Sets the
BrowseBase object search key to the key specified in a
parameter. If a row is successfully retrieved and stored,
returns a reference to the BrowseDataCache object.

GetAllRows Clears the data cache in the BrowseBase object. If all rows
are successfully retrieved from the data source, returns a
reference to the BrowseDataCache object.
– 237 –

Developing Client/Server Applications ___6
Understanding Browse Command Handlers
Browse Command handlers are custom objects you create to handle commands
originating from browse dialogs. They can be used to add command buttons to a
browse dialog, enable toolbar buttons on the MDI frame, set default actions for
double-click and the Enter key, and to display menus activated by the right mouse
button.

All browse command handlers must implement certain public methods and prop-
erties. These are supplied in a sample browse command handler class template
that you can copy and use as a starting point to create your own browse command
handlers.

Tip: Use the browse command handler class template, BrowseCmdHandler.cls lo-
cated in the Construct Spectrum client Framework directory as the starting
point for creating your own browse command handler.

The following diagram illustrates how a browse command handler object interacts
with other objects in your application:
– 238 –

__ Creating and Customizing Browse Dialogs 6
Browse Command Handler Overview

Each numbered step in the diagram is explained below:

1 The object factory creates a BrowseBase object which is initialized with a specific
Visual Basic browse object. Interaction between the BrowseBase and browse
objects is described in Using the BrowseManager, page 233.

2 The object factory creates the browse command handler.

3 The object factory creates a BrowseManager object and links it to the command
handler and the BrowseBase object.

4 BrowseManager creates the browse dialog.

5 BrowseManager initializes the command handler with a reference to the browse
dialog and the BrowseBase object.

6 BrowseManager adds a command button, menu item or both for each supported
command handler command.

7 BrowseManager sets the default command if the command handler supports one.
This command is invoked by double-clicking or pressing Enter on a selected row.

Object Factory Browse
Manager

Command
Handler

Browse
Base

Browse
Dialog

1

2

6

7

3

8

9

4
5

Other
Application

Components
– 239 –

Developing Client/Server Applications ___6
8 When a user initiates a command on the browse dialog that is handled by a
command handler, the command handler is notified.

9 The command is executed.

Other features you can implement with a command handler include:

• A browse dialog.
Users can drill down into more detailed information using a browse dialog.

• A link to a maintenance dialog.
Users can invoke a maintenance dialog that is populated with a row selected from
a browse dialog. To view an example of this, see the Order browse dialog set up in
the demo application. From the Order browse dialog, users can select a row and
then select the Update button to open the Order maintenance dialog.

• A delete function.
Users can delete a database record from a browse dialog. The Order browse dialog
in the demo application also includes an example of this function. To delete a record
in the demo application, the user selects a row and then the Delete button. The
record corresponding to that row is deleted. To accomplish this, the Order mainte-
nance dialog object is invoked behind the scenes and used to delete the record.

Creating Browse Command Handlers
The steps to create a browse command handler and link it to your application are
described below. Once you create the command handler, you must supply the code
to customize the command handler. This is described in Coding the Custom
Browse Command Handler, page 241.

To create a browse command handler and link it to your application:

1 Create a Visual Basic class that implements the browse command handler.
Copy the sample BrowseCmdHandler.cls template in the client Framework
directory to use as a starting point.

2 Make the application aware of the browse command handler by copying and
modifying the following code in the GetBrowser() function.
The GetBrowser() function creates the BrowseManager object for the particular
browse dialog created at run time and is part of the object factory.
– 240 –

__ Creating and Customizing Browse Dialogs 6
Public Function GetBrowser(TableName As String) As BrowseManager

 Dim BrMgr As New BrowseManager

 ' Return a browser object for the requested table.
 Select Case TableName
 Case "NCST-ORDER-HEADER"
 Set BrMgr.BrowseObject = New OrderBrowse
 BrMgr.Caption = "Query Orders"
' Copy and Modify this block of code to hook in a browse command handler
-- >>
' Setting this property will attach the OrderAsBrowseTarget object
' to the BrowseManager to handle any commands originating from
' the browse.
 Set BrMgr.CommandHandler = New OrderAsBrowseTarget
' --
<<

Now that you have created a custom command handler and linked it to your appli-
cation, see the next section.

Coding the Custom Browse Command Handler
A command handler is an object that implements two special public methods:
UICommandState() and UICommandTarget(). These two methods are the hooks
into the client framework components that allow commands to be triggered, inter-
cepted, and handled throughout your application.

These methods are described in more detail in Defining, Sending, and Han-
dling Commands, page 273.

When a command handler is linked to a browse dialog, the dialog notifies the ap-
plication framework that it needs to handle commands linked to the Command IDs
in the command handler. For example, the framework would be notified whenever
the Print toolbar button or menu command is clicked on the Browse dialog.

If the command IDs of the browse command handler match any of those on the MDI
toolbar or menu, those commands are hooked by the browse dialog. When a user
clicks on the hooked toolbar button or selects the hooked menu item, the command
in the browse command handler is triggered.

Note: Commands that are to be hooked into the MDI toolbar or menu must already exist
on or be added to the MDI frame.
– 241 –

Developing Client/Server Applications ___6
Enabling Commands on the Browse Toolbar and Menu

An important decision to make when coding the UICommandState() and UICom-
mandTarget() methods is whether or not you want the handled commands to be
enabled by the toolbar buttons and menu on the MDI frame. To enable these com-
mands on the MDI frame, assign the proper command IDs to each command in
your command handler. The correct command ID is determined by matching it
with the corresponding command ID assigned to the command you want to hook in
the MDI frame.

The following code sample shows how you would enable commands on the toolbar
and menu by assigning command IDs.

Sample code from the CommandHandler template that assigns command
IDs:

Private Sub Class_Initialize()

 ' Initialize The commands supported by this command handler.
 CommandHandlers(1).ID = CMD_ACTIONS_UPDATE
 CommandHandlers(1).Caption = "Update..."
 CommandHandlers(2).ID = CMD_ACTIONS_DELETE
 CommandHandlers(2).Caption = "Delete"

End Sub

Tip: If you want to internationalize your application, avoid hard-coding text
strings like Caption = “Update”. For more information, see International-
izing Your Application, page 367.

Coding the UICommandTarget() Method

This method contains a Select statement, with a Case statement for every com-
mand ID that is handled by the command handler. You can add any code in these
Case statements to implement the handling of a specific command.
– 242 –

__ Creating and Customizing Browse Dialogs 6
The following example is an excerpt from a command handler designed to update
a data row:

Sample CommandHandler code to update a row (record)

Select Case Cmd.ID
Case CMD_ACTIONS_UPDATE

 ' For each selected row in the cached data ...
 For SelRow = 1 To m_BrowseBase.Cache.SelectedCount

 ' Create and initialize a new Order Maint Object.
 Set maintObj = New Order
 Set maintObj.Dispatcher = CreateDispatcher()

 ' Initialize the Key in the Order Maint Object from
 ' selected row from the Visual Basic browse object's cached data.
 maintObj.Field("ORDER-NUMBER") = _
 m_BrowseBase.Cache.GetValue("ORDER-NUMBER", _
 SelRow, _
 BR_SELECTED_DATA, _
 BR_RAW_DATA)

 ' Move the KeyData from the KeyPDA to the ObjectPDA.
 maintObj.MoveByNameKey MOVE_DATA_TO_KEY

 ' Create a new Order Maint Form.
 Set frm = New frm_Order

 ' Link the Order object to the Order Form.
 Set frm.InternalObject = maintObj

 ' Display this form.
 frm.Show
 Next

Marking Updated Rows Using the UpdateListViewIcons Method

If your command handling changes affect the data displayed on the browse dialog
when the user executes the command, decide how to reflect the updated data in the
browse form. You can use the State property of a BrowseDataRow to mark the row
as being updated. This property is used by the browse dialog when its
Form_Activate event is triggered.
– 243 –

Developing Client/Server Applications ___6
Alternatively, you can programmatically refresh the browse dialog’s ListView with
small icons by calling the UpdateListViewIcons method in the browse form. If a
State ID has been assigned to a row, the browse dialog checks to see if this is the
ID of a small icon in a global image list, found on the browse form. If the State ID
matches the ID of one of the small icons in the image list, the icon is placed beside
the row on the browse dialog.

Example code for marking updated rows with small icons

' Mark a row in the browse object as being "Updated" with a small
' icon.
 m_BrowseBase.Cache.Rows.SelectedItem(Index).State = _
 BR_MARK_ROW_UPDATED

' Refresh the browse dialog’s listview to display small icons beside
' rows that have been updated.
m_BrowseForm.UpdateListViewIcons
– 244 –

7

MOVING EXISTING APPLICATIONS TO
CONSTRUCT SPECTRUM

This chapter describes how to move existing Natural Construct-generated server-
based applications to a client/server architecture using the Construct Spectrum
models. To move existing Natural applications to a client/server architecture with-
out using the models, see Creating Spectrum Applications Without the
Client Framework, page 297, in Construct Spectrum Programmer’s Guide.

The following topics are covered:

• Overview, page 246

• Moving Natural Construct Object Applications, page 247

• Moving Non-Object Natural Construct Applications, page 248
– 245 –

Developing Client/Server Applications ___ 7
Overview
There are two scenarios that you could encounter when moving your Natural Con-
struct-generated applications to Construct Spectrum:

• moving applications created with the Natural Construct object models (Object-
Maint-Subp and Object-Browse-Subp)

• moving applications created without the Natural Construct object models

The object models were available in Natural Construct version 3.1.1 and later.
These models enable you to generate encapsulated applications. Applications cre-
ated with Construct Spectrum take advantage of this object approach.
– 246 –

_______________________________ Moving Existing Applications to Construct Spectrum 7
Moving Natural Construct Object Applications
If you have existing Natural Construct applications developed with the object mod-
els (Object-Maint-Subp and Object-Browse-Subp), much of the work involved in
creating a client/server application has already been completed.

To create a Construct Spectrum client/server application from existing Natural
Construct Object applications, complete the following steps:

1 Set up your server environment.
For information about setting up your server environment, see Are You Ready?,
page 126.

2 Perform optional Predict set up.
For more information, see Setting Up Predict Definitions, page 47, in Construct
Spectrum Programmer’s Guide.

3 Regenerate your Object-Maint-Subp modules and generate the remaining client/
server modules.
For more information, see Using the Super Model to Generate Applications,
page 93.

4 Set up and run your Construct Spectrum project.
For more information, see Creating a Construct Spectrum Project, page 123.
– 247 –

Developing Client/Server Applications ___ 7
Moving Non-Object Natural Construct
Applications

Natural Construct applications generated prior to Natural Construct release 3.1.1
or those generated with the Maint and Browse models must be modified to conform
to the object-based structure required by Construct Spectrum.

To create a Construct Spectrum client/server application from non-object Natural
Construct applications, complete the following steps:

1 Set up your server environment

2 Evaluate your application data

3 Perform optional Predict set up

4 Generate the client/server modules

5 Update your subprograms with existing business logic

6 Set up and run your Construct Spectrum project

These steps are explained in detail in the rest of this chapter.

Step 1 — Set Up Your Server Environment
Before moving your application, ensure that your server is set up so that you can
create and use client/server applications with Construct Spectrum.

To set up your server, perform the steps outlined in Are You Ready?, page 126.
– 248 –

_______________________________ Moving Existing Applications to Construct Spectrum 7
Step 2 — Evaluate Your Application Data
Determine whether the files and fields that define your application data conform
to an object-based relational database structure. If they do not, modify them to con-
form to this structure to take advantage of the Object-Maint models. For example,
you must determine which database files should logically be grouped into business
objects and establish relationships between related files and fields.

For information about organizing your database files in an object-based and rela-
tional manner, see Design Methodology, page 231, and Use of Predict in
Natural Construct, page 941, in Natural Construct Generation User’s Manual.

Step 3 — Perform Optional Predict Set Up
Some Predict set up tasks relate specifically to Construct Spectrum. For example,
you can attach special keywords to a field to define its corresponding GUI control
on the client dialog. These tasks are optional because Construct Spectrum applies
default logic to determine how each field will be implemented on the client.

For information about these tasks, see Setting Up Predict Definitions, page 47,
in Construct Spectrum Programmer’s Guide.

Tip: Postpone these optional tasks until you have created and tested at least a
first iteration of your client/server application and are ready to fine-tune it.

Step 4 — Generate the Client/Server Modules
To get an iteration of your client/server application up and running quickly, use the
super model to generate modules for your client/server application. Generate mod-
ules for each business object, such as a Customer object and an Order object.
– 249 –

Developing Client/Server Applications ___ 7
Generate the modules by selecting the models listed in the following table. The first
four models generate the modules required for maintenance services, such as up-
dating or adding Customer records. The remaining three models generate the
modules required for browse services, such as looking up and selecting a customer
record for an action.

Tip: Although you can generate all of the models listed in the previous table sep-
arately, use the super model to create a first iteration of your application as
quickly as possible. Additionally, the models must be generated in the order
shown in the previous table. The super model automatically generates these
models in the correct order.

For information about using the super model, see Using the Super Model to
Generate Applications, page 93.

Model Module Source Type

Object-Maint-Subp Object maintenance subprogram
and required PDAs

Natural subprogram

Subprogram-Proxy Object maintenance subprogram
proxy

Natural subprogram

VB-Maint-Object Visual Basic maintenance object Visual Basic class

VB-Maint-Dialog Visual Basic maintenance dialog Visual Basic form

Object-Browse-Subp Object browse subprogram and
required data areas

Natural subprogram

Subprogram-Proxy Object browse subprogram proxy Natural subprogram

VB-Browse-Object Visual Basic browse object Visual Basic class
– 250 –

_______________________________ Moving Existing Applications to Construct Spectrum 7
Step 5 — Update Your Object Subprograms with Existing
Business Rules

You must update your newly generated object maintenance modules with any busi-
ness rules from your previous applications — those applications that were created
without the Object Maintenance model. You must compare the business rules,
which are contained in the user exits, in your previous application and decide how
they should be incorporated into the user exits in your new application.

As you complete the procedure described below, see Object-Maint Models, page
479, in Natural Construct Generation User’s Manual. This chapter contains infor-
mation about generating an object maintenance subprogram and working with its
user exits.

To update your object maintenance subprogram with business rules:

1 Regenerate the maintenance subprogram module with the Object-Maint-Subp
model.

2 Update the user exits with your business rules and compile the subprogram.

Considerations for Implementing Business Rules

When you have a working client/server application and are ready to refine your ap-
plication, pay special attention to the procedures devoted to refining the
implementation of your business rules. For information about implementing busi-
ness rules, see Validating Your Data, page 327.

Because your client/server application was initially a non-object application, you
probably have all of your business rules coded in the Maint model user exits. Con-
sider placing as many of these rules as possible in other locations, such as:

• The Predict verification rules linked to your field definitions

• The Visual Basic maintenance object user exits

• The object maintenance subprogram user exits

For example, some verification rules can be implemented or duplicated on the cli-
ent through the Visual Basic maintenance object. Business data types can also be
used to validate data. These techniques improve the performance of your applica-
tion because validations occur on the client, therefore, avoiding a call to the server.
– 251 –

Developing Client/Server Applications ___ 7
Tip: Validations set up on the client should also be implemented on the server if
users can access your application from a non-GUI environment such as a
character-based display terminal. This ensures that validations are consis-
tent no matter where the application is accessed from.

Step 6 — Set Up and Run Your Construct Spectrum Project
Once your application client and server modules have been generated on the serv-
er, set up a Construct Spectrum project on the client using the Construct Spectrum
Add-In. Then download the client modules to your project, run the project, test it,
and modify it as required.

These steps are described in Creating a Construct Spectrum Project, page
123.
– 252 –

8

UNDERSTANDING AND CUSTOMIZING THE
CLIENT FRAMEWORK

This chapter describes how to customize the client framework supplied with Con-
struct Spectrum while developing your Construct Spectrum application. It
describes what each framework component is, where you use it, a conceptual over-
view of how it works, and procedures for customizing the component.

The following topics are covered:

• Introduction to the Client Framework, page 254

• About Box, page 257

• Application Preferences, page 260

• Application Settings, page 262

• Browse Support, page 265

• Internationalization Support, page 267

• Maintenance Classes, page 268

• Menu and Toolbar Support, page 270

• Multiple-Document Interface (MDI) Frame Form, page 301

• Object Factory, page 302

• Spectrum Dispatch Client Support, page 319

• Utility Procedures, page 323
– 253 –

Developing Client/Server Applications ___8
Introduction to the Client Framework
Construct Spectrum automatically adds the client framework components to a
standard Visual Basic project when you select Create New Project from the Con-
struct Spectrum Add-In menu. The client framework is made up of many files that
display in your application’s project window. Each type of client framework compo-
nent consists of one or more Visual Basic forms, modules, or classes. The following
illustration shows an example of the client framework components for a Spectrum
project.

For more information about creating a new project, see Creating a Construct
Spectrum Project, page 123.
– 254 –

_____________________________ Understanding and Customizing the Client Framework 8
Client Framework Components of a Construct Spectrum Project
– 255 –

Developing Client/Server Applications ___8
These files are grouped into logical client framework components. The components
are described in this chapter and referred to throughout the Construct Spectrum
documentation.

Additional client framework components are provided in an OLE automation serv-
er (CSTVBFW.dll) as classes. You can browse these OLE classes by selecting
Object Browser from the View menu in Visual Basic.

Each component is described in more detail in the following sections.
– 256 –

_____________________________ Understanding and Customizing the Client Framework 8
About Box
The client framework includes a standard About box form. This form contains an
icon, application title, application version information, licensed user and company
name, serial number, copyright notices, and a System Info button to invoke the
standard Windows system information applet.

The user invokes the About box by selecting the About command on the Help menu:

Default About Box Supplied with the Construct Spectrum Client Framework

You can customize the About box as desired. For example, you can include your ap-
plication’s icon, product name, company name, trademark, or copyright notices.

Component Description

About.frm Contains the About box form.
– 257 –

Developing Client/Server Applications ___8
The lblMessagesArray, lblLicensedOwner, lblLicensedCompany, lblSerialNum-
ber, and lblWarning values are place holders for custom messages you code in the
Load event for About.frm.

Customizing the About Box
The About box provided with the client framework is available for you to customize
for each of your applications.

Tip: To customize the About box, edit the default About box and use the Save As
command on the File menu to save the tailored About box to your project di-
rectory.

Several features can be customized as described in the following table:

To Change Follow this Procedure

Application name and
window title

1 Open the AppSettings.bas file.

2 Change the gAppSettings.ApplicationName variable to
change the application name that is displayed at the top
of the dialog.

Copyright notice 1 Open the Form_Load event file.

2 Change the lblMessages variable by adding one or more
lines of text to change the copyright notice.

Note: The dialog automatically grows vertically to accommodate
any amount of text assigned to this variable.

Icon 1 Open the Form editor.

2 Load a different bitmap into the Picture property of the
imgApplicationBitmap control to change the icon that is
displayed in the upper left corner of the About box.
– 258 –

_____________________________ Understanding and Customizing the Client Framework 8
Licensed owner,
Company, and Serial
Number

1 Open the Form_Load event file.

2 Change the text assigned to the lblLicencedOwner,
lblLicensedCompany, and lblSerialNumber label
controls.

Note: The client framework does not provide any specific
functionality for licensing your applications. These label
controls are informational only.

Version text 1 Open the Form_Load event file.

2 Change the lblMessages variable by adding one or more
lines of text to change the version text.

Note: The dialog automatically grows vertically to accommodate
any amount of text assigned to this variable.

To Change Follow this Procedure (continued)
– 259 –

Developing Client/Server Applications ___8
Application Preferences
The application preferences client framework components are made up of a group
of classes that allow you to define the settings of each of your applications. Use
these classes to add, read, and update user or application preferences.

Applications frequently require the ability to maintain persistent settings over mul-
tiple executions of an application. For example, you might want your application to
save window positions when a user shuts down the application. When the user re-
starts the application, the windows would appear in the same place on the desktop.
You may also want your application to save internal configuration information
such as directory names or timeout values.

The application preferences provide a high-end interface for defining the meta-
structure of persistent settings and for reading and writing setting values. Your
preferences separate settings into two logical categories: user-specific settings and
application settings. Each user ID that logs on to Windows has its own copy of the
user-specific settings. Application settings are constant for all users.

The metastructure for settings can also be hierarchical, similar to a directory tree
on a disk. Each node on the settings tree structure can contain any number of set-
tings or sub-nodes (analogous to files and sub-directories, respectively). A sub-node
itself can contain settings and sub-nodes. This makes it easy to group settings in
the most appropriate structure.

The application preferences use the Windows registry to store the metastructure
and the values of all the settings. The Windows registry is encapsulated in the im-
plementation of the application preferences and is not exposed through the public
interfaces of the settings’ classes. This insulates the application from the specific
requirements of reading and writing to a specific storage medium.
– 260 –

_____________________________ Understanding and Customizing the Client Framework 8
The following table describes the application preferences client framework compo-
nents supplied with CSTVBFW.dll.

For more information about customizing the application preferences, see Under-
standing Application Preferences, page 27, in Construct Spectrum Reference
Manual.

Component Description

Setting Creates and manipulates an individual setting

SettingList Creates and manipulates a SettingList, which is an
aggregation of SettingLists and Settings objects

SettingLists Contains a collection of SettingLists

Settings Contains a collection of Settings
– 261 –

Developing Client/Server Applications ___8
Application Settings
The application settings client framework components allow you to specify your ap-
plication’s window title and other values that control how the application starts.
These values are used by other client framework components, including the About
box, the Spectrum Dispatch Client, and the Construct Spectrum Add-In.

For more information, see:

• About Box, page 257

• Spectrum Dispatch Client Support, page 319

• The Development Process, page 33.

Customizing the Application Settings
The InitAppSettings procedure in the AppSettings.bas file contains settings that
determine the name of the application, how the application starts up (whether the
Logon form is displayed), and where application preferences are stored.

You can change the InitAppSettings by editing this procedure.

Component Description

AppSettings.bas Contains the application-specific settings, such as the
application name, main library, and whether to force the
user to logon at application startup.

Startup.bas Contains the Sub Main procedure and other global
variables. Every Construct Spectrum application has one
Sub Main procedure which is the first procedure that gets
executed when your application starts running.
– 262 –

_____________________________ Understanding and Customizing the Client Framework 8
Example of a customized InitAppSettings procedure

Public Sub InitAppSettings()

 With gAppSettings
 .ApplicationName = "Construct Demo Application"

 .ForceLogonAtStartup = False
 .RememberUserID = True

 .RegistryKey = "Software\SAGA SOFTWARE\CST"

 ' Add-In Defaults
 .DefaultLibrary = "CSTDemo"
 .DBID = 17
 .FNR = 38
 End With

End Sub

These settings are described in the following table:

Setting Name Description

ApplicationName Name displayed in the MDI frame form’s title bar and the
About box.

ForceLogonAtStartup If True, the Logon dialog is displayed when the application
is started. This option is useful when more than one person
uses the same PC and you want to ensure that each person
logs on using their own user ID.

RememberUserID If True, the client framework saves the most recent user ID
in the Windows Registry and recalls it when displaying the
Logon dialog.

RegistryKey Root node in the Windows Registry where application
preferences are saved. These preferences are saved in
HKEY_CURRENT_USER under this key.
– 263 –

Developing Client/Server Applications ___8
DefaultLibrary Name of the main Natural library with which this
application is associated. Construct Spectrum uses this
setting to derive the name of the primary library image file
containing the Natural data area and application service
definitions used by the application.

DBID, FNR Default database ID (DBID) and file number (FNR) for the
download and upload functions for the Construct Spectrum
Add-In.

Setting Name Description (continued)
– 264 –

_____________________________ Understanding and Customizing the Client Framework 8
Browse Support
The browse support client framework components are used to implement the
browse dialog, a generic browse form used to display all browses.

The following table describes the browse support components supplied with Con-
struct Spectrum. All of these components are stored in the CSTVBFW.dll, with the
exception of classes (.cls), dialogs (.frm), and standard module files (.bas) which are
included as part of the client framework in your application’s project window.

Component Description

ApplicationControl Contains the references to the browse dialog’s button,
including its tag, index, command handler, caption,
and button.

ApplicationControls Contains a collection of browse dialog’s application
control objects.

BrowseBase.cls Contains all of the code common to generated browse
objects and is a client component accessible in source
code format in the project window.

BrowseDataCache Stores browse data.

BrowseDataColumn Contains definitions of a table column.

BrowseDataColumns Contains a collection of columns.

BrowseDataRow Contains definitions and values of a table row.

BrowseDataRows Contains a collection of rows.

BrowseDialogBase.cls Contains all of the code common to both the MDI child
and standalone versions of the browse dialog and is a
client component accessible in source code format in
the project window.

BrowseDialogOptions.frm Allows users to customize the appearance of the browse
dialog. It is a client component accessible in source
code format in the project window.
– 265 –

Developing Client/Server Applications ___8
For more information, see Overview of the Browse Dialog, page 216, in this
manual and Browse Classes, page 57, in Construct Spectrum Reference Manual.

BrowseManager.cls Simplifies using the browse dialog for common
functions such as selection of a foreign key value.

