
per formance

SI-4301-4

Programmer's Guide
Release 1.1

SyncSort for z/OS

P R O V E N

All rights reserved. This document contains
proprietary and confidential material, and is
only for use by licensees of the SyncSort for
z/OS proprietary software system.

SyncSort is a registered trademark of Syncsort Incorporated

1.1c

© Syncsort Incorporated, 2003

All rights reserved. This document contains proprietary and confidential material,
and is only for use by the licensees of the SyncSort proprietary software system.
This publication may not be reproduced in whole or in part, in any form, except
with written permission from Syncsort Incorporated.

SyncSort and Visual SyncSort are trademarks of Syncsort Incorporated. No claim
is made to the exclusive right to use Visual apart from the mark as shown. All
other company and product names used herein may be the trademarks of their
respective companies.

Table of Contents i

Table of Contents

Chapter 1. Introduction . 1.1
An Introduction to SyncSort for z/OS . 1.1
SyncSort’s Basic Functions . 1.1
SyncSort’s Data Utility and SortWriter Features 1.3
Sample SortWriter Report . 1.4
Cultural Environment Support . 1.5
DB2 Query Support . 1.5
SyncSort’s Operational Features. 1.6
SyncSort’s Value-Added Products . 1.6
Structure of the Programmer’s Guide. 1.7
Related Reading . 1.8
Online Message Help . 1.9

Chapter 2. SyncSort Control Statements . 2.1
Control Statement Summary Chart . 2.2
Disk Sort, MAXSORT, PARASORT, and Tape Sort Control Statement

Requirements . 2.5
Data Utility Processing Sequence . 2.6
Control Statement Examples . 2.8
Rules for Control Statements . 2.8
ALTSEQ Control Statement . 2.13
END Control Statement . 2.15
INCLUDE/OMIT Control Statement . 2.16
INREC Control Statement . 2.35
MERGE Control Statement . 2.37
MODS Control Statement . 2.54
OMIT Control Statement . 2.58
OUTFIL Control Statement . 2.59
OUTREC Control Statement . 2.88
RECORD Control Statement . 2.125
SORT Control Statement . 2.129
SUM Control Statement . 2.149

Chapter 3. How to Use SyncSort’s Data Utility Features. 3.1
Introduction . 3.1
Sample Data Utility Applications . 3.2

SyncSort for z/OS 1.1 Programmer’s Guideii

Selecting Input Records . 3.2
Selecting Relevant Fields from the Input Records 3.6
Combining Records within a File . 3.11
Making Output Records Printable and Easy to Read 3.14
Dividing a Report into Sections . 3.30
Writing Headers and Trailers for a Report . 3.32
Totaling and Subtotaling Data . 3.41
Obtaining Maximum, Minimum and Average Data 3.47
Counting Data Records . 3.49
Creating Multiple Output Files . 3.53

Chapter 4. JCL and Sample JCL/Control Statement Streams. 4.1
EXEC Statement . 4.2
For MAXSORT, PARASORT, DB2 Query Support, and Tape Sort 4.3
Coding Conventions for DD Statements . 4.3
STEPLIB/JOBLIB DD Statement . 4.4
SYSOUT DD Statement . 4.4
SORTIN DD Statement . 4.5
SORTINnn or SORTINn DD Statement . 4.7
SORTOUT, SORTOFxx, SORTOFx and SORTXSUM DD Statements . 4.8
SORTWKxx or SORTWKx DD Statement . 4.9
SYSIN DD Statement . 4.11
$ORTPARM DD Statement . 4.11
SORTCKPT DD Statement . 4.14
For Exit Routines that Require Link-editing at Execution Time 4.15
DD Statements for MAXSORT, PARASORT, DB2 Query Support, and Tape

Sort . 4.16
Sample JCL/Control Statement Streams . 4.17

Chapter 5. PARM Options . 5.1
Additional MAXSORT PARMs . 5.1
PARASORT PARM . 5.2
DB2 Query Support PARM . 5.2
Additional Tape Sort PARMs . 5.2
Precedence Rules . 5.2
PARM Option Summary Chart . 5.2
SyncSort PARM Options . 5.7
PARMs Accepted But Not Processed by Disk Sorts 5.34

Chapter 6. Invoking SyncSort from a Program . 6.1
Programming Flexibility vs. Performance. 6.1
DD Statements . 6.1
Invoking the Sort/Merge from an Assembler Program 6.2
The 24-Bit Parameter List . 6.4
Sample Assembler Invocation Using 24-Bit Parameter List 6.11
The 31-Bit Extended Parameter List . 6.12
Sample Assembler Invocation Using 31-Bit Parameter List 6.17

Chapter 7. The Coding and Use of Exit Programs . 7.1
What Is an Exit? . 7.1
Loading the Exit Routines into Main Storage . 7.3
Exit Conventions . 7.3
Register Conventions . 7.4
The Exit Communication Area . 7.4
Exits E11, E21, and E31 - Preparing for Other Exit Routines 7.5
Exit E32 - Invoked Merge Only: Creating Input Records 7.5
Exits E14, E15, E25, and E35 - Deleting, Creating, Changing Records . .7.7
Exit E14 - Deleting, Summarizing, Changing Records 7.7

Table of Contents iii

Exit E15 - Creating, Revising or Analyzing the Input File 7.8
Coding a COBOL E15 Exit Routine . 7.10
Example 1: Fixed-Length Records . 7.11
Example 2: Variable-Length Records . 7.12
Coding a C E15 Exit Routine. 7.19
Fixed-Length Records - Function Definition . 7.20
Variable-Length Records - Function Definition 7.21
Exit E25 - Deleting, Changing, Summarizing Records 7.27
Exit E35 - Adding, Deleting and Changing Records 7.28
Coding a COBOL E35 Exit Routine . 7.30
Coding a C E35 Exit Routine . 7.43
Fixed-Length Records - Function Definition . 7.43
Variable-Length Records - Function Definition 7.45
Exit E16-Taking Action on Insufficient Intermediate Storage 7.51
Exits E17, E27, and E37 - Closing Data Sets . 7.52
Exits E18, E38, and E39 - Checking Labels, Processing Read or Write

Errors, End-of-File Routines, Special VSAM Processing 7.52
Exit E61 - Modifying the Collating Process . 7.56
Coding REXX Exits . 7.58

Chapter 8. The Flow of the Sort . 8.1

Chapter 9. MAXSORT. 9.1
MAXSORT: A Maximum Capacity Sort . 9.1
MAXSORT’s Advantages . 9.4
Job Control Language . 9.4
DD Statements . 9.4
SORTBKPT DD Statement . 9.6
SORTOU00 DD Statement . 9.7
SORTOUnn DD Statements . 9.8
Using Disk for Intermediate Output. 9.9
SORTCKPT DD Statement . 9.9
Control Statements . 9.10
PARM Options . 9.10
Exit Programs . 9.13
Invoking MAXSORT from a Program . 9.13
Restarting MAXSORT . 9.14
MAXSORT’s Operator Interface . 9.14
Sample MAXSORT JCL/Control Streams . 9.17

Chapter 10. PARASORT. 10.1
PARASORT: Parallel Input Processing for Elapsed Time Improvement 10.1
PARASORT Applicability . 10.1
Job Control Language . 10.2
DD Statements . 10.2
SORTIN DD Statement with PARASORT . 10.3
SORTPARn DD Statements . 10.5
Special Channel Separated Esoteric Names . 10.7
Sortwork Considerations . 10.8
Operations Notes . 10.9

Chapter 11. SyncSort DB2 Query Support . 11.1
Restrictions. 11.1
Job Control Language . 11.2
DD Statements . 11.2
SORTDBIN DD Statement . 11.3
Operation . 11.4
Record Description . 11.4

SyncSort for z/OS 1.1 Programmer’s Guideiv

Record Description: Trial Mode Execution . 11.5
Sample SyncSort DB2 Query Application . 11.7

Chapter 12. Tape Sort. 12.1
When to Use Tape Sort . 12.1
EXEC Statement. 12.2
DD Statements . 12.3
SORTLIB DD Statement . 12.3
SORTWKxx DD Statement . 12.4
$ORTPARM DD Statement . 12.5
Optimizing Tape Sort . 12.5
Control Statements. 12.6
Exit Programs . 12.6
Initiating Tape Sort Through JCL/Control Streams 12.7
Invoking Tape Sort from a Program . 12.9

Chapter 13. Performance Considerations . 13.1
Disk Sort? MAXSORT? PARASORT? Tape Sort? 13.1
JCL Sorts vs. Program-Invoked Sorts . 13.2
Control Statement Issues . 13.2
The Efficient Use of PARMs . 13.3
Optimizing System Resources . 13.4
Setting CORE . 13.4
The Incore Sort . 13.6
Disk Space Considerations. 13.7
The Coding and Use of Checkpoint-Restart . 13.10
Automatic Checkpoint-Restart. 13.12
Deferred Checkpoint-Restart . 13.13
Optimizing Data Set Placement . 13.14

Chapter 14. The HISTOGRM Utility Program . 14.1
What Is HISTOGRM? . 14.1
Using HISTOGRM to Determine L6 and L7 Values for SyncSort 14.2
Control Parameters for HISTOGRM . 14.2
Job Control Language . 14.4
Executing HISTOGRM through an E15 Exit . 14.4
HISTOGRM Messages . 14.9

Chapter 15. Value-Added Products . 15.1
Visual SyncSort. 15.1
SyncSort/COBOL Advantage . 15.2
PROC SYNCSORT - An Accelerator for SAS™ Sorting 15.3
PipeSort . 15.3

Chapter 16. Messages . 16.1
SyncSort Statistical Record Facility Messages 16.65
PROC SYNCSORT Messages . 16.65
License Key Messages . 16.66
Troubleshooting Abends . 16.70

Index . I.1

Summary of Changes v

SyncSort for z/OS Release 1.1 - Summary of Changes

SyncSort for z/OS is a new product for the IBM z/OS operating system and its underlying
64-bit z/Architecture. SyncSort for z/OS is the successor to SyncSort MVS in the same way
that z/OS extends the capabilities of MVS.

Release 1.1 of SyncSort for z/OS was preceded by release 1.0. This Summary of Changes
identifies changes for both releases as follows:

• Text without a change bar in the left margin applies to SyncSort for z/OS release 1.0
and identifies differences from SyncSort MVS 3.7.

• Text with a solid bar (|) in the left margin applies to SyncSort for z/OS 1.1 only and
identifies differences from release 1.0.

• Text with a dashed bar () in the left margin applies to changes introduced in the
1.1C/TPF2 level of release 1.1.

Thus, if you are moving from SyncSort MVS 3.7 to SyncSort for z/OS 1.1, you should read
the entire Summary of Changes. If you are moving from SyncSort for z/OS 1.0 to release
1.1, you need only read the text indicated by change bars. If you are moving from the TPF0
or TPF1 level to the TPF2 level of release 1.1, you need only read the text indicated by the
dashed change bars.

Note that change bars are used in the Summary of Changes only.

Performance Improvements

SyncSort for z/OS exploits the advanced facilities of the zSeries architecture to achieve sig-
nificant performance improvements:

• Algorithmic improvements have been made to exploit the z/Architecture enhancements
of 64-bit central storage support and the elimination of expanded storage. These
improvements apply to applications that would have formerly used hiperspace to
exploit available expanded storage in a 31-bit OS/390 architecture. A new SyncSort
technique, called ZSPACE, allows the native use of the central storage resources
without incurring the CPU overhead associated with hiperspace simulation in a 64-bit
z/Architecture environment. The technique reduces CPU time and elapsed time. The
informational message WER418I indicates if ZSPACE is being used.

• Parallel access volume (PAV) technology, such as on IBM 2105 ESS (SHARK) devices
and EMC Symmetrix devices, is exploited to reduce elapsed time.

SyncSort for z/OS 1.1 Programmer’s Guidevi

• Dynamic Storage Management enhancements have been made to exploit the
availability of expanded central storage resources found on zSeries servers.
Optimization algorithms have been modified to employ additional storage resources
when available. This change reduces sorting CPU time, EXCPs, and elapsed time for
files that are larger than 600 megabytes.

DB2 Query Support

SyncSort can now directly retrieve data from a DB2 database based on a user-provided
query. An SQL SELECT statement is used to specify the criteria of the request. The query
of the DB2 database replaces SyncSort's SORTIN or E15 processing. The SORT or COPY
functions, but not MERGE, can be used with DB2 queries. All SyncSort features performed
after E15 processing are available for use with the DB2 query facility.

This feature improves performance over DB2’s DSNTIAUL program by allowing DB2 data
to be passed directly into a SORT or COPY operation, without the use of setup steps or the
need for user-written E15 exits.

SORTWORK

The maximum number of SORTWK data sets, as specified on the DYNALLOC parameter of
the SORT control statement or the DYNALLOC PARM option, has been increased from 100
to 255.

Data Utility Features

The SyncSort for z/OS data utility features have been enhanced with the following:

• INCLUDE/OMIT and OUTFIL INCLUDE/OMIT Statements

• Fields can now be compared to the date of a SyncSort run or the date of the run
with an offset. A variety of forms is available to represent the current date used in
the comparison. This allows records to be included or omitted based on whether
their dates are equal to, less than, or greater than the run date or the run date with
an offset. The forms of the current date constants available for standard
comparisons are &DATEx, &DATEx(c), &DATExP, and Y'DATEx'.

• Data fields of the formats Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z can now be compared
to a year constant.

• Data fields that represent the full-date formats Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y
are now supported. Previously these data formats were available for use only with
the SORT or MERGE control statement.

• BI (binary) fields can now be compared to positive decimal numbers.

Summary of Changes vii

• SORT/MERGE Control Statements

• The maximum length of an AC or AQ control field has been increased to 4091 bytes
(2043 for variable-length records). This is raised from the prior limit of 256 bytes.

• INREC, OUTREC, and OUTFIL OUTREC Statements

• The date and time of the SyncSort run can now be inserted in different forms in
records by the parameters &DATE, &DATEx, &DATEx(c), &DATExP,
&DATE=(m1m2m3m4), &DATENS=(xyz), &TIME, &TIMEx, &TIMEx(c), &TIMExP,
&TIME=(hp), and &TIMENS=(tt).

• SMF date and time formats can now be converted to standard date and time
formats. The SMF formats are DT1, DT2, DT3, TM1, TM2, TM3, and TM4.

• The case of EBCDIC letters within a field can now be translated from uppercase to
lowercase, from lowercase to uppercase, or the characters in a field can be
translated according to an alternate collating sequence (ALTSEQ) table in effect.
This is accomplished by using the subparameters TRAN=UTOL, TRAN=LTOU, and
TRAN=ALTSEQ, respectively.

• The conversion of the 2-digit year portion of full-date fields (Y2T, Y2U, Y2V, Y2W,
Y2X, and Y2Y) to a 4-digit year in printable format is now supported.

• A new format parameter, fy2f,(c), is now supported. Used with p (position) and l
(length) in a p,l,f specification, the new format parameter allows conversion of a
full-date field to a printable date with or without separator characters.

• The new edit pattern M26 has been added.

• OUTFIL Control Statement

• The VLFILL parameter has been added to the OUTFIL control statement. It is
used in conjunction with OUTFIL OUTREC or OUTFIL OUTREC CONVERT to
specify a fill byte to be used for any missing p,l field bytes. The VLFILL parameter
has two functions:

• It enables a variable-length OUTFIL OUTREC non-CONVERT application to
continue processing when there is an input record with missing field bytes in a
p,l field specification. If VLFILL has not been specified, the application will
terminate with the critical error WER244A.

• It provides a means to override the default fill byte used in an OUTFIL
OUTREC CONVERT application when there are missing bytes in a p,l field
specification. By default, spaces will be used for missing field bytes.

SyncSort for z/OS 1.1 Programmer’s Guideviii

• The NULLOFL option has been added to the OUTFIL control statement. The
NULLOFL option specifies the action to be taken when any non-SORTOUT
OUTFIL data set contains no data records.

• The FTOV parameter has been added to the OUTFIL control statement. The FTOV
parameter converts fixed-length input records to variable-length output records.

• The VLTRIM parameter has been added to the OUTFIL control statement. The
VLTRIM parameter defines a byte to be deleted from the end of a variable-length
record. All prior occurrences of this byte are deleted until a byte that is not equal to
the trim byte is found.

• The REMOVECC parameter has been added to the OUTFIL control statement. The
REMOVECC parameter generates reports that do not include ANSI carriage
control characters that specify printer actions (for example, skipping a line, ejecting
a page). REMOVECC omits the carriage control character from all of the report
records.

• The &DATENS=(xyz) and &TIMENS=(tt) parameters, which provide additional
formats for inserting the date and time of the SyncSort run in headers and trailers,
have been added.

PARM Processing

The following are run-time options for sort, merge, or copy applications. The options do not
apply to BetterGener.

Null SORTOUT

• The NULLOUT option has been added. The NULLOUT option specifies the action to be
taken when SORTOUT contains no data records.

Record Padding and Truncation Control

• The PAD option has been added. The PAD option specifies the action to be taken if the
LRECL defined in the JCL for a non-OUTFIL SORTOUT is larger than the
SORTIN/SORTINnn LRECL or the internally processed record length when the
SORTIN/SORTINnn LRECL is modified by features.

• The TRUNC option has been added. The TRUNC option specifies the action to be taken
if the LRECL defined in the JCL for a non-OUTFIL SORTOUT is smaller than the

Summary of Changes ix

SORTIN/SORTINnn LRECL or the internally processed record length when the
SORTIN/SORTINnn LRECL is modified by features.

Sum Processing

• The OVFLO option has been added. The OVFLO option specifies the action to be taken
if a summary field overflows or underflows during SUM processing.

Record Validity Checking

• The OFF4 subparameter has been added to the VLTEST option. OFF4 specifies the
action to be taken if an illogical variable-length record segment is found.

Visual SyncSort for z/OS

SyncSort for z/OS incorporates functionality to integrate Visual SyncSort with SyncSort for
z/OS mainframe processing. Visual SyncSort is a separately available PC product that is
designed to allow programmers and non-programmers alike to easily create and manage
SyncSort applications for the mainframe environment. With Visual SyncSort, you can cre-
ate new sort, merge, and copy applications, or you can import and modify existing ones.
Visual SyncSort saves programmer time while taking full advantage of the processing
power of SyncSort for z/OS.

Messages

• Message WER219I has been modified to include an SMS return code provided by SMS
in the event of DYNALLOC failure.

• Message WER418I has been modified to indicate whether SyncSort has dynamically
chosen to use DataSpace, ZSPACE, or hiperspace during the execution of a sort. See the
"Performance Improvements" section above for a description of ZSPACE.

• Message WER456I indicates that a file describing your application has been created
and written to the VISUALEX DD statement for export to the PC component of Visual
SyncSort.

• Message WER457A indicates that the VISUALEX DD statement for export to the PC
component of Visual SyncSort is either missing or its data set has been incorrectly
defined.

• Message WER458A indicates that the SYSIN data set created by the PC component of
Visual SyncSort cannot be processed by SyncSort due to an insufficient level of
maintenance on the SyncSort library.

• Message WER459A indicates that only qualified SyncSort applications may be
exported to Visual SyncSort for reasons supplied in the message text.

SyncSort for z/OS 1.1 Programmer’s Guidex

• Messages WER461I, WER462I, and WER462A support the run-time options PAD,
TRUNC, and OVFLO.

• Message WER463A indicates that a linear VSAM data set has been specified on input
or output. This type of data set is not supported.

• Message WER464I indicates that an invalid spanned record segment has been found
and the new OFF4 subparameter of VLTEST is in effect.

• Message WER467I indicates that a report of the record layout produced by the DB2
query contained in the SORTDBIN data set has been successfully produced.

• Message WER468A indicates that the DB2 query operation failed and the sort or copy
application will not execute. The message text indicates the condition that caused the
failure or the DB2 query requirement that was violated.

Chapter 1. Introduction 1.1

Chapter 1. Introduction

An Introduction to SyncSort for z/OS

SyncSort for z/OS is a high performance sort/merge/copy utility. It is designed for the
advanced facilities of the zSeries architecture, but also supports the system architectures of
IBM System/390 and compatible computers. It exploits the features of the z/OS operating
system but will also execute under OS/390.

SyncSort is designed to conserve system resources, provide significant performance bene-
fits, and operate efficiently in 31-bit or 64-bit environments.

SyncSort can be initiated through job control language or invoked from a program written
in COBOL, PL/1, or Assembler language. A JCL-initiated sort is more efficient because
SyncSort totally controls the sort execution, including I/O management and main storage
management. Exit routines may be written in COBOL, C, FORTRAN, REXX, or Assembler
language to give a JCL sort additional programming flexibility. Exits may also be in PL/1
when SyncSort is invoked by a PL/1 program.

SyncSort’s Basic Functions

SyncSort has three basic functions:

• Sorting - rearranging data set records to produce a specific sequence.

• Merging - combining up to 100 pre-sequenced data sets into one data set which has the
same sequence.

SyncSort for z/OS 1.1 Programmer’s Guide1.2

• Copying - reproducing a data set without going through the sorting process.

Sorting

A sort rearranges the records in a data set to produce a specific sequence, e.g., chronological
or alphabetic order. SyncSort provides four sorting techniques:

• Disk Sort, the standard sorting technique. Information in the Programmer’s Guide
refers to the Disk Sort unless otherwise indicated.

• MAXSORT, a maximum capacity sorting technique with an enhanced breakpoint/
restart capability. MAXSORT can sort any collection of data - regardless of size - using
a limited amount of disk space. MAXSORT is described in the MAXSORT chapter of
this guide.

• PARASORT, a sorting technique that significantly reduces elapsed time for sorts whose
input is a multi-volume tape data set and/or concatenated tape data sets. PARASORT
improves performance by using multiple tape drives in parallel. PARASORT is
described in the PARASORT chapter of this guide.

• Tape Sort, an alternative sorting technique used when intermediate storage must be
assigned to tape. The Tape Sort is described in the Tape Sort chapter of this guide.

A sort logically consists of four phases that perform the following functions:

• The control statements and JCL information are read and analyzed and the
operational parameters for the sort are established.

• The input data is read into main storage and sorted.

• If necessary, intermediate results are written to temporary storage devices.

• The sorting process completes and the sorted data is written to the specified output
device(s).

Merging

A merge combines up to 100 pre-sequenced data sets into one data set which has the same
sequence. A merge has two phases that perform these functions:

• The control statements and JCL information are read and analyzed and the
operational parameters for the merge are established.

• The files are merged and the merged data is written to the specified output device(s).

Chapter 1. Introduction 1.3

Copying

A copy reproduces a file, completely bypassing the sorting process. A copy has two phases
that perform these functions:

• The control statements and JCL information are read and analyzed and the
operational parameters for the copy are established.

• The copied file is written to the specified output device(s).

SyncSort’s Data Utility and SortWriter Features

SyncSort is designed to improve programmer productivity by reducing the time the pro-
grammer/analyst must spend designing, testing, and debugging applications. With Sync-
Sort’s extensive Data Utility and SortWriter features, data processing applications
previously requiring several steps can be accomplished in a single execution.

SyncSort’s Data Utility features include a multiple output facility, a full range of report
writing capabilities, and record selection and record reformatting facilities. These options
allow the user to design sort/merge/copy applications that can accomplish a host of related
tasks.

Generating Multiple Output

The multiple output facility (OUTFIL) allows multiple output files to be generated with
just one pass of the sort. Each of these files can have unique specifications that determine
which records are to be included, how the records are to be formatted, and which report
capabilities are to be used. Moreover, all these files can be written to the same output
device, or each can be written to a different device.

Creating Reports

SyncSort’s SortWriter feature (OUTFIL) allows the user to design comprehensive reports
easily and efficiently. SortWriter options allow output data to be flexibly formatted with
headers and trailers, which can include data fields. Various kinds of numeric results can be
produced at report, page, and section levels. These include totals, subtotals, minimums,
subminimums, maximums, submaximums, averages, subaverages, record counts, and sub-
counts. Output record fields can be realigned; the records can be padded with blanks, char-
acters, and binary zeros; and numeric data can be converted and edited. Automatic
pagination, page numbering, and dating are also provided.

Selecting Records, Reformatting Records, and Summarizing Fields

Record selection, record reformatting, and summing are other important SyncSort Data
Utility features. Record selection via the INCLUDE/OMIT feature permits certain records
to be included or omitted from an input data set based on comparisons between two data

SyncSort for z/OS 1.1 Programmer’s Guide1.4

fields or between a data field and a constant. Date data formats work with the CENTWIN
option to ensure that century evaluation is applied to INCLUDE/OMIT comparisons involv-
ing 2-digit year data.

Record reformatting after input and/or before output, provided by the INREC/OUTREC
capability, allows the user to delete or repeat portions of records; insert spaces, characters,
binary zeros, date constants and sequence numbers; realign fields; convert numeric data to
its printable format; and convert data to its printable hexadecimal format. The CENTWIN
option and date data formats enable conversion of 2-digit year fields to printable or packed
decimal 4-digit years of the appropriate century. The ability to delete irrelevant fields
before sorting via INREC can provide important performance benefits. Additionally, the
OUTREC facility can be used to convert a variable-length record format input file into a
fixed-length format output file or to convert a fixed-length record format input file into a
variable-length format output file.

The SUM feature allows records with equal sort control fields to be deleted and optionally
summarizes numeric fields on those records. The deleted records can optionally be written
to a separate data set.

Sample SortWriter Report

The report below illustrates the versatility of SyncSort’s Data Utility and SortWriter fea-
tures. First, irrelevant records are omitted from the input file and the input record is refor-
matted to eliminate unnecessary data fields. Then the file is sorted by invoice status and
invoice date. The output record is reformatted for readability and the numeric fields are
converted and edited. The report itself is divided into sections and subsections based on
control field breaks. Headers and trailers identify the data fields, provide record counts and
section and cumulative totals, and include the date and page number.

Chapter 1. Introduction 1.5

Cultural Environment Support

Cultural environment support allows you to choose an alternate set of sort collating rules
based on a specified national language. The alternate collating applies to SORT/MERGE
and INCLUDE/OMIT processing.

SyncSort employs the callable services of IBM’s Language Environment for z/OS to collate
data in a way that conforms to the language and conventions of a selected locale. A locale
defines single and multi-character collating rules for a cultural environment. Numerous
pre-defined locales are available.

For additional information, see “LOCALE” on page 5.20.

DB2 Query Support

SyncSort can directly retrieve data from a DB2 database based upon a user provided query.
An SQL SELECT statement is used to specify the criteria of the request, and the query of
the DB2 database will be in place of SyncSort's SORTIN or E15 processing. SORT or COPY,
but not MERGE, functions can be used with DB2 queries. All SyncSort features that are
performed after E15 processing are available for use with the DB2 query facility.

PAGE: 3
ACCOUNTS RECEIVABLE AGING REPORT FOR 01/30/92 DATE:04/22/92

INVOICE STATUS:O

------------ ------- ---- ----- -------- --------------------- ---------------------
INVOICE BALANCE

COMPANY NAME ADDRESS CO # INV # INV DATE PRODUCT TAX PRODUCT TAX
------------ ------- ---- ----- -------- --------------------- ---------------------
REPUBLIC DATA NYC NY 2681 86013306 1/17/91 1,100.00 90.75 1,100.00 90.75
RICE FEATURES CHI IL 2244 86013298 1/17/91 1,500.00 75.00 1,500.00 75.00
SIDNEY COLLEGE HOU TX 4762 86013297 1/17/91 2,500.00 150.00 2,500.00 150.00
WINIFRED INDUST WAS DC 1177 86013299 1/17/91 650.00 26.00 650.00 26.00
PIZZUTO LOANS STL MO 4633 86022200 2/15/91 550.00 22.00 550.00 22.00
RICE FEATURES CHI IL 2244 86022198 2/15/91 1,500.00 75.00 1,500.00 75.00
SIDNEY COLLEGE HOU TX 4762 86022197 2/15/91 500.00 30.00 500.00 30.00
REGENCY TRUST CO BOS MA 4986 85124011 12/15/91 1,500.00 75.00 1,500.00 75.00
SIDNEY COLLEGE HOU TX 4762 85124016 12/15/91 5,000.00 300.00 5,000.00 300.00

---------- ---------- ---------- ----------
TOTAL NUMBER OF INVOICES: 11 MONTHLY TOTALS: $22,850.00 $1,484.50 $22,850.00 $1,484.50

---------- ---------- ---------- ----------

BALTIC AVENUE CORP CLE OH 0636 86022207 2/15/91 650.00 29.25 650.00 29.25
FASTEROOT EQUIP BAL MD 4980 86022205 2/15/91 1,700.00 76.50 1,700.00 76.50
FEDERAL FABRICS SHV LA 5143 86022204 2/15/91 1,750.00 70.00 1,750.00 70.00
PATIO PRODUCTS MRY CA 3029 86022203 2/15/91 850.00 51.00 850.00 51.00
TURENIUS FOR. EXCH. DTT MI 8325 86022201 2/15/91 1,600.00 64.00 1,600.00 64.00
WINES ASSOCIATES SMF CA 1794 86022209 2/15/91 750.00 45.00 750.00 45.00
DESIGN TECHNOLOGIES LAX CA 2520 85124017 12/15/91 360.00 21.60 360.00 21.60
POLL DATA CORP LAX CA 0846 85124019 12/15/91 600.00 36.00 600.00 36.00

---------- ---------- ---------- ----------
TOTAL NUMBER OF INVOICES: 8 MONTHLY TOTALS: $8,260.00 $393.35 $8,260.00 $393.35

---------- ---------- ---------- ----------

Figure 1. Sample SortWriter Report

SyncSort for z/OS 1.1 Programmer’s Guide1.6

This feature improves performance over DB2’s DSNTIAUL program by allowing DB2 data
to be passed directly into a SORT or COPY operation, without the use of setup steps or the
need for user-written E15 exits. Refer to “Chapter 11. SyncSort DB2 Query Support” for
more information.

SyncSort’s Operational Features

SyncSort will take advantage of data space and hiperspace to further improve performance.
A portion of the address space may be allocated for SyncSort's ZSPACE technique. This
technique was created as a replacement for hiperspace. It allows native use of the available
central storage resources. This technique eliminates the additional overhead produced
when hiperspace is simulated by the z/OS operating system in a z/Architecture environ-
ment. It provides superior CPU performance and reduced system overhead compared to a
conventional hiperspace application.

SyncSort can also interact with exits and invoking programs such as VS COBOL II,
COBOL/370, C370 V2R1 with V2R2 C370 library, SAA AD/Cycle C370 Release 2, and IBM
C/C++ V3R2 programs.

SyncSort’s PARMEXIT feature permits the dynamic modification of PARM values based on
the conditions at execution time. This feature facilitates the passing of additional parame-
ters to specific jobs.

Other operational features include resident, reentrant code, interactive and streamlined
installation and maintenance procedures; automatic release or secondary allocation of
direct access intermediate storage (SORTWK) and output (SORTOUT) space without JCL
specification; dynamic allocation of SORTWK space under z/OS (DYNALLOC); and auto-
matic incore sorting.

SyncSort’s Value-Added Products

Value-added products available from Syncsort can significantly improve sorting efficiency:

Visual SyncSort for z/OS is a PC-based product designed to allow programmers and non-
programmers alike to easily create and manage SyncSort for z/OS applications in the main-
frame environment. With Visual SyncSort, you can create new sort, merge, and copy appli-
cations, or you can import and modify existing ones. Visual SyncSort saves programmer
time while taking full advantage of the mainframe processing power of SyncSort for z/OS.

SyncSort/COBOL Advantage is a fully automatic product which improves the perfor-
mance of COBOL programs that invoke SyncSort. The COBOL Advantage improves
elapsed time by 25 to 40% by enhancing processing of sequential files, including INPUT
and OUTPUT procedure files.

PROC SYNCSORT - An Accelerator for SAS® Sorting is a high performance, transpar-
ent replacement for the SAS procedure PROC SORT. Compared to PROC SORT, PROC

Chapter 1. Introduction 1.7

SYNCSORT reduces the resources required for sorting within SAS applications and cuts
sort elapsed time.

PipeSort enables SyncSort to run multiple sorts simultaneously of the same input data.
For large input files, PipeSort significantly reduces total elapsed time compared to running
separate sort jobs.

For more detailed information regarding each of these products, see “Chapter 15. Value-
Added Products”.

Structure of the Programmer’s Guide

The SyncSort for z/OS Programmer’s Guide is a reference manual designed for applica-
tions programmers who are using SyncSort to sort, merge, or copy sequential data sets.
This manual is self-contained and assumes only a basic working knowledge of the operat-
ing system and its job control language. It should not be necessary to refer to any other
manual to produce an efficient sort.

SyncSort Control Statements describes how to specify and use the SORT/MERGE,
INCLUDE/OMIT, INREC/OUTREC, OUTFIL, RECORD, MODS, SUM, ALTSEQ, and END
statements. The discussion of a particular control statement includes these topics: the
statement’s syntax format, the versatility provided by the various parameters (many of
which are unique to SyncSort), and the interaction between the control statement and
other statements.

How to Use SyncSort’s Data Utility Features explains and illustrates the Data Utility
and SortWriter features through a series of sample applications. Each application is self-
contained and provides instructions for specifying both the required JCL and the appropri-
ate control statements.

JCL and Sample JCL/Control Statement Streams analyzes SyncSort’s job control
requirements and describes the SyncSort DD statements, each of which is illustrated with
an example. JCL and control statement streams for MAXSORT and PARASORT are also
described. Numerous examples are provided.

PARM Options describes the operational parameters of SyncSort and identifies the deliv-
ered defaults. This chapter explains how to specify such features as dynamic allocation of
SORTWK space under z/OS, automatic secondary allocation and release of SORTWK space,
the ability to skip a certain number of records or stop after sorting a certain number of
records, and message routing.

Invoking SyncSort from a Program describes SyncSort invocation through assembler
programs using 24-bit and 31-bit parameter lists. Numerous examples are provided.

The Coding and Use of Exit Programs indicates at which points during sort processing
user-written exit routines can be executed. Each exit point is fully documented together

SyncSort for z/OS 1.1 Programmer’s Guide1.8

with the appropriate tasks. Examples of COBOL E15 and E35 exit routines for fixed and
variable-length records are included.

The Flow of the Sort provides a skeletal view of the flow of control in the standard Disk
Sort (including the incore sort), merge and copy. This chapter indicates the order in which
the control statements and exit routines are processed, information which is particularly
useful at the design stage of an application.

MAXSORT explains when MAXSORT should be used, describes its JCL requirements,
control statements and PARM options, and provide examples. The chapter also examines
MAXSORT’s restart capability and its operator interface.

PARASORT explains the elapsed time advantages of the technique, the type of applica-
tions where it can be applied, and the JCL requirements.

SyncSort DB2 Query Support explains how SyncSort can improve performance by allow-
ing DB2 data to be passed directly into a SORT or COPY operation without the use of setup
steps or user-written E15 exits.

Tape Sort describes the SyncSort DD statements needed for a tape sort and how to initiate
a tape sort from JCL or a program.

Performance Considerations describes how to design the most efficient application. It
contrasts the merits of Disk Sort, PARASORT, MAXSORT and Tape Sort, JCL and invoked
sorts, the incore sort, and standard SORTWK techniques. Formulas for calculating main
storage and SORTWK requirements are provided. Other topics include the efficient use of
control statements and PARMs, tuning main storage and SORTWK allocations and the use
of the Checkpoint-Restart feature.

The HISTOGRM Utility Program describes how to use the HISTOGRM program to
report on the composition of variable-length files. This program indicates the average
record length, byte total, record total, block count and record count. Job control require-
ments, control statements and messages are outlined. Sample job streams illustrate how to
run HISTOGRM as a separate job and as an E15 exit during a variable-length sort.

Value-Added Products describes Visual SyncSort for z/OS, SyncSort/COBOL Advantage,
PROC SYNCSORT-An Accelerator for SAS® Sorting, and PipeSort. This chapter also pro-
vides detailed information regarding their functions and special features.

Messages documents all of the WERnnnx messages generated by the SyncSort program.
This chapter includes sections describing "Troubleshooting with WER999A UNSUCCESS-
FUL SORT" and "What to Do before Calling SyncSort for z/OS Product Services."

Related Reading

The following guides supplement the information provided in the Programmer’s Guide.

Chapter 1. Introduction 1.9

Installation Guide

This manual explains how to install and maintain SyncSort and defines the default
options.

Reference Guide.

This handbook, intended for quick reference, provides the syntax for SyncSort control
statements and briefly describes each parameter.

Exploiting SyncSort: SortWriter Data Utilities Guide.

This two-part user’s guide demonstrates how SyncSort’s versatile Data Utility features pro-
vide an efficient, one-step alternative to writing, testing and debugging programs. Five
comprehensive sample applications illustrate how the control statements work together to
produce formatted reports.

Exploiting SyncSort: MAXSORT.

This user’s guide explains how to use the special MAXSORT feature of SyncSort to sort
very large amounts of data with only a limited amount of disk space. MAXSORT’s unique
restart capability is described and sample job control streams and tuning information are
included.

Online Message Help

All SyncSort messages and their explanations can be accessed online through an ISPF/PDF
dialog. Contact your system administrator for information about the operation of the mes-
sage help facility.

SyncSort for z/OS 1.1 Programmer’s Guide1.10

Chapter 2. SyncSort Control Statements 2.1

Chapter 2. SyncSort Control Statements

The control statements tell SyncSort for z/OS how to process files. There are 12 control
statements:

Control Statement Function

ALTSEQ Specifies an alternate collating sequence for control fields with an
AQ format.

END Signals the end of control statements.

INCLUDE Specifies the criteria which determine whether or not records are
included in an application.

INREC Reformats the input record before sort/merge processing.

MERGE Defines a merge or copy application and specifies merge control
fields.

MODS Specifies user exit(s).

OMIT Specifies the criteria which determine whether or not records are
omitted from an application.

OUTFIL Describes the output file(s) and specifies SortWriter and processing
options.

OUTREC Reformats the output record after sort/merge processing.

SyncSort for z/OS 1.1 Programmer’s Guide2.2

RECORD Provides record information at various processing stages.

SORT Defines a sort or copy application and specifies sort control fields.

SUM Deletes records with equal control fields and summarizes numeric
fields on those records.

Control Statement Summary Chart

The following table summarizes the parameters of each control statement and indicates
default values.

Control
Statement
Name

Parameters Delivered Default

ALTSEQ Standard EBCDIC series

END

INCLUDE Sort/Merge all records

INREC Input records unchanged

MERGE

Century window starts
with current year

No checkpoint

NOEQUALS

Copy all records

 Copy all records

Table 1. (Page 1 of 4) Control Statement Summary Chart

CODE=(ccpp1 [,ccpp2]...)

COND=
ALL
(comparisons)
NONE 

 
 

 [,FORMAT=f]

FIELDS=(field1[,field2]...)

FIELDS=(p1,l1,f1,o1[,p2,l2,f2,o2]...)
FIELDS=(p1,l1,f1,o1[,p2,l2,f2,o2]...),FORMAT=f
FIELDS=COPY 

 
 
 
 

,CENTWIN= s
f 

 
 

,CKPT
,CHKPT

,EQUALS
,NOEQUALS

,FILES=n[]

,SKIPREC=n[]

,STOPAFT=n[]

Chapter 2. SyncSort Control Statements 2.3

MODS No exits

OMIT Sort/Merge all records

OUTFIL One output file

Output defined by FILES

No report heading

No page headings

Output all records

60 (if report-writing
parameters)

 Detailed report

[,REMOVECC] Produce a report with
ANSI control characters

Return code of zero

Start processing with
first record

Control
Statement
Name

Parameters Delivered Default

Table 1. (Page 2 of 4) Control Statement Summary Chart

exit-name1=(r1,b1 [,d1]

,N
,S
,C
,E
,X
,T 

 
 
 
 
 
 

),...,exit-name16=(...)

COND=
ALL
(comparisons)
NONE 

 
 

 [,FORMAT=f]

[FILES=(fileid1 [,fileid2]...)]

,FNAMES=
ddname
(ddname1 [,ddname2]...) 

 
 

[,HEADER1=(field1 [,field2]...)]

[,HEADER2=(field1 [,field2]...)]

,INCLUDE
,OMIT 

 
  ALL

(comparisons)
NONE 

 
 

=

,LINES=
n
ANSI
(ANSI,n) 

 
 

[,NODETAIL]

,NULLOFL=
RC0
RC4
RC16 

 
 
 
 

[,STARTREC=n]

SyncSort for z/OS 1.1 Programmer’s Guide2.4

OUTFIL End processing with last
record

Omitted records not
saved for output

Record unchanged

Record format
unchanged

Missing fields will be
filled with blanks (x'40')
when CONVERT option
in use

[,FTOV] Output record format the
same as input

[,VLTRIM=b] Retain all trailing bytes

No split output

No sections

No report trailer

No page trailers

OUTREC Record format
unchanged

Output record format the
same as input

Control
Statement
Name

Parameters Delivered Default

Table 1. (Page 3 of 4) Control Statement Summary Chart

[,ENDREC=n]

[,SAVE]

[OUTREC=(field1 [,field2]...)]

[,CONVERT]

[,VLFILL=f]

[,SPLIT]

[,SECTIONS=(field1 [,field2]...)]

[,TRAILER1=(field1 [,field2]...)]

[,TRAILER2=(field1 [,field2]...)]

[,FIELDS=(field1 [,field2]...)]

[,CONVERT]

Chapter 2. SyncSort Control Statements 2.5

Disk Sort, MAXSORT, PARASORT, and Tape Sort Control Statement
Requirements

The following table summarizes control statement usage for Disk Sort, MAXSORT,
PARASORT, and Tape Sort.

RECORD

SORT

SORT Century window starts
at current year

No checkpoint

No dynamic allocation

NOEQUALS

Sort or copy all records

Sort or copy all records

SUM No summary of fields; no
reduction of equal-keyed
records

Control
Statement
Name

Parameters Delivered Default

Table 1. (Page 4 of 4) Control Statement Summary Chart

[TYPE=F|V]

[,LENGTH=(l1,...,l7)]

FIELDS=(p1,l1,o1 [,p2,l2,o2]...)
FIELDS=(p1,l1,o1 [,p2,l2,o2]...),FORMAT=f
FIELDS=COPY 

 
 
 
 

,CENTWIN= s
f 

 
 

,CKPT
,CHKPT

[,DYNALLOC=d/(d,n)/OFF]

,EQUALS
,NOEQUALS

[,FILSZ=n]
[,SIZE=n]

,SKIPREC=n[]

,STOPAFT=n[]

FIELDS=(p1,l1,f1 [,p2,l2,f2]...)
FIELDS=(p1,l1 [,p2,l2]...),FORMAT=f
FIELDS=NONE 

 
 
 
 

[,XSUM]

SyncSort for z/OS 1.1 Programmer’s Guide2.6

Data Utility Processing Sequence

The following figure illustrates the sequence in which SyncSort control statements and
parameters are processed. It includes those control statements and parameters that modify
the input file (e.g., INCLUDE/OMIT), reposition record fields (e.g., INREC, OUTREC), and
create reports (e.g., OUTFIL).

When specifying record fields on any of these SyncSort control statements or parameters,
refer to the record as it appears at that stage of SyncSort processing. For example, when
specifying SORT fields be sure to take into account any repositioning of fields that may be
due to INREC processing.

Control Statement Disk Sort MAXSORT
and PARASORT Tape Sort

ALTSEQ Optional Optional Not supported

END Required if exits
included in input stream

Required for MAXSORT
if exits included in input
stream; optional for
PARASORT

Required if exits included
in input stream

INCLUDE/
OMIT

Optional Optional Not supported

INREC Optional Optional Not supported

MERGE Required for merge or
copy

Not applicable Required for merge; copy
not supported

MODS Required for exits Required for exits Required for exits; not
supported if program-
invoked

OUTFIL Required for multiple
output or reports

Not supported for
MAXSORT;
optional for PARASORT

Not supported

OUTREC Optional Optional Not supported

RECORD Conditionally required Conditionally required Conditionally required

SORT Required for sort or copy Required for sort; copy
not supported

Required for sort; copy
not supported

SUM Optional; not applicable
to copy

Optional Not supported

Table 2. Control Statement Usage for Disk Sort, MAXSORT, PARASORT, and Tape Sort

Chapter 2. SyncSort Control Statements 2.7

Figure 2. Data Utility Processing Sequence

Input
File

Record Selection
INCLUDE/OMIT
Control Statement

Field Selection
INREC

Control Statement

Record Arrangement
SORT

Control Statement

Combining/Eliminating
Duplicate Records

 SUM
Control Statement

Printable and Easy to Read
Output and Variable to Fixed

Length Format Conversion
OUTREC

Control Statement

Output
File n

Multiple Output and
Report Formatting

OUTFIL
 Control Statement(s)

Output File
1

Record Selection for
Output File 1

STARTREC, ENDREC,
INCLUDE/OMIT, SAVE

Parameters

Record Selection for
Output File n

STARTREC, ENDREC,
INCLUDE/OMIT, SAVE

Parameters

Report Formatting
for

Output File 1

Report Formatting
for

Output File n

Printable & Easy to Read
Output for File 1 & Variable to

Fixed Length Format Conversion
OUTREC, CONVERT

Parameters
 or Fixed to Variable Format

Conversion
FTOV

Parameter

Printable & Easy to Read
Output for File n & Variable to

Fixed Length Format Conversion
OUTREC, CONVERT

Parameters
 or Fixed to Variable Format

Conversion
FTOV

Parameter

SyncSort for z/OS 1.1 Programmer’s Guide2.8

Control Statement Examples

Simple examples illustrating the syntax of each of the SyncSort for z/OS control state-
ments are included in this chapter. More complex applications are presented in “Chapter
3. How to Use SyncSort’s Data Utility Features”. These applications demonstrate how the
INCLUDE/OMIT, INREC, OUTREC, SUM, and OUTFIL control statements can be used
to accomplish a variety of tasks, such as selecting input records, selecting input fields,
combining records, reformatting output records, writing reports, and creating multiple
output.

Rules for Control Statements

The following rules apply to SyncSort for z/OS control statements.

Specifying Control Statements

• Control statements can be in any order, except for the END control statement which, if
specified, must be last.

• Each control statement, except for OUTFIL, can be specified only once for a particular
application.

• The control statement can begin in column 2 through column 69. If labels are used,
the control statement must be separated from the label by at least one blank.

• The control statement name must be the first field (or the first field after a label) of
the first card image of the control statement. It cannot be continued on a continuation
card image.

• The last operand of each control statement must be followed by at least one blank.

Specifying Parameters

• Parameters can take three forms:

• Parameter

• Parameter=value
Parameter=(value)
Parameter(value)

• Parameter=(value1,value2,...,valuen)
Parameter(value1,value2,...,valuen)

Note that multiple values must be enclosed in parentheses.

Chapter 2. SyncSort Control Statements 2.9

• Parameters can be in any order, but if parameters are present, the first parameter must
begin on the first card image of a control statement.

• Parameters must be separated from each other by commas.

• The parameter(s) must be preceded and followed by at least one blank. A blank
separates the parameter(s) from the control statement name and also indicates the end
of the control statement.

• If the parameter(s) end in column 71, column 72 must contain a blank to signal the end
of the control statement.

• With the exception of literal strings and constants, a parameter value cannot exceed 28
alphanumeric characters. Parameter values cannot include commas, equal signs, or
parentheses.

• With the exception of literal strings specified as parameter values, blanks are not
permitted within parameters.

Specifying Field Positions, Lengths, and Formats

• Control statements reference fields by position p and length l.

• The first byte of every fixed-length record is position 1, the second byte position 2, and
so on.

• Bytes 1 through 4 of variable-length records are reserved for the Record Descriptor
Word (RDW). For these records, the first byte of the data portion is position 5.

• Some control statements support bit-level processing. This means a binary control field
can begin and end on any bit of any byte. The 8 bits in each byte are numbered 0
through 7. For example, a position value of 7.4 designates a field beginning on the fifth
bit of the seventh byte. A length value of 7.4 designates a field 7 bytes, 4 bits long.

• Make sure the position value takes into account any record reformatting and data
conversion that may have resulted from SyncSort data utility processing or exit
programs. Refer to the Data Utility Processing Sequence figure at the beginning of this
chapter and to “Chapter 8. The Flow of the Sort”.

• When proper processing depends on data format, the format of the field must be
specified.

• The format of the field must be appropriate to the task. For example, only numeric
fields can be SUMmed.

• When all the fields have the same format, the format value can be specified just once
through the FORMAT=f subparameter. The FORMAT=f subparameter cannot be used
when the INCLUDE/OMIT parameter is specified on the OUTFIL control statement.

SyncSort for z/OS 1.1 Programmer’s Guide2.10

Specifying Comments

• Identify a comment card image by placing an asterisk (*) in column 1. Comments can
extend through column 80.

• To add a comment to a control statement card image, leave one or more blanks after the
last parameter or comma on the image and follow with the comment, which can extend
through column 71.

• Continue a comment that follows a control statement by coding an asterisk (*) in
column 1 of the next card image or, if the control statement had ended, by placing a
continuation character in column 72.

• Comment lines can be inserted between a control statement and its continuation by
coding an asterisk (*) in column one.

Specifying Continuation Card Images

Control statements cannot extend beyond column 71, but they can be continued. To con-
tinue a control statement:

• Break after a parameter-comma or parameter-colon combination before column 72.
Begin the continuation of the next card image anywhere between columns 2 and 71 if
there is no label on the continuation card. If there is a label, begin the continuation
card in any column from 3-71. No continuation character is required.

--or--

• When the control statement extends through column 71 and cannot be broken at a
parameter-comma or parameter-colon combination:

• If the control statement does not contain a literal string that would extend beyond
column 71, place a continuation character in column 72 and continue the control
statement on the next card image anywhere between columns 2 and 71.

• If the control statement does contain a literal string that would extend beyond
column 71, place a continuation character in column 72 and begin the continuation
of the literal string in column 16 of the next card image.

The following examples illustrate how card images can be continued.

COL. 72

↓
SORT FIELDS=(1,10,A,20,5,A,45,7,A),FORMAT=CH,STOPAFT=100,

EQUALS

Figure 3. Continuing a Control Statement Without Specifying a Continuation Character

Chapter 2. SyncSort Control Statements 2.11

In the above example, no continuation character is required. The control statement is inter-
rupted after a parameter-comma combination before column 72.

In this example, a continuation character is necessary because the literal string in the
HEADER2 specification would extend beyond column 71. The 'X' in column 72 is the contin-
uation character. The literal string is continued in column 16 of the next card image.

Specifying Labels

SyncSort for z/OS supports labels. If labels are used, the following rules apply:

• Labels are permitted on all SYSIN control statements, including continuation card
images, but not on the control statements passed by an invoking program or the
$ORTPARM DD statement.

• Labels must begin in column 1 with an alphabetic character.

• Labels can be any length, provided the other rules which apply to control statements
are followed.

• At least one blank must separate the label from the control statement name or
parameter that follows it.

Notational Conventions Used in the SyncSort for z/OS Programmer’s Guide

• Braces indicate that a choice must be made from the alternatives listed.

• Brackets indicate an optional item. Two or more items in brackets are mutually
exclusive options; only one can be chosen for a particular application.

• Defaults are underlined.

• Upper-case letters, numbers, commas, equal signs, and parentheses must be entered
exactly as indicated. Lower-case letters represent variables which must be replaced by
actual values.

• Subscripts show position in a series, and three dots indicate an ellipsis.

For example, a1,a2,...,a5 is equivalent to a1,a2,a3,a4,a5 and represents five a items (vari-
ables which will be replaced with actual values).

COL. 16 COL.72

↓ ↓
OUTFIL OUTREC=(1:10,8,30:40,10),HEADER2=(1:'CUSTOMER NUMBX

ER',30:'ITEM NUMBER')

Figure 4. Continuing a Control Statement with a Continuation Character

SyncSort for z/OS 1.1 Programmer’s Guide2.12

• Examples that are to be entered exactly as shown are presented in the Courier
typeface, for instance:

ALTSEQ CODE=(F0B7,F1B8,F2B9,F3BA,F4BB,F5BC,F6BD,F7BE,F8BF,F9C0)

Figure 5. Examples

Chapter 2. SyncSort Control Statements 2.13

ALTSEQ

ALTSEQ Control Statement

The ALTSEQ control statement constructs an alternate collating sequence for all control
fields for which the format code AQ has been specified on the SORT/MERGE control state-
ment, and/or an INCLUDE/OMIT control statement, and/or an INCLUDE/OMIT parame-
ter of the OUTFIL control statement. If an alternate collating sequence has been provided
by installation default, AQ fields collate against this sequence, modified by the ALTSEQ
control statement. If a default alternate sequence has not been provided, AQ fields collate
against the standard EBCDIC sequence, modified by the ALTSEQ control statement. AQ
can be specified for one or more control fields so that those control fields all use the same
alternate collating sequence.

The ALTSEQ control statement also constructs an alternate collating sequence for all con-
trol fields processed by the TRAN parameter of the INREC and OUTREC control state-
ments, as well as the TRAN subparameter of the OUTREC parameter on the OUTFIL
control statement.

The ALTSEQ control statement cannot be specified for a Tape Sort.

ALTSEQ Control Statement Format

The format of the ALTSEQ control statement is illustrated below:

CODE Parameter (Required)

The CODE parameter specifies how the characters of the current collating sequence are to
be reordered to create the alternate collating sequence.

The CODE parameter can contain from 1 to 256 entries, each consisting of four hexadeci-
mal digits. These entries must be separated by commas and enclosed in parentheses.

Each CODE entry consists of two parts:

cc The cc value represents the character that is to be repositioned in the alternate
sequence.

pp The pp value indicates where the character represented by the cc value is to be
repositioned in the alternate sequence.

The character represented by the cc value does not replace the character represented by the
pp value. If both characters occur as sort control fields, they will be considered equal in the
collating process.

ALTSEQ CODE=(ccpp1 [,ccpp2]...)

Figure 6. ALTSEQ Control Statement Format

SyncSort for z/OS 1.1 Programmer’s Guide2.14

ALTSEQ

Each character (cc entry) can be moved only one time. However, more than one cc entry can
be mapped to the same pp value.

Sample ALTSEQ Control Statements

This sample ALTSEQ control statement shows that the numbers 0 through 9 are to collate
before the uppercase alphabet.

This sample ALTSEQ control statement specifies that the number 0 is to collate as equal to
a blank (X'40').

ALTSEQ CODE=(F0B7,F1B8,F2B9,F3BA,F4BB,F5BC,F6BD,F7BE,F8BF,F9C0)

Figure 7. Sample ALTSEQ Control Statement

ALTSEQ CODE=(F040)

Figure 8. Sample ALTSEQ Control Statement

Chapter 2. SyncSort Control Statements 2.15

END

END Control Statement

If present, the END control statement must be the last control statement. The END control
statement is required only when the control statements are not followed by /* or by a job
control statement (i.e., when including exits in the input stream).

The END control statement has no parameters, but can contain comments if the comments
are preceded by at least one blank.

SyncSort for z/OS 1.1 Programmer’s Guide2.16

INCLUDE/OMIT

INCLUDE/OMIT Control Statement

The INCLUDE/OMIT control statement selects records from an input file based on compar-
isons testing the contents of one or more fields within the record. A field can be compared to
a constant or to another field within the record. Furthermore, a binary field may enter into
comparisons that involve testing the individual bits in the field. Only one INCLUDE/OMIT
control statement can be specified for an application, either as an INCLUDE or as an OMIT
control statement.

Locale-Based Comparison Processing

SyncSort supports alternative sets of collating rules based on a specified national language.
The alternative collating applies to INCLUDE/OMIT (and OUTFIL INCLUDE/OMIT) com-
parison processing as well as to SORT/MERGE processing. A locale defines single and
multi-character collating rules for a cultural environment.

Locale-based INCLUDE/OMIT processing applies only to character (CH) fields and charac-
ter or hexadecimal constants compared to character fields. When LOCALE is active, a CH
to BI (or BI to CH) comparison is not allowed. The illegal comparison will cause SyncSort to
terminate with an error message.

For more information on locale-based processing, see “LOCALE” on page 5.20.

INCLUDE/OMIT Control Statement Format

The format of the INCLUDE/OMIT control statement follows.

Chapter 2. SyncSort Control Statements 2.17

INCLUDE/OMIT

COND Parameter (Required)

The COND parameter controls how records are included or omitted from an application.
There are three forms of the COND parameter:

COND=ALL All of the input records are to be included. This is the default.

c represents a comparison. Each comparison has this format:

Figure 9. INCLUDE/OMIT Control Statement Format

INCLUDE
OMIT 

 
 

 COND=

ALL
NONE

(c1

,AND,
,&,
,OR,
,|, 

 
 
 
 

 c2...) [,FORMAT=f]

 
 
 
 
 
 
 
 
 

p1,l1,

[,f1]

,EQ,
,NE,
,GT,
,GE,
,LT,
,LE, 

 
 
 
 
 
 

p2,l2[,f2]
constant 

 
 

,BI

,BO,
,ALL, 

 
 

,BM,
,SOME, 

 
 

,BZ,
,NONE, 

 
 

,BNO,
,NOTALL, 

 
 

,BNM,
,NOTSOME, 

 
 

,BNZ,
,NOTNONE, 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 bit mask

,EQ,
,NE, 

 
 

 bit pattern
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,SS ,EQ,
,NE, 

 
 

 constant

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide2.18

INCLUDE/OMIT

COND=NONE None of the input records are to be included.

COND=comparison(s) Specifies one or more comparisons that determine which
records are to be included or omitted. Two types of comparisons
are possible:

• A standard comparison, between two record fields or
between a record field and a constant. A binary input field
also allows comparison by bit mask or bit pattern.

• A substring comparison, which allows the search for a
constant within a field or for a field value within a constant.
Use SS as the format to indicate a substring comparison.

The following several pages describe standard comparisons. For information on substring
comparisons, see “Full-Date Comparisons” on page 2.30.

Each field specified in the COND parameter is identified by its position (p), length (l) and
format (f). When processing variable-length records, by default all fields specified must be
contained within the record. If an application is expected to reference fields not completely
contained within the record, refer to “VLTESTI” on page 5.33. VLTESTI provides for pro-
cessing of records that do not contain all fields.

p The position value indicates the first byte of the field relative to the beginning
of the input record after E15 or E32 processing, if specified, has completed. The
field must begin on a byte boundary. (Keep in mind that if a variable-length file
is being referenced, the first 4 bytes must be reserved for the Record Descriptor
Word.)

l The length value indicates the length of the field. The length must be an inte-
ger number of bytes. Refer to the table below for permissible field lengths by
format.

f The format value indicates the format of the field. The permissible formats for
standard comparisons are indicated in the table below. If all data fields have
the same format, the FORMAT=f subparameter can be specified instead of the
individual f values. If both are specified, the individual f values will be used.
(Note that the f values must be specified for each compare field).

Chapter 2. SyncSort Control Statements 2.19

INCLUDE/OMIT

For definitions of the field format, see “Valid Formats for Merge Control Fields” on page
2.38.

The constant to which a field can be compared may be one of the following types:

Data Format Acceptable Field
Length (Bytes)

AC 1 to 256

AQ 1 to 256

ASL 2 to 256

AST 2 to 256

BI 1 to 256

CH 1 to 256

CLO / OL 1 to 256

CSF / FS 1 to 16

CSL / LS 2 to 256

CST / TS 2 to 256

CTO / OT 1 to 256

FI 1 to 256

PD 1 to 256

PD0 2-8

Y2B 1

Y2C / Y2Z 2

Y2D 1

Y2P 2

Y2S 2

Y2T, Y2U, Y2V, Y2W, Y2X, Y2Y 2-6

ZD 1 to 256

Table 3. Valid Formats and Lengths of Include/Omit Fields

SyncSort for z/OS 1.1 Programmer’s Guide2.20

INCLUDE/OMIT
decimal A decimal constant can be any length. It should not be enclosed in sin-

gle quotes. It may or may not include a leading + or - sign. For example,
100 is a valid decimal constant. The following numeric data compare as
equal: +0, -0, 0. The &DATExP date parameter represents the current
date as a decimal number (+n) to which a field can be compared. See
page 2.27 for more details.

hexadecimal A hexadecimal constant should be preceded by an X and specified in
pairs of valid hexadecimal values which must be enclosed in single
quotes: X'hh...hh'. For example, X'ACBF05' is a valid hexadecimal con-
stant. The sign of the field is implicit in the representation.

character A character constant should be preceded by a C and enclosed in single
quotes: C'literal'. For example, C'SALES' is a valid character constant.

The &DATEx and &DATEx(c) date parameters represent the current
date as a character string (C'string') to which a field can be compared.
See page 2.27 for more details.

You can also include or omit records based on whether their dates fall
within a specified time frame before or after the current date. See page
2.29 for more details.

To include an apostrophe in a character constant, specify it as two apos-
trophes; for example, C'D''AGOSTINO'. If a character constant must be
continued on a second card image, place a continuation character in col-
umn 72 and then begin the continuation of the constant in column 16 of
the next card image.

There are two methods in which the bit level characteristics of a binary input field can be
used to include or omit records. One is to compare the binary field to a bit mask; the other
is to compare the binary field to a bit pattern.

bit mask A bit mask is a string of bits, specified in terms of either hexadecimal or
binary digits. The bit mask indicates which bits in the input field are to
be tested. Each bit in the mask whose value is 1 (ON) is tested against
the corresponding bit in the input field. If the value of a mask bit is 0
(OFF), the corresponding bit in the input field is ignored.

The hexadecimal format of a bit mask is X'hh...hh,' where each 'hh' rep-
resents any pair of hexadecimal digits.

The binary format of a bit mask is B'bbbbbbbb...bbbbbbbb', where each
'bbbbbbbb' represents 8 bits or a byte. Each bit is 1 or 0. The number of
bits in a binary bit mask must be a multiple of 8. The maximum length
of a binary bit mask is 256 bytes (2048 bits).

A bit mask is truncated or padded on the right to the byte length of the
binary field. The pad character is X'00' or B'00000000'.

Chapter 2. SyncSort Control Statements 2.21

INCLUDE/OMIT

bit pattern The binary format of a bit pattern is B'bbbbbbbb...bbbbbbbb', where
each 'bbbbbbbb' represents 8 bits or a byte. Each bit is 1, 0, or period (.).
If the value of a bit in the bit pattern is 1 or 0, the corresponding bit in
the binary input field is compared to 1 or 0. If . (period) occurs in a bit
position in the bit pattern, the corresponding bit in the input field is
ignored.

The number of bit positions in a bit pattern must be a multiple of 8. The
maximum length of a bit pattern is 256 bytes (2048 bits).

A bit pattern is truncated or padded rightward to the byte length of the
binary input field. The pad character is B'00000000'.

The comparison operators represent the following conditions:

EQ Equal to

NE Not equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

BO (or ALL) All mask bits are 1s (ON) in the input field

BM (SOME) Some but not all mask bits are 1s (ON) in the input field

BZ (NONE) None of the mask bits is 1 (ON) in the input field

BNO (NOTALL) Some or no mask bits are 1s (ON) in the input field

BNM (NOTSOME) All or no mask bits are 1s (ON) in the input field

BNZ (NOTNONE) All or some mask bits are 1s (ON) in the input field

Rules for Multiple Comparisons

Multiple comparisons are separated by ANDs or ORs to form a logical expression. (Alterna-
tively, & and | may be used for AND and OR). When evaluating an expression, each compar-
ison cn is evaluated first. Then, AND conditions are evaluated before OR conditions.

Parentheses may be used around groups of comparisons to change the default evaluation
order. Any number of nested parentheses may be used. Conditions within parentheses are
evaluated first, from innermost to outermost parentheses.

SyncSort for z/OS 1.1 Programmer’s Guide2.22

INCLUDE/OMIT

For example, if you wanted to select all records from your Paris office for 1995 and 1996,
you might incorrectly specify:

INCLUDE COND=(1,4,CH,EQ,C'1995',OR,1,4,CH,EQ,C'1996',
AND,5,5,CH,EQ,C'PARIS')

The AND operator in the above statement would be evaluated first, producing unexpected
output. The correct statement would be:

INCLUDE COND=((1,4,CH,EQ,C'1995',OR,1,4,CH,EQ,C'1996'),
AND,5,5,CH,EQ,C'PARIS')

The added parentheses force the OR operator to be evaluated first, thus producing the
expected output.

Specifying Field-to-Field Standard Comparisons for Non-date Fields

The format of a data field determines whether or not it can be compared to another data
field. The figure below illustrates which field-to-field comparisons are permitted.

Chapter 2. SyncSort Control Statements 2.23

INCLUDE/OMIT

Padding of Compared Fields

When two fields are compared, the shorter field is padded to the length of the longer field.
Padding takes place as follows:

• The padding characters are blanks when the shorter field is in character format;
otherwise, they are zeros of the shorter field’s own format.

• Padding is on the right if the shorter field is in BI, CH or PD0 formats. Padding is on
the left for all other formats.

 AC AQ ASL AST BI CH CLO
OL

CSF
FS

CSL
LS

CST
TS

CTO
OT FI PD PD0 ZD

 AC X

 AQ X

 ASL X X

 AST X X

 BI X X

 CH X X

CLO
OL

 X X

 CSF
FS

 X X X

 CSL
LS

 X X X

 CST
TS

 X X X

CTO
OT

 X X

 FI X

 PD X X

 PD0 X

 ZD X X

Table 4. Permissible Field-to-Field Comparisons for Non-year Data Formats

SyncSort for z/OS 1.1 Programmer’s Guide2.24

INCLUDE/OMIT

Specifying Field-to-Field Standard Comparisons for Year Fields

The year data formats that can be used with INCLUDE/OMIT are Y2B, Y2C, Y2D, Y2P,
Y2S and Y2Z. Year data formats can only be compared to other year formats; they cannot
be compared to formats in the table above.

The full date formats that can be used with INCLUDE/OMIT are Y2T, Y2U, Y2V, Y2W,
Y2X, and Y2Y. The full date formats may only be compared to other 2-digit year full date
formats with the same number of non-year digits.

The year data formats work with the CENTWIN run-time parameter or installation option
to define a 2-digit year value that is to be treated as a 4-digit year. CENTWIN defines a
sliding or fixed 100-year window that determines the century to which 2-digit year data
belong when processed by INCLUDE/OMIT and other control statements.

The year data formats and CENTWIN ensure that century evaluation is applied to
INCLUDE/OMIT comparison conditions involving 2-digit year data. For example, without
CENTWIN processing, an INCLUDE/OMIT comparison would treat the year 01 as "less
than" the year 98. With CENTWIN processing, the 01 field could be recognized as a twenty-
first century date (2001), which would be treated as "greater than" 98 (1998).

For details on the CENTWIN option, see “CENTWIN” on page 5.7. For details on the year
data formats, see “CENTWIN Parameter (Optional)” on page 2.134. For an example of an
INCLUDE control statement with a condition involving a year data field, see Figure 16 on
page 2.33.

Chapter 2. SyncSort Control Statements 2.25

INCLUDE/OMIT

For any of the 2-digit year formats, it is valid to compare them with any of the other for-
mats. Specifically, Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z fields can be compared to each other.

The following table summarizes the valid field to field comparisons for Full-Date formats:

Table 5. Permissable Field-to-Field Comparisons for Full-Date Formats

Date Form Length and Data Format Allowed

yyx and xyy 3,Y2T
3,Y2W
2,Y2U
2,Y2X

yyxx and xxyy 4,Y2T
4,Y2W
3,Y2V
3,Y2Y

yyxxx and xxxyy 5,Y2T
5,Y2W
3,Y2U
3,Y2X

yyxxxx and xxxxyy 6,Y2T
6,Y2W
4,Y2V
4,Y2Y

SyncSort for z/OS 1.1 Programmer’s Guide2.26

INCLUDE/OMIT

Specifying Field-to-Constant Standard Comparisons

The format of a data field determines the type of constant to which it can be compared. The
figure below illustrates which field-to-constant comparisons are permitted.

Format Decimal Hexadecimal Character Binary
(bit pattern)

Year
Constant

AC X X

AQ X X

ASL X

AST X

BI X* X X X

CH X X

CLO / OL X

CSF / FS X

CSL / LS X

CST / TS X

CTO / OT X

FI X**

PD X

PD0 X

Y2B X X

Y2C/Y2Z X X

Y2D X X

Y2P X X

Y2S X X

Y2T*** X X

Y2U*** X X

Y2V*** X X

Table 6. (Page 1 of 2) Permissible Field-to-Constant Comparisons

Chapter 2. SyncSort Control Statements 2.27

INCLUDE/OMIT

A constant will be padded or truncated to the length of the field with which it is compared.
Decimal constants are padded or truncated on the left; hexadecimal, binary, and character
constants are padded on the right. The padding characters are:

Binary string B'00000000'

Character string X'40'

Hexadecimal string X'00'

Decimal fields Zeros of proper format. Decimal constants for 2-digit year for-
mats are padded or truncated to two decimal digits represent-
ing a year. The year constant will then have CENTWIN
processing applied to it for comparison to a Y2 field. These are
only for the two digit year fields, not for full date constants.

The constants for PD0 comparison should not include the first digit and trailing sign of the
PD0 data that will be ignored. Thus, a PD0 field of n bytes will be compared to a constant of
n-1 bytes.

Current Date Constant Specification

You can compare fields to the date of a SyncSort run or the date of the run with an offset in
addition to decimal fields and binary, character, and hexadecimal strings. Thus, records can
more easily be included or omitted based on whether their dates are equal to, less than, or
greater than the run date or the run date with an offset.

Y2W*** X X

Y2X*** X X

Y2Y*** X X

ZD X

Notes: * The decimal constant cannot be higher than 4294967295 or lower than 0.
** The decimal constant cannot be higher than 2147483647 or lower than -2147483648.
*** Full-Date formats

Format Decimal Hexadecimal Character Binary
(bit pattern)

Year
Constant

Table 6. (Page 2 of 2) Permissible Field-to-Constant Comparisons

SyncSort for z/OS 1.1 Programmer’s Guide2.28

INCLUDE/OMIT

The format of a current date constant is:

where:

• ‘current date constant’ is in the form of one of the &DATEx, &DATEx(c), &DATExP, or
Y'DATEx' parameters where x is 1, 2, or 3 and depends on date comparison
compatibility.

• ‘+’ indicates a date after the current date, and ‘-’ indicates a date before the current
date.

• ‘nnnn’ can have a maximum of 15 digits with the leftmost zeroes truncated. When the x
in &DATEx, &DATEx(c), &DATExP, or Y'DATEx' is 1 or 3, ‘nnnn’ can be from 0-9999
and represents offset days. When the x in &DATEx, &DATEx(c), &DATExP, or
Y'DATEx' is 2, ‘nnnn’ can be from 0-999 and represents offset months.

For an example of an INCLUDE control statement that uses a date range based on a date
constant, see Figure 17 on page 2.34.

The forms of current date constants available for standard comparisons are:

• &DATEx and &DATEx(c) represent the current date as a character string
(C'string') to which a field can be compared.

• &DATExP represents the current date as a decimal number (+n) to which a field
can be compared.

• Y'DATEx' represents the current date with a Y constant (Y'string') to which a field
can be compared.

The following table shows the current date constants and the format produced by each. The
c character in &DATEx(c) represents a non-blank separator character, except open and
close parentheses.

current date constant +
- 

 
 

 nnnn

Chapter 2. SyncSort Control Statements 2.29

INCLUDE/OMIT

Table 7. Current Date Constant Formats

Full-Date Format Constant Specifications

Constants used for full-date comparisons should have the same number of digits in the con-
stant as in the full-date field that has been specified. Leading zeros must be specified when
needed. The constant is constructed from two items; the first is a 2-digit year and the sec-
ond is a value representing the months or days that comprise the remainder of the full date
format. For example, if a 5-byte Y2W field were to be compared for a value greater than the
20th day of 1996, 96020 should be the code for the constant.

Constants can be coded to represent special values, such as those found in header or trailer
records. All zeros or nines may be used with Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y. The same
number of digits must be present as in the field that is being compared. The constant string
Y'LOW' (representing binary zeros), Y'HIGH' (representing binary ones), or Y'BLANKS'
(representing blanks) may be coded with the fields Y2T, Y2W, and Y2S. Y'DATEx' (repre-
senting the current date) may be coded with certain full-date formats specifically (see Table
8).

Current Date Constant Generated Constant

&DATE1 C'yyyymmdd'

&DATE1(c) C'yyyycmmcdd'

&DATE1P +yyyymmdd

&DATE2 C'yyyymm'

&DATE2(c) C'yyyycmm'

&DATE2P +yyyymm

&DATE3 C'yyyyddd'

&DATE3(c) C'yyyycddd'

&DATE3P +yyyyddd

Y'DATE1' Y'yymmdd'

Y'DATE2' Y'yymm'

Y'DATE3' Y'yyddd'

SyncSort for z/OS 1.1 Programmer’s Guide2.30

INCLUDE/OMIT

Table 8. Full-Date Comparisons

Substring Comparisons

Substring comparison (SS format) can be based on either of the following searches:

• Match occurrence of a constant within a record field

• Match occurrence of a record field within a constant.

In the first form, the length of the constant is less than the length of a specified field.
Records will be searched for the occurrence of the constant anywhere within the field. The
condition will be true if an EQ operator is specified and the constant is found or if a NE
operator was specified and the constant is not found. For example, consider the constant
"ANYTOWN" and a 60-byte field that contains an address. Records will be searched for the
occurrence of the literal "ANYTOWN" anywhere within the 60-byte address field. If a
match is found and the logical operator is EQ, then the logical result is "true." The logical
result is also "true" if the literal does not appear within the 60 bytes and the logical opera-
tor is NE.

In the second form, the length of a constant is greater than the length of a specified field.
Records will be searched for an occurrence of the field within the constant. For example, the
constant 'A02,A05,A06,A09', which is composed of substrings separated by commas, can be
compared against the contents of a 3-byte field within the record. If the 3-byte field
matches any 3-byte character string in the constant, the logical result is "true" if the logical
operator is EQ.

The character used to separate elements of the constant should be a character that does not
appear in the field being compared. The comparison is then equivalent to a standard com-
parison with ORed conditions. That is, the condition is true if 'A02' OR 'A05' OR 'A06' OR

Y Constant Date Form Length and Data Format Allowed

Y'DATE1' yyxxxx and xxxxyy 6,Y2T
6,Y2W
4,Y2V
4,Y2Y

Y'DATE2' yyxx and xxyy 4,Y2T
4,Y2W
3,Y2V
3,Y2Y

Y'DATE3' yyxxx and xxxyy 5,Y2T
5,Y2W
3,Y2U
3,Y2X

Chapter 2. SyncSort Control Statements 2.31

INCLUDE/OMIT

'A09' is found in the field being compared. The substring comparison is a much more com-
pact expression than multiple OR conditions in a standard comparison.

For both forms of substring comparison, constants and fields in the record can be from 1 to
256 bytes in length. Constants can be in either character or hexadecimal format. (Refer to
the description of constants just after Table 6 on page 2.26.)

See Figure 15 on page 2.33 for an example of how to use the substring comparison.

Sample INCLUDE/OMIT Control Statements

Example 1

In this example, records will be included in the application if the numeric value in the field
beginning in byte 24 is less than the numeric value in the field beginning in byte 28 or if
the character value in the field beginning in byte 10 is equal to NY.

Example 2

In this example, records will be omitted from the application if the numeric value in the
field beginning in byte 1 is equal to 100 and if the character value in byte 20 is not equal to
a blank (X'40').

The next set of control statements exemplifies record selection using bit level logic. The
first two examples involve a comparison between a bit mask (shown coded in binary and
hexadecimal format) and a binary input field. The third example is a comparison between a
bit pattern and a binary field.

Example 3

The record selection condition has the following elements (from left to right): a binary field
(BI) of length 1 byte that starts at column 10 of the record, a comparison operator (ALL),
and a bit mask (B'01001000' in binary, X'48' in hexadecimal). Counting from the left, the

INCLUDE COND=(24,4,PD,LT,28,4,PD,OR,10,2,CH,EQ,C'NY')

Figure 10. Sample INCLUDE Control Statement

OMIT COND=(1,3,ZD,EQ,100,AND,20,1,CH,NE,X'40')

Figure 11. Sample OMIT Control Statement

INCLUDE COND=(10,1,BI,ALL,B'01001000')

or INCLUDE COND=(10,1,BI,ALL,X'48')

Figure 12. Sample INCLUDE Control Statement Using a Bit Mask

SyncSort for z/OS 1.1 Programmer’s Guide2.32

INCLUDE/OMIT

second and fifth bits of the bit mask are ON (1). For the selection condition to be true, the
same bits must be ON in the binary input field. Therefore, if the input field contains, for
example, 01001000, 01111000 or 11111111, the condition for the inclusion of records is sat-
isfied. However, if the input field contains a bit string where both mask bits are not ON
(e.g., 01000000, in which the fifth bit is not ON), the condition fails and the records are
omitted.

Example 4

The condition for the inclusion of records is met if at least one of the mask bits is ON in the
input field. Therefore, the condition would evaluate as true, if the bit string in the binary
field were 01000000 (the second bit is ON), 000010000 (the fifth bit is ON), 01001000 (both
the second and fifth bit are ON). However, with the string 10000111, for instance, in the
input field, the specified condition would evaluate as false (resulting in the omission of
records), since neither mask bit is ON.

The above method of comparing a binary input field to a bit mask is useful for testing the
contents of a "flag" byte where each bit has a different meaning.

Example 5

The condition specifies a 4-byte long binary input field (BI) in column 21, a logical relation-
ship (EQ), and a bit pattern. The bit pattern describes the required sequence of 1s and 0s in
the first and last twelve bit positions. The row of periods in the pattern represents the part
of the string that is irrelevant to the definition of the condition. The condition is true, if the
sequence of 1s and 0s in the input field is identical to that described in the bit pattern.

The method of comparing a binary input field to a bit pattern is useful when testing for
numeric digits that are one half byte each, as in the packed data format. For example,
assume that the binary input field specified in the condition above is a date field in the PD
format X'0mmddyyF'. Each date element is split across a byte boundary. The second half-
byte of each byte (except the last) represents the first of the two digits that form a date ele-
ment (mm,dd,yy). (In the last byte, the second half-byte--1111 in binary and F in hexadeci-
mal--stands for the fact that the bit pattern encodes a packed decimal.) The first half-byte
of each byte (except the first) represents the second digit of a date element (mm,dd,yy).
(The first half-byte, i.e. 0000, of the bit pattern gives it the length specified for the binary

INCLUDE COND=(10,1,BI,NOTNONE,B'01001000')

or INCLUDE COND=(10,1,BI,NOTNONE,X'48')

Figure 13. Sample INCLUDE Control Statement Using a Bit Mask

INCLUDE COND=(21,4,BI,EQ,B'000000010001........100100011111')

Figure 14. Sample INCLUDE Control Statement Using a Bit Pattern

Chapter 2. SyncSort Control Statements 2.33

INCLUDE/OMIT

field at column 21.) Mapping this scheme onto the bit pattern in the control statement
results in the following.

That is, the above control statement is an instruction to select just those records in whose
date field mm and yy equal 11 and 91, respectively, while dd can have any value. In other
words, the records thus selected are those from November 1991.

Example 6

The following example illustrates substring comparisons.

In this example, a record will be included in the application if either of the following condi-
tions is true:

• The literal 'ANYTOWN' is found in the 60-byte field starting at position 11 in the
record.

• The contents of the 3-byte field starting at position 121 matches one of the four
substrings ('A01', 'A05', 'A06', or 'A09') in the constant.

Example 7

The following example illustrates an INCLUDE comparison based on CENTWIN process-
ing.

INCLUDE COND=(11,60,EQ,C'ANYTOWN',

OR,121,3,EQ,C'A01,A05,A06,A09'),FORMAT=SS

Figure 15. Sample INCLUDE Control Statement Using Substring Compares

INCLUDE COND=(20,2,Y2C,GT,96)

Figure 16. Sample INCLUDE Control Statement with CENTWIN Processing

SyncSort for z/OS 1.1 Programmer’s Guide2.34

INCLUDE/OMIT

In this example only records whose data are from the years greater than 1996 will be
included in the application. If the CENTWIN parameter were set to 1980, representing a
century window of 1980 to 2079, the records would be processed in the following manner:

Example 8

The following INCLUDE control statement illustrates the use of the current date constant
and the current date with an offset to include records with dates starting with the current
date and spanning through the two week period prior to the current date.

Figure 17. Sample INCLUDE Control Statement Using Current Date Constant and Cur-
rent Date Constant With an Offset Comparison

If the application were run on April 25, 2002, the records included would have dates in the
8-bytes field starting at position 5 from April 12, 2002 through and including April 25,
2002.

Applications using the INCLUDE/OMIT control statement are illustrated in “Chapter 3.
How to Use SyncSort’s Data Utility Features”.

Contents of
Positions 20 and 21

Record
Disposition

84 Omitted - represents 1984
99 Included - represents 1999
37 Included - represents 2037

INCLUDE COND=(5,8,ZD,LE,&DATE1P,AND,5,8,ZD,GT,&DATE1P-14)

Chapter 2. SyncSort Control Statements 2.35

INREC

INREC Control Statement

The INREC control statement reformats the input records. Use the INREC control state-
ment to add, delete, or reformat fields before the records are sorted or merged. Use the
OUTREC control statement or the OUTREC parameter of the OUTFIL control statement
to delete or reformat fields after the records are sorted or merged. Note that INREC is per-
formed after E15 exit processing and INCLUDE/OMIT control statement processing.

Using the INREC control statement to delete data fields improves sort performance by
reducing the number of bytes SyncSort for z/OS must process. The same result may be
achieved in some cases by changing the data format of certain fields. For example, if you
need to change the format of a ZD field to PD, which reduces the number of bytes for the
field, it is more efficient to use INREC rather than OUTREC for the conversion. Addition-
ally, for SORT/MERGE processing PD fields are processed more efficiently than ZD fields.

Except for CONVERT, all the functions performed by the OUTREC control statement, such
as inserting character strings or changing the data format of a numeric field, can also be
performed by the INREC control statement. (See “OUTREC Control Statement” on page
2.88 for an explanation of these functions.) For example, you can use the INREC control
statement to insert zeros of the proper format to expand a numeric field before SUM pro-
cessing to prevent arithmetic overflow. However, you will usually want to use the OUTREC
control statement rather than the INREC control statement to expand the record because
OUTREC processing takes place after records are sorted or merged.

If you use the INREC control statement to reformat the input record, remember to use the
post-INREC field positions when you specify the SORT, MERGE, SUM, OUTREC, and/or
OUTFIL control statements.

If the SEQNUM function is used in a SORT application to insert a sequence number field
in the record, this field will reflect the order of the records prior to sorting. In a MERGE
application, the field will reflect the order of the records as they were read from each input
in the merge.

INREC Control Statement Format

The format of the INREC control statement is illustrated below:

FIELDS Parameter (Required)

The FIELDS parameter specifies the data fields to be included in the application. See
“OUTREC Control Statement” on page 2.88 for a complete description of the FIELDS
parameter.

INREC FIELDS=(...)

Figure 18. INREC Control Statement Format

SyncSort for z/OS 1.1 Programmer’s Guide2.36

INREC

Sample INREC Control Statement

This INREC control statement specifies three data fields from an 80-byte record:

• The first field begins in byte 1 of the input record and is 20 bytes long.

• The second field begins in byte 40 of the input record and is a 15-byte ZD field. The data
format is to be converted to PD. Since the input field contains 15 decimal digits, the
converted PD output field created by SyncSort will be 8 bytes long.

• The third field begins in byte 60 of the input record and is 5 bytes long.

These three fields have been positioned to begin in bytes 1, 21, and 29, as indicated by their
column prefixes.

The reformatted input record is now just 33 bytes long.

For comprehensive examples that illustrate the INREC control statement see “Chapter 3.
How to Use SyncSort’s Data Utility Features”.

INREC FIELDS=(1:1,20,21:40,15,ZD,PD,29:60,5)

Figure 19. Sample INREC Control Statement

Chapter 2. SyncSort Control Statements 2.37

MERGE

MERGE Control Statement

The MERGE control statement is required for every merge application. The MERGE con-
trol statement can also define a copy application.

Cultural Environment Support

Cultural environment support allows you to choose an alternative set of collating rules
based on a specified national language. The alternative collating applies to SORT/MERGE
and INCLUDE/OMIT processing.

For additional detail, see “LOCALE” on page 5.20.

MERGE Control Statement Format

The format of the MERGE control statement is illustrated below:

FIELDS Parameter (Required for a Merge)

The FIELDS parameter is required for a merge. It describes the control fields.

List the control fields in order of greatest to least priority, with the primary control field
listed first, followed by progressively less significant fields. You can specify up to 128 con-
trol fields; however, if fields require complex internal processing, the limit for a particular
execution may be less than 128.

Each field specified in the FIELDS parameter is identified by its position p, length l, format
f and order o.

p The position value indicates the first byte of the field relative to the beginning
of the input record after INREC and/or E32 processing, if specified, have com-
pleted.

Figure 20. MERGE Control Statement Format

MERGE
FIELDS=(p1,l1,f1,o1[,p2,l2,f2,o2]...)
FIELDS=(p1,l1,o1[,p2,l2,o2]...),FORMAT=f
FIELDS=COPY 

 
 
 
 

,CENTWIN=
0
s---
f 

 
  ,CKPT

,CHKPT

,EQUALS
,NOEQUALS

,FILES=n

,SKIPREC=n ,STOPAFT=n

SyncSort for z/OS 1.1 Programmer’s Guide2.38

MERGE

Binary control fields can begin on any bit of a byte. When a binary field does not
begin on a byte boundary, you must specify the bit number (0-7). For example, a
position value of 21.3 refers to the 4th bit of the 21st byte of the record.

l The length value indicates the length of the control field. The length value must
be an integer number of bytes, except for the length of a binary control field
which can be specified in bits. For example, a length value of 0.5 refers to a
binary control field 5 bits long.

For signed fields, the length value must include the area occupied by the sign.

f The format value indicates the data format. For a list of valid formats, refer to
the Format Code Chart in the next section, "Valid Formats for Merge Control
Fields." If all the control fields have the same format, you can specify the format
value once by using the FORMAT=f subparameter. If you specify both the indi-
vidual f values and the FORMAT subparameter, the individual f values will be
used. (Note that the f values must be specified for each control field).

o The order value indicates how the field is to be collated:

A=Ascending order
D=Descending order
E=As modified by an E61 exit.

Valid Formats for Merge Control Fields

The following table lists the valid formats for merge control fields.

Code Data Format Field Length
(bytes)

AC* EBCDIC characters are translated to their ASCII equivalents before
sorting.

1 to 4091†

AQ* Character. Records are sorted according to an alternate sequence speci-
fied either in the ALTSEQ control statement or as an installation
default.

1 to 4091†

ASL* Leading separate sign. An ASCII + or - precedes numeric field. One
digit per byte.

2 to 256

AST* Trailing separate sign. An ASCII + or - trails numeric field. One digit
per byte.

2 to 256

Table 9. (Page 1 of 3) Format Code Chart

Chapter 2. SyncSort Control Statements 2.39

MERGE

BI Binary. Unsigned. 1 bit to 4092**

CH Character. Unsigned. 1 to 4092**

CLO*
OL*

Leading overpunch sign. Hexadecimal F,C,E, or A in the first 4 bits of
your field indicates a positive number. Hexadecimal D or B in the first 4
bits indicates a negative number. One digit per byte. CMP=CLC is
forced.

1 to 256

CSF
FS

Floating sign format. An optional leading sign may be specified immedi-
ately to the left of the digits. If the sign is a -, the number is treated as
negative. For other characters, the number is treated as positive. Char-
acters to the left of the sign are ignored.

1 to 16

CSL*
LS*

Leading separate sign. An EBCDIC + or - precedes numeric field. One
digit per byte. CMP=CLC is forced.

2 to 256

CST*
TS*

Trailing separate sign. An EBCDIC + or - follows numeric field. One
digit per byte. CMP=CLC is forced.

2 to 256

FI Fixed point. Signed. (Equivalent to Signed Binary.) 1 to 256

FL Floating point. Normalized. Signed. 2 to 16

PD Packed decimal. Signed. 1 to 256

PD0* Packed decimal. 2-8-byte packed decimal data with the first digit and
trailing sign ignored. The remaining bytes are treated as packed deci-
mal digits. Typically PD0 is used with century window processing and
Y2P format; Y2P processes the year, while PD0 processes month and
day.

2-8

Y2B* Binary. 2-digit, 1-byte binary year data treated as a 4-digit year by
CENTWIN (century window) processing.

1

Y2C* Character. 2-digit character year data treated as a 4-digit year by CEN-
TWIN (century window) processing. Processing is identical to Y2Z
fields.

2

Code Data Format Field Length
(bytes)

Table 9. (Page 2 of 3) Format Code Chart

SyncSort for z/OS 1.1 Programmer’s Guide2.40

MERGE

Y2D* Packed decimal. 2-digit, 1-byte packed decimal year data treated as a 4-
digit year by CENTWIN (century window) processing.

1

Y2P* Packed decimal. 2-digit, 2-byte packed decimal year data. Of the four
packed digits contained in the 2 bytes, the first digit and trailing sign
are ignored; the two inner digits are treated as a 4-digit year by CEN-
TWIN processing.

2

Y2S* Character or zoned decimal. 2-digit, 2-byte valid numeric data treated
as a 4-digit year by CENTWIN (century window) processing, as for Y2C
and Y2Z. However, certain data are not treated as year data. Data with
binary zeros (X'00') or a blank (X'40') in the first byte will be collated
before valid numeric year data for ascending order (after year data for
descending order). Data with all binary ones (X'FF') in the first byte will
be collated after valid numeric year data for ascending order (before
year data for descending order). Zones are ignored, as for Y2C and Y2Z,
except for data where the first byte begins with X'00', X'40' or X'FF'.

2

Y2T*

Y2U*

Y2V*

Y2W*

Y2X*

Y2Y*

Full-date, character, binary, or packed decimal formats. Full-date data
formats can be used to sort or merge a variety of date fields. They can
process dates ending or starting with year digits (x...xyy or yyx...x).
They can also process non-date data commonly used with dates. For
details, see page 2.140.

2-6

Y2Z* Zoned decimal. 2-digit, 2-byte zoned decimal year data treated as a 4-
digit year by CENTWIN (century window) processing. The zones are
ignored. Processing is identical to Y2C fields.

2

ZD
CTO*
OT*

Zoned decimal. Trailing overpunch in the first 4 bits of the rightmost
byte gives the sign. Hexadecimal F,C,E, or A indicates a positive num-
ber. Hexadecimal D or B indicates a negative number. One digit per
byte. CTO forces CMP=CLC.

1 to 256

Notes: * Cannot be used with Tape Sort.
 ** 4084 for variable-length records.

 † 2043 for variable-length records.

Code Data Format Field Length
(bytes)

Table 9. (Page 3 of 3) Format Code Chart

Chapter 2. SyncSort Control Statements 2.41

MERGE

For information on the year data formats (Y2B, Y2C, Y2D, Y2P, Y2S and Y2Z) plus the
related data format PD0, see “CENTWIN Parameter (Optional)” on page 2.41 and “Con-
verting Year Data with Century Window Processing on INREC, OUTREC, or OUTFIL
OUTREC” on page 2.100. Also see "Specifying Field-to-Field Standard Comparisons for
Year Fields" in the INCLUDE/OMIT Control Statement section of this chapter.

Rules for Specifying Merge Control Fields

• For fixed-length records, the sum of the lengths of all control fields cannot exceed 32752
bytes. When EQUALS is in effect, the sum of their lengths cannot exceed 4088 bytes.

• For variable-length records, all control fields must be located within the first 4084 bytes
and the sum of their lengths cannot exceed 4084 bytes. When EQUALS is in effect, all
control fields must be located within the first 4080 bytes and the sum of their lengths
cannot exceed 4080 bytes.

• Control fields can be in contiguous or non-contiguous locations in the record.

• Remember that for variable-length records, the first 4 bytes are reserved for the Record
Descriptor Word, so the first byte of the data portion of the record is byte 5.

• If the output file is a key-sequenced VSAM cluster, the VSAM key must be the first
control field specified.

Comparing PD and ZD Control Fields

The CMP PARM determines how PD and ZD control fields will be compared. When
CMP=CPD is in effect, the Compare Decimal (CP) instruction is used for the compare. ZD
fields are packed and then compared. This method has performance advantages. However,
invalid PD data may cause a system 0C7 abend and program termination. Moreover, the
integrity of ZD fields is only guaranteed when they contain valid ZD data. The CMP=CPD
method cannot be used for control fields that exceed 16 bytes, for variable-length merges
when an even value (0, 2, 4, or 6) is specified for the VLTEST PARM, or for a Tape Sort.

When CMP=CLC is in effect, no data validation is performed and the integrity of the out-
put is maintained, even if the sign for a PD or ZD field is invalid. This method is always
used if any control field exceeds 16 bytes, for variable-length merges when an even value is
specified for the VLTEST PARM, and for a Tape Sort.

CENTWIN Parameter (Optional)

The CENTWIN run-time or installation option acts on 2-digit year data. At run-time,
CENTWIN can be specified as either a PARM option or a SORT/MERGE control statement
parameter. CENTWIN generates a century window (for example, 1950 through 2049) that
determines the century to which a 2-digit year belongs. CENTWIN ensures that year data
spanning centuries will be sequenced correctly. Without CENTWIN processing, an
ascending collation would sequence the year 01 before the year 98. With CENTWIN

SyncSort for z/OS 1.1 Programmer’s Guide2.42

MERGE

processing, the 01 field could be recognized as a twenty-first century date (2001) and would
thus be sequenced after 98 (1998).

For more information on specifying the CENTWIN option, see “CENTWIN” on page 5.7.

CENTWIN processing only applies to data defined as year data formats (Y2B, Y2C, Y2D,
Y2P, Y2S, and Y2Z) and the full-date formats (Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y). These
data formats enable SyncSort to process 2-digit year fields as 4-digit years. A related data
format, PD0, can be used to process the month and day portions of packed decimal date
fields. To correctly specify date fields for CENTWIN MERGE processing, you should be
familiar with the CENTWIN-related data formats.

The following describes each of the year data formats and provides MERGE control state-
ment examples:

The Y2B Format

This format is used to sequence 2-digit, 1-byte binary year data with CENTWIN process-
ing. The binary values are converted to decimal, and the two low order digits are used as
year data. Thus, while binary and decimal values range from 00 to 255, year values range
from 00 to 99. The relationship between binary, decimal and year values is shown in the fol-
lowing table:

The Y2C and Y2Z Formats

These formats represent 2-digit, 2-byte year data in either character (Y2C) or zoned deci-
mal (Y2Z) format. Either Y2C and Y2Z formats can be used with data of the form

X'xyxy'

where y is a hexadecimal year digit 0-9 and x is hexadecimal 0 through F. Y2C and Y2Z
ignore the x digits, leaving yy, the 2-digit unsigned year representation.

Suppose you have a character or zoned decimal date field mmddyy that begins at byte 20.
You can use either Y2C or Y2Z to process the yy field. As the following example indicates,
you could specify three sort keys to correctly sort this date:

Binary Value Decimal Value Year Value

X'00' to X'63' 00 to 99 00-99

X'64' to X'C7' 100 to 199 00-99

X'C8' to X'FF' 200 to 255 00-55

Table 10. Possible Values Representing Year Data with Y2B

Chapter 2. SyncSort Control Statements 2.43

MERGE

The yy field (24,2) will be processed according to the century window setting. For example,
if CENTWIN=1945, the field yy=45 will be sequenced as if it were 1945, and yy=44 would
be sequenced as if it were 2044. Thus, for an ascending sort, 44 would follow 45.

The Y2D Format

This format is used to sequence 2-digit, 1-byte packed decimal year data with CENTWIN
processing. Use Y2D to extract the year data yy from packed decimal date fields. For exam-
ple, consider a 3-byte packed decimal data field defined as

X'yyddds'

This field has the year yy in the first byte and the day ddd in bytes 2 and 3. The packed dec-
imal sign s would be in the last digit (half byte) of the third byte. To sort this date field,
which begins at byte 20, with 4-digit year processing, use the following MERGE control
statement:

The Y2P Format

This format is used to sequence 2-digit, 2-byte packed decimal year data with CENTWIN
processing. Use Y2P to extract the year data yy from packed decimal date fields spanning 2
bytes. For example, a packed decimal date of the form yymmdd would be stored as 4 bytes:

yymmdd = X'0yymmddC'

where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on the
left to make an even number of digits.

Notice that the components of the date span bytes:

0y ym md dC

Y2P handles this condition by ignoring the first and last half bytes of the 2-byte field speci-
fication. Thus, Y2P processes 0yym as yy, ignoring the leading digit (0) and the trailing digit
m that is part of the month.

MERGE FIELDS=(24,2,Y2C,A, * Collates yy field as 4-digit year

20,2,CH,A, * Collates mm field

22,2,CH,A) * Collates dd field

MERGE FIELDS=(20,1,Y2D,A, * Collates 2-digit year as 4-digit year

21,2,PD,A) * Collates ddds as 3 digits (ddd)

SyncSort for z/OS 1.1 Programmer’s Guide2.44

MERGE

The following example uses Y2P to collate the year portion of the date field, which begins at
byte 20:

The field specification 20,2,Y2P treats X'0yym' as X'yy', and CENTWIN processing sorts yy
as a 4-digit year yyyy.

The PD0 format, described below, can assist Y2P by processing month and day data that
overlap year data in the original field.

The Y2S Format

This format is used to sequence 2-digit, 2-byte character or zoned decimal data. The Y2S
format is identical to Y2C and Y2Z for valid numeric data, but Y2S treats data that begin
with X'00', X'40' or X'FF' as non-year data. Thus, the Y2S format can distinguish records
that have non-year data in the first byte of the year field, allowing such records to be col-
lated differently from other records.

Y2S treats non-year data as follows:

• Data with binary zeros (X'00') or a blank (X'40') in the first byte will not have century
window processing applied to it. Instead, such data will be collated in sequence, before
valid numeric year data for ascending order or after the year data for descending order.

• Data with all binary ones (X'FF') in the first byte will also not have century window
processing applied to it. Instead, such data will be collated after valid year numeric
data for ascending order or before the year data for descending order.

Zones are ignored, as for Y2C and Y2Z, except for data where the first byte begins with
X'00', X'40' or X'FF'.

As an example, suppose you want to preserve the input order of header and trailer records
at the start or end of the file, and your header/trailer records are identified by binary zeros
(X'00'), a blank (X'40') or binary ones (X'FF') in the first byte of the date field. The Y2S for-
mat allows CENTWIN to identify the header/trailer records and treat them differently
from other records.

The PD0 Format

This format is used to sequence 2-8 byte packed decimal data. PD0 ignores the first digit
and trailing sign during processing. PD0 is normally used in conjunction with the Y2P data
format. The Y2P format is used to process the 2-digit year portion of a packed decimal date
field, while the PD0 format is used to process the month and day portion of the field.

Although PD0 is typically used with Y2P, CENTWIN processing is not applied to PD0.

MERGE FIELDS=(20,2,Y2P,A) * Collates yy field as 4-digit year

Chapter 2. SyncSort Control Statements 2.45

MERGE

Consider the packed decimal date field used in the Y2P example above:

yymmdd = X'0yymmddC'

where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on the
left to make an even number of digits.

Notice that the components of the date span bytes:

0y ym md dC

The date can be processed as follows:

• Y2P processes the year component X'0yym' as X'yy'.

• PD0 processes the month and day components X'ymmddC' as X'mmdd'.

The following MERGE control statement can be used to collate the entire date with
CENTWIN processing:

Full-Date Formats

Full-date formats can be used to sort or merge various date fields, processing dates ending
or starting with year digits. They also process non-date data that are used with dates. For a
full description of full-date formats, see the following section.

Using Full-Date Formats with CENTWIN

SyncSort’s full-date data formats enable you to sort or merge a variety of date fields. The
full-date formats are Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y. These date formats can process
dates ending or starting with year digits:

• x...xyy (for example: qyy, mmyy, dddyy, or mmddyy)

• yyx...x (for example: yyq, yymm, yyddd, or yymmdd)

The full-date formats also process non-date data commonly used with the dates. SyncSort
interprets two-digit years (yy) according to the century window specified by the CENTWIN
option. CENTWIN processing does not apply to non-date data.

In most cases, for CH, ZD, and PD date fields the full-date data formats are easier to use
than the 2-digit date formats. The 2-digit formats can be more difficult because you must
divide the date into its components. This requires care, particularly for PD dates, where

MERGE FIELDS=(20,2,Y2P,A, * Treats X'0yym' as X'yy'; collates yy as yyyy

21,3,PD0,A) * Treats X'ymmddC' as X'mmdd'

SyncSort for z/OS 1.1 Programmer’s Guide2.46

MERGE

date components (q, dd, mm, or yy) may span bytes or occupy only part of a byte. The full-
date formats, on the other hand, process such dates automatically.

The table below describes the full-date formats. For date forms not in the table, use the 2-
digit year formats or the non-year formats.

Note the following symbols used in the table:

y year digit (0-9)
x non-year digit (0-9)
s sign (hexadecimal A-F)
0 unused digit

Chapter 2. SyncSort Control Statements 2.47

MERGE

Table 11. Full-Date Formats

Full-Date
Format

Data
Format Date Form Example Date

Form Length (bytes)

 Y2T

CH, BI yyx yyq 3

yyxx yymm 4

yyxxx yyddd 5

yyxxxx yymmdd 6

Y2U PD yyx
(X'yyxs')

yyq 2

yyxxx
(X'yyxxxs')

yyddd 3

Y2V PD yyxx
(X'0yyxxs')

yymm 3

yyxxxx
(X'0yyxxxxs')

yymmdd 4

Y2W

CH, BI xyy qyy 3

xxyy mmyy 4

xxxyy dddyy 5

xxxxyy mmddyy 6

Y2X PD xyy
(X'xyys')

qyy 2

xxxyy
(X'xxxyys')

dddyy 3

Y2Y PD xxyy
(X'0xxyys')

mmyy 3

xxxxyy
(X'0xxxxyys')

mmddyy 4

SyncSort for z/OS 1.1 Programmer’s Guide2.48

MERGE

The table indicates the full-date formats that can be used with character (CH), binary (BI),
or packed decimal (PD) data. Note the recognized non-date values:

Character or binary (Y2T and Y2W full-date formats)
C'0...0' (CH zeros)
C'9...9' (CH nines)
Z'0...0' (ZD zeros)
Z'9...9' (ZD nines)
X'00...00' (BI zeros)
X'40...40' (blanks)
X'FF...FF' (BI ones)

Packed (Y2U, Y2V, Y2X, and Y2Y full-date formats)
P'0...0' (PD zeros)
P'9...9' (PD nines)

The following two examples illustrate how you might use the Full-Date Formats table:

• Suppose you have a packed decimal (PD) date field of the form mmyy. To sort this field
correctly, you would use the Y2Y 3-byte format from the table. Thus, if the field starts
in position 30, you would specify the following SORT control statement to sort in
descending order:

SORT FIELDS=(30,3,Y2Y,D)

Any PD fields of all PD zeros or all PD nines will be processed automatically as non-
date data.

• Suppose you have a character (CH) date field of the form yymmdd. To sort this field
correctly, you would use the Y2T 6-byte format from the table. Thus, if the field starts in
byte 40, you would specify the following SORT control statement to sort in ascending
order:

SORT FIELDS=(40,6,Y2T,A)

Any CH zeros, CH nines, BI zeros, blanks, and BI ones will be processed automatically
as non-date data.

Collating Sequence with Full-Date Formats

For full-date formats, the yy component is always sorted first (treated as primary key). This
is so even when the yy is physically at the rightmost end of the field, as for Y2W, Y2X, and
Y2Y. For example, a 6-byte Y2W field has the form xxxxyy. This is collated with the yy as
the primary key and xxxx as the secondary key. Because SyncSort automatically collates
the year character first, you don’t have to deal with yy manually, for example by using PD0
and Y2D.

Chapter 2. SyncSort Control Statements 2.49

MERGE

It is important to understand that the xxxx component of a full-date format must be
designed to collate as a unit. Suppose you have the 6-byte Y2T field yyxxxx. If you collate
this field in ascending order, then yy collates first (the primary key) with xxxx collating sec-
ond (secondary key). Consider two possibilities:

• If yyxxxx is actually yymmdd, you will be sorting first by year, then month, then day.

• If yyxxxx is actually yyddmm, you will sorting by year, then day, then month. In most
cases, sorting in this way would not be what you intended.

To correctly collate a date, the date components must be in an order suitable for collating.
For example, mmddyy and yymmdd will collate correctly, but ddmmyy or yyddmm will not.
For date forms that will not collate correctly, you must use one of the 2-digit year formats
(Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z).

The following table shows the order for ascending collation when using full-date formats
with the CENTWIN option:

Table 12. Ascending Sort Sequences

For a descending sort, the collation order is reversed.

Other date formats (non-full-date), with the exception of Y2S, do not process non-date
data; their sort sequence for ascending sorts is simply lower century dates than higher
century dates.

Full-Date Format Date Format Ascending Sort Sequence

Y2T
Y2W

CH, BI BI zeros
Blanks
CH/ZD zeros
Lower century dates (e.g. 1980)
Higher century dates (e.g. 2010)
CH/ZD nines
BI ones

Y2U
Y2V
Y2X
Y2Y

PD PD zeros
Lower century dates (e.g. 1980)
Higher century dates (e.g. 2010)
PD nines

SyncSort for z/OS 1.1 Programmer’s Guide2.50

MERGE

Examples Using Full-Date Formats

Example 1 (Y2W)

The following SORT control statement sorts a C'mmddyy' date field in ascending order,
with the previously set fixed century window 1984-2083:

SORT FIELDS=(10,6,Y2W,A) * Sort C'mmddyy' in ascending order
* with Y2W
* and previously set century window 1984-2083

The Full-Date Formats table above indicates that the 6-byte Y2W form is appropriate for a
CH input field of the form xxxxyy. As shown in the following table, the output will be col-
lated as C'yyyymmdd', with the non-date data (zeros) appearing correctly at the beginning
of the sorted output.

Example 2 (Y2T)

The following SORT control statement sorts a Z'yyddd' date field in descending order, with
the previously set fixed century window 1921-2020:

SORT FIELDS=(20,5,Y2T,D) * Sort Z'yyddd' in descending order
* with Y2T
* and previously set century window 1921-2020

The Full-Date Formats table above indicates that the 5-byte Y2T form is appropriate for a
ZD input field of the form yyddd. As shown in the following table, the output will be col-
lated as Z'yyyyddd', with the non-date data (nines and zeros) appearing correctly at the
beginning and end of the sorted output.

SORTIN
Input
mmddyy

Record Order
after Sorting

mmddyy

Actual Date
after Sorting
yyyy/mm/dd

021783 000000 non-date data
092206 070484 1984/07/04
081395 081395 1995/08/13
110210 092206 2006/09/22
000000 110210 2010/11/02
070484 043060 2060/04/30
043060 021783 2083/02/17

Chapter 2. SyncSort Control Statements 2.51

MERGE

Example 3 (Y2Y)

The following SORT control statement sorts a P'mmddyy' (X'0mmddyys') date field in
ascending order, with the previously set fixed century window 1921-2020:

SORT FIELDS=(26,4,Y2Y,A) * Sort P'mmddyy' in ascending order
* with Y2Y
* and previously set century window 1921-2020

The Full-Date Formats table above indicates that the 4-byte Y2Y form is appropriate for a
PD input field of the form xxxxyy. As shown in the following table, the output will be col-
lated as P'yyyymmdd', with the non-date data (zeros and nines) appearing correctly at the
beginning of the sorted output. Note that the first two columns are in hexadecimal.

FIELDS=COPY (Required for a Copy)

Use FIELDS=COPY to copy one or more input files. (Multiple files can be copied if they are
concatenated on the SORTIN DD specification.) Other control statements such as
INCLUDE/OMIT, INREC, OUTREC and OUTFIL may be specified in conjunction with a
copy application, allowing you to edit and reformat the file(s) without any collation process-
ing

The SUM control statement and an E32 exit cannot be specified with FIELDS=COPY. All
Phase 3 exits can be used.

 SORTIN
 Input
yyddd

Record Order
after Sorting

yyddd

Actual Date
after Sorting
yyyy/ddd

00000 99999 non-date data
50237 20153 2020/153
99999 20047 2020/047
20047 01223 2001/223
94001 94001 1994/001
01223 50237 1950/237
20153 21148 1921/148
21148 00000 non-date data

SORTIN
Input
mmddyy

Record Order
after Sorting

mmddyy

Actual Date
after Sorting
yyyy/mm/dd

0999999C 0000000C non-date data
0102250C 0080321C 1921/08/03
0032120C 0102250C 1950/10/22
0010194C 0010194C 1994/01/01
0000000C 0111501C 2001/11/15
0111501C 0032120C 2020/03/21
0080321C 0999999C non-date data

SyncSort for z/OS 1.1 Programmer’s Guide2.52

MERGE

The SORTIN DD statement defines the input to be copied. (SORTINnn DD statements are
not processed when FIELDS=COPY is specified.)

CKPT/CHKPT Parameter (Optional)

The CKPT/CHKPT parameter instructs SyncSort to take a checkpoint at every end-of-vol-
ume of a SORTOUT data set when OUTFIL is not used. Either spelling is accepted.

This parameter requires a SORTCKPT DD statement. It cannot be specified in conjunction
with a user-issued STIMER macro or an incore sort. Checkpoints cannot be taken within a
user exit routine.

Refer to “Chapter 13. Performance Considerations” for an explanation of the Checkpoint/
Restart feature.

EQUALS/NOEQUALS Parameter (Optional)

The EQUALS parameter insures that equal-keyed records are merged in the order of their
respective files. Equal-keyed records from the lowest numbered SORTINnn file are written
before those from the second input file, etc. NOEQUALS, the default, specifies that equal-
keyed records from different files be written in random order.

The order of equal-keyed records within each input file is always preserved during a merge,
whether or not the EQUALS parameter is specified.

When the EQUALS parameter is used with the SUM control statement, the first of the
equal-keyed records is retained with the sum; all other records are deleted after the speci-
fied field(s) have been summed.

EQUALS/NOEQUALS can also be specified as a PARM option on the EXEC statement. If
this option is specified both on the MERGE control statement and as a PARM option, the
MERGE specification takes precedence.

FILES Parameter (Optional)

The FILES=n parameter specifies the number of input files that an E32 exit will supply to
the merge. The n value can be any number up to 100.

Specifying the FILES parameter both on the MERGE control statement and in the 24-bit
parameter list will cause SyncSort to terminate with a critical error.

The FILES parameter cannot be specified as a PARM on the EXEC statement or in a
$ORTPARM data set.

Chapter 2. SyncSort Control Statements 2.53

MERGE

SKIPREC Parameter (Optional)

The SKIPREC=n parameter instructs SyncSort to skip a decimal number of records before
the input file is copied. The n records skipped are deleted from the input file before
INCLUDE/OMIT processing, if specified, takes place.

The SKIPREC parameter can only be specified for a MERGE FIELDS=COPY operation.
SKIPREC cannot be specified for a merge of multiple SORTINnn data sets.

If SKIPREC is specified as a PARM option as well as on the MERGE control statement, the
PARM specification takes precedence.

STOPAFT Parameter (Optional)

The STOPAFT=n parameter specifies the number of records to be copied. These will be the
first n records after INCLUDE/OMIT and SKIPREC processing, if specified, have com-
pleted.

The STOPAFT parameter can only be specified for a MERGE FIELDS=COPY operation.
STOPAFT cannot be specified for a merge of multiple SORTINnn data sets.

If STOPAFT is specified as a PARM option as well as on the MERGE control statement, the
PARM specification takes precedence.

Sample MERGE Control Statements

This sample MERGE control statement specifies three merge control fields:

• The first, or primary, control field begins in byte 1, is 5 bytes long, is in character
format and is to be merged in ascending order.

• The second control field begins in byte 10, is 2 bytes long, is in packed decimal format
and is to be merged in descending order.

• The third control field begins in the third bit of byte 30, is 4 bytes long, is in binary
format and is to be merged in ascending order.

This MERGE statement specifies a copy operation. Only the first 200 records will be copied.

MERGE FIELDS=(1,5,CH,A,10,2,PD,D,30,4,BI,A)

Figure 21. Sample MERGE Control Statement

MERGE FIELDS=COPY,STOPAFT=200

Figure 22. Sample MERGE Control Statement

SyncSort for z/OS 1.1 Programmer’s Guide2.54

MODS

MODS Control Statement

The MODS control statement specifies a user exit routine and is required with an exit.
Refer to “Chapter 7. The Coding and Use of Exit Programs” for a detailed explanation of
how to specify exit programs.

MODS Control Statement Format

The format of the MODS control statement is illustrated below.

If an application has more than one exit, specify the exit-name parameter for each exit. Up
to 16 exits can be specified. Use commas to separate multiple exit-name parameters.

Exit-Name Parameter (Required)

The exit-name parameter identifies the exit and provides additional information. Replace
'exit-name' with an E followed by the appropriate exit number. The 16 valid exit-names are
listed below.

MODS exit-name1=(parameters1),...,exit-name16=(parameters16)

where parameters =

Insert a positional comma if the d value is omitted but the link-editing code is supplied.

Figure 23. MODS Control Statement Format

r,b [,d]

,N
,S
,C
,E
,X
,T 

 
 
 
 
 
 

Chapter 2. SyncSort Control Statements 2.55

MODS

The exit-name parameter also provides the following information about the exit.

r The r value specifies the name of the user exit routine. Any valid name is
acceptable. If the exit routine resides in a library, specify the member name or
alias name for the r value. For an exit coded in REXX, r represents the REXX
exec name.

b The b value specifies the exact or estimated decimal number of bytes the exit
routine requires in main storage. This number should include any additional
main storage required by the exit (e.g., buffers, GETMAINs, etc.). Specify an
estimate (without an E before the value) if the exact number is not known. This
number should only include storage requirements below the 16-megabyte line.

REXX exits have some additional storage requirements. REXX system modules
and control blocks need 26K, and each EXEC that is called will require 12K of
storage. In addition to any variables that the EXEC uses, all special SyncSort
variables will require storage (including space for a record).

d The d value identifies the DD statement name that specifies the library in
which the exit routine resides. The JCL must include a DD statement specify-
ing each library in which an exit routine resides. If the exit routine is to be
placed in the input job stream, specify SYSIN for the d value. (If more than one

 Sort
Phase 1

Sort
Phase 2

Sort or Merge
Phase 3 Copy

 E11
E14
E15
E16
E17
E18

E15

Exit E21
E25
E27

Name

E61

E31
E32 (merge only)
E35
E37
E38
E39
E61

E31

E35
E37
E38
E39

Table 13. Phases and Permissible Exits

SyncSort for z/OS 1.1 Programmer’s Guide2.56

MODS

exit routine is included in SYSIN, the exit routines must be specified in ascend-
ing numerical order by exit name.)

For a Disk Sort, MAXSORT or PARASORT, an exit routine that is a load
module residing in a library identified in a LINKLIB, STEPLIB or JOBLIB DD
statement does not require a d value specification or a DD statement defining a
module library in the JCL. If the d value is omitted, insert a positional comma
to indicate the missing value. For a Tape Sort, it is necessary to specify the
LINKLIB, STEPLIB or JOBLIB DD statement and to include a DD statement
defining the library.

The exit-name parameter also specifies link-editing codes: N, S, C, E, X, or T. If the link-
editing code is omitted, the installation setting determines whether or not the exit will be
link-edited. The delivered default is T; however, it may have been reset to N at installation.

Ideally, exit routines should be designed so that they do not require link-editing each time
they are used. Link-editing consumes system resources and increases sort/merge execution
time.

When a link-editing code is specified, the name E10 is reserved and no Phase 1 exit or E61
exit can use this name as a CSECT or ENTRY name. Similarly, the names E20 and E30 are
reserved and cannot be used by Phase 2 or Phase 3 exits.

N The N value specifies that link-editing is not required. Link-editing has already
taken place and SyncSort can directly invoke the routine.

S The S value specifies that link-editing is required. This value can only be used
for E11, E21 and E31 exits. The S value also indicates that the exit routine can
be link-edited separately from other exit routines specified for the same phase.

C The C value identifies a COBOL exit routine. COBOL exits must be link-edited
before execution time. Only COBOL E15 and E35 exits can be specified, and
COBOL exits cannot be specified for a Tape Sort.

E The E value identifies a C exit routine. C exits must be link-edited before execu-
tion time. Only C E15 and/or E35 exits can be specified, and C exits cannot be
specified for a tape sort.

X The X value identifies a REXX exit routine. Only REXX E15 and E35 exits can
be specified, and REXX exits cannot be specified for a Tape Sort.

T The T value specifies that SyncSort will dynamically link-edit the exit routine
along with other routines specified for the same sort/merge phase.

Chapter 2. SyncSort Control Statements 2.57

MODS

Sample MODS Control Statement

This sample MODS control statement specifies the following information:

• An E15 exit is the first exit routine. ADDREC1 is the member name of the routine,
which requires 600 bytes in main storage and resides in a library referenced by the DD
statement named MODLIB. The routine does not require link-editing.

• An E25 exit is the second exit routine. ALTREC is the member name of the routine
which requires 500 bytes in main storage. The exit is included in the SYSIN input
stream. Because N is not specified, this routine will be link-edited.

• An E35 exit is the third exit routine. ADDREC2 is the member name of the routine,
which requires 600 bytes in main storage and resides in a library referenced by the DD
statement named MODLIB. This routine is a COBOL exit which has been link-edited
before execution time.

Examples of JCL-initiated applications with exit routines are illustrated in “Chapter 4.
JCL and Sample JCL/Control Statement Streams”.

MODS E15=(ADDREC1,600,MODLIB,N),E25=(ALTREC,500,SYSIN),

E35=(ADDREC2,600,MODLIB,C)

Figure 24. Sample MODS Control Statement

SyncSort for z/OS 1.1 Programmer’s Guide2.58

OMIT

OMIT Control Statement

Refer to “INCLUDE/OMIT Control Statement” on page 2.16 for an explanation of the OMIT
control statement.

Chapter 2. SyncSort Control Statements 2.59

OUTFIL

OUTFIL Control Statement

The OUTFIL control statement describes the output file(s). It is required to accomplish
these three tasks:

• Create multiple output files. The OUTFIL parameters associated with this task are
FILES, FNAMES, INCLUDE/OMIT, STARTREC, ENDREC, SAVE, OUTREC,
CONVERT, VLFILL, FTOV, VLTRIM, NULLOFL, and SPLIT.

• Use the SortWriter facility. The OUTFIL parameters associated with this task are
HEADER1, HEADER2, LINES, NODETAIL, REMOVECC, SECTIONS, TRAILER1,
and TRAILER2.

• Reformat records after E35 processing. The OUTFIL parameter associated with this
task is OUTREC.

The OUTFIL control statement cannot be used with MAXSORT.

OUTFIL Control Statement Format

The format for the OUTFIL control statement is illustrated below.

SyncSort for z/OS 1.1 Programmer’s Guide2.60

OUTFIL

Figure 25. OUTFIL Control Statement Format

OUTFIL

[,STARTREC=n] [,ENDREC=n]

[,SAVE]

[,SPLIT]

[,OUTREC=(field1 [,field2]...)]

[,CONVERT]

[,VLFILL=f]

[,FTOV]

[,VLTRIM=b]

[,HEADER1=(field1 [,field2]...)] [,HEADER2=(field1 [,field2]...)]

[,TRAILER1=(field1 [,field2]...)] [,TRAILER2=(field1 [,field2]...)]

[,SECTIONS=(field1 [,field2]...)]

[,NODETAIL]

[,REMOVECC]

FILES = fileid
fileid1 ,fileid2[]...() 

 
 

,FNAMES = ddname
ddname1 ,ddname2[]...() 

 
 

,INCLUDE
,OMIT 

 
 

 =

ALL
NONE

(c1

,AND,
,&,
,OR,
,|, 

 
 
 
 

 c2...)

 
 
 
 
 
 
 
 
 

,LINES =
n
ANSI
(ANSI,n)

 
 
 
 
 

,NULLOFL =
RC0
RC4
RC16 

 
 
 
 

Chapter 2. SyncSort Control Statements 2.61

OUTFIL

The Multiple Output Capability

Use the OUTFIL control statement to create multiple files without making multiple passes
through the input data. The output files can be treated the same or differently:

• The output files can contain the same or different records.

• The records in the output files can be identically or differently formatted.

• If the input file(s) are variable-length, the output files may be either variable-length or
fixed-length.

Note that all the output files will be sequenced in the same way, as specified on the SORT
or MERGE control statement. If you need to sort the output files differently, you should use
PipeSort, a Syncsort product that works with SyncSort for z/OS to reduce total elapsed
time by generating multiple, differently sequenced output files from a single read of the
input data.

The SortWriter Capability

The SortWriter capability of OUTFIL can produce completely formatted reports. The report
writing features, which can be specified differently for each output file, can accomplish
these tasks:

• Arrange the report into pages.

• Divide the report into sections.

• Format headers and trailers for sections, pages, and the complete report.

• Create multiple lines of output from each input record.

• Convert and edit numeric data.

• Provide TOTAL and SUBTOTAL capabilities for data fields in a specific part of a
report.

• Provide MIN, MAX, AVERAGE, SUBMIN, SUBMAX, and SUBAVG capabilities for
data fields in a specific part of a report.

• Provide COUNT and SUBCOUNT capabilities for records in a specific part of a report.

Once formatted, output files can be assigned to any tape, disk, or unit record device for sub-
sequent printing.

SyncSort for z/OS 1.1 Programmer’s Guide2.62

OUTFIL

FILES Parameter (Optional)

The FILES parameter connects the OUTFIL control statement with one or more output
files. The files specified on this parameter, along with any specified on the FNAMES
parameter, will constitute the ddnames to receive output for this OUTFIL specification.

The format of the FILES parameter is illustrated in the following figure.

The fileid identifies the output file and connects the OUTFIL control statement with the
corresponding SORTOUT, SORTOFx, or SORTOFxx DD statement. For example,
FILES=OUT connects the OUTFIL control statement with the SORTOUT DD statement.
Similarly, FILES=1 connects the OUTFIL control statement with the SORTOF1 DD state-
ment, and FILES=01 connects the OUTFIL control statement with the SORTOF01 DD
statement. The x can be any alphanumeric character or special character allowed by JCL
DD statements.

If multiple output files have identical specifications (that is, identical record selection,
record reformatting, and report writing specifications), the FILES and/or FNAMES param-
eter can connect the OUTFIL control statement with more than one DD statement. For
example, FILES=(OUT,02,03) connects the OUTFIL control statement with the SORTOUT,
SORTOF02, and SORTOF03 DD statements. Such a set of output files is termed an OUT-
FIL group.

If multiple output files have different specifications, then each file is specified on a separate
OUTFIL control statement with one FILES and/or FNAMES parameter on each control
statement.

If a SORTOUT ddname is defined in the JCL and does not appear in any FILES or
FNAMES specification, it will be written to without any OUTFIL processing. If an inline
E35 exit has been specified, OUTFIL is ignored.

If neither a FILES nor FNAMES parameter is specified on an OUTFIL control statement,
the default ddname of SORTOUT will be used. If a 4-byte ddname prefix is in effect, the
default SORTOUT ddname will be ppppOUT, where pppp is the prefix; adding FILES=xx
would connect to the ppppOFxx DD statement.

Figure 26. FILES Parameter Format

FILES =
fileid
(fileid1[,fileid2] ...) 

 
 

where:

fileid =
OUT
x
xx 

 
 
 
 

Chapter 2. SyncSort Control Statements 2.63

OUTFIL

FNAMES Parameter (Optional)

The FNAMES parameter connects the OUTFIL control statement with one or more output
files. The files specified on this parameter, along with any specified on the FILES parame-
ter, will constitute the ddnames to receive output for this OUTFIL specification.

The format of the FNAMES parameter is illustrated in the following figure.

ddname is a 1 to 8-character ddname that corresponds to a DD statement provided in the
JCL.

If multiple output files have identical specifications (that is, identical record selection,
record reformatting, and report writing specifications), the FNAMES and/or FILES param-
eter can connect the OUTFIL control statement with more than one DD statement. For
example, FNAMES=(FILE1OUT,FILE2OUT,FILE3OUT) connects the OUTFIL control
statement with the three listed DD statements. Such a set of output files is termed an
OUTFIL group.

If multiple output files have different specifications, then each file is specified on a separate
OUTFIL control statement with one FNAMES and/or FILES parameter on each control
statement.

If a SORTOUT ddname is defined in the JCL and does not appear in any FILES or
FNAMES specification, it will be written to without any OUTFIL processing. If an inline
E35 exit has been specified, OUTFIL is ignored.

If neither a FILES nor FNAMES parameter is specified on an OUTFIL control statement,
the default ddname of SORTOUT will be used. If a 4-byte ddname prefix is in effect, the
default SORTOUT ddname will be ppppOUT, where pppp is the prefix.

INCLUDE/OMIT Parameter (Optional)

Specify the INCLUDE or OMIT parameter to indicate which records are to be included in
or omitted from each output file. These parameters let you create multiple output files
which contain different records. The default is to include all sorted or merged records in the
output file.

The format for the INCLUDE/OMIT parameter is illustrated below:

Figure 27. FNAMES Parameter Format

FNAMES=
ddname
(ddname1 [,ddname2]...) 

 
 

SyncSort for z/OS 1.1 Programmer’s Guide2.64

OUTFIL

See “INCLUDE/OMIT Control Statement” on page 2.16 for the detailed format of a compar-
ison. The FORMAT=f parameter, which is permitted for the INCLUDE/OMIT control state-
ment, is not permitted for the INCLUDE/OMIT parameter. Field formats must be specified
on a field-by-field basis.

The comparison determines which records are included or omitted. When no data records
are to be included in the output file(s) (when running a test, for example), specify either
INCLUDE=NONE or OMIT=ALL.

Note: The location within the data records of the fields specified in the INCLUDE/OMIT
parameter will be based on the formatting of the record after processing by an E15/E32
exit, the INREC control statement, the OUTREC control statement, and an E35 exit, but
before processing due to the OUTREC and/or report writing parameters of the OUTFIL
control statement.

The following four parameters (STARTREC, ENDREC, SAVE, and SPLIT) are related to
the previous parameter (INCLUDE/OMIT) in that they specify records to be included for
OUTFIL processing. However, these four options specify records in bulk rather than
through a comparison condition.

STARTREC Parameter (Optional)

Use the STARTREC=n parameter to specify the record number n of the first record to be
processed by the OUTFIL specification in effect. All records prior to the specified record
will be ignored for the OUTFIL group. The record number is determined by the sequence of
records presented for OUTFIL processing.

ENDREC Parameter (Optional)

Use the ENDREC=n parameter to specify the record number n of the last record to be pro-
cessed by the OUTFIL specification in effect. All records after the specified record will be
ignored for the OUTFIL group. The record number is determined by the sequence of
records presented for OUTFIL processing.

Figure 28. INCLUDE/OMIT Parameter Format

INCLUDE
OMIT 

 
 

 =

ALL
NONE

(c1

,AND,
,&,
,OR,
,|, 

 
 
 
 

 c2...)

 
 
 
 
 
 
 
 
 

Chapter 2. SyncSort Control Statements 2.65

OUTFIL

SAVE Parameter (Optional)

Use SAVE to include records for OUTFIL processing that have not been included in any
other OUTFIL group.

If SAVE is specified on more than one OUTFIL group, then each of these OUTFIL groups
get the records that were discarded from all other OUTFIL groups that do not have SAVE.

The OUTFIL INCLUDE/OMIT parameter is mutually exclusive with the SAVE parameter.
Only one of these parameters can be specified for an OUTFIL group.

Note that if the SORTOUT data set has not been associated with any OUTFIL control
statement but is present in the JCL, the SORTOUT data set will receive a copy of all
records prior to OUTFIL processing. This does not affect the SAVE operation, since SAVE is
only pertinent to other OUTFIL group specifications.

OUTREC Parameter (Optional)

The OUTREC parameter indicates how the records are to be formatted in each output file.
This parameter lets you create multiple output files which contain differently formatted
records.

When the records in all multiple output files are formatted and edited identically, it is more
efficient to specify a single OUTREC control statement rather than several OUTREC
parameters.

The OUTREC parameter reformats the records that are to be included in the output file(s)
after E35 processing, if specified. If no additional reformatting is required, omit this
parameter.

All references to field positions specified in the OUTREC parameter refer to the record
after processing by an E15 exit, the INREC control statement, the OUTREC control state-
ment, and an E35 exit but before insertion of ANSI control characters.

The format of the OUTREC parameter is illustrated below.

The format of the OUTFIL OUTREC parameter is generally identical to the format of the
FIELDS parameter of the OUTREC control statement. (See the subsections dealing with
the FIELDS parameter in “OUTREC Control Statement” on page 2.88.) Note, however, that
FIELDS= is not used with OUTFIL OUTREC. In addition, OUTFIL OUTREC accepts two
subparameters that cannot be specified on the OUTREC control statement:

OUTREC=(field1[,field2]...)

Figure 29. OUTREC Parameter Format

SyncSort for z/OS 1.1 Programmer’s Guide2.66

OUTFIL

[n]/ The / subparameter indicates the end of a line and can be used to create
multiple output lines from a single input record. Multiple slashes (coded //
.../ or n/) can be used to specify leading, trailing, or embedded blank lines.
At the beginning or end of the OUTREC parameter, n/ produces n blank
lines. Embedded within the OUTREC parameter, n/ produces n-1 blank
lines.

The / subparameter is most useful for its ability to accommodate records
whose lengths exceed the width of the physical page. For an example of the
/ subparameter, see “Printing Input Records on Multiple Output Lines” on
page 3.28.

The / subparameter may not be used when LINES=ANSI or
LINES=(ANSI,n) has also been specified on the OUTFIL control statement.

VLFILL=f The VLFILL parameter is used in conjunction with OUTREC or OUTREC
CONVERT to specify a fill byte to be used for any missing p,l field bytes.

The VLFILL parameter has two functions:

• It enables a variable-length OUTFIL OUTREC non-CONVERT
application to continue processing when there is an input record with
missing field bytes in a p,l field specification.

• It provides a means to override the default fill byte used in an OUTFIL
OUTREC CONVERT application when there are missing bytes in a p,l
field specification.

In the first instance, if VLFILL has not been specified the application will
terminate with the critical error WER244A. In the second case, by default,
spaces will be used for missing field bytes.

f specifies a byte to be used for missing field bytes. f can be specified as
either a character or hexadecimal value. Specify either C'x' where x is a sin-
gle EBCDIC character or X'hh' where hh represents a hexadecimal digit
pair (00-FF).

Note: If VLFILL is specified, the OUTREC parameter must also be
specified. VLFILL is ignored when the FTOV parameter is used.

FTOV Parameter (Optional)

The FTOV parameter converts fixed-length input records to variable-length output records.

FTOV can be used both with and without the OUTREC parameter. When FTOV is used
with the OUTREC parameter, the variable-length record is created from the specified fields

Chapter 2. SyncSort Control Statements 2.67

OUTFIL

of the fixed-length record. When FTOV is not used with the OUTREC parameter, the vari-
able-length record is created from the whole fixed-length record.

Notes: FTOV cannot be used with CONVERT. If the input record is variable-length, FTOV,
if specified, will be ignored. FTOV can be used with the VLTRIM parameter to delete pad
bytes at the end of a record.

For an example of an OUTFIL control statement that uses the FTOV parameter, see Figure
41 on page 2.87.

VLTRIM Parameter (Optional)

The VLTRIM parameter defines a byte to be deleted from the end of a variable-length
record. All prior occurrences of this byte will also be deleted until a byte that is not equal to
the trim byte is found. The resulting records are decreased in record length. However,
VLTRIM will not delete the first data byte, the ANSI carriage control character, or the
Record Descriptor Word (RDW).

The format of the VLTRIM parameter is illustrated below.

b specifies the byte to be deleted from the end of the record. b can be specified as either a
character or hexadecimal value. Specify either C'x' where x is a single EBCDIC character or
X'hh' where hh represents a hexadecimal digit pair (00-FF).

Note: VLTRIM is ignored if used with fixed-length output records.

For an example of an OUTFIL control statement that uses the VLTRIM parameter, see Fig-
ure 41 on page 2.87.

CONVERT Parameter (Optional)

The CONVERT parameter is used in conjunction with the OUTREC parameter to convert
variable-length records to fixed-length records.

The records do not require an RDW and will be written to the output file(s) with a RECFM
of F or FB. When using CONVERT, you no longer need to apply the rules for “Specifying the
FIELDS parameter for Variable-Length Records” found in the description of the OUTREC
control statement.

You cannot specify the variable portion of the input records (position without length) when
using CONVERT. All other p,l data fields that are not present will be filled with blanks by
default. The OUTFIL VLFILL parameter can be used to specify a different fill byte for any
missing fields (see above description).

VLTRIM=b

SyncSort for z/OS 1.1 Programmer’s Guide2.68

OUTFIL

Notes: If CONVERT is specified, the OUTREC parameter must also be specified.
CONVERT cannot be used with the FTOV parameter.

SPLIT Parameter (Optional)

The SPLIT parameter of the OUTFIL control statement causes output records to be distrib-
uted in rotation among files in an OUTFIL group.

In the normal case, when the SPLIT parameter is not used, the output files in the group
will contain the same records. SPLIT distributes the output records. The following OUTFIL
control statement will distribute records among three output files:

For the above example, the first record will be written to the SORTOF01 data set; the sec-
ond, to SORTOF02; the third, to SORTOF03. The fourth record will be written to
SORTOF01 again, and so on in round-robin fashion.

The OUTFIL control statement can contain an INCLUDE/OMIT and an OUTREC parame-
ter, in which case the selected and reformatted subset of records will be distributed among
the output files.

Note that the SPLIT parameter cannot be used with any report writing (SortWriter) func-
tions. Specifically, report writing parameters (HEADERn, TRAILERn, SECTIONS, LINES,
NODETAIL) cannot be specified on the OUTFIL control statement that defines the output
group.

SPLIT can be used with BatchPipes/MVS; that is, the output records can be distributed
among BatchPipes/MVS data sets.

HEADER1/HEADER2 Parameters (Optional)

The SortWriter facility provides three types of headers:

• HEADER1, the report header

• HEADER2, the page header

• HEADER3, the section header.

HEADER1 and HEADER2 are parameters of the OUTFIL control statement. HEADER3 is
a subparameter of OUTFIL’s SECTIONS parameter. Refer to “SECTIONS Parameter
(Optional)” on page 2.80 for an explanation of how to specify HEADER3.

OUTFIL FILES=(01,02,03),SPLIT

Figure 30. Sample OUTFIL Control Statement with SPLIT

Chapter 2. SyncSort Control Statements 2.69

OUTFIL

The three types of headers function independently of each other. Each serves a different
purpose.

• HEADER1 provides a header or a possible title page for the entire report. It appears
only once at the beginning of the report on its own page.

• HEADER2 provides a page header or a running head for each page defined by the
LINES parameter. It appears at the beginning or top of each page.

• HEADER3 provides a section header that appears at the beginning of each specified
section and, optionally, at the top of each page (or directly below any HEADER2).

The chart below illustrates the format for HEADERs. The field entries represent the sub-
parameters that can be specified for each HEADER entry.

The following HEADER Subparameters Format chart illustrates and defines the available
subparameters. Each subparameter constitutes a separate field of the HEADER.

c: Use the c: subparameter to define the column in which the spec-
ified field should begin.

n Used in conjunction with the X, 'literal string', and / subparam-
eters, the n value defines the number (1-4095) of repetitions for
each entry.

X Use the X subparameter to define the number of spaces. It must
be coded to the immediate right of the n value, if specified. For

HEADER1=(field1[,field2]...)

HEADER2=(field1[,field2]...)

HEADER3=(field1[,field2]...)

Figure 31. HEADER Parameter Format

Figure 32. HEADER Subparameter Format

[c:]

[n] X
[n] 'literal string'
[n] /
p,l
&DATE
&DATE=(m1m2m3m4)
&DATENS=(abc)
&TIME
&TIME=(hp)
&TIMENS=(tt)
&PAGE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide2.70

OUTFIL

more than 4095 spaces, two or more nX values should be speci-
fied.

'literal string' Use the 'literal string' subparameter to define a literal string.
Specify the number of repetitions by coding n immediately
before it. An apostrophe within a literal string must be specified
as a double apostrophe; for example, C 'O"Leary'.

/ Use the / subparameter to indicate the end of a line, force a car-
riage return, and separate text lines of a header. Multiple
slashes (//.../ or n/) can be used to specify leading, trailing, or
embedded blank lines. At the beginning or end of a header, n/
produces n blank lines. Within a header, n/ produces n-1 blank
lines.

p,l Use the p and l subparameters to include a field (or fields)
within a record in the header. For a HEADER1, the field(s) will
be extracted from the first record in a file; for a HEADER2, the
field(s) will be extracted from the first record on a page; for a
HEADER3, the field(s) will be extracted from the first record in
a section. p is the starting position of the field in the record; l is
the length in bytes (1-255) of the field. Any number of fields can
be specified. (Contiguous fields within a record can be specified
with a single p,l entry, but their combined length cannot exceed
255 bytes.) The specified field(s) should be a character or alpha-
numeric string or a number in printable format, and the field(s)
cannot be converted or edited.

&DATE The &DATE subparameter specifies the current system date
and requires 8 bytes to display mm/dd/yy.

&DATE=(m1m2m3m4) This form of the &DATE subparameter generates the current
system date and controls the formatting of the date. You can
specify the position of the year, month, and date, specify a sepa-
rator character, and choose between 2-digit and 4-digit year rep-
resentation.

The positions m1 through m4 represent masks used to format
the date. To specify the position of the month, day, and year,
replace the m1, m2, and m3 positions, in any order, with M for
the month (01-12), D for the day (01-31), and either Y or 4 for
the year (where Y is a 2-digit year and 4 is a 4-digit year).
Replace the m4 position with a separator character.

For example, to print the date with the form yy-mm-dd, specify
&DATE=(YMD-). For December 31, 1999, the date would
appear as “99-12-31”.

A blank used as the separator character must be enclosed in
apostrophes. An apostrophe used as the separator character
must be specified as two apostrophes enclosed within apostro-
phes ('''').

Chapter 2. SyncSort Control Statements 2.71

OUTFIL

The field for this form of &DATE requires 8 bytes for a 2-digit
year representation and 10 bytes for a 4-digit year. The M, D,
and Y or 4 may only appear once in the mask. All four positions
must be specified.

&DATENS=(xyz) specifies that the current date is to appear in the report record
in the form 'xyz', where x, y, and z indicate the order in which
the month, day, and year are to appear and whether the year is
to appear as two or four digits. For x, y, and z, use M to repre-
sent the month (01-12), D to represent the day (01-31), Y to rep-
resent the last two digits of the year (for example, 02), or 4 to
represent the four digits of the year (for example, 2002). M, D,
and Y or 4 can each be specified only once.

For example, &DATENS=(DMY) would produce a date of the
form 'ddmmyy' which on March 29, 2002, would appear as
'290302'. &DATENS=(4MD) would produce a date of the form
'yyyymmdd' which on March 29, 2002, would appear as
'20020329'. x, y, and z must be specified.

&TIME The &TIME subparameter specifies the current time of day and
requires 8 bytes to display hh:mm:ss, where hh is in 24-hour
format.

&TIME=(hp) This form of the &TIME subparameter generates the current
system time of day and controls the formatting of the time. You
can print the time in 24-hour or 12-hour formats and specify the
separator character between the hours, minutes, and seconds.

The format for 24-hour time is hhpmmpss, where hh represents
the hour (00-23), mm represents minutes (00-59), ss represents
seconds (00-59), and p represents the separator character as
specified by p in the &TIME=hp subparameter.

The format for 12-hour time is hhpmmpss nn, where hh repre-
sents the hour (01-12), mm represents minutes (00-59), ss rep-
resents seconds (00-59), and p represents the separator
character as specified by p in the &TIME=hp subparameter.
The nn is “am” or “pm” as appropriate.

To select 12-hour mode specify h as 12; to select 24-hour mode
specify h as 24. The p specification represents the character to
use as a separator.

For example, to display the time in a 12-hour format with a
period as a separator, specify &TIME=(12.). At 22:43:23 hours,
the time would appear as “10.43.23 pm”.

A blank used as the separator character must be enclosed in
apostrophes. An apostrophe used as the separator character

SyncSort for z/OS 1.1 Programmer’s Guide2.72

OUTFIL

must be specified as two apostrophes enclosed within apostro-
phes ('''').

The field for this form of the &TIME subparameter requires 8
bytes for the 24-hour format and 11 bytes for the 12-hour for-
mat.

&TIMENS=(tt) specifies that the current time is to appear in the report record
in the form 'hhmmss' (24-hour time) or 'hhmmss xx' (12-hour
time). If tt is 24, the time is to appear in the form 'hhmmss' (24-
hour time) where hh represents the hour (00-23), mm repre-
sents the minutes (00-59), and ss represents the seconds (00-
59).

For example, &TIMENS=(24) would produce a time of the form
'hhmmss' which at 08:25:13 pm would appear as '202513'. If tt
is 12, the time is to appear in the form 'hhmmss xx' (12-hour
time) where hh represents the hour (01-12), mm represents the
minutes (00-59), ss represents the seconds (00-59), and xx is
either 'am' or 'pm'.

For a second example, &TIMENS=(12) would produce a time of
the form 'hhmmss xx' which at 08:25:13 pm would appear as
'082513 pm'.

&PAGE The &PAGE subparameter sequentially numbers logical pages
of the output report and requires 6 bytes. It produces a 6-digit
sequential page number, right justified with leading zeros sup-
pressed. &PAGE is ignored for HEADER1.

Rules for Specifying HEADER Subparameters

Observe the following guidelines when you specify HEADER subparameters:

• Separate subparameters with commas, except between c: and another subparameter.
Commas are optional for the / subparameter.

• Enclose literals in single quotes.

• Specify blank fields of n bytes as nX.

• Headings specified with fewer blanks than the logical record length (LRECL) of the
output record are automatically padded on the right with blanks.

• If a heading exceeds the logical record length (LRECL) of the output record, use the
OUTREC control statement or the OUTREC parameter to expand the output record
length so that it is at least as long as the longest header. For example, if the longest
header is 115 characters and the output record length is 80 bytes, use the OUTREC

Chapter 2. SyncSort Control Statements 2.73

OUTFIL

control statement or the OUTREC parameter to insert a blank in position 115 of the
output record. This will cause bytes 81 through 115 to be padded with blanks.

TRAILER Parameters (Optional)

The SortWriter facility provides three types of trailers:

• TRAILER1, the report trailer

• TRAILER2, the page trailer

• TRAILER3, the section trailer.

TRAILER1 and TRAILER2 are parameters of the OUTFIL control statement; TRAILER3
is a subparameter of OUTFIL’s SECTIONS parameter. Refer to “SECTIONS Parameter
(Optional)” on page 2.80 for an explanation of how to specify TRAILER3.

The three types of trailers function independently of each other. Each serves a different
purpose:

• TRAILER1 provides a trailer or a possible summary for the entire report. It appears
only once at the end of the report on its own page.

• TRAILER2 provides a page trailer for each page defined by the LINES parameter. It
appears at the end of each page.

• TRAILER3 provides a section trailer that appears at the end of each specified section
and serves as a conclusion or summary for that section.

TRAILER1, TRAILER2, and TRAILER3 also provide TOTAL, SUBTOTAL, MIN, SUB-
MIN, MAX, SUBMAX, AVG, SUBAVG, COUNT, SUBCOUNT, COUNT15, and
SUBCOUNT15 capabilities at report, page, and section levels.

The chart below illustrates the format for TRAILERs. Its field entries represent the subpa-
rameters that can be specified for each TRAILER entry.

The following TRAILER Subparameters Format chart illustrates and defines the available
subparameters. Each subparameter constitutes a separate field of the TRAILER.

TRAILER1=(field1[,field2]...)

TRAILER2=(field1[,field2]...)

 TRAILER3=(field1[,field2]...)

Figure 33. TRAILER Parameter Format

SyncSort for z/OS 1.1 Programmer’s Guide2.74

OUTFIL

c: Use the c: subparameter to define the column in which the spec-
ified field should begin.

n Used in conjunction with the X, 'literal string', and / subparam-
eters, the n value defines the number (1-4095) of repetitions for
each entry.

X Use the X subparameter to define the number of spaces. It must
be coded to the immediate right of the n value, if specified. For
more than 4095 spaces, two or more nX values should be speci-
fied.

'literal string' Use the 'literal string' subparameter to define a literal string.
Specify the number of repetitions by specifying n immediately
before it. An apostrophe within a literal string must be specified
as a double apostrophe; for example, C 'O"Leary'.

/ Use the / subparameter to indicate the end of a line, force a car-
riage return, and separate text lines of a trailer. Multiple
slashes (coded //.../ or n/) can be used to specify leading, trailing,
or embedded blank lines. At the beginning or ending of a trailer,

Figure 34. TRAILER Subparameters Format

[c:]

[n] X
[n] 'literal string'
[n] /
p,l
&DATE
&DATE= m1m2m3m4()
&DATENS(abc)
&TIME
&TIME=(hp)
&TIMENS(tt)
&PAGE

TOTAL/TOT
SUBTOTAL/SUB
MIN
SUBMIN
MAX
SUBMAX
AVG
SUBAVG 

 
 
 
 
 
 
 
 
 
 

 = (p,l,f

,Mm
,EDIT=(...)
,M0

 
 
 
 
 

 [,SIGNS=(...)] [,LENGTH=(n)])

COUNT
SUBCOUNT
COUNT15
SUBCOUNT15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 2. SyncSort Control Statements 2.75

OUTFIL

n/ produces n blank lines. Within a trailer, n/ produces n-1
blank lines.

p,l Use the p and l subparameters to include a field (or fields)
within a record in the trailer. For a TRAILER1, the field(s) will
be extracted from the last record in a file; for a TRAILER2, the
field(s) will be extracted from the last record on a page; for a
TRAILER3, the field(s) will be extracted from the last record in
a section. p is the starting position of the field in the record; l is
the length in bytes (1-255) of the field. Any number of fields can
be specified. (Contiguous fields within a record may be specified
with a single p,l entry, but their combined length may not
exceed 255 bytes.) The specified field(s) should be a character or
alphanumeric string, or a number in printable format, and the
field cannot be converted or edited.

If any variable-length record contains only a portion of the
bytes in a specified field, those bytes will be included in the
trailer and blanks will be substituted for the missing bytes.

&DATE The &DATE subparameter specifies the current system date
and requires 8 bytes to display mm/dd/yy.

&DATE=(m1m2m3m4) This form of the &DATE subparameter generates the current
system date and controls the formatting of the date. You can
specify the position of the year, month, and date, specify a sepa-
rator character, and choose between 2-digit and 4-digit year rep-
resentation.

The positions m1 through m4 represent masks used to format
the date. To specify the position of the month, day, and year,
replace the m1, m2, and m3 positions, in any order, with M for
the month (01-12), D for the day (01-31), and either Y or 4 for
the year (where Y is a 2-digit year and 4 is a 4-digit year).
Replace the m4 position with a separator character.

For example, to print the date with the form yy-mm-dd, specify
&DATE=(YMD-). For December 31, 1999, the date would
appear as “99-12-31”.

The field for this form of &DATE requires 8 bytes for a 2-digit
year representation and 10 bytes for a 4-digit year. The M, D,
and Y or 4 may only appear once in the mask. All four positions
must be specified.

&DATENS=(xyz) specifies that the current date is to appear in the report record
in the form 'xyz', where x, y, and z indicate the order in which

SyncSort for z/OS 1.1 Programmer’s Guide2.76

OUTFIL

the month, day, and year are to appear and whether the year is
to appear as two or four digits. For x, y, and z, use M to repre-
sent the month (01-12), D to represent the day (01-31), Y to rep-
resent the last two digits of the year (for example, 02), or 4 to
represent the four digits of the year (for example, 2002). M, D,
and Y or 4 can each be specified only once.

For example, &DATENS=(DMY) would produce a date of the
form 'ddmmyy' which on March 29, 2002, would appear as
'290302'. &DATENS=(4MD) would produce a date of the form
'yyyymmdd' which on March 29, 2002, would appear as
'20020329'. x, y, and z must be specified.

&TIME The &TIME subparameter specifies the current time of day and
requires 8 bytes to display hh:mm:ss, where hh is in 24-hour
format.

&TIME=(hp) This form of the &TIME subparameter generates the current
time of day and controls the formatting of the time. You can
print the time in 24-hour or 12-hour formats and specify the
separator character between the hours, minutes, and seconds.

The format for 24-hour time is hhpmmpss, where hh represents
the hour (00-23), mm represents minutes (00-59), ss represents
seconds (00-59), and p represents the separator character as
specified by p in the &TIME=hp subparameter.

The format for 12-hour time is hhpmmpss nn, where hh repre-
sents the hour (01-12), mm represents minutes (00-59), ss rep-
resents seconds (00-59), and p represents the separator
character as specified by p in the &TIME=hp subparameter.
The nn is “am” or “pm” as appropriate.

To select 12-hour mode specify h as 12; to select 24-hour mode
specify h as 24. The p specification represents the character to
use as a separator.

For example, to display the time in a 12-hour format with a
period as a separator, specify &TIME=(12.). At 22:43:23 hours,
the time would appear as “10.43.23 pm”.

The field for this form of the &TIME subparameter requires 8
bytes for the 24-hour format and 11 bytes for the 12-hour for-
mat.

&TIMENS=(tt) specifies that the current time is to appear in the report record
in the form 'hhmmss' (24-hour time) or 'hhmmss xx' (12-hour

Chapter 2. SyncSort Control Statements 2.77

OUTFIL

time). If tt is 24, the time is to appear in the form 'hhmmss' (24-
hour time) where hh represents the hour (00-23), mm repre-
sents the minutes (00-59), and ss represents the seconds (00-
59).

For example, &TIMENS=(24) would produce a time of the form
'hhmmss' which at 08:25:13 pm would appear as '202513'. If tt
is 12, the time is to appear in the form 'hhmmss xx' (12-hour
time) where hh represents the hour (01-12), mm represents the
minutes (00-59), ss represents the seconds (00-59), and xx is
either ‘am’ or ‘pm’.

For a second example, &TIMENS=(12) would produce a time of
the form 'hhmmss xx' which at 08:25:13 pm would appear as
'082513 pm'.

&PAGE The &PAGE subparameter sequentially numbers logical pages
of the output report and requires 6 bytes. It produces a 6-digit
sequential page number, right justified with leading zeros sup-
pressed.

TOTAL/TOT Use the TOTAL subparameter to specify that numeric data are
to be accumulated and totaled at the end of a report, logical
page, or section.

After including the results in the appropriate trailer, the accu-
mulator resets to zero. TOTALs appear in printable format. If a
SyncSort editing mask is used for totaled data, the length of the
output field is determined by the maximum permissible length
of the data format, not by the specified length of the input field.
This means that the default is to display 10 digits for BI and FI
fields and 15 digits for PD, ZD, and CSF or FS fields. Internally,
SyncSort maintains up to 15 digits for all data formats. Thus, if
a BI or FI field total could exceed 10 digits, you should specify
the LENGTH and/or EDIT subparameters to override the
length of the output field.

SUBTOTAL/SUB Use the SUBTOTAL subparameter to generate a running total
of a field at the end of a report, logical page, or section. This
subparameter functions like the TOTAL subparameter except
the accumulator does not reset to zero. SUBTOTALs appear in
printable format. If a SyncSort editing mask is used for subto-
taled data, the length of the output field is determined by the
maximum permissible length of the data format, not by the
specified length of the input field. This means that the default
is to display 10 digits for BI and FI fields and 15 digits for PD,
ZD, and CSF or FS fields. Internally, SyncSort maintains up to

SyncSort for z/OS 1.1 Programmer’s Guide2.78

OUTFIL

15 digits for all data formats. Thus, if a BI or FI field total could
exceed 10 digits, you should specify the LENGTH and/or EDIT
subparameters to override the length of the output field.

MIN Use the MIN subparameter to obtain the minimum numeric
value of an input field for all records within the report, logical
page, or section. This value will be displayed in printable for-
mat.

SUBMIN Use the SUBMIN subparameter to obtain the running mini-
mum numeric value of an input field for all records within the
report up to the point of the TRAILER. This value will be dis-
played in printable format.

MAX Use the MAX subparameter to obtain the maximum numeric
value of an input field for all records within the report, logical
page, or section. This value will be displayed in printable for-
mat.

SUBMAX Use the SUBMAX subparameter to obtain the running maxi-
mum numeric value of an input field for all records within the
report up to the point of the TRAILER. This value will be dis-
played in printable format.

AVG Use the AVG subparameter to obtain the average numeric value
of an input field for all records within the report, logical page, or
section. This value will be displayed in printable format.

SUBAVG Use the SUBAVG subparameter to obtain the running average
numeric value of an input field for all records within the report
up to the point of the TRAILER. This value will be displayed in
printable format.

p Use the p subparameter to indicate the position of the first byte
of the numeric field.

l Use the l subparameter to indicate the length of the numeric
field. Permissible lengths are 1-4 bytes for BI or FI, 1-8 bytes for
PD, 1-15 bytes for ZD, and 1-16 for CSF or FS with a 15-digit
limit. To determine the length of the output field, refer to “How
to Convert Numeric Data” on page 2.97.

For the (SUB)TOTAL and (SUB)AVG functions, fields are
totaled internally as 8-byte PD fields. An overflow condition will
occur if the positive or negative value of a totaled or subtotaled
field exceeds the value that can be represented by such fields,
and the execution will terminate with an error message.

Chapter 2. SyncSort Control Statements 2.79

OUTFIL

f Use the f subparameter to indicate the format of the numeric
field. Replace f with BI, FI, PD, ZD, CSF, or FS.

Mm Use the Mm subparameter to indicate that one of the 27 Sync-
Sort-supplied masks (M0-M26) should be used to format a field.
Replace m with the mask number. The default is M0. For
details, refer to “The Mm Subparameter (Editing Masks)” on
page 2.109.

EDIT=(pattern) Use the EDIT=(pattern) subparameter to indicate that a user-
provided editing mask should be used to format a field. For
details, refer to “Converting SMF Date and Time Formats” on
page 2.102.

SIGNS=(...) Use the SIGNS subparameter to specify leading and/or trailing
signs that will appear before or after the edited number. For
details, refer to “The SIGNS Subparameter” on page 2.112.

LENGTH=(n) Use the LENGTH subparameter to alter the length of a field
determined by the edit pattern and the internal field format.
For details, refer to “The LENGTH=n Subparameter” on page
2.108.

COUNT Use the COUNT subparameter to obtain a count of the number
of records in either the entire report or a specific part of the
report. In a TRAILER1, this field will contain a count of the
total number of data records in the report. In a TRAILER2, it
will contain a count of the number of data records on each page.
In a TRAILER3, it will contain a count of the number of data
records in each section. The count will be the number of data
records before any multi-line OUTREC processing has been
done. This number will be a right-justified 8-digit field with
leading zeros suppressed. The maximum value is 99999999.

COUNT15 This subparameter is identical to the COUNT subparameter
except for the allowable size of the count number. For
COUNT15 the number will be a right-justified 15-digit field
with leading zeros suppressed. The maximum value is
999999999999999.

SUBCOUNT Use the SUBCOUNT subparameter to obtain a running, or
cumulative, count of the number of records throughout a report.
In a TRAILER1, this field will contain a count of the total num-
ber of data records in the report. In a TRAILER2, it will contain
a cumulative count of the number of data records on a page-by-
page basis. In a TRAILER3, it will contain a cumulative count
of the number of data records on a section-by-section basis. The

SyncSort for z/OS 1.1 Programmer’s Guide2.80

OUTFIL

count will be the number of data records before any multi-line
OUTREC processing has been done. This number will be a
right-justified, 8-digit field with leading zeros suppressed. The
maximum value is 99999999.

SUBCOUNT15 This subparameter is identical to the SUBCOUNT subparame-
ter except for the allowable size of the count number. For
SUBCOUNT15 the number will be a right-justified 15-digit
field with leading zeros suppressed. The maximum value is
999999999999999.

Rules for Specifying TRAILER Subparameters

Observe the following guidelines when you specify TRAILER subparameters:

• Separate fields with commas, except for /, where commas are optional.

• Enclose literals in single quotes.

• Specify blank fields of n bytes as nX.

• If a SyncSort editing mask is used for totaled or subtotaled data (either by specification
or by default), the length of the generated pattern will be determined by the maximum
permissible length supported for that data format, regardless of the actual length of the
field being totaled or subtotaled. Use the LENGTH subparameter to override the
length of the pattern.

• Trailers specified with fewer blanks than the logical record length (LRECL) of the
output record are automatically padded on the right with blanks.

• If a trailer exceeds the logical record length (LRECL) of the output record, use the
OUTREC control statement or the OUTREC parameter to expand the output record
length so that it is at least as long as the longest header. For example, if the longest
trailer is 115 characters and the output record length is 80 bytes, use the OUTREC
control statement or the OUTREC parameter to insert a blank in position 115 of the
output record. This will cause bytes 81 through 115 to be padded with blanks.

SECTIONS Parameter (Optional)

The SECTIONS parameter allows the output report to be divided into sections.

The format of the SECTIONS parameter is illustrated below.

Chapter 2. SyncSort Control Statements 2.81

OUTFIL

The SECTIONS parameter identifies the control field(s) that determine or control section
breaks. More than one control field can be specified to subdivide a report within sections.
However, if more than one control field is specified, the specifications must be made in
major to minor order. A major control field break causes all minor control fields to break at
the same time.

Each control field is identified by its position p and length l.

p The position value indicates the first byte of the field relative to the beginning
of the record after processing by an E15/E32 exit, the INREC control statement,
the OUTREC control statement, and an E35 exit, if specified, but before pro-
cessing by the OUTREC parameter and other report writing parameters of the
OUTFIL control statement, if specified.

l The length value indicates the length of the field. The length must be an inte-
ger number of bytes and cannot exceed 256 bytes.

For each control field, one or more of the following subparameters may be specified: SKIP,
HEADER3, or TRAILER3. The SECTIONS subparameters are described below.

SKIP The SKIP subparameter specifies the amount of spacing that
should occur after a section is completed. This spacing will follow
immediately after the last TRAILER3 for that section, if specified.
SKIP=nL specifies that the next line of the report will appear after
n number of blank lines, with n being between 0 and 255. SKIP=P
specifies a page break following the completion of a section.

HEADER3 The HEADER3 subparameter specifies a section header or title
that will appear at the start of each new section. The HEADER3
format is identical to the format of the HEADER1/HEADER2
parameters. (See HEADER1/ HEADER2 Parameters for details.)

SECTIONS=(field1[,field2]...)

Each field is specified as follows:

p,l [,subparameter1] [,subparameter2] ...

Figure 35. SECTIONS Parameter Format

Figure 36. Sections Subparameter

,SKIP =
P
nL 

 
 

 [,TRAILER3=(...)] [,HEADER3=(...)] [,PAGEHEAD]

SyncSort for z/OS 1.1 Programmer’s Guide2.82

OUTFIL

TRAILER3 The TRAILER3 subparameter specifies a section trailer that will
appear at the end of each section. The TRAILER3 format is identi-
cal to the format of the TRAILER1/TRAILER2 parameters. (See
TRAILER1/ TRAILER2 Parameters for details.)

PAGEHEAD The PAGEHEAD subparameter may be specified in conjunction
with the HEADER3 subparameter. The PAGEHEAD subparameter
specifies that the HEADER3 appear at the top of each page follow-
ing any HEADER2, as well as at the start of each new section.
PAGEHEAD is ignored if no HEADER3 is specified.

A control field may be specified without any subparameters. This allows multiple non-
contiguous control fields to be specified for each SECTIONS break field.

LINES Parameter (Optional)

Use the LINES parameter to define the logical pages constituting a report. The pages can
be defined in three ways:

• Using the carriage control characters automatically supplied by SyncSort for z/OS

• Using ANSI control characters supplied by the user

• Using a combination of the above two methods.

Regardless of which method is selected, the number of lines defining a logical page must be
equal to or greater than the total number of lines, including blank lines, required for all
HEADER2, HEADER3, TRAILER2, and TRAILER3 entries plus at least one record. If
multi-line OUTREC is used, all lines produced from each input record will be written to the
same logical page.

The format of the LINES parameter is illustrated below:

LINES=n

If LINES=n is specified, paging is automatic and carriage control characters are added to
the beginning of each record by SyncSort. Because SyncSort requires one byte for a control
character, the LRECL specified in the SORTOUT, SORTOFx, or SORTOFxx DD statement
must be one byte longer than the number of bytes specified for the output record length.

Figure 37. LINES Parameter Format

LINES =
n
ANSI
(ANSI,n)

 
 
 
 
 

Chapter 2. SyncSort Control Statements 2.83

OUTFIL

Specify n as a value from 1 to 255. If report writing parameters are specified for the file(s)
(e.g., HEADERs, TRAILERs, SECTIONS), the default is LINES=60.

The LINES=n specification works in conjunction with any HEADERs and TRAILERs you
have specified as follows:

• HEADER1, if specified, prints as a preface to the report. Its page is not numbered.

• An automatic page break occurs after HEADER1. Every nth line after the completion of
HEADER1 will signal the start of a new page.

• A HEADER2 entry, if present, is the first line(s) on each page, followed by any
HEADER3 entries that might be triggered either by control breaks or by PAGEHEAD
specifications in the SECTIONS parameter. HEADER2 is part of the logical page.

• A HEADER3 entry, if present, is part of a section of the report. It prints as a header for
the separate report sections. HEADER3s appear in major to minor order according to
the order of their associated sections.

• If PAGEHEAD is specified, HEADER3 prints immediately below HEADER2, if
specified, or at the top of the page if a HEADER2 is not specified. A HEADER3 will not
print near the end of a page if there is not sufficient room on that page for at least one
data record and a TRAILER2, if specified.

• A TRAILER3 entry, if present, is part of a section of the report. It prints as a conclusion
or summary for the separate report sections. TRAILER3s will appear in major to minor
order according to the order of their associated sections.

• A TRAILER2 entry, if present, will be the last line(s) on the logical page, preceded by
any TRAILER3s triggered by coincidentally occurring control breaks. TRAILER2 is
part of the logical page.

• TRAILER1 will be the last page of the entire report. Its page is not numbered.

Therefore, when LINES=n is specified, all HEADER2, HEADER3, TRAILER2, and
TRAILER3 entries will be included as part of n (the total number of lines in a logical page)
and will print as described above.

LINES=ANSI

If LINES=ANSI is specified, user-provided ANSI control characters define the logical
pages. The first byte of each output record must contain an ANSI control character
(inserted, for example, by an E35 program) which is valid for the specified output device
type. For example, inserting a ‘0’ in byte 1 of the output records produces double-spaced
records.

The ANSI control characters which can be used with the LINES=ANSI specification are
summarized in the ANSI Control Character Chart below.

SyncSort for z/OS 1.1 Programmer’s Guide2.84

OUTFIL

If printed output is requested, the ANSI control characters do not print as part of the out-
put record. If, however, the report is routed to a disk or tape device, the control characters
are included in the output data.

The LINES=ANSI specification works in conjunction with any HEADERs or TRAILERs
you have specified. If you specify HEADER2, the ANSI specification affects this header as
follows:

• After HEADER1 is output, the first logical page begins with the first line of HEADER2.

• A logical page ends when data with a ‘1’ in the first byte are encountered. The printing
of a data record beginning with a ‘1’ is delayed until after TRAILER2 and HEADER2, if
specified, are output. When record printing resumes, this delayed record will be
modified to have a control character ‘+’, which causes it to print over the last line of
HEADER2 (or HEADER3, if HEADER3 appears at the top of the page). To prevent the
data record from printing over a text line of a header, the header should end with at
least one blank line, specified by a slash (/).

• To print HEADER2 at the top of a new physical page, the HEADER2's first line should
begin with a ‘1’.

• Because you are in complete control of the paging with LINES=ANSI, you can permit
HEADER2 to appear between variable numbers of printed records.

LINES=(ANSI,n)

If LINES=(ANSI,n) is specified, ANSI control characters govern vertical control, and the ‘n’
specification provides additional automatic paging. Added flexibility is provided because
the user can elect to double or triple space the output and still use automatic paging.

When SyncSort encounters a data record with a ‘1’ in the first byte, SyncSort begins a new
logical page. If no data record begins with a ‘1’ but the next data record would cause the
number of lines on the page to exceed n, SyncSort treats the record as if it began with a ‘1’
and begins a new page.

Refer to the LINES=ANSI discussion for information on using a HEADER2 with ANSI con-
trol characters.

Multiline OUTREC may not be used with LINES=ANSI or LINES=(ANSI,n).

Valid ANSI Control Characters

The following chart lists the ANSI control characters accepted by SyncSort.

Chapter 2. SyncSort Control Statements 2.85

OUTFIL

NODETAIL Parameter (Optional)

The NODETAIL parameter instructs the SortWriter facility to generate an output report
consisting only of header and trailer entries. Data records are not included in the output
report when this parameter is specified.

Thus, for example, it is possible to generate a report with section trailers containing totals
and record counts without printing any data records.

REMOVECC Parameter (Optional)

The REMOVECC parameter generates reports that do not include ANSI carriage control
characters that specify printer actions (for example, skipping a line or ejecting a page). The
REMOVECC parameter omits the carriage control character from all of the report records.
REMOVECC simplifies the removal of printer controls when output is to be displayed
online or written to a list data set rather than a printout. When REMOVECC is used, the
LRECL does not require an extra byte for the carriage control character, and the RECFM
does not require the ‘A’ (for ANSI); thus you would specify FB, not FBA.

Code Interpretation Code Interpretation

blank Space one line before printing 6 Skip to channel 6 before printing

0 Space two lines before printing 7 Skip to channel 7 before printing

- Space three lines before printing 8 Skip to channel 8 before printing

+ Suppress space before printing 9 Skip to channel 9 before printing

1 Skip to channel 1 before printing A Skip to channel 10 before printing

2 Skip to channel 2 before printing B Skip to channel 11 before printing

3 Skip to channel 3 before printing C Skip to channel 12 before printing

4 Skip to channel 4 before printing V Select stacker 1

5 Skip to channel 5 before printing W Select stacker 2

Table 14. ANSI Control Character Chart

SyncSort for z/OS 1.1 Programmer’s Guide2.86

OUTFIL

NULLOFL Parameter (Optional)

Figure 38. NULLOFL Parameter Format

The NULLOFL parameter specifies the action to be taken when any non-SORTOUT
OUTFIL data set contains no data records.

RC0 The delivered default instructs SyncSort to issue a return code of 0 if not overrid-
den by a higher return code set for another reason.

RC4 Instructs SyncSort to issue a WER461I warning message and continue processing.
A return code of 4 will be issued if not overridden by a higher return code set for
another reason.

RC16 Instructs SyncSort to issue a WER461A message and to terminate processing with
a return code of 16.

Sample OUTFIL Control Statements

Example 1

The following example illustrates how to use the OUTFIL control statement to define mul-
tiple output files.

The two OUTFIL control statements illustrated above are required to create two different
output files.

• The output records in the first file (SORTOF1) contain three fields from the input
record. The first input record field begins in byte 1 and is 20 bytes long, the second
input record field begins in byte 45 and is 5 bytes long, and the third input record field
begins in byte 60 and is 8 bytes long. This file will include only those records with ‘NY’
in bytes 21 and 22 of the input record. These three fields will begin in bytes 10, 40, and
50 of the output record.

NULLOFL=
RC0
RC4
RC16 

 
 
 
 

OUTFIL FILES=1,OUTREC=(10:1,20,40:45,5,50:60,8),

INCLUDE=(21,2,CH,EQ,C'NY')

OUTFIL FILES=2,OUTREC=(20:1,20,50:60,8),

INCLUDE=(21,2,CH,EQ,C'MA')

Figure 39. Sample OUTFIL Control Statement

Chapter 2. SyncSort Control Statements 2.87

OUTFIL

• The output records in the second file (SORTOF2) contain two fields from the input
record. The first input record field begins in byte 1 and is 20 bytes long, and the second
input field begins in byte 60 and is 8 bytes long. This file will include only those records
with ‘MA’ in bytes 21 and 22 of the input record. These two fields will begin in bytes 20
and 50 of the output record.

Example 2

This OUTFIL control statement creates three identically formatted output files:
SORTOF01, SORTOF02, and SORTOF03. These files may be written to the same output
device or to three different output devices.

• The output records contain two input record fields. The first input record field begins in
column 1. This field began in position 1 before OUTREC processing and is 40 bytes
long. The second input record field begins in column 50. This field began in position 41
before OUTREC processing and is 40 bytes long. The two fields will begin in positions 1
and 50 after OUTREC has been processed.

Example 3

Figure 41. Sample OUTFIL Control Statement with FTOV and VLTRIM

This OUTFIL control statement uses FTOV to convert fixed-length records to variable-
length records and VLTRIM to remove the specified type of trailing bytes (in this case,
asterisks).

The control statement would produce the following output:

Comprehensive examples illustrating the SortWriter facility and the multiple output capa-
bility of the OUTFIL control statement are provided in “Chapter 3. How to Use SyncSort’s
Data Utility Features”.

OUTFIL FILES=(01,02,03),OUTREC=(1:1,40,50:41,40)

Figure 40. Sample OUTFIL Control Statement

OUTFIL FTOV,VLTRIM=C'*',OUTREC=(1,7,9:8,8)

Input
Records

Output
Records

Record Length
(with 4-byte RDW)

RECORD1ABC***** RECORD1 ABC 15
RECORD2ABCDEF** RECORD2 ABCDEF 18
RECORD3ABC****Z RECORD3 ABC****Z 20

SyncSort for z/OS 1.1 Programmer’s Guide2.88

OUTREC

OUTREC Control Statement

The OUTREC control statement reformats the output records. Use the OUTREC control
statement to accomplish the following tasks:

• Delete or repeat segments of the input records.

• Insert character strings between data fields.

• Insert binary zeros.

• Create a sequence number field.

• Convert numeric data to printable format or to another numeric data format.

• Perform arithmetic operations (multiply, divide, add, subtract) and minimum and
maximum functions with numeric fields and constants. This “horizontal arithmetic”
ability complements the “vertical arithmetic” already available with SUM and OUTFIL
TOTAL, MIN, MAX, and AVG.

• Convert data to printable hexadecimal format.

• Translate the case of EBCDIC letters from uppercase to lowercase or lowercase to
uppercase, or translate a field based on an ALTSEQ table in effect.

• Select, realign, and reorder data fields.

• Convert a variable-length record input file to a fixed-length record output file.

The OUTREC parameter of the OUTFIL control statement can also be used to accomplish
any of the above tasks. The INREC control statement can also be used to accomplish any of
the above tasks except for converting a variable-length record file to a fixed-length record
file.

Consider these guidelines when deciding whether to use the INREC control statement, the
OUTREC control statement, or the OUTREC parameter of the OUTFIL control statement:

• Use the INREC control statement to delete irrelevant data fields, reformat numeric
fields to a shorter length, or combine numeric fields with arithmetic operations and
functions. Reducing the size of the input records before they are sorted or merged
usually improves performance.

• Use either the OUTREC control statement or the OUTREC parameter of the OUTFIL
control statement to expand the data record, create new numeric fields, realign data
fields, convert and edit numeric data, and change from variable-length format to fixed-
length format when you are creating one output file.

Chapter 2. SyncSort Control Statements 2.89

OUTREC

• Use the OUTREC control statement when you are creating multiple output files with
the same output record formatting.

• Use the OUTREC parameter of the OUTFIL control statement when you are creating
multiple output files with different output record formatting.

• Use the OUTREC control statement if you need to convert a numeric field to printable
format so it can be displayed in an OUTFIL header.

• Use the OUTREC parameter of the OUTFIL control statement when an E35 exit must
process the records first.

• Use the OUTREC parameter of the OUTFIL control statement when you specify the
TOTAL and/or SUBTOTAL subparameters of the TRAILER parameter so that the
accumulator(s) can sum numeric fields before they have been converted to readable
format and edited.

OUTREC Control Statement Format

The format for the OUTREC control statement is illustrated below.

Figure 42. OUTREC Control Statement Format

Note: The n/ entry and the VLFILL parameter cannot be used with the INREC or
OUTREC control statement. They can only be used with the OUTREC parameter of the
OUTFIL control statement. For a description of the n/ entry and the VLFILL parameter,
see page 2.65.

OUTREC FIELDS = (field1 [field2] ...) [,CONVERT]()

Fields can be specified as follows:

[c:]

p,l [,subparameters]
[n] X
[n] X'hhhh...hh'
[n] C'literal string'
[n] Z
'date field'
'time field'

 SEQNUM,l,f ,START = 1
n

 
 
 

 ,INCR = 1
i

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide2.90

OUTREC

FIELDS Parameter (Required)

The FIELDS parameter specifies fields to be included in the output record. Fields can be
data fields, spaces, hexadecimal digits, literal strings, binary zeros, current date and time
literals, or sequence numbers.

Each data field specified in the FIELDS parameter is identified by its position p and
length l.

c: The column value (optional) specifies the output column in which a
field should begin.

p For INREC, the position value indicates the first byte of the field
relative to the beginning of the input record after E15 processing, if
specified, has completed. For OUTREC, the position value indicates
the first byte of the field after both E15 and INREC processing, if
specified, have completed. If the OUTREC parameter of the
OUTFIL control statement is used, the position value refers to the
record after E35 processing as well. The field must begin on a byte
boundary.

l The length value indicates the length of the field. The length must
be an integer number of bytes.

Specifying the FIELDS Parameter for Variable-Length Records

If you are not using the CONVERT option to convert variable-length records to fixed-length
records, you must observe these rules when you specify the FIELDS parameter for vari-
able-length records:

• Remember to specify 4 bytes for the Record Descriptor Word in the first output field.
You can include the 4 bytes in the length value of the first field if the first field in the
original data record is also the first field specified in the FIELDS parameter.

• To include any portion of the variable part of the input records, specify a position value
without a length value as the last entry. The only subparameters you can specify after
the position value are the HEX and TRAN conversion subparameters. (Refer to the
FIELDS subparameters for an explanation of HEX and TRAN conversion.)

• If INREC or OUTREC processing changes the output record length, the contents of the
Record Descriptor Word will be automatically revised by the sort.

Field (p,l) Subparameters

Use the FIELDS subparameters to accomplish these tasks:

• Specify the column in which a field should begin.

Chapter 2. SyncSort Control Statements 2.91

OUTREC

• Specify halfword, fullword, or doubleword alignment.

• Convert a numeric field to a printable format with editing capabilities.

• Convert numeric data to another numeric data format.

• Perform minimum and maximum functions and arithmetic operations (multiply, divide,
add, subtract) with numeric fields and constants.

• Convert a field to its printable hexadecimal representation.

• Translate the case of EBCDIC letters from uppercase to lowercase or lowercase to
uppercase, or translate a field based on an ALTSEQ table in effect.

The figure below illustrates how the FIELDS subparameters should be specified and
describes their functions. For information on the EDIT, LENGTH, Mm, and SIGNS subpa-
rameters, see “How to Convert Numeric Data” on page 2.97.

The following describes the c: subparameter:

c: Use the c: subparameter to define the column in which the field should begin. Sync-
Sort will add the appropriate number of blanks to achieve the proper alignment.
This subparameter can be specified for all types of fields.

The term expression represents the following syntax:

Figure 43. Fields Subparameters Format

[c:]

expression ,

f0

M0
Mm
EDIT=(pattern) 

 
 
 
 

 [,SIGNS=(s1, s2, s3, s4()]

 
 
 
 
 
 
 

 [,LENGTH=n]

p,l , a
 CHANGE=(........) [,NOMATCH=(....)] 

 
 

p [,l]

,HEX

,TRAN=
LTOU
UTOL
ALTSEQ 

 
 

 
 
 
 
 

p,l,fy2f,(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide2.92

OUTREC

The following describes the elements of expression:

p,l,fi This specifies the position, length, and format of an input field. (See
the description of fi below for details.)

+n This represents a positive numerical constant of up to 15 decimal
digits. The + sign must be specified.

-n This represents a negative numerical constant of up to 15 decimal
digits. The - sign must be specified.

expression An expression defines a numeric value. The simplest forms of an
expression consist of a numeric data input field defined either by
p,l,fi or a constant defined by +n or -n. Expressions can also be cre-
ated by connecting these simple expressions with operators, as
shown in the last line of the above syntax illustration. Parentheses
may be used to change the default precedence order of the opera-
tors. Algebraic equations can thus be represented with an expres-
sion.

A maximum value of 15 digits is permitted at all times in evaluat-
ing an expression. If this is exceeded, a critical error will be issued.
Similarly, an attempted division by zero will also result in a critical
error. The results of division will be rounded down to an integer.

Once an expression has been defined, its value can either be con-
verted to a numeric output data format or to a printable numeric
format using editing masks. See “How to Convert Numeric Data” on
page 2.97. The default is to use the M0 editing mask to create print-
able output. The number of digits in an expression is defined to be
15 (unless the expression is a simple p,l,fi field), so using the M0
default mask will create a 16-byte output field.