ColumnDisplay Contains definition data for a displayed column,
including ColumnName, ColumnCaption,
ColumnWidth, and Visible.

ColumnsDisplay Contains a collection of browse dialog’s ColumnDisplay
objects.

FieldKey Defines a field used as a component in a logical key.

FieldKeys Contains a collection of field keys.

GenericBrowse.frm Contains the standalone version of the browse dialog
and is a client component accessible in source code
format in the project window.

GenericMDIBrowse.frm Contains the MDI child version of the browse dialog
and is a client component accessible in source code
format in the project window.

KeyMatch Defines a search key’s associated text box attributes,
including FieldName, ColumnIndex, ControlIndex,
Visible, Enabled, Locked, Validated, and Fixed.

KeyMatches Contains a collection of KeyMatch objects.

LogicalCombo Defines an internal combo box object.

LogicalKey Defines a key used to browse a database table.

LogicalKeys Contains a collection of logical keys.

Component Description (continued)
– 266 –

_____________________________ Understanding and Customizing the Client Framework 8
Internationalization Support
The internationalization support client framework components make it easy to cre-
ate applications that will be deployed in more than one language. These
internationalization components enable you to develop internationalized
applications.

The following table describes the internationalization support client framework
components supplied with CSTVBFW.dll:

These client framework components provide you with the ability to store text and
graphics appearing throughout the application separate from the compiled execut-
able. This allows you to change them without accessing the source code of the
application. Forms are designed to contain as little code as possible to provide this
feature.

Tip: You do not need to build internationalization components into your design
when creating small applications or applications that will only ever be used
in one locale. These internationalization components are optional.

For more information about internationalization support, see Internationalizing
Using the Client Framework, page 369.

Component Description

Resource Reads resources from resource files.

ResourceGroup Returns a list of resources in a resource group.
– 267 –

Developing Client/Server Applications ___8
Maintenance Classes
These client framework components allow you to manipulate items in combo boxes
using the key and description, as well as use the grid to change the look of your gen-
erated maintenance dialogs.

The following table describes the generated maintenance dialog client framework
components supplied with Construct Spectrum:

For more information, see Strategies for Customizing a Maintenance Dialog,
page 155, in this manual and Maintenance Classes, page 249, in Construct Spec-
trum Reference Manual.

Grid Support
To display array data and data from secondary and tertiary files, generated main-
tenance dialogs use the Apex TrueDBGrid custom control. The grid client
framework components centralize some of the code required by TrueDBGrid so you
do not have to repeat code in each generated maintenance dialog.

The client framework provides a TrueDBGrid helper class containing most of the
mundane code required to use this control in unbound mode, significantly reducing
the amount of code you must provide with the form.

Component Description

ComboClass Contains a key list and a descriptive list that map to a
combo box. It includes methods which allow you to access
their information, including the Add and Load methods.

GridSizeInfo.frm Helps the application developer size the grid columns to
the best width. This form is displayed from a generated
maintenance dialog’s Activate event.

TrueGridClass.cls Simplifies the use of the TrueDBGrid control in unbound
mode.
– 268 –

_____________________________ Understanding and Customizing the Client Framework 8
Note: Using a TrueDBGrid control in unbound mode usually requires many lines of event
code to handle displaying and editing data, inserting and deleting rows, and setting
cell-level attributes such as color.

At design time, you only need to instantiate this class for each TrueDBGrid control
on the form and delegate the important events (such as UnboundReadData,
UnboundWriteData, and FetchCellStyle) to the equivalent methods in the class. At
runtime, you can load the helper class instance with data that will be displayed in
the cells of the grid.

For more information, see Strategies for Customizing a Maintenance Dialog,
page 155, in this manual and Maintenance Classes, page 249, in Construct Spec-
trum Reference Manual.
– 269 –

Developing Client/Server Applications ___8
Menu and Toolbar Support
The menu and toolbar client framework components allow you to dynamically
change their states between enabled and disabled, and checked and unchecked.
The menu and toolbar command classes provide a robust mechanism for locating
and calling the code that will execute when the user selects a menu command (such
as File|Open) or clicks a toolbar button.

In a multiple-document interface (MDI) application, there is only one menu bar on
the MDI frame window with typically one or more toolbars. In the Construct Spec-
trum client framework, the MDI frame window “owns” the menu bar and toolbars.
It contains the code that is executed when the user selects a menu command or
clicks a toolbar button. However, what the executing code does often depends on
what type of MDI child window is active. Often you will find it more appropriate to
have the MDI child window itself contain the code that does the actual processing
of the command. This allows the MDI frame window to be generic and contain only
processing that is independent of the active MDI child window.

This client framework component allows you to design the menu and toolbar struc-
ture of the entire application on the MDI frame form, and then program each MDI
child window to “hook into” the menu commands and toolbar buttons it wants to
process itself. This improves functionality for the user and reduces your
maintenance.

The menu and toolbar command-handling framework components implement a
mechanism that centralizes the code required to determine if a menu command
needs to be enabled or disabled, and checked or unchecked.
– 270 –

_____________________________ Understanding and Customizing the Client Framework 8
The following table describes the menu and toolbar client framework components
supplied with Construct Spectrum:

Understanding Menu and Toolbar Command Handling
This section provides a conceptual overview of the command handlers that you
need to understand before beginning to customize your application’s menu and
toolbar. The following section describes the steps to take to customize your menu
and toolbar using the client framework.

The client framework classes that allow menu controls and toolbar buttons to be
programmed to send application-specific commands such as FileOpen, EditPaste,
or GridInsertRow are described in this section. These commands are intercepted
by command handlers, which can be any form or object in the application. The com-
mand handler can also automatically update the enabled or disabled state and
checked or unchecked state of menu commands and toolbar buttons.

The MDI frame, the browse dialog, and the generated maintenance dialogs all use
this command handling to process menu clicks and toolbar button clicks in a single,
unified fashion.

This section:

• Provides a summary of the classes

• Explains how to define, send, and handle commands

• Describes how to update user-interface controls

• Explains additional methods for command handling

Component Description

UICommands Class that implements menu and toolbar command
handling. UICommands is stored in CSTVBFW.dll.

UICommandConstants.
bas

File that defines the command IDs used to uniquely
identify an end-user function in the application.

UICmd Class containing information about a single command.
UICmd is stored in CSTVBFW.dll.
– 271 –

Developing Client/Server Applications ___8
For more information about menu and toolbar support, see Menu and Toolbar
Support, page 270.

For more information about using a command handler to customize your browse
dialogs, see Understanding Browse Command Handlers, page 238.

Class Summary
This section illustrates the classes that implement the command handler.

Classes in the Command Handler

The following sections describe many of the classes and their associated methods
used to tailor the menu controls and toolbar buttons using the command handler.

UICommands

GetCurrentState

DisabledReason

Checked

Enabled

ID

ReleaseHooksByCommand

ReleaseHooksByObject

UnHookCommand

HookCommand

SendCommand

UICommandTarget

UICommandState

UICmd

Command Handler

Command

StartUpdateCycle

EndUpdateCycle

UpdateCycleID

Property

Method() Method

Property

Object

Key

Object
– 272 –

_____________________________ Understanding and Customizing the Client Framework 8
Defining, Sending, and Handling Commands
This section describes how these application-specific commands are defined, how
menus and toolbars are programmed to send the commands, and how they are in-
tercepted by command handlers.

The steps required to define, send, and handle menu and toolbar commands are
summarized in the following table:

Each of these steps is described in the following sections.

Step 1 — Declare a Global Instance of the UICommands Class

Declare a global variable of the UICommands class. This class is the primary in-
terface to this command-handling client framework component. This variable will
be used by various client framework components of the application.

Example of declaring a global variable

Public gUICmds As New UICommands

Note: The UICommandConstants.bas client framework component declares this variable.

Steps Description

Step 1 Declare a global instance of the UICommands class. This
class is part of the CSTVBFW.dll OLE automation server
called Construct Spectrum framework classes.

Step 2 Define the commands.

Step 3 Code menu and toolbar events to send the commands.

Step 4 Code the command handlers.

Step 5 Link the commands to the command handlers.
– 273 –

Developing Client/Server Applications ___8
Step 2 — Define the Commands

Define the application-specific commands your menu items and toolbar buttons
will be sending. You will define these commands by defining named constants:

Public Const CMD_FILE_NEW As String = "FileNew"
Public Const CMD_FILE_OPEN As String = "FileOpen"
Public Const CMD_FILE_SAVE As String = "FileSave"
...

These constants are called command IDs. Their values are entirely up to you; your
code will never refer to the values directly, only the constant names. Define one
command ID for each unique menu and toolbar command.

Step 3 — Code Menu and Toolbar Events to Send the
Commands

Before you begin this step, ensure that your application has a menu or a toolbar
structure from which you intend to send commands.

To code menu events to send commands:

• Write Click events for the menu controls.

To code toolbar events to send commands:

• Write ButtonClick events for the toolbar controls.
– 274 –

_____________________________ Understanding and Customizing the Client Framework 8
Example of coding the menu and toolbar events for three commands

Private Sub mnuFileNew_Click()
 gUICmds.SendCommand CMD_FILE_NEW
End Sub

Private Sub mnuFileOpen_Click()
 gUICmds.SendCommand CMD_FILE_OPEN
End Sub

Private Sub mnuFileSave_Click()
 gUICmds.SendCommand CMD_FILE_SAVE
End Sub

...

' For toolbar buttons, use the Tag property to store the
' command ID you want the button to send.

Private Sub Form_Load()
 With tbrMain
 .Buttons("NEW").Tag = CMD_FILE_NEW
 .Buttons("OPEN").Tag = CMD_FILE_OPEN
 .Buttons("SAVE").Tag = CMD_FILE_SAVE
 ...
 End With
End Sub

Private Sub tbrMain_ButtonClick(ByVal Button As Button)
 If Button.Tag <> "" Then
 gUICmds.SendCommand Button.Tag
 End If
End Sub

As you can see from this example, you can easily send the same command from
both a menu control and a toolbar button. The event code uses the SendCommand
method of the UICommands class to send a specific command ID from each control.
In the next step, define the command handlers that receive these commands.
– 275 –

Developing Client/Server Applications ___8
Step 4 — Code the Command Handlers

Provide the code that will be executed for each command. This code will reside in
a command handler object, which can be a Visual Basic form, a Visual Basic class,
or an OLE object. The only requirement for this object is that it must have a public
method called UICommandTarget with the following declaration:

Public Sub UICommandTarget(Cmd As UICmd, ByRef ForwardToNext As Boolean)

When a menu control or toolbar button’s click event calls SendCommand, the
UICommands class eventually calls the UICommandTarget method. Into this
method is passed a UICmd object which contains information about the command
received.

UICommandTarget usually has a Select Case Cmd.ID statement so it can handle
more than one command and perform specific processing for each command.

Example of coding a command handler

Select Case Cmd.ID
Case CMD_FILE_NEW
 ' Processing for the File|New command.
 ' ...
Case CMD_FILE_OPEN
 ' Processing for the File|Open command.
 ' ...
Case CMD_FILE_SAVE
 ' Processing for the File|Save command.
 ' ...
...
End Select
– 276 –

_____________________________ Understanding and Customizing the Client Framework 8
Step 5 — Link the Commands to the Command Handlers

Next, tell the UICommands class what the command handler is for each command
ID. This action is called hooking a command. When you hook a command, specify the
command handler object and a list of command IDs.

Example of linking the command handler to the command ID

With gUICmds
 .HookCommand frmMDIFrame, CMD_FILE_NEW, CMD_FILE_OPEN, _
 CMD_FILE_SAVE ...

End With

The HookCommand method of the UICommands class links the command handler
with one or more command IDs. This method can be called any time during the ex-
ecution of the program. Once a command has been hooked by a command handler,
the link is established between the GUI control that sends the command and the
code that receives and processes the command.

More than one object can hook a given command ID. The UICommands class stores
a list of command handlers for each command ID (the command handler list). The
last command handler to be hooked to a command ID is called first. If this com-
mand handler decides not to perform the processing for the command, it can set the
ForwardToNext output parameter to True before returning, to tell the UICom-
mands class to send the command to the next command handler (the one that
hooked the command second last). This sequence continues until ForwardToNext
is set to False (the default) or all command handlers in the list have been called.

If a command handler is hooked to a command ID and HookCommand is called
again for the same command handler and command ID, the command handler will
be moved to the front of the list, instead of being in the list twice.
– 277 –

Developing Client/Server Applications ___8
The SendCommand method in the UICommands is actually implemented as shown
in the following pseudocode.

Pseudocode demonstrating how the SendCommand method works

Sub SendCommand(CmdID As Variant)
 Look up the command handler list for the given CmdID
 For each object, cmdtarget, in the list
 Set ForwardToNext to False
 Call cmdtarget.UICommandTarget(Cmd, ForwardToNext)
 If ForwardToNext is False
 Exit the loop
 End If
 End For
End Sub

When an object no longer wants to hook a command ID, you can call the
UnHookCommand method of UICommands to break the link between the com-
mand ID and the command handler. UICommands will remove the object from the
command handler list.

Example of unlinking the command ID and the command handler

With gUICmds
 .UnHookCommand frmMDIFrame, CMD_FILE_NEW, CMD_FILE_OPEN, _
 CMD_FILE_SAVE ...
End With

Updating User Interface Controls
When a user opens a menu, the menu commands that are not currently valid are
visibly disabled. The object that processes a command (the command handler ob-
ject) also decides whether or not the command is valid. The UICommands class
implements a mechanism whereby it asks the command handler object whether a
given command is valid or not. Modify the event code to customize the actions that
are performed when the user selects a menu item or clicks a toolbar button.
– 278 –

_____________________________ Understanding and Customizing the Client Framework 8
The steps required to update user interface controls are summarized in the follow-
ing table:

Each of these steps is described in the following sections.

Step 1 — Code Events to Update the Menu Controls

Write event code that enables or disables the menu items just before the menu is
displayed to the user. Take advantage of the Click event of a menu control, such as
the File menu or Edit menu, as a place to include your event code. Visual Basic
calls this event just before displaying the menu to the user.

Steps Description

Step 1 Code events to update the menu controls.

Step 2 Code the logic in the command handler that determines the
state of a command.

Step 3 Code events to update the toolbar buttons.
– 279 –

Developing Client/Server Applications ___8
Example of updating menu controls before the menu is displayed to the
user

Private Sub mnuFile_Click()
 SetMenuState mnuFileNew, CMD_FILE_NEW
 SetMenuState mnuFileOpen, CMD_FILE_OPEN
 SetMenuState mnuFileSave, CMD_FILE_SAVE
 ...
End Sub

Private Sub SetMenuState(mnu As Menu, CmdID As Variant)
 With gUICmds.Command(CmdID)
 .GetCurrentState
 mnu.Enabled = .Enabled
 mnu.Checked = .Checked
 End With
End Sub

If you disable a menu control in its parent’s Click event (the parent is the submenu
that contains the menu control), Visual Basic disables the menu control when the
menu is displayed. You can do the same thing with the Checked property for the
menu control.

where:

Command returns a UICmd object that contains information for a
given CmdID. This is the same UICmd object that was
passed to UICommandTarget.

GetCurrentState causes UICommands to call the command handler object
again, but this time the command handler will not process
the command, but will return whether or not the command
is valid and whether or not it should be checked. These
settings can then be read from the Enabled and Checked
properties when GetCurrentState returns.
– 280 –

_____________________________ Understanding and Customizing the Client Framework 8
Step 2 — Code the Logic that Determines the State of a
Command

The logic that determines whether a command is enabled or disabled and checked
or unchecked resides in the command handler in a public method called
UICommandState. It must have the following declaration:

Public Sub UICommandState(Cmd As UICmd, ByRef ForwardToNext As Boolean)

The UICommandState method is called by UICommands whenever GetCurrent-
State is called as shown in the following example:

Example of using the UICommandState method

With Cmd
 Select Case .ID
 Case CMD_FILE_NEW
 ' Code that determines if this command is valid.
 .Enabled = some condition
 Case CMD_FILE_OPEN
 ' Code that determines if this command is valid.
 .Enabled = some condition
 Case CMD_FILE_SAVE
 ' Code that determines if this command is valid.
 If some condition Then
 .Enabled = True
 Else
 .Enabled = False
 .DisabledReason = "the document has not changed since” & _
 “it was saved"
 End If
 End Select
End With

In the previous example, the Select Case Cmd.ID statement enables the method to
handle more than one command and provide specific processing for each command.
The Enabled property can be set to True or False. If Enabled is set to False, you
can also set the DisabledReason property to provide a message to the user explain-
ing why the command is not available. You also have the option of setting the
Checked property to True or False.
– 281 –

Developing Client/Server Applications ___8
Similar to UICommandTarget, if the command handler object is not required to de-
termine the state of the command, it can set the ForwardToNext parameter to True
before returning, instructing UICommands to invoke the next object in the com-
mand handler list.

If a command has at least one object in its command handler list, the object will be
Enabled and Unchecked. Therefore, you only need to provide handling in UICom-
mandState when you want to disable or check a command. If a command’s
command handler list is empty, GetCurrentState will return Disabled and
Unchecked.

Step 3 — Code Events to Update the Toolbar Buttons

Add code to enable or disable toolbar buttons. There are several different ways to
present disabled toolbar buttons to the user:

• Display a message. When the user clicks the button, either a window with a mes-
sage is displayed or the message is displayed on the status bar.

• Show a toolbar button with a disabled bitmap so that the user can immediately see
the button is disabled. The client framework uses this approach.

Displaying a Disabled Bitmap

If you decide to display a disabled bitmap, you must continually update the button
image. To update the button image, use a Timer control on the form and include
the event code as indicated in the following example:
– 282 –

_____________________________ Understanding and Customizing the Client Framework 8
Example of adding a Timer control to update the Button image

Private Sub tmrToolbarUpdate_Timer()
 Dim i As Integer
 Dim btn As Button

 For Each btn In tbrMain.Buttons
 If btn.Tag <> "" Then
 With gUICmds.Command(btn.Tag)
 .GetCurrentState
 btn.Enabled = .Enabled
 If btn.Style = tbrCheck Then
 btn.Value = IIf(.Checked, tbrPressed,
 tbrUnpressed)
 End If
 End With
 End If
 Next
End Sub

The previous example updates all the toolbar buttons that have command IDs as-
signed to them by the Tag property. Set the timer interval so that this event
executes frequently. An interval of 250 ms ensures that the toolbar button bitmaps
do not lag too far behind the application’s state. Timer events are only triggered
when the application becomes idle. This is advantageous because it does not take
away processing time from the running application to update the toolbar buttons,
but it is disadvantageous because it continues to update the toolbar button bitmaps
when your application is idle.

Displaying a Message

If you decide not to update the toolbar button bitmaps continually, leave the but-
tons enabled and instead display a message when the user clicks on a disabled
button.
– 283 –

Developing Client/Server Applications ___8
Example of displaying a message after the Click event on a disabled menu
item

Private Sub tbrMain_ButtonClick(ByVal Button As Button)
 Dim smsg as string
 If Button.Tag <> "" Then
 With gUICmds.Command(Button.Tag)
 .GetCurrentState
 If .Enabled Then
 gUICmds.SendCommand Button.Tag
 Else
 smsg = "This command is not available"
 If .DisabledReason <> "" Then
 smsg = smsg & " because " & .DisabledReason
 End If
 DisplayStatusBarMessage smsg
 End If
 End With
 End If
End Sub

When the user clicks on a toolbar button, the code determines whether or not the
button is valid. If it is valid, it executes the event code. If it is not valid, it displays
a message on the status bar, explaining to the user why the button is disabled.

Update Cycles

When the GetCurrentState method is called repeatedly for each menu item on a
menu or for each button on a toolbar, the application’s state does not change be-
tween the first call and the last call to GetCurrentState because the only thread of
execution is busy. If, however, one of the UICommandState methods yields the
CPU with a DoEvents or calls a Windows function that yields, for example, with a
blocked DDE request, the Construct Spectrum application could be re-entered al-
lowing its state to change.

Assuming that the UICommandState methods do not act in this way, it is possible
to optimize the code that executes within these methods by using the concept of an
update cycle.
– 284 –

_____________________________ Understanding and Customizing the Client Framework 8
During an update cycle, it is known that the application’s state will not change.
Therefore, at the beginning of an update cycle, you can look up all of the informa-
tion about the application’s state that the UICommandState methods will need.
Instead of looking this up for each command ID that needs the information, you can
look it up once, store the information in Static variables, and use it several times.

For example, the validity of the Edit menu commands Undo, Cut, Copy, Paste, De-
lete, and Select All, all depend on the control that currently has focus. You could
write the following code to determine the state of each of these commands at once.

Example of code that determines the state of multiple commands
simultaneously

bcanundo = False
bcancut = False
bcancopy = False
bcanpaste = False
bcandelete = False
bcanselectall = False

Set ctl = Screen.ActiveControl
If Not (ctl Is Nothing) Then
 Select Case TypeName(ctl)
 Case "TextBox", "MaskEdBox"
 bcanundo = (SendMessage(ctl.hwnd, EM_CANUNDO, 0, ByVal 0&) <> 0)
 bcancut = (ctl.SelLength > 0)
 bcancopy = bcancut
 bcanpaste = Clipboard.GetFormat(vbCFText)
 bcandelete = bcancut
 bcanselectall = (ctl.Text <> "")
 End Select
End If

You may only want to run this code at the beginning of each update cycle because
during the update cycle the application’s state will not change. To set the update
cycle, bracket the calls to GetCurrentState with a call to StartUpdateCycle and a
call to EndUpdateCycle as shown in the following example:
– 285 –

Developing Client/Server Applications ___8
Example of setting the update cycle

Private Sub mnuEdit_Click()
 gUICmds.StartUpdateCycle

 SetMenuState mnuEditUndo, CMD_EDIT_UNDO
 '---
 SetMenuState mnuEditCut, CMD_EDIT_CUT
 SetMenuState mnuEditCopy, CMD_EDIT_COPY
 SetMenuState mnuEditPaste, CMD_EDIT_PASTE
 SetMenuState mnuEditDelete, CMD_EDIT_DELETE
 '---
 SetMenuState mnuEditSelectAll, CMD_EDIT_SELECT_ALL

 gUICmds.EndUpdateCycle
End Sub

StartUpdateCycle assigns an update cycle ID (a 32-bit integer), which will be con-
stant until the call to EndUpdateCycle. The code that determines the state of the
edit commands will now only be executed when the update cycle ID changes, as
shown in the following example:
– 286 –

_____________________________ Understanding and Customizing the Client Framework 8
Example of changing the update cycle ID

Dim ctl As Control
Static llastupdateedit As Long
Static bcanundo As Boolean
Static bcancut As Boolean
Static bcancopy As Boolean
Static bcanpaste As Boolean
Static bcandelete As Boolean
Static bcanselectall As Boolean

With Cmd
 Select Case .ID
 ...
 Case CMD_EDIT_UNDO, _
 CMD_EDIT_CUT, _
 CMD_EDIT_COPY, _
 CMD_EDIT_PASTE, _
 CMD_EDIT_DELETE, _
 CMD_EDIT_SELECT_ALL
 If llastupdateedit <> gUICmds.UpdateCycleID then
 llastupdateedit = gUICmds.UpdateCycleID

 bcanundo = False
 bcancut = False
 bcancopy = False
 bcanpaste = False
 bcandelete = False
 bcanselectall = False

 Set ctl = Screen.ActiveControl
 If Not (ctl Is Nothing) Then
 Select Case TypeName(ctl)
 Case "TextBox", "MaskEdBox"
 bcanundo =(SendMessage(ctl.hwnd, EM_CANUNDO, _
 0, ByVal 0&) <> 0)
 bcancut = (ctl.SelLength > 0)
 bcancopy = bcancut
 bcanpaste = Clipboard.GetFormat(vbCFText)
 bcandelete = bcancut
 bcanselectall = (ctl.Text <> "")
 End Select
 End If
 End If
 Select Case .ID
 Case CMD_EDIT_UNDO: .Enabled = bcanundo
– 287 –

Developing Client/Server Applications ___8
 Case CMD_EDIT_CUT: .Enabled = bcancut
 Case CMD_EDIT_COPY: .Enabled = bcancopy
 Case CMD_EDIT_PASTE: .Enabled = bcanpaste
 Case CMD_EDIT_DELETE: .Enabled = bcandelete
 Case CMD_EDIT_SELECT_ALL: .Enabled = bcanselectall
 End Select
 End Select
End With

Additional Methods For Command Handling
This section describes other methods of UICommands you can use with your
application.

Unhooking Commands

To remove an object from all command handler lists, regardless of command ID,
you must release all references to it. The UICommands class provides the
ReleaseHooksByObject method as illustrated in the following syntax example.

Syntax of the ReleaseHooksByObject Method

Sub ReleaseHooksByObject(HookObject As Object)

Pseudocode Showing How the ReleaseHooksByObject Method Works

For all commands
 If HookObject is in this command's command handler list
 Remove it from the list
 End If
End For
– 288 –

_____________________________ Understanding and Customizing the Client Framework 8
To empty the command handler list for a given command, use the ReleaseHooks-
ByCommand method provided with the UICommands class:

Sub ReleaseHooksByCommand(CmdID As Variant)

Customizing the Menu and Toolbar in the Client
Framework

This section describes how to tailor the menu items and the toolbar buttons. You
will learn how to model your changes on the code in the client framework’s
multiple-document interface (MDI) frame form.