The following are expressions:

+10

10,2,Y2Z

Figure 44. Syntax for expression

p,l,fi

+n
-n

''expression1'' [,''operator'',''expression2''] [()[]
 
 
 
 
 
 
 

Chapter 2. SyncSort Control Statements 2.93

OUTREC

+10,ADD,10,2,Y2Z

1,4,ZD

10,2,PD

+30

1,4,ZD,ADD,10,2,PD

+30,MUL,(1,4,ZD,ADD,10,2,PD)

+30,MUL,(1,4,ZD,ADD,10,2,PD),MIN,(5,5,ZD,DIV,+100)

(+30,MUL,(1,4,ZD,ADD,10,2,PD)),MIN,(5,5,ZD,DIV,+100)

operator Operations between two numeric fields or constants are performed
with operators. There are two types of operators: function operators
and arithmetic operators. The following are the function operators:

MIN Generates the minimum arithmetic value of two speci-
fied fields.

MAX Generates the maximum arithmetic value of two speci-
fied fields.

The following are the arithmetic operators:

MUL multiplication

DIV division

ADD addition

SUB subtraction

The following rules of arithmetic precedence apply in computing an
“expression”:

• Conditions within parentheses are evaluated first, from
innermost to outermost parentheses.

• The arithmetic functions of minimum and maximum (MIN and
MAX) are performed before the arithmetic operators (MUL,
DIV, ADD, SUB). Within the arithmetic operators,
multiplication (MUL) and division (DIV) are performed before
addition (ADD) and subtraction (SUB). Operations within the
same precedence level are performed from left to right.

fi Use this parameter together with p,l to define the input format of a
numeric field that is part or all of an expression. The expression
will then be converted to either another numeric data format or to a
printable format. In such cases, indicate the format of the data field
that is to be converted by replacing fi with BI, FI, PD, ZD, CSF/FS,

SyncSort for z/OS 1.1 Programmer’s Guide2.94

OUTREC

PD0, or one of the year data formats (Y2B, Y2C, Y2D, Y2P, Y2S,
Y2Z, Y2T, Y2U, Y2V, Y2W, Y2X, Y2Y).

Also use this parameter when a 2-digit packed decimal year value is
to be expanded to a 4-digit packed decimal value. In such cases
replace fi with Y2ID or Y2IP. The Y2ID and Y2IP formats cannot be
used to form complex arithmetic expressions and do not allow the
specification of mask (Mm), EDIT, SIGNS, or LENGTH.

An l value indicating the length of the field must be specified in
accordance with the following allowable values:

for BI ... 1-4 inclusive
for CSF or FS ... 1-16 inclusive (15 digit limit)
for FI ... 1-4 inclusive
for PD ... 1-8 inclusive
for PD0 ... 2-8 inclusive
for Y2B ... 1
for Y2C ... 2
for Y2D ... 1
for Y2ID ... 1
for Y2IP ... 2
for Y2P ... 2
for Y2S ... 2
for Y2Z ... 2
for ZD ... 1-15 inclusive
for Y2T ... 3-6 inclusive
for Y2U ... 2-3 inclusive
for Y2V ... 3-4 inclusive
for Y2W ... 3-6 inclusive
for Y2X ... 2-3 inclusive
for Y2Y ... 3-4 inclusive

Field conversion of a single p,l,fi expression with a format of Y2B,
Y2C, Y2D, Y2P, Y2S, Y2Z, Y2ID, or Y2IP does not default to the use
of the M0 default output mask. The default will convert to a 4-digit
4-byte printable year. However, except for Y2S, Y2ID, and Y2IP,
these formats can be used to form expressions with operators. In
this case, the default will use the M0 output mask with 15 decimal
digits. The specification of an output numeric data format fo or
mask Mm, EDIT, SIGNS, or LENGTH is permitted except when
using Y2S, Y2ID, and Y2IP.

Field conversion of a single p,l,fi expression with a format of Y2T,
Y2U, Y2V, Y2W, Y2X, or Y2Y does not default to the M0 mask.
These fields are converted to a printable year with the 2-digit year
portion converted to a 4-digit value. The year portion of the date is

Chapter 2. SyncSort Control Statements 2.95

OUTREC

converted to a 4-digit year using the century window defined by the
CENTWIN parameter. The century window is not used for the spe-
cial values, which are only expanded with characters of the proper
format. The specification of an output numeric data format fo or
mask Mm, EDIT, SIGNS, or LENGTH is not permitted.

The following describes the other FIELDS subparameters:

fo Use this subparameter to define the output numeric data format of
an expression. When fo is specified, mask Mm, EDIT, and SIGNS
cannot be specified. Indicate the desired format of the output field
by replacing fo with BI, CSF/FS, FI, PD, or ZD. See “How to Convert
Numeric Data” on page 2.97 for the default lengths of these fields.
See “The LENGTH=n Subparameter” on page 2.108 for how this
default may be changed.

Mm Use the Mm subparameter to indicate that one of the 27 SyncSort-
provided editing masks, M0-M26, is to be used. Replace 'm' with the
mask number. For details, see “The Mm Subparameter (Editing
Masks)” on page 2.109.

EDIT=(pattern) Use the EDIT subparameter to specify that a user-provided editing
mask should be used to format the output fields. For details, see
“The EDIT Subparameter” on page 2.107.

SIGNS=(s1,s2,s3,s4) Use the SIGNS subparameter to specify the signs that will appear
before or after the edited number. For details, see “The SIGNS Sub-
parameter” on page 2.112.

LENGTH=n Use the LENGTH subparameter to alter the length of the output
field. This is normally determined by the number of numeric digits
d and either the data format or the edit pattern and format of the
edited field. For details, see “The LENGTH=n Subparameter” on
page 2.108.

a Use this subparameter to tell SyncSort how the field should be
aligned with respect to the start of the output record. Replace a
with H, F, or D to specify halfword (H), fullword (F), or doubleword
(D) alignment. The alignment itself actually takes place after the
column designation. It will automatically pad any provided field
with the number of bytes of binary zeros required to achieve the
specified alignment. This subparameter cannot be used in conjunc-
tion with data conversion.

change-parm This variable represents the CHANGE subparameter. The
CHANGE subparameter changes an input field to a replacement
constant in the reformatted output record if the input field equals a

SyncSort for z/OS 1.1 Programmer’s Guide2.96

OUTREC

search constant. For a complete description, see “The CHANGE
Subparameter” on page 2.113.

HEX Use the HEX subparameter to convert a record field to its hexadeci-
mal representation. Specify this subparameter immediately after
the position p and the length l of the field to be converted. Specify
p,l,HEX for both fixed-length records and the fixed-length portion of
variable-length records. Specify p,HEX for the variable-length por-
tion of variable-length records. Starting in position p of the input
record, for a length of l, each byte will be converted to its hexadeci-
mal representation. Note that in the reformatted record, the con-
verted field will be twice the length of the original field.

TRAN Use this subparameter to change the case of EBCDIC letters from
lowercase to uppercase, uppercase to lowercase, or based on an
alternate collating sequence (ALTSEQ) table in effect. Specify this
subparameter immediately after the position p and the length l of
the field to be converted. Specify p,l,TRAN for both fixed-length
records and the fixed-length portion of variable-length records.
Specify p,TRAN for the variable-length portion of variable-length
records. Starting in position p of the input record, for a length of l,
each byte will be converted as per specification.

LTOU Instructs SyncSort to translate EBCDIC letters in a
specified field from lowercase to uppercase.

UTOL Instructs SyncSort to translate EBCDIC letters in a
specified field from uppercase to lowercase.

ALTSEQ Instructs SyncSort to translate characters based on the
ALTSEQ table in effect.

For examples of OUTREC control statements that use the TRAN
subparameter, see Figure 55 on page 2.120 and Figure 56 on page
2.121.

fy2f,(c) Use this subparameter together with the p,l elements to indicate
the conversion of a full-date field to a printable date with separator
character(s). The “c” represents the separator and can be any char-
acter except a blank. The year portion of the date is converted to a
4-digit year using the century window defined by the CENTWIN
parameter. The century window is not used for the special values,
which are expanded with characters of the proper format.

TRAN=
LTOU
UTOL
ALTSEQ

 
 
 
 
 

Chapter 2. SyncSort Control Statements 2.97

OUTREC

The following table shows what is produced if (c) is set to a “/”:

Table 15. Full-Date Field Conversions

How to Convert Numeric Data

One of the most important functions of OUTREC processing is to convert a numeric data
field or an expression to either an output numeric data format or a printable format with
editing capabilities.

Full-Date
Format Date Form Length (bytes) Output Format

 Y2T yyx 3 yyyy/x

yyxx 4 yyyy/xx

yyxxx 5 yyyy/xxx

yyxxxx 6 yyyy/xx/xx

Y2U yyx
(X'yyxs')

2 yy/x

yyxxx
(X'yyxxxs')

3 yy/xxx

Y2V yyxx
(X'0yyxxs')

3 yy/xx

yyxxxx
(X'0yyxxxxs')

4 yy/xx/xx

Y2W

xyy 3 x/yy

xxyy 4 xx/yy

xxxyy 5 xxx/yy

xxxxyy 6 xx/xx/yy

Y2X xyy
(X'xyys')

2 x/yy

xxxyy
(X'xxxyys')

3 xxx/yy

Y2Y xxyy
(X'0xxyys')

3 xx/yy

xxxxyy
(X'0xxxxyys')

4 xx/xx/yy

SyncSort for z/OS 1.1 Programmer’s Guide2.98

OUTREC

OUTREC processing can also expand a packed decimal 2-digit year to a packed decimal 4-
digit year. In such cases, Y2ID or Y2IP formats are used to convert from a 2-digit to a 4-
digit year while maintaining a packed format. For details on converting year data, see
“Converting Year Data with Century Window Processing on INREC, OUTREC, or OUTFIL
OUTREC” on page 2.100.

When a single numeric field defined by p,l,fi is to be converted to a printable format without
editing, the format and length of the field determine the length of the output field, as illus-
trated in the following two tables.

Data Conversion

Input Format Number of Bytes
in Input Field

Number of Resulting
Digits (d)

ZD n n

PD n 2n-1

BI, FI 1 3

BI, FI 2 5

BI, FI 3 8

BI, FI 4 10

CSF or FS
n

n
(to maximum of 15,
then truncated)

PD0 n 2n-2 digits

Y2C, Y2P, Y2S, Y2Z 2 4 digits

Y2B, Y2D 1 4 digits

Y2ID 1 2 bytes

Y2IP 2 3 bytes

Table 16. Data Conversion Table

Chapter 2. SyncSort Control Statements 2.99

OUTREC

For full-date formats, the number of bytes in the input field can vary. The following table
shows input lengths for full-date formats and the resulting output length:

Table 17. Data Conversion Table – Full-Date Formats

For any other type of expression (those that are not a simple p,l,fi), SyncSort internally
treats the input field length as 15. Thus, in Table 15 and Table 17, d would be equal to 15.
(For more details on expressions, see the description of expression on pages 2.87-2.89.)

If you specify no other FIELDS subparameters, the result will be converted to printable
output according to the default editing mask, M0. See “The Mm Subparameter (Editing
Masks)” on page 2.109. Other forms of printable output can be created by using the EDIT,
LENGTH, Mm, and SIGNS subparameters, which allow you to create your own edit pat-
terns, or by using one of the 27 SyncSort-supplied editing masks, which are appropriate for
many editing operations.

To convert to a numeric data field, simply specify an output format of BI, CSF/FS, FI, PD,
or ZD. The default output field length is determined by the following table, where d in the

Input Format Number of Bytes in
Input Field

Number of Resulting
Digits (d)

 Y2T

3 5

4 6

5 7

6 8

Y2U 2 5

3 7

Y2V 3 6

4 8

Y2W

3 5

4 6

5 7

6 8

Y2X 2 5

3 7

Y2Y 3 6

4 8

SyncSort for z/OS 1.1 Programmer’s Guide2.100

OUTREC

second column is obtained from column 3 of Table 16 on page 2.98 for p,l,fi fields. For any
other type of expression (not p,l,fi), d is equal to 15.

These lengths can be overridden by specifying the LENGTH parameter.

The following five sections describe the data conversion capabilities:

• Converting Year Data with century window processing on INREC, OUTREC, or
OUTFIL OUTREC

• The EDIT Subparameter

• The LENGTH=n Subparameter

• The Mm Subparameter (Editing Masks)

• The SIGNS Subparameter

Converting Year Data with Century Window Processing on INREC, OUTREC, or
OUTFIL OUTREC

A 2-digit year field, as specified by the Y2B, Y2C, Y2D, Y2P, Y2S, Y2Z, Y2ID, and Y2IP for-
mats, can be converted on output to a 4-digit year. For full-date fields, as specified by the
Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y formats, the 2-digit year portion can be expanded on
output to a 4-digit year.

The following describes output data conversion for date fields:

Output Format Default
Output Length (bytes)

BI 4

CSF d + 1

FI 4

FS d + 1

PD d/2 + 1

ZD d

Table 18. Output Length of Output Formats

Chapter 2. SyncSort Control Statements 2.101

OUTREC

• The Y2B format specifies 2-digit, 1-byte binary year data that will be converted to a 4-
digit, displayable character format with the appropriate century value. For information
on the range of binary values representing year data with Y2B, see Table 24 on page
2.135.

• The Y2C and Y2Z formats specify 2-digit year data that are in displayable (zoned
decimal) format. The 2-digit year data will be expanded to a 4-digit field containing the
appropriate century value.

• The Y2S format is equivalent to Y2C and Y2Z for valid numeric year data. All three
formats will convert such data to a displayable 4-digit year with the appropriate
century value. Y2S, however, provides additional functionality. For data with binary
zeros (X'00'), a blank (X'40') or binary ones (X'FF') in the first byte, typically to identify
header/trailer records, Y2S will expand the data to 4 bytes, padded in the first 2 bytes
with the same character as found in the first byte of the input field. The fourth byte of
the output field is copied unchanged from the second byte of the input field.

The following symbolic representation shows the treatment in hexadecimal of the three
types of data:

• The Y2D and Y2P formats specify 2-digit year values in packed decimal format. The
processing applied to these fields will create a 4-digit year value converted to a
displayable character format.

• The Y2ID and Y2IP formats take as input the same 2-digit packed decimal year data as
the Y2D and Y2P formats but produce a 4-digit year output that remains in packed
decimal format. Y2ID will convert data from X'yy' to X'ccyy', and Y2IP will convert data
from X'ayys' to X'accyys', where cc is the correct century. (For a description of Y2D and
Y2P formats for SORT or MERGE processing, see Table 24 on page 2.135 or Table 10 on
page 2.42, respectively.)

• For full-date fields (Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y), the 2-digit portion will expand
to the appropriate 4-digit year based on the CENTWIN setting. The output field length
can be determined from Table 17 on page 2.99.

Note that an additional data format, PD0, which is typically used to process the month and
day portion of packed decimal data, is not affected by CENTWIN processing and will not
convert 2-digit year data to 4-digit years. PD0 can be used with the SyncSort-supplied edit
mask M11. The year data formats Y2B, Y2C, Y2D, Y2P and Y2Z can also be used when
forming expressions. The 4-digit year will be converted to an integer for arithmetic calcula-
tions. Any expression with these formats can also be converted to an output numerical data
format fo, or to printable output by specifying one or more of the OUTREC FIELDS subpa-
rameters (Mm, EDIT, SIGNS or LENGTH). For information on using the year data formats

SORTIN Input OUTREC Output
00ab 000000ab
40ab 404040ab
FFab FFFFFFab

SyncSort for z/OS 1.1 Programmer’s Guide2.102

OUTREC

for SORT or MERGE field specifications, see “CENTWIN Parameter (Optional)” on page
2.134 or “CENTWIN Parameter (Optional)” on page 2.41, respectively. For more informa-
tion on using the year data formats for INREC or OUTREC processing, see “Example 5” on
page 2.120.

For more information on converting full-date formats, see the descriptions of the fi and
fy2f,(c) parameters on pages 2.93-2.96, Table 15 on page 2.97, and Table 17 on page 2.99.

Converting SMF Date and Time Formats

You can convert SMF date and time formats to standard date and time formats. The follow-
ing table shows the SMF formats and the converted output:

Table 19. SMF Formats and Converted Output

For DTn, the source is the 4-byte packed SMF date value (P'cyyddd'). For TMn, the source
is a 4-byte binary SMF time value.

The c in the date source P'cyyddd' represents the century. It is converted as follows: 0 is
converted to 19, 1 is converted to 20, and 2 or greater is converted to 21.

The converted output is a zoned decimal field, where each character in the table represents
a single byte. For TM4, xx represents hundredths of a second.

The SyncSort pre-defined edit masks (M0-M26) or specified edit patterns can be used to
edit the converted date and time. The default mask is M11.

Notes: A data exception (0C7 ABEND) or an inaccurate ZD date can occur if an SMF date
is not valid. An inaccurate ZD time can occur if an SMF time is not valid. SMF dates and
times are processed as positive values.

For an example of an OUTFIL control statement that converts SMF formats, see Figure 53
on page 2.120.

SMF Format Converted Output

DT1 Z'yyyymmdd'

DT2 Z'yyyymm'

DT3 Z'yyyyddd'

TM1 Z'hhmmss'

TM2 Z'hhmm'

TM3 Z'hh'

TM4 Z'hhmmssxx'

Chapter 2. SyncSort Control Statements 2.103

OUTREC

Specifying Literal Fields

Spaces (X), hexadecimal digits (X'hhhh...hh'), literal strings (C'literal string'), and binary
zeros (Z) can also be specified in the FIELDS parameter. Each of these entries can be pre-
ceded by an 'n' value which indicates that a specified number of spaces, hex digits, literal
strings, or binary zeros should be inserted in the output record. Additionally, SEQNUM can
be specified to place a sequence number field in the output record.

nX Use the nX entry to specify a number n of spaces. The n value may
be any number from 1 to 4095 inclusive. The X entry represents a
space and must be coded to the immediate right of the number spec-
ified for n. If more than 4095 spaces are desired, two or more nX
values should be specified.

nX'hhhh...hh' Use the nX'hhhh...hh' entry to specify that n copies of hex digits or
hex digit strings should be inserted in the output record. (Each hh
pair is 1 byte of output.) The repetition factor n may be any number
from 1 to 4095 inclusive.

nC'literal string' Use the nC'literal string' entry to specify that n copies of literal
strings should be inserted in the output record. The repetition fac-
tor n may be any number between 1 and 4095 inclusive. An apostro-
phe within a literal string must be specified with a double
apostrophe (e.g., C'O''LEARY').

nZ Use the nZ entry to define a specified number n of binary zeros that
will be inserted in the output record. The repetition factor n may be
any number between 1 and 4095 inclusive. The Z entry must be
coded to the immediate right of n.

SEQNUM Use SEQNUM to create a sequence number field within the output
record. The length of the field can be from 1 to 16 bytes and can be
represented in either BI, PD, or ZD formats. In addition, a starting
value and an increment can be specified for the field.

The following describes the SEQNUM variables and parameters:

l Represents the length in bytes of the field to be created.
A value from 1 to 16 can be specified.

f Indicates the format of the field to be created. BI, PD, or
ZD can be specified to create an unsigned binary field, a
packed decimal field, or zoned decimal field, respec-
tively.

START Optionally specifies a starting number n for the field.
The n value can be 0 through 2,147,483,647. The default
is 1.

SyncSort for z/OS 1.1 Programmer’s Guide2.104

OUTREC

INCR Optionally specifies a value i that indicates how
sequence numbers should be incremented. The i value
can be 1 through 65,535. The default is 1.

The maximum sequence number generated is limited to 15 decimal
digits or the length of the output field. If a number is reached that
would exceed the limit, SyncSort will truncate the high-order digit
and continue processing. Thus, sequence numbers will cycle within
the limit. For example, if the output field is 2 bytes, then 99 will be
the highest sequence number. The next number, 100, will have its
high-order digit truncated. The resulting number, 00, starts a new
sequence number cycle from 00 to 99, regardless of the START
value.

Generating Run-Time Date and Time Constants

You can insert the date and time of your SyncSort run into your records. The following table
shows the constants generated by the run-time date and time parameters.

A 'C' in the output format denotes a character constant, while a 'P' denotes a packed deci-
mal constant. Packed decimal constants contain a positive sign and a leading zero when
padding is necessary.

A '(c)' in the parameter represents a separator character. A blank used as the separator
character must be enclosed in apostrophes. An apostrophe used as the separator character
must be specified as two apostrophes enclosed within apostrophes ('''').

Chapter 2. SyncSort Control Statements 2.105

OUTREC

Table 20. Run Time Constants

Parameter Output Length (Bytes)

&DATE C'mm/dd/yy' 8

&DATE1 C'yyyymmdd' 8

&DATE1(c) C'yyyycmmcdd' 10

&DATE1P P'yyyymmdd' 5

&DATE2 C'yyyymm' 6

&DATE2(c) C'yyyycmm' 7

&DATE2P P'yyyymm' 4

&DATE3 C'yyyyddd' 7

&DATE3(c) C'yyyycddd' 8

&DATE3P P'yyyyddd' 4

&DATE=(m1m2m3m4) (see description below table)

&DATENS=(xyz) (see description below table)

&TIME C'hh:mm:ss' 8

&TIME1 C'hhmmss' 6

&TIME1(c) C'hhcmmcss' 8

&TIME1P P'hhmmss' 4

&TIME2 C'hhmm' 4

&TIME2(c) C'hhcmm' 5

&TIME2P P'hhmm' 3

&TIME3 C'hh' 2

&TIME3P P'hh' 2

&TIME=(hp) (see description below table)

&TIMENS=(tt) (see description below table)

SyncSort for z/OS 1.1 Programmer’s Guide2.106

OUTREC

&DATE=(m1m2m3m4) This form of the &DATE subparameter generates the current sys-
tem date and controls the formatting of the date. You can specify the position of the year,
month, and date; specify a separator character; and choose between 2-digit and 4-digit year
representation.

The positions m1 through m4 represent masks used to format the date. To specify the posi-
tions of the month, day, and year, replace the m1, m2 and m3 positions, in any order, with M
for the month (01-12), D for the day (01-31), and either Y or 4 for the year (where Y is a 2-
digit year and 4 is a 4-digit year). Replace the m4 position with a separator character.

For example, to print the date with the form yy-mm-dd, specify &DATE=(YMD-). For
December 31, 1997, the date would appear as "97-12-31".

A blank used as the separator character must be enclosed in apostrophes. An apostrophe
used as the separator character must be specified as two apostrophes enclosed within apos-
trophes ('''').

The field for this form of &DATE requires 8 bytes for a 2-digit year representation and 10
bytes for a 4-digit year. The M, D, and Y or 4 may only appear once in the mask. All four
positions must be specified.

&DATENS=(xyz) specifies that the current date is to appear in the output record in the
form 'xyz', where x, y, and z indicate the order in which the month, day, and year are to
appear and whether the year is to appear as two or four digits. For x, y, and z, use M to rep-
resent the month (01-12), D to represent the day (01-31), Y to represent the last two digits
of the year (for example, 02), or 4 to represent the four digits of the year (for example,
2002). M, D, and Y or 4 can each be specified only once.

For example, &DATENS=(DMY) would produce a date of the form 'ddmmyy' which on
March 29, 2002, would appear as '290302'. &DATENS=(4MD) would produce a date of the
form 'yyyymmdd' which on March 29, 2002, would appear as '20020329'. x, y, and z must be
specified.

&TIME=(hp) This form of the &TIME subparameter generates the current system time of
day and controls the formatting of the time. You can print the time in 24-hour or 12-hour
formats and specify the separator character between the hours, minutes and seconds.

The format for 24-hour time is hhpmmpss, where hh represents the hour (00-23), mm rep-
resents minutes (00-59), ss represents seconds (00-59), and p represents the separator char-
acter as specified by p in the &TIME=(hp) subparameter.

The format for 12-hour time is hhpmmpss nn, where hh represents the hour (01-12), mm
represents minutes (00-59), ss represents seconds (00-59), and p represents the separator
character as specified by p in the &TIME=(hp) subparameter. The nn is "am" or "pm" as
appropriate.

To select 12-hour mode specify h as 12; to select 24-hour mode specify h as 24. The p speci-
fication represents the character to use as a separator.

Chapter 2. SyncSort Control Statements 2.107

OUTREC

For example, to display the time in a 12-hour format with a period as a separator, specify
&TIME=(12.). At 22:43:23 hours, the time would appear as "10.43.23 pm".

A blank used as the separator character must be enclosed in apostrophes. An apostrophe
used as the separator character must be specified as two apostrophes enclosed within apos-
trophes ('''').

The field for this form of the &TIME subparameter requires 8 bytes for the 24-hour format
and 11 bytes for the 12-hour format.

&TIMENS=(tt) specifies that the current time is to appear in the output record in the form
'hhmmss' (24-hour time) or 'hhmmss xx' (12-hour time). If tt is 24, the time is to appear in
the form 'hhmmss' (24-hour time) where hh represents the hour (00-23), mm represents the
minutes (00-59), and ss represents the seconds (00-59).

For example, &TIMENS=(24) would produce a time of the form 'hhmmss' which at 08:25:13
pm would appear as '202513'. If tt is 12, the time is to appear in the form 'hhmmss xx' (12-
hour time) where hh represents the hour (01-12), mm represents the minutes (00-59), ss
represents the seconds (00-59), and xx is either 'am' or 'pm'.

For a second example, &TIMENS=(12) would produce a time of the form 'hhmmss xx' which
at 08:25:13 pm would appear as '082513 pm'.

For an example of an OUTREC control statement that generates run-time constants, see
Figure 54 on page 2.120.

The EDIT Subparameter

The EDIT subparameter lets you create your own edit patterns for converted numeric data.
An edit pattern can consist of:

• Significant digit selectors.

• Leading insignificant digit selectors.

• Sign replacement characters.

• Any other characters to be printed in the actual output.

The edit pattern can be up to 22 characters in length, with a maximum of 15 leading insig-
nificant and/or significant digits.

The characters used to represent significant or insignificant digit selectors are determined
by the keyword EDIT. If EDIT is specified, the letter I represents leading insignificant dig-
its which will print as blanks if the digits are zeros, and the letter T represents significant
digits (digits that will print in their true form, even as leading zeros).

SyncSort for z/OS 1.1 Programmer’s Guide2.108

OUTREC

The keyword EDIT can be specified with replacements for the letters I and/or T. Any print-
able character can be used as a replacement character. This replacement makes available
to the user a pattern which encompasses all printable characters.

The figure below illustrates the concept of replacing the insignificant and significant digit
selectors I and T with other characters.

When a blank, quotation mark or unbalanced parenthesis appears within an EDIT pattern,
the entire pattern must be enclosed within single quotation marks. Balanced parentheses
need not be enclosed within quotation marks. A single quotation mark within the pattern
(i.e., an apostrophe) must be specified as two apostrophes.

All other characters are printed as specified in the edit pattern, with the following excep-
tions:

• Any character specified after the first leading insignificant digit selector and before the
first significant digit selector will print as a blank, unless a previously selected digit
was non-zero.

• Any character specified after the last significant digit selector will print as a blank if
the edited number is positive.

• Any character or character string specified before the first leading insignificant digit
selector, including a leading sign character, will print to the immediate left of the first
significant digit. The appropriate number of leading blanks will be supplied, assuring
that the total number of characters in the printed field corresponds to the total number
of characters in the edit pattern.

• Any leading insignificant digit selector specified after the first significant digit selector
will be treated as a significant digit selector.

• The sign replacement character appearing as the first and/or last character of the
pattern is replaced as per the SIGNS subparameter.

The LENGTH=n Subparameter

Use the LENGTH=n subparameter to alter the default length of the output field data:

EDxy=

where:

x = insignificant digit selector

y = insignificant digit selector

Figure 45. Replacing Digit Selector Characters

Chapter 2. SyncSort Control Statements 2.109

OUTREC

• When an editing mask is used, the default length is determined by the edit pattern and
the format of the field. If LENGTH=n is not specified, the length is equal to the number
of characters specified in the edit pattern. If LENGTH=n is specified, the edit pattern
will either be truncated on the left or padded with blanks on the left so that the length
of the pattern equals the n value.

The maximum value which can be specified for n when editing masks are used is 22.

• When an output data format fo is used, the default length is 4 for BI and FI formats,
and is determined by the number of digits in the input expression for CFS/FS, PD and
ZD formats. (The number of digits is 15 for any input expression other than a single
p,l,fi field.) If LENGTH=n is specified, the output data will either be truncated on the
left or padded on the left with zeros (or blanks for CSF/FS) of the appropriate format to
a length of n.

The following are the maximum values that can be specified for n when an output data
format fo is used:

The Mm Subparameter (Editing Masks)

SyncSort for z/OS provides editing masks to simplify the more common editing operations.
If neither Mm nor EDIT is specified in the OUTREC control statement, M0 is used to edit
BI, FI, PD, PD0, ZD, and CSF/FS fields and M11 is used to edit DT1, DT2, DT3, TM1, TM2,
TM3, and TM4 fields.

Output Format Maximum
Value of n

BI 4

FI 4

CSF 16

FS 16

PD 8

ZD 15

Table 21. Maximum Values of LENGTH=n for Output Data

SyncSort for z/OS 1.1 Programmer’s Guide2.110

OUTREC

Mask Pattern Signs Length

M0 IIIIIIIIIIIIIITS (,,' ',-) d+1

M1 TTTTTTTTTTTTTTTS (,,' ',-) d+1

M2 I,III,III,III,IIT.TTS (,,' ',-) d+1 + [d/3]

M3 I,III,III,III,IIT.TTCR d+2 + [d/3]

M4 SI,III,III,III,IIT.TT (+,-) d+1 + [d/3]

M5 SI,III,III,III,IIT.TTS (' ',(,' ',)) d+2 + [d/3]

M6 III-TTT-TTTT 12

M7 TTT-TT-TTTT 11

M8 IT:TT:TT 8

M9 IT/TT/TT 8

M10 IIIIIIIIIIIIIIT d

M11 TTTTTTTTTTTTTTT d

M12 SIII,III,III,III,IIT (' ',-) d+1 + [(d-1)/3]

M13 SIII.III.III.III.IIT (' ',-) d+1 + [(d-1)/3]

M14 SIII III III III IITS (' ',(,' ',)) d+2 + [(d-1)/3]

M15 III III III III IITS (,,' ',-) d+1 + [(d-1)/3]

M16 SIII III III III IIT (' ',-) d+1 + [(d-1)/3]

M17 SIII'III'III'III'IIT (' ',-) d+1 + [(d-1)/3]

M18 SI,III,III,III,IIT.TT (' ',-) d+1 + [d/3]

Table 22. (Page 1 of 2) Editing Masks

Chapter 2. SyncSort Control Statements 2.111

OUTREC

Notes:

• M0 is the default mask

• The letter d represents the number of resulting digits after data conversion. The mask
patterns in the Pattern column show the maximum number of resulting digits, which is
15. (Refer to Table 16 on page 2.98.)

• The bracket symbols indicate that only the integer part of this division should be
retained.

The Editing Masks table illustrates the following for each of the available masks.

• Edit pattern.

• Leading or trailing signs, where appropriate.

• Length. If a SyncSort editing mask is used for totaled or subtotaled data, the length of
the output field is determined by the maximum permissible length of the data format,
not by the specified length of the input field. The subparameter LENGTH can be used
to override the length of the output field.

The edit patterns use the same symbolic letters used in the EDIT subparameter. Leading
insignificant digits are represented by the letter I; significant digits are represented by the

M19 SI.III.III.III.IIT,TT (' ',-) d+1 + [d/3]

M20 SI III III III IIT,TTS (' ',(,' ',)) d+2 + [d/3]

M21 I III III III IIT,TTS (,,' ',-) d+1 + [d/3]

M22 SI III III III IIT,TT (' ',-) d+1 + [d/3]

M23 SI'III'III'III'IIT.TT (' ',-) d+1 + [d/3]

M24 SI'III'III'III'IIT,TT (' ',-) d+1 + [d/3]

M25 SIIIIIIIIIIIIIIT (' ',-) d+1

M26 STTTTTTTTTTTTTTT (+,-) d+1

Mask Pattern Signs Length

Table 22. (Page 2 of 2) Editing Masks

SyncSort for z/OS 1.1 Programmer’s Guide2.112

OUTREC

letter T. Leading or trailing sign replacement characters are represented by the letter S. All
other characters print as they appear in the pattern.

The SIGNS illustrated for each mask follow the format requirements of the SIGNS subpa-
rameter. You can specify the SIGNS subparameter to selectively override the signs for a
particular mask. For example, if you specify mask M4 and also specify SIGNS=(' '), a lead-
ing blank will print instead of a plus sign if the number is positive. However, a leading
minus sign will print if the number is negative because the leading negative sign specified
in the editing mask has not been overridden.

The lengths in the table represent the length, in bytes, of the mask. The lengths of masks
M0-M5 and M10-M26 are determined, in part, by the number of digits d. Refer to Table 16
on page 2.98 to determine the number of digits for each type of numeric field.

The SIGNS Subparameter

The SIGNS subparameter specifies the sign(s) that will appear before or after the edited
number.

The sign replacement character, normally 'S', has special meaning if it appears as the first
or last character in an edit pattern. In these positions, the sign replacement character will
be replaced, as appropriate, by the characters specified by the SIGNS subparameter.

The format of the SIGNS subparameter is illustrated below.

where:

s1= leading positive sign indicator

s2= leading negative sign indicator

s3= trailing positive sign indicator

s4= trailing negative sign indicator

Because the SIGNS subparameter contains four positional values, commas must be used to
indicate embedded, unspecified values. Each of the four values can contain one, and only
one, character; specified characters must be separated by commas.

A blank, comma, quotation mark and unbalanced parenthesis used as a SIGNS character
must be enclosed within apostrophes. An apostrophe used as a SIGNS character must be
specified as two apostrophes enclosed within apostrophes ('''').

SIGNS=(s1,s2,s3,s4)

Chapter 2. SyncSort Control Statements 2.113

OUTREC

When the SIGNS subparameter is specified, the letter 'S' is normally used as the sign
replacement character in the user-supplied edit pattern. The user can change the last letter
of the keyword SIGNS in order to specify another character as the sign replacement charac-
ter. For example, if the user specifies SIGNX instead of SIGNS, the letter 'X' becomes the
sign replacement character in the user-provided edit pattern.

If the user specifies a sign replacement character in the edit pattern but does not specify a
value in the corresponding position in the SIGNS parameter, a blank will be assumed. For
example, if the user specifies the following:

then a trailing minus sign will print if the number is negative and a trailing blank will
print if the number is positive.

The SIGNS subparameter can also be used to override the sign values in SyncSort-provided
editing masks.

The CHANGE Subparameter

The CHANGE subparameter changes an input field to a replacement constant in the refor-
matted output record if the input field equals a search constant. The input field remains
unchanged on the input side.

The format of the CHANGE subparameter is shown below:

Multiple search-replacement paired constants, with different data formats, can be specified
on a CHANGE subparameter. Note the following rules for mixing data formats:

• Search constants are character, hexadecimal, or binary strings. Multiple search
constants on a CHANGE subparameter can be a mixture of character and hexadecimal
formats. Binary search constants cannot be mixed with search constants of other
formats; thus, if one search constant on a CHANGE subparameter is binary, all other
search constants on that subparameter must also be binary.

EDIT=(IITT.TTS),SIGNS=(,,,-)

Figure 46. Change Subparameter

[c:] p,l, CHANGE=(o,srch1,repl1 [,srch2,repl2,...srchn repln,])

,NOMATCH=(nmrepl
r,n 

 
 

)

SyncSort for z/OS 1.1 Programmer’s Guide2.114

OUTREC

• Replacement constants are character or hexadecimal strings. Multiple replacement
constants on a CHANGE subparameter can be a mixture of character and hexadecimal
data formats.

• The constants of a search-replacement pair can be of different data format. For
example, a hexadecimal or binary search constant could be paired with a character
replacement constant, or a character search constant could be paired with a
hexadecimal replacement constant. Thus, you could change a hexadecimal or binary
input field to a character output field, or you could change a character input field to a
hexadecimal output field.

The following describes the elements of the CHANGE subparameter:

p,l The normal SyncSort position-length designation that specifies the input
field. When this field matches a search constant, the field will be changed in
the output to a replacement constant.

For character or hexadecimal search constants, the input field can be 1 to
64 bytes long. For binary search constants, the input field must be one byte.

o The length of the output replacement field. Permissible length is 1 to 64
bytes.

srch The search constant to which the input field is compared. Permissible for-
mats are character string (C'x...x'), hexadecimal string (X'x...x'), or a binary
byte (B'bbbbbbbb'). When the search constant matches the input field, the
input field will be changed to an output replacement constant.

If one of the search constants is binary in a set of search-replacement pairs
on a CHANGE subparameter, then all the search constants on that
CHANGE subparameter must be binary. (For additional information on
using binary fields in INCLUDE/OMIT processing, see “INCLUDE/OMIT
Control Statement” on page 2.16.)

If the search constant is longer than the length l of the input field, the con-
stant will be truncated to length l. If the search constant is shorter than l,
the constant will be padded on the right to length l. Character strings are
padded with blanks (X'40'). Hexadecimal strings are padded with zeros
(X'00'). Binary strings are neither truncated nor padded since only one-byte
strings are permissible.

repl The replacement constant to which the input field is changed in the refor-
matted output record when the input field matches a search constant. Per-
missible formats are character string (C'x...x') and hexadecimal string
(X'x...x').

If the replacement constant is longer than the length o of the output field,
the constant will be truncated to length o. If the replacement constant is

Chapter 2. SyncSort Control Statements 2.115

OUTREC

shorter than o, the constant will be padded on the right to length o. Charac-
ter strings are padded with blanks (X'40'). Hexadecimal strings are padded
with zeros (X'00').

NOMATCH Indicates how SyncSort should respond if the input field does not match a
search constant. If NOMATCH is not specified and no search constant
matches the input field, sort processing will terminate with an error mes-
sage.

nmrepl A replacement constant to which the input field is changed in the reformat-
ted output record when the input field p,l fails to match a search constant.
For details, see the description of the repl variable above.

r,n The position r and length n of an input field that will be inserted in the out-
put record when the CHANGE input field p,l fails to match a search con-
stant.

n must be at least 1. If n is greater than the length o specified for the output
replacement field, the output field r,n will be truncated on the right to
length o. If n is less than o, the field r,n will be padded on the right with
blanks (X'40') to the length o.

The following example illustrates the use of the CHANGE subparameter:

In the above example, the FIELDS parameter contains two CHANGE subparameters. The
first CHANGE subparameter changes the input field 16,2 to a state name in the reformat-
ted output record when the input field matches a state code. If no matches are found, the
output field will be 'NOT SUPPORTED.' The second change subparameter changes the one-
byte input field 24,1 to 'EAST COAST' or 'WEST COAST' in the reformatted output record,
depending on the binary contents of the input field.

The following example illustrates a situation that can arise when using binary search con-
stants. In such cases, more than one search constant may match an input field:

OUTREC FIELDS=(16,2,

CHANGE=(13,C'NJ',C'NEW JERSEY',

C'NY',C'NEW YORK',

C'PA',C'PENNSYLVANIA'),

NOMATCH=(C'NOT SUPPORTED'),

8X,

24,1,

CHANGE=(10,B'1.......',C'EAST COAST',

B'0.......',C'WEST COAST'))

Figure 47. Sample OUTREC Parameter with CHANGE Subparameter

SyncSort for z/OS 1.1 Programmer’s Guide2.116

OUTREC

Note that in the above example, the input field X'06' would match both binary search con-
stants. In such cases, the first search constant is used, thus the output would be the charac-
ter string 'SHARE'. If the input field were X'02', the output would be the character string
'UNIQUE'.

CONVERT Parameter (Optional)

The CONVERT parameter enables you to convert variable-length records into fixed-length
records.

These records do not require an RDW and will be written to the output file(s) with a
RECFM of F or FB. When using CONVERT, you no longer need to apply the rules for "Spec-
ifying the FIELDS parameter for Variable-Length Records."

You may create multiple output files with different record formats when specifying
CONVERT in conjunction with the OUTREC parameter on the OUTFIL control statement.
Refer to the explanation of CONVERT in the OUTFIL control statement description for
facilities available when using CONVERT with OUTFIL.

You cannot specify the variable portion of the input records (position without length) when
using CONVERT. However, all data fields need not be present in each record being
CONVERTed, unless a numeric or year data field is specified. That is, blanks will be used
as a default for any missing p,l field bytes, while all p,l,f fields must be present. See
VLFILL for how to change the default character if you use the OUTREC parameter of the
OUTFIL control statement.

Sample OUTREC Control Statements

Example 1

The following example illustrates how the OUTREC control statement can be used to insert
binary zeros and blanks into the record.

OUTREC FIELDS=(24,1,

CHANGE=(6,B'.....11.',C'SHARE',

B'......1.',C'UNIQUE'))

Figure 48. CHANGE Subparameter with Binary Search Constants

OUTREC FIELDS=(1:4Z,5:20,10,23:44,28,10X)

Figure 49. Example 1, Sample OUTREC Control Statement

Chapter 2. SyncSort Control Statements 2.117

OUTREC

This OUTREC control statement defines a 60-byte record as follows:

• Four binary zeros are inserted in the first 4 bytes of the record (4Z).

• The next field begins in position 5. This field began in position 20 before OUTREC
processing and is 10 bytes long (5:20,10).

• Eight blanks are inserted before the next field, which is positioned at byte 23. SyncSort
for z/OS automatically inserts blanks in the unused positions between fields.

• The next field begins in position 23. This field began in position 44 before OUTREC
processing and is 28 bytes long (23:44,28).

• Ten blanks are inserted in the last 10 bytes of the record (10X).

Example 2

The following example illustrates how the OUTREC control statement can be used to con-
vert and edit numeric fields.

This OUTREC control statement defines a 70-byte output record as follows:

• The first field (1,50) begins in position 1. This field began in position 1 before OUTREC
processing and is 50 bytes long.

• The next field (64,4) begins in position 51. This packed decimal field began in position
64 before OUTREC processing and is 4 bytes long. After being converted and edited by
editing mask M2 (64,4,PD,M2) the resulting field will be 10 bytes long. However, the
number of digits that will actually print will depend on the number of leading zeros, if
any, because this mask specifies that only three digits must print whether or not they
are leading zeros. Moreover, this mask specifies that a minus sign print after the
number if it is negative and a blank print after the number if it is positive.

• The last field (68,6) begins in position 61. This zoned decimal field began in position 68
before OUTREC processing and is 6 bytes long. The EDIT and SIGNS subparameters
(EDIT=($I,IIT.TTS),SIGNS=(,,+,-)) specify a 10-byte field because 4 additional bytes are
needed for the dollar sign, the comma, the decimal point and the trailing plus or minus
sign. Note that if the first three digits are leading zeros, they will be suppressed.

OUTREC FIELDS=(1,50,64,4,PD,M2,68,6,ZD,

EDIT=($I,IIT.TTS),SIGNS=(,,+,-))

Figure 50. Example 2, Sample OUTREC Control Statement

SyncSort for z/OS 1.1 Programmer’s Guide2.118

OUTREC

Example 3

This example uses the OUTREC control statement to convert numeric data from one for-
mat to another.

This OUTREC control statement defines a 14-byte output record as follows:

• The first field (1,10,ZD,PD) begins in position 1. This field was a 10-byte ZD field that
began in position 1 before OUTREC processing. It will be converted to a 6-byte PD field
in the output record, because 6 bytes are required to contain 10 decimal digits as a PD
field.

• The next field (11,4,FI,ZD) begins in position 7. This field was a 4-byte FI field that
began in position 11 before OUTREC processing. It will be converted to an 8-byte ZD
field in the output record. Normally 10 ZD bytes would be required to contain the 10
decimal digits that may be represented by a 4-byte FI field, but the LENGTH=8
parameter overrode the output length. If there are more than 8 decimal digits in any of
the 11,4,FI fields, those digits will be truncated on the left in the output record.

Note that ZD output is not the same as printable output using editing masks. High
order zeros will appear as zeros in a ZD field, while they appear as blanks when using
the default M0 mask, as well as most other masks. The sign indicator in a ZD field is
placed in the first 4 bits of the rightmost byte, and not as a separate printable sign.

Example 4

This OUTREC example uses arithmetic and function operators to do algebraic calculations.

New 8-byte PD fields are required in each record containing the maximum and average of
fields A, B and C. Another new 5-byte printable field is required containing field D as a per-
centage of field E. The field definitions are:

The OUTREC control statement to accomplish this would be:

OUTREC FIELDS=(1,10,ZD,PD,

11,4,FI,ZD,LENGTH=8)

Figure 51. Example 3, Sample OUTREC Control Statement

Field A: 1,4,PD
Field B: 5,8,ZD
Field C: 13,4,FI
Field D: 25,4,PD
Field E: 29,4,PD

Chapter 2. SyncSort Control Statements 2.119

OUTREC

This OUTREC control statement defines a 64-byte output record as follows:

• The first field (1,36) retains the complete contents of the input record.

• The second output field begins in position 40. An arithmetic calculation is done using
three different numeric input fields and the constant +3 to compute the arithmetic
average. This is an expression that is considered to contain 15 decimal digits. The
output is requested as a PD field. The length of this field will be 8 bytes, since that is
the length required to contain 15 decimal digits.

• The third output field begins in position 50. Multiplying numeric Field D by 100 before
dividing by numeric Field E gives the desired percentage number, which is considered
to contain 15 decimal digits. No output format or editing mask is specified, so the
default mask M0 is used to create printable output. LENGTH=5 is specified to reduce
the default length of the output field from 16 to 5, since it is known that the percentage
number will not be large.

OUTREC FIELDS=(1,36, Retain existing fields

40:(01,4,PD,ADD, Field A plus

05,8,ZD,ADD, Field B plus

13,4,FI), Field C

DIV,+3, divide by 3 to get average

PD, output as 8-byte PD field

*

50:01,4,PD,MAX, Determine maximum of Field A and

05,8,ZD,MAX, Field B and

13,4,FI, Field C

PD, output as 8-byte PD field

*

60:+100,MUL, 100 times

25,4,PD,DIV, Field D divided by

29,4,PD, Field E

LENGTH=5) output as printable 5-byte field

* using default M0 mask

Figure 52. Example 4, Sample OUTREC Control Statement

SyncSort for z/OS 1.1 Programmer’s Guide2.120

OUTREC

Example 5

This OUTREC control statement uses DT1, TM1, and edit masks to convert SMF date and
time values to appropriate formats.

Figure 53. Sample OUTREC Control Statement

The following shows how the output would be formatted:

2002/07/04 07:22:12
2002/07/04 05:15:25
2002/07/05 11:37:39
2002/07/05 16:42:28

Example 6

This OUTREC control statement illustrates the use of the &DATE1(c) and &TIME1(c)
parameters in a SyncSort run on June 9, 2002 at 04:16:29 p.m.

Figure 54. Sample OUTREC Control Statement

The output would include data from the input record in the first twenty columns followed
by the run-time date and time starting in column 24. The date and time would appear as
'2002 06 09 16:16:29'.

Example 7

The following control statements illustrate two of the options of the TRAN subparameter.

This OUTREC control statement uses TRAN=LTOU to translate the letters in positions 1-5

of each output record from lowercase to uppercase.

Figure 55. Sample OUTREC Control Statement

For example, 'Ab,Cd' would translate to 'AB,CD'.

OUTREC FIELDS=(1,4,DT1,EDIT=(TTTT/TT/TT),

 3X,5,4,TM1,EDIT=(TT:TT:TT))

OUTREC FIELDS=(8,20,24:&DATE1(' '),X,&TIME1(:))

OUTREC FIELDS=(1,5,TRAN=LTOU)

Chapter 2. SyncSort Control Statements 2.121

OUTREC

This OUTREC control statement uses TRAN=ALTSEQ to translate each binary zero (X'00')
in columns 1-5 to an asterisk (X'5C') in positions 1-5.

Figure 56. Sample OUTREC Control Statement

Comprehensive examples illustrating the OUTREC control statement and the OUTREC
parameter of the OUTFIL control statement are provided in “Chapter 3. How to Use Sync-
Sort’s Data Utility Features”.

Sample OUTREC Control Statements with CENTWIN Processing

For century window processing, data conversion is determined by the century window
defined by the CENTWIN parameter.

The following provides examples of data conversion with CENTWIN:

Example 1

A 2-digit year field in character format at position 20 in the input record could be expanded
with the following specification:

Note that the expansion of the year data from 2 to 4 digits increases the output record
length by 2 bytes compared to the input record length.

The CENTWIN setting determines the century of the 2-digit year field. If CENTWIN=1980,
then a year field in the input record would be converted as follows:

Example 2

Consider the following packed decimal date field at position 20 in the input record:

yymmdd = X'0yymmddC'

ALTSEQ CODE=(005C)

OUTREC FIELDS=(1,5,TRAN=ALTSEQ)

OUTREC FIELDS=(1,19, * Copies first 19 bytes of record

20,2,Y2C, * Converts 2-digit year data to 4-digit year

22,59) * Copies remaining 59 bytes

Figure 57. Example 1, OUTREC Control Statement with Year Data

SORTIN Input OUTREC Output
13 2013
79 2079
80 1980
92 1992

SyncSort for z/OS 1.1 Programmer’s Guide2.122

OUTREC

Suppose you want to output a displayable 4-digit year in character format in the form

mm/dd/yyyy

To accomplish this, specify the following OUTREC control statement:

The 4-digit year output from the input year field (20,2,Y2P) depends on the CENTWIN set-
ting. The following sample of input and output data shows the case for CENTWIN=1980:

Example 3

To expand a 3-byte packed decimal date field of the form X'yyddds', at position 20 in the
input record, to a 4-byte packed field of the form X'yyyyddds' that contains a prefixed cen-
tury value, specify an OUTREC control statement such as the following:

Note that in the above example the output record length will be 1 byte larger than the
input record length. The following sample of input and output data shows the effect for
CENTWIN=1980:

OUTREC FIELDS=(1,19, * Copies first portion of record

21,2,PD0,M11, * Converts X'ymmd' to X'mm' then C'mm'

C'/', * Inserts slash

22,2,PD0,M11, * Converts X'mddC' to X'dd'then C'dd'

C'/', * Inserts slash

20,2,Y2P, * Converts X'0yym' to X'yy' then C'yyyy'

24,76) * Copies rest of record

Figure 58. Example 2, OUTREC Control Statement with Year Data

SORTIN Input Date Field OUTREC Output Date Field
X'0800329C' 03/29/1980
X'0790603C' 06/03/2079

OUTREC FIELDS=(1,19, * Copies first portion of record

20,1,Y2ID, * Converts X'yy' to X'yyyy'

21,60) * Copies rest of record starting with

* the X'ddds' of the date field

Figure 59. Example 3, OUTREC Control Statement with Year Data

SORTIN Input Date Field OUTREC Output Date Field
X'79' X'2079'
X'80' X'1980'

Chapter 2. SyncSort Control Statements 2.123

OUTREC

Example 4

To expand a 4-byte packed decimal date field of the form X'0yymmdds', at position 20 in the
input record, to a 5-byte field of the form X'0yyyymmdds' that contains a prefixed century
value, specify an OUTREC control statement such as the following:

As with Y2ID conversion, the output record length will be 1 byte larger than the input
length. The following sample of input and output data shows the effect for
CENTWIN=1980:

Example 5

Consider a 2-byte character or zoned decimal field that may contain either valid numeric
year data or characters that identify the record as a header or trailer. Header records in the
example are identified by zeros (X'00') or a blank (X'40') in the first byte of the year field,
while trailer records are identified by binary ones (X'FF') in the first byte of the field. The
Y2S format will treat the valid year data normally, in the same way as the Y2C or Y2Z for-
mats would treat the data, but the year fields of header and trailer records will be con-
verted to a 4-digit form padded on the left with data identical to the data in the first byte of
the input field.

Typically this type of conversion is needed when a Y2S SORT or MERGE field is used to
collate the records so that header/trailer records in the output remain at the start or end of
the file. An OUTREC control statement such as the following could be used.

As with Y2C or Y2Z, the output record length will be 2 bytes larger than the input record
length.

For CENTWIN=1990, the sorted Y2S field would be converted as follows:

OUTREC FIELDS=(1,19, * Copies first portion of record

20,2,Y2IP, * Converts X'0yym' to X'0yyyym'

22,59) * Copies rest of record starting with

* * the X'mdds' of the date field

Figure 60. Example 4, OUTREC Control Statement with Year Data

SORTIN Input Date Field OUTREC Output Date Field
X'0790' X'020790'
X'0801' X'019801'

OUTREC FIELDS=(1,19, * Copies first portion of record

20,2,Y2S, * Converts C'yy' to C'yyyy' and pads

* fields that identify header/trailer records

22,59) * Copies the remaining fields

Figure 61. Example 5, OUTREC Control Statement with Year Data

SyncSort for z/OS 1.1 Programmer’s Guide2.124

OUTREC

SORTIN Input Date Field OUTREC Output Date Field
X'4001' X'00000000' (from 4th input record)
X'F9F8' X'40404001' (from 1st input record)
X'F0F3' X'F1F9F9F8' (from 2nd input record)
X'0000' X'F2F0F0F3' (from 3rd input record)
X'FFFF' X'FFFFFFFF' (from 5th input record)

Chapter 2. SyncSort Control Statements 2.125

RECORD

RECORD Control Statement

The RECORD control statement provides record length and format information. It is
required in the following situations:

• SyncSort is invoked by a program passing either a 24-bit or 31-bit extended parameter
list and using an in-memory E15 or E32 exit routine.

• An E15 or E35 exit routine changes the record length.

RECORD Control Statement Format

The format of the RECORD control statement is illustrated below:

TYPE Parameter (Optional)

The TYPE parameter can be used to indicate the record format. TYPE=F indicates fixed-
length records; TYPE=V indicates variable-length records. TYPE=FB or TYPE=VB can be
specified but the 'B' is ignored.

TYPE should be specified if SORTIN is VSAM. If TYPE is not provided, the SORTOUT
RECFM will be examined to determine the SORTIN TYPE. If no SORTOUT RECFM is
found, TYPE=V will be assumed if the SORTOUT is VSAM and TYPE=F if the SORTOUT
is non-VSAM.

Note: If the TYPE specification differs from the RECFM DCB parameter for the SORTIN/
SORTINnn DD statement, the latter takes precedence.

LENGTH Parameter (Conditionally Required)

The LENGTH parameter, usually optional, is required whenever the RECORD control
statement is required.

The LENGTH parameter specifies the length of the record at various points during the pro-
cessing of the application.

The number of length values can vary from 1 to 7. Only the l1, l2 and l3 values should be
specified for fixed-length records and for merge or copy applications. All seven length val-
ues can be specified for variable-length sorts. If l1 is the only value specified, parentheses

Figure 62. RECORD Control Statement Format

RECORD TYPE= F
V 

 
 

 [,LENGTH=(l1,l2,l3,l4,l5,l6,l7)]

SyncSort for z/OS 1.1 Programmer’s Guide2.126

RECORD

are optional. If l1 and additional length values are specified, they all must be enclosed in
parentheses.

The length values are positionally dependent. An extra comma must indicate a missing
length value between any two that are specified. Commas need not follow the final length
value specified. For example, if LENGTH=(l1,,,l4) is specified, the omitted values are
understood to be l2 and l3.

The l1,...,l7 variables specify the following:

l1 The maximum record input length of the logical records. For variable-
length records, this is the length of the longest logical record plus the 4-byte
Record Descriptor Word. The 4-byte RDW must be included, even if the
input is a VSAM file. The maximum record length cannot exceed 32,760 for
fixed-length records and 32,767 for variable-length records. An LRECL
value specified on the SORTIN/SORTINnn DD statement or the data set
label will override the l1 value for fixed-length records. For variable-length
records, the higher value (LRECL or l1) is used.

l2 The maximum length of the logical records after E15 processing. An omit-
ted l2 value defaults to the l1 value and indicates that the maximum record
length has not been changed by an E15 exit. If there is no E15 exit, an l2
value which is smaller than the l1 value or the LRECL specified on the
SORTIN/SORTINnn DD statement or data set label will truncate the
records. This truncation will occur after the record is read from SORTIN.

l3 The maximum length of the logical records after E35 processing. If the l3
value is omitted, the default is either the l2 value, or, if an INREC and/or
OUTREC control statement is specified, the record length after INREC/
OUTREC processing. Note that it is not necessary to specify an l3 value to
reflect a length change due to INREC or OUTREC processing; the revised
record length is calculated automatically. However, it is necessary to specify
an l3 value if exit E35 has altered the record length.

The LRECL value specified in the SORTOUT DD statement should either
correspond to the l3 value or the LRECL specification should be omitted. In
the latter case, SyncSort will automatically calculate the correct LRECL
value.

The l3 value is ignored if there is no E35 exit, so it is not possible to use the
l3 value to truncate or pad the records.

l4 The minimum length of the variable-length logical records plus the 4-byte
Record Descriptor Word. An omitted l4 value defaults to the length from the
beginning of the record to the end of the last field referenced by any control
statement.

Chapter 2. SyncSort Control Statements 2.127

RECORD

l5 The most frequent record length of the variable-length records. Specify this
length value to optimize the size of the segment, i.e., the fixed-length block
of main storage, used to contain variable-length records.

l6 The average work space required by each record, as reported by the
HISTOGRM utility program. The l6 value will be ignored for a Tape Sort.

l7 The segment length recommended by the HISTOGRM utility program. If l7
is omitted, the SIZE parameter on the SORT control statement may be used
to determine the impact of segment size on sort performance. Assuming the
SIZE parameter reports a SORTIN data set of at least 10,000 records, Sync-
Sort may sample the first 100-200 records to calculate an approximate seg-
ment size. An installation may decide to allow record sampling for smaller
files. The l7 value will be ignored for a Tape Sort.

Rules for Specifying the Length Parameter

Observe the following rules when specifying length values:

• All length values for variable-length records must include 4 bytes for the Record
Descriptor Word.

• The l1, l2, and l3 values must represent the maximum record lengths and the l4 value
must represent the minimum record length. If SyncSort encounters a record which
exceeds the maximum length or is shorter than the minimum length, the application
will either terminate abnormally or produce unpredictable results.

Sample RECORD Control Statement

This sample RECORD control statement defines the record as follows:

• The file contains fixed-length records.

• The input record length (l1) is 80 bytes.

• A comma represents the omitted l2 value because an E15 exit does not change the
record length.

• The record length after INREC/OUTREC and/or E35 processing is 60 bytes. The
SORTOUT LRECL should either be specified as 60 or omitted. If it is omitted, SyncSort
will automatically supply the correct value.

RECORD TYPE=F,LENGTH=(80,,60)

Figure 63. Sample RECORD Control Statement

SyncSort for z/OS 1.1 Programmer’s Guide2.128

RECORD

This sample RECORD control statement defines the record as follows:

• The file contains variable-length records. All length values include 4 bytes for the
Record Descriptor Word.

• The maximum input record length is 400 bytes.

• The maximum record length after E15 processing is 300 bytes.

• The maximum record length after INREC/OUTREC and/or E35 processing is 250 bytes.

• The minimum record length is 120 bytes.

• The most frequent record length is 200 bytes.

• The average work space required for each record is 280 bytes, as reported by the
HISTOGRM utility program.

• The segment length recommended by HISTOGRM is 230 bytes.

In the above example, the l4, l5, l6 and l7 values will be ignored if the application is a
merge or copy.

RECORD TYPE=V,LENGTH=(400,300,250,l20,200,280,230)

Figure 64. Sample RECORD Control Statement

Chapter 2. SyncSort Control Statements 2.129

SORT

SORT Control Statement

The SORT control statement defines the application as a sort or copy application.

Either a SORT control statement or a MERGE control statement is required for every
application.

Cultural Environment Support

Cultural environment support allows you to choose an alternative set of collating rules
based on a specified national language. The alternative collating applies to SORT/MERGE
and INCLUDE/OMIT processing.

For additional detail, see “LOCALE” on page 5.20.

SORT Control Statement Format

The format of the SORT control statement is illustrated below.

FIELDS Parameter (Required)

The FIELDS parameter is required. It describes the control fields.

Figure 65. SORT Control Statement Format

SORT
FIELDS=(p1,l1,f1,o1[,p2,l2,f2,o2]...)
FIELDS=(p1,l1,o1[,p2,l2,o2]...),FORMAT=f
FIELDS=COPY 

 
 
 
 

,CENTWIN =
o
s
f 

 
 
 
 

 ,CKPT
CHKPT

,DYNALLOC =

d

(d,n (RETRY =
nn,mm()

OFF 
 
 

 [,SC = s)

OFF 
 
 
 
 
 
 

,EQUALS
,NOEQUALS

 ,FILSIZ = n
En 

 
 

 ,SIZE = n
En 

 
 

[,SKIPREC = n] [,STOPAFT = n]

SyncSort for z/OS 1.1 Programmer’s Guide2.130

SORT

List the control fields in order of greatest to least priority, with the primary control field
listed first, followed by progressively less significant fields. You can specify up to 128 con-
trol fields; however, if fields are complex, the limit for a particular execution may be less
than 128.

Each field specified in the FIELDS parameter is identified by its position (p), length (l), for-
mat (f) and order (o).

p The position value indicates the first byte of the field relative to the beginning of
the input record after INREC and/or E15 processing, if specified, have completed.

Binary control fields can begin on any bit of a byte. When a binary field does not
begin on a byte boundary, you must specify the bit number (0-7). For example, a
position value of 21.3 refers to the 4th bit of the 21st byte of the record.

l The length value indicates the length of the control field. The length value must be
an integer number of bytes except for the length of a binary control field which can
be specified in bits. For example, a length value of 0.5 refers to a binary control field
5 bits long.

For signed fields, the length value must include the area occupied by the sign.

f The format value indicates the data format. For a list of valid formats, refer to the
table in the next section, "Valid Formats for Sort Control Fields." If all the control
fields have the same format, you can specify the format value once by using the
FORMAT=f subparameter. If you specify both the individual f values and the
FORMAT subparameter, the individual f values will be used. (Note that the f values
must be specified for each control field).

o The order value indicates how the field is to be collated:

• A=Ascending order

• D=Descending order

• E=As modified by an E61 exit. Ascending order

Valid Formats for Sort Control Fields

The following chart lists the valid formats for sort control fields.

Chapter 2. SyncSort Control Statements 2.131

SORT

Code Data Format Field Length
(bytes)

AC* EBCDIC characters are translated to their ASCII equivalents
before sorting.

1 to 4091†

AQ* Character. Records are sorted according to an alternate sequence
specified either in the ALTSEQ control statement or as an installa-
tion default.

1 to 4091†

ASL* Leading separate sign. An ASCII + or - precedes numeric field. One
digit per byte.

2 to 256

AST* Trailing separate sign. An ASCII + or - trails numeric field. One
digit per byte.

2 to 256

BI Binary. Unsigned. 1 bit to 4092**

CH Character. Unsigned. 1 to 4092**

CLO*
OL*

Leading overpunch sign. Hexadecimal F,C,E, or A in the first 4 bits
of your field indicates a positive number. Hexadecimal D or B in the
first 4 bits indicates a negative number. One digit per byte.
CMP=CLC is forced.

1 to 256

CSF
FS

Floating sign format. An optional leading sign may be specified
immediately to the left of the digits. If the sign is a -, the number is
treated as negative. For other characters, the number is treated as
positive. Characters to the left of the sign are ignored.

1 to 16

CSL*
LS*

Leading separate sign. An EBCDIC + or - precedes numeric field.
One digit per byte. CMP=CLC is forced.

2 to 256

CST*
TS*

Trailing separate sign. An EBCDIC + or - follows numeric field.
One digit per byte. CMP=CLC is forced.

2 to 256

FI Fixed point. Signed. (Equivalent to Signed Binary.) 1 to 256

FL Floating point. Normalized. Signed. 2 to 16

PD Packed decimal. Signed. 1 to 256

Table 23. (Page 1 of 3) Format Code Chart

SyncSort for z/OS 1.1 Programmer’s Guide2.132

SORT

PD0* Packed decimal. 2-8-byte packed decimal data with the first digit
and trailing sign ignored. The remaining bytes are treated as
packed decimal digits. Typically PD0 is used with century window
processing and Y2P format; Y2P processes the year, while PD0 pro-
cesses month and day.

2-8

Y2B* Binary. 2-digit, 1-byte binary year data treated as a 4-digit year by
CENTWIN (century window) processing.

1

Y2C* Character. 2-digit character year data treated as a 4-digit year by
CENTWIN (century window) processing. Processing is identical to
Y2Z fields.

2

Y2D* Packed decimal. 2-digit, 1-byte packed decimal year data treated as
a 4-digit year by CENTWIN (century window) processing.

1

Y2P* Packed decimal. 2-digit, 2-byte packed decimal year data. Of the
four packed digits contained in the 2 bytes, the first digit and trail-
ing sign are ignored; the two inner digits are treated as a 4-digit
year by CENTWIN processing.

2

Y2S* Character or zoned decimal. 2-digit, 2-byte valid numeric data
treated as a 4-digit year by CENTWIN (century window) process-
ing, as for Y2C and Y2Z. However, certain data are not treated as
year data. Data with binary zeros (X'00') or a blank (X'40') in the
first byte will be collated before valid numeric year data for ascend-
ing order (after year data for descending order). Data with all
binary ones (X'FF') in the first byte will be collated after valid
numeric year data for ascending order (before year data for
descending order). Zones are ignored, as for Y2C and Y2Z, except
for data where the first byte begins with X'00', X'40' or X'FF'.

2

Y2T*

Y2U*

Y2V*

Y2W*

Y2X*

Y2Y*

Full-date, character, binary, or packed decimal formats. Full-date
data formats can be used to sort or merge a variety of date fields.
They can process dates ending or starting with year digits (x...xyy
or yyx...x). They can also process non-date data commonly used
with dates. For details, see page 2.140.

2-6

Code Data Format Field Length
(bytes)

Table 23. (Page 2 of 3) Format Code Chart

Chapter 2. SyncSort Control Statements 2.133

SORT

For information on the year data formats (Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z) plus the
related data format PD0 and the full-date formats, see “CENTWIN Parameter (Optional)”
on page 2.134, “Converting Year Data with Century Window Processing on INREC, OUT-
REC, or OUTFIL OUTREC” on page 2.100, and “Specifying Field-to-Field Standard Com-
parisons for Year Fields” in the INCLUDE/OMIT Control Statement section of this chapter.

Rules for Specifying Sort Control Fields

• For fixed-length records, all control fields and the sum of their lengths cannot exceed
4092 bytes. When EQUALS is in effect, the number is reduced 4 bytes to 4088 bytes.
EXTCOUNT also reduces the number by 4 bytes. Thus, if both EQUALS and
EXTCOUNT are in effect, the number is reduced to 4084 bytes.

• For variable-length records, all control fields must be located within the first 4084
bytes, and the sum of their lengths cannot exceed 4084 bytes. When EQUALS is in
effect, the number is reduced 4 bytes to 4080 bytes. EXTCOUNT also reduces the
number by 4 bytes. Thus, if both EQUALS and EXTCOUNT are in effect, the number is
reduced to 4076 bytes.

• Control fields can be in contiguous or non-contiguous locations in the record.

• Remember that for variable-length records, the first 4 bytes are reserved for the Record
Descriptor Word, so the first byte of the data portion of the record is byte 5.

• If the output file is a key-sequenced VSAM cluster, the VSAM key must be the first
control field specified.

Y2Z* Zoned decimal. 2-digit, 2-byte zoned decimal year data treated as a
4-digit year by CENTWIN (century window) processing. The zones
are ignored. Processing is identical to Y2C fields.

2

ZD
CTO*
OT*

Zoned decimal. Trailing overpunch in the first 4 bits of the right-
most byte gives the sign. Hexadecimal F,C,E, or A indicates a posi-
tive number. Hexadecimal D or B indicates a negative number. One
digit per byte. CTO forces CMP=CLC.

1 to 256

Notes: * Cannot be used with Tape Sort.
 ** 4084 for variable-length records.

† 2043 for variable-length records.

Code Data Format Field Length
(bytes)

Table 23. (Page 3 of 3) Format Code Chart

SyncSort for z/OS 1.1 Programmer’s Guide2.134

SORT

Comparing PD and ZD Control Fields

The CMP PARM determines how PD and ZD control fields will be compared. When
CMP=CPD is in effect, the Compare Decimal (CP) instruction is used for the compare. ZD
fields are packed and then compared. This method has performance advantages. However,
invalid PD data may cause a system 0C7 abend and program termination. Moreover, the
integrity of ZD fields is only guaranteed when they contain valid ZD data. The CMP=CPD
method cannot be used if any control field exceeds 16 bytes, for variable-length sorts when
an even value (0, 2, 4, or 6) is specified for the VLTEST PARM, or for a Tape Sort.

When CMP=CLC is in effect, no data validation is performed and the integrity of the out-
put is maintained, even if the sign for a PD or ZD field is invalid. This method is always
used for control fields that exceed 16 bytes, for variable-length sorts when an even value is
specified for the VLTEST PARM, and for a Tape Sort.

CENTWIN Parameter (Optional)

The CENTWIN run-time or installation option acts on 2-digit year data. CENTWIN gener-
ates a century window (for example, 1950 through 2049) that determines the century to
which a 2-digit year belongs. At run-time, CENTWIN can be specified as either a PARM
option or a SORT/MERGE control statement parameter. CENTWIN ensures that year data
spanning centuries will be sequenced correctly. Without CENTWIN processing, an ascend-
ing sort would sequence the year 01 before the year 98. With CENTWIN processing, the 01
field could be recognized as a twenty-first century date (2001) and would thus be sequenced
after 98 (1998).

For more information on specifying the CENTWIN option, see “CENTWIN” on page 5.7.

CENTWIN SORT/MERGE processing only applies to data defined as year data formats:
Y2B, Y2C, Y2D, Y2P, Y2S, Y2Z, and the full-date formats (Y2T, Y2U, Y2V, Y2W, Y2X, and
Y2Y). These data formats enable SyncSort to process 2-digit year fields as 4-digit years. A
related data format, PD0, can be used to process the month and day portions of packed
decimal date fields. To correctly specify date fields for CENTWIN SORT processing, you
should be familiar with the CENTWIN-related data formats.

The following describes each of the year data formats and provides SORT control statement
examples:

The Y2B Format

This format is used to sequence 2-digit, 1-byte binary year data with CENTWIN process-
ing. The binary values are converted to decimal, and the two low order digits are used as
year data. Thus, while binary and decimal values range from 00 to 255, year values range
from 00 to 99. The relationship between binary, decimal and year values is shown in the fol-
lowing table:

Chapter 2. SyncSort Control Statements 2.135

SORT

The Y2C and Y2Z Formats

These formats represent 2-digit, 2-byte year data in either character (Y2C) or zoned deci-
mal (Y2Z) format. Either Y2C and Y2Z formats can be used with data of the form

X'xyxy'

where y is a hexadecimal year digit 0-9 and x is hexadecimal 0 through F. Y2C and Y2Z
ignore the x digits, leaving yy, the 2-digit unsigned year representation.

Suppose you have a character or zoned decimal date field mmddyy that begins at byte 20.
You can use either Y2C or Y2Z to process the yy field. As the following example indicates,
you could specify three sort keys to correctly sort this date:

The yy field (24,2) will be processed according to the century window setting. For example,
if CENTWIN=1945, the field yy=45 will be sequenced as if it were 1945, and yy=44 would
be sequenced as if it were 2044. Thus, for an ascending sort, 44 would follow 45.

The Y2D Format

This format is used to sequence 2-digit, 1-byte packed decimal year data with CENTWIN
processing. Use Y2D to extract the year data yy from packed decimal date fields. For exam-
ple, consider a 3-byte packed decimal data field defined as

X'yyddds'

This field has the year yy in the first byte and the day ddd in bytes 2 and 3. The packed dec-
imal sign s would be in the last digit (half byte) of the third byte. To sort this date field,
which begins at byte 20, with 4-digit year processing, use the following SORT control state-
ment:

Binary Value Decimal Value Year Value

X'00' to X'63' 00 to 99 00-99

X'64' to X'C7' 100 to 199 00-99

X'C8' to X'FF' 200 to 255 00-55

Table 24. Possible Values Representing Year Data with Y2B

SORT FIELDS=(24,2,Y2C,A, * Sorts yy field as 4-digit year

20,2,CH,A, * Sorts mm field

22,2,CH,A) * Sorts dd field

SyncSort for z/OS 1.1 Programmer’s Guide2.136

SORT

The Y2P Format

This format is used to sequence 2-digit, 2-byte packed decimal year data with CENTWIN
processing. Use Y2P to extract the year data yy from packed decimal date fields spanning 2
bytes. For example, a packed decimal date of the form yymmdd would be stored as 4 bytes:

yymmdd = X'0yymmddC'

where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on the
left to make an even number of digits.

Notice that the components of the date span bytes:

0y ym md dC

Y2P handles this condition by ignoring the first and last half bytes of the 2-byte field speci-
fication. Thus, Y2P processes 0yym as yy, ignoring the leading digit (0) and the trailing digit
m that is part of the month.

The following example uses Y2P to sort the year portion of the date field, which begins at
byte 20:

The field specification 20,2,Y2P treats X'0yym' as X'yy', and CENTWIN processing sorts yy
as a 4-digit year yyyy.

The PD0 format, described below, can assist Y2P by processing month and day data that
overlap year data in the original field.

The Y2S Format

This format is used to sequence 2-digit, 2-byte character or zoned decimal data. The Y2S
format is identical to Y2C and Y2Z for valid numeric data, but Y2S treats data that begin
with X'00', X'40', or X'FF' as non-year data. Thus, the Y2S format can distinguish records
that have non-year data in the first byte of the year field, allowing such records to be sorted
differently from other records.

Y2S treats non-year data as follows:

SORT FIELDS=(20,1,Y2D,A, * Sorts 2-digit year (yy) as 4-digit year

21,2,PD,A) * Sorts ddds as 3 digits (ddd)

SORT FIELDS=(20,2,Y2P,A) * Sorts yy field as 4-digit year

Chapter 2. SyncSort Control Statements 2.137

SORT

• Data with binary zeros (X'00') or a blank (X'40') in the first byte will not have century
window processing applied to it. Instead, such data will be collated in sequence, before
valid numeric year data for ascending order or after the year data for descending order.

• Data with all binary ones (X'FF') in the first byte will also not have century window
processing applied to it. Instead, such data will be collated after valid year numeric
data for ascending order or before the year data for descending order.

• Zones are ignored, as for Y2C and Y2Z, except for data where the first byte begins with
X'00', X'40', or X'FF'.

As an example, suppose you want to preserve the input order of header and trailer records
at the start or end of the file, and your header/trailer records are identified by binary zeros
(X'00'), a blank (X'40'), or binary ones (X'FF') in the first byte of the date field.

The Y2S format allows CENTWIN to identify the header/trailer records and treat them dif-
ferently from other records. Presuming the year data begin in column 20, you would use the
following sort key specification:

The yy field (20,2) will be processed according to the century window setting. For
CENTWIN=1945, data with header and trailer records would be sorted as follows:

Note that if the above data were sorted as Y2C or Y2Z format, the output order would be
different because the records starting with X'00', X'40', and X'FF' would be interpreted as
numeric years. For example, suppose the fields in the above list were defined as Y2Z and
sorted with EQUALS:

SORT FIELDS=(20,2,Y2S,A) * Sorts yy field as 4-digit year

SORTIN
Input

Record Order
after Sorting

X'F9F6' X'0000'
X'4001' X'4000'
X'F4F4' X'4001'
X'4000' X'F5F1'
X'0000' X'F9F6'
X'F5F1' X'F4F4'
X'FF03' X'FF03'

SORT FIELDS=(20,2,Y2Z,A),EQUALS

SyncSort for z/OS 1.1 Programmer’s Guide2.138

SORT

The data would be processed as follows:

The header and trailer records are sequenced as year data according to the CENTWIN set-
ting (CENTWIN=1945), and they lose their position at the start and end of the file.

The PD0 Format

This format is used to sequence 2-8 byte packed decimal data. PD0 ignores the first digit
and trailing sign during processing. PD0 is normally used in conjunction with the Y2P data
format. The Y2P format is used to process the 2-digit year portion of a packed decimal date
field, while the PD0 format is used to process the month and day portion of the field.

Although PD0 is typically used with Y2P, the PD0 format itself is not affected by
CENTWIN processing.

Consider the packed decimal date field used in the example above:

yymmdd = X'0yymmddC'

where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on the
left to make an even number of digits.

Notice that the components of the date span bytes:

0y ym md dC

The date can be processed as follows:

• Y2P processes the year component X'0yym' as X'yy'.

• PD0 processes the month and day components X'ymmddC' as X'mmdd'.

The following SORT control statement can be used to sort the entire date with CENTWIN
processing:

SORTIN
Input

Record Order
after Sorting

X'F9F6' X'F5F1'
X'4001' X'F9F6'
X'F4F4' X'FF03' (invalid numeric data)
X'4000' X'4000' (invalid numeric data)
X'0000' X'0000' (invalid numeric data)
X'F5F1' X'4001' (invalid numeric data)
X'FF03' X'F4F4'

SORT FIELDS=(20,2,Y2P,A, * Treats X'0yym' as X'yy'; sorts yy as yyyy

21,3,PD0,A) * Treats X'ymmddC' as X'mmdd'

Chapter 2. SyncSort Control Statements 2.139

SORT

Full-Date Formats

Full-date formats can be used to sort or merge various date fields, processing dates ending
or starting with year digits. They also process non-date data that are used with dates. For a
full description of full-date formats, see the following section.

Using Full-Date Formats with CENTWIN

SyncSort’s full-date data formats enable you to sort or merge a variety of date fields. The
full-date formats are Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y. These date formats can process
dates ending or starting with year digits:

• x...xyy (for example: qyy, mmyy, dddyy, or mmddyy)

• yyx...x (for example: yyq, yymm, yyddd, or yymmdd)

The full-date formats also process non-date data commonly used with the dates. SyncSort
interprets two-digit years (yy) according to the century window specified by the CENTWIN
option. CENTWIN processing does not apply to non-date data.

In most cases, for CH, ZD, and PD date fields the full-date data formats are easier to use
than the 2-digit date formats. The 2-digit formats can be more difficult because you must
divide the date into its components. This requires care, particularly for PD dates, where
date components (q, dd, mm, or yy) may span bytes or occupy only part of a byte. The full-
date formats, on the other hand, process such dates automatically.

The table below describes the full-date formats. For date forms not in the table, use the 2-
digit year formats or the non-year formats.

Note the following symbols used in the table:

y year digit (0-9)
x non-year digit (0-9)
s sign (hexadecimal A-F)
0 unused digit

SyncSort for z/OS 1.1 Programmer’s Guide2.140

SORT

Table 25. Full-Date Formats

Full-Date
Format

Data
Format Date Form Example Date

Form Length (bytes)

 Y2T

CH, BI yyx yyq 3

yyxx yymm 4

yyxxx yyddd 5

yyxxxx yymmdd 6

Y2U PD yyx
(X'yyxs')

yyq 2

yyxxx
(X'yyxxxs')

yyddd 3

Y2V PD yyxx
(X'0yyxxs')

yymm 3

yyxxxx
(X'0yyxxxxs')

yymmdd 4

Y2W

CH, BI xyy qyy 3

xxyy mmyy 4

xxxyy dddyy 5

xxxxyy mmddyy 6

Y2X PD xyy
(X'xyys')

qyy 2

xxxyy
(X'xxxyys')

dddyy 3

Y2Y PD xxyy
(X'0xxyys')

mmyy 3

xxxxyy
(X'0xxxxyys')

mmddyy 4

Chapter 2. SyncSort Control Statements 2.141

SORT

The table indicates the full-date formats that can be used with character (CH), binary (BI),
or packed decimal (PD) data. Note the recognized non-date values:

Character or binary (Y2T and Y2W full-date formats)
C'0...0' (CH zeros)
C'9...9' (CH nines)
Z'0...0' (ZD zeros)
Z'9...9' (ZD nines)
X'00...00' (BI zeros)
X'40...40' (blanks)
X'FF...FF' (BI ones)

Packed (Y2U, Y2V, Y2X, and Y2Y full-date formats)
P'0...0' (PD zeros)
P'9...9' (PD nines)

The following two examples illustrate how you might use the Full-Date Formats table:

• Suppose you have a packed decimal (PD) date field of the form mmyy. To sort this field
correctly, you would use the Y2Y 3-byte format from the table. Thus, if the field starts
in position 30, you would specify the following SORT control statement to sort in
descending order:

SORT FIELDS=(30,3,Y2Y,D)

Any PD fields of all PD zeros or all PD nines will be processed automatically as non-
date data.

• Suppose you have a character (CH) date field of the form yymmdd. To sort this field
correctly, you would use the Y2T 6-byte format from the table. Thus, if the field starts in
byte 40, you would specify the following SORT control statement to sort in ascending
order:

SORT FIELDS=(40,6,Y2T,A)

Any CH zeros, CH nines, BI zeros, blanks, and BI ones will be processed automatically
as non-date data.

Collating Sequence with Full-Date Formats

For full-date formats, the yy component is always sorted first (treated as primary key). This
is so even when the yy is physically at the rightmost end of the field, as for Y2W, Y2X, and
Y2Y. For example, a 6-byte Y2W field has the form xxxxyy. This is collated with the yy as
the primary key and xxxx as the secondary key. Because SyncSort automatically collates
the year character first, you don’t have to deal with yy manually, for example by using PD0
and Y2D.

SyncSort for z/OS 1.1 Programmer’s Guide2.142

SORT

It is important to understand that the xxxx component of a full-date format must be
designed to collate as a unit. Suppose you have the 6-byte Y2T field yyxxxx. If you collate
this field in ascending order, then yy collates first (the primary key) with xxxx collating sec-
ond (secondary key). Consider two possibilities:

• If yyxxxx is actually yymmdd, you will be sorting first by year, then month, then day.

• If yyxxxx is actually yyddmm, you will sorting by year, then day, then month. In most
cases, sorting in this way would not be what you intended.

To correctly collate a date, the date components must be in an order suitable for collating.
For example, mmddyy and yymmdd will collate correctly, but ddmmyy or yyddmm will not.
For date forms that will not collate correctly, you must use one of the 2-digit year formats
(Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z).

The following table shows the order for ascending collation when using full-date formats
with the CENTWIN option:

For a descending sort, the collation order is reversed.

Other date formats (non-full-date), with the exception of Y2S, do not process non-date
data; their sort sequence for ascending sorts is simply lower century dates than higher
century dates.

Full-Date Format Date Format Ascending Sort Sequence

Y2T
Y2W

CH, BI BI zeros
Blanks
CH/ZD zeros
Lower century dates (e.g. 1980)
Higher century dates (e.g. 2010)
CH/ZD nines
BI ones

Y2U
Y2V
Y2X
Y2Y

PD PD zeros
Lower century dates (e.g. 1980)
Higher century dates (e.g. 2010)
PD nines

Chapter 2. SyncSort Control Statements 2.143

SORT

Examples Using Full-Date Formats

Example 1 (Y2W)

The following SORT control statement sorts a C'mmddyy' date field in ascending order,
with the previously set fixed century window 1984-2083:

SORT FIELDS=(10,6,Y2W,A) * Sort C'mmddyy' in ascending order
* with Y2W
* and previously set century window 1984-2083

The Full-Date Formats table above indicates that the 6-byte Y2W form is appropriate for a
CH input field of the form xxxxyy. As shown in the following table, the output will be col-
lated as C'yyyymmdd', with the non-date data (zeros) appearing correctly at the beginning
of the sorted output.

Example 2 (Y2T)

The following SORT control statement sorts a Z'yyddd' date field in descending order, with
the previously set fixed century window 1921-2020:

SORT FIELDS=(20,5,Y2T,D) * Sort Z'yyddd' in descending order
* with Y2T
* and previously set century window 1921-2020

The Full-Date Formats table above indicates that the 5-byte Y2T form is appropriate for a
ZD input field of the form yyddd. As shown in the following table, the output will be col-
lated as Z'yyyyddd', with the non-date data (nines and zeros) appearing correctly at the
beginning and end of the sorted output.

SORTIN
Input
mmddyy

Record Order
after Sorting

mmddyy

Actual Date
after Sorting
yyyy/mm/dd

021783 000000 non-date data
092206 070484 1984/07/04
081395 081395 1995/08/13
110210 092206 2006/09/22
000000 110210 2010/11/02
070484 043060 2060/04/30
043060 021783 2083/02/17

SyncSort for z/OS 1.1 Programmer’s Guide2.144

SORT

Example 3 (Y2Y)

The following SORT control statement sorts a P'mmddyy' (X'0mmddyys') date field in
ascending order, with the previously set fixed century window 1921-2020:

SORT FIELDS=(26,4,Y2Y,A) * Sort P'mmddyy' in ascending order
* with Y2Y
* and previously set century window 1921-2020

The Full-Date Formats table above indicates that the 4-byte Y2Y form is appropriate for a
PD input field of the form xxxxyy. As shown in the following table, the output will be col-
lated as P'yyyymmdd', with the non-date data (zeros and nines) appearing correctly at the
beginning of the sorted output. Note that the first two columns are in hexadecimal.

FIELDS=COPY (Required for a Copy)

Use FIELDS=COPY to copy one or more input files. Multiple files can be copied if they are
concatenated to the SORTIN DD statement. Other control statements such as INREC,
INCLUDE/OMIT, OUTREC, and OUTFIL may be specified in conjunction with a copy
application, allowing you to edit and reformat the file(s) without sorting them.

The SUM control statement and an E32 exit cannot be specified with FIELDS=COPY. All
Phase 3 exits can be used.

 SORTIN
 Input
yyddd

Record Order
after Sorting

yyddd

Actual Date
after Sorting
yyyy/ddd

00000 99999 non-date data
50237 20153 2020/153
99999 20047 2020/047
20047 01223 2001/223
94001 94001 1994/001
01223 50237 1950/237
20153 21148 1921/148
21148 00000 non-date data

SORTIN
Input
mmddyy

Record Order
after Sorting

mmddyy

Actual Date
after Sorting
yyyy/mm/dd

0999999C 0000000C non-date data
0102250C 0080321C 1921/08/03
0032120C 0102250C 1950/10/22
0010194C 0010194C 1994/01/01
0000000C 0111501C 2001/11/15
0111501C 0032120C 2020/03/21
0080321C 0999999C non-date data

Chapter 2. SyncSort Control Statements 2.145

SORT

CKPT/CHKPT Parameter (Optional)

The CKPT/CHKPT parameter instructs SyncSort to take a checkpoint at every end-of-vol-
ume of a SORTOUT data set when OUTFIL is not used and also at the beginning of Phase
3 before the SORTOUT data set is opened. Either spelling of this parameter is accepted.

This parameter requires a SORTCKPT DD statement. It cannot be specified in conjunction
with a user-issued STIMER macro or an incore sort. Checkpoints cannot be taken within a
user exit routine.

Refer to “Chapter 13. Performance Considerations” for an explanation of the Checkpoint/
Restart feature.

DYNALLOC Parameter (Optional)

The format of the DYNALLOC parameter is illustrated below.

DYNALLOC requests the dynamic allocation of SORTWK data sets on device type d.
Specify the device type either as a decimal number (e.g., 3390) or by the system generic
name (e.g., SYSDA). Any disk device accepted for a SORTWK DD statement can be
specified. Note that if VIO is specified it will be ignored, and the installation default for the
DYNALLOC device type will be used in its place.

Note that the DYNALLOC parameter may be used alone, without any subparameters. In
this case, the DYNALLOC installation default settings are used.

For MAXSORT applications, n is the number of SORTWK data sets that will be allocated.
As many as 32 SORTWK data sets can be specified. The default for n is 3.

For non-MAXSORT applications, n can be 1 through 255. This value specifies the number
of SORTWK data sets that can potentially be allocated. For values of n that are 31 or less,
SyncSort can automatically raise the number to 32 if the application requires it. When n is
33 through 255, this value specifies the maximum number of SORTWK data sets that can
be allocated.

DYNALLOC=OFF can be specified to override a DYNALLOC=ON installation default.

Figure 66. DYNALLOC Parameter Format

,DYNALLOC =

d

(d,n RETRY = nn,mm()
OFF 

 
 

 [,SC = s)

OFF 
 
 
 
 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide2.146

SORT

Normally for both MAXSORT and non-MAXSORT applications, any SORTWK data sets
provided in the JCL will contribute towards the value of n. For instance, if n was set to 40
in a non-MAXSORT application and 30 SORTWKs were provided in the JCL, DYNALLOC
could obtain 10 additional SORTWKs if needed. Note that there is an installation option to
disable DYNALLOC if SORTWKxx DD statements are present.