For more information about tailoring the menu items, see Changing the Menu
Structure, page 289.

For more information about tailoring the buttons on the toolbar, see Changing
the Toolbar Structure, page 298.

For information about how to change the states of the menu items and the toolbar
between enabled and disabled, and checked or unchecked, see Understanding
Menu and Toolbar Command Handling, page 271.

Changing the Menu Structure
The multiple-document interface (MDI) frame form in the client framework has a
predefined menu structure. You may change this menu structure by following the
pattern used in the MDI frame form.

For more information about the MDI frame form, the command IDs, command han-
dlers, and update cycles, see Understanding Menu and Toolbar Command
Handling, page 271.

where:

CmdID As Variant is replaced with one of the previously-defined command
IDs (for example, CMD_EDIT_UNDO).
– 289 –

Developing Client/Server Applications ___8
The pattern supplied with the MDI frame form is implemented with the following
code requirements:

• Each menu item control sends a command ID through event code. The event code
for all menu item controls is identical except for the command ID constant.

Example of event code for three commands on the File menu and two
commands on the Edit menu

Private Sub mnuFileOpen_Click()
 gUICmds.SendCommand CMD_FILE_OPEN
End Sub

Private Sub mnuFileClose_Click()
 gUICmds.SendCommand CMD_FILE_CLOSE
End Sub

Private Sub mnuFileExit_Click()
 gUICmds.SendCommand CMD_FILE_EXIT
End Sub

Private Sub mnuEditCut_Click()
 gUICmds.SendCommand CMD_EDIT_CUT
End Sub

Private Sub mnuEditCopy_Click()
 gUICmds.SendCommand CMD_EDIT_COPY
End Sub

• The command IDs are all defined in a global module called
UICommandConstants.bas.

Example of UICommandConstants.bas where all command IDs are defined

Public Const CMD_FILE_OPEN = "FileOpen"
Public Const CMD_FILE_CLOSE = "FileClose"
Public Const CMD_FILE_EXIT = "FileExit"

Public Const CMD_EDIT_CUT = "EditCut"
Public Const CMD_EDIT_COPY = "EditCopy"

• When the MDI frame form is loaded, the command IDs are hooked into the com-
mand classes.
– 290 –

_____________________________ Understanding and Customizing the Client Framework 8
Example of hooking the commands IDs into the command classes

Private Sub MDIForm_Load ()
 With gUICmds
 .HookCommand Me, CMD_FILE_OPEN, _
 CMD_FILE_CLOSE, _
 CMD_FILE_EXIT

 .HookCommand Me, CMD_EDIT_CUT, _
 CMD_EDIT_COPY
 End With
End Sub

Note: Although you can hook all command IDs with one call to the HookCommand meth-
od, the previous example illustrates how to group the command IDs by category —
File commands and Edit commands.

• Each menu item has a parent menu control. This control’s Click event is triggered
when the user chooses the menu. Use the Click event to enable or disable and check
or uncheck each menu item.

Example of using the Click event to control menu items

Private Sub mnuFile_Click()
 gUICmds.StartUpdateCycle
 SetMenuState mnuFileOpen, CMD_FILE_OPEN
 SetMenuState mnuFileClose, CMD_FILE_CLOSE
 SetMenuState mnuFileExit, CMD_FILE_EXIT
 gUICmds.EndUpdateCycle
End Sub

Private Sub mnuEdit_Click()
 gUICmds.StartUpdateCycle
 SetMenuState mnuEditCut, CMD_EDIT_CUT
 SetMenuState mnuEditCopy, CMD_EDIT_COPY
 gUICmds.EndUpdateCycle
End Sub
– 291 –

Developing Client/Server Applications ___8
The previous example calls SetMenuState for each item on the menu. These calls
are bracketed by StartUpdateCycle and EndUpdateCycle.

• Finally, you must code the UICommandTarget and UICommandState procedures
in each form that will be receiving these command IDs. You can model your proce-
dures on the procedures used by the MDI frame form and Visual Basic
maintenance objects generated with Natural Construct.
– 292 –

_____________________________ Understanding and Customizing the Client Framework 8
Example of UICommandTarget and UICommandState procedures used by
the MDI frame form

Public Sub UICommandTarget(Cmd As UICmd, ForwardToNext As Boolean)
 Select Case Cmd.ID

 Case CMD_FILE_OPEN
 frmOpen.Show vbModal
 Case CMD_FILE_CLOSE
 Unload Screen.ActiveForm
 Case CMD_FILE_EXIT
 Unload Me

 Case CMD_EDIT_CUT
 With Screen.ActiveControl
 Clipboard.SetText .SelText
 .SelText = ""
 End With
 Case CMD_EDIT_COPY
 Clipboard.SetText Screen.ActiveControl.SelText

 End Select
End Sub

Public Sub UICommandState(Cmd As UICmd, ForwardToNext As Boolean)
 Dim frm As Form
 Dim ctl As Control

 Static llastupdateedit As Long
 Static bcancut As Boolean
 Static bcancopy As Boolean

 With Cmd
 Select Case .ID
 Case CMD_FILE_CLOSE
 .Enabled = False
 .DisabledReason = "there are no child windows open"
 Set frm = Screen.ActiveForm
 If Not (frm Is Nothing) Then
 .Enabled = IsMDIChild(frm)
 End If

 Case CMD_EDIT_CUT, _
 CMD_EDIT_COPY
 If llastupdateedit <> gUICmds.UpdateCycleID Then
 llastupdateedit = gUICmds.UpdateCycleID
– 293 –

Developing Client/Server Applications ___8
 bcancut = False
 bcancopy = False

 Set ctl = Screen.ActiveControl
 If Not (ctl Is Nothing) Then
 Select Case TypeName(ctl)
 Case "TextBox", "MaskEdBox"
 bcancut = (ctl.SelLength > 0)
 bcancopy = bcancut
 End Select
 End If
 End If
 Select Case .ID
 Case CMD_EDIT_CUT: .Enabled = bcancut
 Case CMD_EDIT_COPY: .Enabled = bcancopy
 End Select
 End Select
 End With
End Sub

Example of Changing the Menu Bar and Its Menu Items
The following example adds a new menu called View to the menu bar and includes
commands that allow you to toggle the toolbar and status bar on and off.

To add a View menu to the menu bar with the menu items Toolbar and Status Bar:

1 Use Visual Basic’s menu editor to add the following menu controls to the MDI
frame form.

Note: The rest of this example assumes the previous menu structure has been added.

Menu Caption Menu Control Name

View mnuView

Toolbar mnuViewToolbar

Status Bar mnuViewStatusBar
– 294 –

_____________________________ Understanding and Customizing the Client Framework 8
Example of the New Menu View Added to the Menu Bar

2 Define command IDs in UICommandConstants.bas:

Public Const CMD_VIEW_TOOLBAR = "ViewToolbar"
Public Const CMD_VIEW_STATUSBAR = "ViewStatusBar"

The names of these constants and their values can be anything you choose, but try
to follow the conventions established in the code.

New View menu
– 295 –

Developing Client/Server Applications ___8
3 Code the event handlers for the menu controls:

Private Sub mnuViewToolbar_Click()
 gUICmds.SendCommand CMD_VIEW_TOOLBAR
End Sub

Private Sub mnuViewStatusBar_Click()
 gUICmds.SendCommand CMD_VIEW_STATUSBAR
End Sub

4 Hook the command IDs into the command classes:

Private Sub MDIForm_Load ()
 With gUICmds
 ...
 .HookCommand Me, CMD_VIEW_TOOLBAR, _
 CMD_VIEW_STATUSBAR
 ...
 End With
End Sub

5 Add code to the Click event of the menu control on the menu bar to update the state
of the menu controls:

Private Sub mnuView_Click()
 gUICmds.StartUpdateCycle

 SetMenuState mnuViewToolbar, CMD_VIEW_TOOLBAR
 SetMenuState mnuViewStatusBar, CMD_VIEW_STATUSBAR

 gUICmds.EndUpdateCycle
End Sub

6 Lastly, add code to the UICommandTarget and UICommandState procedures in
the MDI frame form to handle these two new command IDs:
– 296 –

_____________________________ Understanding and Customizing the Client Framework 8
Public Sub UICommandTarget(Cmd As UICmd, ForwardToNext As Boolean)
 Select Case Cmd.ID
 ...
 Case CMD_VIEW_TOOLBAR
 tbrMain.Visible = Not tbrMain.Visible
 Case CMD_VIEW_STATUSBAR
 sbrMain.Visible = Not sbrMain.Visible
 ...
 End Select
End Sub

Public Sub UICommandState(Cmd As UICmd, ForwardToNext As Boolean)
 With Cmd
 Select Case .ID
 ...
 Case CMD_VIEW_TOOLBAR
 .Checked = tbrMain.Visible
 Case CMD_VIEW_STATUSBAR
 .Checked = sbrMain.Visible
 ...
 End Select
 End With
End Sub

By using the command handler, you do not need to set the menu controls’ Checked
properties when you toggle the visibility of the toolbar or status bar. Instead, read
the current visibility state in the UICommandState method. If another piece of
code changes the visibility state, that other code is not required to toggle the
menu’s Checked property.
– 297 –

Developing Client/Server Applications ___8
Changing the Toolbar Structure
The toolbar follows the structure defined by the MDI frame form, just as the Menu
does.

For more information about the MDI frame form structure, see Understanding
Menu and Toolbar Command Handling, page 271.

• The toolbar is a control of type Toolbar, from the Windows Common Controls li-
brary, with the name tbrMain.

• The button arrangement is defined at design time using the Toolbar Control Prop-
erties dialog. The images on the buttons are stored in the ilstMain image list
control on the MDI frame form. Each toolbar button is linked to a specific numeric
index in the image list.

• The Tag property of each toolbar button contains the command ID that is sent by
that toolbar button. The command IDs may be the same as or different than those
used on the menu. These Tag properties are set up with the following code in the
form’s Load event:

Example of Tag properties defined in the Load event

With tbrMain
 .Buttons("OPEN").Tag = CMD_FILE_OPEN
 .Buttons("CUT").Tag = CMD_EDIT_CUT
End With

The previous example uses a string key to uniquely identify each toolbar button.
This key makes it easy to get a reference to a specific toolbar button.

Note: Another way to set the Tag property is by using the Toolbar Control Properties dia-
log, although this solution is less desirable. First, in the Toolbar Control Properties
dialog you must specify a hard-coded value in the dialog, whereas in code you would
use a named constant. Second, if you hand code the value in the dialog, you cannot
use Visual Basic’s search function to search for it, making your code more difficult
to review, change, and scan for dependencies.

• When a toolbar button is clicked, the ButtonClick event checks whether the button
should be enabled or not, and then sends the command ID if it is enabled. This code
is generic and does not have to be changed if the buttons on the toolbar are
changed.
– 298 –

_____________________________ Understanding and Customizing the Client Framework 8
The following example uses the ButtonClick event to check whether the button is
enabled or not and sends the command ID if it is enabled.

Example of checking the button’s state

Private Sub tbrMain_ButtonClick(ByVal Button As Button)
 Dim smsg As String

 If Button.Tag <> "" Then
 With gUICmds.Command(Button.Tag)
 .GetCurrentState
 If .Enabled Then
 gUICmds.SendCommand Button.Tag
 Else
 smsg = "This command is not available"
 If .DisabledReason <> "" Then
 smsg = smsg & " because " & .DisabledReason
 End If
 DisplayStatusBarMessage smsg
 End If
 End With
 End If
End Sub

Example of Adding Buttons to the Toolbar
In this example, two new buttons are placed on the toolbar to correspond to the
menu commands Insert Row and Delete Row on the Edit menu. These commands
already have command IDs and command handlers.

For more information about defining command ID constants and command han-
dlers, see Example of Changing the Menu Bar and Its Menu Items, page 294.

To add two buttons to the toolbar:

1 Display the Image List Control Properties dialog for the image list control called
ilstMain and add the bitmaps of your choice to the two new buttons. Make a note
of the numeric index of these bitmaps.

2 Display the Toolbar Control Properties dialog and add the new buttons. Give each
button a string key, ToolTip text, and assign the image number from the first step.
– 299 –

Developing Client/Server Applications ___8
3 Set the buttons’ Tag properties in the MDI frame form’s Load event. The
mnuEditInsertRow and mnuEditDeleteRow controls in the Click event send the
command IDs CMD_EDIT_INSERT_ROW and CMD_EDIT_DELETE_ROW,
respectively. Use these command IDs when assigning the Tag properties:

With tbrMain
 ...
 .Buttons("INSERT_ROW").Tag = CMD_EDIT_INSERT_ROW
 .Buttons("DELETE_ROW").Tag = CMD_EDIT_DELETE_ROW
 ...
End With

There are now two new buttons on the toolbar that behave identically to the Insert
Row and Delete Row commands on the Edit menu.
– 300 –

_____________________________ Understanding and Customizing the Client Framework 8
Multiple-Document Interface (MDI) Frame Form
The Multiple-Document Interface (MDI) frame form includes a standard menu bar,
toolbar, and status bar for your application. The MDI frame form is provided for
you to use as a starting point for creating your own menu or tailoring your toolbars.
You will need to customize the menu and toolbars for each application unless the
MDI frame form is suitable as is.

All generated maintenance dialogs are displayed as child windows within the MDI
frame form.

The following table describes the MDI frame form supplied with Construct
Spectrum:

For more information, see Multiple-Document Interface (MDI) Applications
in Microsoft Visual Basic Programmer’s Guide.

Component Description

MDIFrame.frm Contains the MDI frame form which includes a menu, a
toolbar, and a status bar.

 Menu Bar Contains File, Edit, Actions, Window, and Help menus,
each containing the standard menu commands.

 Toolbar Contains buttons that correspond to most of the menu
commands and can be customized by the user.

 Status Bar Contains panels for a message, various status indicators,
and the current date and time.
– 301 –

Developing Client/Server Applications ___8
Object Factory
The object factory client framework components are used by many of the generated
Construct Spectrum modules, as well as by other client framework objects and
forms. The purpose of the object factory is to make the client portion of your appli-
cation aware of all of its Visual Basic business objects and their associated actions.

The Open dialog enables you to select dialogs by using the object factory to display
a list of all its available Visual Basic business objects.

The following table describes the object factory and Open dialog supplied with Con-
struct Spectrum:

The objects and actions are displayed in the Open dialog that is part of the client
framework. The user first selects an object, then selects one of the actions for that
object, and finally clicks OK to display the form.

Component Description

Open.frm Contains the Open dialog.

OpenAction Describes a single action of a Visual Basic business object
in your application.

OpenObject Describes a single Visual basic business object in your
application.

OpenObjects Contains all of the Visual Basic business objects in your
application.

OFactory.bas Contains the object factory.
– 302 –

_____________________________ Understanding and Customizing the Client Framework 8
Default Open.frm Supplied with your Construct Spectrum Project

Understanding the Open Dialog
The Open dialog provides the user with a convenient method of selecting the type
of window he or she would like to open, such as “Maintain Customers,” “Display
Overdue Accounts,” or “Create a New Order.” The dialog displays two lists: one
showing the main business objects such as customers, accounts, and orders, and
the other showing the actions available for the business object selected in the first
list. For example, if “Orders” is selected in the first list, then “Maintain,” “Browse,”
“Show pending orders,” and “Print end-of-day report” might appear in the second
list. Each item in each list can have a short description, which is shown when the
user selects the item.

You do not need to change the Open dialog. You must, however, update the object
factory by providing the list of objects that should appear in the first list and the
associated actions for the second list, and writing the code that is executed when
each object and action combination is selected by the user. This code will then load
and display a form generated by Natural Construct.
– 303 –

Developing Client/Server Applications ___8
The Open dialog uses the object factory for two purposes:

• To determine which objects and actions are supported by an application

• To instantiate a form

For more information, see Customizing the Object Factory, page 307, and Cus-
tomizing the Menu and Toolbar in the Client Framework, page 289.

Understanding the Object Factory
Every Construct Spectrum application contains a client framework component
called the object factory. The object factory is the central repository in your appli-
cation where instances of Visual Basic business objects are created for use by other
portions of the application. The super model generates the initial object factory
based on the objects defined to the model. Later, as new objects are added to your
application, the object factory is typically extended by hand-coding new object
references.

Because the creation of all Visual Basic business objects occurs in the object facto-
ry, all other application components that use the services of these objects can
compile and execute, even if the Visual Basic business objects that they interact
with have not yet been added to your application.

For more information about using the object factory to instantiate Visual Basic
business objects that have not yet been added to your application, see Example of
Using the Object Factory, page 306.

Application components that use the services of the object factory include:

• Construct Spectrum client framework components:

– Open dialog

– BrowseManager class
For more information, see Using the BrowseManager, page 233, and Under-
standing Browse Command Handlers, page 238.
– 304 –

_____________________________ Understanding and Customizing the Client Framework 8
• Visual Basic maintenance business object
For more information about the forms and classes generated by the VB-Maint-
Object model, see Creating and Customizing Maintenance Dialogs, page 137.
For more information about the forms and classes generated by the VB-Maint-Di-
alog model, see Strategies for Customizing a Maintenance Dialog, page 155.

• Visual Basic browse business object
For more information about the forms and classes associated with Visual Basic
browse business objects, see About Browse Dialogs, page 216 and Understand-
ing Browse Command Handlers, page 238.

• Custom-created modules such as browse command handlers
For more information, see Understanding Browse Command Handlers, page
238 and Understanding Browse Command Handlers, page 238.

Application components that require a specific form or object to implement a ser-
vice (for example, creating a browse dialog that allows your users to browse
customer records) use the object factory. Instead of each component creating its
own instances of these objects, components send a request to the object factory to
create the objects and return a reference.

Using the Object Factory
The object factory exposes four procedures (functions and subroutines) that are glo-
bal to your application. As you create your application, use these procedures to:

• Make the application aware of all its Visual Basic business objects.

• Create instances of Visual Basic business objects (forms or objects).

• Query the availability of Visual Basic business objects.
– 305 –

Developing Client/Server Applications ___8
The following table describes the procedures in the object factory:

Example of Using the Object Factory
An Order Maintenance form offers the ability to invoke an Order Browse form. To
accomplish this, the Order Maintenance form uses the services of the Order
Browse object.

If an Order Maintenance form directly instantiates an Order Browse object (in-
stead of using the object factory), it could not be compiled without including the
Order Browse object as part of the application. However, by conditionally creating
an Order Browse object with the object factory, you will be able to compile the form,
even if the Order Browse object has not yet been added to the application.

Service Description

InitializeOpenDialog() Creates a list of the application’s Visual Basic
business objects and the actions they support.
The Open dialog uses this service.

CreateForm(formID) As Form Creates a form to support a Visual Basic
business object (either a Visual Basic browse
object or a Visual Basic maintenance object)
and returns a reference to the form. The Open
dialog uses this service.

BrowserExists(TableName) As
Boolean

Confirms with True or False whether a Visual
Basic browse object exists for a database table.

GetBrowser(TableName) As
BrowseManager

The object factory creates a specific Visual
Basic browse object for a database table. Next,
the specified browse object creates and
initializes a browse base object. Finally, the
object factory returns a reference to the
BrowseManager object.
– 306 –

_____________________________ Understanding and Customizing the Client Framework 8
At execution time, the Order Maintenance form uses a global function,
BrowserExists(tablename), exposed by the object factory, to determine if the object
factory can create an instance of the Order Browse object. Only if the object factory
returns True to this request does the form enable the features supported by the Or-
der Browse object.

The TableName parameter used with the BrowserExists() function is the name of
the database table implemented by a Visual Basic business object.

Customizing the Object Factory
When you add new business objects to your application, such as maintenance forms
or browse objects, you must update the object factory to make the application
aware of these new objects. You must either add code manually to the standard ob-
ject factory module or generate a new object factory using the super model.

If you generated and downloaded the object factory (OFACTORY, although you
may have given it a different name), you should be able to run your application,
choose Open on the File menu, and see the objects and actions you generated.

Downloaded forms are added to your Construct Spectrum project. However, if you
did not generate the object factory or if you are adding a form to an existing project,
you must write a small amount of code by hand to link each new form to the client
framework. Once linked, the Open dialog is able to load, initialize, and display the
form. The following sections describe how to code the object factory by hand.

Setting Up
The client framework uses an object-action metaphor to select a particular form to
display. You, as the application developer, must decide which types of objects can
be manipulated by the application, such as Customers, Orders, and Inventory.
Next you must decide which actions will be supported for each object, such as Main-
tain, Browse, or Show Delinquents. Each object-action combination will have a
form associated with it, either generated or created by hand.

You must write code to define all of the objects, the actions for each object, and
which form to load and initialize for each object-action combination. All of the code
resides in a module called OFactory.bas in your Construct Spectrum project.
– 307 –

Developing Client/Server Applications ___8
Default Code in the OFactory.bas
– 308 –

_____________________________ Understanding and Customizing the Client Framework 8
The relationship between the Open dialog, the procedures in the OFactory.bas file,
and the newly-created form are important to understand as you plan the customi-
zation of the object factory. The following diagram clarifies these relationships:

 Interaction Between Open Dialog, Procedures in OFactory.bas,
and Newly-Created Form

5 Display form1 Get object/action details

Open Dialog

CreateForm

3 Get new form instance

4 Load and initialize form2 User selects an object/action
combination

Newly-Created FormInitializeOpenDialog
– 309 –

Developing Client/Server Applications ___8
Example of the default OFactory.bas client framework component

Option Explicit

'==
' P U B L I C Module Variables
'==

Public gOpenObjects As OpenObjects

'==
' P U B L I C Procedures
'==

Public Sub InitializeOpenDialog()

 Dim obj As OpenObject

 Set gOpenObjects = New OpenObjects

 Set obj = gOpenObjects.Add("Customer", "These are our customers.")
 obj.Add "Maintain", "Customer maintenance", "CUSTMAINT"
 obj.Add "Browse", "Display a list of all customers.", "CUSTBROWSE"

 Set obj = gOpenObjects.Add("Order", "These are our orders.")
 obj.Add "Maintain", "Order maintenance", "ORDERMAINT"
 obj.Add "Browse", "Display a list of all orders.", "ORDERBROWSE"

End Sub

Public Function CreateForm(FormID As Variant) As Form
 Dim frm As Form

 Select Case FormID
 Case "CUSTMAINT"
 Set frm = New frmCustomerMaint

 Case "CUSTBROWSE"
 Set frm = New frmCustomerBrowse

 Case "ORDERMAINT"
 Set frm = New frmOrderMaint

 Case "ORDERBROWSE"
 Set frm = New frmOrderBrowse
– 310 –

_____________________________ Understanding and Customizing the Client Framework 8
 ' Add additional form variants here.
 'Case ...
 Case Else
 ASSERT False, "The Object Factory was passed an " & _
 "unknown form ID: " & FormID
 Exit Function
 End Select
 Set CreateForm = frm

End Function

Making your Application Aware of New Business Objects
When you add new business objects to your application, such as maintenance forms
or browse objects, you must update the object factory to make the application
aware of these new objects. You must either add code manually to the standard ob-
ject factory module or generate a new object factory using the super model.

For more information about creating the object factory using the super model, see
Using the Super Model to Generate Applications, page 93.

If you choose to update the object factory manually, you will have to update each of
the associated object factory procedures. The steps outlined below describe how to
update these procedures.

The steps required to link your object factory module with the client framework are
summarized in the following table:

Each of these steps are described in the following sections.

Steps Description

Step 1 Update the InitializeOpenDialog procedure.

Step 2 Update the CreateForm procedure.

Step 3 Update the GetBrowser procedure.

Step 4 Update the BrowserExists procedure.
– 311 –

Developing Client/Server Applications ___8
Step 1 — Update the InitializeOpenDialog Procedure

The purpose of this procedure is to create a list of all the Visual Basic business ob-
jects known to the application. This list is implemented as a Visual Basic collection
of OpenObjects types, and the objects contained in this collection are of OpenObject
types. Both of these class definitions are supplied with the Construct Spectrum cli-
ent framework. You can use the Object Browser in Visual Basic to view the public
methods and properties of these objects.

For more information, see the Construct Spectrum Reference Manual.

Example of the InitializeOpenDialog procedure

Public Sub InitializeOpenDialog()

 Dim obj As OpenObject

 ' Create a new global instance of the OpenObjects collection.
 Set gOpenObjects = New OpenObjects

 ' Add the Customer business object and its actions.
 Set obj = gOpenObjects.Add("Customer", "Customer")
 obj.Add "Maintenance", "Customer Maintenance", "Customer_M1"
 obj.Add "Browse", "Browse Clients", "Client_B1"

 ' Add the Order business object and its actions.
 Set obj = gOpenObjects.Add("Order", "Order")
 obj.Add "Maintenance", "Order Maintenance", "Order_M1"
 obj.Add "Browse", "Browse Orders", "Order_B1"

 ' To add a new business object copy this code block and
 ' uncomment and modify lines as required ---------------------->>

 'Set obj = gOpenObjects.Add("<object name>", "<description>")
 'obj.Add "<action1 name>", "<description>", "<action1 ID>"
 'obj.Add "<action2 name>", "<description>", "<action2 ID>"
 ' <<---

End Sub

In the above example, there are two Visual Basic business objects known to the ap-
plication — Customer and Order.
– 312 –

_____________________________ Understanding and Customizing the Client Framework 8
To add a new object to the application:

1 Copy the commented lines delimited by the arrows (shown in bold above).

2 Uncomment the line to add a new business object to the OpenObjects collection.
Change the object name and description to pertain to your Visual Basic business
object.