SyncSort uses the value specified in the RETRY parameter to request automatic
DYNALLOC retry. This facility attempts to avoid a sortwork capacity exceeded condition
when disk space is not immediately available to satisfy a DYNALLOC request. SyncSort
will automatically retry a specified number of times and wait a prescribed interval between
DYNALLOC requests.

The nn in the first position designates the number of times SyncSort will retry a failed
DYNALLOC request. The minimum allowed is 0 and the maximum is 16. The mm in the
second position designates the number of minutes SyncSort waits between each
DYNALLOC request. The minimum allowed is 0 and the maximum is 15. A value of 0 can
be used to request an immediate retry. RETRY=OFF or an nn of 0 can be specified to
override a RETRY=ON installation default.

In an environment where DFSMS manages temporary work data sets, the SC subparame-
ter specifies a storage class s for SyncSort to use when dynamically allocating SORTWORK
data sets. The storage administrator at your installation defines the names of the storage
classes you can specify. Note that an installation written automatic class selection (ACS)
routine can override the storage class you specify. If SMS is not installed or active to man-
age temporary work data sets, the d device specification will be used in the SORTWORK
dynalloc request.

EQUALS/NOEQUALS Parameter (Optional)

The EQUALS parameter insures that the original order of equal-keyed records is pre-
served. These records will be in the same order in the output file as they were in the input
file. NOEQUALS, the default, specifies that equal-keyed records may not be written in
their original input order.

When the EQUALS parameter is used with the SUM control statement, the first of the
equal-keyed records is retained with the sum; all other records are deleted after the speci-
fied field(s) have been summed.

EQUALS/NOEQUALS can also be specified as a PARM option on the EXEC statement. If
this option is specified both on the SORT control statement and as a PARM option, the
SORT specification takes precedence.

Performance is usually improved when NOEQUALS is in effect.

Chapter 2. SyncSort Control Statements 2.147

SORT

FILSZ Parameter (Optional)

The FILSZ parameter specifies the actual (FILSZ=n) or estimated (FILSZ=En) decimal
number of records to be sorted. This number should reflect any changes produced by
INCLUDE/OMIT, E14 and/or E15, SKIPREC and STOPAFT processing.

If FILSZ=n is specified, SyncSort will terminate unless exactly n records are processed.

If FILSZ is specified for a Tape Sort, use only the En specification. This value should indi-
cate the number of records in the input file without taking into account records added or
deleted by an E14 or E15 exit.

FILSZ can also be specified as a PARM option on the EXEC statement. If this option is
specified both on the SORT control statement and as a PARM option, the PARM specifica-
tion takes precedence.

SIZE Parameter (Optional)

The SIZE parameter specifies the actual (SIZE=n) or estimated (SIZE=En) decimal number
of records read from the input file. Unlike the FILSZ parameter, this number should not
reflect any changes produced by INCLUDE/OMIT or exit processing, but should reflect
SKIPREC and STOPAFT processing.

If the FILSZ parameter is not specified and SIZE=n is specified, SyncSort will terminate
unless exactly n records are processed. If the FILSZ parameter is specified, the SIZE value
is considered an estimate whether or not it is preceded by an E.

SKIPREC Parameter (Optional)

The SKIPREC=n parameter instructs SyncSort to skip a decimal number of records before
the input file is sorted or copied. The n records skipped are deleted from the input file
before E15 and INCLUDE/OMIT processing, if specified, take place.

If SKIPREC is specified as a PARM option as well as on the SORT control statement, the
PARM specification takes precedence.

STOPAFT Parameter (Optional)

The STOPAFT=n parameter specifies the number of records to be sorted or copied. These
will be the first n records after E15, INCLUDE/OMIT and SKIPREC processing, if speci-
fied, have completed.

If STOPAFT is specified as a PARM option as well as on the SORT control statement, the
PARM specification takes precedence.

STOPAFT cannot be specified for a Tape Sort.

SyncSort for z/OS 1.1 Programmer’s Guide2.148

SORT

Sample SORT Control Statements

This sample SORT control statement indicates four control fields:

• The first, or primary, field begins in bit 4 of byte 2, is 2 bytes long, is in binary format
and is to be sorted in descending order.

• The second control field begins in byte 8, is 2 bytes 4 bits long, is a binary format and is
to be sorted in ascending order.

• The third control field begins on byte 25, is 10 bytes long, is in character format and is
to be sorted in ascending order.

• The fourth control field begins on byte 15, is 10 bytes long, is an EBCDIC numeric field
with a leading separate sign and is to be sorted in descending order.

This sample SORT control statement specifies the following:

• There are three control fields. Because all three fields have the same data format (in
this case, character), the FORMAT=CH subparameter is specified so that the CH value
does not have to be specified for each of the fields.

• The first control field begins on byte 20, is 5 bytes long and is to be sorted in ascending
order.

• The second control field begins on byte 5, is 10 bytes long and is to be sorted in
descending order.

• The third control field begins on byte 30, is 5 bytes long and is to be sorted in ascending
order.

• SyncSort will take a checkpoint.

SORT FIELDS=(2.3,2,BI,D,8,2.4,BI,A,25,10,CH,A,15,10,LS,D)

Figure 67. Sample SORT Control Statement

SORT FIELDS=(20,5,A,5,10,D,30,5,A),FORMAT=CH,CKPT

Figure 68. Sample SORT Control Statement

Chapter 2. SyncSort Control Statements 2.149

SUM

SUM Control Statement

The SUM control statement deletes records with equal control fields and optionally sum-
marizes specified numeric fields on those records. Equal keyed records are processed pair
by pair. If numeric fields are to be summarized, the data in the summary fields are added,
the sum is placed in one of the records, and the other record is deleted. Provided arithmetic
overflow does not occur, the SUM control statement produces only one record per sort key in
the output data set. The records deleted by sum can optionally be written to a separate
data set.

The SUM control statement cannot be used when FIELDS=COPY is specified on the SORT
or MERGE control statement or for a Tape Sort.

SUM Control Statement Format

The format of the SUM control statement is illustrated below.

FIELDS Parameter (Required)

The FIELDS parameter defines the numeric fields to be summed when the control fields of
two or more records are equal. Specify FIELDS=NONE to reduce the sorted data to one
record per sort key without summarizing any numeric fields.

Each field specified in the FIELDS parameter is identified by its position p, length l and
format f.

p The position value indicates the first byte of the field relative to the begin-
ning of the input record after INREC and/or E15 processing, if specified,
have completed. The field must begin on a byte boundary.

l The length value indicates the length of the field. The length must be an
integer number of bytes. Refer to the chart below for the permissible
lengths.

f The format value indicates the data format. Fields with BI, FI, FL, PD and
ZD formats can be summarized. If all the summary fields have the same
format, you can specify the format value once by using the FORMAT=f sub-
parameter. If both the individual f values and the FORMAT subparameter

Figure 69. SUM Control Statement Format

SUM

FIELDS=(p1,l1,f1 [,p2,l2,f2] ...)
FIELDS=(p1,l1 [,p2,l2] ...),FORMAT=f
FIELDS=NONE

 
 
 
 
 

 [,XSUM]

SyncSort for z/OS 1.1 Programmer’s Guide2.150

SUM

are specified, the individual f values will be used. (Note that f values must
be specified for each compare field.)

XSUM Parameter (Optional)

Specify the XSUM parameter if you want records deleted by SUM processing to be written
to a data set defined by the SORTXSUM DD statement. These records will be written to
SORTXSUM at the time of SUM processing. The records will not undergo OUTREC, E35,
and OUTFIL processing because such processing occurs after SUM processing.

The DCB BLKSIZE of the SORTIN data set will not be used to determine the BLKSIZE of
the SORTXSUM data set. System determined blocksize will be used when enabled and
appropriate. Unblocked output will be generated if system determined blocksize has been
disabled and an explicitly specified blocksize has not been provided in the JCL.

The XSUM file will be sequenced in the same order as the SORTOUT file.

Note that XSUM may increase system requirements:

• Adding XSUM to an existing sort application may result in an increase in the amount
of SORTWORK space required. This occurs because XSUM delays all summing until
Phase 3.

• Adding XSUM to an existing MAXSORT application could cause the generation of
additional intermediate output files (SORTOU00 or SORTOUnn). This occurs because
XSUM delays SUM processing until the final MAXSORT merge pass.

• XSUM may require additional main memory. Specify a region size of 512K or more.

FORMAT
CODE PERMISSIBLE LENGTH

BI 2, 4, or 8 bytes

FI 2, 4, or 8 bytes

FL 4, 8, or 16 bytes

PD 1 to 16 bytes

ZD 1 to 18 bytes

Table 26. Permissible Lengths for SUM Fields

Chapter 2. SyncSort Control Statements 2.151

SUM

General Considerations for SUM

• If NOEQUALS is in effect, the record which is retained is determined arbitrarily. If
EQUALS is in effect, the record which is retained is the first record read. In a SORT
application, in a MERGE, the retained record will be from the lowest-numbered input
file. The EQUALS parameter can be specified on the SORT or MERGE control
statement or as a PARM option.

• A sort or merge control field cannot be summarized. A portion of a control field cannot
be included in a sum field.

• Sum fields may not overlap each other.

• Non-sum fields remain unchanged and are retained from the record which contains the
sum.

• If arithmetic overflow or underflow occurs during the summing of two records, those
records are not summarized and neither record is deleted. Further processing is
determined by the option selected at installation through the SUMOVFL parameter or
the run time parameter OVFLO. If the RC16 option of this parameter has been
selected, processing will terminate with a WER049A critical error. For the RC0 (the
delivered default) or the RC4 option, sum processing will continue and a WER049I
message will be issued (only for the first occurrence). If a subsequent pair of records
with equal control fields can be summarized without causing overflow or underflow,
they will be summarized. To avoid arithmetic overflow, use the INREC control
statement to insert zeros of the proper format immediately before the sum field. For
example, for a PD field, use nZ to insert binary zeros.

• Remember that the first 4 bytes of variable-length records are reserved for the Record
Descriptor Word, so the first byte of the data portion of the record is byte 5.

• SUM is incompatible with an incore sort. If you specify the SUM control statement,
allocate SORTWKxx data sets in the JCL or use the DYNALLOC feature for dynamic
SORTWK allocation. If no JCL SORTWKs are provided and DYNALLOC is disabled by
default, SUM will cause DYNALLOC to be enabled.

• When FL fields are summarized, user-issued SPIE macros are not permitted and exit
routines must not produce exponent overflow or underflow. Because of the numeric
rounding performed by the hardware, the exact sum depends on the order in which
fields are summed. Thus, the sum may vary slightly for different executions.

• By default, the sign byte of a positive summarized ZD field will be converted to
printable format. If you want to disable this action, use the NZDPRINT PARM option.
Refer to “ZDPRINT” on page 5.34.

SyncSort for z/OS 1.1 Programmer’s Guide2.152

SUM

Sample SUM Control Statements

The following SUM control statement eliminates equal-keyed records without summarizing
numeric fields. The XSUM option causes the eliminated records to be written to a data set
defined on the SORTXSUM DD statement.

Records with equal control fields will be eliminated from SORTOUT or SORTOFnn data
sets so that only one record is retained.

The following SUM control statement summarizes two numeric fields on records with equal
control fields.

When the control fields are equal, this SUM control statement summarizes the numeric
data in the fields beginning in bytes 20 and 32. Because both fields are in packed decimal
format, the FORMAT=PD subparameter is used so that the PD value does not have to be
specified for each field.

Comprehensive examples illustrating the SUM control statement are provided in “Chapter
3. How to Use SyncSort’s Data Utility Features”.

SUM FIELDS=NONE,XSUM

Figure 70. Sample SUM Control Statement

SUM FIELDS=(20,4,32,4),FORMAT=PD

Figure 71. Sample SUM Control Statement

Chapter 3. How to Use SyncSort’s Data Utility Features 3.1

Chapter 3. How to Use SyncSort’s Data Utility
Features

Introduction

This chapter assumes that you already know how to sort records and are ready to use Sync-
Sort’s Data Utility features for any or all of the following:

• Selecting only those input records and data fields that are needed for an application.

• Eliminating duplicate records.

• Consolidating records into a single record that contains the sum of any numeric data
fields.

• Making output data printable and easy to read.

• Writing a multi-sectioned report complete with headers and trailers.

• Generating several output files and reports with a single pass of the sort.

The following examples show how you can accomplish these tasks with SyncSort. Each
example is self-contained and provides coding instructions for both the required JCL and
the necessary control statements. Use them as starting points for your own applications.
For details of control statement syntax see "Chapter 2. SyncSort Control Statements."

SyncSort for z/OS 1.1 Programmer’s Guide3.2

Sample Data Utility Applications

The following chart lists applications that demonstrate SyncSort’s features.

Selecting Input Records

When only certain records from an input file are needed for an application, SyncSort allows
you to set up one or more logical conditions for including only those records. Alternatively,
you may specify conditions for omitting records from an application. Each condition is

Feature Application Page

Selecting Input Records Including Relevant Records
Omitting Irrelevant Records

3.3
3.5

Selecting Relevant Fields from the
Input Records

Selecting a Number of Fields from Longer Records
Eliminating Irrelevant Data Field(s)
Selecting Fields from Variable-Length Records

3.7
3.8
3.9

Combining Records within a File Combining Records and Summing Numeric Data Fields
Eliminating Duplicate Records

3.11
3.12

Making Output Records Printable
and Easy to Read

Reordering the Positions of Record Fields
Inserting Blanks and Repositioning Record Fields
Inserting Binary Zeros
Converting Unprintable Data to Readable Form
Converting Unprintable Data to Hexadecimal Format
Converting and Editing Unprintable Data
Putting a Data Field in Standard Format
Converting from Variable to Fixed-Length Format
Printing Input Records on Multiple Output Lines

3.14
3.16
3.18
3.20
3.22
3.23
3.25
3.27
3.28

Dividing a Report into Sections Dividing Output into Sections 3.30

Writing Headers and Trailers for a
Report

Writing a Title Page for a Report
Writing a Page Header
Writing a Section Header
Using a Header to Eliminate Duplication Information
within a Section
Writing a Report Trailer or Summary
Writing a Page Trailer

3.32
3.34
3.35
3.37

3.39
3.40

Totaling and Subtotaling Data Totaling Data at the End of a Report
Subtotaling Data at the End of a Page
Totaling Data at the End of a Section

3.41
3.43
3.44

Obtaining Maximum, Minimum and
Average Data

Printing Maximum, Minimum and Average Data in Sec-
tion Trailers

3.47

Counting Data Records Obtaining a Count of Data Records
Obtaining a Cumulative (Running) Count of Data
Records

3.49
3.50

Creating Multiple Output Files Generating Several Output Files with Different Informa-
tion
Writing Identical Output Files to Different Devices

3.53

3.55

Chapter 3. How to Use SyncSort’s Data Utility Features 3.3

based on a comparison between two record fields or between a record field and a constant.
You may specify the constant as a positive or negative decimal, a hexadecimal or binary
constant, or a character literal. Multiple conditions may be specified, provided you connect
them with ANDs and ORs.

To specify the conditions for selecting records, use the INCLUDE/OMIT control statement.
For complete syntax, and examples of bit level criteria in record selection, see “INCLUDE/
OMIT Control Statement” on page 2.16

When processing variable-length records, by default all fields specified must be contained
within the record. If an application is expected to reference fields not completely contained
within the record, refer to “VLTESTI” on page 5.33. VLTESTI provides for processing of
records that do not contain all fields.

Including Relevant Records

Example: A school board requires a list of all students performing below their grade level
on standardized exams. (The record layout is given in Figure 72 and a sample record is
given in Figure 73.)

Figure 72. Input Record Layout

SyncSort for z/OS 1.1 Programmer’s Guide3.4

To generate the list, the following is coded:

Explanation: In this application, two comparisons are necessary to identify the records
needed for the list: the Grade field (25,2) has to be compared to the student’s Reading Score
field (27,2) and to the Mathematics Score field (29,2). All numeric fields on the student
records are in packed-decimal (PD) format.

The two-clause INCLUDE statement (see Figure 74) guarantees the selection of the needed
records from the file. The first clause (29,2,LT,25,2) guarantees that records with Math
Scores less than the Grade field are INCLUDED. The second clause (27,2,LT,25,2) guaran-
tees that records with Reading Scores less than the Grade field are also INCLUDED. The
OR connecting the two clauses guarantees that if either or both of the scores are less than
the Grade field, the record is selected. Finally, since all the fields are in packed-decimal for-
mat (PD), FORMAT=PD is specified.

Figure 73. Sample Student Record

//SUBLEV JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort

//* Messages to I/O Device

//SORTIN DD DSN=WWBRSM.STUDENTS,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD UNIT=SYSDA, Defines Intermediate

// SPACE=(CYL,15) Storage

//SYSIN DD *

INCLUDE COND=(29,2,LT,25,2,OR,27,2,LT,25,2),

FORMAT=PD Selects Records

SORT FIELDS=(1,14,CH,A) Sorts Records

Figure 74. JCL and Required Control Statements

Chapter 3. How to Use SyncSort’s Data Utility Features 3.5

The sample record shown above will be INCLUDED because the student’s Math Score
(047F) is lower than the Grade level (050F).

Omitting Irrelevant Records

Example: Records that have an Invoice Status Code of F (fully paid) are to be omitted in
preparing a list of only those customers with outstanding payments. (The input record lay-
out is given in Figure 75 and a sample input record is given in Figure 76.)

To produce this list of customers selected from the masterfile, the following is coded.

Figure 75. Input Record Layout

Figure 76. Sample Input Record

SyncSort for z/OS 1.1 Programmer’s Guide3.6

Explanation: In this application, a simple comparison is necessary to identify those master-
file records that are not needed: the Invoice Status Code field (80,1,CH) has to be compared
to the constant 'F'.

The OMIT statement’s condition, 80,1,CH,EQ,C'F', (see Figure 77) guarantees that invoice
records, like the sample record shown above, with the Invoice Status Code 'F' are omitted
from the sort.

Selecting Relevant Fields from the Input Records

Input records often contain some information that is not relevant to a specific application.
For example, records in a personnel masterfile might, in addition to addresses, include sal-
aries and other confidential information that is not required for preparing a mailing list.

SyncSort’s Data Utility features allow you to select only those record fields that contain
necessary data and to eliminate those that do not. More important, SyncSort enables you to
do this editing before the records are sorted. As a result, the sort has fewer bytes to handle
and processing is more efficient.

For complete syntax of the INREC control statement, see “INREC Control Statement” on
page 2.35.

p,l Specify the beginning position and length in bytes of the input record’s rele-
vant fields. When specifying contiguous fields, or fields that directly follow
one another, you can simply indicate the starting position of the first field
together with the combined length of the fields that are contiguous.

//OUTPAY JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages to

//* I/O Device

//SORTIN DD DSN=NEWINV,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,20) Defines Intermediate Storage

//SYSIN DD *

OMIT COND=(80,1,CH,EQ,C'F') Omits Records

SORT FIELDS=(1,29,CH,A) Sorts Records

Figure 77. JCL and Required Control Statements

INREC FIELDS=(p1,l1[,p2,l2,...,pn,ln])

Figure 78. Basic INREC Statement Format

Chapter 3. How to Use SyncSort’s Data Utility Features 3.7

Selecting a Number of Fields from Longer Records

Example: A school wants to rank the entire student body by grade point index. This appli-
cation simply requires selecting the two relevant fields out of all the fields in the student
records and, then, sorting on the Grade Point Index field. (The Input Record layout is given
in Figure 79.)

To include only the relevant fields and generate the ranked list of students, the following is
coded:

Figure 81 shows the input record after INREC processing.

Figure 79. Input Record Layout

//RANK JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=TOT.STUDENTS,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,10),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

INREC FIELDS=(1,9, Selects Record Fields

74,2)

SORT FIELDS=(10,2,PD,D) Sorts Records

Figure 80. JCL and Required Control Statements

SyncSort for z/OS 1.1 Programmer’s Guide3.8

Explanation: Specifying the two relevant data fields--the Social Security Number (1,9) and
the Grade Point Index (74,2)--on the INREC statement provides the sort with necessary
data for the application and eliminates the fields that are not relevant to the application.
INREC processing thus shortens each record to just a little under 14% of its original size.

Eliminating Irrelevant Data Field(s)

Example: For an inventory list, the price code on the masterfile records is not necessary.
(The masterfile record layout is given in Figure 82.)

To eliminate the Price Code field and generate the inventory list, the following is coded.

Figure 81. Form of Post-INREC Record

Figure 82. INPUT Record Layout

Chapter 3. How to Use SyncSort’s Data Utility Features 3.9

Figure 84 shows the input record after INREC processing.

Explanation: Specifying only those fields that are necessary eliminates those that are not
necessary for the application. The Price Code field (18,1) has not been specified on the
INREC statement; it will be deleted from the input records before the records are sorted by
item number for the list.

Selecting Fields from Variable-Length Records

Example: For each volume in its collection, a library requires the catalog number and any
information concerning translations, other volumes in a series, additional copies on file,
and so on. The catalog file consists of variable-length records, and except for the catalog

//INVENTR JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=INV.WARHOUS,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,15),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

INREC FIELDS=(1,17, Selects Record Fields

19,3)

SORT FIELDS=(1,5,CH,A) Sorts Records

.

.

.

Figure 83. JCL and Required Control Statements

Figure 84. Post-INREC Record Layout

SyncSort for z/OS 1.1 Programmer’s Guide3.10

number, the required information is contained in the variable-length portion of each record.
(The record layout is given in Figure 85.)

To include only the relevant fields on the input records and to generate this list, the follow-
ing is coded.

Figure 87 shows the input record after INREC processing.

Figure 85. Sample Record Layout

//LISTCAT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=LIB.CATALOG,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,10),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

INREC FIELDS=(1,14, Selects Record Fields

98)

SORT FIELDS=(5,10,ZD,A) Sorts Records

.

.

.

Figure 86. JCL and Required Control Statements

Chapter 3. How to Use SyncSort’s Data Utility Features 3.11

Explanation: When selecting fields on variable-length records, you must observe these two
restrictions: (1) The position of the RDW cannot be affected; and (2) at least one byte from
the fixed-length portion of the record, in addition to the RDW, must be specified. On the
above INREC statement, the first 14 bytes of each record-the 4-byte RDW and the fixed-
length Catalog Number field-are retained unchanged. The next field-which contains more
information, as required-is indicated only by position (98) since it is of variable-length. This
causes the entire variable-length portion of the record (beginning with byte 98) to be
included after the initial 14 bytes of the post INREC record. SyncSort automatically
adjusts the RDW to reflect the new record length.

Combining Records within a File

Sometimes you may want to shorten a file by consolidating records that have some informa-
tion in common. For example, a company’s invoice file may contain more than one record for
any customer to whom multiple invoices have been issued. In some applications it might
then be feasible to consolidate such records--that is, to combine records with identical Cus-
tomer Name and Address fields into a single record containing the sum of that customer’s
charges and payments.

The SUM control statement allows you to combine records in this way. For SUM control
statement syntax, see “SUM Control Statement” on page 2.149.

Combining Records and Summing Numeric Data Fields

Example: For an inventory list, a company requires a single record for each product, indi-
cating its item number, warehouse code, and the total quantity in stock. (Figure 88 gives
the sample record layout.)

Figure 87. Form of Post-INREC Record

SyncSort for z/OS 1.1 Programmer’s Guide3.12

To combine those inventory records with identical item numbers and warehouse codes and
to produce the required list, the following is coded.

Explanation: The list is generated by sorting on the Warehouse Code field (6,1,CH) and the
Item Number field (1,5,ZD). Records that have identical information in both these fields are
combined into a single record that contains the sum or total of those records’ Quantity
fields (7,12,PD). That is, the single record will show how many items with the same number
are in each warehouse.

Eliminating Duplicate Records

Example: A mailing list is being prepared from an invoice file. To eliminate duplicate
entries, any multiple invoice records for the same customer are combined into a single
record. (Figure 90 gives the sample record layout.)

Figure 88. Input Record Layout

//INVENT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=WRHSE.INVENT,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,6),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(6,1,CH,A,1,5,ZD,A) Sorts Records

SUM FIELDS=(7,12,PD) Combines Records and

Sums Numeric Data

Figure 89. JCL and Required Control Statements

Chapter 3. How to Use SyncSort’s Data Utility Features 3.13

To combine multiple invoice records and generate the mailing list, the following is coded.

Explanation: To prepare the customer mailing list, the only information required from the
invoice records is located in the Company Name field (17,23) and the Address field (40,5),
which are selected by the INREC statement. Sorting these records in ascending order by
company name generates an alphabetical list. Then, because the file contains a record for
every transaction, the SUM statement is used to avoid duplicate listings of customers who
have had more than one transaction. Note that because none of the fields contains numeric
data to be summed, the FIELDS=NONE parameter is used.

Figure 90. Input Record Layout

//MAILLIST JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=INV.MAST,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

INREC FIELDS=(17,28) Selects Relevant Fields

SORT FIELDS=(1,23,CH,A) Sorts Records. Reference is to

Post INREC Record

SUM FIELDS=NONE Eliminates Duplicate Records

Figure 91. JCL and Required Control Statements

SyncSort for z/OS 1.1 Programmer’s Guide3.14

Making Output Records Printable and Easy to Read

Because data is usually stored in a compact format, it can be difficult, if not impossible, to
read when printed. For example, on a typical input record, there will be no blank space
between fields, numeric data will sometimes be lost in leading and trailing zeros, and some
data will be in unprintable format.

After processing, you will probably want to edit this data so that it is easy to read. This is
bound to entail one or more of the following tasks:

• reordering the position of record fields

• inserting blanks between fields

• inserting binary zeros

• converting numeric data from unprintable to printable format

• converting data to printable hexadecimal format

• using masks or edit patterns to insert dollar signs, decimal points, slashes, and the like.

• formatting the data in a record field on multiple output lines

SyncSort’s OUTREC processing, specified either as a control statement or as a parameter
on the OUTFIL statement, can perform these and other editing functions. The OUTREC
control statement is described below. Any number of the OUTREC statement’s subparame-
ters may be specified and must be coded in the order in which the fields will appear in the
reformatted record. (Note that when specified as a parameter of OUTFIL,OUTREC is
coded identically as for a control statement except that the keyword FIELDS is not used.)
See “OUTREC Control Statement Format” on page 2.89 for the complete format of the
OUTREC statement.

Reordering the Positions of Record Fields

Example: A data center has decided to reorder the positions of the data fields in masterfile
records after sorting them. (Figure 92 gives the layout for the masterfile record.)

Chapter 3. How to Use SyncSort’s Data Utility Features 3.15

To sort the records alphabetically by product name and reposition the data fields, the fol-
lowing is coded:

Figure 94 shows the output record after OUTREC processing.

Figure 92. Input Record Layout

//SORTPROD JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=PROD.SALES,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,10),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(7,15,CH,A) Sorts Records

OUTREC FIELDS=(22,3, Repositions Fields on

7,15, Output Records

1,2,

25,4,

3,4)

Figure 93. JCL and Required Control Statements

SyncSort for z/OS 1.1 Programmer’s Guide3.16

Explanation: After the records are sorted alphabetically by company name (7,15,CH),
OUTREC processing moves the Product Code field (22,3) to the first byte of the record, the
Product Name field (7,15) to the fourth byte, the Region field (1,2) to the nineteenth byte,
the Month’s Sales field (25,4) to the twenty-first byte, and the Sales to Data field (3,4) to
the twenty-fifth byte.

Inserting Blanks and Repositioning Record Fields

Example: The central office of a commercial bank requires that each branch present its
masterfile at the end of every month in the format outlined in Figure 95, Branch A, how-
ever, has formatted its masterfile records as outlined in Figure 96.

Figure 94. Post-OUTREC Record Layout

Figure 95. Required Format

Chapter 3. How to Use SyncSort’s Data Utility Features 3.17

To reformat its masterfile records to conform to central-office specifications, the following is
coded. Since the records do not require sorting, the SyncSort copy feature is used.

Figure 98 shows the effect of OUTREC processing on the output record.

Figure 96. Input Record Layout

//FORMAT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=ACCT.MAST,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SYSIN DD *

SORT FIELDS=COPY Copies Records

OUTREC FIELDS=(1,4, Repositions Fields on

8,10, Output Records

6X,

5,3,

1X,

18,17)

Figure 97. JCL and Required Control Statements

SyncSort for z/OS 1.1 Programmer’s Guide3.18

Explanation: After the records are copied, OUTREC specifies two types of reformatting: (1)
repositioning data fields and (2) inserting blanks between fields. As shown in Figure 98,
two fields have been repositioned: the Account Type field now begins on the twenty-first
byte as opposed to the fifth byte, and the Account Number field begins on the fifth byte
rather than on the eighth. Also, blanks have been inserted using the nX entry to specify the
number (n) of blanks. Six blanks have been inserted after the Account Number field and a
single blank after the Account Type field. Since the Balance field and Interest field are con-
tiguous, they are treated as a single field in this application.

Inserting Binary Zeros

Example: A manufacturing firm has decided to expand its product line. However, because
the Item Number field on its inventory records is too small, the records must be reformat-
ted to allow for more columns for the new products. The Item Number is kept in packed-
decimal, PD, format, and the firm wants to add 4 bytes to the current 2 byte field. The new
bytes are to precede the current two bytes. Figure 99 gives the input record layout.

Figure 98. Post-OUTREC Record Layout

Chapter 3. How to Use SyncSort’s Data Utility Features 3.19

To copy the records and insert the 4 bytes of binary zeros, the following is coded.

The effect of OUTREC processing is shown in Figure 101 below.

Figure 99. Input Record Layout

//SORTCP JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort

//* Messages to I/O Device

//SORTIN DD DSN=INV.REC,DISP=SHR Defines Input Data Set

//SORTOUT DD DSN=INV.REC.OUT,DISP=(NEW,KEEP), Defines Output Data Set

// UNIT=SYSDA,SPACE=(TRK,5),

// VOL=SER=000111

//SYSIN DD *

SORT FIELDS=COPY Copies Records

OUTREC FIELDS=(1,20, Inserts Binary Zeros &

4Z, Reformats Records

25:21,56)

Figure 100. JCL and Required Control Statements

SyncSort for z/OS 1.1 Programmer’s Guide3.20

Explanation: The records are copied, and OUTREC processing adds 4 bytes of binary zeros
(4Z) to the beginning of the Item Number field (21,2). To allow for the 4 additional bytes,
the original Item Number field and the fields following it are all copied after the 4 inserted
bytes of zeros.

Converting Unprintable Data to Readable Form

Example: For a file of invoice records sorted by company name, the Invoice Amount,
Amount Paid, and Balance Due fields are to be converted from packed-decimal to printable
format. In addition, any leading zeros will be suppressed and both commas and decimal
points will be inserted. (Figure 102 gives the input record layout.)

Figure 101. Post-OUTREC Record Layout

Figure 102. Input Record Layout

Chapter 3. How to Use SyncSort’s Data Utility Features 3.21

To sort the records, convert the three fields of packed-decimal data, and insert the commas
and decimal points, the following is coded.

The effect of OUTREC processing on the input record is shown in Figure 104 below.

Explanation: First the records are sorted alphabetically by company name (1,23,CH). Then,
three fields--the Invoice Amount (24,4,PD), the Amount Paid (28,4,PD), and the Balance
Due (32,4,PD)--are converted from packed-decimal (PD) into readable format and editing
by a SyncSort editing mask (M2) that suppresses the printing of leading zeros and inserts
the appropriate commas and decimal points. The number-colon entries (c:) that precede
each of the four fields assign a new starting position or, when printing, column for each of
the four fields. For example, the Company Name field, which originally began in byte 1 for
a length of 23 bytes, now begins in byte 17; the Invoice Amount field, which began in byte

//INVOICE JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort

//* Messages to I/O Device

//SORTIN DD DSN=NEWINV,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate

Storage

//SYSIN DD *

SORT FIELDS=(1,23,CH,A) Sorts Records

OUTREC FIELDS=(17:1,23, Repositions Record Fields

52:24,4,PD,M2, and Converts Data

74:28,4,PD,M2,

96:32,4,PD,M2)

Figure 103. JCL and Required Control Statements

Figure 104. Post-OUTREC Record Layout

SyncSort for z/OS 1.1 Programmer’s Guide3.22

24, begins in byte 52, and so on. Note that after the data is converted and edited, the
lengths of the packed-decimal fields increase from four bytes each to ten bytes and that the
fields are each separated by twelve blanks.

Converting Unprintable Data to Hexadecimal Format

Example: A bank has discovered that some errors were made in recording the Account
Numbers of some of its customers. Specifically, on the transaction records, some Account
Number fields, which should contain only packed-decimal, PD, data, appear to contain data
that is not valid packed-decimal. Figure 105 shows the input record layout.

In order to find the invalid data, the following is coded.

The effect of OUTREC processing on the input record is shown in Figure 107.

Figure 105. Sample Input Record Layout

//SORTHEX JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort

//* Messages to I/O Device

//SORTIN DD DSN=TRANS.RECS,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SYSIN DD *

SORT FIELDS=COPY Copies Records

OUTREC FIELDS=(1,30, Reformats Output Records

36:31,12,HEX) and Converts Data

Figure 106. JCL and Required Control Statements

Chapter 3. How to Use SyncSort’s Data Utility Features 3.23

Explanation: The records are copied, and OUTREC processing reformats the output record
to contain the Customer Name field (1,30) followed in column 36 by the Account Number
field converted to hexadecimal format (31,12,HEX). Blanks are automatically inserted in
the unspecified columns (31,5). Note that converting the Account Number data to printable
hexadecimal expands the original 12-byte field to 24 bytes. The bank can now read the
Account Number field in hexadecimal format to determine which records contain invalid
data.

Converting and Editing Unprintable Data

Example: For an Outstanding Payments report, the packed-decimal Amount Due field on a
company’s invoice records is converted to printable format and edited with a floating dollar
sign, commas, and a decimal point. In addition, to make the output easy to read, ten blanks
are inserted between the Company Name field and the Amount Due field. (Figure 108 gives
the input record layout.)

Figure 107. Sample Post-OUTREC Record Layout

SyncSort for z/OS 1.1 Programmer’s Guide3.24

To sort the records and accomplish the conversion and editing, the following is coded.

Figure 110 shows the effect of OUTREC processing on the input record.

Figure 108. Input Record Layout

//PAYMNT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=INVOICE,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(1,23,CH,A) Sorts Records

OUTREC FIELDS=(1,23, Converts and Edits Data

10X, and Inserts Blanks

24,4,PD,EDIT=($II,IIT.TT))

Figure 109. JCL and Required Control Statements

Chapter 3. How to Use SyncSort’s Data Utility Features 3.25

Explanation: First the records are sorted alphabetically by Company Name (1,23,CH).
Next, OUTREC processing inserts 10 blanks (10X) between the Company Name field (1,23)
and the Balance Due field (24,4,PD). OUTREC processing also converts this packed-deci-
mal field to printable format and edits it with the user-provided pattern specified on the
EDIT subparameter, EDIT=($II,IIT.TT). This pattern provides for a floating dollar sign as
well as the appropriate comma and decimal point. The Is indicate that leading zeros should
not be printed and the Ts indicate that zeros in those positions should be printed. Note that
this conversion and editing of the data cause the length of the Balance Due field to increase
from its original length of four bytes to ten bytes.

Putting a Data Field in Standard Format

Example: The date field on insurance-policy records is stored in zoned-decimal format but
without slashes separating the month, day, and year. After the records are sorted, these
slashes will be inserted and the date will appear in the standard mm/dd/yy format. (Figure
111 gives the input record layout.)

Figure 110. Post-OUTREC Record Layout

SyncSort for z/OS 1.1 Programmer’s Guide3.26

To sort the records and format the date field with the required slashes, the following is
coded.

The effect of OUTREC processing is shown in Figure 113.

Figure 111. Input Record Layout

//SORTDT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=NEW.POLCY,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(1,23,CH,A) Sorts Records

OUTREC FIELDS=(1:1,23, Edits Data and Repositions

30:24,6,ZD,M9, Record Fields

45:30,8)

Figure 112. JCL and Required Control Statements

Chapter 3. How to Use SyncSort’s Data Utility Features 3.27

Explanation: The records are sorted alphabetically by Member Name (1,23,CH). The
OUTREC statement repositions the Effective Date field (24,6,ZD) and the Policy Number
field (30,8,ZD) in columns 30 and 45 respectively, leaving blanks between each of the three
fields. In addition, the OUTREC statement edits the Effective Date field with an M9
editing mask that places slashes between the month, date, and year. Note that editing the
Date field increases its size from six to eight bytes.

Converting from Variable to Fixed-Length Format

Example: In this example, there are three output files. The first is variable and the remain-
ing two are fixed-length format. The variable output file is the standard output file from
the sort. In order to convert the output from variable to fixed-length format, you should
specify CONVERT on the OUTREC parameters of each of your OUTFIL control state-
ments. The following are the JCL and control statements to effect this result.

Figure 113. Post-OUTREC Record Layout

SyncSort for z/OS 1.1 Programmer’s Guide3.28

Printing Input Records on Multiple Output Lines

Example: In this example, five input record fields, shown in Figure 115, are copied to an
output file with each field printed as a separate output line.

Multiple output lines are created by specifying a newline character, i.e. / (slash), in the
OUTREC parameter of an OUTFIL control statement. As shown in Figure 116, the newline
character follows the specification of each input field’s starting position and length.

// JOB

// EXEC PGM=SYNCSORT

//SYSOUT DD SYSOUT=*

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA

//SORTIN DD DSN=VARIN,DISP=SHR

//SORTOUT DD UNIT=SYSDA,SPACE=(CYL,(1,1)),

// DISP=(,PASS),DSN=&&VAROUT

//SORTOF1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)),

// DISP=(,PASS),DSN=&&FIX1OUT

//SORTOF2 DD UNIT=SYSDA,SPACE=(CYL,(1,1)),

// DISP=(,PASS),DSN=&&FIX2OUT

//SYSIN DD *

SORT FIELDS=(1,23,CH,A,28,2,CH,A)

OUTFIL FILES=1,

INCLUDE=(28,2,CH,EQ,C'92'),

OUTREC=(1,23),CONVERT

OUTFIL FILES=2,

INCLUDE=(28,2,CH,EQ,C'93'),

OUTREC=(1,23),CONVERT

Figure 114. Using the CONVERT Parameter

Figure 115. Input Record Layout

Chapter 3. How to Use SyncSort’s Data Utility Features 3.29

Once SyncSort has printed the data in the COMPANY NAME field, it starts a new output
line, prints on it the data in the next field, CUSTOMER NAME, starts a new line, and so
forth. After printing the contents of the last field (CITY, STATE AND ZIP), SyncSort cre-
ates two new lines (2/).

Figure 117 provides an excerpt from the output file where the input record is formatted on
multiple lines. A blank line appears in the second and third set of multi-line output because
the corresponding input record fields (i.e. CUSTOMER TITLE and CUSTOMER NAME)
were blank.

//MULTILIN JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=&&DATA,DISP=SHR Defines Input Data

//* Set

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(3,3)) Defines Intermediate

//* Storage

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(3,3)) Defines Intermediate

//* Storage

//SORTOUT DD SYSOUT=* Defines Output Data

//* Set

//SYSIN DD *

SORT FIELDS=(101,40,CH,A) Sorts Records

OUTFIL CONVERT, Converts Data

HEADER2=('CUSTOMER ADDRESS LIST',3/), Prints a Page

* Header

OUTREC=(101,40,/, Prints the Data in the

* Field and Starts a

* New Output Line

141,25,/, As Above

166,25,/, As Above

191,30,/, As Above

266,35,2/) As Above but Starts

* 2 New Output Lines

Figure 116. JCL and Control Statements for Multiline Output

SyncSort for z/OS 1.1 Programmer’s Guide3.30

Dividing a Report into Sections

When printing sorted output, you may want to divide it into sections. For example, after
sorting a personnel file alphabetically by company name and department, you might want
to print each department’s records as a separate section and leave some blank lines
between each section. You might even want to print each section as a separate page of the
report. SyncSort allows you to print groups of records that have identical information in
one or more sort fields as sections and to separate each section by a specified number of
lines or a page break.

To divide output into sections, use the SECTIONS parameter on the OUTFIL control state-
ment. For complete syntax of the SECTIONS parameter, see “SECTIONS Parameter
(Optional)” on page 2.80.

Dividing Output into Sections

Example: A personnel roster is to be divided into sections by Department. (Figure 118 pre-
sents the layout for the input record.)

CUSTOMER ADDRESS LIST

AARON'S ROD INC. First Set of Multiline Output

DAVID LAURENCE

SYS PROG

6936 YOUNGMAN BLVD.

GREAT NECK CT. 06854

BLAKE'S VISION TECHNOLOGY Second Set of Multiline Output

MR. N. FRYE

261 ALBION PLACE

SEA BRIGHT NJ. 08572

COLTRANE & COMPANY Third Set of Multiline Output

DATA CENTER MANAGER

300 DORIAN AVENUE

NEW YORK NY. 11220

Figure 117. Sample Multiline Output

Chapter 3. How to Use SyncSort’s Data Utility Features 3.31

To sort the records and generate a list that is divided by Department, the following is
coded.

A sample of the listing generated is shown in Figure 120.

Figure 118. Input Record Layout

//ROSTER JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=PRSNL,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,2),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(15,5,A,1,14,A),FORMAT=CH Sorts Records

OUTFIL OUTREC=(6:15,5, Repositions Record Fields

14:1,14,

33:20,3,

44:23,1,

54:24,2),

SECTIONS=(15,5,SKIP=5L) Sections Records

Figure 119. JCL and Required Control Statements

SyncSort for z/OS 1.1 Programmer’s Guide3.32

Explanation: After the records are sorted alphabetically by Department (15,5) and
Employee Name (1,14), they are divided into sections by department. That is, every time
there is a change in the Department field (15,5 in the input record) the printer skips 5 lines
(5L) before printing the next record. (Note, in the Sample Output above, the five-line break
that occurs between ACCTG and PRSNL.) The OUTREC parameter is used to reposition
the record fields and to leave blanks between them.

Writing Headers and Trailers for a Report

Headers are used to provide report, page, and section headings such as titles, page num-
bers, the current date, labels for each column of data, and the like. Similarly, trailers are
used for report, page, and section summaries. You can use them, for example, to provide
totals for columns of numeric data (see "Totaling and Subtotaling Data") or to indicate the
end of a section with, say, a string of asterisks or to provide a list of abbreviations used in
the report.

To generate Headers and/or Trailers, use the HEADER and TRAILER parameters of the
OUTFIL control statement. For complete syntax, see “HEADER1/HEADER2 Parameters
(Optional)” on page 2.68 and “TRAILER Parameters (Optional)” on page 2.73

Writing a Title Page for a Report

Example: Marketing wants a title page for its monthly departmental sales report. The
three-line title will begin on line 16 and three blank lines will separate each line of the title.
The three lines will start printing in columns 49, 59, and 63, respectively.

To print this title page, the following is coded:

ACCTG BELL PAT SUP F 03

ACCTG EMERY PAUL CLK M 04

ACCTG JONES MARK CLK M 01

ACCTG NORTH NANCY MGR F 02

ACCTG OWEN JERRY CLK M 03

ACCTG TWAIN JOAN SEC F 05

ACCTG WEST DONNA CLK F 03

PRSNL SMITHE JON CLK M 00

PRSNL TOWERS LINDA CLK F 02

PRSNL VREES GEORGE CLK M 02

PRSNL WU JANE SUP F 05

PRSNL YOUNG RUSS MGR M 03

Figure 120. Sample Output

Chapter 3. How to Use SyncSort’s Data Utility Features 3.33

Figure 122 shows the header that is generated by the above HEADER1 parameter:

Explanation: The HEADER1 parameter produces a header that will print on a separate
page, with no page number, at the beginning of the report. The first number-slash (n/)
entry, 15/, causes the printer to skip 15 lines before printing. The following number-colon
entry (c:), 49:, specifies the column in which the literal string 'D E P A R T M E N T A L S A
L E S' begins to print. Note that the literal string prints exactly as it is entered between the
single quotes, with a space between each letter and a double space between the words.

The next entry, 4/, causes the printer to skip 3 more blank lines before starting to print the
literal string 'F E B R U A R Y' in column 59.

Finally, three more lines are left blank (4/) and the literal string '1 9 9 2' begins printing in
column 63.

//DSRPT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=MRKTNG.SALES,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

.

.

.

OUTFIL HEADER1=(15/,49:'D E P A R T M E N T A L S A L E S',

4/,59:'F E B R U A R Y',

4/,63:'1 9 9 2'), Generates Title Page

.

.

.

Figure 121. JCL and Required Control Statements

D E P A R T M E N T A L S A L E S

F E B R U A R Y

1 9 9 2

Figure 122. Sample HEADER1

SyncSort for z/OS 1.1 Programmer’s Guide3.34

Writing a Page Header

Example: Marketing wants the first line of every page of its departmental sales report to
contain the program number, report title, page number, and date. They want the third line
of every page to contain an identifying label for each column of data. Each of these lines will
begin printing in column one.

To print the page header, the following is coded.

Figure 124 shows a representation of the header that is generated by the above HEADER2
parameter.

//DSRPT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=MRKTNG.SALES,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

.

.

.

OUTFIL .

.

HEADER2=(1:'PGM NUMBER 5',

46:'DEPARTMENT SALES REPORT FOR FEBRUARY 1992',

101:'DATE:',

107:&DATE, Generates Page Heading

121:'PAGE:',

127:&PAGE,//,

1:'DEPARTMENT',

40:'SALES MANAGER',

61:'SALES REP',

78:'SALES THIS PERIOD',

103:'SALES YEAR TO DATE',//),

.

.

Figure 123. JCL and Required Control Statements

Chapter 3. How to Use SyncSort’s Data Utility Features 3.35

Explanation: The HEADER2 parameter produces the page header shown above. Because
no forward spacing is specified, the page header begins on the first line of every page. Each
of the HEADER2’s number-colon entries (c:), for example, 1:, indicates the column in which
the entry following the colon begins to print. Thus, the literal 'PGM NUMBER 5' is printed
beginning in column 1, and so on. The &DATE and the &PAGE entries generate a current
date and a consecutive page number, respectively. The date and the page number appear
after the labels DATE: and PAGE:, which are specified like the other literals.

The double slashes (//) following the &PAGE entry direct the printer to forward space two
lines, that is, to leave one blank line, before printing the next group of literals that consti-
tute the labels for the columns of data.

Writing a Section Header

Example: Marketing wants each section of its departmental sales report to have its own
heading. The heading will consist of one line containing an identifying label for each col-
umn of data. The heading will begin printing in column one.

To print the section header, the following is coded.

PGM NUMBER 5 DEPARTMENT SALES REPORT FOR FEBRUARY 1992 DATE: 02/01/

92 PAGE: 1

DEPARTMENT SALES MANAGER SALES REP SALES THIS PERIOD SALES YEAR TO DA

TE

Figure 124. Sample HEADER2

SyncSort for z/OS 1.1 Programmer’s Guide3.36

Figure 126 shows the header that is generated by the above HEADER3 subparameter.

//DSRPT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=MRKTNG.SALES,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

OUTFIL OUTREC=(1:1,15, Repositions Fields on Output

23:23,7, Records and Edits Data

51:48,3,

72:60,4,PD,EDIT=($II,IIT.TT),

101:64,4,PD,EDIT=($II,IIT.TT),

114:C' '),

SECTIONS=(1,15,SKIP=5L, Generates Section Breaks

HEADER3=(1:'DEPARTMENT', Generates Section Headings

23:'SALES MGR',

48:'SALES REP',

68:'SALES THIS PERIOD',

97:'SALES YEAR TO DATE',//))

Figure 125. JCL and Required Control Statements

Chapter 3. How to Use SyncSort’s Data Utility Features 3.37

Explanation: The HEADER3 subparameter on the SECTIONS parameter generates a
header that prints at the beginning of each section. Its primary purpose here is to provide
labels for the columns of data that appear in each section. Each of the number-colon entries
(c:) specifies the column in which the entry following it should begin to print. Thus, the lit-
eral string 'DEPARTMENT' begins to print in column 1, the literal string 'SALES MGR'
begins to print in column 23, and so on. Blanks are automatically inserted in the space
between the columns that are specified. On the OUTREC parameter a blank has been
inserted in column 114 (114:C' ') so that the output record length will equal that of the
header. Note that if the HEADER3 in this example were used in conjunction with the pre-
ceding HEADER2 example, there would be no need to specify the labels for the columns of
data in the HEADER2.

Using a Header to Eliminate Duplicate Information within a Section

Example: Rather than repeat the department name and sales manager, which are identical
for every record included in a section of the departmental sales report, marketing wants
this information to appear only once-within the section headers of the report. Therefore,
the section headers’ first two entries (Department and Sales Manager) will be drawn
directly from the first data record in each section.

DEPARTMENT SALES MGR SALES REP SALES THIS PERIOD SALES YEAR TO DATE

OVER COUNTER CASEY 075 $14,000.00 $27,000.00

OVER COUNTER CASEY 093 13,550.00 32,000.00

OVER COUNTER CASEY 084 11,755.00 24,850.00

OVER COUNTER CASEY 090 12,250.00 25,000.00

OVER COUNTER CASEY 095 13,075.00 26,180.00

DEPARTMENT SALES MGR. SALES REP SALES THIS PERIOD SALES YEAR TO DATE

SURGICAL KILDARE 003 $11,750.00 $25,320.00

SURGICAL KILDARE 007 $14,300.00 24,900.00

SURGICAL KILDARE 009 11,110.00 30,850.00

SURGICAL KILDARE 004 13,375.00 27,505.00

.

.

.

Figure 126. Sample Sections with HEADER3

SyncSort for z/OS 1.1 Programmer’s Guide3.38

To print the section header with the input data fields, the following is coded.

Figure 128 shows the header that is generated by the above HEADER3 subparameter.

Explanation: The HEADER3 subparameter on the SECTIONS parameter generates a
header that prints at the beginning of each section. Its primary purpose here is to provide

//DSRPT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=MRKTNG.SALES,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

.

.

.

OUTFIL..., Repositions Fields on Output

OUTREC=(25:48,3, Records and Edits Data

37:60,4,PD,EDIT=($II,IIT.TT),

56:64,4,PD,EDIT=($II,IIT.TT),

71:C' '),

SECTIONS=(1,15,SKIP=2L, Generates Section Breaks

HEADER3=(1:1,15, Generates Section Headings

16:23,7,

23:'SALES REP',

34:'SALES THIS PERIOD',

54:'SALES YEAR TO DATE'))

Figure 127. JCL and Required Control Statements

OVER COUNTER CASEY SALES REP SALES THIS PERIOD SALES YEAR TO DATE

075 $14,000.00 $27,000.00

093 $13,550.00 $32,000.00

084 $11,755.00 $24,850.00

090 $12,250.00 $25,000.00

095 $13,075.00 $26,180.00

SURGICAL KILDARE SALES REP SALES THIS PERIOD SALES YEAR TO DATE

003 $11,750.00 $25,320.00

007 $14,300.00 $24,900.00

009 $11,110.00 $30,850.00

004 $13,375.00 $27,505.00

. . .

. . .

. . .

Figure 128. Sample Sections with HEADER3 Including Data from Input Record

Chapter 3. How to Use SyncSort’s Data Utility Features 3.39

individualized section headings that contain the Department Name and the Sales Manager
from the records in that section as well as labels for the columns of data. The first two
entries in this header, 1:1.15 and 16:23,7 (the Department Name and Sales Manager,
respectively), are drawn directly from the input record to eliminate the repetition of these
fields in the detail lines of each section. Note that specifying these fields in the HEADER3
eliminates the need to include them in OUTREC processing as was necessary in the preced-
ing example. Each of the number-colon entries (c:) specifies the column in which the entry
following it should begin to print. Thus, the Department field, (1,15) begins to print in col-
umn 1; the Sales Manager field, in column 16; the literal string "SALES REP", in column
48, and so on. Blanks are automatically inserted in the space between the columns that are
specified. It should be pointed out that on the OUTREC parameter a blank has been
inserted in column 71 (71:C' ') so that the output record length will equal that of the header.

Writing a Report Trailer or Summary

Example: The final page of marketing’s departmental sales report will contain a note say-
ing that February sales figures include residual 1992 sales not previously recorded. This
note will begin on the 21st line of the page and start printing in the 33rd column of the
page.

To print the report trailer, the following is coded.

Figure 123 shows the trailer that is generated by the above TRAILER1 parameter.

//DSRPT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=MRKTNG.SALES,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

.

.

.

OUTFIL .

.

.

TRAILER1=(20/, Generates Report Trailer

33:'FEBRUARY SALES FIGURES INCLUDE RESIDUAL 1992',

'SALES NOT PREVIOUSLY RECORDED')

Figure 129. JCL and Required Control Statements

SyncSort for z/OS 1.1 Programmer’s Guide3.40

Explanation: The TRAILER1 parameter produces a report trailer or summary that consti-
tutes the final page of a report. Unless otherwise specified, it begins on the first line of the
page. The TRAILER1’s initial number-slash (n/) entry, 20/, directs the printer to forward
space 20 blank lines before printing on the 21st line. The next entry, a number-colon (c:)
entry, is used to center the literal string that follows it by having the string of characters
begin printing in the appropriate column. It specifies column 33 as the beginning position
for printing the literal string, 'FEBRUARY SALES FIGURES INCLUDE RESIDUAL 1992
SALES NOT PREVIOUSLY RECORDED'.

Writing a Page Trailer

Example: Marketing wants the last line on every page of its departmental-sales report to
contain a note identifying the information as confidential. This line will begin printing in
column one.

To print the page trailer, the following is coded.

Figure 132 shows the trailer that is generated by the above TRAILER2 parameter.

FEBRUARY SALES FIGURES INCLUDE RESIDUAL 1992 SALES NOT PREVIOUSLY RECORDED

Figure 130. Sample TRAILER1

//DSRPT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=MRKTNG.SALES,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

.

.

.

OUTFIL .

.

.

TRAILER2=(5'*','C O N F I D E N T I A L I N F O R M A T I O N',

5'*','C O N F I D E N T I A L I N F O R M A T I O N',5'*')

.

. Generates Page Trailer

.

Figure 131. JCL and Required Control Statements

Chapter 3. How to Use SyncSort’s Data Utility Features 3.41

Explanation: The TRAILER2 coded above provides a trailer that appears at the bottom of
every logical page. The first entry, 5'*', a literal enclosed in single quotes (in this case an
asterisk) and a repetition factor (5), specifies that 5 asterisks should be printed. Because no
column was specified, the trailer begins in column one. The next entry, 'C O N F I D E N T I
A L I N F O R M A T I O N ', specifies that the literal string enclosed in the single quotes
should directly follow the asterisks. Note that the literal string is printed exactly as it is
coded within the quotation marks. That is, there is a blank between every letter and two
blanks between each word. The trailer’s other entries specify the printing of another five
asterisks followed by the literal string 'C O N F I D E N T I A L I N F O R M A T I O N ' and
finally another five asterisks.

Totaling and Subtotaling Data

Writing a summary or trailer for a report will sometimes involve providing totals for col-
umns of figures. For example, you would probably want a trailer for an inventory report to
contain the total number of items on hand. The OUTFIL statement allows you to write
trailers that contain both totals and subtotals. Moreover, you can total data at the end of a
report, at the end of a page, and also at the end of a section.

To generated total and subtotals, use the TOTAL and SUBTOTAL entries of OUTFIL’s
TRAILER parameters and subparameter. For details of syntax, see “TRAILER Parameters
(Optional)” on page 2.73

Totaling Data at the End of a Report

Example: The departmental sales report’s final page will be a summary containing both the
total for the sales this period and the total for the sales to date. The trailer will begin on the
21st line of the page and each total will have an identifying label.

To print the report trailer, the following is coded.

*****CONFIDENTIAL INFORMATION*****CONFIDENTIAL INFORMATION*****

Figure 132. Sample TRAILER3

SyncSort for z/OS 1.1 Programmer’s Guide3.42

Figure 134 shows the trailer that is generated by the above TRAILER1 parameter.

Explanation: The TRAILER1 parameter produces a report trailer or summary that consti-
tutes the final page of a report. Unless otherwise specified, it begins on the first line of the
page. This TRAILER1’s initial number-slash(n/) entry, 20/, directs the printer to forward
space 20 blank lines before printing. The next entry, a number-colon (c:) entry, is used to
center the literal string that follows it by having the string of characters begin printing in
the appropriate column. It specifies column 40 as the beginning position for the literal
string 'SALES THIS PERIOD:' that labels the numeric data following it. This TRAILER’s
other number-colon plus literal-string entry functions the same way.

The two TOT entries, TOT=(....), generate the trailer’s totals. These entries specify the
numeric data used and its format. Thus the four bytes of packed-decimal data that begin in
byte 24 (24,4,PD) and the four bytes that begin in byte 28 (28,4,PD) of the input record are
converted to printable format. This data is then edited by the EDIT pattern ($II,IIT.TT),
which suppresses the printing of leading zeros and inserts a floating dollar sign as well as a
necessary comma and decimal point. The pattern uses an I to indicate those zeros in the
total that should not be printed and a T to indicate those that should.

//DSRPT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=MRKTNG.SALES, Defines Input Data Set

DISP=SHR

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5), Defines Intermediate Storage

UNIT=SYSDA

//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

.

.

.

OUTFIL.

.

.

TRAILER1=(20/, Generates Report Trailer with Totals

40:'SALES THIS PERIOD:',

59:TOT=(24,4,PD,EDIT=($II,IIT.TT)),

73:'SALES TO DATE:',

88:TOT=(28,4,PD,EDIT=($II,IIT.TT)))

Figure 133. JCL and Required Control Statements

SALES THIS PERIOD: $35,807.85 SALES TO DATE: $62,305.25

Figure 134. Sample TRAILER1

Chapter 3. How to Use SyncSort’s Data Utility Features 3.43

Note: Be sure to code all the necessary parentheses when using the TOTAL and EDIT
entries.

Subtotaling Data at the End of a Page

Example: The page trailer for a report listing invoices is to contain the totals for the
Amount Paid and the Balance Due fields of the invoice records printed up to and including
that page. These totals will appear directly below the columns of figures and be separated
from them by strings of hyphens. An identifying label, TOTALS:, will appear on the same
line as the totals and will begin in column 40.

To generate the trailer, the following is coded.

Figure 136 shows the trailer that is produced.

//INVLST JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=INVOICE,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(9,23,A,36,2,A,32,4,A), Sorts Records

FORMAT=CH

.

.

.

OUTFIL.

.

.

TRAILER2=(65:10'-', 86:10'-',/, Generates Page Trailer

40:'TOTALS:', with Running Totals

65:SUB=(46,4,PD,EDIT=($II,IIT.TT)),

86:SUB=(54,4,PD,EDIT=($II,IIT.TT)))

Figure 135. JCL and Required Control Statements

SyncSort for z/OS 1.1 Programmer’s Guide3.44

Explanation: The above TRAILER2 provides for totaling the figures in the Amount Paid
field (46,4,PD) and the Amount Due field (54,4,PD) on the invoice records. Because the SUB
(SUBTOTAL) entry is specified, the totals that appear at the bottom of each page represent
running totals, that is, the totals for all the records that have been printed up to and includ-
ing that page. The TRAILER2 also generates the identifying label TOTALS: (40:'TOTALS:')
and strings of hyphens at the bottoms of the columns to be totaled (65:10'-', 86:10'-').

The totaled data for each field is converted to printable format and, after being edited,
begins printing in the columns specified with the two number colon entries (c:), 65: and 86:.
The data is edited by the EDIT pattern, ($II,IIT.TT), which suppresses the printing of lead-
ing zeros and inserts a floating dollar sign as well as the necessary comma and decimal
point. The pattern uses an I to indicate the zeros in the total that should not be printed and
a T to indicate those that should.

Totaling Data at the End of a Section

Example: The section trailer for an accounts receivable report sectioned by month is to con-
tain the totals for the Amount Paid and the Balance Due columns of each section. These
totals will appear directly below the columns of figures and be separated from them by
strings of hyphens. An identifying label, TOTALS:, will appear on the same line as the
totals and will begin in column 40.

To generate the trailer, the following is coded.

.

.

.

MERLINS TRUST CO 82124054 12/15/92 0.00 1,500.00

MEWER COLLEGE 83013324 1/17/92 0.00 1,500.00

NORTHEAST INDUST 83013303 1/17/92 200.00 200.00

PARK PLACE CORP 83022211 2/15/92 0.00 650.00

PATIO PRODUCTS 83022203 2/15/92 0.00 850.00

PINES ASSOCIATES 83022587 2/15/92 0.00 750.00

POLL DATA CORP 82124019 12/15/92 0.00 600.00

PRIESTLEY METALS 83022201 2/15/92 0.00 1,600.00

REGENCY TRUST CO 82124011 12/15/92 0.00 1,500.00

REPUBLIC DATA 83013306 1/17/92 0.00 1,100.00

RIBBIT TECHNOLOGIES 82124020 12/15/92 0.00 360.00

RICE FEATURES 82124015 12/15/92 750.00 750.00

RICE FEATURES 83013298 1/17/92 0.00 1,500.00

RICE FEATURES 83022198 2/15/92 0.00 1,500.00

ROBINS NEST CORP 83013353 1/17/92 0.00 900.00

SIDNEY COLLEGE 82124016 12/15/92 0.00 5,000.00

SIDNEY COLLEGE 83013297 1/17/92 0.00 2,500.00

------- ----------

TOTALS: $6,150.00 $66,475.00

Figure 136. TRAILER2 with SUBTOTAL

Chapter 3. How to Use SyncSort’s Data Utility Features 3.45

Figure 138 shows the section trailer, with totals, that is produced.

//ACTREC JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=NEW.INV,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(9,23,A,36,2,A,32,4,A), Sorts Records

FORMAT=CH

.

.

.

OUTFIL.

.

.

SECTIONS=(32,4,SKIP=3L, Generates Section Breaks

TRAILER3=(65:10'-',86:10'-',/, Generates Section Trailer

40:'TOTALS:', with Totals

65:TOT=(46,4,PD,EDIT=($II,IIT.TT)),

86:TOT=(54,4,PD,EDIT=($II,IIT.TT))))

Figure 137. JCL and Required Control Statements

SyncSort for z/OS 1.1 Programmer’s Guide3.46

Explanation: In addition to generating strings of hyphens at the bottom of the columns to
be totaled (65:10'-',86:10'-') and the identifying label TOTALS: on the line below
(40:'TOTALS:'), the TRAILER3 provides for totaling the figures in the Amount Paid field
(46,4,PD) and the Amount Due field (54,4,PD) on the invoice records. Note that because the
TOT (TOTAL) entry is specified, the totals that appear at the end of each section represent
that totals only for the records that are included in that section.

The totaled data for each field is converted to printable format and, after being edited,
begins printing in the columns specified with the two number colon entries (c:), 65: and 86:.
The data is edited by the EDIT pattern, ($II,IIT.TT), which suppresses the printing of lead-
ing zeros and inserts a floating dollar sign as well as the necessary comma and decimal
point. The pattern uses an I to indicate the zeros in the total that should not be printed and
a T to indicate those that should.

.

.

.

WINIFRED INDUST 82124013 12/15/91 300.00 350.00

--------- ----------

TOTALS: $2,600.00 $19,770.00

ARLINE FRAGRANCES 83013304 1/17/92 0.00 7,500.00

CHARACTER DATA 83013343 1/17/92 0.00 1,100.00

COUNTRY INDUSTRIAL 83013557 1/17/92 0.00 950.00

DUNHAM INDUST INC 83013302 1/17/92 0.00 850.00

ECHO LABS INC 83013300 1/17/92 0.00 550.00

ESS SECURITIES 83013311 1/17/92 0.00 550.00

EVERMORE INDUST 83013556 1/17/92 2,000.00 3,000.00

GOODEY FOODS 83013356 1/17/92 0.00 600.00

GROSS BOOKS CO 83013264 1/17/92 0.00 2,500.00

HARVEY MOTORS CO 83013301 1/17/92 2,000.00 3,000.00

KALABRA CORPORATION 83013555 1/17/92 0.00 1,500.00

MEWER COLLEGE 83013324 1/17/92 0.00 1,500.00

NORTHEAST INDUST 83013303 1/17/92 200.00 200.00

REPUBLIC DATA 83013306 1/17/92 0.00 1,100.00

RICE FEATURES 83013298 1/17/92 0.00 1,500.00

ROBINS NEST CORP 83013353 1/17/92 0.00 900.00

SIDNEY COLLEGE 83013297 1/17/92 0.00 2,500.00

SOUTHWEST INDUST 83013503 1/17/92 200.00 200.00

SPENSERS INDUST 83013989 1/17/92 0.00 650.00

UNITED INTERESTS INC 83013309 1/17/92 0.00 1,500.00

WINIFRED INDUST 83013299 1/17/92 0.00 650.00

---------- ---------

TOTALS: $4,400.00 $32,800.00

Figure 138. TRAILER3 with TOTAL

Chapter 3. How to Use SyncSort’s Data Utility Features 3.47

Obtaining Maximum, Minimum and Average Data

A report may need to include maximum, minimum, and average data. The parameters pro-
vided for this type of reporting are MIN, SUBMIN, MAX, SUBMAX, AVG and SUBAVG.
The syntax is the same as for TOTAL and SUBTOTAL. See “Totaling and Subtotaling
Data” on page 3.41 and “TRAILER Parameters (Optional)” on page 2.73.

Printing Maximum, Minimum and Average Data in Section Trailers

 Example: The section trailers for an accounts receivable report sectioned by data group
(AAA, BBB, etc.) are to contain six edited numeric values for a 6-byte field that begins at
byte 8 (8,6). The values to be printed are the following:

• The minimum data value up to that point in the report (SUBMIN)
• The minimum data value in the section (MIN)
• The maximum data value up to that point in the report (SUBMAX)
• The maximum data value in the section (MAX)
• The average data value up to that point in the report (SUBAVG)
• The average data value in the section (AVG)

Each value will be preceded, on the same line, by appropriate identifying text. Two columns
of data will be printed.

To print the report, the following is coded:

The following shows two sections from the report, with the resulting values for submini-
mums, minimums, submaximums, maximums, subaverages and averages:

SORT FIELDS=(1,3,CH,A,5,2,CH,A) SORT DATA BY GROUP AND SECTION

OUTFIL FILES=(OUT),

SECTIONS=(1,3,SKIP=3L,

HEADER3=(3:'GROUP',2X,1,3,/,16:'SECTION',6X,'VALUE',/),

TRAILER3=(//,4:'MINIMUM VALUE TO THIS POINT= ',

35:SUBMIN=(8,6,ZD,M2),/,

4:'MINIMUM VALUE FOR THIS GROUP= ',

35:MIN=(8,6,ZD,M2),//,

4:'MAXIMUM VALUE TO THIS POINT= ',

35:SUBMAX=(8,6,ZD,M2),/,

4:'MAXIMUM VALUE FOR THIS GROUP= ',

35:MAX=(8,6,ZD,M2),//,

4:'AVERAGE VALUE TO THIS POINT= ',

35:SUBAVG=(8,6,ZD,M2)/,

4:'AVERAGE VALUE FOR THIS GROUP= ',

35:AVG=(8,6,ZD,M2))),

OUTREC=(18:5,2,26:8,6,ZD,M2,80:1X)

SyncSort for z/OS 1.1 Programmer’s Guide3.48

Explanation: The SECTION parameter generates a section break on field 1,3, which identi-
fies data groups (AAA, BBB, etc.). The HEADER3 parameter defines section headers that
print the label "GROUP" followed by the data group identifier. HEADER3 also defines two
column headings: "SECTION," which identifies the column containing section numbers,
and "VALUE," which identifies the columns containing the numeric data.

GROUP AAA

SECTION VALUE

01 38.42

01 923.12

01 8,756.33

02 9,723.63

02 67.43

02 175.66

03 645.83

03 673.41

03 23.71

MINIMUM VALUE TO THIS POINT= 23.71

MINIMUM VALUE FOR THIS GROUP= 23.71

MAXIMUM VALUE TO THIS POINT= 9,723.63

MAXIMUM VALUE FOR THIS GROUP= 9,723.63

AVERAGE VALUE TO THIS POINT= 2,336.39

AVERAGE VALUE FOR THIS GROUP= 2,336.39

GROUP BBB

SECTION VALUE

01 0.01

01 456.11

01 874.01

02 4,354.00

02 2,583.54

02 3.57

03 809.01

03 934.53

03 853.21

MINIMUM VALUE TO THIS POINT= 0.01

MINIMUM VALUE FOR THIS GROUP= 0.01

MAXIMUM VALUE TO THIS POINT= 9,723.63

MAXIMUM VALUE FOR THIS GROUP= 4,354.00

AVERAGE VALUE TO THIS POINT= 1,771.97

AVERAGE VALUE FOR THIS GROUP= 1,207.55

Chapter 3. How to Use SyncSort’s Data Utility Features 3.49

The TRAILER3 subparameters are SUBMIN, MIN, SUBMAX, MAX, SUBAVG and AVG.
They specify the six values to appear in the section trailer. The values are all derived from
the same field (8,6) and are suitably edited with mask M2 (8,6,ZD,M2).

The OUTREC parameter places the two data fields (5,2 and 8,6) in the report and edits the
8,6 field in the same way as for the six values in the section trailer (8,6,ZD,M2). The blank
space placed at position 80 (80:1X) ensures that the output record is long enough to contain
the header records.

Counting Data Records

Trailers in a report will sometimes require you to obtain a record count or a count for a par-
ticular type of item in a specific part of a report. The OUTFIL statement allows you to write
trailers that contain such a count as well as cumulative, or running, counts of records.
Moreover, you can obtain these counts at the end of a report, at the end of a page, and at the
end of a section.

To generate these counts, use the COUNT and SUBCOUNT subparameters (or COUNT15
and SUBCOUNT15). These subparameters can be used in conjunction with all other
TRAILER entries. For syntax of COUNT and SUBCOUNT (as well as COUNT15 and
SUBCOUNT15), see “TRAILER Parameters (Optional)” on page 2.73.

Obtaining a Count of Data Records

Example: Marketing wants a count of the total number of customers with outstanding pay-
ments included in the summary of its outstanding invoices report.

To get this record count and print it as part of the report summary, the following is coded.

SyncSort for z/OS 1.1 Programmer’s Guide3.50

Figure 140 shows the trailer containing the record count.

Explanation: Since each record in the report represents an individual customer, coding the
COUNT entry in the TRAILER1 will provide the total number of customers with outstand-
ing payments. This TRAILER1 produces a report trailer, or summary, that constitutes the
final page of a report. It will print on the 21st line of the page (20/) and begin printing the
literal string 'NUMBER OF CUSTOMERS WITH OUTSTANDING PAYMENTS: ' in col-
umn 40.

Obtaining a Cumulative (Running) Count of Data Records

Example: For an outstanding invoices report sectioned by month, marketing wants a cumu-
lative, or running, count of invoices to date at the end of each section as well as a total
count of each month’s invoices included as section trailers.

To generate these record counts, the following is coded.

//INVLST JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=INVOICE,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(1,23,CH,A) Sorts Records

.

.

.

OUTFIL.

.

.

TRAILER1=(20/, Generates Report Summary

40:'NUMBER OF CUSTOMERS WITH OUTSTANDING PAYMENTS:',

COUNT)

Figure 139. JCL and Required Control Statements

NUMBER OF CUSTOMERS WITH OUTSTANDING PAYMENTS: 52

Figure 140. Report Trailer Containing Record Count

Chapter 3. How to Use SyncSort’s Data Utility Features 3.51

Figure 142 shows the trailers containing the counts of records.

//INVLST JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=INVOICE,DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SORTWK01 DD SPACE=(CYL,5),UNIT=SYSDA Defines Intermediate Storage

//SYSIN *

SORT FIELDS=(28,2,ZD,A, Sorts Records

24,2,ZD,A,

1,23,ZD,A)

.

.

.

OUTFIL.

.

.

SECTIONS=(24,6,SKIP=1L, Generates Sections with Record

TRAILER3=(/

, Count & Cumulative Record Subcount

95:'MONTH''S NUMBER OF INVOICES: ',COUNT,/,

95:'NUMBER OF INVOICES TO DATE: ',SUBCOUNT))

Figure 141. JCL and Required Control Statements

SyncSort for z/OS 1.1 Programmer’s Guide3.52

. . . .

. . . .

. . . .

RIBBIT TECHNOLOGIES 2/15/91 360.00 21.60

RICE FEATURES 12/15/91 750.00 75.00

SIDNEY COLLEGE 12/15/91 5,000.00 300.00

SNAP FEATURES 12/15/91 750.00 75.00

WEBB BROS CORP 12/15/91 600.00 36.00

WELLINGTON IMPORTS 12/15/91 750.00 45.00

WINIFRED INDUST 12/15/91 350.00 26.00

MONTH'S NUMBER OF INVOICES: 17

NUMBER OF INVOICES TO DATE: 17

ARLINE FRAGRANCES 1/17/92 7,500.00 618.75

CHARACTER DATA 1/17/92 1,100.00 50.75

COUNTRY INDUSTRIAL 1/17/92 850.00 0.00

DUNHAM INDUST CO 1/17/92 850.00 0.00

ECHO LABS INC 1/17/92 550.00 22.00

ESS SECURITIES 1/17/92 550.00 22.00

EVERMORE INDUST 1/17/92 3,000.00 225.00

GOODEY FOODS 1/17/92 600.00 30.00

GROSS BOOKS CO 1/17/92 2,500.00 150.00

HARVEY MOTORS CO 1/17/92 3,000.00 225.00

KALABRA CORP 1/17/92 1,500.00 90.00

MEWER COLLEGE 1/17/92 1,500.00 75.00

NORTHEAST INDUST 1/17/92 200.00 20.00

REPUBLIC DATA 1/17/92 1,100.00 90.75

RICE FEATURES 1/17/92 1,500.00 75.00

ROBINS NEST CORP 1/17/92 900.00 54.00

SIDNEY COLLEGE 1/17/92 2,500.00 150.00

SOUTHWEST INDUST 1/17/92 200.00 20.00

SPENSERS INDUST 1/17/92 650.00 26.00

UNITED INTERESTS 1/17/92 1,500.00 90.00

WINIFRED INDUST 1/17/92 650.00 26.00

MONTH'S NUMBER OF INVOICES: 21

NUMBER OF INVOICES TO DATE: 38

BALTIC AVENUE CORP 2/15/92 650.00 29.25

BATHO PRODUCTS 2/15/92 850.00 51.00

CARRINGTON OIL 2/15/92 1,600.00 64.00

CDR TRUST INC 2/15/92 1,500.00 75.00

ECHO LABS INC 2/15/92 550.00 22.00

ESS SECURITIES 2/15/92 550.00 22.00

FASTEROOT EQUIP 2/15/92 1,700.00 76.50

FEDERAL FABRICS 2/15/92 1,750.00 70.00

. . . .

. . . .

. . . .

Figure 142. TRAILER3 Containing Record Counts and Cumulative Record Counts

Chapter 3. How to Use SyncSort’s Data Utility Features 3.53

Explanation: The trailer’s first / entry causes the printer to leave one blank line after the
data records and before printing the trailer. The second / entry indicates the end of the
trailer’s first line. The identical number-colon entries (95:) set the starting positions of the
literal strings that follow them: 'MONTH' 'S NUMBER OF INVOICES: ' and 'NUMBER OF
INVOICES TO DATE: '.(Note that the apostrophe in MONTH'S is doubled because a single
apostrophe would signal the end of a literal string.) Finally, because each data record in
this report represents an invoice, the TRAILER3’s COUNT entry generates a count of each
month’s invoices and the SUBCOUNT entry generates a cumulative, or running, count of
the invoices. The leading zeros in these 8-byte fields are suppressed.

Creating Multiple Output Files

Data centers often use the same masterfile for different purposes. Assume, for example,
that you wanted to produce two reports using a masterfile of cash-receipt records. One
report was to present the total cash receipts for the current month; the second, for the year
to date. This would typically entail running a separate sort for each report. SortWriter’s
multiple-output feature, however, enables you to produce both reports with a single pass of
the sort. In addition, you can specify the same or different devices to receive the separate
output files.

Note: All the output files will be sequenced in the same way, as specified on the SORT or
MERGE statement. If you need to sort the output files differently, you should use PipeSort,
a Syncsort product that works with SyncSort for z/OS to reduce total elapsed time by gener-
ating multiple, differently sequenced output files from a single read of the input data.

To generate multiple output files, code the OUTFIL statement. For syntax of the OUTFIL
control statement, see “OUTFIL Control Statement” on page 2.59.

Generating Several Output Files with Different Information

Example: Marketing wants three output files of customer records. The first will contain a
list of U.S. and European customers. The second will contain a list of U.S. customers only,
and the third will contain a list of European customers only.

To generate the three separate files, the following is coded.

SyncSort for z/OS 1.1 Programmer’s Guide3.54

Explanation: Creating the three requested output files requires coding three SORTOFxDD
statements in the JCL: SORTOF1, SORTOF2, and SORTOF3 as well as three OUTFIL
statements. Each of the OUTFIL statements is connected by a FILES parameter to one of
the output files defined in the JCL. Specifying 1 on the FILES parameter connects its
OUTFIL statement with the output file defined by the SORTOF1 DD statement in the JCL.
Likewise, specifying 2 connects its OUTFIL statement with the output file defined by
SORTOF2, and so on. The first output file will contain all the records from the input file
(INCLUDE=ALL). The second output file will include only those records that contain the
character string 'USA' beginning in byte 67, (INCLUDE=(67,3,CH,EQ,C'USA')), which
indicates that these records are for USA customers. And similarly, the third output file will
include only those records that contain the character string 'EUR' beginning in byte 67,
which indicates that these records are for European customers.

//CUSTRCD JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=A Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=SALES.RECORDS, Defines Input Data Set

// VOL=SER=DISK1,

// DISP=SHR

//SORTOF1 DD DSN=SORTED.CUSTM.RECORDS, Defines First Output Data

// UNIT=TAPE,VOL=SER=112231, Set Containing All

//* Customer Records

// DISP=(NEW,KEEP)

//SORTOF2 DD DSN=SORTED.DCUSTM.RECORDS, Defines Second Output Data

Set Containing Domestic

// UNIT=TAPE,VOL=SER=112232, Customer Records Only

// DISP=(NEW,KEEP)

//SORTOF3 DD DSN=SORTED.ECUSTM.RECORDS, Defines Third Output Data

//* Set Containing European

// UNIT=TAPE,VOL=SER=112233, Customers Only

// DISP=(NEW,KEEP)

//SORTWK01 DD SPACE=(CYL,20),UNIT=SYSDA Defines Intermediate Storage

//SORTWK02 DD SPACE=(CYL,20),UNIT=SYSDA Defines Intermediate Storage

//SORTWK03 DD SPACE=(CYL,20),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(10,15,CH,A) Sorts Records

OUTFIL FILES=1, OUTFIL Statement for SORTOF1

INCLUDE=ALL Including All Records

OUTFIL FILES=2, OUTFIL Statement for SORTOF2

INCLUDE=(67,3,CH,EQ,C'USA') Including USA Records

OUTFIL FILES=3, OUTFIL Statement for SORTOF3

INCLUDE=(67,3,CH,EQ,C'EUR') Including Eur. Records

Figure 143. JCL and Required Control Statements

Chapter 3. How to Use SyncSort’s Data Utility Features 3.55

Writing Identical Output Files to Different Devices

Example: Personnel wants a printed copy of its updated masterfile as well as copies on disk
and on tape.

To generate these three copies of the same file on different devices, the following is coded.

Explanation: Creating the three copies of the updated masterfile requires coding only one
OUTFIL statement with a FILES parameter. The FILES parameter instructs SyncSort to
look for multiple output files defined in the JCL and to send its output to the devices speci-
fied in the SORTOFxx statements. Thus, the output that has been sorted as specified on
the SORT statement (1,40,CH,A) will be sent to the printer specified in the SORTOFPR
statement, to the tape volume specified in the SORTOFTP statement, and to the disk data
set specified in the SORTOFDS statement.

//MULTOUT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort Messages

//* to I/O Device

//SORTIN DD DSN=PERSNL.RECORDS, Defines Input Data Set

// VOL=SER=DISK1,

// DISP=SHR

//SORTOFPR DD SYSOUT=* Defines Printed Output

//* Data Set

//SORTOFTP DD DSN=PERSNL.RECORDS.TAPE, Defines Tape Output Data Set

// UNIT=TAPE,VOL=SER=112233,

// DISP=(NEW,KEEP)

//SORTOFDS DD DSN=PERSNL.RECORDS.DISK, Defines Disk Output Data Set

// UNIT=DISK1,DISP=(NEW,KEEP),

// SPACE=(CYL,60)

//SORTWK01 DD SPACE=(CYL,20),UNIT=SYSDA Defines Intermediate Storage

//SORTWK02 DD SPACE=(CYL,20),UNIT=SYSDA Defines Intermediate Storage

//SORTWK03 DD SPACE=(CYL,20),UNIT=SYSDA Defines Intermediate Storage

//SYSIN DD *

SORT FIELDS=(1,40,CH,A) Sorts Records

OUTFIL FILES=(PR,TP,DS) Creates Multiple Output

Figure 144. JCL and Required Control Statements

SyncSort for z/OS 1.1 Programmer’s Guide3.56

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.1

Chapter 4. JCL and Sample JCL/Control Statement
Streams

SyncSort’s job control statements follow the standard operating system conventions
described in the z/OS job control language manuals. Each program application therefore
requires a JOB statement, an EXEC statement, and a DD (data definition) statement for
every data set used. (The single exception to this is the dynamic allocation of work files via
DYNALLOC or DYNATAPE.) The inclusion and coding requirements of particular job con-
trol statements depend on such factors as whether SyncSort is program-invoked or initi-
ated directly, whether any exits are coded, and, of course, whether the sorting technique
requested is Disk Sort, MAXSORT, PARASORT or Tape Sort.

All aspects of program initiation which are specific to the sort/merge (such as the dedicated
DD names SORTIN and SORTOUT) are documented in this chapter. For complete coding
instructions, refer to a z/OS MVS JCL reference manual.

The following table summarizes Disk Sort’s DD statement requirements.

SyncSort for z/OS 1.1 Programmer’s Guide4.2

EXEC Statement

The EXEC statement is required in order to indicate to the operating system that the job is
a sort/merge application. For a Disk Sort, the format of the EXEC statement is as follows.

Disk Sort DD Statements

//STEPLIB DD
//JOLIB DD

Instructs operating system to look for the sort program in a
specified data set.

//SYSOUT DD Message data set. Required unless all messages are routed to
console.

//SORTIN DD SORT input data set. Required unless there is an E15.
Ignored if the invoking program supplies an inline E15 exit
routine; optional if the MODS statement activates an E15
exit routine.

//SORTINnn DD
//SORTINn DD MERGE input data set. Required unless there is an E32.

//SORTOUT DD Output data set. Required unless there is an E35. Ignored if
the invoking program supplies an inline E35 exit routine;
optional if the MODS statement activates an E35 exit rou-
tine.

//SORTOFxx DD
//SORTOFx DD
//fname

OUTFILE output data sets. One required for each FILES or
FNAMES specification.

//SORTXSUM DD Output data set of records eliminated by the SUM control
statement. Required when the XSUM parameter is specified.

//SORTWKxx DD
//SORTWKn DD

Disk work area definition. Required unless incore sort,
DYNALLOC, MERGE, COPY or restarting at a MAXSORT
merge breakpoint.

//SYSIN DD Control statement data set. Required unless the invoking
program supplies the address of a 24-bit or a 31-bit extended
parameter list.

//$ORTPARM DD Used to override PARM or control statement information.

//SORTCKPT DD Checkpoint data set. Required for Checkpoint-Restart.

//SORTMODS DD Required if user exits are in SYSIN.

//SYSLIN DD
//SYSLMOD DD
//SYSPRINT DD
//SYSUT1 DD

Required if user exits are to be linkage-edited at execution
time.

//ddname DD Required for exits unless the exit is inline in LINKLIB/
JOBLIB/STEPLIB or in SYSIN.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.3

To use a sort cataloged procedure, omit PGM= and specify the appropriate procedure name.

The PARM parameter may be used to pass the sort/merge program a variety of keyword
parameters, modifying it to meet the needs of the individual application.

For MAXSORT, PARASORT, DB2 Query Support, and Tape Sort

The format of the EXEC statement varies with the sorting technique chosen. The
MAXSORT and PARASORT PARM options are used to request the MAXSORT or
PARASORT sorting technique. The DB2 PARM option is used to request the DB2 Query
function. These PARMs are compatible with any of the PGM names for Disk Sort. A Tape
Sort application, on the other hand, requires a PGM name of SORT, IERRCO00,
IGHRCO00, or ICEMAN. When PGM=SYNCSORT is used, SORTWK must be assigned to
disk. The set of available PARM options is also dependent on sorting technique. Refer to
“Chapter 5. PARM Options” for a description of the available options.

Coding Conventions for DD Statements

The following table summarizes the standard coding conventions for DD statements as
they relate to the sort/merge program. For more detailed information, refer to an z/OS job
control language manual.

Figure 145. Disk Sort EXEC Statement Format

//stepname EXEC

PGM=SYNCSORT
PGM=SORT
PGM=IERRCO00
PGM=IGHRCO00
PGM=ICEMAN 

 
 
 
 
 
 
 
 

 [,PARM='...']

SyncSort for z/OS 1.1 Programmer’s Guide4.4

STEPLIB/JOBLIB DD Statement

If SyncSort has been installed in a private user library or in a test library, a STEPLIB or
JOBLIB DD statement is required. The sample DD statement below instructs the operat-
ing system to look for the sort in a partitioned data set named SYNCTEST.

SYSOUT DD Statement

This defines the data set for SyncSort messages.

Parameter Subparameter Required?

DSNAME/DSN To access a labeled data set (e.g., SORTIN,
STEPLIB) or to keep or catalog the data set
being created (e.g., SORTOUT, SORTOU00).

DCB

RECFM, LRECL,
and BLKSIZE

OPTCD and
BUFOFF

DCB not required for disk or standard labeled
tape input.

To override the values in the data set label of
an old data set; to override the values in the
first SORTIN or SORTINnn file for a new data
set.

To indicate ASCII input and output.

UNIT For an input file that is not cataloged or
passed; for a new data set

SPACE For a new DASD data set.

VOLUME/VOL For an input file that is not cataloged or
passed; for a DASD output data set to be cata-
loged or passed.

LABEL To override (1,SL).

DISP To override (NEW,DELETE).

//STEPLIB DD DSN=SYNCTEST,DISP=SHR

Figure 146. Sample STEPLIB DD Statement

//SYSOUT DD SYSOUT=A

Figure 147. Sample SYSOUT DD Statement

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.5

If the SYSOUT DD statement is omitted, any message routed to it will be diverted to the
console. Omitting the SYSOUT DD statement and setting the MSG=SC PARM (critical
messages to the console, all messages to the printer), for example, will result in all mes-
sages being sent to the console.

SORTIN DD Statement

The SORTIN DD statement defines the data set to be sorted or copied. (The input file for a
merge application is defined by the SORTINnn DD statement.) It is required for all sorts
except those where an E15 exit (COBOL Input Procedure) provides all the input records.

The SORTIN file must have physical sequential or extended sequential organization or be a
member of a partitioned data set or PDSE. It may reside on any device supported by BSAM
or VSAM and if it is a VSAM data set, may be key-sequenced, entry-sequenced or relative
record. SORTIN data sets may also be BatchPipes/z/OS pipes or HFS data sets. DCB infor-
mation need not be supplied for a disk or standard labeled tape file. Any of the information
accessed from a standard label can be overridden by coding the appropriate DCB parame-
ter in the JCL.

The maximum record lengths supported are 32,760 bytes for fixed-length records and
32,767 bytes for variable-length records.

By default SyncSort does not accept an uninitialized SORTIN data set and will terminate
processing with a WER400A message. An uninitialized data set is one that has been newly
created but never successfully closed. The UNINTDS PARM or installation option can be
used to change SyncSort’s default mode of processing to accept an uninitialized input data
set and process it as an empty file. See “UNINTDS” on page 5.31.

In this example, the data set to be sorted/copied is named SALESIN. It resides on one reel

of tape whose volume serial number is 123456. SALESIN is the first data set on that tape
and has a standard label.

To access a SORTIN data set that resides in hiperbatch use the HBSI PARM. For more
information about HBSI see “Chapter 5. PARM Options”.

Concatenating Input Data Sets

The SORTIN file may consist of concatenated data sets, up to the limit supported by the
operating system.