3 For each action supported by your Visual Basic business object (such as
Maintenance, Browse, or Reports), copy and uncomment a line to add the action.

– Change the action name and action description to pertain to the specific action.

– Change the form ID to uniquely identify the action within the entire
application.

Step 2 — Update the CreateForm Procedure

This function takes a form ID as a parameter and returns a reference to a Con-
struct Spectrum form that implements the requested business action.

You must add a new case statement for each form ID that you have added to your
InitializeOpenDialog procedure to handle the creation of the Visual Basic form
that implements the action.
– 313 –

Developing Client/Server Applications ___8
Example of the CreateForm procedure

Public Function CreateForm(FormID As Variant) As Form

 Dim frm As Form
 Dim BrMgr As BrowseManager

 ' For every possible action supported by the business objects in
 ' the application, instantiate a form to service the action.

 Select Case FormID

 ' Copy this case for each new maintenance form ---------------->>
 Case "Customer_M1"
 ' Create a new Customer maintenance form.
 Set frm = New frm_Customer
 ' <<---

 ' Copy this case for each new browse form --------------------->>
 Case "Customer_B1"
 ' Create a new Browse Manager object for the Customer Browse
 ' Object.
 Set BrMgr = GetBrowser("NCST-CUSTOMER")
 ' Ask the Browse Manager object to create a new Customer
 ' Browse form.
 Set frm = BrMgr.MDIBrowserForm
 ' <<---

 Case Else
 ASSERT False, "The Object Factory was passed an " & _
 "unknown form ID: " & FormID
 Exit Function
 End Select

 Set CreateForm = frm

End Function

To add support for a new Visual Basic maintenance business object action:

1 Copy the commented code block delimited by the arrows for the maintenance action
(as shown in bold above).

2 Modify the line to add a case statement for the action. Change the FormID in the
Case line to match the ID of the Visual Basic maintenance business object’s action.
– 314 –

_____________________________ Understanding and Customizing the Client Framework 8
3 Modify the line that creates a maintenance form. Change the name of the form to
the name of the form generated by the VB-Maint-Dialog model for the new Visual
Basic business object.

To add support for a new Visual Basic browse business object action:

1 Copy the commented code block delimited by the arrows for the browse action (as
shown in bold italics above).

2 Uncomment the line that adds a case statement for this action. Change the
FormID in the case statement to match the form ID of the Visual Basic browse
business object’s action.

3 Uncomment the line that uses the GetBrowser(TableName) function to return a
reference to an initialized BrowseManager object. Change the TableName
parameter to the name of the database table for which the Visual Basic business
object was generated.

4 Uncomment the line that uses the MDIBrowser method of the BrowseManager
object to return a reference to an MDI browse form.

Step 3 — Update the GetBrowser Procedure

When you add a new Visual Basic business object that supports a browse action to
your application, you must add a new case statement to this function to initialize
and return a BrowseManager object.

Use the GetBrowser procedure to return a reference to an initialized BrowseMan-
ager object. Client framework components use this function to request a reference
to a BrowseManager object used to request browse services (such as displaying a
MDI browse or modal browse form or performing a lookup request).

For more information about the BrowseManager, see Customizing the Generic
Browse Dialog, page 232.
– 315 –

Developing Client/Server Applications ___8
Example of the GetBrowser() function

Public Function GetBrowser(TableName As String) As Browser
Dim BrMgr As New BrowseManager
 ' Return a browser object for the requested table.
 Select Case TableName

 ' Copy this code block to add support for a new Browse ------ >>
 Case "NCST-CUSTOMER"

 ' Create a New Customer Browse Object.
 Dim CustomerBrowse As New CustomerBrowse

 ' Set the BrowseManagers base object to the Customer
 ' Browse Object's BaseObject.
 Set BrMgr.BrowseObject = CustomerBrowse.BaseObject

 ' Assign the Caption property of the BrowseManager.
 BrMgr.Caption = "Query Customers"
 ' -- <<
 Case "NCST-ORDER-HEADER"
 Set BrMgr.BrowseObject = New OrderBrowse
 BrMgr.Caption = "Query Orders"
 End Select
 Set GetBrowser = BrMgr
End Function

To add support for a new Visual Basic browse business object action:

1 Copy the commented code block delimited by the arrows (as shown in bold above).

2 Modify the line that adds the new case statement. Change the name of the table to
the name of the database table implemented by the new Visual Basic browse
business object.

3 Modify the line that creates the new specific browse object. Change the instance
name and class name of the specific browse object to the name of the class that was
generated by the VB-Browse-Object model for the new business object. This is the
class that initializes a generic base browse object, with for example the column
names, formats, captions, and key names specific to a particular Visual Basic
browse business object.

4 Modify the line that sets the BrowseManager’s BaseObject property to the
BaseObject property of the specific browse. Change the specific browse object name
to the class name of the specific browse object generated by the VB-Browse-Object
model for the new Visual Basic browse business object.
– 316 –

_____________________________ Understanding and Customizing the Client Framework 8
5 Modify the line that assigns BrowseManager’s Caption property.
Change the caption to describe the Visual Basic browse business object.

6 If your application supports multiple languages at runtime, see
Internationalizing Using the Client Framework, page 369, for more
information about how you can internationalize the caption.

Step 4 — Update the BrowserExists Procedure

When you add a new Visual Basic business object that supports a browse action to
your application, you must add a new case statement to the BrowseExists proce-
dure to make the browse known to all the other components in your application.

Other application components never refer directly to a specific Visual Basic browse
business object. Instead, they refer to the browse via the tablename for which the
specific Visual Basic browse business object has been implemented. This allows ap-
plication components that use the services of browse objects to compile and execute
even if the browse objects have not yet been added to your project.

Example of the BrowserExists procedure

Public Function BrowserExists(TableName As String) As Boolean

 ' Optimistic
 BrowserExists = True

 ' Check if there is a browse object for the requested table name.
 Select Case TableName

 ' Copy this line to add support for a new browse ---- >>
 Case "NCST-CUSTOMER"
 ' --- <<
 Case "NCST-ORDER-HEADER"
 Case Else
 BrowserExists = False
 End Select

End Function

Note: The table names used in this function must match those in the GetBrowser function.
Table names must be the view names documented in Predict.
– 317 –

Developing Client/Server Applications ___8
To add support for a new browse:

1 Copy the code block delimited by the arrows (as shown in bold above).

2 Modify the line that adds a new case statement. Change the database table name
to the name of the table implemented by the Visual Basic business object. Make
sure that this is the same table name that is referred to in the GetBrowser()
function for this Visual basic browse business object.
– 318 –

_____________________________ Understanding and Customizing the Client Framework 8
Spectrum Dispatch Client Support
The Spectrum Dispatch Client (SDC) client framework components provide func-
tionality that integrates the rest of the client framework and the generated code
with the Spectrum Dispatch Client. Consider these client framework components
to be helper components that simplify using the Spectrum Dispatch Client.

The Spectrum Dispatch Client uses one generic dialog to display varying informa-
tion based on need. A Construct Spectrum application uses the dialog in three
distinct ways:

• To prompt the user for a Construct Spectrum user ID and password when a remote
CallNat returns a security error

• To display communication error messages to your user

• To prompt the user to specify a dispatch service for the application

Each of these components is described in the following sections.

The following table describes the Spectrum Dispatch Client dialog client frame-
work components supplied with Construct Spectrum:

Component Description

SDCDialog.frm Prompts the user for logon credentials, selects dispatch
services, and displays errors arising in the Spectrum
Dispatch Client.

TraceOptions.frm Sets trace options for a remote call. For more information,
see Debugging Your Client/Server Application, page
201, in Construct Spectrum Programmer’s Guide.

SDCSupport.bas Encapsulates common Spectrum Dispatch Client
procedures.
– 319 –

Developing Client/Server Applications ___8
TraceOptions.frm Supplied With Your Construct Spectrum Application
– 320 –

_____________________________ Understanding and Customizing the Client Framework 8
SDCDialog.frm supplied with Construct Spectrum Client Framework

The client framework uses the SDCDialog.frm to supply all three of these features.

Logon Dialog
The Logon dialog provides a convenient way of obtaining a user ID and password
from the current user. The user ID and password are required for all calls to back-
end Natural services to ensure that the user is authorized to access each service.

By default, the Logon dialog displays when the application starts and whenever a
“No Permission to Execute Function” error occurs.
– 321 –

Developing Client/Server Applications ___8
Error Messages
Error messages returned by the Spectrum Dispatch Client are displayed by the cli-
ent framework using the SDCDialog form. For more information about messages,
see Construct Spectrum Messages.

Dispatcher Selection Dialog
The client framework displays the Dispatcher Selection dialog to allow users to se-
lect which dispatcher to associate with their current application.

For more information about the Spectrum Dispatch Client, Spectrum Dispatch
Client Components, page 249, in Construct Spectrum Programmer’s Guide.
– 322 –

_____________________________ Understanding and Customizing the Client Framework 8
Utility Procedures
The utility procedures in the client framework are functions and subroutines ac-
cessed by many other components of the client framework. For example, client
framework components access the utility procedures to center a form on the screen,
parse strings, calculate minimum and maximum values, test assertions, and set
the mouse pointer appearance.

The following table lists the client framework component containing the utility
procedures:

The following table provides a brief description of each utility procedure:

Component Description

CSTUtils.bas Contains a collection of utility procedures and global
constants.

Utility Description

AppendSlash Appends a backslash to the end of a directory name, if
necessary.

ArrayDimensions Returns the number of dimensions in an array.

ASSERT Tests an assertion.

CenterForm Centers a form relative to the screen or to another form.

CreateArray Creates and returns a one-, two-, or three-dimensional
array of variants.

CreateStringArray Creates and returns a one-, two-, or three-dimensional
array of variants, but creates an array of strings.

CSTFormatMessage Formats a message in a CDPDA-M or CSASTD data area
by performing the substitutions.
– 323 –

Developing Client/Server Applications ___8
CSTSelectContents Highlights the contents of a TextBox control by setting the
SelStart and SelLength properties. This procedure can be
called in the GotFocus event for the TextBox to simulate
Windows behavior of selecting text when you Tab to a field.

CSTSubst Substitutes values into a string marked with the Construct
:n: substitution place holders.

FileExists Tests if a file exists by attempting to open the file.

FindFirst Searches a string for the first occurrence of a character in
a set of characters.

FixupRTF Changes any embedded backslash characters in a string to
two backslashes so that the string can be displayed
properly in a RichTextBox control.

GetPrivateProfile
StringVB

Reads a string value in a Windows .INI file. This procedure
is a Visual Basic wrapper around the Windows
GetPrivateProfileString function.

GetWindowsDirectory
VB

Returns the name of the Windows directory. This
procedure is a wrapper around the Windows
GetWindowsDirectory function.

IsForeground
Application

Returns True if the application is currently the foreground
application and False if not. Use this function to execute
code only if the application is currently active.

IsMDIChild Returns whether or not a form is an MDI child window.

Max Returns the maximum of two values.

Min Returns the minimum of two values.

MoveFormSafely Moves a non-MDI child form to a new location on the
screen, ensuring that the entire form is displayed.

PadLeft Pads a string on the left with spaces or any character to a
specified width.

Utility Description (continued)
– 324 –

_____________________________ Understanding and Customizing the Client Framework 8
For more information about the utility procedures, see Utility Subroutines on
the Client, page 477, in Construct Spectrum Reference Manual.

PadRight Pads a string on the right with spaces or any character to
a specified width.

ResizeForm Resizes a form so that its client area is the specified size. If
you know how big the client area needs to be, call this
procedure to resize the form.

SetUppercaseStyle Sets the Windows style bit for a TextBox control so that the
control converts all text to upper case.

Utility Description (continued)
– 325 –

Developing Client/Server Applications ___8
– 326 –

9

VALIDATING YOUR DATA

This chapter outlines the data validation facilities provided with Construct
Spectrum.

The following topics are covered:

• Overview, page 328

• Client Validation, page 331

• Creating Verification Rules in Predict, page 336

• Order of Precedence in Data Validation, page 339

• Validation Error Handling, page 340
– 327 –

Developing Client/Server Applications ___ 9
Overview
Construct Spectrum-generated applications provide a framework for data valida-
tion designed to ensure the integrity of your information. Construct Spectrum
applies four levels of data validation. Before adding or changing any data, Con-
struct Spectrum applies basic data type checking, business data type checking,
local business validation, and business object validation.

Errors arising from any of these data validation levels are displayed on the client.

Basic Data Type Validation
The Spectrum Dispatch Client performs basic data type validation. It uses the for-
mat and length associated with each field in your object PDA to ensure that the
value being assigned to a field will not result in a type mismatch, an overflow con-
dition, or an underflow condition.

Business Data Type Validation
The second level of validation is business data type (BDT) validation. BDTs allow
data to be displayed in a format that is based on business language conventions
rather than on programming language conventions. For example, a variable with
a Visual Basic data type of Double will display as a phone number if it is assigned
the BDT named BDT_PHONE.

BDT validation ensures that the user input conforms to the Visual Basic data type
and to the business semantics attached to the BDT. In the example above, BDT val-
idation checks that the user input makes sense as a phone number.

Local Business Validation
Local business validation applies simple business rules to data. This level of vali-
dation is coded within the Visual Basic maintenance object and is performed on the
client. Typical local business validations include range checking, domain checking,
and calculating required values. Database access is not recommended within local
business validations.
– 328 –

__ Validating Your Data 9
Business Object Validation
Business Object Validation is performed in the maintenance object subprogram on
the server. The maintenance object subprogram is responsible for ensuring that
the data entered by a user is correct before it is committed to the database. Any
local business validation should also be coded in the maintenance object subpro-
gram. Coding on both client and server is crucial if client applications written for
another environment (for example, a character-based interface) share the same
maintenance object subprogram for data access.

Typical Client Validation Cycle

Form code

Sub PerformAction
…
Case ACTION_UPDATE
 InternalObject.InvokeMethod "UPDATE", iflags
…

Sub CheckRemoteError
…
Case "CUSTOMER-NUMBER"
 Set ErrControl = txt_CUST_CustomerNumber
…

Object Maintenance subprogram

DEFINE SUBROUTINE HOLD-OBJECT
…
 PERFORM EDIT-OBJECT /* Pre-edit object header
 PERFORM CHECK-AND-UPDATE-OBJECT /* Check and update children
 DECIDE ON EVERY VALUE CDAOBJ2.#FUNCTION
 VALUE 'UPDATE'
 ASSIGN NCST-CUSTOMER.CUSTOMER-TIMESTAMP = *TIMX
 UPDATE(HOLD-PRIME.)
…

Step 3
If an error was raised by the object maintenance
subprogram, the form creates an object error and
attaches it to the appropriate GUI control

Step 2
The object maintenance subprogram validates the
object before actually performing an update to the
database. If errors are encountered, the database is
not updated and an error message is returned to the
client.

Step 1
On the client, the user invokes the update method,
triggering transmission of the object to the server.
– 329 –

Developing Client/Server Applications ___ 9
You can write custom validation code directly in user exits of the maintenance ob-
ject subprogram or you can attach Predict verifications that the Object-Maint-Subp
model will include in the generated module. For more details on entering Predict
verifications, see Creating Verification Rules in Predict, page 336.

Tip: If you have both GUI and character dialogs, both can access database infor-
mation using the maintenance object subprogram. Ensure that any client
validations are replicated in the maintenance object subprogram.
– 330 –

__ Validating Your Data 9
Client Validation
Data assignment from the form to the client’s copy of the object PDA triggers three
types of client validation: basic data type validation, BDT validation, and local
business validation. It is the attempt to update the object PDA that triggers the
validations. The form keeps the client’s object PDA up to date by attempting to up-
date its data when:

• a LostFocus event occurs on a TextBox

• a Click event occurs on a CheckBox, ComboBox, or OptionButton

• an AfterColumnEdit event occurs on a grid column

The following example illustrates the data validation logic initiated when one of
these events is triggered:
– 331 –

Developing Client/Server Applications ___ 9
Triggering Validation in the Form

Business Name:

Customer Number:

ACME Consulting

1234

Step 7 — Assign the value back to the
TextBox control so the user can see it.

Step 6 — Convert the value back to a
display format by calling the BDT
conversion routine.

Step 5 — Read the value from the
field in the object PDA, to get any
conversions the SDC applies to the
value, such as rounding, and return
the value to the form.

Step 4 — Assign the value to the field
in the object PDA, triggering SDC
validations.

Step 3 — Assign the value to the field
in the generated maintenance object,
triggering local business validations.

If an error occurs in step 2, 3, or 4, the form
attaches an ObjectError to the GUI control,
causing a pop-up validation message to be
displayed to the user.

Step 1 — Read text entered by user
into a string variable and start the
validation process.

Step 2 — Convert value to an internal
Visual Basic data type by calling the
BDT conversion routine.

The text box GUI control has an
associated FieldName and BDTName.

Dim vnt As Variant

vnt = BDT.ConvertFromDisplay(TextBoxValue, BDTName)

MaintObject.Field(FieldName) = vnt

ValidAssignment in module BDTSupport.bas

Select Case FieldName
Case "CUSTOMER-NUMBER"
 If Value < 1000 Or Value > 3999 Then
 Err.Raise csterrValueMustBeInRange, _
 OBJECT_PDA_NAME, _
 "The customer number must be in the " & _
 "range 1000 to 3999."
 End If

Validate procedure in generated VB maint. object

ObjectPDA.Field(FieldName) = Value

vnt = MaintObject.Field(FieldName)

TextBoxValue = BDT.ConvertToDisplay(vnt, BDTName)

TextBox.Text = TextBoxValue

Dim TextBoxValue As String

TextBoxValue = TextBox.Text
ValidAssignment TextBoxValue, BDTName, ErrorMessage

LostFocus event in generated maint. form

Validate FieldName, Value

Field property procedure in generated VB maint. object
– 332 –

__ Validating Your Data 9
Validation in Maintenance Dialogs
All validation is triggered from the form. Form code is responsible for linking BDT
validations to specific GUI controls and for responding to validation errors.

Using BDTs

The VB-Maint-Dialog model generates default BDT assignments for each GUI con-
trol on your form. You can override these assignments by attaching your own BDT
keywords to Predict field definitions. For details on linking BDTs to GUI controls
within Predict, see Customizing on the Server, page 159.

You can override BDT assignments directly in the generated form. However, this
method is not recommended. Overriding BDTs within the form is a customization
that will be lost when you replace the existing form with a newly generated version.

If there are no BDTs that provide the business semantics your application needs,
you can create a custom BDT. For details on creating custom BDTs, see Using
Business Data Types, page 153, in Construct Spectrum Programmer’s Guide.

Hand-Coded Validations in Generated Dialogs

If you have specialized validations that must be executed immediately in response
to an event, write the code in a maintenance dialog to perform the validations.

If you write hand-coded validations, you can still take advantage of the form’s stan-
dard error handling technique. This technique is described in Validation Error
Handling, page 340.

Note: Hand-coding validations is not recommended under most circumstances. These cus-
tomizations will be lost if you replace the existing form with a newly generated
version. To keep your validations after regeneration, write validation code in the
user exit.

The maintenance dialog invokes a Validate method in the Visual Basic mainte-
nance object every time a GUI control attempts to update a value in the client’s
copy of the object PDA. Writing validation code in the Validate method rather than
directly in the form should meet most of your validation requirements. The dialog
also contains standard code which checks for validation errors raised in the Visual
Basic maintenance object.
– 333 –

Developing Client/Server Applications ___ 9
Validation in Visual Basic Maintenance Objects
You can code local business validations in Visual Basic maintenance objects. Each
time the maintenance dialog attempts to update a value in the Visual Basic main-
tenance object, it invokes a standard validation subroutine (Validate) in the Visual
Basic maintenance object. You can hand-code validations in the CLIENT-VALIDA-
TIONS user exit of the Validate subroutine, or you can use Predict verification
rules to validate data.

Regardless of how it gets into the Validate subroutine, there are two basic compo-
nents to the validation:

• a case statement indicating the field requiring validation. This statement includes
the test for a particular condition.

• code which raises an error if the field value fails the validation

Adding Validations in the CLIENT-VALIDATION User Exit

Use the CLIENT-VALIDATIONS user exit located in the Validate subroutine of a
VB-Maint-Object model to write custom validations. Although this custom code can
be entered into the user exit on the server, you can also use Visual Basic’s GUI ed-
iting environment to supply your code. The following illustration shows a typical
entry in the CLIENT-VALIDATIONS user exit:

Example of validation code in CLIENT-VALIDATION user exit

'SAG DEFINE EXIT CLIENT-VALIDATIONS
 Case "CUSTOMER-NUMBER"
 If Value = 1010 And _
 m_ObjectData.Field("CREDIT-LIMIT") > 1000 Then
 Err.raise Number:=csterrCustomerOnProbation, _
 Description:= "Credit limit too high, on probation", _
 Source:=OBJECT_PDA_NAME
 End If
'SAG END-EXIT
 End Select
…

– 334 –

__ Validating Your Data 9
In this example, the value for the field to be updated in the client’s object PDA is
stored in the Value variable. If you require the values from other fields in the ob-
ject PDA for your validation, use the Spectrum Dispatch Client’s Field or GetField
methods as illustrated in the previous code example.

Warning:
If your validations require remote database access, it is strongly recommended
that you do not code these validations in the Visual Basic maintenance object. A
Construct Spectrum application operates in a synchronous manner, which means
the user must wait for validations in the Visual Basic maintenance object to com-
plete execution before control returns to the dialog for further interaction.

Validations from Predict

Generated validations that are based on Predict verification rules are checked im-
mediately after your hand-written validations in the CLIENT-VALIDATIONS
user exit. These generated validations use the same structure that is shown in the
hand-written code example earlier in this chapter. For more information on creat-
ing verification rules in Predict, see Creating Verification Rules in Predict,
page 336.
– 335 –

Developing Client/Server Applications ___ 9
Creating Verification Rules in Predict
Verification rules that you create in Predict to use with applications generated by
Construct Spectrum follow the same guidelines that traditional Natural Construct
applications use. For example, all verification rules intended for use during gener-
ation must be of type N.

Note: To set verification rules to type N in Predict, use the GEN CST command in the Pre-
dict rule editor.

For a complete discussion on using verification rules with traditional Natural Con-
struct applications, see Use of Predict in Natural Construct, page 941, in
Natural Construct Generation User’s Manual.

Construct Spectrum uses verification rules to generate GUI control definitions as
well as to generate business validations that might be implemented in either the
maintenance object (in Visual Basic), the object maintenance subprogram (in Nat-
ural), or in both. The validations are duplicated to provide immediate feedback on
the client and to have a centralized implementation of validations on the server.

When creating Predict verification rules for applications using Construct Spec-
trum, take advantage of new syntax that makes your verification rules easier to
reuse and easier to define in Predict.

Deciding Where To Implement a Validation Rule
Conventionally, validation rules are kept together in a single module. However,
since sending the client’s object data to the server for validation takes time, vali-
dating a rule on the client can save transmission time.

You can implement a validation rule in the object maintenance subprogram only,
or you can implement it both in the object maintenance subprogram and in the Vi-
sual Basic maintenance object. To decide on which of these two option to choose,
determine what types of information a rule requires to do its validation. Use the
following guidelines to help you decide:

• If the rule needs to look up data on a foreign file, implement the rule in the object
maintenance subprogram for ready access to the foreign file.

• If the rule performs calculations on data within the object’s data, it may be more
efficient to perform this validation in the Visual Basic maintenance object.
– 336 –

__ Validating Your Data 9
Include the rules placed in the Visual Basic maintenance object in the object main-
tenance subprogram for use by character interface applications.

Coding User Type Rules

Construct Spectrum introduces a new syntax convention for coding type U (User)
rules. This convention allows a single rule to contain a Visual Basic implementa-
tion or a Natural and Visual Basic implementation.

Rules defined in Visual Basic are delimited by code blocks. Use the following syn-
tax in the Predict rule editor to create a code block for a Visual Basic rule:

Example of code block for a Visual Basic rule

>>BEGIN RULE VB
Visual Basic implementation of the VE rule here.
>>END-RULE

Any rule code that is not delimited within a language-specific code block will be as-
sumed to be a rule coded in Natural, since Natural rules do not require code block
delimiters. To keep code looking consistent, Natural rules can also be delimited.

Example of code block for a Natural rule

>>BEGIN RULE NATURAL
Natural implementation of the VE rule here.
>>END-RULE

A rule can consist of several code blocks for both Visual Basic and Natural.
– 337 –

Developing Client/Server Applications ___ 9
Example of code blocks for using both Visual Basic and Natural

>>BEGIN RULE VB

1st part of Visual Basic implementation of the VE rule.
>>END-RULE

>>BEGIN RULE NATURAL

1st part of Natural implementation of the VE rule.
>>END-RULE

>>BEGIN RULE VB

2nd part of Visual Basic implementation of the VE rule.
>>END-RULE

** By default, this code is Natural code because it is
** not delimited by a language-specific code block.

3rd part of Natural implementation of the VE rule.