//SORTIN DD DSN=SALESIN,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=123456

Figure 148. Sample SORTIN DD Statement

SyncSort for z/OS 1.1 Programmer’s Guide4.6

SyncSort must determine one set of DCB characteristics to use for reading all data sets in
the concatenation. The following rules apply to the DCB characteristics:

• When the first data set is fixed-length (RECFM=F, FB, FBS), all subsequent data sets
must be fixed-length and have the same LRECL.

• When the first data set is variable-length (RECFM=V, VB, VS, VBS), all subsequent
data sets must be variable-length.

• For variable-length data sets, the LRECL of the first data set is used except for the
following situations:

• The LRECL of a subsequent data set is used if that LRECL is the largest found and
is available at sort initialization. An LRECL is available at initialization if it is
specified on a SORTIN DD statement or exists in the label of a SORTIN disk data
set.

• A record length specified via the L1 value on the RECORD control statement is
used if it is the largest record length found.

• For both fixed and variable-length data sets, the BLKSIZE of the first data set is used
unless the BLKSIZE of a subsequent data set is the largest found and is available at
sort initialization. A BLKSIZE is available at initialization if it is specified on a
SORTIN DD statement or exists in the label of a SORTIN disk data set.

The following shows sample JCL for concatenating input data sets:

In the preceding example, one disk and two tape data sets have been concatenated. Any one
of these data sets could be presented first. Position is not dependent upon BLKSIZE or
LRECL. If the LRECL or BLKSIZE cannot be determined at SORT initialization, the first
data set must carry the largest LRECL or BLKSIZE of the concatenation. Typically the
LRECL or BLKSIZE cannot be determined when the input consists of concatenated tape
data sets and the JCL lacks a DCB specification.

//SORTIN DD DSN=AUGUST.SALES,DISP=(OLD,KEEP),

// UNIT=3390,VOL=SER=DISK1,

// DCB=(LRECL=200,RECFM=VB,BLKSIZE=7404)

// DD DSN=JUNE.SALES,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=123456,LABEL=(2,SL),

// DCB=(LRECL=200,RECFM=V,BLKSIZE=8004)

// DD DSN=JULY.SALES,DISP=(OLD,KEEP),

// UNIT=TAPE,VOL=SER=654321,LABEL=(1,SL),

// DCB=(LRECL=100,RECFM=VB,BLKSIZE=8004)

Figure 149. Sample Disk and Tape Data Set Concatenation to SORTIN

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.7

Sorting Large Input Data Sets

The MAXSORT technique is recommended for sorting very large amounts of data when
disk work space is limited. With this technique, SORTWK requirements are independent of
SORTIN size; thus, regardless of the size of the file, it can be sorted by one sort program
using disk work files. MAXSORT’s breakpoint/restart capability breaks the overlarge sort-
ing application into smaller individual sorts; high priority jobs can execute between these
smaller sorts without forcing any data to be resorted. See “Chapter 9. MAXSORT”.

Reducing Elapsed Time for SORTS with Multi-volume or Concatenated Tape
SORTIN

The PARASORT technique can be used to improve elapsed time performance of sorts that
use multi-volume or concatenated tape SORTIN data sets. See “Chapter 10. PARASORT”
on page 10.1.

SORTINnn or SORTINn DD Statement

SORTINnn and SORTINn DD statements are used to define the input to a merge
application. (Use the SORTIN DD statement to define the data set to be sorted or copied.)
SORTINnn or SORTINn DD statements are required for all merge applications unless an
E32 exit supplies the input data. SORTINnn and SORTINn data sets may be BatchPipes/z/
OS pipes or HFS data sets.

It is possible to merge up to 100 data sets. Each input data set is specified on a SORTINnn
or SORTINn DD statement. The valid range for n is 0 through 9; for nn, 00 through 99. If
both SORTINx and a SORTIN0x are specified, they are treated as duplicates and only the
first definition is processed. Each file must receive a different number. Numbers may be
skipped or used out of order. There are no restrictions as to which input files are to receive
which numbers.

Each input data set must have the same RECFM, and the records in each file must be
ready to be sorted in the desired sequence.

By default, SyncSort does not accept an uninitialized SORTINnn or SORTINn data set and
will terminate processing with a WER400A message. An uninitialized data set is one that
has been newly created, but never successfully closed. The UNINTDS PARM or installation
option can be used to change SyncSort’s default mode of processing to accept an uninitial-
ized input data set and process it as an empty file. See “UNINTDS” on page 5.31.

SyncSort for z/OS 1.1 Programmer’s Guide4.8

In this example, the DCB information for the first two of the three files to be merged is sup-
plied by the file labels. In order for the merge to execute, these files must have a RECFM of
F or FB, as indicated by the third file’s RECFM value.

SORTOUT, SORTOFxx, SORTOFx and SORTXSUM DD Statements

The SORTOUT, SORTOFxx, SORTOFx and SORTXSUM DD statements are used to define
one or more output files. The FNAMES parameter of the OUTFIL control statement may
also specify DD names of output files. All output is directed to SORTOUT unless an inline
E35 exit (COBOL output procedure) assumes the full responsibility for output processing.
Records eliminated by SUM processing will be written to the SORTXSUM DD statement if
the XSUM option was selected on the SUM control statement. These output data sets may
be directed to a BSAM or VSAM supported device, to BatchPipes/z/OS pipes or to HFS data
sets.

In the preceding example, the missing DCB parameters except BLKSIZE will default to
those assigned to SORTIN or (for a merge application) to those assigned to the last
SORTINnn in the JCL stream. The DCB BLKSIZE, if missing, will be determined via
system-determined blocksize when it is active or from SORTIN if SORTOUT and SORTIN
LRECLs are the same, otherwise SyncSort will select an appropriate BLKSIZE.

If a sort or a merge has an LRECL specified in the output DD JCL that is found to be
smaller than the internally processed record length (determined from SORTIN, the
LENGTH values of a RECORD statement, or an INREC statement), SyncSort processing

//SORTIN17 DD DSNAME=BRANCHA.FICA,VOL=SER=131313,

// DISP=OLD,UNIT=3480

//SORTIN01 DD DSNAME=BRANCHC.FICA,VOL=SER=242424,

// DISP=OLD,UNIT=3390

//SORTIN24 DD DSNAME=BRANCHB.FICA,VOL=SER=121212,

// DISP=OLD,UNIT=3400-3,LABEL=(,NL),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)

Figure 150. Sample SORTINnn DD Statements (Merge)

//SORTOUT DD DSN=MASTER.OUT,UNIT=SYSDA,

// DISP=(NEW,KEEP),SPACE=(TRK,10),

// VOL=SER=DSK002

//SORTOF01 DD DSN=REPORT.OUT,UNIT=SYSDA,

// DISP=(NEW,KEEP),SPACE=(TRK,10),

// VOL=SER=DSK002

Figure 151. Sample SORTOUT/SORTOFxx DD Statements

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.9

will be controlled by the SOTRN installation option or its run time override parameter
TRUNC. (SYNCGENR applications are controlled by the SOTRNGN installation option.) If
the parameter setting allows truncation, SyncSort will write the records to the output data
set by truncating the records to the LRECL of that data set. The delivered default allows
truncation. SyncSort will not truncate records after OUTREC processing. If the option dis-
allows truncation, a WER462A error message will be issued.

If an application that is processing fixed-length data has an LRECL specified in the
SORTOUT or SORTXSUM JCL that is found to be longer than the internally processed
record length, SyncSort will normally pad the output records with binary zeros. See the dis-
cussion of the PAD parameter in chapter 5 for additional controls that can be applied to
applications with both a SORTIN and a SORTOUT where the SORTOUT LRECL is longer
than the SORTIN LRECL. This padding will be done for SORTXSUM and for SORTOUT
when OUTFIL is not in use. It will not be done for any OUTFIL files. If the option disallows
padding, a WER462A error message will be issued. The delivered default allows padding.

If RECFM is specified and the report writing features of the OUTFIL control statement are
being used, the RECFM of the output file must include the 'A' subparameter, except when
the REMOVECC parameter is in use.

For a COPY or MERGE, the output file must not be the same as any of the input files.

Secondary Allocation

If the automatic secondary allocation option was enabled at installation time, requesting
secondary allocation on the output DD statements is not required. This feature automati-
cally provides output space for each of the output files.

To place a SORTOUT data set into hiperbatch so that subsequent job steps can access it,
use HBSO. For more information about HBSO see the PARM Option chapter in this man-
ual.

SORTWKxx or SORTWKx DD Statement

For non-MAXSORT applications, up to 255 data sets may be specified for intermediate stor-
age when sorting. (MAXSORT, which is recommended for large sorting applications, is lim-
ited to 32 SORTWK data sets.) Each work file carries a SORTWKxx or SORTWKx name.
x can be any alphanumeric or national ($, #, @) character. Each SORTWKxx or SORTWKx
must be allocated on a single unit and a single volume.

Disk Sorts may feature any of the following devices: 3350, 3375, 3380, 3390, and 9345.
When device types are mixed, each device is used to full capacity. Note that although
SORTWK space can be allocated in blocks, tracks, or cylinders, allocating in cylinders will
yield optimal performance. The CONTIG option of the SPACE parameter should be avoided
since it may delay allocation and offers no performance advantage.

SyncSort for z/OS 1.1 Programmer’s Guide4.10

The SORTWKxx DD statement in the following example establishes a primary allocation of
20 cylinders of work space.

Secondary Allocation

There is no need to specify RLSE and a secondary allocation value on the SORTWKxx DD
statement at installations that have set these defaults at SyncSort installation time.

Are SORTWKxx DD Statements Necessary?

SORTWKxx DD statements are not used for merge or copy applications. They are not
required for sorts executed using the DYNALLOC option. Provided neither DYNALLOC
nor FIELDS=COPY is in effect, it will be necessary to include SORTWK data sets when-
ever any of these conditions holds:

• INCORE is set to OFF.

• An E14 or E16 is included.

• Checkpoint-Restart is specified.

• The criteria for an incore sort are not met. (See the discussion of incore sorts in
“Chapter 13. Performance Considerations”.)

• SUM, OUTREC or OUTFIL is used.

• SORTOUT is a VSAM data set.

Note: Sort applications that use SUM, OUTREC, OUTFIL or VSAM SORTOUT and do not
provide JCL SORTWORKs may have DYNALLOC automatically enabled. This will allow
the completion of a sort that would have terminated for lack of required SORTWORK
space.

Initiating Tape Sort

Tape Sorts use the following devices for intermediate storage: 2400 and 3400 series tape
units with densities of 800, 1600 and 6250 BPI. Each reel of tape must be full-size (2400
feet long). Tape cartridges devices (3480, 3490, 3490E and 3590) may also be used.

When intermediate storage is on tape, from 3 to 32 data sets may be specified. Tape
SORTWKxx files must begin with SORTWK01 and be numbered consecutively. When dif-
ferent device types and tape densities are mixed, the lowest density is used to calculate the

//SORTWK02 DD UNIT=3390,SPACE=(CYL,20)

Figure 152. Sample SORTWKxx DD Statement for Disk Sorts

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.11

capacity of each SORTWK volume. The MAXSORT technique (supporting only disk
SORTWK files) is strongly recommended for large sorts.

The xxxx in the UNIT parameter of the following example represents the installation-spe-
cific name used to define a tape device.

For more information, see “Chapter 12. Tape Sort”.

SYSIN DD Statement

The data set defined by the SYSIN DD statement contains SyncSort control statements.
The SYSIN DD statement is required in order to initiate the sort/merge through job control
language.

$ORTPARM DD Statement

The data set defined by the $ORTPARM DD statement may contain PARM parameters and
any of the sort control statements.

Parameters and control statements passed via the $ORTPARM DD statement generally
override all others passed, whether the sort/merge is called from a program or initiated
through job control language.

The $ORTPARM DD record format must be F or FB, and the record length must be 80
bytes. Labels are not allowed on $ORTPARM card images. Leading blanks are not required
on a PARM card image, but at least one leading blank must precede a sort control state-
ment keyword.

The $ORTPARM data sets must be formatted in accordance with the following rules:

Figure 153. SORTWKxx DD Statement Format for Tape Sorts

//SORTWK01 DD UNIT=
2400
3400
xxxx 

 
 
 
 

//SYSIN DD *

SORT FIELDS=(5,3,CH,A)

OMIT COND=(12,6,PD,EQ,0)

END

/*

Figure 154. Sample SYSIN DD Statement

SyncSort for z/OS 1.1 Programmer’s Guide4.12

• PARM specifications included in the $ORTPARM data sets must be specified before any
sort control statement specifications.

• PARMS must be specified without the keyword PARM= and without quotation marks.

• A comma in columns 2-70 of a PARM card image followed by a blank, or a comma alone
in column 71, may be used to indicate that the next record is part of the current
statement. However, if the PARM specification is present through column 71, a
continuation character must be specified in column 72 to indicate continuation.

• Comments may be included on $ORTPARM card images provided there is a blank
between the last PARM specification and the comment. You may continue a comment
by placing a continuation character in column 72 if there are no additional PARMs. In
this case, the entire next card image will be considered a comment. If additional
PARMs will follow the comment, you may continue that comment by coding an asterisk
(*) in column 1 of the next card image.

Note: Refer to “Chapter 2. SyncSort Control Statements” for additional formatting require-
ments.

The following example of a $ORTPARM data set illustrates the conventions for defining the
$ORTPARM data set.

The $ORTPARM data set in the previous example overrides the options set in the associ-
ated invoking program (or job control stream) to sort 500 records from the input file. These
will be the first 500 records that meet whatever criteria have been set by the original appli-
cation (which might include, for example, the INCLUDE/OMIT control statement). BMSG
turns on the WERnnnB message set, so that the processing accorded these 500 records is
fully documented. EQUALS preserves the order of equal-keyed records from input to out-
put.

//$ORTPARM DD *

BMSG,STOPAFT=500,

EQUALS

SORT FIELDS=(1,8,PD,A)

Figure 155. Sample $ORTPARM DD Statement

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.13

The preceding example illustrates how to include control statements more than 80 bytes
long; continuation card images are indicated by a blank field following an operand-comma
combination.

In this example, the OUTFIL control statement in $ORTPARM overrides the OUTFIL con-
trol statement in SYSIN for file 3, and adds OUTFIL specifications for files 4 and 5.

$ORTPARM Processing for Century Window COBOL Applications

The $ORTPARM DD facility is particularly useful for COBOL sorts requiring century win-
dow processing of year data with SyncSort’s year data formats. The year data formats are
not supported by COBOL. Therefore, when a data format specification needs to be changed
for century window processing, it is necessary to override SORT control statements gener-
ated by COBOL. The override can be accomplished with a $ORTPARM DD statement. The
following example shows a $ORTPARM DD used for this purpose.

//$ORTPARM DD *

BMSG,STOPAFT=500,

EQUALS

SUM FIELDS=(12,4,30,8,38,8),

FORMAT=PD

SORT FIELDS=(1,8,PD,A)

Figure 156. Sample $ORTPARM DD Statement

//SYSIN DD *

OUTFIL FILES=(1,2,3),

.

.

.

//$ORTPARM DD *

OUTFIL FILES=(3,4,5),

.

.

.

Figure 157. Sample $ORTPARM DD Statement

//$ORTPARM DD *

SORT FIELDS=(10,2,Y2Z,A),CENTWIN=1980

Figure 158. Sample $ORTPARM DD Statement for Century Window Processing

SyncSort for z/OS 1.1 Programmer’s Guide4.14

In this example, the 2-digit year field (10,2) will have century window processing applied to
it via the Y2Z year data format and the CENTWIN option.

As described in the previous section, multiple sort invocations by the same COBOL pro-
gram would require multiple $ORTPARM DD statements, each with the FREE=CLOSE
parameter.

$ORTPARM DD Processing for Multiple Sort Invocations

When SyncSort is to be invoked more than once in the same job step, you may need differ-
ent $ORTPARM DD control data sets for each invocation. For multiple control data sets,
define each one in the JCL stream, in the desired order, as a disk data set (or partitioned
data set member) with the FREE=CLOSE parameter added. FREE=CLOSE will cause the
first sort $ORTPARM data set to be dynamically deallocated by the first sort execution, and
so forth for each sort execution. The following example shows sample JCL with two $ORT-
PARM DD statements:

Processing will proceed from top to bottom of this $ORTPARM data set list. This sequence
must be maintained in the JCL so that the multiple sorts can read the $ORTPARM data
sets in the correct order.

Multiple $ORTPARM datasets are available only in a JES2 environment. JES3 does not
support the specification of multiple DD statements for the same DDNAME.

The $ORTPARM DD statement for Tape Sort may include only one 80-byte record, which in
turn may only feature PARMs. $ORTPARM cannot be used to override Tape Sort control
statements.

SORTCKPT DD Statement

This DD statement is only used when the CKPT/CHKPT option is set on the SORT/
MERGE control statement, requesting the Checkpoint-Restart feature. Refer to “Chapter
13. Performance Considerations” for an explanation of this feature.

//$ORTPARM DD DSN=SORT.OPTIONS(SORT1),DISP=SHR,FREE=CLOSE WILL

// BE USED BY FIRST SORT EXECUTION

//$ORTPARM DD DSN=SORT.OPTIONS(SORT2),DISP=SHR,FREE=CLOSE WILL

// BE USED BY SECOND SORT EXECUTION

.

.

//$ORTPARM DD DSN=SORT.OPTIONS(SORTn),DISP=SHR,FREE=CLOSE WILL

// BE USED BY THE nTH SORT EXECUTION

Figure 159. Sample Multiple $ORTPARM DD Statements

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.15

For Exit Routines that Require Link-editing at Execution Time

The following DD statements are required whenever an exit routine is to be link-edited at
execution time.

SORTMODS DD Statement

The partitioned data set defined must be large enough to contain all the exit routines
entered in SYSIN. For exits not entered in SYSIN, it is necessary to supply DD statements
defining the libraries in which the routines reside.

SYSLIN DD Statement

The SYSLIN DD statement defines the temporary data set that will contain the linkage
editor control statements created by SyncSort for the exit routine(s).

SYSLMOD DD Statement

The SYSLMOD DD statement defines the temporary data set that will contain the link-
edited exit module(s).

SYSPRINT DD Statement

The SYSPRINT DD statement defines the message data set for the link-editing of sort
exits.

//SORTMODS DD SPACE=(CYL,(2,,4)),UNIT=SYSDA

Figure 160. Sample SORTMODS DD Statement

//SYSLIN DD DSN=&&TEMP,UNIT=SYSSQ,SPACE=(TRK,1)

Figure 161. Sample SYSLIN DD Statement

//SYSLMOD DD DSN=&&TEMP2,UNIT=SYSDA,

// SPACE=(TRK,(10,5,2))

Figure 162. Sample SYSLMOD DD Statement

SyncSort for z/OS 1.1 Programmer’s Guide4.16

SYSUT1 DD Statement

The SYSUT1 DD statement is used to define the temporary data set used as a work area
when SyncSort link-edits an exit routine.

DD Statements for MAXSORT, PARASORT, DB2 Query Support, and
Tape Sort

The MAXSORT technique is initiated by means of the MAXSORT PARM, and utilizes addi-
tional MAXSORT DD statements (SORTBKPT, SORTOU00, SORTOUnn) and PARMs.
With MAXSORT, SORTWK files must be allocated to disk devices. This technique is
strongly recommended for very large sorting applications in a limited disk work space envi-
ronment.

The PARASORT technique is initiated by means of the PARASORT PARM and utilizes
additional PARASORT DD statements (SORTPAR1, SORTPAR2, SORTPAR3,
SORTPAR4). PARASORT requires disk SORTWK devices. This technique can improve the
elapsed time of sorting applications that have multi-volume tape SORTIN data sets.

The DB2 Query Support technique is initiated by means of the DB2 Query Support PARM
and utilizes the DB2 Query Support DD statement SORTDBIN. This technique allows DB2
data to be passed directly into a SORT or COPY operation, without the use of setup steps or
the need for user-written E15 exits.

Tape Sort is initiated by assigning tape work devices. The use of Tape Sort constrains the
set of PARMs available to the sort, requires a SORTLIB DD statement, and restricts the
coding of the $ORTPARM and SORTWKxx statements.

For detailed descriptions of these techniques refer to “Chapter 9. MAXSORT”, “Chapter 10.
PARASORT”, and “Chapter 12. Tape Sort”.

//SYSPRINT DD SYSOUT=A

Figure 163. Sample SYSPRINT DD Statement

//SYSUT1 DD DSN=&&TEMP3,UNIT=SYSDA,

// SPACE=(CYL,(5,5))

Figure 164. Sample SYSUT1 DD Statement

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.17

Sample JCL/Control Statement Streams

The sample JCL/control statement streams in this section illustrate how to specify sort,
merge and copy applications with and without exit routines. An example illustrating multi-
ple output is also included. Refer to “Chapter 3. How to Use SyncSort’s Data Utility Fea-
tures” for comprehensive examples illustrating the data utility and report writing features.
Examples of how to invoke SyncSort from a program, COBOL exit routines, MAXSORTs,
PARASORTs and Tape Sorts are provided in the appropriate chapters.

Sorts without Exit Routines

Example 1

1. The JOB statement gives SORTOMIT as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed. The
STOPAFT PARM instructs SyncSort to terminate after sorting 1,000 records.

3. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP indicates that this library may be shared.

//SORTOMIT JOB 1

//SORT1 EXEC PGM=SYNCSORT,PARM='STOPAFT=1000' 2

//STEPLIB DD DSN=SORT.RESI.DENCE,DISP=SHR 3

//SYSOUT DD SYSOUT=A 4

//SORTIN DD DSN=INPUT,UNIT=3490, 5

// VOL=SER=012345,DISP=(OLD,KEEP),

// DCB=(LRECL=100,RECFM=FB,

// BLKSIZE=32700),LABEL=(1,SL)

//SORTOUT DD DSN=OUTPUT,VOL=SER=543210, 6

// UNIT=3490,DISP=(NEW,KEEP),

// DCB=(LRECL=100,RECFM=FB,

// BLKSIZE=0),LABEL=(1,SL)

//SORTWK01 DD SPACE=(CYL,(20)),UNIT=SYSDA 7

//SORTWK02 DD SPACE=(CYL,(20)),UNIT=SYSDA

//SORTWK03 DD SPACE=(CYL,(20)),UNIT=SYSDA

//SORTWK04 DD SPACE=(CYL,(20)),UNIT=SYSDA

//SORTWK05 DD SPACE=(CYL,(20)),UNIT=SYSDA

//SYSIN DD * 8

SORT FIELDS=(1,8,CH,A) 9

OMIT COND=(1,8,CH,EQ,C'JOHN DOE') 10

END 11

/* 12

Figure 165. Sample JCL/Control Stream (1)

SyncSort for z/OS 1.1 Programmer’s Guide4.18

4. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

5. The SORTIN DD statement gives INPUT as the input data set name, specifies a 3490
tape unit with the volume serial number 012345. The data set is already in existence.

The DCB parameter shows an LRECL of 100 bytes, a fixed blocked RECFM, and a
32700-byte BLKSIZE. The LABEL parameter shows that INPUT is the first data set on
the tape, and that it has a standard label.

6. The SORTOUT DD statement gives OUTPUT as the output data set name, and
specifies a 3490 tape unit with the volume serial number 543210. The data set is not in
existence yet.

The DCB parameter for SORTOUT specifies the same LRECL and RECFM as
SORTIN. The BLKSIZE will be selected by System Determined BLKSIZE (SDB) if
active or by SyncSort if SDB is not active.

7. The five SORTWKxx DD statements reserve space on direct access devices for
intermediate storage. Twenty cylinders are allocated for each of the five SORTWKxx
data sets.

8. The SYSIN DD * statement marks the beginning of the system input stream that
includes the sort control statements.

9. The SORT control statement specifies that one control field will be sorted on. It begins
on byte 1 of the record, is 8 bytes long, contains character data, and is to be sorted in
ascending order.

10. The OMIT control statement eliminates any record with JOHN DOE in its first eight
bytes (i.e., in the sort control key). JOHN DOE records are not sorted and are not
included in the STOPAFT figure. The EXEC statement’s STOPAFT PARM terminates
the sort after 1,000 (non-JOHN DOE) records have been put into the proper sequence.

11. The END control statement marks the end of the control statements.

12. The delimiter statement marks the end of the SYSIN input stream.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.19

Example 2

1. The JOB statement gives SUMSORT as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed. The
EQUALS PARM interacts with the SUM control statement to preserve the first of a
series of equal-keyed records.

3. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP shows the library may be shared.

4. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with class A.

5. The SORTIN DD statements define two concatenated data sets:
FEB92.EMPLOYEE.MASTER and FEB92.EMPLOYEE.UPDATE. They are found on
standard labeled 3490 tape units (volume serial numbers 135790 and 999999,
respectively). These data sets are already in existence.

6. The SORTOUT DD statement gives MAR92.EMPLOYEE.MASTER as the output data
set name and specifies a 3490 tape unit with the volume serial number 246809. The
data set is not in existence yet.

//SUMSORT JOB 1

// EXEC PGM=SYNCSORT,PARM='EQUALS' 2

//STEPLIB DD DSN=SORT.RESI.DENCE,DISP=SHR 3

//SYSOUT DD SYSOUT=A 4

//SORTIN DD DSN=FEB92,EMPLOYEE.MASTER, 5

// UNIT=3490,VOL=SER=135790,

// DISP=(OLD,KEEP)

// DD DSN=FEB92.EMPLOYEE.UPDATE,

// UNIT=3490,VOL=SER=999999,

// DISP=(OLD,KEEP)

//SORTOUT DD DSN=MAR92.EMPLOYEE.MASTER, 6

// UNIT=3490,VOL=SER=246809,

// DISP=(NEW,KEEP)

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,20) 7

//SYSIN DD * 8

SORT FIELDS=(1,9,ZD,A,10,2,BI,A) 9

SUM FIELDS=(12,4,PD) 10

/* 11

Figure 166. Sample JCL/Control Stream (2)

SyncSort for z/OS 1.1 Programmer’s Guide4.20

The DCB RECFM and LRECL parameters for SORTOUT default to that of the first
SORTIN file. The BLKSIZE will be selected by System Determined BLKSIZE (SDB) if
active or by SyncSort if SDB is not active.

7. The SORTWK01 DD statement reserves space on a direct access device for
intermediate storage. Twenty cylinders are allocated. Intermediate storage must be
provided whenever the SUM control statement is used with a sort.

8. The SYSIN DD statement marks the beginning of the system input stream that
includes the sort control statements.

9. The SORT control statement specifies that two control fields will be sorted on. The
major control field begins on byte 1 of the record, is 9 bytes long, contains zoned decimal
data, and is to be sorted in ascending numerical order. The second, less significant,
control field is found in the next two bytes of the record (bytes 10 and 11), is in
(unsigned) binary format, and is to be sorted in ascending order.

10. Whenever two records have equal control fields, the sort will attempt to summarize
them. If the result of summing the packed decimal data found in the 4-byte field
beginning at byte 12 can be contained in four bytes, one of the two records will be
retained, the sum stored in bytes 12-15, and the other record will be deleted. The
EQUALS PARM guarantees that the first of the two records will be preserved; thus, if a
record from the FEB92.EMPLOYEE.MASTER file has the same key as one from the
FEB92.EMPLOYEE.UPDATE file, it is the master record which is retained in the
output file, containing their sum.

11. The delimiter statement marks the end of the SYSIN input stream.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.21

Example 3

1. The JOB statement gives SORTSKIP as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed.

3. The $ORTPARM DD statement is used here to initiate a test run of the SORTSKIP job
by supplying the STOPAFT PARM to SyncSort. It instructs SyncSort to terminate after
sorting the first 100 of the records INCLUDE selects from the SKIPREC-edited input
file.

4. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP indicates that this library may be shared.

5. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

6. The SORTIN DD statement gives EXPORT.SHIPPING.VOL6 as the input data set
name. It is found on a standard labeled tape having the volume serial number 112233.
This data set is already in existence.

7. The SORTOUT DD statement assigns the RECENT.MAJOR.EXPORTS data set name
to the output file, and specifies a tape unit with the volume serial number 332211. This

//SORTSKIP JOB 1

// EXEC PGM=SYNCSORT 2

//$ORTPARM DD * 3

STOPAFT=100

//STEPLIB DD DSN=SORT.RESI.DENCE,DISP=SHR 4

//SYSOUT DD SYSOUT=A 5

//SORTIN DD DSN=EXPORT.SHIPPING.VOL6, 6

// UNIT=TAPE,VOL=SER=112233,

// DISP=(OLD,KEEP)

//SORTOUT DD DSN=RECENT.MAJOR.EXPORTS, 7

// UNIT=TAPE,VOL=SER=332211,

// DISP=(NEW,KEEP)

//SORTWK01 DD SPACE=(CYL,20),UNIT=SYSDA 8

//SORTWK02 DD SPACE=(CYL,20),UNIT=SYSDA

//SORTWK03 DD SPACE=(CYL,20),UNIT=SYSDA

//SYSIN DD * 9

SORT FIELDS=(19,5,CH,A), 10

EQUALS,SKIPREC=1000

INCLUDE COND=(37,4,BI,GE,X'50') 11

/* 12

Figure 167. Sample JCL/Control Stream (3)

SyncSort for z/OS 1.1 Programmer’s Guide4.22

data set is not yet in existence. The DCB RECFM and LRECL parameters for
SORTOUT default to those of the first SORTIN file. The BLKSIZE will be selected by
System Determined BLKSIZE (SDB) if active or by SyncSort if SDB is not active.

8. The three SORTWKxx DD statements reserve space on direct access devices for
intermediate storage. Twenty cylinders are allocated for each SORTWK data set.

9. The SYSIN DD statement marks the beginning of the system input stream that
includes the sort control statements.

10. The SORT control statement specifies that one control field will be sorted on. It begins
on byte 19 of the record, is 5 bytes long, contains character data, and is to be sorted
according to ascending order. The EQUALS parameter preserves the SORTIN order of
records with identical data in these five bytes. The SKIPREC parameter eliminates the
first 1,000 records of the SORTIN file from consideration; these records are eliminated
before the INCLUDE statement takes effect.

11. The INCLUDE statement compares the 4 bytes beginning with byte 37 of the record to
the hexadecimal literal, which will be padded on the right with binary zeros to the
indicated (4 byte) length. The record is eliminated from the sort unless the binary data
in that field is at least as great as the padded constant. The INCLUDE/OMIT
statement takes effect after SKIPREC but before STOPAFT.

12. The delimiter statement marks the end of the SYSIN input stream.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.23

A Merge without Exit Routines

Example 4

1. The JOB statement gives EDITMERG as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed.

3. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP shows the library may be shared.

4. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

5. Three data sets are to be merged: SALES91, SALES92 and SALES93. SALES91 and
SALES92 are found on standard labeled tapes with the volume serial numbers 123456
and 654321, respectively. The DD statement for SALES93 specifies a 3390 disk device
with the volume serial number DISK11. These three data sets are already in existence,
and the disk data set SALES93 may be shared. They are assigned distinct SORTINnn
numbers, as required.

6. The SORTOUT DD statement assigns the name SALES.PATTERN to the output data
set and specifies a 3390 disk device with the volume serial number DISK08. Five

//EDITMERG JOB 1

//MERGE1 EXEC PGM=SYNCSORT 2

//STEPLIB DD DSN=SORT.RESI.DENCE,DISP=SHR 3

//SYSOUT DD SYSOUT=A 4

//SORTIN08 DD DSN=SALES91,UNIT=TAPE, 5

// VOL=SER=123456,DISP=(OLD,KEEP)

//SORTIN12 DD DSN=SALES92,UNIT=TAPE,

// VOL=SER=654321,DISP=(OLD,KEEP)

//SORTIN03 DD DSN=SALES93,UNIT=3390,

// VOL=SER=DISK11,DISP=SHR

//SORTOUT DD DSN=SALES.PATTERN,UNIT=3390, 6

// VOL=SER=DISK08,DISP=(NEW,KEEP),

// SPACE=(CYL,5),

// DCB=(LRECL=20,RECFM=VB,

// BLKSIZE=27980)

//SYSIN DD * 7

MERGE FIELDS=(5,4,ZD,A) 8

RECORD TYPE=V,LENGTH=(100,,20) 9

INREC FIELDS=(1,8,29,6,12,6) 10

/* 11

Figure 168. Sample JCL/Control Stream (4)

SyncSort for z/OS 1.1 Programmer’s Guide4.24

cylinders of primary space have been allocated on this volume. The data set does not
yet exist. DCB parameters are provided, preventing them from defaulting to those of
the SORTIN08 file.

7. The SYSIN DD statement marks the beginning of the system input stream that
includes the sort control statements.

8. The MERGE control statement specifies one control field. It begins on byte 5 (the first
data byte of the record since TYPE=V is specified on the RECORD statement) and is 4
bytes long. This field contains zoned decimal data and is to be merged in ascending
order.

9. The RECORD statement indicates that variable-length records are being merged and
indicates the record length at various processing stages. The maximum input record
length is specified as 100 bytes. Since there is no E15, the post-E15 length value is not
coded and so defaults to this figure. The INREC statement reduces this maximum
record length to just 20 bytes.

10. According to the RECORD control statement, the input record may be 100 bytes long.
The INREC statement reduces each record to the 20 bytes crucial to this application:
the 4-byte RDW and 4-byte merge control field (i.e., the first 8 bytes of the record), the
6-byte field beginning at byte 29 (the 25th data byte) and the 6-byte field beginning at
byte 12 (the 8th data byte). As required, the RDW remains in the first four bytes. The
records to be merged are no more than 20 bytes long and contain three fields following
the RDW.

11. The delimiter statement marks the end of the SYSIN input stream.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.25

A Copy without Exit Routines

Example 5

1. The JOB statement gives COPYNYC as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed.

3. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP shows the library may be shared.

4. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

5. The SORTIN DD statement indicates the file to be copied. The data set name is
USA.OUTLETS, and it is found on the standard labeled tape with the volume serial
number 149200. The data set is already in existence.

6. The SORTOUT DD statement names the copied file NYC.OUTLETS, and specifies a
3390 disk device with the volume serial number of DISK08. Five cylinders of primary
space have been allocated on this volume. The data set does not yet exist, but is to be
kept whether or not the job terminates normally. The DCB RECFM and LRECL
parameters for SORTOUT default to that of the first SORTIN file. The BLKSIZE will
be selected by System Determined BLKSIZE (SDB) if active or by SyncSort if SDB is
not active.

7. The SYSIN DD statement marks the beginning of the system input stream that
includes the sort control statements.

//COPYNYC JOB 1

//COPY1 EXEC PGM=SYNCSORT 2

//STEPLIB DD DSN=SORT.RESI.DENCE,DISP=SHR 3

//SYSOUT DD SYSOUT=A 4

//SORTIN DD DSN=USA.OUTLETS,UNIT=TAPE, 5

// VOL=SER=149200,DISP=(OLD,KEEP)

//SORTOUT DD DSN=NYC.OUTLETS,UNIT=3390, 6

// VOL=SER=DISK08,SPACE=(CYL,5),

// DISP=(NEW,KEEP)

//SYSIN DD * 7

SORT FIELDS=COPY 8

INCLUDE COND=(56,3,CH,EQ,C'NYC') 9

/* 10

Figure 169. Sample JCL/Control Stream (5)

SyncSort for z/OS 1.1 Programmer’s Guide4.26

8. The FIELDS parameter specifies a copy application. This could have been coded as
MERGE FIELDS=COPY without affecting program execution.

9. The INCLUDE control statement edits the USA.OUTLETS input file, eliminating all
records which do not have the character string NYC in bytes 56-58. Only 'NYC' records
will be copied.

10. The delimiter statement marks the end of the SYSIN input stream.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.27

A Sort with an Exit Routine Already Link-edited

Example 6

1. The JOB statement gives ONE#EXIT as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed. The MSG
PARM option requests that all messages be routed to the SYSOUT DD statement but
only critical messages be routed to the console.

3. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP shows the library may be shared.

4. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

5. The MODLIB DD statement defines the library in which the exit routine resides;
MODLIB is referenced in the MODS control statement. The data set name of the
library is EXIT.E15, and the DISP shows that the library may be shared.

//ONE#EXIT JOB 1

//STEP1 EXEC PGM=SYNCSORT,PARM='MSG=SC' 2

//STEPLIB DD DSN=SORT.RESI.DENCE,DISP=SHR 3

//SYSOUT DD SYSOUT=A 4

//MODLIB DD DSN=EXIT.E15,DISP=SHR 5

//SORTIN DD DSN=INPUT,UNIT=3390, 6

// VOL=SER=ABCDEF,DISP=(SHR)

//SORTOUT DD DSN=OUTPUT,UNIT=3390, 7

// VOL=SER=GHIJKL,SPACE=(CYL,10)

// DISP=(NEW,KEEP,DELETE)

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,20) 8

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,20)

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,15)

//SORTWK04 DD UNIT=SYSDA,SPACE=(CYL,15)

//SYSIN DD * 9

SORT FIELDS=(10,25,CH,A,40,10,ZD,D), 10

FILSZ=9000

RECORD TYPE=V,LENGTH=(1024,,,44,192) 11

MODS E15=(E15,600,MODLIB,N) 12

END 13

/* 14

Figure 170. Sample JCL/Control Stream (6)

SyncSort for z/OS 1.1 Programmer’s Guide4.28

6. The SORTIN DD statement gives INPUT as the input data set name and specifies a
3390 disk with the volume serial number ABCDEF. The DISP parameter indicates that
the data set is already in existence and may be shared.

7. The SORTOUT DD statement gives OUTPUT as the output data set name and
specifies a 3390 disk with the volume serial number GHIJKL. Ten cylinders of primary
space have been allocated on this volume. The DISP parameter shows that this data set
is not yet in existence.

8. The four SORTWK statements reserve space on four temporary data sets for
intermediate storage. Twenty cylinders are to be reserved on the first two data sets,
fifteen on the second two data sets.

9. The SYSIN DD statement marks the beginning of the input stream that includes the
sort control statements.

10. The SORT control statement specifies two sort control fields. The first begins on byte 10
(data byte 6) of the record, is 25 bytes long, contains character data, and is to be sorted
in ascending order. The second control field begins on byte 40 (data byte 36) of the
record, is 10 bytes long, has zoned decimal data, and is to be sorted in descending order.
FILSZ instructs SyncSort to terminate abnormally unless the post-E15 file contains
exactly 9,000 records.

11. The RECORD control statement shows that variable-length records are being sorted.
The first LENGTH value reports that the maximum length of records in the SORTIN
data set is 1024 bytes. The comma coded for the second LENGTH value shows that this
maximum length is not altered by the exit routine. The comma coded for the third
LENGTH value shows that this maximum length is not affected by an E35 or the
INREC/OUTREC statements. The fourth LENGTH value shows that the smallest
record in the input data set is 44 bytes long. The fifth LENGTH value shows that the
record length that occurs most frequently in SORTIN is 192 bytes. (This value will be
used to determine segment size.)

12. The MODS control statement states that the exit-type is E15. The name of the actual
exit routine included at this exit is also E15. The routine requires 600 bytes of memory
and resides in a library defined on the MODLIB DD statement. Finally, the N indicates
that link-editing of the routine has already been performed.

13. The END control statement marks the end of the control statements.

14. The delimiter statement marks the end of the SYSIN input stream.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.29

A Sort with an Exit Routine to be Link-edited

Example 7

1. The JOB statement gives LINKEXIT as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed.

//LINKEXIT JOB 1

//STEP EXEC PGM=SYNCSORT 2

//SYSOUT DD SYSOUT=A 3

//SORTIN DD DSN=IN.FILE.JANUARY, 4

// UNIT=TAPE,VOL=SER=135790,

// DISP=OLD,DELETE),

// DCB=(LRECL=200,RECFM=FB,

// BLKSIZE=4000),LABEL=(2,SL)

//SORTOUT DD DSN=OUT.FILE.FEBRUARY, 5

// UNIT=TAPE,VOL=SER=097863,

// DISP=(NEW,KEEP),LABEL=(1,SL)

//SORTMODS DD DSN=A.PART.DATA.SET,DISP=OLD 6

//MODLIB DD DSN=EXIT.NO.ONE,DISP=SHR 7

//SYSLMOD DD DSN=&&LINK,UNIT=SYSDA, 8

// SPACE=(CYL,(1,1,1))

//SYSLIN DD DSN=&&TEMP,UNIT=SYSSQ, 9

// SPACE=(TRK,1)

//SYSPRINT DD SYSOUT=A 10

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) 11

//SYSIN DD * 12

SORT FIELDS=(20,30,CH,A), 13

DYNALLOC=(SYSDA,6)

RECORD TYPE=F,LENGTH=200 14

MODS E15=(EXIT1,600,MODLIB,N), 15

E35=(EXIT2,500,SYSIN)

SUM FIELDS=(1,10,ZD) TOTAL BALANCE 16

END ACCOUNTS FOR JANUARY BEGIN FEBRUARY 17

.

.

.

Object deck EXIT2 for E35 exit routine 18

.

.

.

/* 19

Figure 171. Sample JCL/Control Stream (7)

SyncSort for z/OS 1.1 Programmer’s Guide4.30

3. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

4. The SORTIN DD statement gives IN.FILE.JANUARY as the input data set name, and
specifies a tape unit with the volume serial number 135790. The DISP parameter
shows that the data set is already in existence.

The DCB parameter shows an LRECL of 200 bytes, a fixed blocked RECFM, and a
4000-byte BLKSIZE. The LABEL parameter shows that IN.FILE.JANUARY is the sec-
ond data set on the tape, and that it has a standard label.

5. The SORTOUT DD statement gives OUT.FILE.FEBRUARY as the output data set
name, and specifies a tape unit with the volume serial number 097863. The DISP
parameter shows that the data set is not in existence yet.

The DCB RECFM and LRECL parameters for SORTOUT default to that of the first
SORTIN file. The BLKSIZE will be selected by System Determined BLKSIZE (SDB) if
active or by SyncSort if SDB is not active. The LABEL parameter shows that
OUT.FILE.FEBRUARY is to be the first data set on the tape, and will have a standard
label.

6. The SORTMODS DD statement defines the partitioned data set that will contain the
exit routine object module that has not been link-edited and is being included in the
SYSIN data stream. The DISP shows the data set may not be shared.

7. The MODLIB DD statement defines the partitioned data set in which the already link-
edited exit routine resides. (Note MODLIB is referenced on the MODS control
statement.) The data set name of the exit library is EXIT.NO.ONE. The DISP shows
the data set may be shared.

8. The SYSLMOD DD statement defines a temporary data set called &&LINK that will
contain the exit routine after it has been link-edited. A direct access device will be used
with 1 cylinder reserved for primary space allocation, 1 cylinder for secondary space
allocation, and 1 directory block.

9. The SYSLIN DD statement defines the temporary data set that will contain the linkage
editor control statements that SyncSort will use when link-editing the exit. The name
of this data set is &&TEMP. It is to be on any sequential-access device with 1 track
reserved if the data set is allocated to disk.

10. The SYSPRINT DD statement defines the data set on which the linkage editor will
write its messages. Whatever device is assigned to SYSOUT=A will be used.

11. The SYSUT1 DD statement defines the temporary data set that will be used as a work
area by the linkage editor. It is to be on a direct access device with 1 cylinder of primary
space allocated, and 1 cylinder of secondary space allocated.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.31

12. The SYSIN DD statement marks the beginning of the input stream that includes the
sort control statements and also the object deck of the exit routine to be link-edited.

13. The SORT control statement shows that one control field will be sorted on. It begins on
byte 20 of the record, is 30 bytes long, contains character data, and is to be sorted
according to ascending order.

The DYNALLOC parameter specifies that 6 direct access areas are to be reserved for
sortwork data sets.

14. The RECORD control statement shows that fixed-length records are being sorted. The
LENGTH parameter gives 200 bytes as the length of the records at input time, and, by
not specifying values for l2 and l3, implicitly states that the length of these records will
not be changed during the sort.

15. The MODS control statement shows that the first exit-type is E15. The name of the
routine for this exit is EXIT1. It will take 600 bytes in main storage, resides in a library
defined on the MODLIB DD statement, and has already been link-edited.

The second exit-type is E35. The name of the routine for the exit is EXIT2, and it will
take 500 bytes in main storage. The object deck for the routine is to be included in the
SYSIN portion of the job stream, and, because of the absence of a letter in the last sub-
parameter position for this group, the sort assumes that the routine requires link-edit-
ing and will be link-edited together with any other routines for this phase.

16. The SUM control statement’s FIELDS parameter identifies one summary field. It
begins on byte 1 of the record, is 10 bytes long, and has zoned decimal data. The rest of
the statement is a comment.

17. The END control statement marks the end of the control statements and also contains
a comment.

18. The EXIT2 object deck to be link-edited is included after the END statement in the
SYSIN stream.

19. The delimiter statement marks the end of the SYSIN input stream for the sort.

SyncSort for z/OS 1.1 Programmer’s Guide4.32

Multiple Output Files

Example 8

1. The JOB statement gives MULTOUT as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed.

3. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP parameter shows that the library may be
shared.

4. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

5. The SORTIN DD statement gives SALES.RECORDS as the input data set name, and
specifies a disk with the volume serial DISK1. The DISP parameter indicates that the
data set is already in existence and may be shared.

6. The SORTOUT DD statement names one of the output sorted files
SORTED.SALES.RECORDS, and specifies a tape device with volume serial number
112233 for storage. The DISP parameter indicates that the data set does not yet exist,
but it is to be kept whether or not the job terminates normally.

//MULTOUT JOB 1

// EXEC PGM=SYNCSORT 2

//STEPLIB DD DSN=SORT.RESI.DENCE,DISP=SHR 3

//SYSOUT DD SYSOUT=A 4

//SORTIN DD DSN=SALES.RECORDS, 5

// VOL=SER=DISK1,DISP=SHR

//SORTOUT DD DSN=SORTED.SALES.RECORDS, 6

// UNIT=TAPE,VOL=SER=112233,

// DISP=(NEW,KEEP)

//SORTOFDS DD DSN=DOMESTIC.SALES.RECORDS, 7

// VOL=SER=DISK8,DISP=(NEW,KEEP),

// SPACE=(CYL,40),UNIT=SYSDA

//SORTWK01 DD SPACE=(CYL,20),UNIT=SYSDA 8

//SORTWK02 DD SPACE=(CYL,20),UNIT=SYSDA

//SORTWK03 DD SPACE=(CYL,20),UNIT=SYSDA

//SYSIN DD * 9

SORT FIELDS=(10,12,BI,A) 10

OUTFIL FILES=OUT,INCLUDE=ALL 11

OUTFIL FILES=DS,OMIT=(62,3,CH,NE,C'USA') 12

/* 13

Figure 172. Sample JCL/Control Stream (8)

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.33

7. The SORTOFDS DD statement names a second sorted output file
DOMESTIC.SALES.RECORDS, and specifies a disk device with volume serial number
DISK8 for storage. Forty cylinders of space have been allocated on this volume. The
DISP parameter indicates that the data set does not yet exist, but is to be kept whether
or not the job terminates normally.

8. The three SORTWK DD statements reserve space on direct access devices for
intermediate storage. Twenty cylinders are allocated for each of the three SORTWK
data sets.

9. The SYSIN DD statement marks the beginning of the input stream that includes the
sort control statements.

10. The SORT control statement specifies that one control field will be sorted on. It begins
on byte 10 of the record, is 12 bytes long, contains unsigned binary (BI) data and is to
be sorted according to ascending order.

11. The first OUTFIL control statement is associated with the SORTOUT DD statement.
The INCLUDE parameter specifies that all input records are to be included in this
output file.

12. The second OUTFIL control statement is associated with the SORTOFDS DD
statement. The OMIT parameter specifies that records which do not contain "USA" in
bytes 62, 63 and 64 are not to be included in this file.

13. The delimiter statement marks the end of the SYSIN input stream.

SyncSort for z/OS 1.1 Programmer’s Guide4.34

Chapter 5. PARM Options 5.1

Chapter 5. PARM Options

PARM options can be specified to provide processing information and to override installa-
tion defaults for JCL-initiated and program-invoked applications.

For a JCL-initiated application, specify the PARM option(s) on the EXEC statement as fol-
lows:

For a program-invoked application, specify the PARM option(s) in a $ORTPARM DD data
set. Omit the keyword PARM= and the single quotes. PARM options for a JCL-initiated
application can also be specified in a $ORTPARM data set.

Additional MAXSORT PARMs

The MAXSORT feature, designed for large sorting applications, is initiated by the
MAXSORT PARM. The following additional PARMs can be specified for a MAXSORT
application: BKPTDSN, DYNATAPE, MAXWKSP, MINWKSP, NODYNATAPE, RESTART,
SORTSIZE, SORTTIME and TAPENAME. These PARMs are described in “Chapter 9.
MAXSORT”.

PARM='option,...'

Figure 173. PARM Parameter Format

SyncSort for z/OS 1.1 Programmer’s Guide5.2

PARASORT PARM

The PARASORT feature, designed to reduce elapsed time for multi-volume and/or concate-
nated tape SORTIN sort applications, is initiated by the PARASORT PARM. For additional
information on PARASORT, see “Chapter 10. PARASORT”.

DB2 Query Support PARM

DB2 Query Support, which allows DB2 data to be passed directly into a SORT or COPY
operation without the use of setup steps or the need for user-written E15 exits, is initiated
by the DB2 Query Support PARM. For additional information, see “Chapter 11. SyncSort
DB2 Query Support” .

Additional Tape Sort PARMs

The following additional PARMs can be specified for a Tape Sort: OSCL, BALN and POLY.
The CRCX and PEER PARMs are accepted but ignored. These PARMs are described in
“Chapter 12. Tape Sort”.

Precedence Rules

There are three ways in which options can be specified, though not all options can be speci-
fied in all three ways:

• As an installation specification

• As a PARM specification

• As a SORT/MERGE control statement specification.

Note that there are six options that can be specified as a PARM option or a SORT/MERGE
option. They are: CENTWIN, DYNALLOC, EQUALS/NOEQUALS, FILSZ, SKIPREC and
STOPAFT.

When an option is specified in more than one way, the following precedence rules apply:

• A SORT/MERGE or PARM specification overrides an installation specification.

• A PARM specification overrides a SORT/MERGE specification except for EQUALS/
NOEQUALS.

PARM Option Summary Chart

The chart on the following pages lists the PARM options. Underscored PARM options are
delivered defaults which may have been altered at installation time.

Chapter 5. PARM Options 5.3

PARM Option Name Disk Sort, MAXSORT,
and PARASORT Available with Tape Sort?

BALANCE Balances importance of CPU
time, elapsed time, and I/O
activity for best overall sort
performance. See CPU, ELAP,
and IO. Note that these options
and BALANCE are all
mutually exclusive.

No.

BMSG Produces WERnnB messages. No.

CENTWIN= 0 /s /f Generates a sliding (s) or fixed
(f) 100-year window that
determines the century to
which 2-digit year data
belongs. Ensures that such
data is processed correctly as a
4-digit year by SORT/MERGE
and INCLUDE OMIT. Also
enables OUTREC processing to
output a 4-digit year (yyyy)
from 2-digit year input (yy).

No.

CMP= CPD/CLC CMP=CPD improves
performance.

No. CMP=CLC (no data validation) is
the standard.

COBEXIT= COB1 /COB2 Specifies whether COBOL
exits use OS/VS COBOL
libraries or VS COBOL II or
COBOL/370 libraries.

No.

COMMAREA/
NOCOMMAREA

Provides a communication area
between exit programs.

No

CORE/SIZE=n Changes the amount of
memory in which sort/merge
can run.

Yes.

CPU Minimizes CPU time at
expense of other performance
measures. See BALANCE,
ELAP, and IO. Note that these
options and CPU are all
mutually exclusive.

No.

DEBUG Provides a SyncSort SNAP
dump in the event of a critical
error.

No.

DIAG Provides diagnostic informa-
tion for certain error
conditions.

Plus additional diagnostic trace.

SyncSort for z/OS 1.1 Programmer’s Guide5.4

DYNALLOC Requests the dynamic
allocation of work data sets.

No.

E15/E35=COB Indicates a COBOL exit. No.

ELAP Minimizes elapsed time at
expense of other performance
measures. See BALANCE,
CPU, and IO. Note that these
options and ELAP are all
mutually exclusive.

No.

EQUALS/ NOEQUALS EQUALS acts to preserve the
order of equal-keyed records. It
is not available with
PARASORT.

Yes.

EXTCOUNT Enables special processing for
applications with record counts
that exceed SyncSort’s default
internal limit.

No.

FILSZ=n/En Indicates the (actual or
estimated) number of records
after input processing (E14,
E15, INCLUDE/OMIT,
SKIPREC, STOPAFT, and
Phase 1 SUM). FILSZ=n
causes sort termination if n is
incorrect.

FILSZ=En only. Does not take input
processing (E14, E15) into account.

FLAG FLAG and MSG control the
routing of output messages.

Yes.

HBSI Enables hiperbatch processing
for SORTIN data set.

No.

HBSO Places SORTOUT data set into
hiperbatch.

No.

INCOR/INCORE= ON /OFF ON permits incore and
turnaround sorts.

No. INCORE=OFF is the standard.

IO Minimizes IO activity at
expense of other performance
measures. See BALANCE,
CPU, and ELAP. Note that
these options and IO are all
mutually exclusive.

No.

IOERR=ABE/ NOIOERR Indicates how to handle I/O
errors: user abend 999 plus
dump or SyncSort error
message only.

No. I/O errors generate user abend 999
plus dump.

PARM Option Name Disk Sort, MAXSORT,
and PARASORT Available with Tape Sort?

Chapter 5. PARM Options 5.5

L6=n,L7=n Passes HISTOGRM data to
optimize variable-length record
sorts.

No.

LIST /NOLIST LIST causes header line and
control statements to be
printed.

Accepted but not processed. NOLIST is
the standard for invoked sorts, LIST for
JCL sorts.

LOCALE= NONE /CURRENT
/name

Controls collating based on
cultural environment.

No.

MSG MSG and FLAG control the
routing of messages.

Yes.

MSGDD Changes the DD name of the
message data set.

Yes.

NULLOUT= RC0 /RC4 /RC16 Specifies the action to be taken
when SORTOUT contains no
records.

No.

OVFLO= RC0 /RC4 /RC16 Specifies the action to be taken
if a summary field overflows or
underflows during SUM
processing.

No.

PAD= RC0 /RC4 /RC16 Specifies the action to be taken
if the non-OUTFIL SORTOUT
LRECL is larger than the
SORTIN/SORTINnn LRECL.

No.

PRINT121 Changes the DCB of the
message data set.

No. The standard is: DCB=
(LRECL=120,BLKSIZE=120,
RECFM=U).

RC16=ABE/NORC16 RC16=ABE changes return
code 16 to user abend 16.

No. User abend 16 is the standard.

RELEASE= ON /OFF Overrides the RLSE operand
in the SPACE parameter of the
SORTWK DD statement(s).

No.

RESERVE=n/nK Specifies the amount of
memory reserved for the user
below the 16-megabyte line.

No.

RESERVEX=n/nK Specifies the amount of
memory reserved for the user
above the 16-megabyte line.

No.

RESET/ NORESET Affects VSAM SORTOUT only. No. (Tape Sort does not accept VSAM
output.)

RLSOUT/ NORLSOUT Determines whether excess
space is released.

No. Excess SORTOUT space is not
released.

PARM Option Name Disk Sort, MAXSORT,
and PARASORT Available with Tape Sort?

SyncSort for z/OS 1.1 Programmer’s Guide5.6

SDB= ON/ OFF/ YES/ NO/
DISKONLY/ TAPEONLY/
LARGE/ SMALL/ INPUT/
LARGEONLY/ INPUTONLY

Specifies whether
system-determined blocksize
should be used to select an
optimum blocksize for data
sets when none is provided.

No.

SECOND= ON /OFF Determines whether secondary
sort work space is
automatically provided.

No. Secondary sort work space is not
automatically provided.

SKIPREC=n Indicates that n records should
be skipped before the input file
is sorted or copied. SKIPREC is
not available for PARASORT.

No.

STOPAFT=n Sorts or copies at most n
records that survive input file
editing (E15, INCLUDE/OMIT,
SKIPREC etc.) STOPAFT is
not available for PARASORT.

No.

TRUNC= RC0 /RC4 /RC16 Specifies the action to be taken
if the non-OUTFIL SORTOUT
LRECL is smaller than the
SORTIN/SORTINnn LRECL.

No.

UNINTDS=YES/ NO Indicates if an uninitialized
SORTIN or SORTINnn input
file should be processed.

No.

VLTEST=(n/ 1 , ON /OFF /
OFF4)

Indicates the type of validity
testing to be done when
processing variable-length
records.

No.

VLTESTI=n/ 0 Indicates action to be taken
when a variable-length record
does not contain all fields
referenced by INCLUDE or
OMIT processing.

No.

VSAMEMT= NO /YES Specifies the processing of
empty VSAM data sets
provided as input to a sort,
merge, or copy.

No.

ZDPRINT/ NZDPRINT Specifies whether positive
summarized ZD fields will be
converted to a printable
format.

No.

PARM Option Name Disk Sort, MAXSORT,
and PARASORT Available with Tape Sort?

Chapter 5. PARM Options 5.7

SyncSort PARM Options

BALANCE

BALANCE optimizes overall performance by balancing among CPU time, sort elapsed
time, and I/O activity to SORTIN, SORTOUT and SORTWK. If you wish to emphasize one
performance measure at the possible expense of others, use CPU, ELAP, or IO. See CPU,
ELAP, and IO, below. Note that these options and BALANCE are all mutually exclusive.

Cannot be used with Tape Sort.

BMSG

BMSG enables class B messages. They will appear wherever the MSG PARM option indi-
cates informational messages are to be routed.

Cannot be used with Tape Sort.

CENTWIN

CENTWIN defines a sliding or fixed 100-year window that determines the century to which
2-digit year data belongs when processed by SORT, MERGE, INREC, OUTREC or OUTFIL
OUTREC control statements.

The 2-digit year data formats (Y2B, Y2C, Y2D, Y2P, Y2S and Y2Z) plus the full-date for-
mats (Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y) work with CENTWIN to treat a 2-digit year
value as a 4-digit year. The 2-digit and full-date year data formats can be specified on con-
trol statements as follows:

• Use SORT/MERGE control statements to correctly collate 2-digit years that span
century boundaries. For information on using the 2-digit and full-date data formats for
SORT/MERGE field specifications, see “CENTWIN Parameter (Optional)” on page 2.41
or on page 2.134.

BALANCE

BMSG

CENTWIN =

0

s
f 

 
 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide5.8

• Use INCLUDE/OMIT or OUTFIL INCLUDE/OMIT control statements for correct
comparisons involving 2-digit year and full-date data formats. For information on using
the 2-digit year data formats for INCLUDE/OMIT processing, see "Specifying Field-to-
Field Standard Comparisons for Date Fields" under the heading “INCLUDE/OMIT
Control Statement” on page 2.16. For more information on specifying full-date formats,
see pages 2.24-2.29.

• Use INREC/OUTREC or OUTFIL OUTREC control statements to convert 2-digit year
and full-date data to 4-digit printable output. For information on using the 2-digit year
data formats for OUTREC processing, see “Converting Year Data with Century
Window Processing on INREC, OUTREC, or OUTFIL OUTREC” on page 2.100 and
“Example 5” on page 2.120. For more information on converting full-date formats, see
the descriptions of the fi and fy2f,(c) parameters on pages 2.93-2.96, Table 11 on page
2.47, and Table 15 on page 2.97.

In addition, two date formats, Y2ID and Y2IP, are provided for year conversion with
INREC/OUTREC and OUTFIL OUTREC. These formats work with CENTWIN to expand a
2-digit year in packed decimal format to a 4-digit year while maintaining the packed deci-
mal format in the output field.

CENTWIN ensures that year data spanning centuries will be sequenced correctly. For
example, without CENTWIN processing, an ascending sort/merge would sequence the year
01 before the year 98. With CENTWIN processing, the 01 field could be recognized as a
twenty-first century date (2001) and would thus be sequenced after 98 (1998) for an ascend-
ing sort.

The CENTWIN option generates either a sliding or fixed century window, depending on
which form of CENTWIN is used: CENTWIN=s or CENTWIN=f.

• CENTWIN=s specifies a sliding century window, which automatically advances as the
current year changes.

The variable s is a number 0 through 100. This value is subtracted from the current
year to set a century-window starting point. For example, in 1996 CENTWIN=20 would
create the century window 1976 through 2075. Ten years later in 2006, the century
starting year would slide to 1986 (2006 minus 20 = 1986) and the century window
would be 1986 through 2085.

The CENTWIN delivered default is s=0, which means the current year is the starting
year of a century window.

• CENTWIN=f specifies a fixed century window.

The variable f is a 4-digit year (yyyy) between 1000 and 3000. For example,
CENTWIN=1976 establishes a fixed starting year 1976 for the century window 1976
through 2075. This window will not change as the current year changes.

Chapter 5. PARM Options 5.9

The century window defined by CENTWIN controls processing of year-data. If a 2-digit
year field (indicated by Y2B, Y2C, Y2D, Y2P, Y2S, Y2Z, Y2ID, Y2IP, Y2T, Y2U, Y2V, Y2W,
Y2X, or Y2Y) has a value less than the last two digits of the century window start year, the
year field will be treated as a year in the century following the year of the century window,
except for 00, which is considered to be in the same century as the century window start
year. All other 2-digit years will be treated as in the same century as the century window
start year.

For example, consider the century window 1950 through 2049. The 2-digit year fields would
be processed as follows:

An ascending sort of the above sample data would produce output data in the following
sequence:

If CENTWIN has been specified on the SORT or MERGE control statement as well as in
the PARM field, the PARM specification has precedence.

Cannot be used with Tape Sort.

CMP

CMP specifies the kind of compare operation to be used for sort/merge control fields up to
16 bytes long, bearing the format code PD or ZD.

When CMP=CPD is used, ZD fields are PACKed and then compared. Invalid PD data may
cause a system 0C7 abend and program termination. The integrity of fields labelled "ZD" is

Two-digit Field Processed as Year

00 2000

01 2001

49 2049

50 1950

99 1999

Two-digit Field Processed as Year

50 1950

99 1999

00 2000

01 2001

49 2049

CMP =
CPD

CLC 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide5.10

only guaranteed when they contain valid ZD data. Since the zone bits (the leftmost four
bits of each byte) are lost during packing, UNPKing the field later restores only valid ZD
data to its original state. Leading blanks are transformed to leading zeros and alphabetic
character data that packs to a valid PD field is converted to valid ZD data.

CMP=CLC uses the compare logical instruction for all PD and ZD control fields. No data
validation is done and the integrity of the output is maintained.

CMP=CPD is the delivered default for the PARM. The delivered default for VLTEST is 1,
and is consistent with this default. Changing the VLTEST default from 1 to any even num-
ber forces the use of CMP=CLC when sorting variable-length records.

For more detailed information and sample comparisons, see the section “Comparing PD
and ZD Control Fields” on page 2.41.

Cannot be used with Tape Sort.

COBEXIT

COBEXIT indicates which libraries COBOL E15 and E35 exit routines should use when
they are executed.

COBEXIT=COB1 specifies that COBOL exits should use either OS/VS COBOL libraries or
no libraries at all.

COBEXIT=COB2, the delivered default, specifies that COBOL exits should use VS COBOL
II or COBOL/370 libraries. VS COBOL II or COBOL/370 run-time library modules typically
require more main storage than OS/VS COBOL library modules. The amount of additional
storage depends on VS COBOL II or COBOL/370 installation options. When VS COBOL II
or COBOL/370 run-time library modules are used, it may be necessary to account for this
additional storage by adjusting the b value of the Exit-Name parameter on the MODS
statement.

Cannot be used with Tape Sort.

COBEXIT =
COB1
COB2 

 
 

Chapter 5. PARM Options 5.11

COMMAREA

COMMAREA instructs SyncSort to provide an area for communication between exit pro-
grams. The size of this area is given as a decimal number n of bytes; x, a character string at
most n bytes long, designates the initial value to be stored in this area. Regardless of the
value of n, which may be between 1 and 256, x may not exceed 89 bytes in length. (When-
ever x has fewer than n characters, it will be right-padded with blanks to a length of n.) If
COMMAREA is specified via the EXEC statement, blanks may be included within the
string x. However, if COMMAREA is specified via the $ORTPARM DD statement, interven-
ing blanks are not allowed. In neither case is a right parenthesis permitted since it delimits
the COMMAREA parameter.

Both n and x are optional. If either subparameter is specified, it will determine the other: n
defaults to the length of x, x defaults to n blanks. If neither x nor n is specified, n defaults to
80 bytes, x to 80 blanks.

NOCOMMAREA is the program default: no area for communication between exit programs
is provided, although exit routines may still use the 19th word of the save area.

Exit program access to this communication area is described in the discussion of exit pro-
grams, see “The Exit Communication Area” on page 7.4.

Cannot be used with Tape Sort.

PARM Code Communication Area

COMMAREA(10,DEBUG) DEBUG..... (5 blanks)

COMMAREA(10) (10 blanks)

COMMAREA (80 blanks)

COMMAREA(,DEBUG) DEBUG

COMMAREA(80,DEBUG) DEBUG.... (75 BLANKS)

Figure 174. Examples: Coding the COMMAREA PARM

COMMAREA(n,x)
COMMAREA(n)
COMMAREA(,x)
COMMAREA
NOCOMMAREA

 
 
 
 
 
 
 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide5.12

CORE

CORE is used to override the installation default for the amount of memory the sort/merge
is allowed to use. To specify an amount of memory, choose one entry from each pair of
braces.

Note that CORE and SIZE are synonymous. Note also that memory specification may be a
decimal number of bytes (CORE=n), a decimal multiple of K, where K=1024 bytes
(CORE=nK), or a decimal multiple of M, where M=1048576 bytes (CORE=nM).

For simplicity, the following describes only CORE, specified in units of nK.

CORE=nK Defines a maximum memory limit of nK below the 16-megabyte
line.

CORE=MAX Assigns to the sort/merge all the available memory above and
below the 16-megabyte line.

CORE=MAX-nK Assigns to the sort/merge all the available memory above and
below the 16-megabyte line less nK bytes, which is reserved
below the 16-megabtye line.

Consult your systems staff for any installation-specific modifications to the handling of
CORE. For example, "CORE" will be limited if a maximum memory size for SyncSort was
set at installation time.

CPU

CPU minimizes the CPU time of each sort at the expense of sort elapsed time and I/O activ-
ity. See BALANCE, ELAP and IO. Note that these options and CPU are all mutually exclu-
sive.

Cannot be used with Tape Sort.

CORE
SIZE 

 
 

n
nK
nM
MAX
MAX-n
MAX-nK
MAX-nM 

 
 
 
 
 
 
 
 
 
 

=

CPU

Chapter 5. PARM Options 5.13

DEBUG

DEBUG produces a SyncSort SNAP dump in the event that a critical error forces the sort
to terminate. A SNAP dump produced in this way is of use to a SyncSort analyst in debug-
ging complex problems. See “What to Do Before Calling SyncSort for z/OS Product Ser-
vices” on page 16.72. Note that the PSW AT ENTRY TO SNAP and general registers are
useless for debugging.

Cannot be used with Tape Sort.

DIAG

DIAG turns on both the IOERR=ABE and the RC16=ABE options (see these options for
explanations). When specified for a Tape Sort, DIAG also turns on a diagnostic trace and
causes system ABEND 0C1 in the event of an I/O error.

DYNALLOC

DYNALLOC requests the dynamic allocation of SORTWK data sets on device type d.
Specify the device type either as a decimal number (e.g., 3380) or by the system generic
name (e.g., SYSDA). Any disk device accepted for a SORTWK DD statement can be
specified. Note that if VIO is specified it will be ignored, and the installation default for the
DYNALLOC device type will be used in its place.

Note that the DYNALLOC parameter may be used alone, without any subparameters. In
this case, the DYNALLOC installation default settings are used.

For non-MAXSORT applications, n can be 1 through 255. The value n specifies the number
of SORTWK data sets that can potentially be allocated. For values of n that are 31 or less,
SyncSort can automatically raise the number to 32 if the application requires. When n is 33
through 255, this value specifies the maximum number of SORTWK data sets that can be
allocated.

DEBUG

DIAG

DYNALLOC =

d

(d, n ,RETRY =
(nn,mm)
OFF 

 
 

 [,SC=s])

OFF 
 
 
 
 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide5.14

For MAXSORT applications, n is the number of SORTWK data sets that will be allocated.
As many as 32 SORTWK data sets can be specified for MAXSORT applications.

The delivered default for n is 3.

DYNALLOC=OFF can be specified to override a DYNALLOC=ON installation default.

SORTWK data sets allocated by the DYNALLOC parameter normally supplement any
SORTWK data sets allocated by SORTWKnn DD statements; however, note that there is
an installation option to disable DYNALLOC if SORTWKnn DD statements are present.

SyncSort uses the value specified in the RETRY parameter to request automatic
DYNALLOC retry. This facility attempts to avoid a sortwork capacity exceeded condition
when disk space is not immediately available to satisfy a DYNALLOC request. When
RETRY is specified, SyncSort will automatically retry a specified number of times and wait
a prescribed interval between DYNALLOC requests.

The nn in the first position designates the number of times SyncSort will retry a failed
DYNALLOC request. The minimum allowed is 1 and the maximum is 16. The mm in the
second position designates the number of minutes SyncSort waits between each
DYNALLOC request. The minimum allowed is 1 and the maximum is 15. RETRY=OFF can
be specified to override a RETRY=ON installation default.

In an environment where DFSMS manages temporary work data sets, the SC subparame-
ter specifies a storage class s for SyncSort to use when dynamically allocating SORTWORK
data sets. The storage administrator at your installation defines the names of the storage
classes you can specify. Note that an installation written automatic class selection (ACS)
routine can override the storage class you specify. If SMS is not installed or active to man-
age temporary work data sets, the d device specification will be used in the SORTWORK
dynalloc request.

If DYNALLOC has been specified on the SORT control statement as well as in the PARM
field, the PARM specification will take precedence.

Cannot be used with Tape Sort.

E15

E15 specifies the E15=COB option in order to include an E15 exit written in COBOL with-
out coding C on the MODS control statement.

Cannot be used with Tape Sort.

E15=COB

Chapter 5. PARM Options 5.15

E35

E35 specifies the E35=COB option in order to include an E35 exit written in COBOL with-
out coding C on the MODS control statement.

Cannot be used with Tape Sort.

ELAP

ELAP minimizes the elapsed time (wall clock time) of each sort at the expense of CPU time
and I/O activity. See BALANCE, CPU and IO. Note that these options and ELAP are all
mutually exclusive.

Cannot be used with Tape Sort.

EQUALS

EQUALS guarantees that the first of a series of equal-keyed records is either first-in
(SORT) or from the lowest numbered SORTINnn data set (MERGE). With NOEQUALS,
there is a random element to the order in which records with identical control fields will
appear in the output. With or without EQUALS, MERGE preserves the order of equal-
keyed records within any one data set.

When used in conjunction with SUM, EQUALS indicates which of the equal-keyed records
will be preserved, containing the sum: the record occurring first in SORTIN (for a sort), or
drawn from the SORTINnn data set with the lowest nn number (for a merge) will contain
the totaled fields.

The EQUALS option can also be specified on the SORT/MERGE control statement. The
specification on the control statement takes precedence over the specification in the PARM
field.

E35=COB

ELAP

EQUALS
NOEQUALS  

 
 

SyncSort for z/OS 1.1 Programmer’s Guide5.16

EXTCOUNT

EXTCOUNT enables special processing to accommodate applications that have record
counts that exceed SyncSort’s default internal limit.

By default, the internal limit on the number of records that can be sorted for variable-
length data or for a sort application that uses the EQUALS option is 4,294,967,295 records.
Specifying EXTCOUNT increases the internal limit to 140,737,488,355,327 records. Fixed-
length sorts without EQUALS, and all merges and copies, have automatic support for the
maximum number of records allowed by the EXTCOUNT parameter.

Note that additional SORTWK space may be required when specifying the EXTCOUNT
parameter with a VL sort or a fixed-length sort with EQUALS. The additional SORTWK
space is 2 bytes per record. This amount can add a significant percentage to the SORTWK
space needs if the LRECL of the records is small. (Small LRECLs are typical of files with
an extremely large number of records). Therefore, when using EXTCOUNT with a VL sort
or a fixed-length sort with EQUALS, insure that the extra SORTWK space will be avail-
able.

Performance will usually be improved if the EXTCOUNT option is not in effect. Therefore,
EXTCOUNT should be used only when appropriate to the application.

If the record limit is exceeded, SyncSort will issue a critical error message and terminate
the application.

Cannot be used with Tape Sort.

FILSZ

FILSZ indicates the actual (FILSZ=n) or estimated (FILSZ=En) decimal number of records
to be sorted, taking into account all record additions and deletions due to an E14 or E15
exit routine, the INCLUDE/OMIT control statement, the SUM control statement and the
SKIPREC and STOPAFT parameters.

FILSZ=n instructs SyncSort to terminate with an error message unless exactly n records
are to be sorted. Since the number of records SUMed in Phase 1 is indeterminate and may
not be reproducible, much less predictable, only the estimated En value should be used if a
SUM control statement is present.

EXTCOUNT

FILSZ =
n
En 

 
 

Chapter 5. PARM Options 5.17

If FILSZ is specified for a Tape Sort, only the estimated En value may be given. It should
indicate the number of records in the input file - not taking into account any records to be
added or deleted by an E14 or E15 exit program.

The FILSZ option can also be specified on the SORT control statement. The specification in
the PARM field will take precedence over that on the control statement.

FLAG

FLAG controls the routing of output messages. The MSG option, which handles messages
more comprehensively, is explained later in this section. The format of the FLAG option is
given below.

Specify FLAG(I) to route all messages to the data set specified by the SYSOUT DD state-
ment and only critical messages to the console. (This is the same as the MSG=SC PARM.)

Specify FLAG(U) to route critical messages only to both the data set specified by the
SYSOUT DD statement and the console. (This is the same as the MSG=CB PARM.)

Specify NOFLAG to route critical messages only to the console, no messages to the data set
specified by the SYSOUT DD statement. (This is the same as the MSG=CC PARM.)

HBSI

HBSI turns on hiperbatch processing for SORTIN data sets. To benefit from hiperbatch
processing, the SORTIN data set should already reside in hiperbatch. Although hiperbatch
does provide significant improvements in elapsed time, it causes some degree of degrada-
tion in other system resources. If you use HBSI and the SORTIN data set does not reside in
hiperbatch, you may experience some system degradation while not realizing any of the
benefits that accompany hiperbatch processing.

Cannot be used with Tape Sort.

FLAG(I)
FLAG(U)
NOFLAG 

 
 
 
 

HBSI

SyncSort for z/OS 1.1 Programmer’s Guide5.18

HBSO

HBSO turns on hiperbatch processing for SORTOUT data sets. HBSO benefits only subse-
quent job steps that utilize hiperbatch to access this data set.

Cannot be used with Tape Sort.

INCORE

INCORE=ON requests SyncSort to perform an incore or a turnaround sort whenever possi-
ble, even if DYNALLOC is specified or SORTWKnn data sets are present. This is the deliv-
ered default.

With INCORE=OFF, SyncSort will not perform a turnaround sort even if your input data
can be sorted entirely in memory. Specifying INCORE=OFF without supplying
SORTWKnn data sets or requesting the DYNALLOC option results in a critical error when
sorting.

Cannot be used with Tape Sort.

IO

IO minimizes the I/O activity of each sort at the expense of sort elapsed time and CPU
time. See BALANCE, CPU and ELAP. Note that these options and IO are all mutually
exclusive.

Cannot be used with Tape Sort.

IOERR

IOERR specifies IOERR=ABE to receive user abend 999 if an I/O error should occur. This
abend will cause the job step to terminate, producing a diagnostic dump.

HBSO

INCORE
INCOR 

 
  ON

OFF 
 
 

=

IO

IOERR=ABE
NOIOERR 

 
 

Chapter 5. PARM Options 5.19

NOIOERR is the program default. If this option is in effect, SyncSort will, in the event of an
I/O error, terminate with either a return code of 16 or a user abend 16, depending on the
RC16 option that is used.

Cannot be used with Tape Sort.

L6

L6 indicates the average number of bytes of work space each record will need, overriding (if
present) the l6 parameter of the RECORD control statement. The decimal value n of the
optional L6 parameter is provided by the HISTOGRM utility program. If neither L6 nor l6
is provided, SyncSort will estimate this value.

L6 is only used for sorting variable-length records. It is ignored by Tape Sort, merge, and
copy applications.

Cannot be used with Tape Sort.

L7

L7 indicates the segment length that SyncSort should use for maximum sorting efficiency.
The decimal value n of the optional L7 parameter is provided by the HISTOGRM utility
program. (A segment is a fixed-length area used to contain all or part of a variable-length
record.) The L7 value overrides (if present) the l7 parameter of the RECORD control state-
ment. If neither L7 nor l7 is provided, SyncSort will estimate this value.

L7 is only used for sorting variable-length records. It is ignored by Tape Sort, merge, and
copy applications.

Cannot be used with Tape Sort.

LIST

LIST, the default for the sort/merge program, causes header lines and control statements to
be listed with the SYSOUT data set (in all likelihood, at the printer) for both JCL- and pro-

L6=n

L7=n

LIST

NOLIST 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide5.20

gram-initiated executions. If NOLIST is specified, the control statements and header lines
will not appear with this data set.

Tape Sort accepts but does not process this parameter.

LOCALE

LOCALE controls cultural environment processing, allowing you to choose an alternative
set of collating rules based on a specified national language. For SORT/MERGE processing,
the alternative collating applies to character (CH) fields. For INCLUDE/OMIT comparison
processing, the alternative collating applies to character fields and hexadecimal constants
compared to character fields.

SyncSort employs the callable services of IBM’s Language Environment for z/OS to collate
data in a way that conforms to the language and conventions of a selected locale. A locale
defines single and multi-character collating rules for a cultural environment. Numerous
pre-defined locales are available.

NONE, the default setting for LOCALE, results in normal EBCDIC collating.

CURRENT directs SyncSort to use the locale active when SyncSort begins.

name is the name of a supplied or user-defined locale that is to be active during SyncSort
processing. A locale name may be up to 32 characters and is not case sensitive. The locale
active just before SyncSort processing begins will be restored when SyncSort processing
completes. The following is a list of locales provided with the IBM National Language
Resources Feature of LE/370.

LOCALE

NONE

CURRENT
name 

 
 
 
 

=

Chapter 5. PARM Options 5.21

Notes:

1. Make sure the JCL gives SyncSort access to the library that contains the loadable
locale routines. For the supplied locales, these are the dynamically loadable routines in

Locale
Name Language Country

C

DA_DK Danish Denmark

DE_CH German Switzerland

DE_DE German Germany

EL_GR Greek Greece

EN_GB English United Kingdom

EN_JP English Japan

EN_US English United States

ES_ES Spanish Spain

FI_FI Finnish Finland

FR_BE French Belgium

FR_CA French Canada

FR_CH French Switzerland

FR_FR French France

IS_IS Icelandic Iceland

IT_IT Italian Italy

JA_JP Japanese Japan

NL_BE Dutch Belgium

NL_NL Dutch Netherlands

NO_NO Norwegian Norway

PT_PT Portuguese Portugal

SV_SE Swedish Sweden

TR_TR Turkish Turkey

Table 27. Defined Locales

SyncSort for z/OS 1.1 Programmer’s Guide5.22

the IBM AD/Cycle LE/370 library. For more information, see the IBM publication
Language Environment for z/OS & VM Installation and Customization Guide, SC26-
4817.

2. If locale processing is used for fields specified in a SORT or MERGE control statement,
VLTEST=1 will be forced on in addition to any other VLTEST options in effect.
VLTEST=1 will cause SyncSort to terminate if a variable-length input record does not
contain all SORT/MERGE control fields.

3. Although locale processing can improve performance compared to external collating
routines, it should be used only when necessary. Locale processing can significantly
degrade SORT/MERGE and INCLUDE/OMIT performance compared to normal
collating.

4. An E61 exit cannot be used with locale processing.

5. Locale processing requires additional main storage to support the use of the IBM
Language Environment facilities. For those jobs that use locale, the below-the-line
region size should be increased by 1000K to accommodate the storage needs of the
Language Environment modules.

6. LOCALE cannot be used with Tape Sort.

MSG

MSG indicates where SyncSort messages are to be routed. The MSG codes assume that the
printer is specified for the message data set; if a device other than the printer is specified
for this data set, messages described as routed to the printer will be routed to this other
device instead.

AB causes all messages to be routed both to the printer and to the console.

AC causes all messages to be routed to the console, none to the printer.

MSG

AB
AC
AP

CB
CC
CP
NO
PC
SC
SP 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

Chapter 5. PARM Options 5.23

AP causes all messages to be routed to the printer, none to the console. This is the pro-
gram default.

CB causes only critical messages to be routed to the printer and to the console. (This is
the same as the FLAG(U) option.)

CC causes only critical messages to be routed to the console, no messages to the printer.
(This is the same as the NOFLAG option.)

CP causes only critical messages to be routed to the printer, no messages to the console.

NO causes no messages to be routed to either the printer or the console.

PC causes all messages to be routed to the printer and to the console.

SC causes only critical messages to be routed to the console, all messages to the
printer. (This is the same as the FLAG(I) option.)

SP causes only critical messages to be routed to the printer, all messages to the con-
sole.

MSGDD

The program default for the DD name of the message data set is SYSOUT. To assign a dif-
ferent DD name, substitute any valid DD name for xxxxxxxx.

NULLOUT

NULLOUT specifies the action to be taken when SORTOUT in a sort, merge, or copy appli-
cation contains no data records.

RC0 The delivered default instructs SyncSort to issue a return code of 0 if not overrid-
den by a higher return code set for another reason.

RC4 Instructs SyncSort to issue a WER461I warning message and continue processing.
A return code of 4 will be issued if not overridden by a higher return code set for
another reason.

MSGDD
SYSOUT

xxxxxxxx 
 
 

=

NULLOUT

RC0

RC4
RC16 

 
 
 
 

=

SyncSort for z/OS 1.1 Programmer’s Guide5.24

RC16 Instructs SyncSort to issue a WER461A message and terminate processing with a
return code of 16.

Cannot be used with Tape Sort.

OVFLO

OVFLO specifies the action to be taken if a summary field overflows or underflows during
SUM processing.

RC0 The delivered default instructs SyncSort to issue a WER049I warning message and
continue processing. A return code of 0 will be returned if not overridden by a
higher return code set for another reason. The WER049I will only be issued on the
first occurrence of the overflow or underflow.

RC4 Instructs SyncSort to issue a WER049I warning message and continue processing.
A return code of 4 will be issued if not overridden by a higher return code set for
another reason. The WER049I will only be issued on the first occurrence of the
overflow or underflow.

RC16 Instructs SyncSort to issue a WER049A message and terminate processing with a
return code of 16.

Cannot be used with Tape Sort.

PAD

PAD specifies the action to be taken if the LRECL defined in the JCL for a non-OUTFIL
SORTOUT is larger than the SORTIN/SORTINnn LRECL or the internally processed
record length when the SORTIN/SORTINnn LRECL is modified by features.

RC0 The delivered default instructs SyncSort to issue a WER462I message, pad fixed-
length output records with binary zeros, and issue a return code of zero.

OVFLO

RC0

RC4
RC16 

 
 
 
 

=

PAD

RC0

RC4
RC16 

 
 
 
 

=

Chapter 5. PARM Options 5.25

RC4 Instructs SyncSort to issue a WER462I message and pad fixed-length output
records with binary zeros. A return code of 4 will be issued if not overridden by a
higher return code set for another reason.

RC16 Instructs SyncSort to issue a WER462A message and terminate processing with a
return code of 16.

Note that for a BetterGener application PAD will be ignored. The installation parameter
SOPADGN will control processing for these applications.

PAD will be ignored in applications in which the SORTIN/SORTINnn or SORTOUT is a
VSAM data set.

Cannot be used with Tape Sort.

PRINT121

PRINT121 changes SyncSort’s DCB default for the message data set to the following:

DCB=(LRECL=121,BLKSIZE=121,RECFM=FA)

This PARM is useful when the application includes a COBOL exit which uses DISPLAY,
EXHIBIT, or TRACE instructions. (These macros will otherwise cause conflicts between
program and sort/merge messages.) An alternative is provided by the MSGDD parameter,
used to change the name of the SyncSort message data set.

The SyncSort program default for the message file’s DCB is:

DCB=(LRECL=125,BLKSIZE=882,RECFM=VBA)

PRINT121 is automatically implemented for all program-initiated sort/merges.

Cannot be used with Tape Sort.

RC16

RC16=ABE will cause the sort to issue user ABEND 16 instead of return code 16. The sort
step is abnormally terminated without a dump and subsequent job steps are generally
flushed by the operating system. However, JCL may specify job step(s) to be executed only
in the event of an ABEND.

PRINT121

RC16=ABE
NORC16 

 
 

SyncSort for z/OS 1.1 Programmer’s Guide5.26

The delivered default is NORC16; unsuccessful completion of the sort causes a return code
of 16 to be passed to the operating system or the invoking program.

Cannot be used with Tape Sort.

RELEASE

RELEASE=ON (the program default) turns on the RLSE operand in the SPACE parameter
of the SORTWK DD statements. This will cause unused space to be released from sortwork
units during execution time.

Specify RELEASE=OFF to instruct SyncSort to turn off the RLSE operand in the SPACE
parameter of the SORTWK DD statement. In this case, SyncSort will not release unused
space from the sortwork units during sort execution.

The RELEASE parameter has no effect on program-invoked sorts.

Cannot be used with Tape Sort.

RESERVE

RESERVE sets aside a specified amount of memory below the 16-megabyte line for the
user. This parameter takes effect only when CORE=MAX is in effect.

The memory may be specified as a decimal number of bytes (RESERVE=n), a decimal mul-
tiple of K, where K=1024 bytes (RESERVE=nK), or a decimal multiple of M, where
M=1048576 bytes (RESERVE=nM).

Cannot be used with Tape Sort.

RESERVEX

RELEASE
ON

OFF 
 
 

=

RESERVE
n
nK
nM 

 
 
 
 

=

RESERVEX
n
nK
nM 

 
 
 
 

=

Chapter 5. PARM Options 5.27

RESERVEX overrides the installation value that reserves a specified amount of memory
above the 16-megabyte line for the user. This parameter takes effect only when
CORE=MAX is in effect.

The memory may be specified as a decimal number of bytes (RESERVEX=n), a decimal
multiple of K, where K=1024 bytes (RESERVEX=nK), or a decimal multiple of M, where
M=1048576 bytes (RESERVEX=nM).

Cannot be used with Tape Sort.

RESET

RESET will prevent VSAM from treating output data sets as MOD data sets, if an output
VSAM file was created using the REUSE option.

Cannot be used with Tape Sort.

RLSOUT

RLSOUT releases all excess primary and secondary space from each output DASD file
when the parm is specified and DISP=NEW is specified on output data set statements.

NORLSOUT is the program default. In this case, SyncSort does not release any excess
space on these output files.

Cannot be used with Tape Sort.

RESET
NORESET 

 
 

RLSOUT
NORLSOUT 

 
 

SyncSort for z/OS 1.1 Programmer’s Guide5.28

SDB

SDB specifies whether system-determined blocksize should be used to select an optimal
blocksize for output data sets when none is provided. This parameter will automatically
provide a blocksize that will most efficiently utilize the space on the output device.

SDB=ON enables the use of system-determined blocksize for both tape and new or previ-
ously allocated but unopened DASD output data sets except in the following conditions:

• A blocksize is found in the JCL DCB BLKSIZE specification or, in the case of a
DISP=MOD tape data set, it is derived from an available tape label.

• The output file is a VSAM data set.

If the output data set is on DASD, the blocksize selected will be based upon the RECFM
and LRECL, either specifically provided or determined from the usual analysis of SORTIN
or RECORD statement attributes. For example, the blocksize selected for a blocked output
data set assigned to a 3380 or 3390 DASD device will represent a size as close to half-track
blocking as possible.

If the output file is a tape data set, the blocksize will be determined from the RECFM and
LRECL in conjunction with the following rules:

• RECFM of F or FS: BLKSIZE=LRECL

• RECFM of FB or FBS and LABEL type is not AL: BLKSIZE=highest multiple of
LRECL that is less than or equal to 32760.

• RECFM of FB and LABEL type is AL: BLKSIZE=highest multiple of LRECL that is
less than or equal to 2048.

• RECFM of V, VS, D: BLKSIZE=LRECL +4

SDB

ON
OFF
YES
NO
DISKONLY
TAPEONLY
LARGE
SMALL
INPUT

LARGEONLY
INPUTONLY 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

Chapter 5. PARM Options 5.29

• RECFM of VB, VBS: BLKSIZE=32760

• RECFM of DB: BLKSIZE=2048

If SDB=OFF is specified, SyncSort will not use system-determined blocksize. The blocksize,
if unavailable, will be determined from SORTIN if the SORTIN and output data set
LRECLs are the same, otherwise SyncSort will select an appropriate blocksize.