When combining Visual Basic and Natural rules, you cannot use nested language-
specific code blocks. For example:

Use This NOT This

>>BEGIN RULE VB >>BEGIN RULE NATURAL VE rule…

1st part of Visual Basic rule… >>BEGIN RULE VB
>>END-RULE This VB code block is invalid

>>END-RULE
>>BEGIN RULE NATURAL >>END-RULE

1st part of Natural rule…
>>END-RULE
– 338 –

__ Validating Your Data 9
Order of Precedence in Data Validation
Data validation is triggered under two conditions: attempted assignment to the cli-
ent’s copy of the object PDA and attempted database update using the Update or
Add method of the maintenance object subprogram.

Each of these conditions triggers different layers of the Construct Spectrum data
validation model:

• data assignment to the client’s object PDA.
In this stream of data validation, the order of validation is executed as follows:

– BDT validation

– local business validation

– basic data type validation

• database update using the maintenance object subprogram
In this stream of data validation, only Business Object Validation is executed.

For clarification, see the illustrations in Business Object Validation, page 329.
– 339 –

Developing Client/Server Applications ___ 9
Validation Error Handling
Client validation is always initiated with a call to the generic ValidAssignment
subroutine. This call occurs in an event code block (usually a lost focus event) that
assigns a GUI control’s value to the client’s object PDA. There are a number of
steps to follow for each assignment.

To assign a GUI Control’s value to the client’s object PDA:

1 Hide any error tips that may be attached to this GUI control.
This is accomplished by calling the HideErrorTip subroutine in CSTUTILS.

2 Remove any Error Objects from the GUI control.
This is accomplished by calling the subroutine RemoveUnneededControlErrors.

3 Initiate local data validation and assign the value to the client’s object PDA.
This is accomplished by calling the ValidAssignment subroutine.

4 Test to see if any validation errors occurred during the assignment attempt.
This is accomplished by checking whether ErrorMsg contains a value.

– If errors occurred, attach an Object Error to the GUI control by calling the Par-
seErrorString and SetObjectError subroutines.

Framework Components
The validation error handling framework components are used to implement the
mechanism that displays pop-up validation errors on browse and maintenance
dialogs.

For example, when the user enters data into a field and cursors to the next field,
the data is checked to ensure it is valid. If the data is not valid because it violates
a business rule or cannot be interpreted properly (such as when non-numeric data
is entered into a numeric field), the field that contains the error is highlighted with
an error color and a pop-up message is displayed next to the field. The user is not
locked into the field until the error is corrected and can continue entering or editing
data in other fields. At any point, the user can return to the highlighted field or
fields and correct the errors.
– 340 –

__ Validating Your Data 9
The following table describes the validation error handling components in the Con-
struct Spectrum client framework:

Handling Business Object Validation Errors
Business Object Validation errors are returned to the form in the message PDA,
CDPDA-M. If an error was returned from the server, the CheckRemoteError sub-
routine in the form tests the value of the ERROR-FIELD variable to match it up
with a GUI control.

If the field is associated with a GUI control, an Object Error is attached to the GUI
control. Otherwise the form displays a message box showing the description of the
general error.

Component Description

ErrorPreferences.frm Allows users to customize how validation errors are
presented.

ErrorTip.frm Displays the pop-up validation error message.

ObjectError Keeps track of the information for a single validation error
on a form.

ObjectErrors Tracks the validation errors on a generated maintenance
form; each generated maintenance form declares one
instance of this class.
– 341 –

Developing Client/Server Applications ___ 9
The following code illustrates this process:

Select Case InternalObject.Msg.Field("ERROR-FIELD")
Case "BUSINESS-NAME"
 Set ErrControl = txt_CUST_BusinessName
Case "PHONE-NUMBER"
 Set ErrControl = txt_CUST_PhoneNumber
…
End Select
If ErrControl Is Nothing Then
 MsgBox cstFormatMessage(InternalObject.Msg), vbInformation
Else
 With InternalObject.Msg
 SetObjectError Me, ErrControl, .Field("MSG-NR"), ErrMsg, _
 ERROR_SOURCE_SERVER, ErrColumn, _
 .Field("ERROR-FIELD-INDEX1"), _
 .Field("ERROR-FIELD-INDEX2"), _
 .Field("ERROR-FIELD-INDEX3")
 End With
End If
– 342 –

10
UNDERSTANDING THE BROWSE AND
MAINTENANCE INTEGRATION

This chapter explains how browse and maintenance functions are integrated. It in-
cludes information about linking and using browses from a maintenance dialog.

The following topics are covered:

• Overview, page 344

• Design Objectives, page 349

• Overview of Foreign Key Field Relationships, page 351

• Foreign Field Support Provided By Maintenance Dialogs, page 355
– 343 –

Developing Client/Server Applications ___10
Overview
Providing applications with tightly integrated browse and maintenance functions
makes it easier for users to navigate through an application and to find the infor-
mation they need. The two main benefits that integrated browse and maintenance
functions provide are:

• Drill-down capabilities from a browse dialog. For example, to invoke a mainte-
nance dialog or another browse from within a browse dialog.

• Active help from maintenance dialogs to aid in selection of primary and foreign
fields.

These topics are discussed in the following sections.

Drill-Down Capabilities from a Browse Dialog
Users commonly use browse dialogs to navigate within an application. For exam-
ple, a user might select a customer from a Customer browse dialog, drill-down to
another browse dialog to see outstanding orders for the customer, select an order,
and drill-down to a maintenance dialog to update the order.

You can support this functionality with Construct Spectrum by hand-coding a
browse command handler to define the commands supported by a particular
browse dialog. You must also add code to the target of these commands, which are
typically other application components such as a maintenance dialog or a Visual
Basic maintenance object.

For information about creating Browse Command Handlers, see Understanding
Browse Command Handlers, page 238.

Tip: To see examples of browse command handler source code, review the Cus-
tomerBrowseCommands.cls and OrderAsBrowseTarget.cls files in your Con-
struct Spectrum Order Entry demo project.
– 344 –

____________________________ Understanding the Browse and Maintenance Integration 10
Active Help on Maintenance Dialogs
Users can select valid values from dialog fields that are enabled with active help.
Construct Spectrum maintenance dialogs provide built-in support for two types of
active help: primary key field and foreign key field active help.

Primary Key Field Active Help

Primary key field active help is available for all business objects for which mainte-
nance and browse dialogs were generated. When a maintenance dialog is opened,
it verifies whether a browse was generated for its primary key field. If one was, it
enables the browse toolbar button and browse menu command on the MDI frame.
When a user clicks the browse toolbar button or selects the browse menu command,
a modal browse dialog for the business object is displayed:

Modal Browse Dialog
– 345 –

Developing Client/Server Applications ___10
The browse dialog displays a list of existing records in the database. Users can se-
lect to maintain a record by double-clicking the record or by highlighting a row and
clicking OK.

Foreign Field Active Help

Most maintenance dialogs are linked by foreign relationships. These relationships,
also known as inter-object relationships, link a field in a dialog to the primary field
of another dialog. In the demo application, for example, the Order dialog has a Cus-
tomer Number field. To be valid, the Customer Number must exist on the
Customer database table. This rule is defined by an inter-object relationship that
specifies the two tables involved (Order and Customer), the linked fields, the car-
dinality, and other optional information.

Maintenance dialogs automatically support active help for foreign fields in the fol-
lowing ways:

• By providing a button beside the text box.
When a user clicks the button, a dialog is displayed to select foreign values:
– 346 –

____________________________ Understanding the Browse and Maintenance Integration 10
Active Help From a Foreign Field

Descriptive information can also be returned with the selected value. For example,
the customer’s name could be returned with the customer number.

For more information about returning descriptions with foreign fields, see Dis-
playing Descriptions for a Foreign Field, page 359.

• By automatically refreshing a foreign field description when a user types a value
directly into a foreign field.
When the LostFocus event occurs in the field, the foreign field is looked up and the
description is updated on the maintenance dialog.

• By retrieving all of the values and descriptions for a foreign field that are in the
database.
This method is used by the maintenance dialog to create a drop-down list of all the
allowed values for a foreign field. This feature is used only if the foreign file con-
tains a small set of stable records.
– 347 –

Developing Client/Server Applications ___10
Active Help From a Drop-down List
– 348 –

____________________________ Understanding the Browse and Maintenance Integration 10
Design Objectives
Construct Spectrum meets two design objectives that simplify the integration of
maintenance and browse components:

• Application component independence

• Simplified generated components

These objectives are discussed in the following sections.

Application Component Independence
An important design objective when integrating discrete application objects like
maintenance and browse dialogs is to limit the impact this has on existing applica-
tion objects. To achieve this, there must be a minimal amount of coupling between
application components. Less coupling means that changes to one application com-
ponent are less likely to affect the other.

To achieve minimal coupling, Construct Spectrum uses the object factory as the
single integration point for all new application components. Only the object factory
needs to be aware of new application objects. As new business objects are added to
your application, they are published as available for use by other business objects
through the object factory interface.

For more information about the object factory, see Object Factory, page 302.

Tip: To view the source code for the demo application’s object factory, open the
OFACTORY.bas file in the Construct Spectrum demo project.

Maintenance dialogs request browsing services through the object factory inter-
face. Using parameters such as table names or relationship names, the
maintenance dialog specifies which file is required for the browse. If the file is not
available, the object factory informs the requesting maintenance dialog, allowing
it to disable that functionality. This architecture allows an application to be devel-
oped incrementally so that you can test it throughout the development cycle.

To view an example of how this code works, see the code for the EnableForeignKeys
subroutine in the CUSTMCDV.frm maintenance dialog form in the demo project.
– 349 –

Developing Client/Server Applications ___10
Simplified Generated Components
Another objective is to reduce the complexity of generated components, making
them easier to customize. The amount of code required to integrate maintenance
and browse processes is greatly reduced by using the BrowseManager framework
class. It encapsulates most of the common functionality involved in using browse
processes.

To see how the BrowseManager has been implemented, review the code in the
BrowseManager.cls client framework class. For more information about the
BrowseManager, see Understanding Browse Command Handlers, page 238.
– 350 –

____________________________ Understanding the Browse and Maintenance Integration 10
Overview of Foreign Key Field Relationships
A foreign key field with an update constraint is a field on a maintenance dialog that
must be set to a value that already exists in a foreign file. This field is the foreign
file’s primary key field.

A foreign key field relationship links two independent files such as an Order and
Customer file. This is also called an inter-object relationship. Conversely, intra-ob-
ject relationships define relationships within a file, for example, a relationship
between two fields in a Customer file.

Foreign key field relationships are business rules that can define both update and
delete constraints. However, with respect to integrating maintenance and browse
functions, only foreign key field relationships that define update constraints are
important.

For more information on inter-object and intra-object relationships see Design
Methodology, page 231, in Natural Construct Generation User’s Manual.

Fields that can be Used in a Foreign Key Relationship
This section describes the foreign field relationships supported by the Object-
Maint-Subp model. Relationships supported by Construct Spectrum are also noted.

Simple Field

This is the simplest type of foreign field relationship in which the format and
length of the fields on both sides of the relationships are equal and the fields are
not repeating. Simple field relationships are supported by Construct Spectrum.

Simple Field Relationship

CN:1File: Order
Field: Order-Customer-Number

File: Customer
Field: Customer-Number
– 351 –

Developing Client/Server Applications ___10
The relationship shown in the previous diagram is between an order and a custom-
er file. The update constraint is placed on the order. The business rule says each
order must have exactly one customer number to be a valid order, and a customer
number can be referenced by zero or many orders.

Repeating Field

This is a relationship between a one-dimensional repeating field and either a scaler
field or another one-dimensional repeating field. Repeating field relationships are
supported by Construct Spectrum.

Repeating Field Relationship

The relationship shown in the previous diagram is between a course and an in-
structor file. The update constraint is placed on the course. The business rule says
a course can have zero to five instructors. An instructor can teach zero or many
courses.

Note: The format and length of the relationship fields must be the same on both sides of
the relationship.

CN:CFile: Course
Field: Instructor-ID(1:5)

File: Instructor
Field: ID-Number
– 352 –

____________________________ Understanding the Browse and Maintenance Integration 10
When Not to Use a Foreign Field Relationship
This section describes situations where defining a foreign field relationship is not
a good solution. For each situation described, a better alternative is given.

Do not use foreign field relationships to enforce valid values when:

• the list of values is static

• the list of values is small

• there are only two choices

List of Values is Static

In most foreign relationships, both files involved in the relationship are dynamic.
It is not a good solution to create a file for the sole purpose of enforcing that valid
values are entered from a static list. For example, you would not create a Province
file to contain a list of valid provinces that could be entered on an order as shown
in the following diagram:

An Unlikely Foreign Field Relationship

A better solution is to attach a table verification rule to the Order-Province field.
Construct Spectrum generates a drop-down list for the Order-Province field and
populates it with the valid provinces in the verification rule.

There may be valid reasons to create a Province file. For example, to maintain
province-specific business rules for calculating sales tax. In this case, a foreign field
relationship is appropriate.

List of Values is Small

Another case where you would not use a foreign field relationship is to enforce a
small set of values for a field. For example, a Payment-Type field might only have
possible values of Cash, Check, MC, Visa, or AMEX.

CN:1File: Order-Header
Field: Order-Province

File: Provinces
Field: Province
– 353 –

Developing Client/Server Applications ___10
Again, defining a table verification rule is a more appropriate solution. Using the
verification rule, Construct Spectrum would generate option buttons for this field.

List of Values Contains Two Choices Only

If there are only two choices for a given field, do not define a foreign field relation-
ship. Instead, link a verification rule to the field. Construct Spectrum generates
either option buttons or a check box for the field.
– 354 –

____________________________ Understanding the Browse and Maintenance Integration 10
Foreign Field Support Provided By Maintenance
Dialogs

This section describes the foreign field support provided by maintenance dialogs
generated with Construct Spectrum.

Two main objectives of linking foreign field lookup support into maintenance dia-
logs are to:

• Provide a way for users to select valid values for a foreign key field on a mainte-
nance dialog.
When a field value is selected, it must be returned and displayed on the dialog, op-
tionally, with other descriptive fields.

• Provide a way for updating the maintenance dialog with descriptive information
associated with the foreign field.
When a foreign field value is entered on a maintenance dialog without using the
browse mechanism (for example, by typing directly into a textbox), any values as-
sociated with the foreign field, such as a descriptive field, must be updated on the
maintenance dialog automatically.

GUI Control Representations of Foreign Fields
This section describes the GUI controls Construct Spectrum uses to represent for-
eign field relationships on maintenance dialogs. Construct Spectrum deals with
foreign fields differently depending on whether the foreign field is located on the
primary part of the maintenance dialog or on a secondary, tertiary, or quaternary
part of the dialog. Secondary, tertiary, and quaternary information is always rep-
resented on a grid control in a maintenance dialog. This section describes how
foreign fields are represented in each case.

Foreign Fields On the Primary Part of a Maintenance Dialog

The primary part of a maintenance dialog is any location on the dialog that is not
part of a grid. A foreign field on the primary part of a maintenance dialog that has
a link to a foreign file can be of any data type.
– 355 –

Developing Client/Server Applications ___10
All foreign fields on the primary part of a maintenance dialog can be represented
by a single text box type GUI control. Any GUI Control override keywords that
have been specified in Predict to force the type of control that should represent a
field are ignored if the field is linked to a foreign file.

For more information about GUI Control Overrides, see Overriding GUI Con-
trols, page 160.

Tip: Construct Spectrum does not generate browse support for Boolean fields on
a maintenance dialog. Validations for Boolean fields are better handled with
verification rules or by adding validation code to the Visual Basic mainte-
nance object.

To provide users with a method to look up valid values for foreign fields from a
maintenance dialog, use a button or drop-down list. The following example shows
a foreign field using a button:

Foreign Field as Text Box and Lookup Button

When a user clicks the button, a browse dialog listing the foreign field values is dis-
played. If a descriptive field is associated with the foreign field, a description is also
displayed:

Foreign Field as Text Box, Lookup Button, and Description

The following example shows a foreign field with a drop-down list:

Foreign Field as a Drop-Down List
– 356 –

____________________________ Understanding the Browse and Maintenance Integration 10
The drop-down list contains a list of the foreign field values or their descriptions.
If a descriptive field has been associated with the foreign field, the drop-down list
contains the descriptions:

Foreign Field as a Text Box With Descriptions In Drop-down List

GUI Controls in a Grid

Grids are used on a maintenance dialog to display secondary, tertiary, and quater-
nary information. Consider an Order business object that is normalized by linking
an Order Header file record to 1 to 30 Order Line file records, creating a complex
business object. The Order Lines part of this business object is represented by a
grid control on the maintenance dialog. A foreign field relationship could be defined
between the Order-Line-Product-Id field in the Order Line file and the primary
field, Product-Id, in the Product file.

Note: This discussion also applies to foreign field relationships that are linked with re-
peating fields, since these fields are represented as grid controls.

When a column in a grid represents a foreign field value, a button is placed in the
grid to support looking up new values. Either a new value can be typed directly into
the grid cell or the button can be clicked to invoke a modal browse dialog:

Foreign Field in a Grid with Lookup Button Displayed

Note: Currently, drop-down lists for foreign field values are not supported within grids.
Description fields are also not supported for foreign fields within a grid.
– 357 –

Developing Client/Server Applications ___10
How Construct Spectrum Determines Which GUI Control to
Use

When generating a GUI control to represent a foreign field on the primary part of
a maintenance dialog, Construct Spectrum searches for special properties of the
foreign file to determine the type of control to use. Depending on these properties,
either a drop-down list or a lookup button is used.

Note: Foreign fields within a grid control are always represented with a lookup button
that opens a modal browse dialog when clicked.

A drop-down list is generated for a foreign field if both of the following conditions
are met:

1 The data dictionary specifies that the average record count property of the foreign
file contains on average X records, where X is below the threshold determined by
the model to be the limit for using a drop-down list. The default value is 50. A value
of zero will be ignored.

Tip: You can change the default value of 50 by changing the value of FK-AS-COM-
BO-THRESH-HOLD in the Natural Construct model defaulting subpro-
gram, CSXDEFLT.

Note: The VB Maintenance Dialog model copies the FK-AS-COMBO-THRESH-HOLD de-
fault value into the #PDA-FK-AS-COMBO-THRESH-HOLD variable of the model
PDA (CUMDPDA) in the model’s pre-generation subprogram (CUMDPR).

2 The data dictionary specifies that the file volatility property of the foreign file is
either Stable or Fixed.

If both of these conditions are not met, or you have not set these file properties, or
you are using a version of Predict that is prior to 3.3.2, a lookup button is generated
instead. A lookup button displays a modal browse dialog when it is clicked.
– 358 –

____________________________ Understanding the Browse and Maintenance Integration 10
Displaying Descriptions for a Foreign Field

At generation time, the VB-Maint-Dialog model searches for a descriptive field as-
sociated with any foreign field. If a descriptive field is found, it is displayed on the
dialog with the foreign field. To see how the VB-Maint-Dialog model displays de-
scriptive fields, refer to Foreign Fields On the Primary Part of a
Maintenance Dialog, page 355.

Note: Construct Spectrum can generate only one descriptive field value for each foreign
key value on a maintenance dialog.

You can designate that a field be descriptive whenever it is referenced in a foreign
file relationship, or you can designate the field as descriptive only when it is refer-
enced by a particular file. This is useful when different descriptions are needed for
different foreign field relationships.

Note: Descriptive fields are not available for foreign fields in a grid.

To make a field descriptive in all situations:

In Predict, attach the “DESCRIPTION” keyword to the field in the foreign file. All
such fields are displayed whenever the file is referenced in a foreign field browse.

To make a field descriptive only when referenced by a particular file:

In Predict, attach a keyword to the field that matches the name of the file. For ex-
ample, to make the WAREHOUSE-NAME field descriptive only when a user
selects to browse from a dialog that was generated from the ORDER file, link the
ORDER keyword to the WAREHOUSE-NAME field in the foreign file.

Note: It may be necessary to define keywords in Predict prior to attaching them to the de-
scriptive fields.
– 359 –

Developing Client/Server Applications ___10
Examples of Descriptive Fields

Suppose your application contains a CUSTOMER file having the following fields:

CUSTOMER-ID(N6)
CUSTOMER-NAME(A20)
PHONE-NUMBER(N10)
ADDRESS(A50)

Whenever the CUSTOMER-ID field is used in a foreign field browse, you probably
want to show the customer name to help identify the customer. To achieve this,
link the DESCRIPTION keyword to the CUSTOMER-NAME field. The CUSTOM-
ER-NAME field is now set up as a descriptive field whenever CUSTOMER-ID is
used as a foreign field.

Suppose the CUSTOMER-ID field is a foreign field in the ORDER file. When the
customer ID is entered for an order, you want to display the address instead of the
name. To achieve this, add the ORDER keyword to the ADDRESS field. The AD-
DRESS field is now descriptive only when referenced by the ORDER file.

Supporting Multiple Descriptive Values and Derived Values

You can retrieve multiple values with a foreign field lookup. For example, you may
want to retrieve additional descriptive information or you may need to derive or
calculate values in other fields on the maintenance dialog based on values in the
foreign file.

Construct Spectrum enables you to do this because each foreign field lookup re-
turns a reference to the BrowseDataCache object containing the row that was
selected through the foreign field lookup.

To retrieve additional values with a foreign field lookup:

Add some code to extract the descriptive value out of the BrowseDataCache object.

Base your code on the sample in the grd_OrdM_NcstOrderHasLines_ButtonClick
event procedure on the Ord-Mcdv.frm maintenance dialog form. This form is locat-
ed in the Construct Spectrum demo project.
– 360 –

____________________________ Understanding the Browse and Maintenance Integration 10
To derive or calculate values in your maintenance dialog based on the foreign
lookup information:

Add code to the AFTER-FOREIGN-KEY-LOOKUP user exit in the VB-Maint-Ob-
ject to code the updates to your business object.
This ensures that the cached copy of your business object’s data which is main-
tained on the client reflects what is displayed in the maintenance dialog.

Base your code on the sample in the AFTER-FOREIGN-KEY-LOOKUP user exit
in Visual Basic maintenance object, Ord-Mcpv.cls, which is located in the Con-
struct Spectrum demo project.

How Foreign Field Descriptions Are Refreshed

Any control on a maintenance dialog affected by a change in value of a foreign field
needs to be refreshed when a Get or Clear action occurs. This includes foreign field
descriptions as well as any field whose value is derived from a foreign field.

Generated maintenance dialogs include a function called RefreshForeignKeys.
This function refreshes the foreign field description when a Get or Clear action oc-
curs. The RefreshForeignField function calls the server and retrieves a description
each time a Get or Clear action occurs. This reduces application performance
slightly. To avoid this extra call, you can do hand-coding to have the description re-
turned directly from the object subprogram when a Get or Clear action occurs.

To refresh a foreign field descriptions without an extra call to the server:

1 In the object subprogram, add code to the PARAMETER-DATA user exit to define
an extra parameter data area (PDA). Within this PDA, add a parameter for each
foreign field that requires a description.

2 In the object subprogram, add code to the EXTENDED-RI-VIEWS user exit to
define the views of the foreign file.
To view an example of this code, see the ORD-MSO object subprogram in the
SPECDEMO Natural library.

3 In the object subprogram, add code to the AFTER-GET user exit to populate the
parameter you added in step 1 with foreign field descriptions after a Get action
occurs.

4 In the Visual Basic maintenance object, specify the name of the extra parameter
data area that you added in step 1 in the Extra PDA parameter.
– 361 –

Developing Client/Server Applications ___10
To view example code that uses the Extra PDA parameter, see the code supplied in
the Visual Basic maintenance object (Ord-Mcpv.cls) in the demo project. In this ex-
ample, the extra PDA, ORD-XPDA is defined.

5 In the maintenance dialog form (.frm file), add code to the RefreshForeignKeys
subroutine to extract the description values from the Visual Basic maintenance
object when the user selects a Get or Clear action occurs.

The following code example is taken from the Ord-Mcdv.frm Order dialog in the
Construct Spectrum demo project. In the following example code, the dialog is up-
dated with the description of the Customer Number foreign field when a Get or
Clear action occurs. The name of the Customer Number field is NcstCustomer-
OrderHeader and the name of the description field is ORDER-BUSINESS-NAME.

Note: The Order dialog has another foreign field, the Warehouse ID field (NcstWarehou-
seorderheader). Because this field is set up as a drop-down ComboBox, both the
warehouse ID and warehouse description values already exist on the client. There-
fore, no hand-coding is required to avoid a call to the server for a Get or Clear action.

Example of updating a foreign field description after a Get or Clear action

Private Sub RefreshForeignKeys()
 ' RefreshNcstCustomerorderheader
 RefreshNcstWarehouseorderheader

 ' Post generate code ----------------->>
 ' This code is added to optimize foreign key description
 ' handling.
 With InternalObject

 ' Customer Business Name
 lbl_OrdM_NcstCustomerOrderHeader.Caption = _
 BDT.ConvertToDisplay(.GetField("ORDER-BUSINESS-NAME"), _
 BDT_ALPHA, "A30")

 End With
 ' Post generate code -----------------<<

End Sub

Note: The RefreshNcstCustomerorderheader sub is still used on a lost-focus event for the
Customer Number field to lookup a new Customer Number field description.
– 362 –

____________________________ Understanding the Browse and Maintenance Integration 10
Supporting Code for Drop-Down lists
This section explains how Construct Spectrum supports a drop-down list for for-
eign fields on a maintenance dialog. Read this section before hand-coding foreign
field drop-down lists.

Initializing a Drop-Down List

Maintenance dialogs that use drop-down lists to support foreign field lookups use
instances of a Construct Spectrum framework class called the ComboClass class.
One instance of this class is instantiated for each foreign field drop-down list used
to support a foreign field. A ComboClass object contains value description pairs.
Each pair holds the foreign field value and its corresponding description.

For more information on the ComboClass class see Maintenance Classes, page
249, in Construct Spectrum Reference Manual.

Code is generated in the dialog’s Load event to read all the rows from each refer-
enced foreign file. The Load event uses the Visual Basic browse object to read the
rows. The Load event then populates each drop-down list with the foreign field de-
scriptions or foreign field values.

Note: Each referenced foreign file must have a corresponding Visual Basic browse object.
Otherwise, the dialog Load event cannot read records from the foreign file.

Populating the foreign field drop-down lists in this way delays the initial opening
of a dialog until all foreign field records are retrieved from the remote database.
However, the object factory is optimized to read the remote database only the first
time it is requested by the application. Thereafter, the data is cached globally, so
that there is no delay when the dialog is opened again and the same data is
required.

A VB-Browse-Object, generated for the foreign file that is intended to be looked up,
must be available in order to support lookups. Since an application can be built in-
crementally, there is a possibility that a required VB-Browse-Object is not yet
available. In this case, such a list will be disabled.
– 363 –

Developing Client/Server Applications ___10
Support for Value Selection

Event code is generated to support selecting foreign field values from either the
drop-down list or by typing a new value. In both cases, the list and the text box con-
trols are synchronized with the choice made. For example, clicking on a description
in a foreign field drop-down list updates the contents of the foreign field text box to
match the field value for the selected description. Likewise, typing a new value into
the foreign field text box will, on a LostFocus event, cause the corresponding de-
scription to display in the list.

If you enter an invalid value when typing directly in the foreign field text box, the
list displays a blank indicating that this value is not in the local cache of valid val-
ues. Subsequent edit checks in the server object subprogram when the user selects
the Update action will either pass or fail the value based on a live check in the for-
eign file’s database.

Supporting Code for Command Buttons
This section explains how Construct Spectrum supports command buttons for for-
eign fields on a maintenance dialog. One situation where you may want to add
command buttons for a foreign field is when other fields on the dialog derive their
values from the foreign field. You could add a command button to allow users to
update derived fields when a foreign field value changes. Read this section before
hand-coding command buttons for foreign fields.

Initializing a Command Button

The maintenance dialog Load event is used to enable all the foreign field lookup
command buttons on the dialog. This code verifies that a Visual Basic browse object
exists to support each foreign field lookup button on the dialog. With incremental
development, it is possible that some required Visual Basic browse objects are not
available in the application. If a required Visual Basic browse object is not found,
the button is made invisible.
– 364 –

____________________________ Understanding the Browse and Maintenance Integration 10
Click Events on the Command Button

If a maintenance dialog contains a foreign field lookup button, it also contains
event code to handle the button’s click event. This code invokes the BrowseByFor-
eignKey method of the Visual Basic maintenance object, passing the name of the
foreign field relationship as a parameter.

A Visual Basic maintenance object handles all the logic required to work with a
browse dialog linked to a foreign field. For example, when a user selects a new for-
eign field value from a foreign field browse dialog, the selected value is updated by
the VB-Maint-Object in its internal Natural PDA. It also passes back a reference
to a BrowseDataCache object. If the user does not select a value, the BrowseData-
Cache is set to Nothing.

Methods exposed by the BrowseDataCache object and its dependent objects are
used by the maintenance dialog code in the Click event following the BrowseByFor-
eignKey call to retrieve the newly selected foreign field descriptions and update
these on the dialog.
– 365 –

Developing Client/Server Applications ___10
– 366 –

11
INTERNATIONALIZING YOUR APPLICATION

This chapter describes the tools provided by Construct Spectrum to help you write
internationalized applications. It also describes how to use each tool. Preparing ap-
plications so they readily translate into different languages ultimately saves
development time.

The following topics are covered:

• Planning Your Internationalized Application, page 368

• Internationalizing Using the Client Framework, page 369

• Resource File Syntax, page 372

• Using the Client Framework’s Internationalization Components, page 374

• Hints for Developers, page 380

For related information, see:

• Resource Classes, page 363, in Construct Spectrum Reference Manual
– 367 –

Developing Client/Server Applications ___11
Planning Your Internationalized Application
Whether you are creating your Construct Spectrum application in two or more lan-
guages or considering translating the application in the future, design the
application to take advantage of the internationalization client framework compo-
nents supplied with Construct Spectrum.

Tip: You do not need to build internationalization components into your design
when creating small applications or applications used in one location only.
These internationalization components are optional.

To write internationalized applications, identify all text strings and graphics in the
application that must be translated. These text strings and graphics include:

• window titles

• labels and prompts

• menu commands

• messages displayed to the user

• formatting strings for dates, times, and currency values

• toolbar button bitmaps

• icons

Organizing the text strings and graphics and copying them to external files is the
first step in preparing an application for internationalization. You can then write
code to load the files into the application at runtime. Translating the files into the
required language localizes the application. Using this approach to localization
means you alter the application’s executable file only when adding another lan-
guage option.
– 368 –

__ Internationalizing Your Application 11
Internationalizing Using the Client Framework
Your Construct Spectrum project is supplied with internationalization client
framework components, making it easy to create applications you can deploy in
more than one language.

The client framework stores text and graphics for an application separate from the
compiled executable code. This allows you to change these attributes without ac-
cessing source code for the application. To provide this feature, forms are designed
to contain as little code as possible.

The two internationalization client framework components included with your
Construct Spectrum project are:

• Resource, which reads resources from resource files.

• ResourceGroup, which returns a list of resources in a resource group.

The following list describes the components and how to use them:

• Text strings and graphics copied into external files are referred to as resources, the
external files as resource files. To localize an application, translate the resource
files into the required language.

• Each resource is identified by a resource identifier (RID) and has a type (string or
binary) and value.

• Resources are collected into resource groups. Assign each resource group a re-
source group identifier (RGID).

• Both resource groups and their resources are defined in resource files. Each re-
source file has a name, which is the same as the filename without the path or
extension. For example, a resource file may have a filename such as the following:

c:\MyProjects\SpectrumDemo\Forms.1

where:

filename is Forms

path is C:\MyProjects\SpectrumDemo

extension is .1
– 369 –

Developing Client/Server Applications ___11
Note: Resource files have a proprietary format. They are coded differently from Windows
resource files maintained in a Windows resource editor.

• Resource files are organized in language sets. There is one language set for each
user language (such as English, German, or French) the application supports. Each
set contains one or more resource files. Each user language is identified with a 1-,
2-, or 3-character language code which is also used for the filename extension. All
the resource files in a language set have the same filename extension.

An application uses only one language set at a time. The current language setting
determines which language set the application uses. You can specify to use the
same language codes as Natural (1=English, 2=German, 3=French…).

• Language sets, resource files, resource groups, and resources form a four-level hi-
erarchy, as shown in the following example:

Example Type

English (language code “1”)
 Framework.1
 frmOpen
 lblObjects.Caption
 lblActions.Caption
 cmdOK.Caption
 cmdCancel.Caption
 frmBrowseDialogOptions
 lblLogicalKeyPrompt.Caption
 frmAbout
 imgApplicationBitmap.Picture
 GeneratedForms.1
 frmCustomer
 lblCustomerName.Caption
 frmOrder
 lblOrderNumber.Caption

Language set
File
Group
Resource
Resource
Resource
Resource
Group
Resource
Group
Resource
File
Group
Resource
Group
Resource
– 370 –

__ Internationalizing Your Application 11
• The client framework uses a resource file path (similar to a DOS file search path)
to search for resource files. The path is specified in the application startup code.

• Instead of providing a type and a value for a resource, you can link it to another
resource. When the resource is accessed, the application gets the type and value by
following the link. The type and value can link to another resource with its own
type and value, and so on.

Links allow you to specify the value for a resource once and use that value in many
locations. For example, if you have OK and Cancel buttons on many different dia-
logs and you want to change the captions on these buttons on all dialogs, you could
define two resources that provide the captions and link to them from all the dialogs.

Note: Links must terminate in a type and value pair. Circular links are not allowed.

 Messages.1
 General
 EndOfData
 ActionInvalid

File
Group
Resource
Resource

German (language set with language code “2”)
 Framework.2
 frmOpen
 lblObjects.Caption
 lblActions.Caption
 cmdOK.Caption
 cmdCancel.Caption
 frmBrowseDialogOptions
 lblLogicalKeyPrompt.Caption
 frmAbout
 imgApplicationBitmap.Picture
 GeneratedForms.2
 frmCustomer
 lblCustomerName.Caption
 frmOrder
 lblOrderNumber.Caption
 Messages.2
 General
 EndOfData
 ActionInvalid
French (language set with language code “3”)
...

Language set
File
Group
Resource
Resource
Resource
Resource
Group
Resource
Group
Resource
File
Group
Resource
Group
Resource
File
Group
Resource
Resource
Language set

Example (continued) Type
– 371 –

Developing Client/Server Applications ___11
Resource File Syntax
Resource files are text files that use a syntax identical to Windows INI files. Re-
source groups are specified like INI file sections, and resources are specified like
INI file keys.

Specify resource IDs to the left of the equal sign, and specify resource values to the
right of the equal sign.

Text Values
Specify text values with quotation mark delimiters, for example:

EndOfDataMsg="There are no more records that match the search criteria."

To include non-printing characters in text values, specify them with one of the es-
cape sequences listed below. Note that these escape sequences are case-sensitive:

Escape Sequence Non-printing Character

\nl CR-LF character combination (ASCII 13101010)

\cr CR character (ASCII 1310)

\lf LF character (ASCII 1010)

\tb Tab character (ASCII 910)

\nnn Character corresponding to ANSI code nnn10

The “10” notation above indicates decimal numbering.

\\ Backslash character.
– 372 –

__ Internationalizing Your Application 11
Binary Values
Specify binary values as either a sequence of hex characters or as a reference to an
external file. For a sequence of hex digits, use the value "BIN:" followed by the byte
values. For an external file, use the value "FILE:" followed by the filename and an
optional hex starting position and hex length, for example:

Image1=BIN:01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10
Image2=FILE:FileOpen.bmp
Image3=FILE:Icons.dat,1F00,0300

Note: External files must reside in the same directory as the resource file.

Links
A resource value may be linked to another resource. To create a link, specify
“LINK:” followed by the name of the resource file (optional), the resource group (op-
tional), and the resource ID. Use commas to separate the names of the resource file,
group and ID, for example:

cmdOK.Caption=LINK:Global,GUIControls,OKButton

The commas must be included even if you omit an optional name, for example:

lblHeader(1).Caption=LINK:,,lblPrompt(1).Caption

If you omit the resource group, the resource file must be omitted too. In this case,
the resource ID is assumed to be in the same resource file and group. If the resource
file is omitted, but the resource group is provided, the resource ID is assumed to be
in the same resource file, for example:

lblPrompt(1).Caption=LINK:,frmCustomerBrowse,lblPrompt(1).Caption
– 373 –

Developing Client/Server Applications ___11
Using the Client Framework’s Internationalization
Components

The Resource class provides methods to read resources from resource files and to
reduce the effort needed to localize an application.

The Construct Spectrum client framework declares and initializes an instance of
this class in Startup.bas, for example:

Public Res As New CST.Resource

For more information about these methods and properties, see Resource Classes,
page 363, in Construct Spectrum Reference Manual.

Methods
The Resource class uses the following methods to localize applications:

• GetResourceGroup

• LocalizeForm

• LoadBinaryResource

• LoadStringResource

• Message

• MessageEx

• SetDefaultMessageGroup

GetResourceGroup

This method creates a ResourceGroup object that returns a list of the resources in
a resource group.

The syntax is:

Set result = object.GetResourceGroup(ResourceFile, ResourceGroup)

If the resource file does not exist or if the resource group does not exist in the re-
source file, this method returns “Nothing”.
– 374 –

__ Internationalizing Your Application 11
LocalizeForm

This method localizes a form by iterating through all of the resources in the speci-
fied resource group and loading each resource into a corresponding control
property.

The syntax is:

Sub LocalizeForm(Form As Form, _
 ResourceFile As String, _
 ResourceGroup As String)

This method works with text and graphic properties. For example, the resources
might look like this:

Form.Caption="Construct Demo Application"
mnuFile.Caption="&File"
mnuFileOpen.Caption="&Open..."
imgApplicationBitmap.Picture=FILE:App.ico
...

This method is very powerful; one line of code in your form will localize all the vi-
sual GUI controls on your form. To use this method, call it from your form’s Load
event. The following example uses a resource file called Forms which contains re-
source groups with the same names as the forms in your application (Me.Name):

Private Sub Form_Load ()
 Res.LocalizeForm Me, "Forms", Me.Name
End Sub

LoadBinaryResource

This method loads the specified resource and returns it as a Byte array. It returns
Null if the resource cannot be found.

The syntax is:

Function LoadBinaryResource(ResourceFile As String, _
 ResourceGroup As String, _
 ResourceID As String) As Variant
– 375 –

Developing Client/Server Applications ___11
LoadStringResource

This method loads the specified resource and returns it as a string. It returns an
empty string if the resource cannot be found.

The syntax is:

Function LoadStringResource(ResourceFile As String, _
 ResourceGroup As String, _
 ResourceID As String) As String

Message

This method returns a resource identified by a resource ID. The resource file and
resource group are not specified in this method; they are specified by calling the
SetDefaultMessageGroup method.

The syntax is:

result = object.Message(ResourceID, DefaultMessage, Substitutions...)

Before using this method, you must set the default resource file and resource group
by calling the SetDefaultMessageGroup method. Once you have set the default re-
source file and group, you can call the Message method repeatedly without having
to specify the resource file and resource group each time.

The Substitutions argument is optional. Use it to pass as many substitution pa-
rameters as are required by the message. If you do not pass enough substitution
parameters, the remaining ones in the message will be replaced by “***”.

MessageEx

This method returns a resource identified by a resource file, resource group, and
resource ID.

The syntax is:

result = object.MessageEx(ResourceFile, ResourceGroup, ResourceID, _
 DefaultMessage, Substitutions...)

The Substitutions argument is optional. Use it to pass as many substitution pa-
rameters as are required by the message. If you do not pass enough substitution
parameters, the remaining ones in the message will be replaced by “***”.
– 376 –

__ Internationalizing Your Application 11
SetDefaultMessageGroup

This method sets the default resource file and resource group used by the Message
method when loading resources.

The syntax is:

object.SetDefaultMessageGroup ResourceFile, ResourceGroup

Properties
This section discusses the properties of the Resource class used in localizing an ap-
plication. These properties include:

• Language

• LanguageRegistryKey

• LanguageINIKey

• ResourceFilePath

Specifying Language, LanguageRegistryKey, and LanguageINIKey properties sets
the language code used for all resource lookups. The most recently set of these
three properties overrides the settings of the other two properties. Use Resource-
FilePath to specify a search path for resources.

Language

This property sets the language code used for all resource lookups.

The syntax is:

Language As String

You must define a mapping between language codes and user languages. For ex-
ample, you could choose to use the same language codes that Natural uses (1 for
English, 2 for German, 3 for French…).
– 377 –

Developing Client/Server Applications ___11
When accessing a resource, the Resource class uses this language code as a filena-
me extension to obtain the filename of the resource file. For example, if Language
contains “1” and you use the following method:

strResource = Res.LoadStringResource(“Forms”, “frmOpen”, “Caption”)

the resource class would look for a file called “Form.1” in the resource path.

Read this property to obtain the current language setting if either LanguageReg-
istryKey or LanguageINIKey has been used to specify the language setting.

LanguageRegistryKey

The language code is automatically read from this Windows Registry key.

The syntax is:

LanguageRegistryKey As String

Use LanguageRegistryKey to specify a valid registry key, beginning with one of:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_USER

• HKEY_LOCAL_MACHINE

• HKEY_USERS

and ending with a value name. For example:

.LanguageRegistryKey = "HKEY_CURRENT_USER\" & _
 "Software\" & _
 "SAGA SOFTWARE INC.\" & _
 "CST Frameworks\" & _
 "Language"

For every call to LocalizeForm, LoadStringResource, or LoadBinaryResource, the
current value of this setting will be read to determine which language set to use.
– 378 –

__ Internationalizing Your Application 11
LanguageINIKey

This property is similar to LanguageRegistryKey, but the language setting is au-
tomatically read from this .INI key.

The syntax is:

LanguageINIKey As String

Use LanguageINIKey to specify a valid .INI file, section, and key name, each sep-
arated by a Tab character. For example:

.LanguageINIKey = "C:\Windows\CST411.INI" & vbTab & _
 "Settings" & vbTab & _
 "Language"

ResourceFilePath

This property sets the resource file path used to search for resource files.

The syntax is:

ResourceFilePath As String

Paths are separated by the semicolon character. For example:

.ResourceFilePath = "\\SERVER\Resources;" & _
 "C:\Program Files\Demos\Demo1"

Setting the ResourceFilePath property allows resource files to reside in multiple
locations. You will want to store resource files used by many different applications
on a shared network resource and store application-specific resource files in that
application’s directory.
– 379 –

Developing Client/Server Applications ___11
Hints for Developers
The following sections provide information to help you use Construct Spectrum’s
internationalizing features to the maximum advantage.

Automatically Setting the Language
The Resource class reads the current language setting and uses that information
to access the language set. This choice is made before the Resource class loads any
resources. This structure allows you to centralize the language setting and have
changes to that setting automatically reflected across all applications.

To set language automatically, ensure that all applications using the Resource
class share a standard LanguageRegistryKey or LanguageINIKey. If all applica-
tions standardize on a specific Registry key or .INI file key to store the current
language, then changing the language in one application sets the language in all
applications.

Strategy for Using Resource Files and Groups
To organize resource files and groups efficiently, use one resource file for each ma-
jor component (or layer) of the application being localized. For example, you might
separate your resources into the following files:

• resources used by all framework components

• resources used by all application-specific components

• resources shared by all application components and layers, for example, OK and
Cancel button prompts. Link other resources to the resources in this file.

Within each resource file, consider using one resource group for the GUI controls
of each form. This approach makes it easy to use the LocalizeForm method. Then
use another resource group for messages and other resources that are not neces-
sarily linked to GUI control properties, for example, .Caption or .Text.

Construct Spectrum supplies two resource files that implement internationaliza-
tion of framework components and shared application components. These files are
called Fwk.* and Global.* respectively.
– 380 –

__ Internationalizing Your Application 11
The Visual Basic maintenance models (VB-Maint-Dialog and VB-Maint-Object)
are designed to generate code that looks for resources in a resource file called
App.*. Partition the resources for your application using this scheme.

By default, the Construct Spectrum framework looks for resource files in the appli-
cation directory. If you are developing an international application, you will need
to ensure that all necessary resource files reside in the application directory. If you
follow the recommended partitioning of resources described above, you need to
copy the Fwk.* and Global.* resource files from the Framewrk directory to your ap-
plication directory. Next, you need to create App.* resource files and create
resources for your application-specific forms and messages.

Starting an Application in a Specific Language
Construct Spectrum applications automatically provide the ability to start in a spe-
cific language. By interrogating the Windows locale setting and mapping it to a
specific language code, you can specify a language other than English. When each
form in the application is loaded, its Form_Load event calls a Localize method. The
Localize method converts the form so it is displayed in the language indicated by
the Windows locale setting.

You may want to test your application with a different Windows locale setting to
ensure that all captions on the application forms are properly formatted.

To change your Windows locale setting:

1 On the Windows Start menu, click Settings and then Control Panel.
The Control Panel dialog is displayed.

2 Select Regional Settings.
The Regional Settings Properties dialog is displayed:
– 381 –

Developing Client/Server Applications ___11
Specifying the Language in the Regional Settings Properties Dialog

3 Select the Regional Settings tab.

4 Select the desired locale from the drop-down list.
– 382 –

__ Internationalizing Your Application 11
Associating Windows Locale Setting with a Language

The Windows locale setting is mapped to a language code by the GetUserDefault-
NATLangCode function (located in CSTUtils.bas). This function returns a
Language code, using the same language codes as Natural (for example, 1=English
and 2=German) based on the Windows locale setting. Use this value to set Res.Lan-
guage, where Res is a global reference to the Resource class. The mapping of locale
setting to language code is implemented with the MAPPING constant, as depicted
in the following code example:

Example of using the MAPPING constant

Public Function GetUserDefaultNATLangCode() As Integer
...
 ' This constant defines the mapping between Windows language IDs and
 ' Natural language codes. Entries have the format nn=ww, where nn is
 ' the Natural language code and ww is the Windows language ID.
 Const MAPPING = "01=09,02=07,03=12,04=10,05=16,06=19,07=31,… "
...
End Function

Changing Language at Runtime
To support changing the user language at runtime:

• The user interface must include a function to change the language, for example, a
menu command, keystroke combination, or button.

• Each form must implement a localization procedure that localizes the form, per-
haps by calling the LocalizeForm method.

• The localization procedure must be called both when the form loads and whenever
the user changes the language at runtime. To implement changing the language at
runtime, declare the localization procedure as public. When the user changes the
language, the event code iterates through all loaded forms and calls their localiza-
tion procedures, as shown in the following example:
– 383 –

Developing Client/Server Applications ___11
Public Sub LocalizeAllLoadedForms
 ' Called whenever the user changes the language at run-time.
 Dim frm As Form
 For Each frm In Forms
 ' Use an error handler in case the form doesn't have a
 ' Localize procedure.
 On Error Resume Next
 frm.Localize
 On Error Goto 0
 Next
End Sub

Note: The client framework includes the LocalizeAllLoadedForms procedure and all gen-
erated forms support the Localize method. However, you must code the user
interface command to invoke this procedure if you are developing an application
that can change language at runtime.
– 384 –

A

APPENDIX: MODIFYING SPECTRUM MODELS

This appendix provides a guideline to follow when creating new models based on
the VB-Maint-Dialog model. Use this appendix to learn about the relationships
among the components used to generate maintenance dialogs.

The following topics are covered:

• VB-Maint-Dialog Model, page 386

• VB API, page 388

• How the VB API Works, page 389

• GUI Controls with VB API, page 391

• Parameter Data Area (PDA) Used, page 397
– 385 –

Developing Client/Server Applications ___A

)

VB-Maint-Dialog Model
A variety of components participate in the generation of VB maintenance dialogs.
The illustration of the model architecture for the VB-Maint-Dialog model shows
the relationships among these components. Use this illustration as a guide if you
plan to change the VB-Maint-Dialog model or create your own GUI models:

Architecture of the VB-Maint-Dialog Model

CUMDNC
(grid utility -

forward
recurse)

CUMDNS
(grid event
code driver)

CUMDNF
(grid utility -
backward
recurse)

CUMDNO
(grid event

code, contd.

CUMDNG
(grid event

code)

CUMDNM
(set Option

Button values)

CUMDNN
(MU

declarations)

CUMDNL
(Option Button
declarations)

CUMDNK
(call Combo

Load)

CUMDNH
(obtain grid
column info)

CPU-OBJ2
(Predict API)

CUMDNJ
(focus on grid

error cell)

CUMDNB
(grid actions)

CUMDND
(validate grid

action)

CUMDN9
(grid variable
declaration)

CUMDNE
(change label)

CUMDNI
(highlight grid

error cell)

CPU-OBJ2
(Predict API)

CUMDN7
(control event

logic)

CUMDN6
(check remote

error)

CUMDN4
(copy object to

form)

CSVUDERV
(GUI control
derivation)

VB API ...CUMDNTYP
(VB API driver)

CUMDNR
(driver for
CUMDN2)

CUMDN2
(GUI defns)

CUMDN8
(combobox
population)

CPU-OBJ2
(Predict API)

CUMDNA
(build grid

array)

CUMDPR
(pre-gen)

CUMDN1
(driver)

CUMDN5
(driver for
CUMDN2)

CPUXPAND

CUMDN3
(driver for

CPUXPAND)

CUMDNKY
(driver - key
generation)

CMDA9
(code frame)
– 386 –

___ Appendix: Modifying Spectrum Models A
As the illustration shows, many of the routines are called by CPU-OBJ2. CPU-
OBJ2 accepts a Predict file name and a subprogram name. CPU-OBJ2 calls this
subprogram for each field in the Predict file. The subprograms generate segments
of code based on the Predict information that is passed by CPU-OBJ2. For example,
CUMDN4 generates Visual Basic code that copies the contents of each field to a re-
lated GUI control.