If SDB=DISKONLY is specified, SyncSort will use system-determined blocksize only for
disk output data sets.

If SDB=TAPEONLY is specified, SyncSort will use system-determined blocksize only for
tape output data sets.

SDB=LARGE enables the use of system-determined blocksize for both tape and DASD out-
put data sets, as with SDB=ON. Additionally, under Version 2 Release 10 of OS/390 or
under z/OS, SDB=LARGE enables selection of a system-determined blocksize greater than
32760 for eligible tape output data sets if not restricted by the system BLKSZLIM value.

SDB=SMALL has the same meaning as SDB=ON.

SDB=INPUT enables the use of system-determined blocksize for both tape and DASD out-
put data sets, as with SDB=ON. Additionally, under Version 2 Release 10 of OS/390 or
under z/OS, if an input tape data set has a blocksize greater than 32760, SDB=INPUT
enables selection of a system-determined blocksize greater than 32760 for eligible tape out-
put data sets if not restricted by the system BLKSZLIM value. SDB=INPUT is the default.

SDB=LARGEONLY enables the use of system-determined blocksize for tape output data
sets only, as with SDB=TAPEONLY. Additionally, under Version 2 Release 10 of OS/390 or
z/OS, SDB=LARGEONLY enables selection of a system-determined blocksize greater than
32760 for eligible tape output data sets if not restricted by the system BLKSZLIM value.

SDB=INPUTONLY enables the use of system-determined blocksize for tape output data
sets only, as with SDB=TAPEONLY. Additionally, under Version 2 Release 10 of OS/390 or
z/OS, if an input tape data set has a blocksize greater than 32760, SDB=INPUTONLY
enables selection of a system-determined blocksize greater than 32760 for eligible tape out-
put data sets if not restricted by the system BLKSZLIM value.

Cannot be used with Tape Sort.

SECOND

SECOND
ON

OFF 
 
 

=

SyncSort for z/OS 1.1 Programmer’s Guide5.30

SECOND=ON (the program default) provides automatic secondary allocation for all sort
work data sets, even if it has not been specified in the sort work JCL. With SECOND=OFF,
secondary allocation is only possible if it has been specified in the sort work JCL.

Cannot be used with Tape Sort.

SKIPREC

SKIPREC=n instructs the sort to skip a decimal number n of records before sorting/copying
the input file. The records skipped are deleted from the input file before E15 and
INCLUDE/OMIT processing is begun.

If SKIPREC=n has been specified on the SORT/MERGE control statement as well as in the
PARM field, the PARM specification will take precedence.

SKIPREC is not compatible with a merge application unless using FIELDS=COPY.

Cannot be used with Tape Sort.

STOPAFT

STOPAFT=n (a decimal number) sorts/copies at most n records. These will be the first n
records after any input processing due to an E15, an INCLUDE/OMIT statement, or the
SKIPREC parameter.

If STOPAFT=n has been specified on the SORT/MERGE control statement as well as in the
PARM field, the PARM specification will take precedence.

STOPAFT is not compatible with a merge application, unless using FIELDS=COPY.

Cannot be used with Tape Sort.

SKIPREC=n

STOPAFT=n

Chapter 5. PARM Options 5.31

TRUNC

TRUNC specifies the action to be taken if the LRECL defined in the JCL for a non-OUTFIL
SORTOUT is smaller than the SORTIN/SORTINnn LRECL or the internally processed
record length when the SORTIN/SORTINnn LRECL is modified by features.

RC0 The delivered default instructs SyncSort to issue a WER462I message, truncate the
output records, and issue a return code of zero.

RC4 Instructs SyncSort to issue a WER462I message and truncate the output records. A
return code of 4 will be issued if not overridden by a higher return code set for
another reason.

RC16 Instructs SyncSort to issue a WER462A message and terminate processing with a
return code of 16.

Note that for a BetterGener application TRUNC will be ignored. The installation parame-
ter SOTRNGN will control processing for these applications. TRUNC will be ignored in
applications in which the SORTIN/SORTINnn or SORTOUT is a VSAM data set.

Cannot be used with Tape Sort.

UNINTDS

UNINTDS indicates how SyncSort should process a non-VSAM uninitialized DASD SOR-
TIN or SORTINnn data set in a non-SMS environment. An uninitialized data set is one
that has been created but never successfully opened and closed for output. In an SMS envi-
ronment, uninitialized data sets are always processed as valid empty files.

UNINTDS=YES indicates that an uninitialized data set should be processed as an empty
file. If an uninitialized multi-volume data set has the DS1IND80 and DS1IND02 flags off in
the format-1 DSCB of the first volume and the number of data extents is non-zero, Sync-
Sort will open the data set for output to set an end-of-file mark before the data set is used
for input.

UNINTDS=NO indicates that SyncSort should terminate with a WER400A critical mes-
sage if an uninitialized data set is provided as input on SORTIN or SORTINnn.

TRUNC

RC0

RC4
RC16 

 
 
 
 

=

UNINTDS
YES
NO 

 
 

=

SyncSort for z/OS 1.1 Programmer’s Guide5.32

Cannot be used with Tape Sort.

VLTEST

VLTEST allows you to do the following when variable-length records are processed:

• Choose the type of record length validity testing to be performed.

• Choose whether or not to verify the correct sequence of segments in variable-length
spanned records.

Record length validity testing may be performed in all types of applications: sort, merge,
copy, and BetterGener. Segment sequence checking may only be done during sort and
merge applications.

The first subparameter of the VLTEST PARM is a number n that instructs SyncSort in the
type of validity testing to be performed on variable-length records. Choosing a validity test
instructs SyncSort to terminate with a critical error (outlined in WER027A, WER160A or
WER167A) in the event of an illegal condition.

In particular, VLTEST instructs the sort/merge in the handling of "short" variable-length
records, i.e., records not long enough to contain all of the control field(s) specified in the
SORT/MERGE control statement. The delivered default for VLTEST is 1.

When VLTEST is set to an even number, SyncSort will accept short variable-length records,
padding them with binary zeros to the length of the sort key for the sort compare process.
In order to prevent system 0C7 abends due to the binary zero padding, the CMP PARM is
automatically set to CMP=CLC in these cases. The binary zeros are removed from the
record, restoring it to its original state, as the output record is being written.

0** No validity testing of variable-length records.

1 If input record is shorter than control fields, terminate. This is the delivered
default.

2** If input record is longer than maximum LRECL or l2 value, terminate.

3 If either or both of tests 1 and 2, terminate.

4** If input record is longer than output LRECL or l3 value, terminate.

VLTEST (
n
1 

 
 

,ON

,OFF
,OFF4 

 
 
 
 

)=

Chapter 5. PARM Options 5.33

5 If input record is shorter than control fields, or longer than output LRECL or l3
value, or both, terminate.

6** If input record is longer than the maximum input LRECL or l2 value, or longer
than the output LRECL, or both, terminate.

7 If input record is shorter than control fields, or longer than input LRECL or l2
value, or longer than output LRECL or l3 value, or any or all of these, termi-
nate.

The second subparameter allows you to specify whether or not SyncSort should verify that
the sequence of segments is correct in each variable-length spanned record during sort and
merge applications. ON is the delivered default and signals that the segment sequence
should be verified. If OFF is selected, all illogical record segments encountered in the input
file will be eliminated. If OFF4 is selected, the processing described for OFF will occur, but
in addition if an illogical segment is found, message WER464I will be produced and a
return code of 4 will be returned if not overridden by a higher return code set for another
reason.

The second subparameter does not apply during copy applications.

Note: If an illegal condition is detected during a validity test and segment sequence check-
ing is on, message WER182A will be issued.

Cannot be used with Tape Sort.

** These values force the use of CMP=CLC for variable-length input.

VLTESTI

VLTESTI specifies to SyncSort how to process variable-length records that do not contain
all specified INCLUDE or OMIT fields. VLTESTI applies to both regular and OUTFIL
INCLUDE/OMIT processing.

The delivered default of 0 instructs SyncSort to terminate if a record does not completely
contain all INCLUDE or OMIT fields. A WER250A critical error message is generated to
indicate this condition.

When VLTESTI=1 is specified, a record that does not completely contain all INCLUDE/
OMIT fields is treated as having failed the comparison. SyncSort will omit the record if
INCLUDE is being used or include the record if OMIT has been specified.

VLTESTI

0

1
2 

 
 
 
 

=

SyncSort for z/OS 1.1 Programmer’s Guide5.34

When VLTESTI=2 is specified, SyncSort will treat comparisons to fields not completely
contained within the record as false and decide a record’s status for inclusion or omission
from fields that are available. If all fields are not present, the record will be processed as
having failed the comparison. SyncSort will omit the record if INCLUDE is being used or
include the record if OMIT has been specified.

Cannot be used with Tape Sort.

VSAMEMT

VSAMEMT specifies the processing of empty VSAM input data sets.

If you specify VSAMEMT=YES, an empty VSAM data set will be processed as a legitimate
data set containing 0 records, and SyncSort will end with a return code of 0.

The delivered default, VSAMEMT=NO, instructs SyncSort to terminate with a WER254A
critical error if an empty VSAM data set is specified for input.

Cannot be used with Tape Sort.

ZDPRINT

ZDPRINT specifies if positive ZD summation results are to be converted to printable num-
bers. ZDPRINT, the default, enables conversion to printable format. NZDPRINT prevents
the conversion.

This option determines whether the sign byte of a positive summarized ZD field will be con-
verted to a printable format. More precisely, the option specifies whether the zone of the
last digit should be changed from a hexadecimal C to a hexadecimal F.

Cannot be used with Tape Sort.

PARMs Accepted But Not Processed by Disk Sorts

The following parameters are accepted but not processed by disk sorts: BALN, OSCL,
POLY, CRCX, and PEER.

VSAMEMT
NO

YES 
 
 

=

ZDPRINT

NZDPRINT 
 
 

Chapter 6. Invoking SyncSort from a Program 6.1

Chapter 6. Invoking SyncSort from a Program

Programming Flexibility vs. Performance

The sort/merge can be invoked by an executing program written in COBOL, PL/1 or assem-
bler language. However, since most invoked sorts utilize inline exits (typically through the
COBOL SORT verb) and so are handicapped by the calling program’s I/O techniques and
memory allocations, sort performance may be degraded by this mode of initiation. When-
ever performance is an important consideration, the sort should be initiated through the
EXEC job control statement. Additional programming flexibility is provided by exits which
can be separately compiled and link-edited. These may be coded in COBOL, FORTRAN,
REXX, and assembler language. Exits may also be written in PL/1 provided that SyncSort
is invoked by a PL/1 program.

DD Statements

The DD statements included in the Table of DD Statements for Invoked Sort/Merge are
those which may be required when invoking the sort.

SyncSort for z/OS 1.1 Programmer’s Guide6.2

Invoking the Sort/Merge from an Assembler Program

Assembler invocation is accomplished by means of the ATTACH, LINK, or XCTL macro
instruction. SyncSort control statements are coded as character-string operands of Assem-
bler DC operations. The calling program passes to the sort/merge a pointer containing the
address of either a 24-bit or an extended, 31-bit, parameter list. This list contains the
addresses of the control statement images to be used by the sort. It may also contain other
information such as the addresses of E15, E32, and E35 exit routines. Note that when
using either the 24-bit or the 31-bit parameter list, the control statement images can be
passed from $ORTPARM.

Macro Instructions

The choice of macro determines the linkage relationship between the calling program and
the sort/merge load module. The linkage relationship established by ATTACH precludes
the use of the Checkpoint-Restart feature; do not code CHKPT/CKPT on the SORT/MERGE
control statement when invoking the sort/merge with the ATTACH macro. With XCTL,
care must be taken to ensure that the storage area for the parameter list and other sort
control information does not reside in the module issuing the macro - XCTL will delete this

DD Statement Usage When not required

//$ORTPARM DD Used to override or add to control
statements or PARMs supplied from
an invoking program.

If no control statements or PARMs
are being overridden or added.

//SORTIN DD SORT input data set. If there is an E32 exit routine or if
running a merge.

//SORTINnn DD
//SORTINn DD

MERGE input data sets. If there is an E32 exit routine of if
running a sort or copy.

//SORTWKxx DD
//SORTWKn DD

Work area definition. Defines the
intermediate storage for a sort.

For incore sort, MERGE, COPY, or
when using DYNALLOC.

//SORTOUT DD

 or
//SORTOFxx DD
or
//SORTOFx DD

Output data set.

Alternate output data set(s).

If there is an E35 exit routine.

When no OUTFIL control statement
is present.

//SORTXSUM DD Output data set for records deleted
by SUM.

When the XSUM parameter of the
SUM control statement is not used.

//SORTLIB DD Contains modules that are required
to perform a Tape Sort.

If Tape Sort is not used.

//SYSOUT DD Message data set. When all messages are routed to con-
sole or are disabled.

Table 28. Table of DD Statements for Invoked Sort/Merge

Chapter 6. Invoking SyncSort from a Program 6.3

module from memory. This problem can be circumvented in two ways. Either (1) place the
parameter list and additional control information in the task that attaches the module
issuing the XCTL; or (2) have the module issuing the XCTL macro issue a GETMAIN
macro instruction first, and place all of the sort/merge control information in the main stor-
age area it obtains. None of the above restrictions apply when using the LINK macro.

The sort/merge DD statements are placed with the JCL of the job step that issues the
macro. The EP parameter is specified as SORT whether SyncSort is to be used for sorting,
merging, or copying. With ATTACH, the ECB or EXTR is usually required.

Coding the Sort/Merge Control Statements

SyncSort control statements are introduced by the invoking programs as character oper-
ands in DC operations. Although it is generally true that all control statements supported
for a JCL-initiated Disk Sort/MAXSORT/Tape Sort are available to invoked applications,
these exceptions should be noted:

• A MODS control statement cannot be used for an E32 exit and is not required for an
E15 or E35 exit. (An E32, E15 and/or E35 exit routine may be coded in line with the
invoking program with their addresses passed to the sort in the parameter list. If the
31-bit parameter list is being used, an E18 and/or E39 exit routine address may also be
passed.)

• The MODS control statement is not supported for an invoked Tape Sort.

• A RECORD control statement is required if an inline E15 exit routine address is
provided. Its LENGTH parameter is required whenever an inline E15 or E35 exit
routine is used. For a full description of record length parameters, see “RECORD
Control Statement” on page 2.125.

• The END control statement is not used.

The actual coding of the control statements is the same, except that:

• No comments or labels are permitted within the DC operand.

• Continuation characters are not called for, since the statements are not in card-image
format.

For the 24-bit parameter list, each control statement DC instruction should be labeled and
followed by a DC C' ' instruction so that the beginning and ending addresses of the control
statement can be referenced in the parameter list.

SyncSort for z/OS 1.1 Programmer’s Guide6.4

Note that the 24-bit invoking parameter list and pointer word, as well as the control state-
ment images, must be below the 16 megabyte line.

As in a JCL-initiated sort/merge, control statements must begin with at least one blank.

For the 31-bit invoking parameter list, the control statement images will be pointed to by
the first word of the parameter list and are organized like the control statement images for
a 24-bit parameter list. Note, however, that only the first DC instruction requires a label
since only the start and end of the list need be referred to. The control statements must be
separated by one or more blanks; that is, each control statement must be followed by a
blank. A blank before the first statement is optional; however, a blank after each statement
is required. Labels, comment statements, and comment fields must not be coded. Each con-
trol statement, except the last, must have at least one parameter.

The 24-Bit Parameter List

The parameter list is used to pass information from the calling program (e.g., the addresses
of the DC control statement images) to the sort/merge. For the parameter list used with
invoked Tape Sorts, see “Chapter 12. Tape Sort”.

In order to pass the parameter list, it is necessary to load the address of a fullword pointer
into Register 1. Code X'80' in the pointer’s first byte and the address of the parameter list’s
byte count in its last three bytes. The byte count must be located in the last 2 bytes of the
first fullword entry in the parameter list. It contains the hexadecimal number of bytes
remaining in the list -- do not include these 2 bytes in the count.

SORTBEG DC C' SORT FIELDS=(31,5,CH,A)'

SORTEND DC C' '

RECDBEG DC C' RECORD TYPE=F,LENGTH=(80,,120)'

RECDEND DC C' '

Figure 175. Sample Control Statement Images for the 24-bit Parameter List

CARDLEN DC 0H

DC Y(CARDEND-CARDBEG)

CARDBEG DC C'SORT FIELDS=(31,5,CH,A)'

DC C' '

DC C'RECORD TYPE=F,LENGTH=(80,,120)'

DC C' '

CARDEND EQU *

Figure 176. Sample Control Statement Images for the 31-bit Parameter List

Chapter 6. Invoking SyncSort from a Program 6.5

The first seven words of the parameter list are required and must be coded in the exact
order shown. Note that whenever the address of an exit routine is supplied in the sixth or
seventh word of the parameter list, that exit may not be specified in the MODS control
statement image. Parameter list entries following the seventh fullword are optional and
can be specified in any order. All values not specified in the chart as EBCDIC-coded are to
be given in hexadecimal notation. For the most part, these are addresses; the ending
address refers to the blank coded immediately after the control statement in question, as
indicated in the Sample Invoked Sort.

SyncSort for z/OS 1.1 Programmer’s Guide6.6

REGISTER 1 POINTER (Fullword)

ADDRESS OF POINTER X'80' Address of Parmlist Byte Count

 Fullword Boundary
↓



↓

Byte 1 Byte 2 Byte 3 Byte 4

Required in
order shown

Number of bytes in following list

X'00' Beginning address of SORT or MERGE statement

Ending address of SORT or MERGE statement

Beginning address of RECORD statement

Ending address of RECORD statement

Address of E15 or E32 exit routine (Zeros if none)

Address of E35 exit routine (Zeros if none)

Optional

X'00' Main storage value

X'01' Reserved main storage value

X'02' Beginning address of MODS statement

Ending address of MODS statement

X'03' Beginning address of message DD name to replace
SYSOUT

X'04' Number of input files (Use for merge with E32 exit only)

X'05' Beginning address of DEBUG statement (Not processed)

Ending address of DEBUG statement

X'06' Beginning address of ALTSEQ statement

Ending address of ALTSEQ statement

X'07' Beginning address of SUM statement

Ending address of SUM statement

X'08' Beginning address of INCLUDE/OMIT statement

Ending address of INCLUDE/OMIT statement

Table 29. (Page 1 of 2) The 24-Bit Parameter List

Chapter 6. Invoking SyncSort from a Program 6.7

Note: Empty boxes indicate the contents are immaterial and not examined.

Optional

X'09' Beginning address of OUTREC statement

Ending address of OUTREC statement

X'0A' Beginning address of INREC statement

Ending address of INREC statement

X'0B' Beginning address of first OUTFIL statement

Ending address of first OUTFIL statement

 .
 .
 .

 .
 .
 .

X'0B' Beginning address of nth OUTFIL statement

Ending address of nth OUTFIL statement

X'F6' Beginning address of translation table

X'F7' User exit address constant

X'FD' IMS flag

X'FE' Pointer to STAE work area (May code zeros if none)

X'FF' Message option (Code in EBCDIC)

Optional

DIAG option (Code in EBCDIC)

BALN, OSCL or POLY (Processed Tape Sort only; code in EBCDIC)

CRCX, PEER or LIST (Not processed)

DD name prefix to replace SORT in JCL (Code in EBCDIC)

Byte 1 Byte 2 Byte 3 Byte 4

Table 29. (Page 2 of 2) The 24-Bit Parameter List

SyncSort for z/OS 1.1 Programmer’s Guide6.8

In this example, only the required seven entries appear in the parameter list. The invoked
sort skips the first 100 records in SORTIN, a data set of 80-byte fixed-length records, and
sorts the remainder in ascending sequence according to the character data in its first 16
bytes.

Additional parameter-list entries may appear in any order after these required seven; the
contents of the first byte of the word signals which optional parameter it is.

For invoked merge applications using the 24-bit parameter list, the number of input files
must be specified on either the X'04' entry or the FILES=n parameter on the MERGE con-
trol statement. However, when using the 31-bit parameter list, the number of input files for
a merge must be specified on the FILES=n parameter.

.

.

.

LA 1,POINTER Load address of pointer to parameter list

ATTACH EP=SORT Initiate SyncSort

BR 14 Return to invoking program

.

.

.

CNOP 2,4 Align to last 2 bytes of a word

BYTECNT DC Y(24) Byte count of parameter list

DC A(SORTBEG) Beginning address of sort statement

DC A(SORTEND) Ending address of sort statement

DC A(RECBEG) Beginning address of record statement

DC A(RECEND) Ending address of record statement

DC 2F'0' No E15 or E32 indicated. No E35.

POINTER DC X'80' Indicates parameter list's pointer

DC AL3(BYTECNT) Address of parameter list

SORTBEG DC C' SORT FIELDS=(1,16,CH,A),SKIPREC=100'

SORTEND DC C' '

RECBEG DC C' RECORD TYPE=F,LENGTH=80'

RECEND DC C' '

Figure 177. Sample Invoked Sort

Optional Parameters

Code in
Byte 1 Contents of Bytes 2 - 4

X'00' Indicates how much main storage SyncSort is to use. Code C'MAX' or a
hexadecimal number of bytes.

Table 30. (Page 1 of 3) Optional Parameters for the 24-Bit Parameter List

Chapter 6. Invoking SyncSort from a Program 6.9

X'01' Indicates how much main storage should be reserved for data handling
by the invoking program during sort execution. SyncSort will use all
available main storage less the hexadecimal number of bytes specified
here. This parameter takes precedence over the X'00' entry discussed
above.

X'02' Gives the beginning address of a MODS control statement image. The
last 3 bytes of the next word must contain the ending address of this
image. All exits may be specified in the MODS statement image except
for E32 (use entry 6 of the parameter list for this exit). An E15/E35 exit
is specified in entries 6-7 or in the MODS image, but not in both.

X'03' Specifies the address of a replacement for the message data set’s DD
name. Eight characters are used for the name; the first character must
be alphabetic.

X'04' Specifies the hexadecimal number of SORTIN files-required whenever
an E32 exit supplies the input to the merge.

X'05' SyncSort accepts the DEBUG control statement parameter but does
not process it. Both this fullword (the beginning address of the DEBUG
statement) and the next (the ending address) are ignored.

X'06' Gives the beginning address of an ALTSEQ control statement image.
The last 3 bytes of the next word must contain the ending address of
this image.

X'07' Gives the beginning address of a SUM control statement image. The
last 3 bytes of the next word must contain the ending address of this
image.

X'08' Gives the beginning address of an INCLUDE/OMIT control statement
image. The last 3 bytes of the next word must contain the ending
address of this image.

X'09' Gives the beginning address of an OUTREC control statement image.
The last 3 bytes of the next word must contain the ending address of
this image.

X'0A' Gives the beginning address of an INREC control statement image.
The last 3 bytes of the next word must contain the ending address of
this image.

X'0B' Gives the beginning address of an OUTFIL control statement. The last
3 bytes of the next word must contain the ending address of this image.
This parameter may be specified more than once to accommodate mul-
tiple output file specifications.

X'F6' Specifies the address of a 256-byte translation table, used to alter the
collating sequence. This parameter takes precedence over the ALTSEQ
control statement image.

Optional Parameters

Code in
Byte 1 Contents of Bytes 2 - 4

Table 30. (Page 2 of 3) Optional Parameters for the 24-Bit Parameter List

SyncSort for z/OS 1.1 Programmer’s Guide6.10

Return Codes

When the sort terminates, returning control to the calling program, it places a return code
in Register 15:

0 indicates normal termination;

16 indicates an unsuccessful sort.

The calling program typically tests the contents of Register 15, branching to the normal-
sort or sort-error end of job routine.

X'F7' Optional user exit address constant which can be used to pass informa-
tion between the invoking program, an E15 exit, and/or an E35 exit.
SyncSort passes these 3 bytes to an E15 exit at offset 5 in an E15
parameter list and to an E35 exit at offset 9 in an E35 parameter list.
Offset 4 in the E15 parameter list and offset 8 in the E35 parameter
list will initially contain an X'00'.

X'FD' Only the first byte is processed, flagging this as an IMS-initiated sort,
processing variable-length records too short to contain all of the sort/
merge control field(s).

X'FE' If non-zero, these 3 bytes contain the address of a 104-byte STAE work
area.

X'FF' Indicates the MSG/FLAG PARM coding. For the MSG option, specify
AB, AC, AP, CB, NO, PC, SC or SP in bytes 3-4. For the FLAG option,
specify NOF, (I) or (U) in bytes 2-4. This parameter is coded in
EBCDIC.

DIAG coded in EBCDIC in the entire word turns on the IOERR=ABE and RC16=ABE
PARM options.

BALN/OSCL/POLY coded in EBCDIC in the entire word indicates the Tape Sort tech-
nique. Ignored by Disk Sort and MAXSORT.

CRCX/PEER/LIST coded in EBCDIC in the entire word is accepted but not processed by
SyncSort.

xxxx with the first character alphabetic or national (do not use DIAG, PEER, CRCX, etc.)
represents the DD name prefix to be used in place of SORT in the JCL.

Optional Parameters

Code in
Byte 1 Contents of Bytes 2 - 4

Table 30. (Page 3 of 3) Optional Parameters for the 24-Bit Parameter List

Chapter 6. Invoking SyncSort from a Program 6.11

Sample Assembler Invocation Using 24-Bit Parameter List

.

.

.
LA 1,PTRWORD Load address of parameter list pointer
LINK EP=SORT Initiate SyncSort
LTR 15,15 Test return code
BNZ SORTERR Branch on error condition
B SORTOK Branch to normal processing
CNOP 0,4 Fullword alignment for pointer

PTRWORD DC X'80' Indicates pointer to parameter list
DC AL3(PARMS) Address of parameter list
DS H Unused first 2 bytes of first parameter

PARMS DC Y(PARMSEND-PARMSBEG) Byte count of remaining parameters
PARMSBEG DC A(SORTBEG) Beginning address of sort statement

DC A(SORTEND) Ending address of sort statement
DC A(RECBEG) Beginning address of record statement
DC A(RECEND) Ending address of record statement
DC F'0' No E15/E32 exit routine
DC F'0' No E35 exit routine
DC X'03' Indicates SYSOUT DD name change
DC AL3(MSGNAME) Address of SYSOUT DD name replacement
DC X'08' Indicates INCLUDE/OMIT parameter
DC AL3(OMITBEG) Beginning address of OMIT statement
DC A(OMITEND) Ending address of OMIT statement
DC X'07' Indicates SUM parameter
DC AL3(SUMBEG) Beginning address of SUM statement
DC A(SUMEND) Ending address of SUM statement
DC X'0B' Indicates OUTFIL parameter
DC AL3(OUTBEG1) Beginning address of first OUTFIL statement
DC A(OUTEND1) Ending address of first OUTFIL statement
DC X'0B' Indicates OUTFIL parameter
DC AL3(OUTBEG2) Beginning address of second OUTFIL statement
DC A(OUTEND2) Ending address of second OUTFIL statement

PARMSEND EQU * End of parameter list
SORTBEG DC C' SORT FIELDS=(1,20,A,35,8,A),' Begin SORT statement image

DC C'FORMAT=CH' Continue SORT statement image
SORTEND DC C' ' End SORT statement image
RECBEG DC C' RECORD TYPE=F' Begin RECORD statement image
RECEND DC C' ' End RECORD statement image
OMITBEG DC C' OMIT COND=(21,8,PD,EQ,0)' Begin OMIT statement image
OMITEND DC C' ' End OMIT statement image
SUMBEG DC C' SUM FIELDS=(21,8,PD)' Begin SUM statement image
SUMEND DC C' ' End SUM statement image
OUTBEG1 DC C' OUTFIL FILES=1,' Begin first OUTFIL statement image

DC C' HEADER1=(50X,''CHANGES'
DC C' TO W-2 FORMS'',//,'
DC C'50X,''JANUARY THROUGH JUNE'
DC C' 1993'')'

OUTEND1 DC C' ' End first OUTFIL statement image

Figure 178. (Page 1 of 2) Sample Assembler Invocation Using 24-Bit Parameter List

SyncSort for z/OS 1.1 Programmer’s Guide6.12

This example sorts fixed-length records by the character data in its first 20 bytes and,
where two records have identical data in this field, by the character data in bytes 35-42;
these fields are collated in ascending order. Note the continuation of the SORT statement
image using consecutive DC instructions. There is no special significance to the break after
the FIELDS parameter -- a control statement image can be divided at any point in this way.
The SORTIN file is edited by the OMIT statement, which will eliminate any records with
zero in bytes 21-28 before sorting begins; these 8 bytes constitute the SUM field. SyncSort
messages are written to the data set specified by the MESSAGES DD name. Two OUTFIL
parameters have been specified, producing multiple output files. The first OUTFIL will
receive data from every sorted input record, producing a company-wide report. The second
OUTFIL will receive selected data only, as defined by the OMIT condition, producing a
departmental report.

The 31-Bit Extended Parameter List

The extended parameter list allows the sort to interface with invoking programs that may
require 31-bit addresses or which may use the 31-bit addressing mode (AMODE).

The extended parameter list is not supported for Tape Sorts. For the parameter list used
with invoked Tape Sorts, see “Chapter 12. Tape Sort”.

Only the first word of the extended parameter list is required. The high order bit must be
zero to identify this as a 31-bit parameter list. The subsequent words of this list are
optional, and because there is no code in the high order byte, as in the 24-bit parameter list,
their positional order must be maintained. Thus, when coding the list be sure to code a full-

OUTBEG2 DC C' OUTFIL FILES=2,' Begin second OUTFIL statement image
DC C'HEADER1=(19X,''EMPLOYEE'','
DC C'10X,''DEPARTMENT CODE'','
DC C'10X,''CHANGE''),'
DC C'OMIT=(29,4,PD,NE,0)' OMIT condition

OUTEND2 DC C' ' End second OUTFIL statement image
MSGNAME DC CL8'MESSAGES' SYSOUT DD name replacement

.

.

.
SORTERR DS 0H Error routine for unsuccessful sort

.

.

.
BR 14 Return

SORTOK DS 0H Normal processing for successful sort
.
.
.
BR 14 Return

Figure 178. (Page 2 of 2) Sample Assembler Invocation Using 24-Bit Parameter List

Chapter 6. Invoking SyncSort from a Program 6.13

word of zeros when omitting one of the optional parameters. The last parameter word spec-
ified in the list must be followed by the 4-byte field X'FFFFFFFF'.

The 31-bit parameter list has the following format:

Note: d indicates a bit is immaterial and not examined.

The following table provides an explanation of the contents of the extended parameter list.

REGISTER 1

d 31-bit address of start of parameter list


↓

 Bit
0 Bits 1 through 31

Required +0 0 Address of halfword containing the length of
control statement images (zeros if none)

Optional

+4 m Address of user E15 or E32 (zeros if none)

+8 m Address of user E35 (zeros if none)

+12 User exits address constant (zeros if none)

+16 d Address of ALTSEQ translation table (zeros
if none)

+20 d Address of STAE area field (zeros if no STAE
routine)

+24 m Address of user exit E18 (zeros if none)

+28 m Address of user exit E39 (zeros if none)

+32 Call identifier (C 'nnnn')

Required +36 X'FFFFFFFF' (required)

Table 31. 31-Bit Extended Parameter List

SyncSort for z/OS 1.1 Programmer’s Guide6.14

Note: An optional parameter becomes required if a subsequent parameter is to appear.

Address Contents

+0 (Required) First word of the parameter list. The high order bit must be zero
to identify this as an extended parameter list. The other 31 bits contain the
address of a halfword which contains the length of the following control
statement images. A value of 0 (zero) represents a null list and control state-
ment images must be supplied through the $ORTPARM DD statement.

+4 (Optional) Address of the E15 or E32 exit routine. This address may point
anywhere in memory. The m bit (bit 0) means: 0=Enter the exit with 24-bit
addressing in effect (AMODE 24); 1=Enter the exit with 31-bit addressing in
effect (AMODE 31).

+8 (Optional) Address of the E35 exit routine. This address may point anywhere
in memory. The m bit (bit 0) means: 0=Enter the exit with 24-bit addressing
in effect (AMODE 24); 1=Enter the exit with 31-bit addressing in effect
(AMODE31).

+12 (Optional) User exit address constant which can be used to pass information
between the invoking program, an E15 exit routine, and/or an E35 exit rou-
tine. SyncSort passes these 4 bytes to an E15 exit routine at offset 4 in an
E15 parameter list and/or to an E35 exit routine at offset 8 in an E35 param-
eter list.

+16 (Optional) Address of ALTSEQ translation table. It can point anywhere in
memory and has a length of 256 bytes.

+20 (Optional) If non-zero, the address of a 112-byte STAE work area.

+24 (Optional) Address of the E18 exit routine. This address may point anywhere
in memory. The m bit (bit 0) means: 0=Enter the exit with 24-bit addressing
in effect (AMODE 24); 1= Enter the exit with 31-bit addressing effect
(AMODE 31).

+28 (Optional) Address of the E39 exit routine. This address may point anywhere
in memory. The m bit (bit 0) means: 0=Enter the exit with 24-bit addressing
in effect (AMODE 24); 1= Enter the exit with 31-bit addressing in effect
(AMODE 31).

+32 (Optional) Four displayable characters that will uniquely identify this partic-
ular call to SyncSort. (When this parameter is provided, SyncSort produces
the WER428I message and includes these four characters in the text. This
message facilitates correlation of message output when SyncSort is called
multiple times by the same program.)

+36 (Required) The last parameter word specified in the list must be
X'FFFFFFFF', which indicates end of list. If optional entries are omitted,
this end-of-list indicator is moved up to the word immediately after the last
specified parameter.

Table 32. Explanation of the Contents of the 31-Bit Extended Parameter List

Chapter 6. Invoking SyncSort from a Program 6.15

Return Codes

When the sort terminates, returning control to the calling program, it places a return code
in Register 15:

0 indicates normal termination;

16 indicates an unsuccessful sort.

The calling program typically tests the contents of Register 15, branching to the normal-
sort or sort-error end of job routine.

The following examples demonstrate how to code an extended parameter list. In this exam-
ple, all exits reside below the 16-megabyte line and should be called with 24-bit AMODE
set, except the E35 exit, which should be called with 31-bit AMODE set.

This next example demonstrates how to code an extended parameter list in which all exits
reside above the 16-megabyte line and should be called with AMODE 31 set.

.

.

.

LA 1,XLIST Point at Parameter List

LINK EP=SORT Initiate SyncSort

.

.

.

XLIST DC A(CNTLCARD) Address of Control Card Images

DC A(E15EXIT) Address of E15 Exit

DC A(E35EXIT+X'80000000') Address of E35 Exit

DC F'0' User Address Constant

DC A(ALTSEQ) Address of ALTSEQ

Translation Table

DC A(STAE) Address of STAE Area Field

DC A(E18EXIT) Address of E18 Exit

DC A(E39EXIT) Address of E39 Exit

DC X'FFFFFFFF' End of Parameter List

CNTLCARD DC 0H

DC Y(CNTLLEN)

CNTLCRD2 DC C' SORT FIELDS=(1,16,CH,A)'

DC C' RECORD TYPE=F,LENGTH=80'

CNTLLEN EQU *-CNTLCRD2

Figure 179. Sample Invoked Sort with Both 24-bit AMODE & 31-bit AMODE Set

SyncSort for z/OS 1.1 Programmer’s Guide6.16

.

.

.

LA 1,XLIST Point at Parameter List

LINK EP=SORT Initiate SyncSort

.

.

.

XLIST DC A(CNTLCARD) Address of Control Card Images

DC A(E15EXIT+X'80000000') Address of E15 Exit

DC A(E35EXIT+X'80000000') Address of E35 Exit

DC F'0' User Address Constant

DC A(ALTSEQ) Address of ALTSEQ Translation Table

DC A(STAE) Address of STAE Area Field

DC A(E18EXIT+X'80000000') Address of E18 Exit

DC A(E39EXIT+X'80000000') Address of E39 Exit

DC X'FFFFFFFF' End of Parameter List

CNTLCARD DC 0H

DC Y(CNTLLEN)

CNTLCRD2 DC C' SORT FIELDS=(1,16,CH,A)'

DC C' RECORD TYPE=F,LENGTH=80'

CNTLLEN EQU *-CNTLCRD2

Figure 180. Sample Invoked Sort with 31-bit AMODE Set

Chapter 6. Invoking SyncSort from a Program 6.17

Sample Assembler Invocation Using 31-Bit Parameter List

This example sorts fixed-length records by the character data in its first 20 bytes and,
where two records have identical data in this field, by the character data in bytes 35-42;
these fields are collated in ascending order. Note the continuation of the SORT statement
image using consecutive DC instructions. There is no special significance to the break after
the FIELDS parameter - a control statement image can be divided at any point in this way.
The SORTIN file is edited by the OMIT statement, which will eliminate any records with

.

.

.
LOAD EP=E15EXIT Load E15 exit
ST R0,E15ADDR Store E15 AMODE+address
LA 1,XLIST Point at parameter list
LINK EP=SORT Initiate SyncSort
LTR R15,R15 Test return code
BNZ SORTERR Branch on error condition
B SORTOK Branch to normal processing
.
.
.

XLIST DC A(CARDLEN) Address of control statements
E15ADDR DC A(0) Address of E15 routine

DC A(0) No E35 routine
DC A(0) User exit address constant
DC X'FFFFFFFF' End of parameter list

CARDLEN DS 0H Control statement area
DC Y(CARDEND-CARDBEG) Length of character string

CARDBEG DC C'SORT FIELDS=(1,20,A,35,8,A),' Begin SORT image
DC C'FORMAT=CH' Continue SORT image
DC C'RECORD TYPE=F,LENGTH=80 ' RECORD image
DC C'OMIT COND=(21,8,PD,EQ,0) ' OMIT image
DC C'SUM FIELDS=(21,8,PD) ' SUM image
DC C'OUTFIL FILES=1,' First OUTFIL image
DC C'HEADER1=(50X,''CHANGES'
DC C' TO W-2 FORMS'',//,'
DC C'50X,''JANUARY THROUGH JUNE'
DC C'1992'')' End first OUTFIL image
DC C'OUTFIL FILES=2,' Second OUTFIL image
DC C'HEADER1=(19x,''EMPLOYEE'','
DC C'10X,''DEPARTMENT CODE'','
DC C'10X,''CHANGE'')'
DC C',OMIT=(29,4,PD,NE,0)' End second OUTFIL image

CARDEND EQU *
SORTERR DS 0H Error routine for unsuccessful sort

.

.

.
BR 14 Return

SORTOK DS 0H Normal processing for successful sort
.
.
.
BR 14 Return

Figure 181. Sample Assembler Invocation Using 31-Bit Parameter List

SyncSort for z/OS 1.1 Programmer’s Guide6.18

zero in bytes 21-28 before sorting begins; these 8 bytes constitute the SUM field. Two
OUTFIL parameters have been specified, producing multiple output files. The first
OUTFIL will receive data from every sorted input record, producing a company-wide
report. The second OUTFIL will receive selected data only, as defined by the OMIT
condition, producing a departmental report.

Chapter 7. The Coding and Use of Exit Programs 7.1

Chapter 7. The Coding and Use of Exit Programs

What Is an Exit?

The term program exits refers to the various points in the sort program’s executable code at
which control can be passed to a user-written routine. Most exit routines take control once
for every record being processed, increasing overall execution time and consuming main
storage that would otherwise be used by the sort. Exits should only be coded for tasks
which cannot be accomplished with SyncSort control statements.

Program exits are not allowed to take their own OS or VS checkpoints.

Program exits are labeled with a 2-digit decimal number, e.g., E35. Except for E61, the first
digit (1, 2 or 3) refers to the sort/merge phase at which the routine will get control; an E61
routine can take control in Phase 1 or Phase 3. The second digit refers to the number of
that exit within the phase. Whenever possible, control passes directly from Phase 1 to
Phase 3, skipping the intermediate merge phase and its associated exits: E21, E25 and
E27.

As indicated in the following chart, the nature of the task determines the program exit to
be used.

SyncSort for z/OS 1.1 Programmer’s Guide7.2

PHASE 1 PHASE 2 PHASE 3

TASK E11 E14 E15 E16 E17 E18 E61 E21 E25 E27 E31 E32 E15
*

E35 E37 E38 E39 E61

Prepare for
other exit
routines

X X X

Create
input
records for
sort (Phase
1) and copy
(Phase 3)

X X

Create
input
records for
merge

X

Add records X X X

Delete
records X X X X X

Change
records X X X X X

Sum
records X X X

Choose
action if
intermedi-
ate storage
insufficient

X

Close other
exit data
sets

X X X

Process
read errors X X

Process
write errors X

Check
labels X X X

Modify a
collating
sequence

X X

 * E15 in Phase 3 for copy only

Table 33. Program Exits and Processing Phases

Chapter 7. The Coding and Use of Exit Programs 7.3

Loading the Exit Routines into Main Storage

The MODS statement identifies the exits to be taken and indicates the name of the sepa-
rately compiled, user-written routine to take control at that point. The same routine (e.g.,
deleting selected records) could take effect in different phases, but cannot be loaded more
than once in a single phase.

Note that merge and copy are executed entirely in Phase 3 and are therefore restricted in
the exits which they can use. A merge application cannot use exits E11 through E27. A copy
application can use exit E15 but not exits E32 or E61.

Assemble each routine as a separate program and place it in a partitioned data set or in the
SYSIN input stream; SyncSort copies the SYSIN routines to the SORTMODS library for
linkage editing. (If a SYSIN module is to be used at more than one exit point, each exit
must have its own compiled copy of the module in SYSIN.) If SyncSort linkage edits an exit
routine, the module must have an entry point whose name is that of the SyncSort exit; for
example, in order to function as an E35 routine, MYEXIT must include an entry point or
CSECT labeled E35.

If a routine has already been link-edited, this can be indicated in the MODS statement.
When all the exits in a particular phase need to communicate with one another, the MODS
statement can be used to instruct the sort to link-edit them together.

Exit Conventions

The following conventions must be observed when using exits.

• Exits provided via the MODS control statement will be entered in the addressing mode
indicated by the linkage editor module attributes. Any exit linkage-edited by SyncSort
will be entered in 24-bit addressing mode, except a separately linkage-edited exit E11,
E21, or E31, which will be entered in the mode set by the compiler or assembler when
the module was compiled or assembled.

• Exit addresses provided via the 24-bit invoking parameter list format will be entered in
the 24-bit address mode.

• Exit addresses provided via the 31-bit invoking parameter list will be entered in the
address mode indicated in the exit address field. That is, if bit 0 of the exit address is 0,
the exit is entered in 24-bit mode; if bit 0 of the exit address is 1, the exit is entered in
31-bit mode.

• User exits may return to the sort in either 24- or 31-bit address mode.

• If an exit was entered in 24-bit address mode, the addresses passed to it will be 24-bit
values that have a clean high-order byte containing binary zeros (X'00'). Addresses
returned to the sort must also be 24-bit values with a high-order byte containing X'00'
even though the exit could return to the sort in the 31-bit mode.

SyncSort for z/OS 1.1 Programmer’s Guide7.4

• An exit in the 31-bit mode may return an address containing a full 31-bit value. Users
intending to pass only a 24-bit address must therefore make sure that the address
returned has X'00' in the high-order byte. Failure to do so can have unpredictable
results. Note that certain addresses within parameter lists are still explicitly restricted
to 24-bit values. For example, E18 exit return parameter lists must consist of fullword
entries that are 1-byte codes and 3-byte addresses.

Register Conventions

The standard operating system conventions apply to register usage. Exit routines must
save and restore Registers 0 and 2-14. The sort/merge places these contents in Register 1
and 13-15 for use by the exit routine when it takes control.

Register 1 The address of a SyncSort parameter list.

Register 13 The address of a 19-word area. The first 18 words can be used to
save registers, the 19th word to pass information between Assem-
bler exits.

Register 14 SyncSort’s return address, in the low-order address bits of the regis-
ter. The high-order bit(s) may have undefined contents.

Register 15 The address of the entry point of the exit routine, in the low-order
address bits of the register. The high-order bit(s) may have unde-
fined contents.

The Exit Communication Area

When an exit routine is given control, Register 13 points to a 19-word area, the first 18 of
which can be used to save registers. The 19th word of this area can be used to pass informa-
tion between Assembler exits. For example, when the COMMAREA PARM is used, the 19th
word can be set to point to the exit communication area COMMAREA provides. The first 2
bytes of this communication area give the length of the area. The user is free to change the
entire communication area, including the initial halfword.

Chapter 7. The Coding and Use of Exit Programs 7.5

For COBOL or C exits, the address and length of this area are passed in the COBOL or C
program’s parameter list. In this case, there is no halfword preface - the address points
directly to the communication area.

Exits E11, E21, and E31 - Preparing for Other Exit Routines

These exits are unusual in that they are entered only once, at the beginning of their associ-
ated phase. Because of this, they may be separately link-edited and are efficiently used to
prepare for other exit routines (e.g., to open files or initialize variables). There are no
parameter lists or return codes for these exits.

Exit E32 - Invoked Merge Only: Creating Input Records

This exit can only be used for an invoked merge and must be coded in line with the invok-
ing program. It therefore never appears on the MODS statement. When an E32 routine is
used, all SORTINnn DD statements will be ignored by the merge; the exit must supply all
the input records, and the number of input files to be created must be supplied by either
the invoking program’s parameter list or the FILES=n parameter on the MERGE control
statement.

Whenever the merge requires a new input record, SyncSort calls the E32 routine, passing it
the address of a two-word parameter list in Register 1.

REGISTER 13
↓

* Address of communication area
↓

18-word save area *





↓

00 04 LIST

Figure 182. User Communication Area for Assembler Exit Using COMMAREA PARM

PARAMETER LIST

Word 1: Number of next input file
Word 2: Address of the next input record

Figure 183. Parameter List for E32

SyncSort for z/OS 1.1 Programmer’s Guide7.6

The first word of the parameter list contains a hexadecimal representation of the input file
SyncSort is currently processing. This is initialized as 0 for the first file and incremented by
4 every time a new SORTINnn file is to be accessed. When the E32 encounters end-of-file
on a SORTINnn file it should return RC=8 to SyncSort, which will no longer request input
from that file (i.e., that input file number).

The E32 routine must respond to three different cases: (a) SyncSort already has all the
input records; (b) the previous record finished an input file; and (c) there is at least one
more record to be added to the file with this file number. Only in the last case will the E32
supply a record address to the merge, placing it in the second word of the parameter list.
The E32 also places the appropriate return code in Register 15.

Return Codes

8 End of file. This tells SyncSort that a particular file has been completed and
to make no further request for records from that file.

12 Insert this record. This tells SyncSort to accept a new record from the input
file requested.

16 End of merge. This terminates SyncSort with a critical error.

Chapter 7. The Coding and Use of Exit Programs 7.7

Exits E14, E15, E25, and E35 - Deleting, Creating, Changing Records

Exit E14 - Deleting, Summarizing, Changing Records

Exit E14 may be used to change the contents of data fields, or to delete or summarize
records during Phase 1. Unlike an E15 exit routine, it cannot be used to add records. An
E14 exit program requires:

• at least one SORTWKxx data set, assigned to disk;

• fixed-length input records.

This exit is given control whenever SyncSort is about to add a record to an output
sequence. Since it does not take control before the first record of that sequence, the routine
always has access to a pair of sequenced records (e.g., for summarization purposes). Sync-
Sort passes the exit program a two-word parameter list by loading its address into Register
1. The exit must not destroy the contents of this parameter list. The first word, which is on
a fullword boundary, contains the address of the record about to be placed in an output
sequence; the second word contains the address of the record that has just been put into the
output buffer.

There are two constraints on the type of processing the exit may accord this record pair:

• Sort control fields should not be changed since this may cause an out-of-sequence
condition.

• If a record is to be changed, it should first be moved to a work area.

After record processing is completed, the exit routine must place the appropriate return
code in Register 15. The exit must save and restore all registers except those used in link-
ing to the sort/merge.

Return Codes

0 Accept this record. This instructs SyncSort to accept the record whose
address is in the first word of the parameter list and place it in the output

PARAMETER LIST

Word 1: Address of record leaving Phase 1
Word 2: Address of the latest record in output buffer

Figure 184. Parameter List for E14

SyncSort for z/OS 1.1 Programmer’s Guide7.8

buffer. The exit must also load the (work area) address of this record into
Register 1 before returning control to the sort.

4 Delete this record. This instructs SyncSort to delete the record whose
address is in the first word of the parameter list. Do not place the address of
this record in Register 1. This return code might be employed, for example,
after using this record to update the previous (output) record. Assuming
this does not complete an output sequence for Phase 1, the next execution of
the E14 will find the same address in the second word of the parameter list.

Exit E15 - Creating, Revising or Analyzing the Input File

Where an input data set already exists, this exit is used to add, delete and/or change input
records. This exit is also used to analyze SORTIN via HISTOGRM (a HISTE15 application)
or to create the entire input file. It can be used when sorting or copying records.

When used in conjunction with an input file, this exit is given control every time a record is
brought into Phase 1 of a sort or Phase 3 of a copy. In passing control to the E15 exit rou-
tine, SyncSort places the address of a parameter list in Register 1. This parameter list is
two words long, aligned on a fullword boundary. In the first word, the first byte contains
X'00'; the last 3 bytes contain the address of the record just brought into Phase 1. The first
word contains a zero address when there is no such record (i.e., when SORTIN end-of-file is
reached or when the input data set is empty).

Word 2 contains the user address constant. On the initial call to the E15 exit, it will contain
the value specified in the invoking parameter list. If this value was specified in a 24-bit
invoking parameter list, it will have the high-order byte set to X'00'. If the value was omit-
ted or SyncSort was JCL invoked, Word 2 will contain binary zeros. This word may be
changed by the E15 exit whenever it is entered. If used in a sort application, the value will
be returned on the subsequent call to the E15. If used in a copy application and an E35 is
present, the value on the subsequent call to the E15 will reflect any modification made to
the User Address Constant by the E35. In a sort application, the initial entry to the E35
will contain the value last returned from the E15.

E15 record processing has these two constraints:

• If a record is to be changed, it should first be moved to a work area.

PARAMETER LIST

Word 1: Address of the new record
Word 2: User address constant

Figure 185. Parameter List for E15

Chapter 7. The Coding and Use of Exit Programs 7.9

• When the input data set consists of variable-length records, the first 4 bytes must
contain the Record Descriptor Word, giving the length of the record.

When the program has finished processing the record, it must place the appropriate return
code in Register 15.

Coding the E15 Exit Routine for an Invoked Sort or Copy

When SyncSort is initiated from an ATTACH, LINK or XCTL macro, there are two ways to
include an E15 exit routine: (1) code the E15 exit routine in line with the invoking program
and specify the address of its entry point in the appropriate entry of the parameter list; or
(2) define the separately compiled routine in the MODS control statement. When the exit
routine is coded in line with the calling program, it must supply the entire input data set;
SyncSort will ignore a SORTIN DD statement, if present. Data set creation is done by sup-
plying the sort with one record at a time, placing its address in Register 1 and a return code
of 12 in Register 15. After the last record has been submitted, the exit passes a return code
of 8.

Return Codes

0 Accept this record. This instructs SyncSort to accept the record the exit has
just examined. Place the (work area) address of this record in Register 1.
This return code is used when selectively editing records from an input file;
it passes the (possibly altered) record back to the sort. The RECORD state-
ment is required if the exit routine changes the maximum record length;
code the old maximum length as l1, the new maximum as l2.

4 Delete this record. SyncSort will delete the record just examined. There is
no need to load the address of this record into Register 1.

8 Do not return to this exit. This instructs SyncSort to close the exit for the
remainder of the sort application. This return code might be used at
SORTIN end-of-file (signalled by a zero address in the parameter list) to
indicate that extra records will not be added at this point. There is no need
to load a record address into Register 1 when passing a return code of 8. If
SORTIN is present, the current input record and all subsequent records
will be processed by SyncSort.

12 Insert a record. This tells SyncSort that the exit routine has located a
record which should be added to the input data set before the record whose
address appears in the parameter list. Load the address of the new record
into Register 1. When SyncSort returns control to the E15, the parameter
list will be unchanged. The exit routine can then add another record or pro-
cess the current one.

This return code can be used to add records to the end of the input data set
or to create the entire input data set. SyncSort returns to the exit routine,

SyncSort for z/OS 1.1 Programmer’s Guide7.10

adding records without changing the parameter list (in these cases, a zero
address) until a different return code (i.e., RC=8) is passed. When the input
data set is created in this way, the RECORD statement is required and
must specify both TYPE and LENGTH.

16 Terminate SyncSort. This tells SyncSort to terminate and return to the call-
ing program or the supervisor. SyncSort uses a completion code of 16 to
indicate that the sort was unsuccessful.

Coding a COBOL E15 Exit Routine

A COBOL E15 exit program can be indicated through the EXEC statement’s PARM option
(PARM='E15=COB'), the MODS control statement or the $ORTPARM DD statement. An
E15 exit cannot be coded in COBOL when running Tape Sort.

Like any other E15 exit routine, the COBOL E15 exit routine is called each time a record is
brought into Phase 1 of a sort or Phase 3 of a copy. Communication between SyncSort and
the COBOL exit takes place in the LINKAGE SECTION of the COBOL program. For exam-
ple, records are passed to the COBOL routine in the second definition (RECORD-UP) area
of the LINKAGE SECTION.

If the COBOL exit routine uses any verb (EXHIBIT, DISPLAY, TRACE) which results in
output to the SYSOUT DD statement, there is a potential conflict with SyncSort’s use of
this DD statement. It is therefore recommended that the user separate the output by using
either SyncSort’s MSGDD PARM option or the COBOL compiler’s SYSx parm.

If the COBOL E15 exit routine is written in OS/VS COBOL and uses OS/VS COBOL librar-
ies or no libraries, specify the COBEXIT=COB1 PARM option. If the COBOL E15 exit rou-
tine is written in OS/VS COBOL or in VS COBOL II or COBOL/370 and uses VS COBOL II
or COBOL/370 libraries, specify the COBEXIT=COB2 PARM option. VS COBOL II and
COBOL/370 run-time library modules typically require more main storage than OS/VS
COBOL library modules. The amount of additional storage depends on VS COBOL II of
COBOL/370 installation options. When VS COBOL II or COBOL/370 run-time library mod-
ules are used, it may be necessary to account for this additional storage by adjusting the b
value of the Exit-Name parameter on the MODS statement.

The LINKAGE SECTION

The LINKAGE SECTION examples that follow show the parameters required for passing
fixed-length and variable-length records to the sort. The data-names and conditional
names used in the examples are arbitrary but each definition is required. The complete
programs from which the examples are taken follow the discussion of the exit.

Chapter 7. The Coding and Use of Exit Programs 7.11

Example 1: Fixed-Length Records

• For the first definition (EXIT-STATUS) specify PIC 9(8) COMPUTATIONAL. (This
area defines exit status codes.) When using 88 levels to define the exit status codes,
specify values 00, 04, and 08.

• For the second definition (RECORD-UP) define the SORTIN record.

• For the third definition (WORK) define the record that will be passed to SyncSort. (This
is the "work area.")

• For the fourth through the eighth definitions define dummy areas.

• For the ninth definition (COMM-LEN) specify PIC 9(4) COMPUTATIONAL. This area
defines the communication area length.

• For the tenth definition (COMMUNICATION-AREA) code an OCCURS clause
DEPENDING ON data-name PIC X.

LINKAGE SECTION.

01 EXIT-STATUS PIC 9 (8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

07 FILLER PIC 9(6).

07 R-SEQ2 PIC 9(2).

07 FILLER PIC X(92).

01 WORK PIC X(100).

01 DUMMY1 PIC X.

01 DUMMY2 PIC X.

01 DUMMY3 PIC X.

01 DUMMY4 PIC X.

01 DUMMY5 PIC X.

01 COMM-LEN PIC 9(4) COMPUTATIONAL.

01 COMMUNICATION-AREA.

05 COMM-AREA OCCURS 1 TO 256 TIMES

DEPENDING ON COMM-LEN PIC X.

SyncSort for z/OS 1.1 Programmer’s Guide7.12

Example 2: Variable-Length Records

• For the first definition (EXIT-STATUS) specify PIC 9(8) COMPUTATIONAL. (This
area defines exit status codes.)

• For the second definition (RECORD-UP) code an OCCURS clause with the
DEPENDING ON data-name option specifying (1) The minimum and maximum
number of bytes the variable SORTIN records contain (do not include 4 bytes for the
RDW) and (2) DEPENDING ON data-name PIC X. Data-name is defined in the sixth
definition in the LINKAGE SECTION.

• For the third definition (WORK) code an OCCURS clause with the DEPENDING ON
data-name option specifying (1) The minimum and maximum number of bytes for
variable-length records to be passed to SyncSort (do not include 4 bytes for the RDW)
and (2) DEPENDING ON data-name PIC X. Data-name is defined as the seventh
definition in the LINKAGE SECTION.

• For the fourth definition specify a dummy level 01 data-name of any number of bytes.
(IN-BUF is the data-name used in this example.) Note that the level 01 data-name,
used here as a dummy address, has no effect on the E15 routine for variable-length
records. The address is usually used as a buffer pointer in the COBOL E35 exit routine.
By using it in the E15 LINKAGE SECTION, SyncSort is able to use the same
parameter list for both COBOL exits E15 and E35.

LINKAGE SECTION.

01 EXIT-STATUS PIC 9 (8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

05 RU OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-RU PIC X.

01 WORK.

05 WK OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-WK PIC X.

01 IN-BUF PIC X(100).

01 DUMMY PIC X(4).

01 LEN-RU PIC 9(8) COMPUTATIONAL.

01 LEN-WK PIC 9(8) COMPUTATIONAL.

01 LEN-IB PIC 9(8) COMPUTATIONAL.

01 COMM-LEN PIC 9(4) COMPUTATIONAL.

01 COMMUNICATION-AREA.

05 COMM-AREA OCCURS 1 TO 256 TIMES

DEPENDING ON COMM-LEN PIC X.

Chapter 7. The Coding and Use of Exit Programs 7.13

• For the fifth definition specify a dummy area.

• For the sixth definition (LEN-RU) specify data-name PIC 9(8) COMPUTATIONAL.
This is where SyncSort passes the length of the SORTIN record to the COBOL exit.

• For the seventh definition (LEN-WK) specify data-name PIC 9(8) COMPUTATIONAL.
This is where the E15 routine passes the length of the work area record to SyncSort.

• For the eighth definition define a dummy area.

• For the ninth definition (COMM-LEN) specify PIC 9(4) COMPUTATIONAL. This area
defines the communication area length.

• For the tenth definition (COMMUNICATION-AREA) code an OCCURS clause
DEPENDING ON data-name PIC X.

The IDENTIFICATION, ENVIRONMENT, and DATA Divisions

As always, the COBOL program must contain the entries required by the compiler for these
program divisions. Code the optional entries in these divisions according to the require-
ments of the application.

The WORKING-STORAGE SECTION

If the exit routine inserts records into the final merge and replaces records passed from
SyncSort, the insertion record and the replacement record may be defined in this section.
These records will be moved to the WORK area described in the LINKAGE SECTION, so be
sure that the PICTURE clause or the OCCURS clause in the WORK area is correct for
these records.

This section may also define the return codes as 77-level data items. Alternatively, these
codes can be specified as literals in the MOVE instruction. (MOVE literal to RETURN-
CODE.) Note that RETURN-CODE is the name of a predefined storage area in COBOL
used to pass return codes to the sort; RETURN-CODE should not be defined in the exit
routine.

The PROCEDURE DIVISION

Specify the USING option on the PROCEDURE DIVISION header. Each identifier
specified after USING must be the same as those described in the 01-level of the LINKAGE
SECTION. Taking for example the identifiers defined in the fixed-length record LINKAGE
SECTION shown here, they would appear as: PROCEDURE DIVISION USING EXIT-
STATUS, RECORD-UP, WORK, DUMMY1, DUMMY2, DUMMY3, DUMMY4, DUMMY5,
COMM-LEN, COMMUNICATION-AREA.

SyncSort for z/OS 1.1 Programmer’s Guide7.14

The GOBACK statement is used to return control to SyncSort. Do not use the EXIT state-
ment as it will cause unpredictable results. Be sure that SyncSort receives a valid return
code before the GOBACK statement is executed.

EXIT-STATUS Codes (Fixed and Variable-Length Records)

00 First record. SyncSort uses this Code to indicate the first call to the COBOL
exit and that the first record from SORTIN is in the RECORD-UP area.

04 Most records. This is used for all calls except the first one when there are
records in the RECORD-UP area. After Code 00 has been issued, Code 04 is
passed to the exit until there is no record for the sort to pass to the
RECORD-UP area.

08 All records passed. This indicates that the last SORTIN record has already
been processed by the exit. Do not attempt to reference the record again. No
more records will be passed to the exit routine. Note that if the SORTIN
data set is empty, 08 will be passed every time including the first time.

RETURN-CODE Codes (Fixed and Variable-Length Records)

0 Accept this record. This instructs SyncSort to accept the (unaltered) record
in the RECORD-UP area.

4 Delete this record. SyncSort will delete the current record in the RECORD-
UP area.

8 Do not return to this exit. This instructs SyncSort to close the exit for the
remainder of the sort application. This return code might be used at
SORTIN end-of-file (Exit Status Code 08) to indicate that extra records will
not be added at this point. If SORTIN is present, the current input record
and all subsequent records will be processed by SyncSort.

12 Insert a record. This instructs SyncSort to add the record in the WORK area
to the input data set just ahead of the current record in the RECORD-UP
area. When SyncSort returns control to the E15, the same record will be in
the RECORD-UP area. The exit routine can then add another record from
the WORK area or process the current record in RECORD-UP.

16 Terminate SyncSort. SyncSort will end its program and return to the call-
ing program or the Supervisor. SyncSort will issue a completion code of 16
to indicate that the sort was unsuccessful.

20 Replace current record. SyncSort will replace the current record in the
RECORD-UP area with the record in the WORK area. Be sure that the
record in the WORK area is valid before passing it to SyncSort.

Chapter 7. The Coding and Use of Exit Programs 7.15

To Change a Record

In order to change the record in the RECORD-UP area, first move it to the WORK area. All
changes are made to the WORK area copy, which replaces the record in RECORD-UP when
20 is moved to RETURN-CODE.

Sample COBOL E15, Fixed-Length Records

IDENTIFICATION DIVISION.

PROGRAM-ID. E15FL13C.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.

OBJECT-COMPUTER. IBM-370.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

I-O-CONTROL.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

01 EVEN-FLAG PIC 9(2) VALUE ZERO.

01 USER-RETURN-CODE PIC 9(8) COMPUTATIONAL.

88 ACCEPT-REC VALUE 0.

88 DELETE-REC VALUE 4.

88 END-EXIT VALUE 8.

88 INSERT-REC VALUE 12.

88 END-SORT VALUE 16.

88 REPL-REC VALUE 20.

01 CHANGE-REC.

05 C-REC PIC X(6) VALUE 'CHANGE'.

05 C-INCR PIC 9(4) VALUE ZERO.

05 C-BLANK PIC X(90) VALUE ZERO.

01 INSRT-REC.

05 I-REC PIC X(6) VALUE 'INSERT'.

05 I-INCR PIC 9(4) VALUE ZERO.

05 I-BLANK PIC X(90) VALUE SPACES.

01 TOTAL.

05 BLANKS PIC X(10) VALUE ' E15'.

05 TITL PIC X(25) VALUE 'TOTAL RECORDS OUT'.

05 COUNTER PIC 9(8) VALUE 0.

SyncSort for z/OS 1.1 Programmer’s Guide7.16

Sample COBOL E15, Fixed-Length Records (Continued)

LINKAGE SECTION.

01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

07 FILLER PIC 9(6).

07 R-SEQ1 PIC 9(2).

07 FILLER PIC X(92).

01 WORK PIC X(100).

PROCEDURE DIVISION USING EXIT-STATUS, RECORD-UP,WORK.

IF COUNTER GREATER THAN 100

MOVE 0 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF LAST-TIME GO TO RETURN-TO-SORT.

IF R-SEQ1 EQUAL 0

MOVE 4 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF R-SEQ1 EQUAL 5

MOVE 12 TO RETURN-CODE

MOVE INSRT-REC TO WORK

GO TO RETURN-TO-SORT.

IF R-SEQ1 EQUAL 6

MOVE 20 TO RETURN-CODE

MOVE CHANGE-REC TO WORK

GO TO RETURN-TO-SORT.

MOVE 0 TO RETURN-CODE.

RETURN-TO-SORT.

ADD 1 TO COUNTER.

IF LAST-TIME MOVE 8 TO RETURN-CODE

DISPLAY TOTAL.

GOBACK.

Chapter 7. The Coding and Use of Exit Programs 7.17

Sample COBOL E15, Variable-Length Records

IDENTIFICATION DIVISION.

PROGRAM-ID. E15VL19C.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-390.

OBJECT-COMPUTER. IBM-390.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

I-O-CONTROL.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

01 EVEN-FLAG PIC 9(2) VALUE ZERO.

01 USER-RETURN-CODE PIC 9(8) COMPUTATIONAL.

88 ACCEPT-REC VALUE 0.

88 DELETE-REC VALUE 4.

88 END-EXIT VALUE 8.

88 INSERT-REC VALUE 12.

88 END-SORT VALUE 16.

88 REPL-REC VALUE 20.

01 CHANGE-REC.

05 C-REC PIC X(6) VALUE 'CHANGE'.

05 C-INCR PIC 9(4) VALUE ZERO.

05 C-BLANK PIC X(90) VALUE SPACES.

01 INSRT-REC.

05 I-REC PIC X(6) VALUE 'INSERT'.

05 I-INCR PIC 9(4) VALUE ZERO.

05 I-BLANK PIC X(90) VALUE SPACES.

01 TOTAL.

05 BLANKS PIC X(10) VALUE ' E15'.

SyncSort for z/OS 1.1 Programmer’s Guide7.18

Sample COBOL E15, Variable-Length Records (Continued)

05 TITL PIC X(25) VALUE 'TOTAL RECORDS OUT'.

05 COUNTER PIC 9(8) VALUE 0.

LINKAGE SECTION.

01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

05 RU OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-RU PIC X.

01 WORK.

05 WK OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-WK PIC X.

01 IN-BUF PIC X(100).

01 DUMMY PIC 9(8) COMPUTATIONAL.

01 LEN-RU PIC 9(8) COMP.

01 LEN-WK PIC 9(8) COMP.

PROCEDURE DIVISION USING EXIT-STATUS, RECORD-UP, WORK,

IN-BUF, DUMMY, LEN-RU, LEN-WK.

IF NOT FIRST-TIME

ADD 1 TO COUNTER

MOVE 0 TO RETURN-CODE.

IF COUNTER LESS THAN 50

MOVE 54 TO LEN-WK

ADD 1 TO I-INCR

MOVE INSRT-REC TO WORK

MOVE 12 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 75

MOVE 44 TO LEN-WK

ADD 1 TO C-INCR

MOVE CHANGE-REC TO WORK

Chapter 7. The Coding and Use of Exit Programs 7.19

Sample COBOL E15, Variable-Length Records (Continued)

Coding a C E15 Exit Routine

A C E15 exit program is indicated by the MODS control statement. An E15 exit cannot be
coded in C when running Tape Sort.

Like any other E15 exit routine, the C E15 exit routine is called each time a record is
brought into Phase 1 of a sort or Phase 3 of a copy. SyncSort and the C exit communicate
through arguments defined in the function header. For example, records are passed to the C
routine by the address presented in the second argument in the function parameter list. No
storage is reserved in the exit program because the records exist elsewhere.

The C E15 exit routine can be written using either the C370 V2R1 compiler with the V2R2
C370 Library, the SAA AD/Cycle C370 V1R2 Compiler and Library or using the C/C++ for
MVS/ESA V3R1.1 or higher Compiler and Library. When using the LE/370 run time library
modules, it may be necessary to account for this additional storage by adjusting the b value
of the Exit-Name parameter on the MODS statement.

Exit Communication

The parameter list structure required for passing fixed-length and variable-length records
between the sort and the exit is detailed in the following section. The parameter names
used in the examples are arbitrary but each definition is required. Complete sample pro-
grams showing the use of the argument lists are presented following the discussion of the
exit interface.

MOVE 20 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 100

MOVE 80 TO LEN-WK

ADD 1 TO I-INCR

MOVE 12 TO RETURN-CODE

MOVE INSRT-REC TO WORK.

GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 200

MOVE 4 TO RETURN-CODE

GO TO RETURN-TO-SORT.

RETURN-TO-SORT.

IF LAST-TIME MOVE 8 TO RETURN-CODE

DISPLAY TOTAL.

GOBACK.

SyncSort for z/OS 1.1 Programmer’s Guide7.20

Fixed-Length Records - Function Definition

The following describes the parameters used in the preceding definition.

exit_status This parameter points to a variable containing one of the follow-
ing exit status codes:

00 First record. SyncSort uses this code to indicate the first
call to the C exit and that the first record from SORTIN
is in the record_up area. If the SORTIN is empty or does
not exist, a 08 status will be passed the first time.

04 Most records. This is used for all calls except the first
one when there are records in the record_up area. After
Code 00 has been issued, Code 04 is passed to the exit
until there is no record for the sort to pass to the
record_up area.

08 All records passed. This indicates that the last SORTIN
record has already been processed by the exit. Do not
attempt to reference the record again. No more records
will be passed to the exit routine. Note that if the
SORTIN data set is empty or does not exist, 08 will be
passed every time including the first time.

record_up The record_up parameter contains a pointer to the record being
passed to the E15 from the SORTIN. The struct_ru data type
represents a structure that describes the fields within the
SORTIN record.

work The work parameter contains a pointer to a work area that is to
be used to hold an inserted or replaced record returned from the
E15. The struct_ins_rep data type represents a structure that
describes the fields within the inserted or replaced record.

dummy1 - dummy5 These parameters define unused place holders. They are used
with variable-length E15 and E35 communication. Their defini-
tion here allows a common parameter list for fixed-length and
variable-length C E15 and E35 exits.

int E15exit (int* exit_status,

struct_ru* record_up,

struct_ins_rep* work,

int* dummy1, int* dummy2, int* dummy3,

int* dummy4, int* dummy5,

int* comm_len,

struct_ca* communication_area)

Chapter 7. The Coding and Use of Exit Programs 7.21

comm_len This parameter points to a variable that defines the communi-
cation area length.

communication_area The communication_area parameter contains a pointer to the
communication area. The struct_ca data type represents a
structure that describes the fields in the communication area.

Variable-Length Records - Function Definition

The following describes the parameters used in the preceding definition.

exit_status This parameter points to a variable containing exit status
codes. See the exit_status definition for a fixed-length C E15
exit for the code definitions.

record_up The record_up parameter contains a "universal" pointer to the
record being passed to the E15 from the SORTIN. The void*
pointer can be cast to point an appropriate structure to describe
the record passed to the exit. This allows different record struc-
tures, as is common with variable-length records, to share a sin-
gle pointer definition.

work The work parameter contains a "universal" pointer to a work
area that is to be used to hold an inserted or replaced record
returned from the E15. The void* pointer can be cast to point an
appropriate structure to describe the work record.

dummy1 - dummy3 These parameters define unused place holders. They are used
with C E35 communication. Their definition here allows a com-
mon parameter list for C E15 and E35 exits.

len_ru This parameter points to a variable that defines the length of
the SORTIN record passed to the E15. This is the length of the
record referred to in the record_up parameter.

len_wk This parameter points to a variable that defines the length of
the record to be inserted or used as a replacement for the

int E15exit (int* exit_status,

void* record_up,

void* work,

int* dummy1, int* dummy2,

int* len_ru,

int* len_wk,

int* dummy3,

int* comm_len,

struct_ca* communication_area)

SyncSort for z/OS 1.1 Programmer’s Guide7.22

record_up record. This is the length of the record referred to in
the work parameter. This field must be set by the exit when an
insert or replace operation is performed.

comm_len This parameter points to a variable that defines the communi-
cation area length.

communication_area The communication_area parameter contains a pointer to the
communication area. The struct_ca data type represents a
structure that describes the fields in the communication area.

RETURN-CODE Codes (Fixed and Variable-Length Records)

The RETURN statement is used to return control to SyncSort. It must indicate one of the
following return values to indicate the action to be taken by SyncSort.

0 Accept this record. This instructs SyncSort to accept the (unaltered) record
in the record_up area.

4 Delete this record. SyncSort will delete the current record in the record_up
area.

8 Do not return to this exit. This instructs SyncSort to close the exit for the
remainder of the sort application. This return code might be used at
SORTIN end-of-file (exit_status code 08) to indicate that extra records will
not be added at this point. If SORTIN is present, the current input record
and all subsequent records will be processed by SyncSort.

12 Insert a record. This instructs SyncSort to add the record in the work area
to the input data set just ahead of the current record in the record_up area.
When SyncSort returns control to the E15, the same record will be in the
record_up area. The exit routine can then add another record from the work
area or process the current record in record_up. When inserting a variable-
length record, insure that its length is indicated in the len_wk parameter.

16 Terminate SyncSort. SyncSort will end its program and return to the call-
ing program or the Supervisor. SyncSort will issue a completion code of 16
to indicate that the sort was unsuccessful.

20 Replace current record. SyncSort will replace the current record in the
record_up area with the record in the work area. Be sure that the record in
the work area is valid before passing it to SyncSort. When replacing a
variable-length record, insure that its length is indicated in the len_wk
parameter.

Chapter 7. The Coding and Use of Exit Programs 7.23

How to Change a Record

To change the record in the record_up area, first move it to the work area. All changes are
made to the work area copy, which replaces the record in record_up when the return value
from the exit is 20.

Sample C E15, Fixed-Length Records

#define FIRST_TIME 0

#define MOST_TIME 4

#define LAST_TIME 8

#define ACCEPT_REC 0

#define DELETE_REC 4

#define END_EXIT 8

#define INSERT_REC 12

#define END_SORT 16

#define REPL_REC 20

typedef _Packed struct record {

char name[6];

char code[4];

int serial_no;

} t_ru;

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int SMPE15FB(int* exit_status,t_ru* record_up,t_ru* work,int* dummy1,

int* dummy2,int* dummy3,int* dummy4,int* dummy5,int* comm_len,

void* communication_area)

{

static counter=0;

int icode,return_code;

char * text1="CHANGE";

char * text2="INSERT";

if (counter > 10) {return_code=ACCEPT_REC;

goto return_to_sort;}

if (*exit_status == LAST_TIME) {return_code=END_EXIT;

goto return_to_sort;}

SyncSort for z/OS 1.1 Programmer’s Guide7.24

Sample C E15, Fixed-Length Records (Continued)

sscanf(record_up->code,"%4d",&icode);

if (icode==0) { return_code=DELETE_REC;

goto return_to_sort;}

if (icode==5) {

strncpy(work->name,text2,6);

sprintf(work->code,"%4d",icode+counter+8);

work->serial_no=300;

return_code=INSERT_REC;

goto return_to_sort;}

if (icode==6) {

strncpy(work->name,text1,6);

sprintf(work->code,"%4d",icode+1);

work->serial_no=record_up->serial_no+200;

return_code=REPL_REC;

goto return_to_sort;}

return_code=ACCEPT_REC;

return_to_sort:

counter++;

if (*exit_status==LAST_TIME)

{ return_code=END_EXIT;

printf("E15 total number of records handled:%d\n",counter);

}

return(return_code);

}

Chapter 7. The Coding and Use of Exit Programs 7.25

Sample C E15, Variable-Length Records

#define FIRST_TIME 0

#define MOST_TIME 4

#define LAST_TIME 8

#define ACCEPT_REC 0

#define DELETE_REC 4

#define END_EXIT 8

#define INSERT_REC 12

#define END_SORT 16

#define REPL_REC 20

#define MAX_RLEN 104

typedef _Packed struct record1 {

char rec[6];

int incr;

char address[MAX_RLEN-14];

} t_ru1;

typedef _Packed struct record2 {

char title[10];

int number;

} t_ru2;

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

int SMPE15VB(int* exit_status,void* record_up,void* work,int* dummy1,

int* dummy2,int* len_ru,int* len_wk,int* dummy3,int* comm_len,

void* communication_area)

{

static counter=0,i_incr=0,i_number=0;

int return_code;

char *text1="CHANGE E15";

char *text2="INSERT E15";

t_ru1 * p_record1,*pwork1;

t_ru2 * p_record2,*pwork2;

p_record1 = (t_ru1 *)record_up;

pwork1 = (t_ru1 *)work;

p_record2 = (t_ru2 *)record_up;

pwork2 = (t_ru2 *)work;

if (*exit_status != FIRST_TIME) {counter++;

return_code=ACCEPT_REC;}

SyncSort for z/OS 1.1 Programmer’s Guide7.26

Sample C E15, Variable-Length Records (Continued)

if (counter<50) {

if (*len_ru == 14)

{

*len_wk = 14;

i_number++;

pwork2->number=i_number;

strncpy(pwork2->title,text2,10);

}

else {

*len_wk = 54;

i_incr++;

pwork1->incr=i_incr;

strncpy(pwork1->rec,text2,6);

}

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<75) {

if (*len_ru == 14)

{

*len_wk = 14;

pwork2->number=p_record2->number+1;

strncpy(pwork2->title,text1,10);

}

else {

*len_wk = 54;

pwork1->incr=p_record1->incr+1;

strncpy(pwork1->rec,text1,6);

}

return_code=REPL_REC;

goto return_to_sort;}

if (counter<100) {

if (*len_ru == 14)

{

*len_wk = 14;

i_number++;

pwork2->number=i_number;

strncpy(pwork2->title,text2,10);

}

Chapter 7. The Coding and Use of Exit Programs 7.27

Sample C E15, Variable-Length Records (Continued)

Exit E25 - Deleting, Changing, Summarizing Records

SyncSort gives control to exit E25 each time it is about to place a record in a Phase 2 output
sequence, except for the first record of that sequence. Because all or part of the input data
set may skip this phase, it may be necessary to include an E35 to do the job of the E25 dur-
ing Phase 3. If it is possible to use the SUM control statement in place of the exit, this is
recommended.

These constraints apply to the coding of an E25 exit routine:

• The exit may not add records.

• The exit may not change sort control fields.

• The exit may not destroy the contents of the parameter list.

SyncSort will place the address of a 2-word parameter list in Register 1 each time it passes
control to the E25 routine. The first word, which is on a fullword boundary, will contain the
address of the record about to leave Phase 2. The second word will contain the address of
the record that has already passed into the output area. Note that the first byte of each
word contains zeros.

else {

*len_wk = 80;

i_incr++;

pwork1->incr=i_incr;

strncpy(pwork1->rec,text2,6);

}

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<200) {

return_code=DELETE_REC;

goto return_to_sort;}

return_to_sort:

if (*exit_status==LAST_TIME)

{ return_code=END_EXIT;

printf("E15 total number of records handled:%d\n",counter);

}

return(return_code);

}

SyncSort for z/OS 1.1 Programmer’s Guide7.28

In order to change the record leaving Phase 2, the E25 exit program must first move it to a
work area. (The record in the output area may be changed, but must be left where it is.) To
sum two records, place the sum in the output area record and delete the record leaving
Phase 2.

After the record pair has been processed by the E25, a return code is placed into Register 15
and control returns to SyncSort.

Return Codes

0 Accept this record. To instruct SyncSort to accept the record leaving Phase
2, whether changed or unchanged, place return code 0 into Register 15. The
(work area) address of the record to be accepted must be placed into Regis-
ter 1.

4 Delete this record. This tells SyncSort to delete the record about to leave
Phase 2. It is not necessary to place the address of this record in Register 1.
The next time SyncSort returns control to the exit program, the address of
a new record will be in word 1 of the parameter list but word 2 will be
unchanged. (This permits further summarization, for example.)

16 Terminate SyncSort. SyncSort will end its program and return to the call-
ing program or the supervisor. SyncSort will give the user a completion code
of 16 to indicate that the sort was unsuccessful.

Exit E35 - Adding, Deleting and Changing Records

When an output data set is available, the user may elect to incorporate this exit to add,
delete or change records at the end of Phase 3. In the absence of an output data set, this
exit has full responsibility for output processing and, under normal conditions, will delete
every record passed by the sort.

E35 record processing has these constraints:

• If a record is to be changed, it should first be moved to a work area.

• The exit program may not destroy the contents of the parameter list.

PARAMETER LIST

Word 1: Address of record leaving Phase 2
Word 2: Address of record already in output area

Figure 186. Parameter List for E25

Chapter 7. The Coding and Use of Exit Programs 7.29

• A user exit may not take checkpoints.

Coding the E35 Exit Routine for an Invoked Sort/Merge/Copy

When SyncSort is initiated from an ATTACH, LINK or XCTL macro, there are two ways to
include an E35 exit routine: (1) code the E35 exit routine in line with the invoking program
and specify the address of its entry point in the appropriate entry of the calling program’s
parameter list; or (2) define the separately compiled routine in the MODS control state-
ment. When the exit routine is coded in line with the invoking program, it must handle all
output processing; SyncSort will ignore a SORTOUT DD statement and an OUTFIL control
statement, if present.

The E35 Parameter List

This exit routine is given control each time SyncSort is about to place a record in the output
area after the final merge. In passing control to the E35 exit routine, SyncSort places the
address of a parameter list in Register 1. The parameter list starts at a fullword boundary
and is 3 words long; the first byte of each word contains binary zeros. The first word con-
tains the address of the record about to leave Phase 3; after the last record has been passed,
this word will contain zeros. The second word contains the address of the record already in
the output area; when the first record is passed, this word will contain zeros.

The third word contains the user address constant. It contains either the last value set in it
by an E15 exit routine or, if not modified by an E15 exit routine, the initial value from the
user exit address constant provided in the invoking parameter list. If the value was
obtained from the 24-bit invoking parameter list, it is limited to 24 bits with the high-order
byte set to X'00'.

If the user exit address constant was not provided or if SyncSort was JCL-invoked, it will
contain binary zeros. This word may be changed by the E35 exit routine whenever it is
entered, and it will remain the same on all subsequent entries to the E35 exit routine.

Return Codes

0 Accept this record. This instructs SyncSort to accept the record now leaving
Phase 3. Place the (work area) address of this record in Register 1. This
return code is used when selectively editing records for output; it passes the

PARAMETER LIST

Word 1: Address of record leaving Phase 3
Word 2: Address of record in output area
Word 3: User address constant.

Figure 187. Parameter List for E35

SyncSort for z/OS 1.1 Programmer’s Guide7.30

(possibly altered) record back to the sort. The RECORD statement is
required if this exit routine changes the maximum record length.

4 Delete this record. SyncSort will delete the record leaving Phase 3. There is
no need to load the address of this record into Register 1. When SyncSort
returns control to the E35, the first word of the parameter list (the address
of the record leaving Phase 3) will refer to a new record, but the second
word (the address of the output area record) will be unchanged.

8 Disconnect E35. This instructs SyncSort to process any remaining records
without showing them to the E35 exit. Register 1 is ignored for processing
this return code. When this return code is used at end-of file (signalled by a
zero address in the first word of the parameter list), it indicates that E35 is
also finished and will not add additional records. When used before end-of-
file, it indicates that SyncSort should process the "current" record passed to
the E35, and any subsequent records, as if there were no E35 present. Note
that when SyncSort is not creating any output files (SORTOUT or
SORTOFxx) and E35 is the only "output", SyncSort terminates immedi-
ately, since any subsequent records will never be seen. Note that if an
XSUM data set was being created, it will only contain records generated
prior to the return code of 8.

12 Insert a record. This tells SyncSort to add a record just before the record is
about to leave Phase 3. Load the address of the inserted record into Regis-
ter 1. When SyncSort returns control to the E35 exit routine, the first word
of the parameter list (the address of the record leaving Phase 3) will be
unchanged, but the second word (the address of the output area record) will
refer to the inserted record. The exit routine can then add another record or
process the current one.

16 Terminate SyncSort. This tells SyncSort to end its program and return to
the calling program or the supervisor. SyncSort uses a completion code of 16
to indicate that the sort was unsuccessful.

Coding a COBOL E35 Exit Routine

A COBOL E35 exit program can be indicated through the EXEC statement PARM option
(PARM='E35=COB'), the MODS control statement or the $ORTPARM DD statement. An
E35 exit cannot be coded in COBOL when running Tape Sort.

Like any other E35 exit routine, the COBOL E35 is called each time a record is brought out
of Phase 3. Communication between SyncSort and the COBOL exit takes place in the
LINKAGE SECTION of the COBOL program. For example, records are passed to the
COBOL routine in the second definition (RECORD-UP) area of the LINKAGE SECTION.
No storage is reserved in the exit program because the records exist elsewhere.

Chapter 7. The Coding and Use of Exit Programs 7.31

If the COBOL exit routine uses any verb (EXHIBIT, DISPLAY, TRACE) which results in
output to the SYSOUT DD statement, there is a potential conflict with SyncSort’s use of
this DD statement. It is therefore recommended that the user separate the output by using
either SyncSort’s MSGDD PARM option or the COBOL compiler’s SYSx parm.

If the COBOL E35 exit routine is written in OS/VS COBOL and uses OS/VS COBOL librar-
ies or no libraries, specify the COBEXIT=COB1 PARM option. If the COBOL E35 exit rou-
tine is written in OS/VS COBOL or in VS COBOL II or COBOL/370 and uses VS COBOL II
or COBOL/370 libraries, specify the COBEXIT=COB2 PARM option. VS COBOL II or
COBOL/370 run-time library modules typically require more main storage than OS/VS
COBOL library modules. The amount of additional storage depends on VS COBOL II or
COBOL/370 installation options. When VS COBOL II or COBOL/370 run-time library mod-
ules are used, it may be necessary to account for this additional storage by adjusting the b
value of the Exit-Name parameter on the MODS statement.

The LINKAGE SECTION

The LINKAGE SECTION examples that follow show the parameters required for passing
fixed-length and variable-length records to the sort. The data-names and conditional
names used in the examples are arbitrary but each definition is required. The complete
programs from which the examples are taken follow the discussion of the exit.

SyncSort for z/OS 1.1 Programmer’s Guide7.32

Example 1: Fixed-Length Records

The PICTURE and VALUE clauses for (1) the record passed from SyncSort, (2) the record
WORK area, and (3) the record in the output buffer are application-specific.

• For the first definition (EXIT-STATUS) specify PIC 9(8) COMPUTATIONAL. When
using 88 levels to define exit status codes, specify values 00, 04, and 08.

• For the second definition (RECORD-UP) define the record leaving Phase 3.

• For the third definition (WORK) define the record that SyncSort is to put in the output
data set. This is the "work" area.

• For the fourth definition (IN-BUF) define the record in the output data set.

• For the fifth definition define a dummy area with PIC X(4).

• For the sixth through the eighth definition define dummy areas.

LINKAGE SECTION.

01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

05 RU PIC X(100).

01 WORK.

05 WK PIC X(100).

01 IN-BUF.

05 IB PIC X(100).

01 DUMMY1 PIC X(4).

01 DUMMY2 PIC X.

01 DUMMY3 PIC X.

01 DUMMY4 PIC X.

01 COMM-LEN PIC 9(4) COMPUTATIONAL.

01 COMMUNICATION-AREA.

05 COMM-AREA OCCURS 1 TO 256 TIMES

DEPENDING ON COMM-LEN PIC X.

Chapter 7. The Coding and Use of Exit Programs 7.33

• For the ninth definition (COMM-LEN) specify PIC 9(4) COMPUTATIONAL. This area
defines the communication area length.

• For the tenth definition (COMMUNICATION-AREA) code an OCCURS clause
DEPENDING ON data-name PIC X.

Example 2: Variable-Length Records

• For the first definition (EXIT-STATUS) specify PIC 9(8) COMPUTATIONAL. When
using 88 levels to define exit status codes, specify values 00, 04, and 08.

• For the second definition (RECORD-UP) code an OCCURS clause with the
DEPENDING ON data-name option specifying (1) the minimum and maximum
number of bytes of your variable-length records leaving Phase 3 (do not include 4 bytes
for the RDW) and (2) DEPENDING ON data-name PIC X. Data-name is defined in the
sixth definition in the LINKAGE SECTION.

LINKAGE SECTION.

01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

05 RU OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-RU PIC X.

01 WORK.

05 WK OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-WK PIC X.

01 IN-BUF.

05 IB OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-IB PIC X.

01 DUMMY PIC X(4)

01 LEN-RU PIC 9(8) COMPUTATIONAL.

01 LEN-WK PIC 9(8) COMPUTATIONAL.

01 LEN-IB PIC 9(8) COMPUTATIONAL.

01 COMM-LEN PIC 9(4) COMPUTATIONAL.

01 COMMUNICATION-AREA.

05 COMM-AREA OCCURS 1 TO 256 TIMES

DEPENDING ON COMM-LEN PIC X.