Example of generated code

Private Sub CopyObjectToForm

 InhibitValidations = True
 On Error GoTo FormAssignmentError
 With InternalObject
 txt_Empl_PersonnelId.Text = _
 BDT.ConvertToDisplay(.Field("PERSONNEL-ID"), _
 NatFormatLength:="A8")
 txt_Empl_FirstName.Text = _
 BDT.ConvertToDisplay(.Field("FIRST-NAME"), _
 NatFormatLength:="A20")
 …
– 387 –

Developing Client/Server Applications ___A
VB API
The VB-Maint-Dialog model uses a series of Natural subprograms that generate
Visual Basic definitions into the source area. Collectively, these Natural subpro-
grams are called the VB API. The VB-Maint-Dialog model uses the VB API to
generate the visual definition — the various GUI controls — of a VB maintenance
dialog. If your models generate Visual Basic forms, they can also use the VB API.

Components of the VB API
Three components exist for each type of GUI control supported by the VB API:

• a subprogram to assign user-defined default values for the properties of a GUI
control

• an LDA to store the Visual Basic default values for the properties of a GUI control

• a subprogram to write the GUI definition to the source area

A series of PDAs store property information for GUI control definitions. GUI con-
trol properties are grouped by function into different PDAs. For example, all GUI
control properties related to font are stored in the CSVAFONT PDA. Any GUI con-
trol that implements font properties declares the font PDA, CSVAFONT.

To see the list of GUI controls supported by the VB API, see GUI Controls with
VB API, page 391. For each GUI control, the table in this section indicates:

• the subprogram responsible for assigning user defaults

• the subprogram responsible for writing the GUI definition to the source area

• the PDAs that must be passed to these subprograms
– 388 –

___ Appendix: Modifying Spectrum Models A
How the VB API Works
Yo use the VB API with a model you create:

1 Call the user default subprogram.
The user default subprogram assigns your organization’s defaults for GUI control
properties. With this subprogram, you can write code to assign default values once
— not in every subprogram that uses the VB API. For example, suppose your
organization requires the field captions on all dialogs to be in an eight-point MS
Sans Serif font. Writing the following code in the user default subprogram
CSVBDLBL (for Label GUI controls) assigns the organization’s required values.

Example of code in the user default subprogram

COMPRESS #DOUBLE-QUOTE 'MS Sans Serif' #DOUBLE-QUOTE
 INTO CSVAFONT.FONT_NAME LEAVING NO SPACE
ASSIGN CSVAFONT.FONT_SIZE = 8

For more information, see Setting Generation GUI Standards, page 172.

2 Assign any GUI control properties that are application-specific.
For example, the Caption property of the Label GUI control varies because it is
based on the name of the database field with which it is associated. Therefore, you
would not want to assign this type of GUI control property in the control’s default
subprogram.

Example of assigning a value to the Caption property

CSVAFRMT.CAPTION := CPA-ODAT.FIELD-NAME

For another example, see the CUMDNTYP driver program for the VB-Maint-Dia-
log model.

3 Call the Create subprogram that writes the GUI definition to the source area.
The Create subprogram compares the value assigned to a particular GUI control
property with the default value used by Visual Basic. If the assigned value differs
from the Visual Basic default value, the Create subprogram generates the property
assignment into the source area. However, if the assigned value matches the
Visual Basic default value, the Create subprogram saves source area space by
suppressing generation of the property assignment.
– 389 –

Developing Client/Server Applications ___A
Consider the FONT_NAME and FONT_SIZE properties set in the earlier example.
Visual Basic’s default property values for a Label GUI control are an eight-point
font and a MS Sans Serif font. The Label GUI control definition (generated by CS-
VBCLBL) shown below does not include assignments for the font name and size.

Example of using default values

Begin VB.Label lbl_Empl_PersonnelId
 Caption = "Personnel/id:"
 AutoSize = -1
 Left = 100
 Top = 295
 Height = 285
 Width = 1073
End
– 390 –

___ Appendix: Modifying Spectrum Models A
GUI Controls with VB API
The following table lists the GUI controls the VB-Maint-Dialog model uses. Also in-
cluded are the subprogram names and parameter data areas (PDA) associated with
each GUI control:

GUI Control User Default Create PDAs

CheckBox CSVBDCHK CSVBCCHK CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

3DCheckBox CSVBD3CH CSVBC3CH CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

ComboBox CSVBDCBO CSVBCCBO CSVACMBO
CSVACOMN
CSVAFOCS
CSVAFONT
CSVALBOX
CSVALCTN
CSVAMOUS
CSVATBOX
CSASTD
– 391 –

Developing Client/Server Applications ___A
CommandButton CSVBDCMD CSVBCCMD CUMDATYP
CSVACOMN
CSVABUTN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSASTD

3Dcommand
Button

CSVBD3CD CSVBC3CD CUMDATYP
CSVALCTN
CSVACOM
CSVA3CMD
CSASTD

Form CSVBDFRM CSVBCFRM CUMDATYP
CSVACOMN
CSVADDE
CSVAFONT
CSVAFORM
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

Frame CSVBDFRA CSVBCFRA CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

GUI Control User Default Create PDAs (continued)
– 392 –

___ Appendix: Modifying Spectrum Models A
3DFrame CSVBD3FR CSVBC3FR CUMDATYP
CSVA3DI
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSASTD

Label CSVBDLBL CSVBCLBL CUMDATYP
CSVACOMN
CSVADDE
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALABL
CSVALCTN
CSVAMOUS
CSASTD

ListBox CSVBDLST CSVBCLST CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVALBOX
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

MDIForm CSVBDMFM CSVBCMFM CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFRMT
CSVALCTN
CSVAWNDW
CSASTD

GUI Control User Default Create PDAs (continued)
– 393 –

Developing Client/Server Applications ___A
Menu CSVBDMNU CSVBCMNU CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFRMT
CSVAMENU
CSASTD

OptionButton CSVBDOPT CSVBCOPT CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

3DOptionButton CSVBD3OP CSVBC3OP CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

StatusBar CSVBDSTA CSVBCSTA CUMDATYP
CSVACOMN
CSVA3DI
CSVAFOCS
CSVALCTN
CSVASTAT
CSASTD

GUI Control User Default Create PDAs (continued)
– 394 –

___ Appendix: Modifying Spectrum Models A
TextBox CSVBDTXT CSVBCTXT CUMDATYP
CSVACOMN
CSVADDE
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATBOX
CSVAWNDW
CSASTD

Timer CSVBDTMR CSVBCTMR CUMDATYP
CSVACOMN
CSVALCTN
CSVATIME
CSASTD

3DPanel CSVBD3PN CSVBC3PN CUMDATYP
CSVA3DI
CSVA3DPN
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALABL
CSVALCTN
CSVAMOUS
CSASTD

TrueDBGrid CSVBDGRD CSVBCGRD CUMDATYP
CSVACOMN
CSVALCTN
CSVAFOCS
CSVAGRID
CSASTD

GUI Control User Default Create PDAs (continued)
– 395 –

Developing Client/Server Applications ___A
Toolbar CSVBDTLB CSVBCTLB CUMDATYP
CSVA3DI
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAMOUS
CSVATOOL
CSASTD

GUI Control User Default Create PDAs (continued)
– 396 –

___ Appendix: Modifying Spectrum Models A
Parameter Data Area (PDA) Used
The following table lists the PDAs used with the VB-Maint-Dialog model. Included
are the properties associated with each PDA and the GUI controls that use the
PDA. These PDAs are also cross-referenced by GUI control and subprogram in
GUI Controls with VB API, page 391.

Some of the properties are identified with superscript numbers. When a GUI con-
trol is shown with a superscript number, the corresponding property is not used.
For example, the first PDA in the following table has a BackColor property identi-
fied with a superscript number of 1. The GUI control 3DCheckBox field also has a
superscript value of 1. This means that the 3DCheckBox field does not use a Back-
Color property.

PDA Name Properties Used By GUI Control

CSVACOMN
(common
information)

BackColor1

Enabled2

Index3

Name4

Tag5

Visible6

CheckBox
3DCheckBox1

ComboBox
CommandButton
Form3

Frame
3DFrame1

Label
ListBox
MDIForm1,3,6

Menu
OptionButton
3DOptionButton1

StatusBar1,2,3,4,5,6

TextBox
Timer1,6

3DPanel
TrueGridPro
ToolBar
– 397 –

Developing Client/Server Applications ___A
CSVAFOCS
(focus
information)

HelpContextID1

TabIndex2

TabStop3

CheckBox
3DCheckBox
ComboBox
CommandButton
MDIForm2, 3

Menu2, 3

OptionButton
3DOptionButton
StatusBar1,3

TextBox
3DPanel3
TrueGridPro
ToolBar2, 3

CSVATOGL
(toggle
information)

Value CheckBox
3DCheckBox
OptionButton
3DOptionButton

CSVAFRMT
(text formatting
information)

Alignment1

BorderStyle2

Caption3

CheckBox2

3DCheckBox2

CommandButton1,2

Form1

Frame1,2

3DFrame2

Label
MDIForm1,2

Menu1,2

OptionButton2

3DOptionButton2

TextBox3

3DPanel2

TrueGridPro1,3

PDA Name Properties Used By GUI Control (continued)
– 398 –

___ Appendix: Modifying Spectrum Models A
CSVAMOUS DragIcon1

DragMode2

MousePointer3

CheckBox
3DCheckBox
ComboBox
CommandButton
Form1,2

Frame
3DFrame
Label
ListBox
OptionButton
3DOptionButton
TextBox
3DPanel
TrueGridProToolBar

CSVAFONT
(font information)

FontBold1

FontItalic2

FontName3

FontSize4

FontStrikethru5

FontTransparent6

FontUnderline7

Font3D8

ForeColor9

CheckBox6,9

3DCheckBox6

ComboBox6,8

CommandButton6,8,9

Form8

Frame6,8

3DFrame6

Label6,8

ListBox6,8

OptionButton6,8

3DOptionButton6

TextBox6.8

3DPanel6

TrueGridPro6,8

ToolBar6,8,9

PDA Name Properties Used By GUI Control (continued)
– 399 –

Developing Client/Server Applications ___A
CSVALCTN
(location
information)

Left1

LeftDerive
Top2

TopDerive
Height3

HeightDerive
Width4

WidthDerive

CheckBox
3DCheckBox
ComboBox
CommandButton
Form
Frame
3DFrame
Label
ListBox
MDIForm
OptionButton
3DOptionButton
StatusBar
TextBox
Timer3,4

3DPanel
TrueGridPro

CSVADDE
(DDE
information)

LinkItem1

LinkMode2

LinkTimeout3

Form1,3

LabelTextBox

CSVAFORM
(form control
information)

AutoRedraw
ControlBox
DrawMode
DrawStyle
DrawWidth
FillColor
FillStyle
KeyPreview
MaxButton
MDIChild
MinButton
Picture

Form

CSVALABL
(label control
information)

AutoSize1

BackStyle2

WordWrap3

Label
3DPanel2,3

PDA Name Properties Used By GUI Control (continued)
– 400 –

___ Appendix: Modifying Spectrum Models A
CSVAMENU
(menu control
information)

Checked
ShortCut

Menu
WindowList

CSVABUTN
(command button
control
information)

Cancel
Default

CommandButton

CSVALBOX
(listbox control
information)

Columns1

MultiSelect2

Sorted3

ListBox
ComboBox1,2

CSVASTAT
(status bar
information)

_Version
_ExtentX
_ExtentY
_StockProps
SimpleText

StatusBar

CSVATBOX
(textbox control
information)

HideSelection1

MaxLength2

MultiLine3

PasswordChar4

Text5

TextBox
ComboBox1,2,3,4

CSVATIME
(timer control
information)

Interval Timer

CSVACMBO
(combobox control
information)

Style ComboBox

CSVA3DI
(3D information)

Align1

Outline2

ShadowColor3

ShadowStyle4

3DPanel4

3DFrame1,2

Toolbar3,4

PDA Name Properties Used By GUI Control (continued)
– 401 –

Developing Client/Server Applications ___A
CSVAWNDW
(window
information)

ClipControls1

Icon2

Scrollbars3

WindowState4

Form3

Frame2,3,4

MDIForm1

TextBox1,2,4

CSVA3DPN
(3D panel
information)

BevelInner
BevelOuter
BevelWidth
BorderWidth
FloodColor
FloodPercent
FloodShowPct
FloodType
RoundedCorners

3DPanel

CSVAGRID
(TrueDBGrid
control
information)

OLEObjectBlob Grid

CSVA3CMD

PDA Name Properties Used By GUI Control (continued)
– 402 –

INDEX

A
Active help

diagram, 347
drop-down list

diagram, 348
for maintenance dialogs, 345
foreign field help, 346
primary key help, 345

Adding a new field by hand
on maintenance dialog, 185

Add-Ins Menu
options, 27

Appendix
See Modifying Spectrum models

AppendSlash
utility procedure, 323

Application interface
demo project, 59

Application settings
AppSettings.bas

definition, 262
customizing, 262
Startup.bas

definition, 262
understanding, 262, 265

ApplicationName
description, 263

AppSettings.bas
description, 129
See also application settings, 262

Architecture
Construct Spectrum applications, 28

ArrayDimensions
utility procedure, 323

ASSERT
utility procedure, 323

Assigning
corporate defaults, 170

B
BDT_PHONE

business data type, 328
Browse

modules
downloading to project, 229

support
ApplicationControl, 265
ApplicationControls, 265
BrowseBase.cls, 265
BrowseDataCache, 265
BrowseDataColumn, 265
BrowseDataColumns, 265
BrowseDataRow, 265
BrowseDataRows, 265
BrowseDialogBase.cls, 265
BrowseDialogOptions.frm, 265
BrowseManager.cls, 266
ColumnDisplay, 266
ColumnsDisplay, 266
FieldKey, 266
FieldKeys, 266
GenericBrowse.frm, 266
GenericMDIBrowse.frm, 266
KeyMatch, 266
– 403 –

Developing Client/Server Applications__
understanding, 265
Browse Command handlers

coding, 241
enabling browse commands, 242
example of code to assign command
IDs, 242
example of code to mark updated
rows, 244
example of code to update, 243

creating, 240
diagram of Browse Command handler
interaction

process of browse command handler
object interaction, 239

diagram of Browse command handler
interaction, 239

Browse command handlers, 344
Browse dialogs

browse object subprogram, 217
browse object subprogram proxy, 218
components of

client framework components, 216
object browse subprogram, 216
object browse subprogram
proxy, 216
Visual Basic browse object, 216

creating with individual models, 215
diagram of components, 217
drilling down from, 344
framework components, 219
integrating with maintenance
dialogs, 343

see also integrating browse and
maintenance dialogs

modules required for, 102
prerequisites for generating with
individual models, 221
purpose, 216
Visual Basic browse object, 218

data cache, 219

Browse object
See also Visual Basic browse object
see Visual Basic browse object
subprogram

generating, 222
Browse subprogram proxy

generating, 222
BrowseManager class

BrowseManager methods
list of services, 237

BrowserExists procedure
(TableName) As Boolean, 306
example code, 317
updating, 317

Browsing for business objects
customizing browse options, 86
demo project, 82

Business data types
demo project, 76
setting up in Predict

example code for, 166

C
Calculated fields

code examples, 176
creating, 175

CenterForm
utility procedure, 323

CheckBox field
adding to maintenance dialog, 188

CheckBox grid column
adding to maintenance dialog, 198

Checklists
Construct Spectrum project, 126
creating browse dialogs with
individual models, 221
creating maintenance dialogs with
individual models, 140
– 404 –

___ Index
moving non-object based applications
to Construct Spectrum, 248
moving object-based applications to
Construct Spectrum, 247
super model generation, 97

Client framework
customizing

application settings, 262
menu and toolbar

See menu and toolbar, 289
object factory, 307

diagram of components, 255
internationalizing

See Internationalizing, 374
introduction, 254
multiple-document interface, 301
object factory, 302
Resource class, 374

initializing an instance, 374
understanding and customizing, 253
utility procedures, 323

Client modules
generation overview, 39

Client/server applications
architecture, 28

CLIENT-VALIDATION user exit
validating data, 334

ComboBox GUI control
adding to maintenance dialog, 187

Command buttons
foreign field support, 364

Command handlers
browse, 344

Commands
defining, sending, and handling, 273

Compressing data
enabling for client to server
transmissions, 145–146, 225

Construct Spectrum
creating your application, 37

description, 24
documentation, 20
moving Natural Construct
applications to, 18

Construct Spectrum Add-In
overview, 49

Construct Spectrum applications
diagram of architecture, 28

Construct Spectrum project
creating, 127
downloading generated components
to, 131
prerequisites, 126
setting up, 123

Construct Spectrum SDK
documentation, 20

Conventions
typographical, 19
used in this guide, 19

Corporate defaults
assigning, 170

Create a New Project dialog
description, 127

CreateArray
utility procedure, 323

CreateForm procedure
description, 313
example code, 314
updating, 313

CreateStringArray
utility procedure, 323

Creating
applications, 37
calculated fields, 175
Construct Spectrum applications, 18
Construct Spectrum Project, 127

CSTFormatMessage
utility procedure, 323

CSTSelectContents
utility procedure, 324
– 405 –

Developing Client/Server Applications__
CSTSubst
utility procedure, 324

CSTUtils.bas
utility procedures, 323

CSTVBFW.dll
customizing client framework
components, 256

CSXDEFLT
changing values in model default
subprogram, 358

Customizing
application and environment, 40
browse dialog

display options, 86
recommendations for a new
application, 232

browse dialogs, 238
BrowseManager methods, 237
diagram of internal structure, 236
on the client

See Customizing on the client, 238
on the server

See Customizing on the
server, 238

understanding Browse Command
handlers

See Browse Command
handlers, 238

using BrowseManager class, 234
business data types, 220
descriptive fields, 220
maintenance dialog

overriding default GUI control
selection, 160
server options, 157
server tasks, 159
strategies for, 155
user-defined user exits, 157

Customizing browse dialogs
using the BrowseManager class, 233

diagram of interaction to display a
browse dialog, 234

Customizing on the client
understanding the BrowseManager
class

displaying the browse dialog, 232
returning a specific row of data, 233
returning all rows of data, 233
supporting a browse command
handler, 233

Customizing on the server
browse object Predict setup, 238

D
Data compression

enabling for client to server
transmissions, 145–146, 225

Data encryption
enabling for client to server
transmissions, 145–146, 225

Data sources
defining alternate, 226

Database ID
specifying in a new project, 127

DBID
description, 264
number

specifying in a new project, 127
Debugging

client/server applications, 40
Default GUI derivation logic, 165, 167

diagram, 168–169
DefaultLibrary

description, 264
– 406 –

___ Index
Defaults
used by super model, 97

Defining
alternate browse data sources, 226

example code, 228
general package parameters, 115
specific package parameters, 117

Demo application
application interface, 59
browsing for business objects, 82
business data types, 76
customizing browse options, 86
drop-down grids, 80
foreign fields on a maintenance
dialog, 84
generated modules, 53
grids, 78
maintaining a business object, 73
making the .EXE file, 58
nested grids, 79
opening a business object, 68
overview, 44, 50
remote dispatch service options, 66
running, 56
troubleshooting, 91
validations, 74

Dependencies between models, 103
Deploying

procedure, 41
Deploying applications

overview, 41
Derivation logic

GUI controls, 159
Descriptions

foreign fields, 359
refreshing, 361

Developing Client/Server Applications
how to use guide, 17

Development environments
description, 25

Development process
steps involved in developing an
application, 33

Dialogs, browse
see Browse dialogs

Dialogs, maintenance
see Maintenance dialogs

Dispatch service data
role on mainframe server, 30

Dispatch services
options, 66

Dispatcher
Selection dialog

See Spectrum Dispatch Client, 322
Dispatcher Selection dialog

customizing client framework
components, 322

Displaying
grids, 205

Documentation
Construct Spectrum, 20
Construct Spectrum SDK, 20
Natural Construct, 21
related, 20

Domains
setting up application
environment, 36
specifying in super model, 116

Downloading
browse modules to the client, 229
Download Generated Modules
dialog, 131
Downloading Modules dialog, 152
generated components to project, 131
maintenance modules to the
client, 151

Drilling down from a browse dialog, 344
Drop-down grids

demo project, 80
– 407 –

Developing Client/Server Applications__
Drop-down lists
active help from

diagram, 348
foreign field support, 363
representing foreign fields, 356

dialog, 356

E
Encrypting data

enabling
client to server transmissions, 145–
146, 225

Entire Broker
role on mainframe server, 30

Error notifications
adding support for sound, 208

ErrorPreferences.frm
description, 341

ErrorTip.frm
description, 341

EXE file
making for demo project, 58

Existing applications
moving to Construct Spectrum, 245

External data
accessing with the VB-Browse-Local-
Data-Object model, 226
displaying in a generated
combobox, 164
example code for accessing, 228

F
Field help

active help, 345

File number
specifying in a new project, 127

FileExists
utility procedure, 324

FindFirst
utility procedure, 324

FixupRTF
utility procedure, 324

FK-AS-COMBO-THRESH-HOLD
changing default value, 358

FNR
description, 264

FNR number
specifying in a new project, 127

ForceLogonAtStartup
description, 263

Foreign fields
active help, 346

diagram, 347
case for not using, 353

diagram, 353
corporate default threshold, 170
default GUI controls, 358
demo project, 84
displaying descriptions, 359
GUI controls used to represent, 355
multiple descriptive values, 360
refreshing descriptions, 361
repeating relationships, 352

diagrams of, 352
representing

grids, 357
representing in

drop-down lists, 356
lookup buttons, 356

representing in grids
diagram, 357

supported relationships, 351
diagram, 351

supporting code
command buttons, 364
– 408 –

___ Index
drop-down lists, 363

G
G/R/O

in super model wizard, 111
Generated code

transferring to the project, 39
Generating

browse subprogram proxy, 222
individual models, 37
maintenance dialog, 147
maintenance subprogram proxy, 142
object factory

considerations for, 99
super model, 113, 119

diagram of, 95
new package, 109
overview, 94
packages and object factory, 106
specific packages, 109

super model wizard
Standard Parameters step, 105

Visual Basic browse object, 223
Visual Basic maintenance object, 142

Generation process
overview of server/client modules, 37

GetBrowser
TableName As BrowseManager, 306

GetBrowser procedure
example code, 316
updating, 315

GetPrivateProfileStringVB
utility procedure, 324

GetWindowsDirectoryVB
utility procedure, 324

Grids
column

adding to maintenance dialog, 189

demo project, 78
diagram

formatted grid, 205
unformatted grid, 205

displaying, 205
Grid Sizing Information dialog, 207
keyboard shortcuts, 81
representing foreign fields, 357

diagram, 357
resizing, 206
using, 202

GUI
generation standards

defining, 172
GUI controls

default controls for foreign fields, 358
default derivation logic, 165, 167

diagram, 168–169
derivation logic, 159
keywords, 162
naming conventions, 159
overriding default selection, 160
representing foreign fields, 355

GUI dialog
role on Windows platform, 32

GUI_ALPHA MULTILINE keyword
description, 162

GUI_CHECKBOX keyword
description, 162

GUI_COMBOBOX keyword
description, 162

GUI_NULL keyword
description, 163

GUI_OPTION BUTTON keyword
description, 163

GUI_PROTECTED keyword
description, 163

GUI_TEXTBOX keyword
description, 163
– 409 –

Developing Client/Server Applications__
H
Help

See online help, 34
HKEY_CLASSES_ROOT

language registry, 378
HKEY_CURRENT_USER

language registry, 378
HKEY_LOCAL_MACHINE

language registry, 378
HKEY_USERS

language registry, 378

I
Individual models

when to use, 37
InitAppSettings procedure

example, 263
InitializeOpenDialog procedure

code example, 312
description, 306, 312
updating, 312

Integrating browse and maintenance
dialogs, 343

design objectives, 349
drilling down from a browse
dialog, 344
overview, 344, 349, 351
see also Foreign fields, 343

Interface
demo project, 59

Internationalizing
generated applications, 367
hints for developers, 380

automatically setting the
language, 380
changing language at runtime, 383

using resource files and groups, 380
maintenance dialogs, 211
methods, 374

GetResourceGroup, 374
LoadBinaryResource, 374
LoadStringResource, 374
LocalizeForm, 374–375
Message, 374
MessageEx, 374
SetDefaultMessageGroup, 374

planning considerations, 368
list of translatable items, 368

properties, 377
Language, 377
LanguageINIKey, 379
LanguageRegistryKey, 378
ResourceFilePath, 379

related client framework components
Resource, 369
ResourceGroup, 369

using the client framework, 369
where to find related information, 367

Invoking
super model, 104, 114

IsForegroundApplication
utility procedure, 324

IsMDIChild
utility procedure, 324

K
Key field active help, 345
Keyboard shortcuts for grids, 81
Keywords

business data type, 166
GUI control, 162
verification rule, 164
– 410 –

___ Index
L
Label captions

GUI controls, 160
Language sets

resource files, 370
LanguageRegistryKey

description, 378
HKEY_CLASSES_ROOT, 378
HKEY_CURRENT_USER, 378
HKEY_LOCAL_MACHINE, 378
HKEY_USERS, 378

Library image files
role on Windows platform, 31

LoadBinaryResource method
description, 375

LoadStringResource
description, 376

Logon dialog
description, 321
See also Spectrum Dispatch
Client, 321

Lookup button
representing a foreign field, 356

diagram of, 356

M
Maintaining a business object

demo project, 73
Maintenance dialogs

abbreviated object description, 160
active help for, 345
adding new field by hand, 185
controlling default size, 173
customizing on the server, 159

integrating with browse dialogs, 343
see also Integrating browse and
maintenance dialogs

internationalizing, 211
model

using, 147
modules required for, 101
object identifier, 160
prerequisites for generating with
individual models, 140