SyncSort for z/OS 1.1 Programmer’s Guide7.34

• For the third definition (WORK) code an OCCURS clause with the DEPENDING ON
data-name option specifying (1) the minimum and maximum number of bytes for
variable-length records you will pass to SyncSort (do not include 4 bytes for the RDW)
and (2) DEPENDING ON data-name PIC X. Data-name is defined as the seventh
definition in the LINKAGE SECTION. This area is used for the "work" area.

• For the fourth definition (IN-BUF) define records in the output area. Code an OCCURS
clause with the DEPENDING ON data-name option specifying (1) the minimum and
maximum number of bytes for variable-length records in the output data set (do not
include 4-bytes for the RDW) and (2) DEPENDING ON data-name PIC X. Data-name
is defined as the eighth definition in the LINKAGE SECTION.

• For the fifth definition define a dummy area with PIC X(4).

• For the sixth definition (LEN-RU) specify PIC 9(8) COMPUTATIONAL. SyncSort will
pass the length of the record leaving Phase 3 in this area.

• For the seventh definition (LEN-WK) specify PIC 9(8) COMPUTATIONAL. The E35
routine passes SyncSort the length of the record in the work area in this section.

• For the eighth definition (LEN-IB) specify PIC 9(8) COMPUTATIONAL. SyncSort
passes the length of the record in the output area in this section.

• For the ninth definition (COMM-LEN) specify PIC 9(4) COMPUTATIONAL. This area
defines the communication area length.

• For the tenth definition (COMMUNICATION-AREA) code an OCCURS clause
DEPENDING ON data-name PIC X.

The IDENTIFICATION, ENVIRONMENT, and DATA Divisions

As always, the COBOL program must contain the entries required by the compiler for these
program divisions. Code the optional entries in these divisions according to the require-
ments of the application.

The WORKING-STORAGE SECTION

If the exit routine inserts records into the final merge and replaces records passed from
SyncSort, the insertion record and the replacement record may be defined in this section.
These records will be moved to the WORK area described in the LINKAGE SECTION, so be
sure that the PICTURE clause or the OCCURS clause in the WORK area is correct for
these records.

This section may also define the return codes as 77-level data items. Alternatively, these
codes can be specified as literals in the MOVE instruction. (MOVE literal to RETURN-
CODE.) Note that RETURN-CODE is the name of a predefined storage area in COBOL

Chapter 7. The Coding and Use of Exit Programs 7.35

used to pass return codes to the sort; RETURN-CODE should not be defined in the exit rou-
tine.

The PROCEDURE DIVISION

Specify the USING option on the PROCEDURE DIVISION header. Each identifier
specified after USING must be the same as those described in the 01-level of the LINKAGE
SECTION. Taking for example the identifiers defined in the fixed-length record LINKAGE
SECTION shown here, they would appear as: PROCEDURE DIVISION USING EXIT-
STATUS, RECORD-UP, WORK, IN-BUF, DUMMY1, DUMMY2, DUMMY3, DUMMY4,
COM-LEN, COMMUNICATION-AREA.

The GOBACK statement is used to return control to SyncSort. Do not use the EXIT state-
ment as it will cause unpredictable results. Be sure that SyncSort receives a valid return
code before the GOBACK statement is executed.

EXIT-STATUS Codes (Fixed and Variable-Length Records)

00 First Record. SyncSort uses this Code to indicate the first call to the
COBOL exit and that the first record to leave Phase 3 is in the RECORD-
UP area.

04 Most records. This is used for all calls except the first one when there are
records in the RECORD-UP area. After Code 00 has been issued, Code 04 is
passed to the exit until there is no record for the sort to pass to the
RECORD-UP area.

08 All records passed. This indicates that the last record has already been pro-
cessed by the exit. Do not attempt to reference the record again. No more
records will be passed to the exit routine. Note that if SyncSort is not pass-
ing any records to Phase 3, 08 will be passed every time including the first
time.

RETURN-CODE Codes (Fixed and Variable-Length Records)

0 Accept this record. This instructs SyncSort to accept the (unaltered) record
in the RECORD-UP area.

4 Delete this record. SyncSort will delete the current record in the RECORD-
UP area.

8 Disconnect E35. This instructs SyncSort to process any remaining records
without showing them to the E35 exit. Register 1 is ignored for processing
this return code.

When this return code is used at end-of-file (signalled by EXIT-STATUS
LAST-TIME), it indicates that the E35 is also finished and will not add

SyncSort for z/OS 1.1 Programmer’s Guide7.36

additional records. When used before end-of-file, it indicates that SyncSort
should process the "current" record passed to the E35, and any subsequent
records, as if there were no E35 present. Note that when SyncSort is not
creating any output files (SORTOUT or SORTOFxx) and E35 is the only
"output," SyncSort terminates immediately, since any subsequent records
will never be seen. Also note that if an XSUM data set was being created, it
will only contain records generated prior to the return code of 8.

12 Insert a record. This instructs SyncSort to add the record in the WORK area
to the input data set just ahead of the current record in the RECORD-UP
area. When SyncSort returns control to the E35, the same record will be in
the RECORD-UP area. The exit routine can then add another record from
the WORK area or process the current record in RECORD-UP.

16 Terminate SyncSort. SyncSort will terminate and return to the calling pro-
gram or the Supervisor. SyncSort will issue a completion code of 16 to indi-
cate that the sort was unsuccessful.

20 Replace current record. SyncSort will replace the current record in the
RECORD-UP area with the record in the WORK area. Be sure that the
record in the WORK area is valid before passing it to SyncSort.

To Change a Record

In order to change the record in the RECORD-UP area, first move it to the WORK area.
Make the changes there and then pass return code 20 in RETURN-CODE. The altered
record in the WORK area will replace the record in RECORD-UP.

Chapter 7. The Coding and Use of Exit Programs 7.37

Sample COBOL E35, Fixed-Length Records

IDENTIFICATION DIVISION.

PROGRAM-ID. E35FL101.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-390.

OBJECT-COMPUTER. IBM-390.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

I-O-CONTROL.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

01 EVEN-FLAG PIC 9(2) VALUE ZERO.

01 USER-RETURN-CODE PIC 9(8) COMPUTATIONAL.

88 ACCEPT-REC VALUE 0.

88 DELETE-REC VALUE 4.

88 END-EXIT VALUE 8.

88 INSERT-REC VALUE 12.

88 END-SORT VALUE 16.

88 REPL-REC VALUE 20.

01 CHANGE-REC.

05 C-REC PIC X(6) VALUE 'CHANGE'.

05 C-INCR PIC 9(4) VALUE ZERO.

05 C-BLANK PIC X(90) VALUE SPACES.

01 INSRT-REC.

05 I-REC PIC X(6) VALUE 'INSERT'.

05 I-INCR PIC 9(4) VALUE ZERO.

05 I-BLANK PIC X(90) VALUE SPACES.

01 TOTAL.

05 BLANKS PIC X(10) VALUE 'E35'.

05 TITL PIC X(25)

VALUE 'TOTAL RECORDS HANDLED'.

05 COUNTER PIC 9(8) VALUE 0

SyncSort for z/OS 1.1 Programmer’s Guide7.38

Sample COBOL E35, Fixed-Length Records (Continued)

LINKAGE SECTION.

01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

05 RU PIC X(100).

01 WORK.

05 WK PIC X(100).

01 IN-BUF.

05 IB PIC X(100).

01 DUMMY1 PIC X(4).

PROCEDURE DIVISION USING EXIT-STATUS, RECORD-UP, WORK,

IN-BUF, DUMMY.

IF NOT FIRST-TIME

ADD 1 TO COUNTER

MOVE 0 TO RETURN-CODE.

IF COUNTER LESS THAN 50

ADD 1 TO I-INCR

MOVE INSRT-REC TO WORK

MOVE 12 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 75

ADD 1 TO C-INCR

MOVE CHANGE-REC TO WORK

MOVE 20 TO RETURN-CODE

GO TO RETURN-TO-SORT.

Chapter 7. The Coding and Use of Exit Programs 7.39

Sample COBOL E35, Fixed-Length Records (Continued)

IF COUNTER LESS THAN 100

ADD 1 TO I-INCR

MOVE INSRT-REC TO WORK

MOVE 12 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 200

MOVE 4 TO RETURN-CODE

GO TO RETURN-TO-SORT.

RETURN-TO-SORT.

IF LAST-TIME MOVE 8 TO RETURN-CODE

DISPLAY TOTAL.

GOBACK.

SyncSort for z/OS 1.1 Programmer’s Guide7.40

Sample COBOL E35, Variable-Length Records

IDENTIFICATION DIVISION.

PROGRAM-ID. E35VL101.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-390.

OBJECT-COMPUTER. IBM-390.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

I-O-CONTROL.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

01 EVEN-FLAG PIC 9(2) VALUE ZERO.

01 USER-RETURN-CODE PIC 9(8) COMPUTATIONAL.

88 ACCEPT-REC VALUE 0.

88 DELETE-REC VALUE 4.

88 END-EXIT VALUE 8.

88 INSERT-REC VALUE 12.

88 END-SORT VALUE 16.

88 REPL-REC VALUE 20.

01 CHANGE-REC.

05 C-REC PIC X(6) VALUE 'CHANGE'.

05 C-INCR PIC 9(4) VALUE ZERO.

05 C-BLANK PIC X(90) VALUE SPACES.

01 INSRT-REC.

05 I-REC PIC X(6) VALUE 'INSERT'.

05 I-INCR PIC X(4) VALUE ZERO.

05 I-BLANK PIC X(90) VALUE SPACES.

01 TOTAL.

05 BLANKS PIC X(10) VALUE ' E35'.

05 TITL PIC X(25)

VALUE 'TOTAL RECORDS HANDLED'.

05 COUNTER PIC 9(8) VALUE 0.

Chapter 7. The Coding and Use of Exit Programs 7.41

Sample COBOL E35, Variable-Length Records (Continued)

LINKAGE SECTION.

01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

05 RU OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-RU PIC X.

01 WORK.

05 WK OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-WK PIC X.

01 IN-BUF.

05 IB OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-IB PIC X.

01 DUMMY PIC X(4).

01 LEN-RU PIC 9(8) COMPUTATIONAL.

01 LEN-WK PIC 9(8) COMPUTATIONAL.

01 LEN-IB PIC 9(8) COMPUTATIONAL.

SyncSort for z/OS 1.1 Programmer’s Guide7.42

Sample COBOL E35, Variable-Length Records (Continued)

PROCEDURE DIVISION USING EXIT-STATUS, RECORD-UP, WORK,

IN-BUF, DUMMY, LEN-RU, LEN-WK, LEN-IB.

IF NOT FIRST-TIME

ADD 1 TO COUNTER

MOVE 0 TO RETURN-CODE.

IF COUNTER LESS THAN 50

MOVE 54 TO LEN-WK

ADD 1 TO I-INCR

MOVE INSRT-REC TO WORK

MOVE 12 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 75

MOVE 44 TO LEN-WK

ADD 1 TO C-INCR

MOVE CHANGE-REC TO WORK

MOVE 20 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 100

MOVE 80 TO LEN-WK

ADD 1 TO I-INCR

MOVE INSRT-REC TO WORK

MOVE 12 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 200

MOVE 4 TO RETURN-CODE

GO TO RETURN-TO-SORT.

RETURN-TO-SORT.

IF LAST-TIME MOVE 8 TO RETURN-CODE

DISPLAY TOTAL.

GOBACK.

Chapter 7. The Coding and Use of Exit Programs 7.43

Coding a C E35 Exit Routine

A C E35 exit program is indicated by the MODS control statement. An E35 exit cannot be
coded in C when running Tape Sort.

Like any other E35 exit routine, the C E35 exit routine is called each time a record is
brought out of Phase 3. Communication between SyncSort and the C exit takes place
through arguments defined in the function header. For example, records are passed to the C
routine by an address presented in the second argument in the function parameter list. No
storage is reserved in the exit program because the records exist elsewhere.

The C E35 exit routine can be written using either the C370 V2R1 compiler with the V2R2
C370 Library, the SAA AD/Cycle C370 V1R2 Compiler and Library or the C/C++ for MVS/
ESA V3R1.1 Compiler and Library. When using the LE/370 run time library modules, it
may be necessary to account for this additional storage by adjusting the b value of the Exit-
Name parameter on the MODS statement.

Exit Communication

The parameter list structure required for passing fixed-length and variable-length records
between the sort and the exit is detailed in the following section. The parameter names
used in the examples are arbitrary but each definition is required. Complete sample pro-
grams showing the use of the argument lists are presented following the discussion of the
exit interface.

Fixed-Length Records - Function Definition

The following describes the parameters used in the preceding definition.

exit_status This parameter points to a variable containing one of the follow-
ing exit status codes:

00 First record. SyncSort uses this Code to indicate the
first call to the C exit and that the first record to leave

int E35exit (int* exit_status,

struct_ru* record_up,

struct_ins_rep* work,

struct_in_buf* in_buf,

int* dummy1, int* dummy2, int* dummy3, int* dummy4,

int* comm_len,

struct_ca* communication_area)

SyncSort for z/OS 1.1 Programmer’s Guide7.44

Phase 3 is in the record_up area. If there are no records
to pass to the exit, a 08 status will be passed to the exit
on the first call.

04 Most records. This is used for all calls except the first
one when there are records in the record_up area. After
Code 00 has been issued, Code 04 is passed to the exit
until there is no record for the sort to pass to the
record_up area.

08 All records passed. This indicates that the last record
has already been processed by the exit. Do not attempt
to reference the record again. No more records will be
passed to the exit routine. Note that if SyncSort is not
passing any records to Phase 3, 08 will be passed every
time including the first time.

record_up The record_up parameter contains a pointer to the record leav-
ing Phase 3. The struct_ru data type represents a structure
that describes the fields within the record.

work The work parameter contains a pointer to a work area that is to
be used to hold an inserted or replaced record returned from the
E35. The struct_ins_rep data type represents a structure that
describes the fields within the inserted or replaced record.

in_buf The in_buf parameter contains a pointer to the record that
SyncSort is to put in the output data set. Until a record has
been accepted or inserted, this pointer will be null. A record at
this address can be modified if required.

dummy1 - dummy4 These parameters define unused place holders. They are used
with variable-length C E35 communication. Their definition
here allows a common parameter list for fixed and variable-
length C E15 and E35 exits.

comm_len This parameter points to a variable that defines the communi-
cation area length.

communication_area The communication_area parameter contains a pointer to the
communication area. The struct_ca data type represents a
structure that describes the fields in the communication area.

Chapter 7. The Coding and Use of Exit Programs 7.45

Variable-Length Records - Function Definition

The following describes the parameters used in the preceding definition.

exit_status This parameter points to a variable containing exit status
codes. See the exit_status definition for a fixed-length C E35
exit for the code definitions.

record_up The record_up parameter contains a "universal" pointer to the
record leaving Phase 3. The void* pointer can be cast to point an
appropriate structure to describe the record passed to the exit.
This allows different record structures, as is common with
variable-length records, to share a universal pointer.

work The work parameter contains a "universal" pointer to a work
area that is to be used to hold an inserted or replaced record
returned from the E35. The void* pointer can be cast to point an
appropriate structure to describe the work record.

in_buf The in_buf parameter contains a "universal" pointer to the
record that SyncSort is to put in the output data set. Until a
record has been accepted or inserted, this pointer will be null.
The void* pointer can be cast to point an appropriate structure
to describe the work record.

dummy1 This parameter defines an unused place holder.

len_ru This parameter points to a variable that defines the length of
the record leaving Phase 3. This is the length of the record
referred to in the record_up parameter.

len_wk This parameter points to a variable that defines the length of
the record to be inserted or used as a replacement for the
record_up record. This is the length of the record referred to in
the work parameter.

int E35exit (int* exit_status,

void* record_up,

void* work,

void* in_buf,

int* dummy1,

int* len_ru,

int* len_wk,

int* len_ib,

int* comm_len,

struct_ca* communication_area)

SyncSort for z/OS 1.1 Programmer’s Guide7.46

len_ib This parameter points to a variable that defines the length of
the record that SyncSort is to put in the output data set. This is
the length of the record referred to in the in_buf parameter.

comm_len This parameter points to a variable that defines the communi-
cation area length.

communication_area The communication_area parameter contains a pointer to the
communication area. The struct_ca data type represents a
structure that describes the fields in the communication area.

RETURN-CODE Codes (Fixed and Variable-Length Records)

0 Accept this record. This instructs SyncSort to accept the (unaltered) record
in the record_up area.

4 Delete this record. SyncSort will delete the current record in the record_up
area.

8 Disconnect E35. This instructs SyncSort to process any remaining records
without showing them to the E35 exit. When this return code is used at
end-of-file (signalled by exit_status 08), it indicates that the E35 is also fin-
ished and will not add additional records. When used before end-of-file, it
indicates that SyncSort should process the "current" record passed to the
E35, and any subsequent records, as if there were no E35 present. Note
that when SyncSort is not creating any output files (SORTOUT or
SORTOFxx) and E35 is the only "output," SyncSort terminates immedi-
ately, since any subsequent records will never be seen.

12 Insert a record. This instructs SyncSort to add the record in the work area
to the input data set just ahead of the current record in the record_up area.
When SyncSort returns control to the E35, the same record will be in the
record_up area. The exit routine can then add another record from the work
area or process the current record in record_up.

16 Terminate SyncSort. SyncSort will terminate and return to the calling pro-
gram or the Supervisor. SyncSort will issue a completion code of 16 to indi-
cate that the sort was unsuccessful.

20 Replace current record. SyncSort will replace the current record in the
record_up area with the record in the work area. Be sure that the record in
the work area is valid before passing it to SyncSort.

Change a Record

In order to change the record in the record_up area, first move it to the provided work area.
Make the changes there and then pass return code 20. The altered record in the work area
will replace the record in record_up.

Chapter 7. The Coding and Use of Exit Programs 7.47

Sample C E35, Fixed-Length Records

#define FIRST_TIME 0

#define MOST_TIME 4

#define LAST_TIME 8

#define ACCEPT_REC 0

#define DELETE_REC 4

#define END_EXIT 8

#define INSERT_REC 12

#define END_SORT 16

#define REPL_REC 20

#include <decimal.h>

typedef _Packed struct record {

char rec[6];

decimal(7,0) incr;

char address[90];

} t_ru;

int counter,i_incr;

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int SMPE35FB(int* exit_status,t_ru* record_up,t_ru* work,t_ru* in_buf,

int* dummy1,int* dummy2,int* dummy3,int* dummy4,int* comm_len,

void* communication_area)

{

int return_code;

char *text1="CHANGE";

char *text2="INSERT";

if (*exit_status != FIRST_TIME) {counter++;

return_code=ACCEPT_REC;

}

SyncSort for z/OS 1.1 Programmer’s Guide7.48

Sample C E35, Fixed-Length Records (Continued)

if (counter<50) {

i_incr++;

work->incr=i_incr;

strncpy(work->rec,text2,6);

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<75) {

work->incr=record_up->incr+1d;

strncpy(work->rec,text1,6);

return_code=REPL_REC;

goto return_to_sort;}

if (counter<100) {

i_incr++;

work->incr=i_incr;

strncpy(work->rec,text2,6);

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<200) {

return_code=DELETE_REC;

goto return_to_sort;}

return_to_sort:

if (*exit_status==LAST_TIME)

{ return_code=END_EXIT;

printf("E35 total number of records handled:%d\n",counter);

}

return(return_code);

}

Chapter 7. The Coding and Use of Exit Programs 7.49

Sample C E35, Variable-Length Records

#define FIRST_TIME 0

#define MOST_TIME 4

#define LAST_TIME 8

#define ACCEPT_REC 0

#define DELETE_REC 4

#define END_EXIT 8

#define INSERT_REC 12

#define END_SORT 16

#define REPL_REC 20

#define MAX_RLEN 104

typedef _Packed struct record1 {

char rec[6];

int incr;

char address[MAX_RLEN-14];

} t_ru1;

typedef _Packed struct record2 {

char title[10];

int number;

} t_ru2;

int counter,i_incr,i_number;

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int SMPE35VB(int* exit_status,void* record_up,void* work,void* in_buf,

int* dummy,int* len_ru,int* len_wk,int* len_ib,int* comm_len,

void* communication_area)

{

SyncSort for z/OS 1.1 Programmer’s Guide7.50

Sample C E35, Variable-Length Records (Continued)

int return_code;

char *text1="CHANGE E35";

char *text2="INSERT E35";

t_ru1 * p_record1,*pwork1;

t_ru2 * p_record2,*pwork2;

p_record1 = (t_ru1 *)record_up;

pwork1=(t_ru1 *)work;

p_record2 = (t_ru2 *)record_up;

pwork2=(t_ru2 *)work;

if (* exit_status != FIRST_TIME) {counter++;

return_code=ACCEPT_REC;}

if (counter<50) {

if (*len_ru == 14)

{

*len_wk = 14;

i_number++;

pwork2->number=i_number;

strncpy(pwork2->title,text2,10);

} else

{

*len_wk = 54;

i_incr++;

pwork1->incr=i_incr;

strncpy(pwork1->rec,text2,6);

}

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<75) {

if (*len_ru == 14)

{

*len_wk = 14;

pwork2->number=p_record2->number+1;

strncpy(pwork2->title,text1,10);

} else

{

*len_wk = 54;

pwork1->incr=p_record1->incr+1;

strncpy(pwork1->rec,text1,6);

}

return_code=REPL_REC;

goto return_to_sort;}

Chapter 7. The Coding and Use of Exit Programs 7.51

Sample C E35, Variable-Length Records (Continued)

Exit E16-Taking Action on Insufficient Intermediate Storage

Exit E16 is given control in the event that the input data set is unable to fit into intermedi-
ate storage. There is no parameter list. The E16 return code tells SyncSort how to respond
to the insufficient SORTWK problem.

Return Codes

0 Sort present records only. This instructs SyncSort to process only those
records presently contained on the intermediate storage devices. The sort
will receive message WER054I RCD IN xxxxxxxx, OUT yyyyyyyy if the
data is read from SORTIN directly, or WER055I INSERT xxxxxxxx,
DELETE yyyyyyyy if the data receives input exit (E14 or E15) or
INCLUDE/OMIT processing. The message’s RCD IN or INSERT xxxxxxxx
figure indicates how many records have been sorted. For a sort with no

if (counter<100) {

if (*len_ru == 14)

{

*len_wk = 14;

i_number++;

pwork2->number=i_number;

strncpy(pwork2->title,text2,10);

} else

{

*len_wk = 80;

i_incr++;

pwork1->incr=i_incr;

strncpy(pwork1->rec,text2,6);

}

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<200) {

return_code=DELETE_REC;

goto return_to_sort;}

return_to_sort:

if (*exit_status==LAST_TIME)

{ return_code=END_EXIT;

printf("E35 total number of records handled:%d\n",counter);

}

return(return_code);

}

SyncSort for z/OS 1.1 Programmer’s Guide7.52

exits or INCLUDE/OMIT processing, the remaining records may be sorted
by running another job using the SKIPREC=n parameter on the SORT con-
trol statement, skipping the xxxxxxxx number of records. The new sort will
start just where the last one left off. The final output is obtained by running
a MERGE with the two SORTOUT data sets.

4 Try to sort all records. This tells SyncSort to continue to read in records
from the input data set. If there are very few records left, the sort may com-
plete successfully. If there are too many records to continue the sort, Sync-
Sort will terminate with a SORT CAPACITY EXCEEDED message.

12 Terminate SyncSort. SyncSort will terminate immediately with a SORT
CAPACITY EXCEEDED message.

Exits E17, E27, and E37 - Closing Data Sets

These exits are unusual in that they are entered only once, at the end of their associated
phase. Because of this, they may be efficiently used to clean up after other exit routines
(e.g., to close data sets). There are no parameter lists or return codes for these exits.

Exits E18, E38, and E39 - Checking Labels, Processing Read or Write
Errors, End-of-File Routines, Special VSAM Processing

These exits are mainly used for I/O error recovery routines. However, they may also be used
to check labels, to do end-of-file processing, and to provide various information to the VSAM
access method.

Exit E18 and E38 Programs

Exit E18 is only used for sorts and exit E38 only for merges or copies. Each exit is entered
exactly once, at the start of SORTIN processing. At this time, SyncSort checks Register 1
for the address of a user parameter list specifying the various open and error exit routines
the user wishes SyncSort to include. SyncSort will then enter these routines at the appro-
priate times during execution. Because use to these exits forces the use of BSAM for the
input file(s), performance may be adversely affected.

The format of the parameter list is given below. More information on the DCB fields can be
found in the appropriate IBM publication.

Chapter 7. The Coding and Use of Exit Programs 7.53

The parameter list must begin on a fullword boundary and consist of an integral number of
words. With the exception of the required fullword of zeros used to indicate the end of the
parameter list, entries are optional. The first byte of each word identifies the parameter:

SYNAD field Indicated by 01 in byte 1. The SYNAD field contains the address of a
synchronous read error routine, assembled as part of the exit program.
Note that you may not use Register 13 as a save area pointer on entry
to your routine. You must either provide your own save area or use the
SYNADAF macro instruction.

EXLST field Indicated by 02 in byte 1. The EXLST field contains the address of a list
of pointers to user routines that perform operations such as label check-
ing. Note that in the event that the list contains a DCB-exit entry, it
will not be entered during concatenated SORTIN processing.

EROPT code Indicated by 03 in byte 1. Bytes 2 and 3 contain zeros, byte 4 the
EROPT code. This code tells SyncSort what action to take if it discovers
an uncorrectable read error on a non-VSAM input file.

X'00' Follow the EROPT code in the DCB parameter of the
DD statement that describes the data set containing the
error.

X '20' Terminate the program.

X'40' Skip the block containing the error.

X'80' Accept the block containing the error.

EODAD field Indicated by 04 in byte 1. The EODAD field contains the address of an
end-of-file routine. It can only be used with an E18 exit.

Byte 1 Byte 2 Byte 3 Byte 4

01 SYNAD field

02 EXLST field

03 00 00 EROPT code

04 EODAD field

00 00 00 00

Table 34. Parameter List for E18 and E38

SyncSort for z/OS 1.1 Programmer’s Guide7.54

VSAM Input to E18 and E38

With VSAM input, these exits can be used to pass the addresses of various VSAM exits or
to insert passwords into VSAM input ACB’s. When control is returned to the sort, Register
1 must contain the address of a parameter list:

If both address entries are present, they may be in either order. Only one need be present.
(QSAM parameters will be ignored.) The password list referenced in the parameter list is
found in the exit routine and is formatted as follows:

 2 bytes on a halfword boundary:

 Followed by n 16-byte entries:

The exit routine must not alter this list. The sort may destroy the last byte of the DD name
field.

The exit list is built using the VSAM EXLST macro, which provides the addresses of the
VSAM exit routines. VSAM branches directly to the routines which must return to VSAM
via the address in Register 14.

To do EODAD processing with E38, write a LERAD exit and check for X'04' in the FDBK
field of the RPL: this indicates input EOD. This field is needed by the merge, so it should
not be altered when returning to VSAM.

The following example shows how to code the return to the sort.

X'05' 3 byte address of VSAM exit list

X'06' 3-byte address of password list

F'0' Fullword of zeros

Table 35. Sample VSAM Parameter List for E18 and E38

Number n of entries in list

8-byte DDname

8-byte Password

Chapter 7. The Coding and Use of Exit Programs 7.55

Exit E39 Programs

Exit E39 is used mainly for SORTOUT write error routines. The exit is entered once at the
beginning of merge or copy processing or the start of sort Phase 3. At this time SyncSort
checks Register 1 for the address of a user parameter list specifying the various routines

ENTRY E18

.

.

.

E18 LA 1,PARMLST

ST 1,24(13) R13 points to sort's save area

LM 14,12,12(13)

BR 14

CNOP 0,4

PARMLST DC X'01'

DC AL3(BSAMERR)

DC X'02'

DC AL3(EXLST)

DC X'03'

DC X'000080' EROPT code

DC X'04'

DC AL3 (BSAMEOD)

DC X'05'

DC AL3 (VSAMEXL)

DC X'06'

DC AL3 (PWDLST)

DC A(0)

.

.

.

VSAMEXL EXLST SYNAD=SYNAD,LERAD=LERAD

PWDLST DC H'2'

DC CL8'SORTIN' SORTIN ddname

DC CL8'INPASS' SORTIN password

DC CL8'SORTOUT' SORTOUT ddname

DC CL8'OUTPASS' SORTOUT password

SYNAD ... VSAM synch error rtn

LERAD ... VSAM logic error rtn

BSAMERR ... BSAM error rtn

EXLST ... EXLST address list

BSAMEOD ... BSAM end of data rtn

Figure 188. Sample E18 Program

SyncSort for z/OS 1.1 Programmer’s Guide7.56

the user wishes SyncSort to include. SyncSort will then enter these routines at the appro-
priate times during execution. The use of an E39 exit forces the use of BSAM on the output
file; this may degrade performance somewhat.

The format of the parameter list is given below.

The parameter list must begin on a fullword boundary and consist of an integral number of
words. With the exception of the required fullword of zeros used to indicate the end of the
parameter list, entries are optional. The first byte of each word identifies the parameter:

SYNAD field Indicated by 01 in byte 1. The SYNAD field contains the address of a syn-
chronous write error routine, assembled as part of the exit program. Note
that you may not use Register 13 as a save area pointer on entry to your
routine. You must either provide your own save area or use the SYNADAF
macro instruction.

EXLST field Indicated by 02 in byte 1. The EXLST field contains the address of a list of
pointers to user routines that perform operations such as label checking. If
the EXLST field is specified, CHECKPOINT processing will not be per-
formed by SyncSort.

Exit E39 may be used to supply a VSAM exit list or password list for the output file in the
same manner as described for exits E18 and E38. Note that unlike E18 there is no EODAD
field with this exit.

Exit E61 - Modifying the Collating Process

Exit 61 is used to alter the collating of all control fields specified as having an o (order)
value of E in the SORT/MERGE control statement. Note that an E61 exit routine is called
in Phase 1 for sort applications and in Phase 3 for merge applications. Each time SyncSort
encounters an order E control field, it moves a copy of the control field to a work area and
passes the copy’s address to the exit routine. Thus, the E61 exit program processes a con-
trol field image while leaving the original control field intact. An order E control field is col-
lated in ascending order according to its f (format) code and its E61 image. In order to code
an effective E61 routine, the user must be familiar with the standard data formats used by
the operating system.

For all order E control fields except BInary fields, the number of bytes in the control field
image will be the number specified as the l (length) value on the SORT/MERGE control

Byte 1 Byte 2 Byte 3 Byte 4

01 SYNAD field

02 EXLST field

00 00 00 00

Table 36. Parameter List for E39

Chapter 7. The Coding and Use of Exit Programs 7.57

statement. BInary fields are left and right padded with zeros to the nearest byte boundary.
For example, a control field designated as 5.3,1.4,BI,E receives three bits of padding on the
left, one on the right, producing an image 2 bytes long.

An E61 exit can process only the first 256 bytes of the control field image in a single pass. If
a control field image is more than 256 bytes long, the exit will be entered more than once
for that control field.

If AC is specified as the format of a control field on the SORT or MERGE statement, Sync-
Sort will translate the field to ASCII before the E61 routine is given control. In order to use
an E61 routine to modify what would be an AC control field, specify the field as CH in the
SORT or MERGE statement and translate the image to ASCII after it is altered by the E61
exit routine.

There is no advantage to coding an E61 exit if the ALTSEQ control statement can provide
the needed collating modification. ALTSEQ changes the installation’s alternate collating
sequence, used for all control fields specified with the format code AQ.

An E61 exit cannot be used with locale processing (LOCALE option enabled).

The Parameter List

Each time your routine is executed, SyncSort will place the address of a three-word param-
eter list in Register 1. The parameter list will be on a fullword boundary. The first word
contains the number of the control field within the record in byte 4. The second word con-
tains the address of the control field in the work area in bytes 2, 3, and 4. The third word
contains the length of the control field in bytes 3 and 4. All values are given in hexadecimal
and the unused bytes are filled with zeros.

Lengthening a Control Field Image

The length of the control field image is completely determined by the length and format
code of the control field. Therefore, in order to provide a 12-byte PD image of 5 bytes from
the original record, it is necessary for the SORT/MERGE control statement to reference a
12-byte PD control field that contains the 5 desired bytes. The extra 7 bytes are used to con-
tain the "lengthened" image.

Byte 1 Byte 2 Byte 3 Byte 4

00 00 00 Number of control
field

00 Address of control field in work area

00 00 Length of control field

Table 37. Parameter List for E61

SyncSort for z/OS 1.1 Programmer’s Guide7.58

Shortening a Control Field Image

The length of the control field image is completely determined by the length and format
code of the control field. To shorten a control field image, specify the full length of the origi-
nal control field as the l (length) value in the SORT/MERGE control statement. Then
shorten each image by the same number of bytes and pad it uniformly to the length of the
original field. Be sure to pad each control field image with the same leading or trailing
character, and replace data in the control field image with the same type of data as that in
the actual control field.

Reversing a Collating Sequence

Every order E control field is collated according to its image and format code, in ascending
order. To collate the field in apparent descending order, complement the control field image
according to its format code before returning control to SyncSort. For a BI or CH field, for
example, complement the image with hexadecimal FF’s before returning control to the sort.

Coding REXX Exits

The exit routines E15 and E35 can be coded in REXX.

REXX Variables Provided by SyncSort for z/OS

SyncSort for z/OS provides a number of special REXX variables to facilitate the develop-
ment of REXX exits. These variables offer a simple, efficient means of establishing commu-
nication between the exit and the sort/merge.

To load these variables, the following command must be used when the exit is called.

ADDRESS 'SYNCREXX' 'GIVE'

When the exit completes its work, the exit should use the following sequence of commands
to return the variables to SyncSort for z/OS.

ADDRESS 'SYNCREXX' 'TAKE'
RETURN

The following table describes the special REXX variables.

Chapter 7. The Coding and Use of Exit Programs 7.59

Sample REXX Exit

The following example illustrates a REXX exit that will count the number of records that
are passed to the exit:

Variable Function

SYRECORD When the exit is entered, SYRECORD contains the current data
record. The exit can accept the record, modify it or add a new record;
SYACTION should be set accordingly.

If SYRECORD is null, then SyncSort for z/OS has no data remaining.
When this happens, the exit can either CLOSE or continue to INSERT
new records.

SYACTION This variable must be set before the exit returns control to SyncSort
for z/OS. It describes the disposition of the current record. Possible
values for SYACTION are as follows:

ACCEPT: Retain the current record with no modification.

REPLACE: Replace the current record with the contents of the
SYRECORD.

DELETE: Delete the current record.

INSERT: Insert the contents of the SYRECORD before the cur-
rent record.

CLOSE: Do not return to the exit.

ABEND: Terminate SyncSort for z/OS.

If an E15 is providing all the input (SORTIN not present), the only
valid values for SYACTION are INSERT, CLOSE or ABEND.

SYEXITYP This variable will automatically be set to E15 or E35, depending on
which type of exit is being called.

SYGBLN1...
 ...SYGBLN8

These eight special variables are global variables. The user may set
these to any value provided that the value does not exceed 15 charac-
ters in length. SyncSort for z/OS will insure that these variables are
preserved across calls to the exit.

SYGBLSTR This is an additional global variable. The user may set this to any
value, provided the string does not exceed 1024 characters in length.
SyncSort for z/OS will insure that this variable is preserved across
calls to the exit.

Table 38. REXX Variables Provided by SyncSort for z/OS

SyncSort for z/OS 1.1 Programmer’s Guide7.60

address 'SYNCREXX' 'GIVE'

if sygbln1='SYGBLN1' then sygbln1=0

if LENGTH(syrecord) > 0

then do

syaction='REPLACE'

sygbln1=sygbln1 + 1

end

else do

syaction='CLOSE'

say 'REXX' syexityp 'counted' sygbln1 'records'

end

address 'SYNCREXX' 'TAKE'

return

Figure 189. Sample REXX Exit Code

Chapter 8. The Flow of the Sort 8.1

Chapter 8. The Flow of the Sort

This chapter briefly outlines the flow of control in the standard Disk Sort, incore sort,
merge and copy. It describes the order in which SyncSort will process and act on the
PARMs, control statements and exit routines provided by the user. Note that all executions
begin with Phase 0 processing and that a given SyncSort execution will skip steps where
appropriate (e.g., will skip a "Variable-length record sampling" step if sorting fixed-length
records or HISTOGRM length values are supplied). No attempt has been made to indicate
which steps are required of all Disk Sorts, incore sorts, etc., or to indicate the nature or tim-
ing of any abend processing.

• Process PARMs, merging EXEC and $ORTPARM PARM specifications. The EXEC
statement/invoking program’s parameter list overrides the installation defaults.
$ORTPARM overrides the EXEC statement/invoking program’s parameter list.

• Process control statements (from the $ORTPARM DD statement and either the SYSIN
DD statement or the invoking program’s parameter list).

• Link-edit user exits (if necessary).

• Validate SORTIN/SORTINnn and SORTOUT/SORTOFxx/SORTOFx/SORTXSUM
DCB attributes.

Phase 0

SyncSort for z/OS 1.1 Programmer’s Guide8.2

• variable-length record sampling: open SORTIN, do the sampling, close SORTIN.

• Load Phase 1 exits.

• Call E11.

• Call E18.

• Open SORTIN.

• Perform SKIPREC processing.

• On the record level:

• Read from SORTIN or DB2 database for DB2 query.

• Call E15.

• Perform INCLUDE/OMIT processing.

• Perform INREC processing.

• Perform STOPAFT processing.

• Call E61.

• Perform SUM processing.

• Call E14.

• Call E16.

• Close SORTIN.

• Call E17.

• If MERGE or COPY, GO TO ———————————-→ Non-Sorting
 Phase 3

• GO TO —————————————→ Phase 1

Phase 1

Chapter 8. The Flow of the Sort 8.3

• Delete Phase 1 exits.

• Delete Phase 1 exits.

• Load Phase 3 exits.

• Call E31.

• Call E39.

• Open SORTOUT.

• On the record level:

• Call E35.

• Write to SORTOUT.

• Close SORTOUT.

• Call E37.

• Delete Phase 3 exits.

• If there is sufficient memory, GO TO ————————————→ Incore Sort

• If all strings can be merged at once, GO TO —————————→ Sorting
Phase 3

• GO TO ————————————→ Phase 2

Incore Sort

• GO TO —————————————→ Program
Termination

Phase 2

SyncSort for z/OS 1.1 Programmer’s Guide8.4

• Load Phase 2 exits.

• Call E21.

• On the record level:

• Call E25.

• Perform SUM processing.

• Call E27.

• Delete Phase 2 exits.

• Load Phase 3 exits.

• Take checkpoint.

• Call E31.

• Call E39.

• Open SORTOUT, SORTOFxx, SORTOFx and SORTXSUM.

• On the record level:

• Perform SUM processing.

• Write to SORTXSUM.

• Perform OUTREC processing.

• Call E35.

• If SORTOUT, SORTOFxx or SORTOFx are present, then for each output data set:

• Perform STARTREC/ENDREC processing.

• Perform INCLUDE/OMIT parameter processing.

• GO TO —————————————→ Sorting
Phase 3

Sorting
Phase 3

Chapter 8. The Flow of the Sort 8.5

• Perform SortWriter functions.

• Perform OUTREC processing.

• Perform ANSI control character processing.

• Write to SORTOUT, SORTOFxx, or SORTOFx.

• Call E37.

• Close all data sets.

• Delete Phase 3 exits.

• Load user exits for the merge/copy.

• Call E31.

• Call E38.

• Call E39.

• Open all data sets.

• Perform SKIPREC processing (for a copy).

• On the record level:

• Read from SORTIN/SORTINnn or DB2 database for DB2 query or (for a merge) call
E32 for a record.

• Call E15 (for a copy).

• Perform INCLUDE/OMIT processing.

• Perform INREC processing.

• Perform STOPAFT processing (for a copy).

• Call E61 (for a merge).

• GO TO —————————————→ Program
Termination

Non-Sorting
Phase 3

SyncSort for z/OS 1.1 Programmer’s Guide8.6

• Perform SUM processing (for a merge).

• Write to SORTXSUM (for a merge).

• Perform OUTREC processing.

• Call E35.

• If SORTOUT, SORTOFxx or SORTOFx are present, then for each output file:

• Perform STATREC/ENDREC processing.

• Perform INCLUDE/OMIT parameter processing.

• Perform SortWriter functions.

• Perform OUTREC processing.

• Perform ANSI control character processing.

• Write to SORTOUT, SORTOFxx or SORTOFx.

• Call E37.

• Close all data sets.

• Delete user exits.

• Print SyncSort messages.

• END.

• GO TO —————————————→ Program
Termination

Program
Termination

Chapter 9. MAXSORT 9.1

Chapter 9. MAXSORT

MAXSORT: A Maximum Capacity Sort

MAXSORT is a maximum capacity sort designed to sort amounts of data that are too large
for an ordinary sorting technique to process.

MAXSORT breaks up the sorting process into small, individual sorts. At the end of each
individual sort a natural breakpoint occurs. At this time, the sorted data is written out on
intermediate storage devices and it becomes possible to stop the program without losing
the results of the previous processing. At each breakpoint, an operator may intervene to
change program options.

When all the input to the sort has been read and has become individual sorted data sets,
this output becomes input to one or more merges. If all the data sets can be merged at once,
one final merge is performed. If all the data sets cannot be merged at once, some of them
will be combined in one or more intermediate merges. Then, when all the data sets can be
merged at one time, the final merge is performed and the final sorted output is produced.

The diagrams on the following two pages illustrate the MAXSORT technique.

SyncSort for z/OS 1.1 Programmer’s Guide9.2

Chapter 9. MAXSORT 9.3

���
���
���

���
���
���

��
��
��

���
���

SyncSort for z/OS 1.1 Programmer’s Guide9.4

MAXSORT’s Advantages

• Without MAXSORT, overlarge sorts require tape work areas or force the user to
segment the input and execute multiple disk sorts. With MAXSORT, any input data set
can be handled by one sort execution using disk work space.

• MAXSORT requires less disk space than ordinary sorts. Because MAXSORT stores the
output of each individual sort on tape, the same disk SORTWK files can be used over
and over again.

• Since the output of each individual sort is a completely sorted data set, the original job
may be interrupted for higher priority jobs without wasting processing time.

• If a system or program failure occurs, whatever data sets have already been produced
are still usable. The job can be restarted at the last breakpoint, and all previously
produced data sets can be used without resorting.

Job Control Language

MAXSORT and Disk Sort have similar JCL requirements. To initiate MAXSORT using job
control statements, specify PARM='MAXSORT' on the EXEC statement. A program-initi-
ated sort requests MAXSORT by using a PARM card image in the data set defined by the
$ORTPARM DD statement. In either case, it may be necessary to request additional main
storage in order to use the MAXSORT technique.

Sample EXEC Statement

DD Statements

MAXSORT’s DD statement requirements are summarized in the following table. As many
as three additional types of DD statements may be needed. Note that SORTWK files must
be allocated only to disk devices.

Figure 190. MAXSORT EXEC Statement

//stepname EXEC

PGM=SYNCSORT
PGM=SORT
PGM=IERRCO00
PGM=IGHRCO00
PGM=ICEMAN 

 
 
 
 
 
 
 
 

Chapter 9. MAXSORT 9.5

When the RELEASE=ON parameter is active (either via specification or by default) at the
conclusion of the sort portion of a MAXSORT, most of the allocated SORTWK space is free
(however, in the case of invoked sorts or SORTWKs defined as OLD, the data set is
returned to the size allocated at MAXSORT initiation rather than the minimum size possi-
ble).

The SORTBKPT, SORTOU00, SORTOUnn and SORTCKPT DD statements are discussed
below. Refer to “Chapter 4. JCL and Sample JCL/Control Statement Streams” for a discus-
sion of the other DD statements, which are specified for MAXSORT just as they would be
specified for Disk Sort.

MAXSORT DD Statements

//$ORTPARM DD Used to override PARM or control statement information.

//SYSIN DD Control statement data set. Required unless the address of a 24-
bit or 31-bit extended parameter list is supplied by an invoking
program.

//SYSOUT DD Message data set. Required unless all messages are routed to
console.

//SORTWKnn DD Disk work area definition. Required unless DYNALLOC is spec-
ified or MAXSORT is restarted at a MERGE breakpoint.

//SORTIN DD SORT input data set. Required unless there is an E15. Ignored if
the invoking program supplies an inline E15 exit routine;
optional if the MODS statement activates an E15 exit routine.

//SORTOUT DD Output data set. Required unless there is an E35. Ignored if the
invoking program supplies an inline E35 exit routine; optional if
the MODS statement activates an E35 exit routine.

//SORTXSUM DD Output data set for records deleted by SUM. Required if XSUM
parameter used.

//SORTBKPT DD Breakpoint data set. Must be DASD. Required.

//SORTOU00 DD Required if intermediate output is on tape.

//SORTOUnn DD Required if intermediate output is on disk or if intermediate out-
put is on tape and DYNATAPE is not specified.

//SORTCKPT DD Checkpoint data set. Required if Checkpoint-Restart is used.

//SORTMODS
//SYSLIN
//SYSLMOD
//SYSUT1
//SYSPRINT

DD
DD
DD
DD
DD

Required if user exits are in SYSIN and if user exits are to be
linkage-edited at execution time.

//ddname DD Required for exits unless the exit is inline in LINKLIB/JOBLIB/
STEPLIB or in SYSIN.

Table 39. MAXSORT DD Statements

SyncSort for z/OS 1.1 Programmer’s Guide9.6

SORTBKPT DD Statement

The required SORTBKPT statement defines the breakpoint data set on which the sort con-
trol information is stored. At the end of each individual sort or merge, a breakpoint is
reached and the information in the breakpoint data set is automatically amended. How-
ever, when MAXSORT is program-invoked or when any exit other than an E35 exit is being
used, breakpoints cannot be taken. Nevertheless, the SORTBKPT statement must be spec-
ified for all MAXSORTs, even those for which a breakpoint restart is not possible.

Allocating Disk Space for the Breakpoint Data Set

The breakpoint data set must be allocated on a direct access device. It is recommended that
space for the breakpoint data set be allocated in the job step preceding the sort step. Or, the
breakpoint data set may be pre-allocated in a separate job.

Sample Allocation of the Breakpoint Data Set

The following example illustrates how disk space for a breakpoint data set might be allo-
cated as part of a MAXSORT job control stream. These two statements would follow the
JOB statement:

In this example, the name of the breakpoint data set is BKPT.DATA. Because this data set
must be kept until MAXSORT has completed, DISP=(NEW,CATLG) has been specified.
Supplying approximately 100K bytes of primary space and allowing for secondary alloca-
tion should be adequate.

Sample SORTBKPT DD Statement

The sample SORTBKPT DD statement which follows identifies the breakpoint data set for
which disk space has already been allocated.

This SORTBKPT DD statement defines the breakpoint data set for which disk space has
previously been allocated. The data set name must be the same name which was specified
when the space for the breakpoint data set was allocated. DISP=(OLD,KEEP) is specified

//ALLOC EXEC PGM=IEFBR14

//BKPTDATA DD DSN=BKPT.DATA,DISP=(NEW,CATLG),UNIT=SYSDA,

// SPACE=(1000,(100,50))

Figure 191. Sample Job Step Allocating Disk Space for a Breakpoint Data Set

//SORTBKPT DD DSN=BKPT.DATA,DISP=(OLD,KEEP)

Figure 192. Sample SORTBKPT DD Statement

Chapter 9. MAXSORT 9.7

so that this statement does not have to be changed if MAXSORT is restarted. The DCB
information should not be coded because MAXSORT supplies these values. If a VOLSER
was coded when the disk space for the breakpoint data set was allocated, the same
VOLSER must be specified in the SORTBKPT DD statement.

SORTOU00 DD Statement

The SORTOU00 DD statement is required for every MAXSORT application in which the
intermediate output is stored on tape.

The SORTOU00 DD statement defines the unit to be used for the output of the individual
sorts and intermediate merges. MAXSORT will create and name these data sets which will
eventually be merged to produce the final sorted output.

The data set names generated will have one of the two formats. If the TIMESTMP option is
not specified (the installation default), data set names will have the format:

If the TIMESMP option is specified at installation time, data set names will have the for-
mat:

In either case, the S or M indicates whether the output is from the sort phase or from the
merge phase; nn is the relative number of the data set (01 to 99). The Ddddhhmm time
stamp refers to the time (Julian day, hour and minute) the sort began. The prefix default
(TDS.) can be changed by specifying the BKPTDSN PARM option.

The following rules should be observed in coding the SORTOU00 DD statement:

• Specify DISP=(NEW,KEEP) and a permanent DSNAME and VOL=PRIVATE so that a
scratch tape is used and the volumes are unloaded. Failure to specify this can result in
the rewinding of the scratch tape and overwriting of the intermediate sort output.

• Specify the DEFER option in the UNIT parameter so that mount messages to the
operator that do not pertain to MAXSORT are suppressed.

• SORTOU00 and SORTIN cannot share the same tape unit. However, SORTOU00 and
SORTOUT may share the same tape unit unless the DYNATAPE PARM is specified.
SORTIN and SORTOUT may always share the same unit.

TDS.jobname.
Snn
Mnn 

 
 

TDS.Ddddhhmm.jobname.
Snn
Mnn 

 
 

SyncSort for z/OS 1.1 Programmer’s Guide9.8

• If DYNATAPE is in effect, the tape unit name must be the same as the unit name
specified in the TAPENAME PARM.

Sample SORTOU00 DD Statement

SORTOUnn DD Statements

The SORTOUnn DD statements allocate the tape units used as input to the merge phase.
They are required unless the DYNATAPE option (available only under z/OS) is used.

Although it is not necessary to specify the SORTOUnn DD statements when DYNATAPE is
used, it is a good idea to pre-allocate at least two SORTOUnn data sets when the
DYNATAPE option is specified. This ensures that the minimum required number of tape
units will be available for the merge phase. When additional units are available,
DYNATAPE will provide performance benefits.

The following rules should be observed in coding the SORTOUnn DD statements:

• At least two tape units must be allocated in the absence of DYNATAPE. However,
allocating more units will make the merge phase complete more quickly.

• Each statement must be allocated to a unique tape drive. If DYNATAPE is in effect, the
tape unit name must be the same as the unit name specified in the TAPENAME
PARM.

• All the tape units must operate at the same recording density. For best performance,
multiple density units should be run at the highest density.

• For each SORTOUnn statement, replace the 'nn' with a two digit number between 01
and 99. The numbers need not be consecutive.

• Specify DISP=(NEW,KEEP), a permanent DSNAME and VOL=PRIVATE so that a
scratch tape is used and the tape volumes are unloaded.

• Specify the DEFER option in the UNIT parameter so that mount messages to the
operator that do not pertain to MAXSORT are suppressed.

//SORTOU00 DD DSN=PERM.OU00,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

Figure 193. Sample SORTOU00 DD Statement

Chapter 9. MAXSORT 9.9

Sample SORTOUnn DD Statements

Using Disk for Intermediate Output

In most cases, tape units will be used to store the intermediate output of the individual
sorts and intermediate merges. However, it may be desirable in some circumstances to
place intermediate output on disk (e.g., to take advantage of a mass storage subsystem).
Assigning the intermediate output to a mass storage subsystem will not compromise the
sort’s efficiency. Because these files will be written and read sequentially, paging will be
minimal.

If disk is used for intermediate storage, the following rules should be observed:

• The SORTOU00 statement should not be coded.

• SORTOUnn statements may be allocated to real or MSS virtual volumes.

• To determine how many SORTOUnn DD statements to supply, divide the total number
of bytes of sort input data by the number of bytes of SORTWK space and add 2 to the
result. This figure is the number of SORTOUnn statements to supply. If too few
SORTOUnn DD statements are supplied, MAXSORT will terminate for restart at the
point at which a new DD statement is needed.

• Each SORTOUnn DD statement must allocate enough primary and secondary space to
hold all of the data written during that intermediate sort.

• Track overflow is not supported for disk SORTOUnn data sets. Record lengths must not
exceed the track capacity unless VS or VBS records are being processed.

SORTCKPT DD Statement

This DD statement is required in order to restart a MAXSORT which is task-invoked or
includes a user exit routine because in these cases MAXSORT cannot be restarted from a
breakpoint. The standard OS/VS Checkpoint-Restart feature is used. Both automatic
Checkpoint-Restart and deferred Checkpoint-Restart capabilities are supported (see
“Chapter 13. Performance Considerations”). Checkpoints are taken at the end of each inter-
mediate sort or merge.

//SORTOU01 DD DSN=PERM.OU01,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SORTOU02 DD DSN=PERM.OU02,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

Figure 194. Sample SORTOUnn DD Statements

SyncSort for z/OS 1.1 Programmer’s Guide9.10

The SORTBKPT DD statement must be specified in addition to the SORTCKPT DD state-
ment even when MAXSORT cannot be restarted from a breakpoint.

A MAXSORT with an E35 exit does not require the SORTCKPT DD statement.

Control Statements

Control statements will only be accepted at the initial execution of MAXSORT. If
MAXSORT is restarted, the control statements cannot be changed. Except for MERGE and
OUTFIL, all SyncSort control statements are fully supported for MAXSORT.

PARM Options

The MAXSORT parameters described below may be specified on the EXEC statement, the
$ORTPARM DD statement, PARMTBLE or PARMEXIT, and may be listed in any order.

BKPTDSN

The BKPTDSN PARM is used to change the prefix of the data set names for the output of
the individual sorts and intermediate merges. TDS. is the delivered default. The last char-
acter of the prefix must be a period. If the TIMESTMP option was specified at installation
time, up to 21 characters may precede that period. Otherwise, up to 31 characters may be
specified before the final period.

DYNATAPE

DYNATAPE instructs MAXSORT to dynamically allocate any tapes needed as input for the
merge phase. DYNATAPE may be used instead of (or as a supplement to) SORTOUnn DD
statements.

NODYNATAPE, the default, disables dynamic allocation.

MAXSORT

BKPTDSN=
cc...c.
TDS. 

 
 

DYNATAPE
NODYNATAPE 

 
 

MAXSORT

Chapter 9. MAXSORT 9.11

This parameter is required in order to execute MAXSORT.

MAXWKSP

This option specifies the maximum amount of disk SORTWK space that MAXSORT can
use. When this parameter is used, MAXSORT will release excess space in order to meet the
figure specified by the user.

When the RELEASE=ON parameter is active (either via specification or by default) at the
conclusion of the sort portion of a MAXSORT, most of the allocated SORTWK space is freed
(however, in the case of invoked sorts or SORTWKs defined as OLD, the data set is
returned to the size allocated at MAXSORT initiation rather than the minimum size possi-
ble).

If MAX, the default value, is specified, all primary and secondary space which has been
allocated will be acquired. The MAXWKSP value may also be specified as a decimal num-
ber of cylinders (n) or as a decimal number of megabytes (nM) of work space.

If MAXWKSP is specified as n cylinders, MAXSORT will convert the specification to an
actual byte value. MAXSORT will multiply by n the capacity of a cylinder on the disk allo-
cated to the lowest-numbered SORTWKnn DD statement.

Note: MAXWKSP should be specified as greater than or equal to MINWKSP, if specified.

MINWKSP

This option specifies the minimum amount of disk SORTWK space that MAXSORT can
use. If the MINWKSP value exceeds the primary allocation and sufficient secondary alloca-
tion cannot be obtained to meet the MINWKSP value at the time of execution, the sort ter-
minates. It can be restarted later when more space is available.

The MINWKSP value may be specified as a decimal number of cylinders (n) or a decimal
number of megabytes (nM) of work space.

The default MINWKSP value is 8 cylinders.

MAXWKSP=

MAX

nM
n 

 
 
 
 

MINWKSP=

8

nM
n 

 
 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide9.12

If MINWKSP is specified as n cylinders, MAXSORT will convert the specification to an
actual byte value. MAXSORT will multiply by n the capacity of a cylinder on the disk allo-
cated to the lowest-numbered SORTWKnn DD statement.

Note: MINWKSP should be specified as less than or equal to MAXWKSP, if specified.

RESTART

This parameter specifies the point at which restart is to occur.

LAST, the default value, requests that the sort start at the most recent breakpoint.

NO specifies that the SORTBKPT data set is to be cleared so that it can be used for a new
job. (Be sure to specify NO only when the SORTBKPT data set is empty or should be
destroyed.)

To restart at a particular breakpoint, code its id number. The breakpoint id number is pro-
vided by message WER350I.

SORTSIZE

This option is accepted but ignored. Its function has been replaced by SyncSort internal
techniques.

SORTTIME

The SORTTIME parameter terminates the sort at the next breakpoint after n minutes of
clock time have elapsed. (The sort may be restarted later.) The default is 1440 minutes (24
hours).

If this parameter is omitted or 1440 is specified, the sort will not terminate prematurely.

RESTART=

LAST

NO
id 

 
 
 
 

SORTSIZE=
n
nM
nT 

 
 
 
 

SORTTIME=
n
1440 

 
 

Chapter 9. MAXSORT 9.13

This parameter may be specified with operator communication at installation time. If oper-
ator communication is specified, the sort will be interrupted at the next breakpoint after
the specified amount of time has elapsed and the operator will be asked whether to termi-
nate the sort or continue until the next breakpoint.

TAPENAME

This parameter specifies the tape unit generic name for dynamic tape allocation. The
default TAPENAME is TAPE.

If the TAPENAME parameter is specified, the same unit generic name must be specified
for both the SORTOU00 and the SORTOUnn DD statements.

The tape unit generic name must be a valid unit name at your installation.

Exit Programs

All the exits available for Disk Sort are supported for MAXSORT. However, since
MAXSORT never runs out of work space on even the largest sorts, an E16 exit routine will
never be called. Exit routines may be written in COBOL, C, Assembler language, or REXX.
All exits should be prelink-edited for maximum efficiency.

The following rules must be observed when MAXSORT includes an exit routine:

• Exit programs are not allowed to take their own z/OS checkpoints.

• MAXSORT may take system checkpoints when the following exits are active: E14, E15,
E25, E35 and E61. Since a checkpoint may be taken between any two calls of these
exits, these routines should be coded accordingly. Any restrictions that apply to system
Checkpoint-Restart, such as restrictions on the use of data sets, are applicable to the
coding of these exit routines.

Invoking MAXSORT from a Program

MAXSORT can be invoked from programs written in COBOL, PL/1 or Assembler language.
However, this is the least efficient method of executing MAXSORT and performance bene-
fits will be realized if MAXSORT is initiated through job control language.

When MAXSORT is invoked from a program, the MAXSORT PARM should be specified in
the $ORTPARM DD statement. The SYSIN DD statement is ignored.

TAPENAME=
name
TAPE 

 
 

SyncSort for z/OS 1.1 Programmer’s Guide9.14

Restarting MAXSORT

A JCL-initiated MAXSORT can be restarted from a breakpoint if necessary. When
MAXSORT is restarted from a breakpoint, the following PARM options cannot be modified:
CMP=CPD/CLC, EQUALS, E15/E35=COB, FILSZ, LOCALE, MAXSORT, STOPAFT and
TAPENAME. Other PARM options will be accepted if they are specified on the EXEC
statement. Only the CORE parameter can be passed through $ORTPARM.

SyncSort control statements cannot be modified when MAXSORT is restarted. However,
the l5, l6 and l7 values on the LENGTH parameter of the RECORD control statement can
be altered.

Restarting MAXSORT with Exit Routines or an Invoked MAXSORT

When MAXSORT includes an exit routine or is invoked from a program, it cannot be
restarted from a breakpoint. Instead, it can be restarted from a checkpoint using the stan-
dard OS/VS Checkpoint-Restart feature. Checkpoints are taken at the end of each interme-
diate sort or merge.

When MAXSORT is restarted from a checkpoint, modified PARM options cannot be
specified on the EXEC statement. Only the CORE parameter can be passed through
$ORTPARM.

To specify that checkpoints be taken for a MAXSORT with an exit routine or for an invoked
MAXSORT, the following rules must be observed:

• Include the SORTCKPT DD statement in the JCL (in addition to the SORTBKPT DD
statement.

• Assign a permanent data set name to every SORTWKnn DD statement and specify
DISP=(NEW,DELETE,KEEP).

• Specify RD=R and MSGLEVEL=1 on the JOB statement.

• Specify the CKPT parameter on the SORT/MERGE control statement.

MAXSORT’s Operator Interface

If MAXSORT’s operator interface options are enabled when SyncSort is installed, they will
permit operator communication at selected breakpoints (e.g., at the first breakpoint after
SORTTIME has expired, or when tape drives are dynamically allocated under
DYNATAPE.) Operator communication allows the operator to examine the environment at
execution time to decide whether or not to terminate MAXSORT at that breakpoint. If the
operator decides to terminate the sort, it can be restarted later at that breakpoint. All the
previously produced sorted data sets can be used without resorting.

Chapter 9. MAXSORT 9.15

Operator communication with MAXSORT is not a delivered default - these options must be
enabled at SyncSort installation time.

For example, if MAXSORT’s assigned block of computer time (its SORTTIME value) has
been exhausted and SyncSort was installed to permit operator intervention at such times,
message WER375D is generated.

The operator receiving this message can decide to terminate the sort or allow it to continue,
basing his decision on scheduling priorities and the estimated time of the sort. When
another 30 minutes have passed, the operator will be asked again whether or not
MAXSORT should be terminated.

When DYNATAPE is specified and operator communication has been enabled at installa-
tion time, message WER376D may be generated to report the results of the dynamic alloca-
tion attempt.

If the operator responds 'GO', MAXSORT will execute with four tape units. If the operator
responds 'STOP', MAXSORT will terminate. If the operator responds with a number ('NN'),
MAXSORT will try to allocate that total number of tape drives. Ideally, the operator should
specify six for 'NN' because MAXSORT needs six tape units for best performance. If the
operator requests additional tape units, message WER376D will be reissued. The operator
will again be prompted for a 'GO', 'STOP' or 'NN' reply. In this way, the operator can bal-
ance the requirements of MAXSORT against the requirements of other jobs that are exe-
cuting at the same time.

When DYNATAPE is specified, there may not be enough tape units available for dynamic
allocation. In this case, message WER377D is generated.

WER375D PAYROLL.SORTSTEP - MAXSORT BKPT PAYROLL S12

WER375D TIME ESTIMATE: 30 MINUTES UNTIL NEXT NOTIFICATION

WER375D REPLY 'GO' TO CONTINUE, 'STOP' TO TERMINATE

Figure 195. Example: Operator Notification at SORTTIME Expiration

WER376D PAYROLL.SORTSTEP - MAXSORT BKPT PAYROLL.S01

WER376D 4 TAPE UNITS ALLOCATED TO PAYROLL

WER376D 6 TAPE UNITS NEEDED FOR BEST PERFORMANCE

WER376D TIME ESTIMATE USING 4 TAPE UNITS--

WER376D 20 MINUTES TO NEXT BREAKPOINT

WER376D REPLY 'GO' TO CONTINUE, 'STOP' TO TERMINATE, 'NN' # UNITS

Figure 196. Example: Operator Notification with DYNATAPE

SyncSort for z/OS 1.1 Programmer’s Guide9.16

The operator receiving message WER377D can wait until additional tape drives have been
released and then reply 'RETRY'. Or, the operator can answer 'STOP' to terminate the job
and then restart it later when more tape drives become available.

If the DYNATAPE and TAPENAME PARMs have been specified and all tape units on the
system within the TAPENAME class have already been allocated, message WER378D is
generated.

Message WER378D is followed by message WER376D if the number of tape drives allo-
cated is sufficient for execution, or by message WER377D if it is not sufficient.

WER377D PAYROLL.SORTSTEP - MAXSORT BKPT PAYROLL.S01

WER377D INSUFFICIENT TAPE UNITS AVAILABLE

WER377D 2 TAPE UNITS ALLOCATED TO PAYROLL

WER377D 4 TAPE UNITS NEEDED TO CONTINUE EXECUTION

WER377D REPLY 'RETRY' TO GET UNITS, 'STOP' TO TERMINATE

Figure 197. Example: Operator Notification of Insufficient Tape Units under DYNATAPE

WER378D NO ADDITIONAL TAPE UNITS EXIST FOR GENERIC CLASS 2400-3

Figure 198. Example: Operator Notification of Insufficient Tape Units for TAPENAME
Class

Chapter 9. MAXSORT 9.17

Sample MAXSORT JCL/Control Streams

The following examples illustrate how the JCL could be coded for typical 100-megabyte
MAXSORTs.

Example 1: A 1-Gigabyte MAXSORT with only Minimal Disk Space Available

An installation is running a 1-gigabyte sort and has a restricted amount of disk space avail-
able for SORTWK across three volumes (WORK1, WORK2 and WORK3).

The JCL for this job follows.

1. This job step is run in order to allocate the disk space for the breakpoint data set via
IBM utility program IEFBR14.

2. This statement allocates the space for the breakpoint data set. Specify (NEW,CATLG)
because this data set must be saved.

//ALLOC EXEC PGM=IEFBR14 1

//BKPTDATA DD DSN=BKPT.DATA,DISP=(NEW,CATLG), 2

// UNIT=SYSDA,SPACE=(1000,(100,50))

//SORT EXEC PGM=SYNCSORT,PARM='MAXSORT,MINWKSP=600' 3

//SORTBKPT DD DSN=BKPT.DATA,DISP=(OLD,KEEP) 4

//SYSOUT DD ... 5

//SORTIN DD ...

//SORTOUT DD ...

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(150,20)), 6

// VOL=SER=WORK1

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(150,20)),

// VOL=SER=WORK2

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(150,20)),

// VOL=SER=WORK3

//SORTOU00 DD DSN=PERM.OU00,DISP=(NEW,KEEP), 7

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SORTOU01 DD DSN=PERM.OU01,DISP=(NEW,KEEP), 8

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SORTOU02 DD DSN=PERM.OU02,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SORTOU03 DD DSN=PERM.OU03,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SYSIN DD * 9

SORT FIELDS=(1,10,CH,A)

/*

Figure 199. Sample JCL Control Stream for a 1-Gigabyte MAXSORT

SyncSort for z/OS 1.1 Programmer’s Guide9.18

3. The EXEC statement initiates the regular SyncSort program, and the MAXSORT
PARM is specified, as required. This job requests a minimum of 600 cylinders of disk
space for SORTWKnn data sets. If that much space cannot be obtained during the job,
the program will terminate.

4. The SORTBKPT DD statement is required for all MAXSORTs. It identifies the
breakpoint data set which was allocated in the first job step. DISP=(OLD,KEEP) is
specified so that this statement can be reused if MAXSORT is restarted.

5. These DD statements are coded just as they would be for an ordinary sort.

6. The SORTWKnn DD statements must be allocated to disk or MAXSORT will
terminate. In this case, 450 cylinders of primary space have been allocated. Secondary
allocation could provide up to 300 cylinders on each volume if that amount of free space
exists. Since the MINWKSP PARM specifies at least 600 cylinders, this program will
terminate unless 150 cylinders of secondary space can be obtained.

7. The SORTOU00 DD statement is required for this job because the intermediate sort
output will be stored on tape. DISP=(NEW,KEEP), a permanent DSN and
VOL=PRIVATE are specified to ensure that the system unloads each output tape. The
DEFER option in the UNIT parameter is specified so that mount messages to the
operator that do not pertain to MAXSORT are suppressed.

8. The SORTOU01, SORTOU02 and SORTOU03 DD statements allocate the tape units
used as input to the merge phase. Permanent DSNAMEs, DISP=(NEW,KEEP),
VOL=PRIVATE and the DEFER option in the UNIT parameter are all specified just as
they were for the SORTOU00 DD statement.

9. The sort control statements are included here.

Chapter 9. MAXSORT 9.19

Example 2: Restarting the MAXSORT in Example 1 from a Breakpoint

Example 1 can be restarted from a breakpoint simply by submitting the original job control
stream without the job step which allocated space for the breakpoint data set. The job will
be restarted from the last breakpoint because RESTART=LAST is the default; it is not nec-
essary to specify RESTART=LAST on the EXEC statement.

The JCL for this job follows.

The JCL is identical to the JCL in Example 1 except that the step which allocated the disk
space for the breakpoint data set is not resubmitted.

//SORT EXEC PGM=SYNCSORT,PARM='MAXSORT,MINWKSP=600'

//SORTBKPT DD DSN=BKPT.DATA,DISP=(OLD,KEEP)

//SYSOUT DD ...

//SORTIN DD ...

//SORTOUT DD ...

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(150,20)),VOL=SER=WORK1

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(150,20)),VOL=SER=WORK2

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(150,20)),VOL=SER=WORK3

//SORTOU00 DD DSN=PERM.OU00,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SORTOU01 DD DSN=PERM.OU01,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SORTOU02 DD DSN=PERM.OU02,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SORTOU03 DD DSN=PERM.OU03,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SYSIN DD *

SORT FIELDS=(1,10,CH,A)

/*

Figure 200. Sample JCL Control Stream for Restarting a 1-Gigabyte MAXSORT

SyncSort for z/OS 1.1 Programmer’s Guide9.20

Example 3: A 1-Gigabyte MAXSORT with Dynamic Tape Allocation

This example is identical to Example 1 with one difference: the DYNATAPE PARM
requests dynamic tape allocation.

The JCL for this job follows.

The DYNATAPE PARM requests that tape units be obtained dynamically. Because
DYNATAPE has been specified, the SORTOU01, SORTOU02 and SORTOU03 DD
statements specified in Example 1 do not have to be supplied. They will be created and
dynamically allocated when needed. If enough tape units are available at the time the job is
run, the sort will be successfully completed in one step.

However, there may not be enough tape devices available under dynamic allocation at exe-
cution time. In that case, the job will terminate and can be restarted at a later time when
more tape units are available.

For best results, code two SORTOUnn DD statements in addition to specifying the
DYNATAPE PARM as the above example illustrates. This approach ensures that
MAXSORT will have the minimum two tape units needed for the merge phase and also
allows MAXSORT to take advantage of the additional tapes available under dynamic
allocation.

//ALLOC EXEC PGM=IEFBR14

//BKPTDATA DD DSN=BKPT.DATA,DISP=(NEW,CATLG),UNIT=SYSDA,

// SPACE=(1000,(100,50))

//SORT EXEC PGM=SYNCSORT,PARM='MAXSORT,MINWKSP=600,

// DYNATAPE'

//SORTBKPT DD DSN=BKPT.DATA,DISP=(OLD,KEEP)

//SYSOUT DD ...

//SORTIN DD ...

//SORTOUT DD ...

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(150,20)),VOL=SER=WORK1

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(150,20)),VOL=SER=WORK2

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(150,20)),VOL=SER=WORK3

//SORTOU00 DD DSN=PERM.OU00,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SORTOU01 DD DSN=PERM.OU01,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SORTOU02 DD DSN=PERM.OU02,DISP=(NEW,KEEP),

// UNIT=(TAPE,,DEFER),VOL=PRIVATE

//SYSIN DD *

SORT FIELDS=(1,10,CH,A)

/*

Figure 201. Sample JCL Control Stream for a 1-Gigabyte MAXSORT

Chapter 9. MAXSORT 9.21

Tuning MAXSORT

MAXSORT’s performance can be optimized by controlling the intermediate sorts which it
processes. A balance should be achieved between the number and duration of intermediate
sorts. Limiting the number of sorts reduces the required tape mounts and restricting the
duration of sorts decreases the interval between breakpoints.

A good rule of thumb is that each intermediate sorted data set should create from one to
five volumes of input data, and the only way to determine the amount of input data is by
controlling the amount of SORTWK space used. This is illustrated in Figure 202.

If only 50 cylinders were allocated in the preceding example, 19 intermediate sorts would
be performed, increasing the required tape mounts and potential for error. If 800 cylinders
were allocated, most of the input would be processed by the first intermediate sort, delay-
ing the first breakpoint and introducing the potential for losing data. It is crucial, therefore,
to allocate a balanced amount of DASD space that will divide your file into reasonably sized
segments to minimize the possibility of system error and to enhance your performance.

Before tuning MAXSORT then, a number of individual environmental elements should be
considered. A study of disk and tape availability, input data file size, and virtual storage
limitations will help you optimize the balance of performance and reliability.

1 tape volume contains 250 megabytes
1 3390 cylinder can hold approximately 800,000 bytes
SORTIN: 750 megabytes (3 tape volumes)
OBJECTIVE: Each intermediate sort processes one input volume,

i.e. 3 intermediate sorts should be run.

To determine SORTWK allocation (for 3390 SORTWKs):
Divide one input volume 250,000,000
by cylinder capacity 800,000

Quotient: 313 cylinders.

To ensure 3 intermediate sorts:

Allocate 313 cylinders
Set MAXWKSP=250M

Figure 202. Calculating MAXWKSP

SyncSort for z/OS 1.1 Programmer’s Guide9.22

Chapter 10. PARASORT 10.1

Chapter 10. PARASORT

PARASORT: Parallel Input Processing for Elapsed Time
Improvement

PARASORT improves elapsed time performance for sorts whose input is a multi-volume
tape data set and/or concatenated tape data sets. Reduced elapsed time can help critical
sort applications achieve batch window goals.

The performance improvement from PARASORT is a result of processing the SORTIN
input volumes in a parallel fashion. Depending upon the resources provided, elapsed time
can be reduced up to 20% for 2-way input and up to 33% for 4-way input.

PARASORT requires additional tape units for the application. You will need from two to
eight times the current number of tape units, depending upon resource availability and the
degree of improvement desired. PARASORT automatically manages the tape units and
minimizes the use of the tape drive resources by deallocating excess tape drives during ini-
tialization and releasing all the extra units at the end of the sort input phase.

PARASORT Applicability

Certain SyncSort facilities or application characteristics cannot be used with PARASORT.
The following are incompatible with a PARASORT application:

• A SORTIN record format (RECFM) of VS or VBS.

• An ASCII tape data set specified for SORTIN.

SyncSort for z/OS 1.1 Programmer’s Guide10.2

• An exit routine other than a pre-linked or inline E35 exit.

• EQUALS specified either as an installation or run-time option.

• SKIPREC or STOPAFT options specified.

• SEQNUM specified on INREC.

• CKPT (checkpoint) option in effect.

• The MAXSORT option specified.

• The OUTREC CONVERT feature to convert VL records to FL format.

• Certain unusual sort key types, feature combinations, or long sort keys in excess of 800
bytes.

• FIELDS=COPY specified.

Job Control Language

The JCL for PARASORT is similar to the JCL for a standard disk sort. The primary differ-
ence is that PARASORT JCL must specify additional tape units to allow parallel input pro-
cessing of the SORTIN data set. For details on SORTIN JCL for PARASORT, see “SORTIN
DD Statement with PARASORT” on page 10.3.

To initiate PARASORT using job control statements, specify PARM='PARASORT' on the
EXEC statement. A program initiated sort requests PARASORT by using a PARM card
image in the data set defined by the $ORTPARM DD statement.

Sample EXEC Statement

DD Statements

PARASORT’s DD statement requirements are summarized in the following table. One
additional DD type (SORTPARn) is required compared to a conventional disk sort.

Figure 203. PARASORT EXEC Statement

//stepname EXEC

PGM=SYNCSORT
PGM=SORT
PGM=IERRCO00
PGM=IGHRCO00
PGM=ICEMAN 

 
 
 
 
 
 
 
 

 ,PARM='PARASORT'

Chapter 10. PARASORT 10.3

The SORTIN and SORTPARn DD statements are discussed below. For a discussion of the
other DD statements, which are specified for PARASORT just as for a non-PARASORT
Disk Sort, see “Chapter 4. JCL and Sample JCL/Control Statement Streams”.

SORTIN DD Statement with PARASORT

The SORTIN DD statement is required for a PARASORT application. It must define either
a single multi-volume tape data set or several concatenated tape data sets, which can be
single or multi-volume. If the SORTIN is concatenated, each data set must meet the normal
SORTIN concatenation requirements and must be able to use the same device type so that
UNIT=AFF=SORTIN can be specified for all data sets in the concatenation. For a discus-
sion of normal SORTIN JCL, see “Chapter 4. JCL and Sample JCL/Control Statement
Streams”

For optimal performance, data sets that reside on tapes, such as 3480s, that can be read
only in a single direction should have two units allocated. If the data set is on a tape that
supports bidirectional processing, a single unit is sufficient. In all cases DEFER mounting
must be specified.

SORTIN data sets may not be passed data sets or have PASS specified on their DD state-
ment.

PARASORT DD Statements

//$ORTPARM DD Used to override PARM or control statement information.

//SYSIN DD Control statement data set. Required unless the address of a 24-
bit or 31-bit extended parameter list is supplied by an invoking
program.

//SYSOUT DD Message data set. Required unless all messages are routed to
console.

//SORTWKxx DD Disk work area definition. Required unless DYNALLOC is spec-
ified.

//SORTIN DD SORT input data set. Required.

//SORTPARn DD Defines additional tape units for parallel reading of SORTIN.
Required.

//SORTOUT DD Output data set. Required unless there is an E35. Ignored if the
invoking program supplies an inline E35 exit routine; optional if
the MODS statement activates an E35 exit routine.

//SORTXSUM DD Output data set for records deleted by SUM. Required if XSUM
parameter used.

//ddname DD Required unless E35 user exit is in LINKLIB/JOBLIB/
STEPLIB.

Table 40. PARASORT DD Statements

SyncSort for z/OS 1.1 Programmer’s Guide10.4

Either the catalog or specific list of volume serial numbers must be specified. The volume
serial list must accurately reflect the volumes in the data set. If extra volumes are specified
(as may happen if an old data set is rewritten with less data) an error message will be gen-
erated. A volume sequence number may not be specified.

The following example SORTIN DD statements for PARASORT illustrate three different
SORTIN cases:

• A multi-volume cataloged data set

• A multi-volume uncataloged data set

• Concatenated single and multi-volume uncataloged data sets

Note that each example includes a y on the UNIT specification (for example,
UNIT=(3480,y,DEFER)). The y is either 1 or 2 and indicates the number of units to be allo-
cated for these devices. For optimal performance, data sets that reside on tapes that can be
read only in a single direction, such as 3480s, should have two units allocated. If the data
set is on a tape that supports bidirectional processing, a single unit is sufficient. In all cases
DEFER mounting must be specified.

Note also that each example includes an alternative UNIT specification:
UNIT=(xxxxx1,y,DEFER). This specification applies if special esoteric names are available.
The xxxxx1 is a special esoteric unit name established especially for PARASORT. These
esoteric names may have been created at your site for use with PARASORT. Contact the
systems programmer responsible for SyncSort installation to determine if they are avail-
able. For information on how to select a special esoteric name, see “Special Channel Sepa-
rated Esoteric Names” on page 10.7

Example 1

SORTIN consists of a single multi-volume cataloged data set.

//SORTIN DD DSN=INPUT.FILE,DISP=(OLD,KEEP),

// UNIT=(,y,DEFER)

or if a special esoteric name is available

// UNIT=(xxxxx1,y,DEFER)

Figure 204. Sample SORTIN DD Statement

Chapter 10. PARASORT 10.5

Example 2

SORTIN consists of a single multi-volume uncataloged data set.

This example presumes the file is standard label and the first file is on VOL001.

For uncataloged data sets, the unit and volser list must be specified.

Example 3

SORTIN consists of a concatenation of single and multi-volume uncataloged data sets.

It is also possible to include a DD DUMMY allocation in the SORTIN concatenation. This is
necessary when modifying production JCL that is a prototype for the maximum number of
possible concatenated input files. If a particular execution uses less than the maximum
number, place the DD DUMMY specification at the appropriate point. This specification
should contain a DCB specification that matches that of the first SORTIN data set.

SORTPARn DD Statements

The SORTPARn DD statements define units that will be used to perform the parallel read-
ing of the input file. Up to four SORTPARn DD statements may be provided, with a mini-
mum of two required. The number of SORTPARn DD statements that you provide may be
limited by the tape channel capacity at your installation. See “Special Channel Separated
Esoteric Names” on page 10.7 for information on how to determine if your choice is limited.

The n in the SORTPARn is replaced with numbers 1 through 4. The numbers must start at
1 and be numbered consecutively.

//SORTIN DD DSN=INPUT.FILE,DISP=(OLD,KEEP),

// UNIT=(3480,y,DEFER),VOL=SER=(VOL001,VOL002,...,VOL00N)

or if special esoteric name is available

// UNIT=(xxxxx1,y,DEFER),VOL=SER=(VOL001,VOL002,...,VOL00N)

Figure 205. Sample SORTIN DD Statement

//SORTIN DD DSN=INPUT.FILE1,DISP=(OLD,KEEP),

// UNIT=(3480,y,DEFER),VOL=SER=(VOL001,VOL002,VOL003)

or if special esoteric names are available

// UNIT=(xxxxx1,y,DEFER),VOL=SER=(VOL001,VOL002,VOL003)

// DD DSN=INPUT.FILE2,DISP=(OLD,KEEP),

// UNIT=AFF=SORTIN,VOL=SER=(VOL101,VOL102)

// DD DSN=INPUT.FILE3,DISP=(OLD,KEEP),

// UNIT=AFF=SORTIN,VOL=SER=(VOL201)

Figure 206. Sample SORTIN DD Statement

SyncSort for z/OS 1.1 Programmer’s Guide10.6

The required SORTPAR1 must be coded in one of the following two ways, depending on
whether the SORTIN data set is cataloged or not.

• If the SORTIN DD is defined as a single cataloged data set or as a series of
concatenated data sets where the first data set of the concatenation is cataloged, then
the SORTPAR1 DD must be coded as follows:

• If the SORTIN DD is defined as a single non-cataloged data set or as a series of
concatenated data sets where the first data set of the concatenation is non-cataloged,
then the SORTPAR1 DD must be coded as follows:

where the VOL=SER list contains the identical volumes specified on the SORTIN DD
specification. If the SORTIN DD is a series of concatenations, the VOL=SER list is the
volumes that comprise the first data set in the concatenation.

The remaining SORTPARnn DDs are coded as shown on the following prototype
SORTPARnn DD statement:

The xxxx is a unit type or generic name compatible with the device associated with SOR-
TIN. If special channel separated esoteric names have been made available, see “Special
Channel Separated Esoteric Names” on page 10.7.

The y is either 1 or 2 and indicates the number of units to be allocated for these devices. For
optimal performance, data sets that reside on tapes that can be read only in a single direc-
tion, such as 3480s, should have two units allocated. If the data set is on a tape that sup-
ports bidirectional processing, a single unit is sufficient. In all cases DEFER mounting
must be specified.

//SORTPAR1 DD DSN=*.SORTIN,DISP=OLD,

// UNIT=AFF=SORTIN

Figure 207. Sample SORTPAR1 DD Statement

//SORTPAR1 DD DSN=*.SORTIN,DISP=OLD,UNIT=AFF=SORTIN,

// VOL=SER=(VOL001,VOL002,...,VOL00n)

Figure 208. Sample SORTPAR1 DD Statement

//SORTPARn DD DSN=*.SORTIN,DISP=(,KEEP,KEEP),

// VOL=PRIVATE,UNIT=(xxxx,y,DEFER)

or if special esoteric names are available

// VOL=PRIVATE,UNIT=(xxxxxn,y,DEFER)

Figure 209. Prototype SORTPARn DD Statement

Chapter 10. PARASORT 10.7

The number of SORTPARn data sets to allocate depends on several factors:

• The total number of volumes to be read from SORTIN and its concatenations.
There is no need to allocate more SORTPARn data sets than total volumes in the
SORTIN file. Note that if more SORTPARn data sets are allocated than there are
volumes, the excess SORTPARn data sets will be deallocated at PARASORT’s initi-
ation.

• The degree of performance improvement desired.
Typically, two SORTPARn datasets will provide up to 20% elapsed time improve-
ment; three, up to 25%; and four, up to 33%.

• The degree of channel contention, which may reduce the number of SORTPARn DD
statements used.

The use of special esoteric unit names will ensure that this contention is elimi-
nated, but your choice for the number of SORTPARn DD statements may be lim-
ited.

• Resource availability.
System constraints may limit the number available to a particular job.

Special Channel Separated Esoteric Names

For optimal PARASORT performance, SyncSort must be able to read each SORTPARn
input DD simultaneously, with no channel contention. To ensure this, your system pro-
gramming staff may have defined special esoteric unit names for use with PARASORT.
Before creating a PARASORT application, you should contact your system programmer to
verify that this work has been done and that the special names are available for use. Note,
however, that even if the work has been done, certain categories may be unavailable due to
limited channel capacity.

To use special esoteric names, do the following:

1. Decide whether you would like to specify 4-way (up to SORTPAR4), 3-way (up to
SORTPAR3) or 2-way (up to SORTPAR2) input.

2. In the table of special esoteric names provided by your systems programmer, find the
name that corresponds to the tape type of the SORTIN data sets.

The following is a sample table of special esoteric names. This table is for illustration
only; the names at your site may be different.

SyncSort for z/OS 1.1 Programmer’s Guide10.8

3. Use the name from the table at your site for your SORTIN and SORTPARn names. The
following example JCL is for input from 3480 cartridges with at least 4 volumes:

Sortwork Considerations

The amount of sortwork space required is the same as if the application were run as a
conventional sort. What should be modified, if sortworks are provided via JCL rather than
DYNALLOC, is the number of SORTWKxx DD statements. Try to provide a total number of
SORTWKxx DDs that is two to three times the number of SORTPARns specified. This
would typically require an adjustment in primary and secondary space amounts so that the
total space allocated is similar to that of the original application. This subdivision of
SORTWORK space will provide an opportunity for additional channel path availability.
This parallelism in SORTWORK channel paths is also a key to improving sort elapsed time
performance.

3420 3480/90 3490E 3590

|----------|----------|----------|----------|

4-WAY | PAR241 | PAR441 | PARE41 | NOT |

INPUT | PAR242 | PAR442 | PARE42 | POSSIBLE |

| PAR243 | PAR443 | PARE43 | |

| PAR244 | PAR444 | PARE44 | |

|----------|----------|----------|----------|

3-WAY | PAR231 | PAR431 | PARE31 | NOT |

INPUT | PAR232 | PAR432 | PARE32 | POSSIBLE |

| PAR233 | PAR433 | PARE33 | |

|----------|----------|----------|----------|

2-WAY | PAR221 | PAR421 | PARE21 | PAR921 |

INPUT | PAR222 | PAR422 | PARE22 | PAR922 |

|----------|----------|----------|----------|

Figure 210. Sample Esoteric Unit Name Table

//SORTIN DD DSN=....,DISP=(OLD,KEEP),UNIT=(PAR441,2,DEFER)

//SORTPAR1 DD DSN=*.SORTIN,DISP=OLD,

// UNIT=AFF=SORTIN

//SORTPAR2 DD DSN=*.SORTIN,DISP=(,KEEP,KEEP),

// VOL=PRIVATE,UNIT=(PAR442,2,DEFER)

//SORTPAR3 DD DSN=*.SORTIN,DISP=(,KEEP,KEEP),

// VOL=PRIVATE,UNIT=(PAR443,2,DEFER)

//SORTPAR4 DD DSN=*.SORTIN,DISP=(,KEEP,KEEP),

// VOL=PRIVATE,UNIT=(PAR444,2,DEFER)

Chapter 10. PARASORT 10.9

Operations Notes

Since the SORTIN tape volumes will be read in any order and on a SORTPARn tape unit
location determined by the PARASORT logic, it is possible to receive messages on the con-
sole log that indicate out of sequence processing of the volumes of the SORTIN data set.
Messages such as the following may be generated:

IEC712I ... SORTPARn READ - NOT FIRST VOLUME OF DATA SET

or

IEC710I ... SORTPARn ANOTHER VOLUME EXPECTED

These messages can be disregarded since this type of processing is deliberate with
PARASORT.

SyncSort for z/OS 1.1 Programmer’s Guide10.10

Chapter 11. SyncSort DB2 Query Support 11.1

Chapter 11. SyncSort DB2 Query Support

SyncSort can directly retrieve data from a DB2 database based on a user-provided query.
An SQL SELECT statement is used to specify the criteria of the request. The query of the
DB2 database replaces SyncSort's SORTIN or E15 processing. SORT or COPY functions,
but not MERGE, can be used with DB2 queries. All SyncSort features performed after E15
processing are available for use with the DB2 query facility. Refer to “Chapter 8. The Flow
of the Sort” for a summary of SyncSort's features and flow of control during processing.

The SyncSort DB2 Query facility improves performance over DB2’s DSNTIAUL program
by allowing DB2 data to be passed directly into a SORT or COPY operation, without the
use of setup steps or the need for user-written E15 exits.