Maintenance modules
relationships between, 138
to download to project, 151

Maintenance object
see Visual Basic maintenance

object
Maintenance object subprogram

generating, 140
Maintenance subprogram proxy

generating, 142
Max

utility procedure, 324
MDI

See multiple-document interface, 301
MDIFrame.frm

description, 301
Menu

bar
definition, 301

structure
See menus and toolbars, 289

Menus and toolbars
command handling

class summary, 272
coding, 276
defining, sending, and
handling, 273
linking commands, 277
understanding, 271
unhooking commands, 288
user interface controls, 278
– 411 –

Developing Client/Server Applications__
customizing, 289
menu bar example, 294
menu editor window, 295
menu structure, 289
toolbar button example, 299
toolbar structure, 298

demo application, 60
support

UICmd, 271
UICommandConstants.bas, 271
UICommands, 271

Message method
description, 376

MessageEx method
description, 376

Methods
coding the UICommandTarget(), 242
internationalizing

See also Internationalizing, 374
marking updated rows, 243

Min
utility procedure, 324

Modal browse dialog
example, 345

Models
deciding which to use, 37
dependencies between, 103

Modifying
Spectrum models, 385

example of generated code, 387
GUI controls with VB API, 391
how the VB API works, 389
parameter data area (PDA)
used, 397
VB API, 388

components
See also VB API

VB-Maint-Dialog model, 386
VB-Maint-Dialog model
architecture, 386

Modules
custom-created, 305
deciding which to generate with super
model, 100
naming conventions, 97

diagram, 98
to download to project, 132
uploading changes to the server, 155

Monitor resolution
effect on dialog size, 173

MoveFormSafely
utility procedure, 324

Multi-column layout
creating on dialog, 181
example, 181

Multilingual support
See Internationalizing, 211

Multiple descriptive values for a foreign
field, 360
Multiple Generation utility

using with super model, 113
Multiple-document interface

MDIFrame.frm, 301
Menu Bar, 301
Status Bar, 301
Toolbar, 301

understanding, 301

N
Naming conventions

GUI controls, 159
super model, 97

diagram, 98
Natural Construct

documentation, 21
Natural Construct applications

moving to Construct Spectrum, 18
– 412 –

___ Index
Natural subprogram
role on mainframe server, 29

Nested grids
demo project, 79
diagram of relationships, 203
drop-down

diagram, 204
using, 204

using, 202
Non-object based applications

moving to Construct Spectrum, 248

O
Object browse subprogram, 222

description, 102
key PDA description, 102
restricted PDA description, 102
row PDA description, 102

Object browse subprogram proxy
description, 102

Object factory
considerations for generating, 99
customizing, 307

new business objects, 311
OFactory.bas, 302

code, 310
OFactory.bas window, 308
Open dialog

understanding, 303
Open.frm

definition, 302
OpenAction, 302
OpenObject, 302
OpenObjects, 302
procedures

BrowserExists(TableName) As
Boolean, 306
CreateForm(formID) As Form, 306

GetBrowser(TableName) As
BrowseManager, 306
InitializeOpenDialog(), 306

relationship diagram, 309
selecting to generate in super
model, 116
selecting to generate in super model
wizard, 107
understanding, 302, 304
using, 305

example, 306
Object maintenance subprogram

description, 101
see Maintenance object
subprogram, 140

Object maintenance subprogram proxy
description, 101

Object-based applications
moving to Construct Spectrum, 247

Object-Browse-Subp model
description, 102

ObjectError
description, 341

ObjectErrors
description, 341

Object-Maint-Subp model
description, 101

OFactory.bas
description, 129, 302
example, 308

OLE automation server
customizing client framework
components, 256

Online help
context-sensitive, 34
providing in client/server
applications, 34
task-oriented, 34
window-level, 34
– 413 –

Developing Client/Server Applications__
Open dialog
overview, 302
relationship diagram, 309
understanding, 303

Open.frm
definition, 302
example screen, 303

OpenAction
description, 302

Opening a business object
demo project, 68

OpenObject
description, 302

OpenObjects
description, 302

Option button threshold
corporate default, 170

Overflow conditions
correcting, 174, 179
correcting on dialog, 148
example, 179
working with overflow frames, 180

Overriding default GUI control
selection, 160

P
Packages

generating with super model, 100
specifying parameters

general, 106
general parameters, 115
specific parameters, 109, 117

specifying prefix in super model
wizard, 110

PadLeft
utility procedure, 324

PadRight
utility procedure, 325

Parameter data areas
generating for browse object
subprogram, 222
generating for maintenance object
subprogram, 140

Planning your application
consistent style, 35
content of windows, 35
deciding what to show users, 33
number and structure of windows, 34
planning code, 35
setting up your project, 39
simple window design, 34
translation issues, 35

Predict definitions
setting up application
environment, 36

Predict Modify Verification panel
description, 165

Predict set up tasks
default GUI controls, 155
headers, 155
keywords, 155

Prerequisites
Construct Spectrum project, 126
demo application, 45
developing client/server
applications, 16
super model, 97

Preserving
user exits, 155

Primary keys
active help for, 345

Product integration
Adabas, 24
Construct Spectrum, 24
DB2, 24
Entire Broker, 24
Natural, 24
– 414 –

___ Index
Predict, 24
VSAM, 24

Projects
opening the demo, 46
see also Construct Spectrum
project, 123

Prompt to Open New Project dialog
description, 129

R
Regenerating existing modules

using super model, 116
using super model wizard, 107

RegistryKey
description, 263

Relationships
between maintenance modules, 138

RememberUserID
description, 263

Remote dispatch service options
demo project, 66

Removing field
by hand from maintenance dialog, 202

Repeating field threshold
corporate default, 170

Repeating foreign fields
represented in a grid, 357

diagram, 357
supported relationships, 352

diagram of, 352
Replacing existing modules

using super model, 116
using super model wizard, 107

ResizeForm
utility procedure, 325

Resizing
grids, 206

Resizing grids
controls on dialog, 148

Resource files
composition, 369
creating links, 373
filename example, 369
path

purpose, 371
specifying binary values, 373
specifying text values, 372

how to include non-printing
characters, 372

syntax, 372
Resource groups

identifiers (RGID), 369
purpose, 369

Resource identifiers (RID)
composition, 369

Resources
linking, 371

S
Save New Visual Basic Project dialog

description, 128
Scalar field

adding to maintenance dialog, 185
SDC

See Spectrum Dispatch Client, 319
SDCDialog.frm

description, 319
dialog, 321

Security
considerations for a new
application, 135
setting up domains, steplibs, users,
and groups, 36

Server
customizing maintenance dialogs, 159
– 415 –

Developing Client/Server Applications__
Server modules
generation overview, 38

Server-based applications
moving to Construct Spectrum, 245

SetDefaultMessage method
description, 377

Setting up
Construct Spectrum project, 123
Predict file definitions, 160

SetUppercaseStyle
utility procedure, 325

Shortcuts
keyboard shortcuts for grids, 81

Simple foreign field relationships, 351
diagram, 351

Sound
adding to error notifications, 208
support for error notifications, 208

Sound support
overview, 209

Spectrum administration
role on mainframe server, 30

Spectrum Dispatch Client
client framework support, 319
error messages, 322
SDCDialog.frm, 319

example dialog, 321
SDCSupport.bas, 319
TraceOptions.frm, 319

example dialog, 320
Spectrum Dispatch Client (SDC)

overview, 24
Spectrum dispatch service

overview, 24
role on mainframe server, 30

Spectrum security services
role in Construct Spectrum
applications, 30

Startup.bas
See application settings, 262

State-dependent layout
creating on dialog, 183
example, 184

Status bar
definition, 301
demo application, 65

Steplib chains
setting up application
environment, 36

Strategies for customizing maintenance
dialogs, 155
Sub Main procedure

customizing client framework
components, 262

Subprogram proxies
generating for a browse dialog, 222
generating for a maintenance
dialog, 142

Subprogram proxy
role on mainframe server, 29

Subprogram-Proxy model
description, 101–102

Super model
defaults, 97
defining general package
parameters, 115
defining specific package
parameters, 117
General Package Parameters
panel, 115
generating application modules, 37
generating from wizard, 113
generating in batch, 113
generation function, 119
generation overview, 94

diagram of, 95
invoking, 104, 114
invoking the model wizard, 104
Package modules grid in wizard, 110
prerequisites, 97
regenerating existing modules, 107
– 416 –

___ Index
replacing existing modules, 107
Standard Parameters panel, 114
troubleshooting, 121
using message numbers, 105
when to use, 94
which modules to generate, 100

Super model wizard
New Package step, 109
Packages and Object Factory step, 106

T
Tabbed layout

creating on dialog, 182
example, 183

Testing applications
recommendations for testing new
application, 134

TextBox GUI control
adding to maintenance dialog, 186

Thresholds
foreign field, 171
option button, 171
repeating field, 171

Toolbar
buttons, 282
customizing

See menus and toolbars, 298
definition, 301
demo application, 62

TraceOptions.frm
dialog, 320
example, 320

Transferring
generated code to the client, 39

TWIPS monitor values
description, 173

U
UICmd

definition, 271
UICommandConstants.bas

defining commands, 295
definition, 271

UICommands
class, 273
definition, 271

Uploading
changes to the server, 155
Uploading Modules dialog, 213

User exits
preserving changes by uploading to
the server, 155
user-defined for maintenance
dialog, 157

User Exits panel
VB-Browse-Object model, 226

User type rules
coding, 337
example of code for Natural rule, 337
example of code for Visual Basic
rule, 337
example of code using Visual Basic
and Natural, 338

Utility procedures
AppendSlash, 323
ArrayDimensions, 323
ASSERT, 323
CenterForm, 323
CreateArray, 323
CreateStringArray, 323
CSTFormatMessage, 323
CSTSelectContents, 324
CSTSubst, 324
CSTUtils.bas, 323
description, 323
FileExists, 324
– 417 –

Developing Client/Server Applications__
FindFirst, 324
FixupRTF, 324
GetPrivateProfileStringVB, 324
GetWindowsDirectoryVB, 324
IsForegroundApplication, 324
IsMDIChild, 324
Max, 324
Min, 324
MoveFormSafely, 324
PadLeft, 324
PadRight, 325
ResizeForm, 325
SetUppercaseStyle, 325

V
Validating data

creating Predict verification
rules, 336
diagram of a validation cycle, 329
examples in demo project, 74
in maintenance dialogs, 333

hand-coding in generated
dialogs, 333
using BDTs, 333

in Visual Basic maintenance
objects, 334

using CLIENT-VALIDATION user
exit, 334
using Predict, 335

on the client
diagram of triggering
validation, 332

order of precedence, 339
typed of validations, 328
types of data validation

business data type, 328
business object, 329
local business, 328

Validation error handling
ErrorPreferences.frm, 341
ErrorTip.frm, 341
ObjectError, 341
ObjectErrors, 341

Validation errors
in business object validations, 341

example of code, 342
on the client, 340

Variable names
deriving, 159

VB API
components, 388

LDA storing Visual Basic default
values, 388
PDAs for GUI control
definitions, 388
subprogram to assign default
values, 388
subprogram to write GUI
definition, 388

description, 388
GUI controls, 391

3DCheckBox, 391
3Dcommand Button, 392
3DFrame, 393
3DOptionButton, 394
3DPanel, 395
CheckBox, 391
ComboBox, 391
CommandButton, 392
Form, 392
Frame, 392
Label, 393
ListBox, 393
MDIForm, 393
Menu, 394
OptionButton, 394
StatusBar, 394
TextBox, 395
Timer, 395
Toolbar, 396
– 418 –

___ Index
TrueDBGrid, 395
PDAs

CSASTD, 391
CSVA3CMD, 392
CSVA3DI, 393
CSVA3DPN, 395
CSVABUTN, 392
CSVACMBO, 391
CSVACOMN, 391
CSVADDE, 392
CSVAFOCS, 391
CSVAFONT, 391
CSVAFRMT, 391
CSVAGRID, 395
CSVALABL, 393
CSVALCTN, 391
CSVAMENU, 394
CSVAMOUS, 391
CSVASTAT, 394
CSVATBOX, 391
CSVATIME, 395
CSVATOGL, 391
CSVATOOL, 396
CSVAWNDW, 392
CUMDATYP, 391

using with a custom model, 389
example of code in user default
subprogram, 389
example of code to assign value to
Caption property, 389
example of code using default
values, 390

VB-Browse-Local-Data-Object
model

accessing alternate data sources
with, 226, 228

VB-Browse-Local-Data-Object model
wizard

Standard Parameters step, 227
VB-Browse-Object model

description, 102

VB-Maint-Dialog model
description, 101

VB-Maint-Object model
description, 101

Verification rules
keywords, 164
Predict, 336
where to implement, 336

coding user type rules, 337
Visual Basic browse

business object, 305
Visual Basic browse object

adding support, 315–316
description, 102
generating, 223

Visual Basic business objects
role on Windows platform, 32

Visual Basic maintenance
business object, 305
object

generating, 142
Visual Basic maintenance object

description, 101

W
Windows platform

role of Entire Broker, 31
Working environment

Construct Spectrum, 24
– 419 –

Developing Client/Server Applications__
– 420 –

	Table of Contents
	Preface
	Prerequisite Knowledge
	How to Use this Guide
	If You are Creating a New Client/Server Application
	If You are Moving an Existing Application to a Client/ Server Architecture

	Conventions Used in this Guide
	Related Documentation
	Construct Spectrum SDK
	Construct Spectrum
	Natural Construct

	Year 2000 Considerations

	Introduction
	What is Construct Spectrum?
	Development Environments

	Architecture of a Construct Spectrum Client/Server Application
	Mainframe Server
	Windows

	The Development Process
	Planning Your Application
	Decide What to Show the User
	Keep Window Design Simple
	Number and Structure of Windows
	Content of Each Window

	Plan Your Code
	Use a Consistent Style
	Anticipate Translation Issues

	Setting Up Your Application Environment on the Mainframe
	Predict Definitions
	Steplib Chains and Domains
	Security for Domains, Steplibs, Users, and Groups

	Generating Application Components
	Using the Super Model
	Using Individual Models
	Deciding Which Modules to Generate
	Generation Process
	Server Modules
	Client Modules

	Setting Up Your Project
	Transferring Your Generated Code to the Project

	Customizing Your Application and Environment
	Testing and Debugging Your Application
	Deploying Your Application

	Using the Demo Application
	Overview
	Setting Up Prerequisites
	Opening the Construct Spectrum Demo Project
	Understanding the Construct Spectrum Add-In
	Understanding the Demo Project
	Framework Components
	Generated Modules

	Running the Demo Application
	Application Interface
	Menu Options
	Toolbar Options
	Application Workspace
	Status Bar

	Additional Options
	Error Notification Options
	Remote Dispatch Service Options

	Using the Demo Application
	Opening a Business Object
	Maintaining a Business Object
	Validations
	Business Data Types (BDTs)
	Grids
	Nested Grids
	Nested Drop-Down Grids
	Keyboard Shortcuts for Grids

	Browsing For Business Object
	Selecting Data With a Browse
	Open a Business Object With a Browse
	Open a Second Order to Work On
	Open Foreign File Information

	Specifying Browse Customization Options
	Specifying Selection Options
	Specifying Display Options

	Troubleshooting

	Using the Super Model to Generate Applications
	Overview
	Preparing to Generate with the Super Model
	Using a Naming Convention
	Understanding the Object Factory
	Which Modules to Generate
	Modules to Generate for a Maintenance Dialog
	Modules to Generate for a Browse Dialog
	Dependent Models

	Generating with the Super Model
	Using the Super Model Wizard in the Construct Windows Interface
	Step 1 — Invoke the Super Model Wizard
	Step 2 — Define General Package Parameters
	Step 3 — Define Specific Package Parameters
	Step 4 — Generate the Modules
	Generating Modules from the Model Wizard
	Generating Modules in Batch

	Using the Super Model in the Generation Subsystem
	Step 1 — Invoke the Super Model
	Step 2 — Define General Package Parameters
	Step 3 — Define Specific Package Parameters
	Step 4 — Generate the Modules

	What to Do If Something Goes Wrong
	Transferring Your Application to the Client

	Creating a Construct Spectrum Project
	Overview
	Are You Ready?
	Creating the Project
	Prior to Downloading

	Downloading the Generated Modules
	Hand-Coding the Object Factory

	What’s Next?
	Modifying the Dialogs
	Testing the Application
	Deploying the Application
	Setting Up Security

	Creating and Customizing Maintenance Dialogs
	Overview of the Maintenance Dialog
	Ways to Generate Maintenance Dialogs
	The Process of a Maintenance Dialog

	Are You Ready?
	Using Individual Models to Generate Maintenance Modules
	Generating the Object Maintenance Subprogram and PDAs
	Generating the Maintenance Subprogram Proxy
	Generating the Visual Basic Maintenance Object
	Business Validations
	Browse Functions

	Generating a Maintenance Dialog

	Downloading Client Modules
	Integrating a New Maintenance Dialog
	Strategies for Customizing a Maintenance Dialog
	Doing the Predict Data Dictionary Work Up Front
	Choosing an Appropriate Place to Add Hand-Written Code
	Adding New User Exits
	Making a Copy Before You Regenerate

	Customizing on the Server
	Deriving Variable Names
	Deriving GUI Control Names
	GUI Control Identifier
	Object Identifier
	Field Identifier

	Deriving Label Captions for GUI Controls

	Overriding GUI Controls
	Step 1 — Search for GUI Keywords on Field Definitions
	Generating a ComboBox Control to Display External Values

	Step 2 — Search for GUI Keywords on Verification Definitions
	Step 3 — Search for Business Data Type Keywords on Field Definitions
	Step 4 — Use Default Derivation
	Repeating Field Threshold
	Option Button Threshold
	Foreign Field Threshold

	Setting Generation GUI Standards
	Controlling the Size of a Maintenance Dialog
	Overflow Conditions

	Customizing on the Client
	Creating Calculated Fields
	Does a GUI Control Exist for the Calculated Field?
	Coding the Calculation

	Integrating Maintenance and Browse Functions
	Validating Data Using the Visual Basic Maintenance Object
	Tailoring the Maintenance Dialog
	Working with Overflow Frames
	Multi-column Layout
	Tabbed Layout
	State-Dependent Layout

	Adding a New Field by Hand
	Adding a Scalar Field by Hand
	Adding a Regular Grid Column for a Field

	Removing a Field by Hand
	Using the Grid
	Nested Grids
	Nested Drop-Down Grids
	Displaying Grids
	Resizing Grids

	Adding Sound to Error Notifications
	Understanding How a Sound File is Associated With an Error

	Multilingual Support for Maintenance Dialogs

	Uploading Changes to the Server

	Creating and Customizing Browse Dialogs
	Overview of the Browse Dialog
	About Browse Dialogs
	The Browse Process
	Browse Object Subprogram
	Browse Object Subprogram Proxy
	Visual Basic Browse Object
	Data Cache

	Framework Components

	Creating a Browse Dialog
	Setting up Predict for the Browse Dialog
	Business Data Types
	Descriptive Fields

	Using the Construct Models to Generate Browse Modules
	Generating the Browse Subprogram and PDAs
	Generating the Subprogram Proxy
	Generating the Visual Basic Browse Object
	Defining Alternate Browse Data Sources

	Downloading the Client Modules
	Updating the Project
	Extend Object Factory

	Customizing On the Client
	Adding Command Handlers
	Customizing the Generic Browse Dialog
	Understanding the BrowseManager Class
	Display the Browse Dialog
	Support a Browse Command Handler
	Return a Specific Row of Data
	Return All Rows of Data

	Using the BrowseManager
	BrowseManager Methods

	Understanding Browse Command Handlers
	Creating Browse Command Handlers
	Coding the Custom Browse Command Handler
	Enabling Commands on the Browse Toolbar and Menu
	Coding the UICommandTarget() Method
	Marking Updated Rows Using the UpdateListViewIcons Method

	Moving Existing Applications to Construct Spectrum
	Overview
	Moving Natural Construct Object Applications
	Moving Non-Object Natural Construct Applications
	Step 1 — Set Up Your Server Environment
	Step 2 — Evaluate Your Application Data
	Step 3 — Perform Optional Predict Set Up
	Step 4 — Generate the Client/Server Modules
	Step 5 — Update Your Object Subprograms with Existing Business Rules
	Considerations for Implementing Business Rules

	Step 6 — Set Up and Run Your Construct Spectrum Project

	Understanding and Customizing the Client Framework
	Introduction to the Client Framework
	About Box
	Customizing the About Box

	Application Preferences
	Application Settings
	Customizing the Application Settings

	Browse Support
	Internationalization Support
	Maintenance Classes
	Grid Support

	Menu and Toolbar Support
	Understanding Menu and Toolbar Command Handling
	Class Summary
	Defining, Sending, and Handling Commands
	Step 1 — Declare a Global Instance of the UICommands Class
	Step 2 — Define the Commands
	Step 3 — Code Menu and Toolbar Events to Send the Commands
	Step 4 — Code the Command Handlers
	Step 5 — Link the Commands to the Command Handlers

	Updating User Interface Controls
	Step 1 — Code Events to Update the Menu Controls
	Step 2 — Code the Logic that Determines the State of a Command
	Step 3 — Code Events to Update the Toolbar Buttons
	Displaying a Disabled Bitmap
	Displaying a Message
	Update Cycles

	Additional Methods For Command Handling
	Unhooking Commands

	Customizing the Menu and Toolbar in the Client Framework
	Changing the Menu Structure
	Example of Changing the Menu Bar and Its Menu Items
	Changing the Toolbar Structure
	Example of Adding Buttons to the Toolbar

	Multiple-Document Interface (MDI) Frame Form
	Object Factory
	Understanding the Open Dialog
	Understanding the Object Factory
	Using the Object Factory
	Example of Using the Object Factory
	Customizing the Object Factory
	Setting Up
	Making your Application Aware of New Business Objects
	Step 1 — Update the InitializeOpenDialog Procedure
	Step 2 — Update the CreateForm Procedure
	Step 3 — Update the GetBrowser Procedure
	Step 4 — Update the BrowserExists Procedure

	Spectrum Dispatch Client Support
	Logon Dialog
	Error Messages
	Dispatcher Selection Dialog

	Utility Procedures

	Validating Your Data
	Overview
	Basic Data Type Validation
	Business Data Type Validation
	Local Business Validation
	Business Object Validation

	Client Validation
	Validation in Maintenance Dialogs
	Using BDTs
	Hand-Coded Validations in Generated Dialogs

	Validation in Visual Basic Maintenance Objects
	Adding Validations in the CLIENT-VALIDATION User Exit
	Validations from Predict

	Creating Verification Rules in Predict
	Deciding Where To Implement a Validation Rule
	Coding User Type Rules

	Order of Precedence in Data Validation
	Validation Error Handling
	Framework Components
	Handling Business Object Validation Errors

	Understanding the Browse and Maintenance Integration
	Overview
	Drill-Down Capabilities from a Browse Dialog
	Active Help on Maintenance Dialogs
	Primary Key Field Active Help
	Foreign Field Active Help

	Design Objectives
	Application Component Independence
	Simplified Generated Components

	Overview of Foreign Key Field Relationships
	Fields that can be Used in a Foreign Key Relationship
	Simple Field
	Repeating Field

	When Not to Use a Foreign Field Relationship
	List of Values is Static
	List of Values is Small
	List of Values Contains Two Choices Only

	Foreign Field Support Provided By Maintenance Dialogs
	GUI Control Representations of Foreign Fields
	Foreign Fields On the Primary Part of a Maintenance Dialog
	GUI Controls in a Grid
	How Construct Spectrum Determines Which GUI Control to Use
	Displaying Descriptions for a Foreign Field
	Examples of Descriptive Fields
	Supporting Multiple Descriptive Values and Derived Values

	How Foreign Field Descriptions Are Refreshed

	Supporting Code for Drop-Down lists
	Initializing a Drop-Down List
	Support for Value Selection

	Supporting Code for Command Buttons
	Initializing a Command Button
	Click Events on the Command Button

	Internationalizing Your Application
	Planning Your Internationalized Application
	Internationalizing Using the Client Framework
	Resource File Syntax
	Text Values
	Binary Values
	Links

	Using the Client Framework’s Internationalization Components
	Methods
	GetResourceGroup
	LocalizeForm
	LoadBinaryResource
	LoadStringResource
	Message
	MessageEx
	SetDefaultMessageGroup

	Properties
	Language
	LanguageRegistryKey
	LanguageINIKey
	ResourceFilePath

	Hints for Developers
	Automatically Setting the Language
	Strategy for Using Resource Files and Groups
	Starting an Application in a Specific Language
	Associating Windows Locale Setting with a Language

	Changing Language at Runtime

	Appendix: Modifying Spectrum Models
	VB-Maint-Dialog Model
	VB API
	Components of the VB API

	How the VB API Works
	GUI Controls with VB API
	Parameter Data Area (PDA) Used

	Index