Restrictions

The following cannot be used with the DB2 Query facility. If specified, they will cause
SyncSort to terminate with a return code of 16:

• E15 exit

• The SKIPREC parameter

• The MAXSORT feature

• The PARASORT feature

• MERGE

SyncSort for z/OS 1.1 Programmer’s Guide11.2

The following will be ignored if used with the DB2 Query facility:

• A SORTIN data set

• The TYPE parameter and the L1 and L2 values of the LENGTH parameter of a
RECORD statement

Job Control Language

The JCL for the DB2 Query facility is similar to the JCL of a standard disk sort. The pri-
mary difference is that the DB2 query JCL must also contain an additional SORTDBIN DD
specification to define the DB2 query with an SQL SELECT statement.

To initiate a SORT or COPY with the DB2 Query facility using job control statements, spec-
ify PARM='DB2=dsn' on the EXEC statement. The dsn referred to in the DB2 parameter is
the DB2 subsystem name to be accessed. When a SORT or COPY DB2 Query application is
invoked from a program, specify the DB2 parameter in the $ORTPARM DD statement.

Note: In order to issue the first query to the DB2 subsystem identified in the DB2=parm,
you must have BINDADD authority so the plan can be added to the subsystem.

Sample EXEC Statement

The following shows a sample EXEC statement with the DB2 PARM:

DD Statements

The DD statements used with the DB2 Query facility are summarized in the following
table. Note that the SORTDBIN DD statement is unique to the DB2 Query facility.

Figure 211. DB2 Query EXEC Statement

//stepname EXEC

PGM=SYNCSORT
PGM=SORT
PGM=IERRCO00
PGM=IGHRCO00
PGM=ICEMAN 

 
 
 
 
 
 
 
 

 ,PARM='DB2=dsn'

DB2 Query DD Statements

//$ORTPARM DD Used to override PARM or control statement information.

//SYSIN DD Control statement data set. Required unless the address of a 24-
bit or 31-bit extended parameter list is supplied by an invoking
program.

Chapter 11. SyncSort DB2 Query Support 11.3

Table 41. DB2 Query DD Statements

SORTDBIN DD Statement

The SORTDBIN DD statement is required for a DB2 query application. The data set
defined by the SORTDBIN contains the SQL SELECT statement that describes the criteria
of the query.

The SORTDBIN DD record format must be F or FB, and the record length must be 80.

The SORTDBIN data set must be formatted in accordance with the following rules:

• Only a SELECT statement or $ELECT statement (for trial run described below) is
accepted. Any other SQL statements will cause the job to terminate with a WER468A
error message. For details on the facilities and syntax of a SELECT statement refer to
the IBM publication DB2 Universal Database for OS/390 SQL Reference (GC26-9014).

• The maximum supported length of a SELECT statement for this feature is 32765
characters.

• The SELECT statement may not use the '--' convention of two consecutive hyphens to
denote that the remainder of a card image is a comment.

• The SELECT statement may be terminated with a semicolon. Any characters found
after the semicolon will be considered comments.

//SYSOUT DD Message data set. Required unless all messages are routed to
console.

//SORTWKxx DD Disk work area definition. Required unless DYNALLOC is spec-
ified.

//SORTDBIN DD Data set which defines the DB2 query. Contains the SQL
SELECT statement to be used for this application.

//SORTOUT DD Output data set. Required unless there is an E35. Ignored if the
invoking program supplies an inline E35 exit routine; optional if
the MODS statement activates an E35 exit routine.

//SORTXSUM DD Output data set for records deleted by SUM. Required if XSUM
parameter used.

//SORTMODS
//SYSLIN
//SYSLMOD
//SYSUT1
//SYSPRINT

DD
DD
DD
DD
DD

Required if user exits are in SYSIN and if user exits are to be
linkage-edited at execution time.

//ddname DD Required for exits unless the exit is inline in LINKLIB/JOBLIB/
STEPLIB or in SYSIN.

DB2 Query DD Statements

SyncSort for z/OS 1.1 Programmer’s Guide11.4

• Only columns 1 through 72 of each record will be read. Columns 73 through 80 will be
ignored.

• Long fields (LONG VARCHAR and LONG VARGRAPHIC) and large object fields
(BLOB, CLOB, and DBCLOB) are not supported. If they are specified, the application
will terminate with a WER468A error message.

Operation

Using the query provided in the SORTDBIN data set, SyncSort will access the DB2 data-
base specified in the DB2 EXEC PARM and will process as fixed-length records the rows
returned from the query. The records will be processed as if read from a SORTIN or
retrieved from an E15 exit. All SyncSort features available after E15 processing in the flow
of control can be used with a SORT or COPY application.

The record used within SyncSort is constructed from the fields in the query as follows:

• The order of the fields in the record is the same as the order specified by the SELECT
statement.

• The data format of the fields within the record is the same format returned by DB2.

• A fixed-length field is the same length as returned by DB2.

• Variable-length character data is stored in a fixed-length field. The field length is equal
to the maximum length of the field plus two bytes for a leading field length descriptor
variable. The field length descriptor contains a binary value describing the number of
bytes of data provided for this field. If an instance of the field is shorter than the
maximum, the remaining bytes will be set to binary zeros.

• Any fields defined to allow nulls will cause the creation of two fields within the record
constructed by SyncSort. The first will be the data field and the second will be a one
byte indicator field. If the value of the field is null, by default the field will be filled with
binary zeros (X'00') and the indicator field will contain a '?' to signify the field is null. If
the value of the field is not null, the indicator will be set to binary zeros. If binary zeros
would not be an appropriate fill value for a null field, use of SQL functions such as
VALUE or COALESCE on the SELECT statement should be considered. For instance,
if the field to be retrieved is packed decimal, it is usually best to create a null value of
the proper PD format. This ensures that if the field is used later as a sort key or in
other data conversion features, it would contain appropriate high or low values such as
PD zeros or nines as specified in the VALUE or COALESCE function.

Record Description

Information about the record created by the query will be displayed in the SyncSort mes-
sage data set. For each column selected, the report will display the start and end position

Chapter 11. SyncSort DB2 Query Support 11.5

within the record, the DB2 data type, the equivalent SyncSort data type, and whether null
values are allowed. A data type whose length is not implied by the format will have a field
length appended to its description. Note that the length displayed for a VARCHAR DB2
data type is two bytes shorter than would be indicated by the field start and end positions.
The extra two bytes described in the start and end positions are for the field length descrip-
tor, which is contained in the first two bytes of the field.

Record Description: Trial Mode Execution

When first developing an application, knowledge of the actual input record layout built from
the query is required. This can be obtained from a trial mode execution. The trial mode exe-
cution uses a query provided in the SORTDBIN data set to generate a report of the input
record layout in the SyncSort message data set (SYSOUT). The trial mode execution does
not perform any other processing or request data from DB2. To request trial mode execu-
tion, modify the SQL SELECT keyword in the SORTDBIN data set to $ELECT. This indi-
cates a trial mode execution is to be performed. For trial mode, execute SyncSort with JCL
of the following form:

Figure 212. Sample JCL for Trial Mode Execution

Note that only the SYSOUT and SORTDBIN DD are required for a trial mode execution. An
actual execution of the application will require other DDs as documented for SORT or COPY
applications.

The STEPLIB DD statement specifies where the SyncSort and DB2 products can be found.
The STEPLIB DD statement would be needed if these products could not be found in the
standard system libraries.

The DB2 EXEC statement parameter would be set to the DB2 subsystem name to be
accessed.

The SYSOUT data set will contain an input record layout report as shown in the following
sample:

// EXEC PGM=SYNCSORT,PARM='DB2=DSN1'

//STEPLIB DD DSN=DB2.SDSNLOAD,DISP=SHR

// DD DSN=SORT.RESI.DENCE,DISP=SHR

//SYSOUT DD SYSOUT=A

//SORTDBIN DD *

$ELECT FIRSTNME,LASTNAME,WORKDEPT,HIREDATE,EDLEVEL,SALARY

FROM DSN.EMPTAB

 WHERE EDLEVEL>10

/*

SyncSort for z/OS 1.1 Programmer’s Guide11.6

Figure 213. Sample SYSOUT

You would create SyncSort control statements with field specifications based on the input
record layout and place the control statements in the data set specified by the SYSIN DD
statement. You would then create a set of JCL statements for the application.

SYNCSORT FOR Z/OS 1.1AN TPF0 U.S. PATENTS: 4210961, 5117495 (C) 2001 SYNCSORT INC. DATE=2001/225 TIME=14.40.32

 Z/OS 1.1.0 CPU MODEL 2064

PRODUCT LICENSED FOR CPU SERIAL NUMBER 12345 LICENSE/PRODUCT EXPIRATION DATE: 31 MAR 2002

 DB2 QUERY OPTION SELECTED

 QUERY STATEMENTS:

SELECT FIRSTNME,LASTNAME,WORKDEPT,HIREDATE,EDLEVEL,SALARY

 FROM DSN.EMPTAB

 WHERE EDLEVEL>10

INPUT RECORD DESCRIPTION:

 COLUMN START END DB2 SYNCSORT NULL VALUE

 NAME POSITION POSITION DATA TYPE DATA TYPE

 ---------- -------- -------- -------------------- --------- ----------

 FIRSTNME 1 14 VARCHAR(12) CH DISALLOWED

 LASTNAME 15 31 VARCHAR(15) CH DISALLOWED

 WORKDEPT 32 34 CHAR(3) CH ALLOWED

 NULLINDICATOR 35 35 CH

 HIREDATE 36 45 DATE CH ALLOWED

 NULLINDICATOR 46 46 CH

 EDLEVEL 47 48 SMALLINT BI ALLOWED

 NULLINDICATOR 49 49 CH

 SALARY 50 54 DECIMAL(9,2) PD ALLOWED

 NULLINDICATOR 55 55 CH

WER467I DB2 QUERY TRIAL MODE SUCCESSFULLY EXECUTED

 WER169I RELEASE 1.1A BATCH 0999 TPF LEVEL 0

 WER052I END SYNCSORT - JOBNAME,SORTSQL,,DIAG=E4FF,E28C,C888,6044,AC66,48A3,0E88,6E64

Chapter 11. SyncSort DB2 Query Support 11.7

Sample SyncSort DB2 Query Application

In this example, a query is made for employee data. The example specifies how the applica-
tion is to sort and format the data into a report. The formatting adds headers, field spacing,
and converts a date to printable forms.

Figure 214. Sample SyncSort DB2 Query Application

The following describes the JCL statements:

• The EXEC statement identifies SYNCSORT as the program to be executed. The DB2
PARM defines the DB2 subsystem to be accessed.

• The STEPLIB DD statement instructs the system as to where the SyncSort and DB2
products can be found.

• The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

• The SORTOF1 DD statement gives OUT1 as the output data set name and specifies a
3390 disk. One cylinder of primary space has been allocated on this volume. The DISP
parameter shows that this data set is not yet in existence.

• The two SORTWK statements reserve space on four temporary data sets for inter-
mediate storage. Twenty cylinders are to be reserved on the data sets.

//SORTSQL EXEC PGM=SYNCSORT,PARM='DB2=DSN1'

//STEPLIB DD DSN=DB2.SDSNLOAD,DISP=SHR

// DD DSN=SORT.RESI.DENCE,DISP=SHR

//SYSOUT DD SYSOUT=A

//SORTOF1 DD DSN=OUT1,DISP=(NEW,CATLG),UNIT=3390,SPACE=(CYL,1)

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,20)

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,20)

//SORTDBIN DD *

SELECT FIRSTNME,LASTNAME,WORKDEPT,HIREDATE,EDLEVEL,SALARY

FROM DSN.EMPTAB

WHERE EDLEVEL>10

//SYSIN DD *

SORT FIELDS=(3,12,CH,A)

OUTFIL FILES=1,

HEADER1=(2/,20:'EMPLOYEE INFORMATION',

2/,1:'FIRSTNAME',14:'LASTNAME',29:'WORKDEPT',

41:'HIRE DATE',54:'LEVEL',65:'SALARY',

/,1:'---------',14:'--------',29:'---------',

40:'----------',54:'------',65:'---------'),

OUTREC=(1:3,12,C' ',17,15,C' ',32,3,7C' ',

36,10,C' ',47,2,BI,M0,5C' ',50,5,PD,M2)

SyncSort for z/OS 1.1 Programmer’s Guide11.8

• The SORTDBIN DD statement marks the beginning of the input stream that contains
the SQL SELECT statement that describes the criteria of the query.

• The SYSIN DD statement marks the beginning of the input stream that includes the
sort control statements. A sort will be performed and a report will be generated. The
records read from the DB2 database under control of the query specified in the
SORTDBIN data set will be formatted and presented in this report. Fields will be
converted to printable format when necessary.

The SYSOUT will contain a report on the execution of the application. The report displays
the control statements followed by the query record layout and SyncSort messages with
information on the particular execution. The following is a sample report:

Chapter 11. SyncSort DB2 Query Support 11.9

Figure 215. Sample SYSOUT Report

SYNCSORT FOR Z/OS 1.1AN TPF0 U.S. PATENTS: 4210961, 5117495 (C) 2001 SYNCSORT INC. DATE=2001/225 TIME=14.40.32

 Z/OS 1.1.0 CPU MODEL 2064

PRODUCT LICENSED FOR CPU SERIAL NUMBER 12345 LICENSE/PRODUCT EXPIRATION DATE: 31 MAR 2002

SYSIN :

 SORT FIELDS=(3,12,CH,A) 00048000

 OUTFIL FILES=1, 00049002

 HEADER1=(2/,20:'EMPLOYEE INFOMATION', 00050002

 2/,1:'FIRSTNAME',14:'LASTNAME',29:'WORK DEPT', 00051002

 41:'HIRE DATE',54:'LEVEL',65:'SALARY', 00052002

 /,1:'---------',14:'--------',29:'---------', 00053002

 40:'----------',54:'------',65:'---------'), 00054002

 OUTREC=(1:3,12,C' ',17,15,C' ',32,3,7C' ', 00060002

 36,10,C' ',47,2,BI,M0,5C' ',50,5,PD,M2) 00070002

DB2 QUERY OPTION SELECTED

QUERY STATEMENTS:

 SELECT FIRSTNME,LASTNAME,WORKDEPT,HIREDATE,EDLEVEL,SALARY

 FROM DSN.EMPTAB

 WHERE EDLEVEL>10

INPUT RECORD DESCRIPTION:

 COLUMN START END DB2 SYNCSORT NULL VALUE

 NAME POSITION POSITION DATA TYPE DATA TYPE

 ---------- -------- -------- -------------------- --------- ----------

 FIRSTNME 1 14 VARCHAR(12) CH DISALLOWED

 LASTNAME 15 31 VARCHAR(15) CH DISALLOWED

 WORKDEPT 32 34 CHAR(3) CH ALLOWED

 NULLINDICATOR 35 35 CH

 HIREDATE 36 45 DATE CH ALLOWED

 NULLINDICATOR 46 46 CH

 EDLEVEL 47 48 SMALLINT BI ALLOWED

 NULLINDICATOR 49 49 CH

 SALARY 50 54 DECIMAL(9,2) PD ALLOWED

 NULLINDICATOR 55 55 CH

WER110I SORTOUT : RECFM=FB ; LRECL= 55; BLKSIZE= 27995

WER110I SORTOF1 : RECFM=FBA ; LRECL= 75; BLKSIZE= 27975

WER124I ESTIMATED PREALLOCATED/USED SORTWORK SPACE USAGE FACTOR = 600.00

WER045C END SORT PHASE

WER405I SORTOF1 : DATA RECORDS OUT 10; TOTAL RECORDS OUT 16

WER211I SYNCSMF CALLED BY SYNCSORT; RC=0000

WER449I SYNCSORT GLOBAL DSM SUBSYSTEM ACTIVE

WER246I FILESIZE 550 BYTES

WER054I RCD IN 10, OUT 10

WER169I RELEASE 1.1A BATCH 0999 TPF LEVEL 0

WER052I END SYNCSORT - JOBNAME,SORTSQL,,DIAG=8CFF,4AD7,A09F,28FD,D572,68EB,A6C8,2462

SyncSort for z/OS 1.1 Programmer’s Guide11.10

The following shows the output from the application:

Figure 216. Sample Application Output

 EMPLOYEE INFOMATION

FIRSTNAME LASTNAME WORK DEPT HIRE DATE LEVEL SALARY

--------- -------- --------- ---------- ------ ---------

CHRISTINE HAAS A00 01/01/1975 18 52,750.00

CHRISTINE MIKE A00 06/08/1978 12 53,330.00

DIANE HARISON A00 02/01/1978 13 12,500.00

DIANE HEMMINGER A00 01/01/1975 14 46,500.00

JOAN PAN A00 05/01/1973 15 12,110.00

KEVEN MASK B00 06/01/1988 14 34,780.00

MAGGIE NEME A00 06/01/1978 13 54,330.00

MIKE BUSH B00 12/08/1987 11 12,340.00

PETER MAWAH B00 02/01/1988 18 30,000.00

STEVE ARNEY B00 02/01/1990 18 34,560.00

Chapter 12. Tape Sort 12.1

Chapter 12. Tape Sort

When to Use Tape Sort

Traditionally, Tape Sort has been used where there is insufficient disk space for sort work.
Currently, MAXSORT is the recommended sorting technique for large applications: (1)
MAXSORT’s disk SORTWK allocations can be defined independently of SORTIN size; (2)
when a MAXSORT job is canceled for higher priority jobs, all previously produced data sets
can be used without resorting; (3) all Disk Sort features and performance improvements
are available with MAXSORT; (4) significantly less tape drive time is required; and (5) the
job can be executed in segments to facilitate production scheduling.

Options Reserved to Disk Sort

These PARMs are reserved for sorts with SORTWK assigned to disk: BALANCE, BMSG,
CMP=CPD/CLC, COMMAREA/NOCOMMAREA, CPU, DEBUG, DYNALLOC, ELAP, E15/
E35=COB, FILSZ=n, HBSI, HBSO, INCOR=ON/OFF, IO, LIST/NOLIST, NOIOERR, L6/
L7=n, PRINT121, NORC16, RELEASE=ON/OFF, RESET, RLSOUT, SDB=xxx,
SECOND=ON/OFF, SKIPREC=n, STOPAFT=n, VLTEST=n/0, VLTESI=n/0, and all
MAXSORT PARMs.

Tape Sort will not validate decimal control fields, permit exits written in COBOL, C, or
REXX, check the size of the input file after input processing, run incore, abend without a
dump, optimize with HISTOGRM, issue the STIMER macro, adjust the message data set’s
DCB, release unused SORTWK or SORTOUT space, accept VSAM input, or stop processing
after a specified number of records. Control statements and header line(s) appear with
SYSOUT if Tape Sort is initiated through job control language; invoked Tape Sorts do not
list sort control statements.

SyncSort for z/OS 1.1 Programmer’s Guide12.2

Invoked Tape Sorts may only use the 24-bit addressing mode.

These control statements are reserved for sorts with SORTWK assigned to disk: MERGE,
INCLUDE/OMIT, INREC, OPTION, OUTREC, OUTFIL, SUM, and ALTSEQ. In addition,
the SORT statement does not permit COPY, DYNALLOC or FILSZ=n.

EXEC Statement

The Tape Sort EXEC statement differs from that for a Disk Sort in that the
PGM=SYNCSORT coding cannot be used.

In addition, the set of PARMs is restricted to the following list.

Figure 217. Tape Sort EXEC Statement Format

Figure 218. Tape Sort PARM Parameter Format

//stepname EXEC

PGM=SORT
PGM=IERRCO00
PGM=IGHRCO00
PGM=ICEMAN 

 
 
 
 
 
 

 [,PARM='...']

PARM='
BALN
OSCL
POLY

,
CORE
SIZE 

 
 

 =

n
nK
MAX
MAX-n
MAX-nK 

 
 
 
 
 
 
 
 

,
CORE
SIZE 

 
 

 (

n
nK
MAX
MAX-n
MAX-nK 

 
 
 
 
 
 
 
 

)

,DIAG
,EQUALS
,NOEQUALS

 ,FILSZ=En
,FLAG (I)
,FLAG (U)
,NOFLAG

,IOERR=ABE ,MSGDD=
SYSOUT
xxxxxxxx 

 
 

 ,RC16=ABE '

Chapter 12. Tape Sort 12.3

As usual, the PARM list is enclosed in single quotes.

The BALN/OSCL/POLY PARM option is effective only with Tape Sort, where it specifies
the balanced (BALN), oscillating (OSCL) or polyphase (POLY) sorting technique. It is rec-
ommended that this PARM value be omitted, permitting the sort to choose the technique
best suited to the application.

DD Statements

Tape Sort’s DD statements are summarized in the table below. They differ from Disk Sort’s
only in the additional requirement of a SORTLIB statement. SORTWKxx DD statements
are required--Tape Sort is initiated by assigning these to tape. $ORTPARM is restricted to
one 80-byte card image, which can include only PARMs.

SORTLIB DD Statement

The SORTLIB DD statement is required to reference the special tape sort program.

Tape Sort DD Statements

//$ORTPARM DD Used to override PARM information. Restricted to one 80-byte
card image.

//SYSIN DD Control statement input data set. Required unless the invok-
ing program supplies the address of a 24-bit parameter list.

//SYSOUT DD Message data set.

//SORTWKxx DD Required. Assigned to tape.

//SORTLIB DD Required. Refers to tape sort library.

//SORTIN DD Sort input data set. Required unless there is an E15. Ignored if
the invoking program supplies an inline E15 exit routine;
optional if the MODS statement activates an E15 exit routine.

//SORTOUT DD Sort output data set. Required unless there is an E35. Ignored
if the invoking program supplies an inline E35 exit routine;
optional if the MODS statement activates an E35 exit routine.

//SORTCKPT DD Checkpoint data set. Required if Checkpoint-Restart is used.

//SORTMODS
//SYSLIN
//SYSLMOD
//SYSUT1
//SYSPRINT

DD
DD
DD
DD
DD

Required if user exits are in SYSIN and if user exits are to be
linkage-edited at execution time.

//ddname DD Library definition of user exits. Required unless exits are in
LINKLIB.

Table 42. Tape Sort DD Statements

SyncSort for z/OS 1.1 Programmer’s Guide12.4

In this example, the tape sort modules are in a partitioned data set called SYNCTAPE. The
modules will be used as needed by the Tape Sort control program which was given control
by the operating system.

SORTWKxx DD Statement

Tape Sort is initiated by the use of tape devices for intermediate storage. Tape Sort requires
a minimum of three SORTWKxx DD statements, numbered consecutively from 01. There
may be as many as thirty-two sort work files, making 32 the largest possible nn value.

Tape Sort uses 2400 and 3400 series tape units, including the 3480, 3490 and 3590 car-
tridge systems, with densities of 800 BPI, 1600 BPI, and 6250 BPI. Each reel of tape must
be a full-size 2400-foot reel. It is possible to mix different densities or device types within
the same sort, but SyncSort will use the lowest density to calculate the capacity of each
SORTWK volume. If 3480 or 3490 IDRC tape drives are used, DCB=TRTCN=NOCOMP
must be in effect.

In Figure 220, the xxxx in the UNIT parameter represents the installation--specific name
chosen to define a tape device.

Calculating Tape SORTWK Requirements

The number of files needed for intermediate storage varies with the size of the input and
the sorting technique used (BALN, OSCL or POLY). The table below indicates the mini-
mum required for each of the three sorting techniques. This minimum figure is not the rec-
ommended number to use--allow more than the minimum number of drives to achieve
sorting efficiency.

//SORTLIB DD DSN=SYNCTAPE,DISP=SHR

Figure 219. Sample SORTLIB DD Statement

Figure 220. SORTWKxx DD Statement Format for Tape Sorts

//SORTWK01 DD UNIT=

2400
3400
3480
3590
xxxx 

 
 
 
 
 
 
 
 

Chapter 12. Tape Sort 12.5

$ORTPARM DD Statement

When used in conjunction with Tape Sort, $ORTPARM can pass only PARM-coded informa-
tion, and then only by way of a single 80-byte card image. $ORTPARM cannot be used to
override control statements for Tape Sort.

The following example changes three PARM options.

Optimizing Tape Sort

Three factors are crucial to Tape Sort efficiency: a generous amount of intermediate stor-
age, a closely estimated input size value on the SORT or EXEC statement, and the freedom
to select the best sorting technique (BALN, OSCL or POLY) based on the nature of the
application and conditions at execution time. Accordingly, the number of SORTWK data
sets should be in excess of those suggested in the chart above, the BALN/OSCL/POLY
PARM should be omitted and an accurate SIZE or FILSZ estimate should be provided.

Sorting
Technique

Maximum
No. Input
Tapes

Minimum
No. Tape
Drives For
SORTWKs

Maximum
No. Tapes
For
SORTWKs

Note that...

OSCL 15 (no. input vol-
umes + two)
or four,
whichever is
larger.

17 (1) An exact or a closely estimated SIZE
on the SORT statement is necessary.
(2) SORTIN and SORTWK tapes may
not be mounted on the same drive.

BALN 15 Two times
(no. of input
volumes +
one).

32 (1) An exact or a closely estimated SIZE
is recommended.
(2) Provide a generous amount of mem-
ory.

POLY 1 Three. 17 POLY is always used, whether specified
or not, when only 3 SORTWK tape
drives are available. This technique is
not recommended unless necessary.

Table 43. Tape Sort Requirements

//$ORTPARM DD *

CORE=128K,EQUALS,FILSZ=E15000

Figure 221. Sample Tape Sort $ORTPARM Data Set

SyncSort for z/OS 1.1 Programmer’s Guide12.6

Control Statements

Tape Sort supports only four control statements: SORT, RECORD, MODS and END. Of
these four, only MODS and END are supported in their full Disk Sort version, and MODS is
available only for JCL-initiated executions.

Exit Programs

With the exception of the merge input exit E32, all of the exits available for Disk Sort are
supported for a JCL-initiated Tape Sort. When invoked, however, only E15 and E35 exits
are available; these must be coded as subroutines of the calling program. The MODS state-
ment is not supported for an invoked Tape Sort.

Figure 222. SORT Control Statement Format for Tape Sort

Figure 223. Tape Sort RECORD Control Statement Format

Figure 224. MODS Control Statement Format

END

Figure 225. END Control Statement Format

SORT
FIELDS = p1 l1 f1 o1, , , p2,l2 f2,o2,..., p64,l64,f64,o64, ,()

FIELDS = p1 l1 o1, , p2,l2 o2,..., p64,l64,o64, ,() ,FORMAT = f 
 
 

,SIZE =
n

En 
 
 

 [,FILSIZ = En] [,SKIPREC = n]

,EQUALS
,NOEQUALS

 ,CKPT
CHKPT

RECORD TYPE=
F
V 

 
 

 ,LENGTH=(l1,l2,l3,l4,l5)

MODS exit-name1 = (r1 b1 d1[]
,N
,S 

 
 ) ... ,MODS exit-name16 = (r16 b16 d16[]

,N
,S 

 
 

)

Chapter 12. Tape Sort 12.7

Initiating Tape Sort Through JCL/Control Streams

1. The JOB statement gives TAPESORT as the name of the job.

2. The EXEC statement identifies SORT as the program to be executed.

3. The required SORTLIB DD statement instructs the system to look for the Tape Sort
secondary modules in the SORTLIB library under the data set name
TAPESORT.RESI.DENCE. The DISP shows that this library may be shared.

4. The MODLIB DD statement defines the partitioned data set in which the exit routine
resides. (Note that MODLIB is referenced in the MODS control statement.) The data
set name of the exit library is EXIT.E15, and the DISP shows that the library may be
shared.

//TAPESORT JOB 1

//STEPT EXEC PGM=SORT 2

//SORTLIB DD DSN=TAPESORT.RESI.DENCE,DISP=SHR 3

//MODLIB DD DSN=EXIT.E15,DISP=SHR 4

//SYSOUT DD SYSOUT=A 5

//SORTIN DD DSN=INTAPE,UNIT=3480, 6

// VOL=SER=385678,DISP=(OLD,KEEP),

// DCB=(LRECL=100,RECFM=FB,

// BLKSIZE=900)

//SORTOUT DD DSN=OUT.TAPE,VOL=SER=783456, 7

// UNIT=3480,DISP=(NEW,KEEP)

//SORTWK01 DD UNIT=TAPE 8

//SORTWK02 DD UNIT=TAPE

//SORTWK03 DD UNIT=TAPE

//SORTWK04 DD UNIT=TAPE

//SORTWK05 DD UNIT=TAPE

//SORTWK06 DD UNIT=TAPE

//SORTWK07 DD UNIT=TAPE

//SORTWK08 DD UNIT=TAPE

//SYSIN DD * 9

SORT FIELDS=(1,15,CH,A,16,8,BI,D), 10

EQUALS,SIZE=E20000

RECORD TYPE=F,LENGTH=100 11

MODS E15=(E15,550,MODLIB,N) 12

END END TAPE SORT 13

* MAY ACCOUNTS PROCESSED 14

/*

Figure 226. Sample JCL/Control Stream

SyncSort for z/OS 1.1 Programmer’s Guide12.8

5. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

6. The SORTIN DD statement gives INTAPE as the input data set name, and specifies a
3480 tape unit with the volume serial number 385678. The DISP shows that the data
set is already in existence.

The DCB parameter shows in LRECL of 100 bytes, a fixed blocked RECFM, and a 900
byte BLKSIZE.

7. The SORTOUT DD statement gives OUT.TAPE as the output data set name, and
specifies a 3480 tape unit with the volume serial number 783456. The DISP parameter
shows that this data set is not in existence yet. The DCB parameter for the SORTOUT
data set defaults to that of SORTIN.

8. The eight SORTWK DD statements indicate that 8 tapes are to be used for
intermediate storage.

9. The SYSIN DD * statement marks the beginning of the system input stream that
includes the program control statements.

10. The SORT control statement shows that two control fields are to be sorted on. The first
begins on byte 1 of the record, is 15 bytes long, has character data, and is to be sorted in
ascending order. The second begins on byte 16 of the record, is 8 bytes long, contains
binary data, and is to be sorted in descending order. EQUALS requests that records
with equal control fields leave the sort in the same order in which they came in. The
SIZE parameter shows that the number of records in the input data set is estimated at
20,000.

11. The RECORD control statement shows that fixed-length records are being sorted. The
LENGTH parameter shows 100 byte records at input, during the sort, and at output
time.

12. The MODS control statement gives E15 as the exit-type. The name of the exit routine is
also E15. It will take 550 bytes in main storage, and resides in a library defined on the
MODLIB DD statement. (See the MODLIB DD statement.) The N indicates that link-
editing has already been performed.

13. The END control statement marks the end of the control statements. A comment is
given.

14. This is a comment statement.

15. The delimiter statement marks the end of the SYSIN input stream.

Chapter 12. Tape Sort 12.9

Invoking Tape Sort from a Program

When initiating Tape Sort from a program, only certain parameters from the parameter list
are processed The X'02' (MODS), X'04' (merge input files), X'05' (DEBUG), X'06' (ALTSEQ),
X'07' (SUM), X'08' (INCLUDE/OMIT), X'09' (OUTREC), X'0A' (INREC), X'0B' (OUTFIL),
X'F6' (ALTSEQ translation table), and X'F7' (User address constant) parameters are
ignored. When invoked, Tape Sort supports only the E15 and E35 exits, which must be
coded in line with the invoking program.

REGISTER 1 POINTER (Fullword)

ADDRESS OF POINTER ——→ X'80' Address of Parmlist Byte Count

 

↓Fullword Boundary

↓

Byte 1 Byte 2 Byte 3 Byte 4

Required in
order shown

Number of bytes in following list

X'00' Beginning address of SORT statement

X'00' Ending address of SORT statement

X'00' Beginning address of RECORD statement

X'00' Ending address of RECORD statement

X'00' Address of E15 exit routine (zeros if none)

X'00' Address of E35 exit routine (zeros if none)

Optional

X'00' Main storage value

X'01' Reserved main storage value

X'03' Beginning address of message DD name to replace
SYSOUT

X'05' Beginning address of DEBUG statement (not processed)

Ending address of DEBUG statement

X'FD' IMS flag

X'FE' Pointer to STAE work area (may code zeros if none)

X'FF' Message options (code in EBCDIC)

DIAG option (code in EBCDIC)

BALN OSCL or PLY (code in EBCDIC)

CRCX, PEER or LIST (not processed)

DD name prefix to replace SORT in JCL (code in EBCDIC)

Table 44. Tape Sort Parameter List

SyncSort for z/OS 1.1 Programmer’s Guide12.10

In this example, Tape Sort’s input file is provided by the in-line E15 exit routine. Since this
causes the sort to ignore a SORTIN DD statement, the required RECORD control state-
ment must include the LENGTH parameter. The RECORD statement specifies that the

.

.

.

LA 1,PTRWORD Load address of pointer to parameter list

LINK EP=SORT Initiate tape sort

LTR 15,15 Test tape sort return code

BNZ SORTERR Branch on error condition

B SORTOK Branch to normal processing

CNOP 0,4 Fullword alignment for pointer

PTRWORD DC X'80' Indicates pointer to parameter list

DC AL3(PARMS) Address of parameter list

DS H Unused first two bytes of first parameter

PARMS DC Y(28) Byte count of remaining parameters

DC A(SORTBEG) Beginning address of sort statement

DC A(SORTEND) Ending address of sort statement

DC A(RECBEG) Beginning address of record statement

DC A(RECEND) Ending address of record statement

DC A(E15) Address of E15 exit routine

DC A(E35) Address of E35 exit routine

DC C'DIAG' Turns on IOERR=ABE and RC16=ABE options

SORTBEG DC C'SORT FIELDS=(19,6,PD,A,5,10,CH,A),EQUALS' Sort image begins

SORTEND DC C' ' Sort image ends

RECBEG DC C'RECORD TYPE=V,LENGTH=(104,,,64,84)' Record image begins

RECEND DC C' ' Record image ends

USING *,15 Using 15 as base register

E15 DS 0H Exit E15 has full responsibility for sort input

.

.

.

USING *,15 Using 15 as base register

E35 DS 0H Exit E35 has full responsibility for sort output

.

.

.

SORTERR DS 0H Error routine for unsuccessful sort

.

.

.

BR 14 Return to invoking program

SORTOK DS 0H Normal processing for successful sort

.

.

.

BR 14 Return to invoking program

Figure 227. Sample Invoked Tape Sort

Chapter 12. Tape Sort 12.11

records to be sorted are variable in length, ranging from 64 to 104 bytes long at sort time,
that the most frequent input record length is 84, and that the maximal length of 104 is not
changed by the E35 exit routine; all length values include the Record Descriptor Word’s 4
bytes. The records are sorted in ascending numeric order by the packed decimal data in the
15th - 20th data bytes in the record. Records with equal numeric values in this field are fur-
ther sorted by the character data in their first 10 data bytes, in ascending order. Records
with equal control keys are passed to the E35 exit routine in the same order as they were
generated by the E15 exit routine (the EQUALS parameter). The DIAG option is also set.

SyncSort for z/OS 1.1 Programmer’s Guide12.12

Chapter 13. Performance Considerations 13.1

Chapter 13. Performance Considerations

Disk Sort? MAXSORT? PARASORT? Tape Sort?

Disk Sort provides the current, established sorting technique, suitable for most sort/merge
applications. Intermediate storage is allocated on disk devices and the sort size is limited
by the allocated disk space plus secondary extents automatically obtained by the sort.

MAXSORT, SyncSort’s maximum capacity sorting technique, is not limited by disk space
availability. MAXSORT determines how much data can be sorted using the available disk
work space and divides SORTIN into SORTWK-manageable segments; the sorted seg-
ments are stored on tape, disk or MSS for a later, automatic merge. MAXSORT makes all
the Disk Sort operational optimizing features and modern programming options available
to large sorts, and additionally provides an enhanced breakpoint/restart capability for
greater scheduling flexibility--the user can stop MAXSORT processing at selected intervals
without loss of sorted output.

PARASORT improves elapsed time performance for sorts whose input is read from a multi-
volume tape data set and/or concatenated tape data sets. The performance improvement
from PARASORT is a result of processing the SORTIN input volumes in a parallel fashion.
PARASORT requires two to eight times the current number of tape units, depending upon
resource availability and the degree of improvement desired. PARASORT automatically
manages the tape units and minimizes the use of the tape drive resources by deallocating
excess tape drives during initialization and releasing all the extra units at the end of the
sort input phase.

By definition, Tape Sort uses tape for intermediate storage. This inhibits such state-of-the-
art sorting techniques as sophisticated disk I/O methods, high order merges, and modern

SyncSort for z/OS 1.1 Programmer’s Guide13.2

parameter capabilities. For these reasons, MAXSORT performance is far superior to that of
Tape Sort. MAXSORT is therefore the preferred method of handling all applications previ-
ously routed to Tape Sort.

To convert a Tape Sort execution to MAXSORT, these changes must be made:

• Use the $ORTPARM DD statement to pass the MAXSORT PARM or (if the sort is
initiated through JCL) add PARM='MAXSORT' to the EXEC statement.

• Allocate SORTWK files to disk (SORTWK requirements are independent of SORTIN
size).

• Supply a SORTBKPT DD statement.

• Provide 2 or more SORTOUnn DD statements for the intermediate output and, if these
are allocated to tape (as is usual), a SORTOU00 DD statement.

• If exits are included or the sort is invoked, supply a SORTCKPT DD statement in case
restart should be necessary.

• (Optional.) Remove the SORTLIB DD statement.

Note that it may be necessary to supply additional memory in order to execute MAXSORT.

JCL Sorts vs. Program-Invoked Sorts

When SyncSort is initiated from a COBOL program, the calling program handles I/O,
remains in core, and generally retards sort execution. SyncSort will yield maximum perfor-
mance through proper synchronization of all data whenever it has control of the sorting
process, i.e., whenever // EXEC PGM= SYNCSORT is used.

From the point of view of performance, the JCL-initiated sort execution has the advantage.
Whenever possible, tasks incidental to the sort/merge/copy process should be handled via
SyncSort control statements. Where this is not possible, the JCL/control stream should be
supplemented with user-written exit routines. Ideally, the exit routines exist as load mod-
ules, so that they do not require link-editing every time the job is run. SyncSort permits
exit routines to be written in COBOL, C, FORTRAN, REXX, or Assembler language.

If you must invoke the sort from a COBOL program, you may improve sort performance by
passing an accurate FILSZ=n/En parameter via $ORTPARM.

Control Statement Issues

SyncSort control statements can be used to eliminate records from the input file
(INCLUDE/OMIT), summarize and/or eliminate equal-keyed records (SUM), reformat
records (INREC/OUTREC), set up multiple output files (OUTFIL) or write formatted
reports (OUTFIL statement with HEADER, TRAILER, SECTIONS and OUTFIL parame-

Chapter 13. Performance Considerations 13.3

ters. These control statements provide a high performance alternative to the use of exits
and invoking programs. The tasks they address are those which are most frequently exe-
cuted and/or improve sort performance. Since sort throughput is in part a function of the
number of bytes that are to be manipulated, considerable performance savings can result
from using the INCLUDE/OMIT statement to eliminate irrelevant records; INCLUDE/
OMIT affects the data set prior to sorting/merging/copying. The SKIPREC and STOPAFT
parameters are recommended for test runs of sorting applications for the same reason.
When the file bias is high enough for a significant number of records to be summarized
early in the sort, SUM will also provide performance gains if the XSUM option has not also
been selected. When reformatting records, it is desirable to minimize the amount of data
that must pass through the sort process. Other things being equal, INREC should be used
to shorten records, OUTREC to lengthen them.

The Efficient Use of PARMs

There are four programming PARMs that may have a significant effect on sort perfor-
mance: CMP, EQUALS, STOPAFT and SKIPREC.

This CMP PARM specifies the kind of compare operation to be used for sort/merge control
fields up to 16 bytes long, bearing the format code PD or ZD. When CMP=CPD, the default,
is used, ZD fields are PACK’ed and then compared. Invalid PD data may cause a system
0C7 abend and program termination. The integrity of fields labelled "ZD" is only guaran-
teed when they contain valid ZD data. The delivered default of the VLTEST PARM sup-
ports CMP=CPD, as do certain other VLTEST PARM values. Whenever possible, set CMP=
CPD for better sort performance.

The alternative, CMP=CLC, is a more costly option--it forces the sort to extract potentially
invalid PD and ZD fields and do a certain amount of data manipulation to obtain valid sign
comparisons.

The EQUALS PARM instructs the sort/merge to preserve the order of equal-keyed records.
EQUALS will have a slight but generally significant impact on sort performance. By mak-
ing EQUALS available on an individual sort basis, SyncSort makes this programming
option available where it is needed, without imposing it on the installation’s more routine
jobs. For sort efficiency, use EQUALS only where the preservation of the input order of
equal-keyed records is important.

The user interested in sort performance will specify the STOPAFT PARM in test runs of the
sort. With STOPAFT=n, only the first n records of the input file will be sorted. By reducing
the number of records to be processed, STOPAFT improves sort performance. If additional
tests are necessary, the SKIPREC PARM can be used together with STOPAFT to select a
different subset of the SORTIN data set.

SyncSort for z/OS 1.1 Programmer’s Guide13.4

Optimizing System Resources

The efficiency of sort processing is measured in terms of the performance measures of CPU
time, elapsed time, and I/O activity. Ordinarily, when SyncSort performs a sort, it seeks to
balance these performance measures in a way that yields the best overall sort performance.
It is possible, however, to define a particular performance measure as more important than
others for a particular job. This can be done through SyncSort’s Dynamic Storage Manage-
ment (DSM) facility, which makes available four optimization modes for sort processing.
These are BALANCE, CPU, ELAP and IO. BALANCE is the default optimization mode
which provides the best overall balance between CPU time, sort elapsed time and I/O activ-
ity to SORTIN, SORTOUT and SORTWK. If CPU time is given the highest priority, Sync-
Sort will minimize this resource at the expense of elapsed time and I/O activity. Selecting
ELAP as the optimization mode will cause SyncSort to minimize the elapsed (wall clock)
time of each sort, usually at some expense of the sort’s CPU time. Likewise, if IO is selected
as the optimization mode, SyncSort will minimize the I/O activity (EXCPs) performed by
the sorts.

Setting CORE

The following examples illustrate the most common types of alternative codings for the
CORE PARM:

CORE=MAX-30K
CORE=500K
CORE=MAX

From the perspective of memory management, there are three types of sort executions,
requiring three different approaches to CORE coding: invoked sorts, JCL sorts with exit
routines, and JCL sorts without exit routines.

In the first case, where for example, a COBOL program calls SyncSort via the SORT verb,
the sort and the invoking program (including its Input Procedure and Output Procedure)
are all in memory at the same time. The only dynamic aspect to memory management in
this case is the acquisition of memory for the buffers of any files opened by the Input and
Output Procedures; it is only when a file is opened that the memory for the file’s buffers is
obtained. Therefore, all data sets required during the sort should, if possible, be opened
before invoking the sort.

The coding of the CORE parameter must make allowances for the Input and Output Proce-
dures’ file buffers by reserving enough memory for the greater of the two procedures’
requirements. If, for example, the Input Procedure’s files require 50K and the Output Pro-
cedure’s files require 100K, SyncSort should be instructed to set aside 100K for their use;
code CORE=MAX-100K. If CORE=MAX is coded, it is likely that no memory will be avail-
able for buffers when the Input or Output Procedure attempts to open a file, resulting in an
ABEND80A message. If CORE is coded with a constant value such as CORE=756K, there
is still the possibility of an ABEND80A message since the constant value requested (in this

Chapter 13. Performance Considerations 13.5

case, 756K) may account for all the memory available, again leaving no memory for the
buffers.

With CORE=MAX-100K, the precise amount of memory used by the sort depends both on
the amount of memory that is available and on the maximum value set at sort installation
time (the site maximum). Since this form of the parameter ensures that 100K of the total
memory available to this job will be set aside for the buffers, CORE=MAX-100K will not
produce an ABEND80A message. Note that MAX-value must be greater than the minimum
memory requirement for SyncSort execution.

The table below illustrates the relationship between the site maximum and the available
memory for an invoked sort requiring 100K bytes worth of buffers for the Input and Output
Procedures. In reviewing the table, note that the site maximum sets an absolute ceiling on
the amount of memory that can be used by the sort; even if additional memory is available,
it is not available to the sort. This additional memory would, however, be available to the
Input or Output Procedure for file buffers, accounting for some of the normal sort termina-
tions indicated. Since the programmer has no way of knowing whether these conditions will
hold at execution time, CORE=MAX-100K remains the preferred method of setting memory
for an invoked sort with 100K bytes worth of buffers.

The COBOL programmer has the option of setting CORE by means of the SORT-CORE-
SIZE special register. In order to set memory aside for the buffers, the invoking program
places a negative value into the special register prior to sort execution; CORE=MAX-100K
is equivalent to MOVE-102400 TO SORT-CORE-SIZE. Under VS COBOL II or COBOL/
370, CORE can be set by submitting the CORE=MAX-nK PARM via the $ORTPARM data
set.

When exits are included, the optimal coding of the CORE parameter depends on the mem-
ory value in the MODS control statement. As in the case of the COBOL Input/Output Pro-
cedure, coding CORE=MAX-100K will set aside 100K bytes for buffers. If the MODS

Site Maxi-
mum

Available
Memory

CORE= Memory
used by the
Sort

Available
for 100K
Buffer
Space

Probable Sort Return
Code

1024K
1024K
1024K

1024K
512K

2048K

MAX
MAX
MAX

1024K
512K

1024K

0
0

100K

S80A - No core for buffers
S80A - No core for buffers
0

1024K
512K

1024K

900K
2048K

756K

756K
756K
756K

756K
512K
756K

100K
100K

0

0
0
S80A - No core for buffers

1024K
512K
512K

1024K

512K
512K

1024K
360K

MAX-100K
MAX-100K
MAX-100K
MAX-100K

412K
412K
512K
260K

100K
100K
100K
100K

0
0
0
0 - Inefficient sort

Table 45. Illustration: CORE Alternatives for Invoked Sort with 100K Buffer Space

SyncSort for z/OS 1.1 Programmer’s Guide13.6

statement’s memory value included sufficient buffer space, code CORE=MAX; coding any-
thing but CORE=MAX nullifies the MODS memory value(s). Again, the site maximum pre-
vents the sort from appropriating too much memory. When the exit program is not
referenced in a MODS statement (e.g., when an E15/E35 exit routine is coded in line with
an invoking Assembler program) or the MODS memory value accounts only for the pro-
gram’s code, memory must be reserved for the buffers of any files to be opened. An Assem-
bler program’s in-line E15/E35 exit routine is equivalent to a COBOL Input/Output
Procedure.

In JCL sorts without exit routines, it is not necessary to code any core parameter. SyncSort
will use as much of the site maximum as is available at the time of execution. Thus, if the
site maximum is set to 1024K and 2048K bytes are available, SyncSort will use 1024K.

The Incore Sort

An incore or turnaround sort is only possible when the INCORE PARM has the value ON.
(This is the delivered default for this PARM.)

Whenever there is sufficient memory, INCORE=ON permits the standard Disk Sort to sort
all the input data within its memory area, without writing to any of the work data sets that
may have been provided. Sufficient memory, as discussed here, means that SyncSort’s
memory area/address space is large enough to hold the SyncSort program, all of the input
data, SORTIN or SORTOUT buffers (whichever are larger) and, if work data sets are allo-
cated, SORTWKxx buffers.

The incore sort is not available to Disk Sorts taking checkpoints, using SUM, OUTREC,
OUTFIL, an E14 or E16 exit routine, or producing VSAM output. INCORE=ON is ignored
by Tape Sort, MAXSORT and PARASORT.

When Can a Sort Run Entirely in Main Storage (No SORTWK Needed)?

An Incore Sort is possible when all of the data that is to be sorted can be contained in main
storage. For most simple applications:

Number of records that will fit in main storage =A-(B+C)
D + 12

A = Core available to SyncSort.
B = 200K
C = The greatest of: 2 X SORTIN block size, 2 X SORTOUT block size, and 15% of A.
D = Average record length of data being sorted.

Note: SORTWK data sets are required in order to use SUM, OUTREC, OUTFIL, a VSAM
SORTOUT data set, checkpoint/restart, an E14 or E16 exit routine, MAXSORT or
PARASORT.

Chapter 13. Performance Considerations 13.7

Disk Space Considerations

Tuning Disk Space Allocations

With the operational features SECOND and RELEASE turned ON (this is the delivered
default), SyncSort automatically supplements and releases any disk space the user allo-
cates for intermediate storage, making the allocation of the correct amount of SORTWK
space an automatic, sort-controlled process. For general sorting purposes, the user need not
be concerned with precise SORTWK space allocations. However, allocating SORTWK space
in cylinders, rather than blocks or tracks, will usually yield optimal performance.

For best performance with filesizes greater than 30 megabytes, especially when
DYNALLOC is not enabled, allocate the required space across 4 to 6 SORTWK devices.

Message WER124I is provided in some applications in order to permit the user who is
interested in a finely tuned sort execution to improve intermediate storage allocation for
future runs. Routinely overallocating SORTWK, relying on RELEASE=ON, will delay sort
step execution until all the space requested (including the excess space) is available, and
will waste this excess space until its released at the end of Phase 1. Routinely underallocat-
ing by a large amount assumes that the needed storage will always be physically available.
If, for some reason, the required storage cannot be obtained on any volume assigned for sort
work areas, SyncSort will terminate with a SORT CAPACITY EXCEEDED error.

A sort is considered to finely tuned when WER124I reports an overallocation factor
between 1.00 and 1.50.

The Impact of Disk Space on the Work Data Sets on SyncSort

SyncSort’s work data set disk space management is automated to a very high degree. It
can:

• Automatically correct the underallocation of disk space by obtaining secondary
allocations of disk space, as needed. This prevents costly SORT CAPACITY
EXCEEDED terminations.

• Automatically release excess disk space at the completion of Phase 1. The space
immediately becomes available for allocations to other jobs.

• Dynamically allocate work data sets through the MVS DYNALLOC capability.

You can improve the efficiency of disk space usage by allocating optimally at the outset.

Disk Sort Intermediate Storage Calculation Formulas

Approximate Number of Tracks Required = A X B X 1.3
C

SyncSort for z/OS 1.1 Programmer’s Guide13.8

where:
A = Number of records to be sorted.
B = Average record length of data being sorted.
C = Track capacity of the work device:

Allocating disk storage space in cylinders rather than tracks will improve the performance
of SyncSort. When converting tracks to cylinders, round the number of cylinders up to the
higher number. For example, if 9.5 cylinders are needed, allocate 10 cylinders.

Tape Sort Intermediate Storage Calculation Formulas

BALN Number of tape units required = 2(A+1)

Maximum number of input volumes: 15

Minimum number of areas = 4

Maximum number of areas = 32

POLY Number of tape units required = 3

Maximum number of input volumes: 1

Minimum number of areas = 3

Maximum number of areas = 17

OSCL Number of tape units required = The greater of 4 and A + 2

Maximum number of input volumes: 15

Minimum number of areas = 4

Maximum number of areas = 17

 where

A = Number of input volumes

DEVICE TYPE TRACK CAPACITY IN BYTES

 3350 19,069

 3375 36,000

 3380 47,476

 3390 56,664

 9345 46,456

Chapter 13. Performance Considerations 13.9

Note: These formulas are based on work units 2400 feet long, of the same density as the
input volumes, or 3480 tape cartridges used as work units.

Special Considerations Concerning SyncSort’s Disk Space Management on Work
Data Sets

SyncSort implements the automatic space management facility by reading the JFCB and
modifying the SPACE parameter to enter a secondary allocation quantity (or accept one
that was coded) and the RLSE subparameter. The JFCB is the z/OS control block that rep-
resents the DD statement.

Several SyncSort options may be implemented which affect the disk space management of
the sort. (See the Default Options chapter of the Installation Guide.) Specific functions of
these features are as follows.

1. The automatic use of secondary allocation and/or release can be selectively suppressed.

2. The amount of secondary space per allocation can be modified.

3. The use of RLSE can be suppressed.

4. The use of space release is suppressed for small sorts, including the in-core sort, in
order to minimize system overhead. For non-in-core sorts, if the file size is less than 4
megabytes, space release is normally suppressed. The 4 megabytes threshold may be
altered.

5. The use of space release is normally suppressed for all invoked sorts to prevent SORT
CAPACITY EXCEEDED termination when SyncSort is invoked more than once by a
single program. If the first sort involves a modest volume of data, and causes space
release to make the work data sets smaller, and the second sort is larger, the second
sort might not find sufficient work space. Your installation can turn on space release for
invoked sorts and thus save disk space. This very rarely causes problems because (1)
few programs invoke the sort more than once and (2) SyncSort’s automatic secondary
allocation normally prevents a SORT CAPACITY EXCEEDED termination.

6. SyncSort can routinely DYNALLOC data sets for every run.

Other factors which may result in suppression of these features include:

1. Automatic release is suppressed for permanent data sets unless additional sort work
space has been allocated.

2. Automatic release is normally suppressed by the installation for initiator-dedicated
data sets.

SyncSort uses normal z/OS facilities to obtain secondary allocations on work data sets.
Consequently, the sort, like any other program under z/OS, is restricted to sixteen extents
per data set. SyncSort, however, will recover from system B37 ABENDS that other pro-

SyncSort for z/OS 1.1 Programmer’s Guide13.10

grams might encounter in attempting secondary allocations. If SyncSort determines that a
particular sort work data set cannot sustain a secondary allocation because it already has
sixteen extents or because there is not enough space left on the volume, it does not attempt
secondary allocation on that data set. SyncSort further checks all other work data sets, and
if none of them can sustain a secondary allocation, it must abort with SORT CAPACITY
EXCEEDED.

SyncSort often avoids the use of one or more work data sets to minimize overall system con-
flict, as, for instance, between SORTIN and a work data set. It may obtain secondary allo-
cation on some data sets while releasing on others.

The Coding and Use of Checkpoint-Restart

Occasionally, a hardware failure may prevent the successful completion of a sort or merge.
Examples include a physically defective output volume or device, or a failure of the operat-
ing system for reasons unrelated to the sort. Since sorts tend to consume more system
resources than any other type of application, it may be advantageous to be able to resume
execution just before the failure occurred rather than restart the job at the beginning of the
failed job step. SyncSort provides this restart capability through its support of the standard
z/OS Checkpoint-Restart feature.

To instruct SyncSort to take checkpoints, code CKPT or CHKPT (either spelling) on the
SORT/MERGE control statement and supply a SORTCKPT DD statement.

For a sort, checkpoints are taken at the beginning of Phase 3 before the output data sets (if
any) are opened, and at every end-of-volume of a SORTOUT data set when OUTFIL is not
in use. An operator may then restart the sort at Phase 3 or at any end-of-volume check-
point. If necessary, a new output volume or device with identical characteristics to the
defective volume or device may be substituted.

For a merge or copy, SyncSort takes a checkpoint at every end-of-volume of a SORTOUT
data set when OUTFIL is not in use.

Checkpoints cannot be taken within a user exit routine.

The DISP Parameter for SORTCKPT, SORTWKxx and SORTOUT Data Sets

The coding of the DISP parameter for these data sets depends in part on the PARM-speci-
fied response to an unsuccessful sort. There are four cases:

• NOIOERR and NORC16 (These are the delivered defaults.)

• IOERR=ABE and RC16=ABE

• IOERR=ABE and NORC16

• NOIOERR and RC16=ABE

Chapter 13. Performance Considerations 13.11

When return code 16 is issued by the unsuccessful sort (i.e., when an I/O error occurs and
NOIOERR is set or, for other errors, when NORC16 is set), the second subparameter of the
DISP parameter should be specified as KEEP or CATLG. When the unsuccessful sort
causes a user abend (i.e., when IOERR=ABE for I/O errors, RC16=ABE for other errors),
the third subparameter of the DISP parameter should be specified as KEEP or CATLG.
Thus, with NOIOERR and RC16=ABE or with IOERR=ABE and NORC16, both the second
and the third DISP subparameter should be specified as KEEP or CATLG. Unless the DISP
parameter is coded in accordance with these two PARM values, restart will be impossible.

It is recommended that these data sets be deleted upon successful completion of the sort.
This can be done by coding the COND parameter for an IEFBR14 step to follow the sort
step in the jobstream. The COND parameter makes the IEFBR14 (data set deletion) execu-
tion depend upon the successful completion of the previous step (the sort).

The SORTCKPT Data Set

Assign a permanent DSN to the SORTCKPT DD statement and specify the UNIT, SPACE
and VOL=SER parameters to make the operator’s job easier should a deferred restart
become necessary.

The SORTWKxx Data Set(s)

Assign a permanent DSN to every SORTWKxx DD statement and specify the UNIT,
SPACE and VOL=SER parameters in case a deferred restart becomes necessary. Avoid
using passed data sets, JCL refer-backs, and any other references which would make the
JCL following the restart dependent on the JCL preceding the restart.

Note that the SORTCKPT data set and the SORTWKxx data set(s) may reside on the same
direct access device without loss of efficiency.

//SORTCKPT DD UNIT=3390,DSN=SORT.CKPT,

// SPACE=(CYL,(1,1)),

// VOL=SER=WORK01,DISP=(MOD,KEEP,KEEP)

Figure 228. Sample SORTCKPT DD Statement

//SORTWK01 DD UNIT=3390,DSN=SORT.WK01,

// SPACE=(CYL,(20,10)),

// VOL=SER=WORK02,DISP=(,KEEP,KEEP)

Figure 229. Sample SORTCKPT DD Statement

SyncSort for z/OS 1.1 Programmer’s Guide13.12

Automatic Checkpoint-Restart

With automatic checkpoint-restart, the operating system will ask the operator whether an
unsuccessful/abending step should be restarted. A "yes" reply instructs the system to
restart the job at the last checkpoint taken. If the operator replies "no", the job will still be
eligible for deferred checkpoint-restart, but its control statements will have to be modified
before the job is resubmitted.

The requirements for automatic checkpoint-restart are:

• The sort step must have a unique name.

• The JOB statement must specify RD=R and MSGLEVEL=1.

• All system completion codes with which the sort may abend should be defined at
system generation time as being eligible for restart. If the RC16=ABE and/or
IOERR=ABE options are in effect, for example, then user abend codes 16 and/or 999
must be eligible for restart.

• User-written exit routines and calling programs may not issue the STIMER macro.

//AUTOCKPT JOB (1101,2333),P.ARBEAU,RD=R,

// MSGLEVEL=(1,1)

//XVISORT EXEC PGM=SORT,

// PARM='RC16=ABE,IOERR=ABE'

//SYSOUT DD SYSOUT=A

//SORTIN DD DSN=XVI.SORTIN,DISP=OLD

//SORTOUT DD UNIT=TAPE,DISP=(,CATLG,KEEP),

// DSN=XVI.SORTOUT

//SORTWK01 DD UNIT=3390,DISP=(,DELETE,KEEP),

// VOL=SER=WORK01,DSN=XVI.SORTWK01,

// SPACE=(CYL,40)

//SORTWK02 DD UNIT=3390,DISP=(,DELETE,KEEP),

// VOL=SER=WORK02,DSN=XIV.SORTWK02,

// SPACE=(CYL,40)

//SORTCKPT DD UNIT=3390,DISP=(,DELETE,KEEP),

// VOL=SER=WORK02,DSN=XVI.SORTCKPT,

// SPACE=(CYL,(1,1))

//SYSIN DD *

SORT FIELDS=(1,10,CH,A),CKPT

/*

Figure 230. Sample Automatic Checkpoint-Restart JCL Stream

Chapter 13. Performance Considerations 13.13

Deferred Checkpoint-Restart

Unlike automatic checkpoint-restart, deferred checkpoint-restart requires that certain JCL
changes be made before resubmitting the job.

The requirements for a deferred restart are:

• A SYSCHK DD statement must appear immediately before the first EXEC statement
in the job. The SYSCHK DD must use the same DSN name as the SORTCKPT DD of
the sort that failed. Specify UNIT, VOL=SER, and DISP=(OLD,KEEP).

• The RESTART parameter must be specified, and must provide the job stepname and
the PROC stepname (if any) associated with the step containing the failed sort, as the
first subparameter. (Separate the two stepnames by a period.) The second
subparameter should contain the checkpoint ID of the last checkpoint taken before the
sort failed. This can be determined from the console messages given for the job. For JCL
sorts, the ID is usually "Cnnnnnnn," referring to the sequence number assigned by the
operating system.

• SORTIN and SYSIN DD DUMMY statements are permissible if the program is being
restarted at a point where they are no longer needed.

//DEFCKPT JOB (5433,2333),PAT.TAIG.NANT, 1

// RD=R,MSGLEVEL=(1,1),

// RESTART=(XVISORT,C0000001) 1

//SYSCHK DD UNIT=3390,DISP=(OLD,KEEP), 1

// VOL=SER=WORK02,

// DSN=XVI.SORTCKPT 1

//XVISORT EXEC PGM=SORT,

// PARM='RC16=ABE,IOERR=ABE'

//SYSOUT DD SYSOUT=A

//SORTIN DD DUMMY 1

//SORTOUT DD UNIT=TAPE,DISP=(,CATLG,KEEP),

// DSN=XVI.SORTOUT

//SORTWK01 DD UNIT=3390,DISP=(OLD,DELETE,KEEP),

// VOL=SER=WORK01,DSN=XVI.SORTWK01,

// SPACE=(CYL,40)

//SORTWK02 DD UNIT=3390,DISP=(OLD,DELETE,KEEP),

// VOL=SER=WORK02,DSN=SVI.SORTWK02,

// SPACE=(CYL,40)

//SORTCKPT DD UNIT=3390,DISP=(MOD,DELETE,KEEP),

// VOL=SER=WORK02,DSN=XVI.SORTCKPT,

// SPACE=(CYL,(1,1))

//SYSIN DD DUMMY 1

Figure 231. Sample Deferred Checkpoint-Restart JCL Stream

SyncSort for z/OS 1.1 Programmer’s Guide13.14

1. This JCL differs from automatic checkpoint-restart JCL.

Optimizing Data Set Placement

The Impact of Work Devices on SyncSort

The performance of SyncSort is almost totally independent of the number of work data sets.
The sort’s performance may, however, be strongly influenced by the number of devices to
which the work data sets are allocated. Generally, for any sort of significant size, the more
work devices, the better the sort can perform. If the sort file size is small, however, perfor-
mance improvements might be outweighed by increased overhead in managing the extra
data sets. Increasing the number of work devices will:

1. Improve the overlap between CPU and I/O processing.

2. Improve the effectiveness of SyncSort’s integrated activity monitoring.

3. Reduce the likelihood of SORT CAPACITY EXCEEDED.

Increasing the number of data sets without increasing the number of devices will only
increase overhead. It is suggested that, as an initial standard, you implement:

1. Four work devices if file size > 100 MB (megabytes).

2. Three work devices if 100MB > file size > 10MB.

3. Two work devices if 10 MB > file size > 1 MB.

4. One work device if file size < 1MB.

In all cases, allocate one work data set per work device.

Obtaining Device Separation

The easiest way to increase the number of work devices is to increase the number of work
data sets. This tends to increase the number of devices to which work data sets allocate,
although the relationship between the two may be complex and unpredictable.

Try to ensure that every sort has at least one work data set on a pack that does not contain
SORTIN or SORTOUT. SyncSort will avoid work data set contention with SORTIN and
SORTOUT if it can.

Channel Separation

Try to obtain as many paths to the work devices as possible. It is particularly desirable to
provide some path to the work data sets that will not be jammed with traffic from SORTIN
or SORTOUT.

Chapter 13. Performance Considerations 13.15

On the other hand, SORTIN and SORTOUT may be on the same channel, or even the same
device, without any performance loss.

Device Type Considerations

Avoid using a mixture of device types with different track capacities for the work data sets,
since SyncSort sacrifices some efficiency if this is the case.

If you must choose between two different disk device types for the work data sets, use the
faster; if they are close in speed, use the one with the larger track size.

Avoid the use of VIO data sets for work data sets.

If you must use tape work data sets, allocate as many as possible.

SyncSort for z/OS 1.1 Programmer’s Guide13.16

Chapter 14. The HISTOGRM Utility Program 14.1

Chapter 14. The HISTOGRM Utility Program

What Is HISTOGRM?

HISTOGRM is a separate program which is used to gain information about variable-length
files. The program scans a variable-length file and provides information which can then be
used to run more efficient sorts. HISTOGRM can report the:

• Block count for minimum and maximum block lengths

• Record count for minimum and maximum record lengths

• Average record length

• Total number of bytes in the file

• Total number of blocks in the file

• L6 value (average work space) for variable-length records

• L7 value (segment length) for variable-length records

HISTOGRM can be used to analyze variable-length records in a VSAM entry-sequenced or
key-sequenced data set. When HISTOGRM processes a VSAM file only record information
is gathered; block statistics are not produced.

SyncSort for z/OS 1.1 Programmer’s Guide14.2

Using HISTOGRM to Determine L6 and L7 Values for SyncSort

The L6 and L7 values HISTOGRM calculates are passed to SyncSort via the L6, L7 PARM
options or the l6, l7 values in the LENGTH parameter of the RECORD control statement.
(When there is a conflict, the PARM specification takes precedence.) These values are
ignored in a merge or copy application.

Control Parameters for HISTOGRM

The control parameters are outlined below; defaults are underlined. To specify other val-
ues, include a control statement in the SYSIN DD portion of the job control stream. Param-
eters may appear anywhere through column 71, provided they are separated by commas
with no intervening blanks.

NRECS

Tells how many records to scan in the variable-length file.

WIDTH

Indicates the range between minimum and maximum block lengths and the minimum and
maximum record lengths in each group of the HISTOGRM output. The number specified
for the WIDTH value must be a multiple of 4. (4, 8, 12, . . . See examples of block and record
HISTOGRMs that follow.) Adjust this range based on the characteristics of the file (the
lengths of the shortest and longest record) and the desired length of HISTOGRM.

DEVWK

NRECS=
ALL

nnn 
 
 

WIDTH=
20

nnnn 
 
 

DEVWK=

2311
3330
3340
3350
3375
3380
3390

 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 14. The HISTOGRM Utility Program 14.3

Tells the type of disk device that will be used for intermediate storage when the sort is run.
Specify the device number if HISTOGRM is to calculate L6 and L7.

KEYL

Gives the end location of the last control field in the record. Specify a value for KEYL if
HISTOGRM is to calculate L6 and L7.

BIGREC

Specifies the maximum number of HIS025I messages that will be issued in a HISTOGRM
execution. When HISTOGRM processes a large file, this message may be generated as
often as once for each record in the file. BIGREC limits the number of HIS025I messages
that will be issued in each execution. HISTOGRM processing continues, but no further
messages are issued once the BIGREC value is reached.

BLOCK

Tells whether or not to print the graphic portion of the HISTOGRM for block length.

REC

Tells whether or not to print the graphic portion of the HISTOGRM for record length.

KEYL=
20

nnnn 
 
 

BIGREC=

20

nnnn
MAX 

 
 
 
 

BLOCK

NOBLOCK
 
 
 
 
 

REC

NOREC
 
 
 
 
 

SyncSort for z/OS 1.1 Programmer’s Guide14.4

BIGSTOP

Tells whether or not to terminate the HISTOGRM run if an RDW value greater than the
DCB LRECL is encountered in the input file.

Job Control Language

The following example shows a sample execution of HISTOGRM.

1. SYSUT1 is the variable-length file to be scanned. Specify the DCB parameter if

SYSUT1 is a non-standard label tape.

2. SYSPRINT is the data set on which printed output will appear. The DCB (not
illustrated) is: DCB=(LRECL=121,BLKSIZE=121,RECFM=F).

3. You may use DD DUMMY instead of SYSIN DD *. Specify //SYSIN DD
DUMMY,DCB=(LRECL=80,RECFM=FB,BLKSIZE=80).

Executing HISTOGRM through an E15 Exit

It is possible to execute HISTOGRM during a sort by specifying an E15 exit in the MODS
control statement and coding HISTE15 as the r value. This produces a printout of the
HISTOGRM for Records at the conclusion of the job. (It is, however, not possible to get a
printout of the HISTOGRM for Blocks when initiating HISTOGRM in this way.)

BIGSTOP

NOBIGSTP
 
 
 
 
 

//L6L7 JOB

//STEP1 EXEC PGM=HISTOGRM

//STEPLIB DD DSN=HISTOGRM,DISP=SHR

//SYSUT1 DD UNIT=3490,VOL=SER=000001, 1

// DSN=VLRECS,LABEL=(1,SL),

DISP=OLD

//SYSPRINT DD SYSOUT=A 2

//SYSIN DD * 3

KEYL=50,DEVWK=3390,NOBLOCK,NOBIGSTP

/*

Figure 232. Sample JCL/Control Stream for HISTOGRM

Chapter 14. The HISTOGRM Utility Program 14.5

The following example shows a sample execution of HISTOGRM by an E15 exit during a
sort.

1. SORTIN is a DD statement for SyncSort. It contains the data set that will be analyzed
and then sorted. The data set name is VARDATA, and it is found on the standard
labeled tape with the volume serial number 000001. The data set is already in
existence. If SORTIN is not a standard label tape, DCB parameters must be specified.
Note that RECFM must be either V, VB, or VBS.

2. SORTOUT is a DD statement for SyncSort. It assigns the data set name
SORTED.DATA to the output file, and specifies a 3490 tape unit with the volume serial
number 000002. It is not yet in existence. The DCB parameters default to those of
SORTIN.

3. SORTWK01, SORTWK02, and SORTWK03 are DD statements for SyncSort. They
reserve 20 cylinders of primary space, 10 cylinders of secondary space on direct access
devices for intermediate storage.

4. SYSOUT is a DD statement for SyncSort. It assigns the SyncSort messages to the
output device associated with class A.

5. The MODLIB DD statement is used to define the partitioned data set in which the
HISTE15 program resides; MODLIB is referenced in the MODS control statement. The
data set name is SYS1.SYNCLIB, and the DISP shows the library may be shared.

//HISTSORT JOB

//STEP2 EXEC PGM=SYNCSORT

//SORTIN DD UNIT=3490,VOL=SER=000001, 1

// DSN=VARDATA,LABEL=(1,SL),

// DISP=OLD

//SORTOUT DD UNIT=3490,VOL=SER=000002, 2

// DSN=SORTED.DATA,LABEL=(1,SL),

// DISP=(,KEEP)

//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(20,10)) 3

//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(20,10))

//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(20,10))

//SYSOUT DD SYSOUT=A 4

//MODLIB DD DSN=SYS1.SYNCLIB,DISP=SHR 5

//SYSIN DD * 6

SORT FIELDS=(4,10,CH,A)

MODS E15=(HISTE15,7400,MODLIB,N) 7

//SYSPRINT DD SYSOUT=A 8

//HISTIN DD * 9

WIDTH=40

/*

Figure 233. Sample JCL/Control Stream for HISTOGRM Initiated by an E15 Exit

SyncSort for z/OS 1.1 Programmer’s Guide14.6

6. The SYSIN DD * statement marks the beginning of the input stream that includes the
sort control statements. The SORT control statement shows that one control field will
be sorted on. It consists of bytes 4-13 of the record, contains character data, and is to be
sorted in ascending order.

The MODS control statement must specify an E15 exit as an exit-type parameter and give
HISTE15 as the exit routine name. HISTE15 takes 5000 bytes of core storage and resides
in the main SyncSort library referenced here by a DD statement named MODLIB. The rou-
tine does not require link-editing during sort execution.

7. SYSPRINT is the data set on which the printout from HISTE15 appears. Its DCB is:
DCB=(LRECL=121,BLKSIZE=121,RECFM=F).

8. The HISTIN DD statement is optional. It is used to override any default values. The
following DCB parameter must be specified: DCB=(LRECL=80,RECFM=
FB,BLKSIZE=80). (With HISTIN DD *, the DCB is not necessary.)

Defaults for HISTE15

NRECS= ALL

WIDTH= 20

DEVWK= The same SORTWK devices used in executing this sort.

KEYL= End of key field furthest into record for this sort.

BIGREC= 0 (This cannot be overridden.)

NOBLOCK (This cannot be overridden.)

REC

NOBIGSTP (This cannot be overridden.)

Chapter 14. The HISTOGRM Utility Program 14.7

1
H
I
S
0
0
7
I

N
U
M
B
E
R

O
F

B
L
O
C
K
S
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

8
9
8

H
I
S
0
0
8
I

T
O
T
A
L

L
E
N
G
T
H

O
F

A
L
L

B
L
O
C
K
S
.
.
.
.
.
.
.

1
0
4
1
1
9

H
I
S
0
0
9
I

A
V
E
R
A
G
E
B
L
O
C
K

L
E
N
G
T
H
.
.
.
.
.
.
.
.
.
.
.
.
.

1
1
6

2
B
L
O
C
K

B
L
O
C
K

L
E
N
G
T
H

C
O
U
N
T

M
I
N

M
A
X

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

3
1
8

.
*
*
*
*
*
*

.
4
0

5
9

8
0

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.
6
0

7
9

1
4
5

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.
8
0

9
9

2
0
5

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.
1
0
0

1
1
9

2
5
3

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.
1
2
0

1
3
9

1
9
7

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.
1
4
0

1
5
9

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

y
y
y
y
y
y
y
y
y
y
y

c
b
d
d
b
d
b
d
b
d
b
d
b
d
b
d
b
f
f
g
f
g

S
am

pl
e

C
on

te
n

ts
 o

f
H

IS
T

O
G

R
M

 O
u

tp
u

t

1.
H

IS
T

O
G

R
M

 in
fo

rm
at

io
n

al
 m

es
sa

ge
s

fo
r

bl
oc

ks
 a

re
 p

ri
n

te
d

at
 t

he
 t

op
 o

f t
h

e
re

po
rt

. F
or

 e
xp

la
na

ti
on

s,
 s

ee
 in

di
vi

du
al

 m
es

sa
ge

s
in

 t
h

e
m

es
sa

ge
 s

ec
ti

on
 w

h
ic

h
 f

ol
lo

w
s

th
es

e
ex

am
pl

es
.

2.
B

L
O

C
K

 C
O

U
N

T
 g

iv
es

 t
h

e
n

u
m

be
r

of
 b

lo
ck

s
fa

ll
in

g
w

it
h

in
 t

h
e

m
in

im
u

m
 a

n
d

m
ax

im
um

 n
u

m
be

rs
 s

ho
w

n
 a

s
B

L
O

C
K

 L
E

N
G

T
H

. T
h

e
ra

n
ge

 is
 t

he
 W

ID
T

H
 v

al
ue

 t
ha

t
h

as
 b

ee
n

 s
pe

ci
fi

ed
.

3.
T

he
 a

st
er

is
ks

 a
re

 t
h

e
gr

ap
h

ic
 r

ep
re

se
nt

at
io

n
 o

f
th

e
n

um
be

r
of

 b
lo

ck
s

w
it

h
in

 t
h

e
ra

n
ge

 o
f

bl
oc

k
le

n
gt

h
s.

SyncSort for z/OS 1.1 Programmer’s Guide14.8

1
H
I
S
O
1
0
I

N
U
M
B
E
R
O
F

R
E
C
O
R
D
S
.
.
.
.
.
.
.
.
.
.
.
.
.
.

9
5
2

H
I
S
O
1
1
I

T
O
T
A
L

L
E
N
G
T
H

O
F

A
L
L

R
E
C
O
R
D
S
.
.
.
.

9
3
4
1
2

H
I
S
0
1
2
I

A
V
E
R
A
G
E
R
E
C
O
R
D

L
E
N
G
T
H
.
.
.
.
.
.
.
.
.
.

9
8

H
I
S
0
1
6
I

K
E
Y

L
E
N
G
T
H
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

5
0

H
I
S
0
1
5
I

A
V
E
R
A
G
E
S
P
A
C
E

P
E
R

R
E
C
O
R
D

-
L
6
.
.

1
2
9

H
I
S
0
1
4
I

R
E
C
O
M
M
E
N
D
E
D

S
E
G
.

S
I
Z
E

-
L
7
.
.
.
.
.

7
2

H
I
S
0
1
7
I

L
I
N
E

W
I
D
T
H
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

2
0

H
I
S
0
1
8
I

L
O
N
G
E
S
T
R
E
C
O
R
D
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

1
5
5

H
I
S
O
1
9
I

S
H
O
R
T
E
S
T

R
E
C
O
R
D
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

4
0

H
I
S
0
0
5
I

R
E
C
O
R
D
S
T
O
O

L
O
N
G
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

4
8

H
I
S
0
2
3
I

R
E
C
O
R
D
S
T
O
O

S
H
O
R
T
.
.
.
.
.
.
.
.
.
.
.
.
.
.

4
1

H
I
S
0
2
0
I

D
E
V
I
C
E
T
Y
P
E
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

3
3
9
0

2
R
E
C
O
R
D

R
E
C
O
R
D

L
E
N
G
T
H

C
O
U
N
T

M
I
N

M
A
X

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

3
1
0
4

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.
4
0

5
9

1
8
1

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.
6
0

7
9

1
9
9

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.
8
0

9
9

1
9
6

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.
1
0
0

1
1
9

2
1
1

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.
1
2
0

1
3
9

6
1

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.
1
4
0

1
5
9

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

S
am

pl
e

C
on

te
n

ts
 o

f
H

IS
T

O
G

R
M

 O
u

tp
u

t

1.
H

IS
T

O
G

R
M

 i
n

fo
rm

at
io

na
l

m
es

sa
ge

s
fo

r
re

co
rd

s
ar

e
pr

in
te

d
at

 t
h

e
to

p
of

 t
h

e
re

po
rt

. F
or

 e
xp

la
n

at
io

n
s,

 s
ee

 i
n

di
vi

du
al

 m
es

sa
ge

s
in

th
e

m
es

sa
ge

 s
ec

ti
on

 w
h

ic
h

 f
ol

lo
w

s
th

es
e

ex
am

pl
es

.

2.
R

E
C

O
R

D
 C

O
U

N
T

 g
iv

es
 t

h
e

n
u

m
be

r
of

 r
ec

or
ds

 f
al

li
ng

 w
it

h
in

 t
h

e
m

in
im

u
m

 a
n

d
m

ax
im

u
m

 n
u

m
be

rs
 s

h
ow

n
 a

s
R

E
C

O
R

D
 L

E
N

G
T

H
.

T
he

 r
an

ge
 is

 t
h

e
W

ID
T

H
 v

al
u

e
th

at
 h

as
 b

ee
n

 s
pe

ci
fi

ed
.

3.
T

he
 a

st
er

is
ks

 a
re

 t
he

 g
ra

ph
ic

 r
ep

re
se

nt
at

io
n

 o
f

th
e

n
u

m
be

r
of

 r
ec

or
ds

 w
it

h
in

 t
h

is
 r

an
ge

 o
f

re
co

rd
 le

ng
th

s.

Chapter 14. The HISTOGRM Utility Program 14.9

HISTOGRM Messages

HISnnnA messages indicate a critical error condition. HISTOGRM termi-
nates to allow you to correct the error(s) so that a successful pro-
gram may be run.

HISnnnI messages are informational or indicate a non-critical error. They
are printed on the HISTOGRM output for blocks and records and
contain statistical information inserted by HISTOGRM.

HIS001A INVALID CONTROL CARD
EXPLANATION: A blank control statement or an incomplete con-
trol parameter was found.

HIS002A INVALID DATA ON CONTROL CARD
EXPLANATION: An invalid control parameter was found.

HIS003A EXPECTED CONTIN NOT FOUND
EXPLANATION: A control statement continuation was indicated
either by a non-blank character in column 72 or by a comma imme-
diately after the last control field, but no continuation card image
was found.

HIS004A INVALID DCB OR ACB DATA
EXPLANATION: The SYSUT1 data set was opened and one of
three errors was detected: (1) LRECL was not specified, (2)
BLKSIZE was not specified, (3) RECFM was not V, VB, or VBS, or
(4) the data set is a VSAM RRDS.
ACTION: Check for a missing DCB parameter if SYSUT1 is a non-
standard label tape. If the file is a standard label tape or a disk file,
one of the DCB subparameters may be missing, or the file is not a
variable-length file.

HIS005I RECORDS TOO LONG nnnn
EXPLANATION: Records with lengths exceeding the length
specified in the DCB were found. The nnnn represents the number
of long records found. Long records have no effect on other
HISTOGRM statistics.

HIS006A INVALID SPAN CONTROL FIELD BLOCK nnnn LOGICAL
RECORD nnnn {DATA SET # nnnn}
EXPLANATION: The third byte of the four byte record descriptor
word preceding a variable-length record does not contain a valid
code X'00', X'01', X'10', X'11', or the code is inconsistent with the
code of the previous segment. The block and record number being
processed are included in the message text. The first 100 bytes of
both current and previous segment along with their RDWs, follows

SyncSort for z/OS 1.1 Programmer’s Guide14.10

this message. DATA SET # will be the concatenation number within
SYSUT1 if the input data set is concatenated.

HIS007I NUMBER OF BLOCKS nnnn
EXPLANATION: The total number of blocks read from the SYSUT1
data set is given on the HISTOGRM for blocks.

HIS008I TOTAL LENGTH OF ALL BLOCKS nnnn
EXPLANATION: The total length in bytes of all blocks read is given
on the HISTOGRM for blocks.

HIS009I AVERAGE BLOCK LENGTH nnnn
EXPLANATION: The average block length of all blocks read is
given on the HISTOGRM for blocks.

HIS010I NUMBER OF RECORDS nnnn
EXPLANATION: The total number of records read from the
SYSUT1 data set is given on the HISTOGRM for records. The total
will exclude any records with lengths greater than the length speci-
fied in the DCB.

HIS011I TOTAL LENGTH OF ALL RECORDS nnnn
EXPLANATION: The total length in bytes of all records read is
given on the HISTOGRM for records.

HIS012I AVERAGE RECORD LENGTH nnnn
EXPLANATION: The total length of all records is divided by the
number of records and the quotient is given on the HISTOGRM for
records.

HIS013I NUMBER OF SPANNED RECORDS
EXPLANATION: The number of records contained within two or
more blocks is given on the HISTOGRM for records.

HIS014I RECOMMENDED SEG. SIZE - L7
EXPLANATION: The recommended segment size is given on the
HISTOGRM for records. Supply SyncSort with this value either
through L7 in the PARM field of the EXEC statement or through l7
in the LENGTH parameter of the RECORD control statement.

Note: If the recommended number is 0, the range of record lengths
in the file was too wide to compute an optimal value. In this case, do
not supply an L7.

HIS015I AVERAGE SPACE PER RECORD - L6
EXPLANATION: The average work space necessary for each record
is given on the HISTOGRM for records. Supply SyncSort with this
value either through L6 in the PARM field of the EXEC statement

Chapter 14. The HISTOGRM Utility Program 14.11

or through l6 in the LENGTH parameter of the RECORD control
statement.

Note: If the recommended number is 0, the range of record lengths
in the file was too wide to compute an optimal value. In this case, do
not supply an L6.

HIS016I KEY LENGTH nnnn
EXPLANATION: The end location of the last control field in the
record is given on the HISTOGRM for records.

HIS017I LINE WIDTH nnnn
EXPLANATION: The numeric interval between the minimum and
maximum block/record length is given on the HISTOGRM for
records.

HIS018I LONGEST RECORD nnnn
EXPLANATION: The length of the longest record read; that is the
record containing the largest value in the record descriptor word.

HIS019A INVALID DEVICE TYPE
EXPLANATION: An invalid device type was specified on the con-
trol statement in the SYSIN data set.

HIS019I SHORTEST RECORD nnnn
EXPLANATION: The length of the shortest record read is given on
the HISTOGRM for records.

HIS020I DEVICE TYPE nnnnnn
EXPLANATION: The type of intermediate storage device to be used
for the sort is given on the HISTOGRM for records.

HIS021I BLOCK PARAMETER IGNORED
EXPLANATION: Information about blocks cannot be collected
when running HISTE15 during a sort.

HIS022A INPUT FILE IS EMPTY
EXPLANATION: There are no records in the input file which are
not longer than the data set’s LRECL.

HIS023I RECORDS TOO SHORT nnnn
EXPLANATION: Records with lengths less than the KEYL value
specified for the HISTOGRM execution were found. The nnnn is the
number of short variable-length records in the file.

HIS024I LRECL nnnnn,BLKSIZE nnnnn,RECFM xxx
EXPLANATION: The logical record length, block size, and record

SyncSort for z/OS 1.1 Programmer’s Guide14.12

format of the input data set obtained from the SYSUT1 DCB after
OPEN.

HIS025A INVALID RDW/RECORD LENGTH BLOCK nnnn LOGICAL
RECORD nnnn {DATA SET # nnnn}
EXPLANATION: The RDW value of the current record is greater
than the DCB LRECL and HISTOGRM has been requested to ter-
minate (thru the BIGSTOP parameter). The block and record num-
ber are supplied in the message and the first 100 bytes of the record
and the RDW follow the message. DATA SET # will be the concate-
nation number within SYSUT1, if the input data set is concate-
nated.

HIS025I INVALID RDW/RECORD LENGTH BLOCK nnnn LOGICAL
RECORD nnnn {DATA SET # nnnn}
EXPLANATION: The RDW value of a record is greater than the
DCB LRECL. Block number and record number are supplied in the
message text, along with the concatenation number if SYSUT1 is
concatenated.

HIS026I INPUT DATA SET IS VSAM ... NO BLOCK STATISTICS
GATHERED
EXPLANATION: The input to HISTOGRM is a VSAM data set;
therefore block statistics are not produced for this HISTOGRM exe-
cution.

HIS027A SYSUT1 DD STATEMENT MISSING
EXPLANATION: The input data set is absent; the HISTOGRM run
has terminated.

HIS028A VSAM LOGICAL ERROR nn
EXPLANATION: An error occurred while reading a VSAM data set.
For the definition of the error number, nn, consult one of the follow-
ing IBM publications:

• DFSMS/MVS Macro Instructions for Data Sets, SC26-4913

HIS029A VSAM OPEN ERROR nn
EXPLANATION: An error occurred during an attempt to OPEN a
VSAM file. For the definition of the error number, nn, consult one of
the following IBM publications:

• DFSMS/MVS Macro Instructions for Data Sets, SC26-4913

HIS030A message text
EXPLANATION: An I/O error has occurred. The message text gives
a detailed description of the error.

Chapter 14. The HISTOGRM Utility Program 14.13

HIS031A INVALID BDW ENCOUNTERED BLOCK nnnn
EXPLANATION: The block descriptor word for block number nnnn,
was either zero or greater than the DCB blocksize.

SyncSort for z/OS 1.1 Programmer’s Guide14.14

Chapter 15. Value-Added Products 15.1

Chapter 15. Value-Added Products

This chapter describes SyncSort’s value-added products:

• Visual SyncSort for z/OS

• SyncSort/COBOL Advantage

• PROC SYNCSORT - An Accelerator for SAS™ Sorting

• PipeSort

These products significantly improve sorting efficiency and enhance programmer produc-
tivity.

Visual SyncSort

SyncSort for z/OS incorporates functionality to integrate Visual SyncSort with SyncSort for
z/OS mainframe processing. Visual SyncSort is a separately available PC product that is
designed to allow programmers and non-programmers alike to easily create and manage
SyncSort applications for the mainframe environment. With Visual SyncSort, you can cre-
ate new sort, merge, and copy applications, or you can import and modify existing ones.
Visual SyncSort saves programmer time while taking full advantage of the processing
power of SyncSort for z/OS.

Visual SyncSort does not require knowledge of sort syntax, so training time for new pro-
grammers is reduced dramatically. Buttons, pull-down menus, and other aids make naviga-
tion easy, and comprehensive context-sensitive Help is always available. Instant error

SyncSort for z/OS 1.1 Programmer’s Guide15.2

checking provides immediate feedback. Visual SyncSort generates applications that run
correctly the first time, because they are always free of syntax errors.

Visual SyncSort’s data dictionary and interactive design work together in a visual environ-
ment that greatly simplifies application development. Once you identify a field in your
record layout by its position, length, and format and define a name for it (or import a
COBOL file definition with the same information), you simply specify fields by name in
your application. Visual SyncSort tracks the position and length of all fields, automatically
handling changes in field specifications that occur as a result of output reformatting, data
conversion, summarization, arithmetic manipulation, and report writing.

When you develop an application, Visual SyncSort leads you through a series of dialogs
that make SyncSort’s powerful features easily available. Based on your responses, Visual
SyncSort builds the SyncSort for z/OS control data set for you, so you can concentrate on
what you want to do, not how to do it. And Visual SyncSort checks the information you
enter as you are building the application, eliminating the need for debugging runs.

Visual SyncSort makes it easy to develop reports because you type features like headers
and trailers on your computer screen exactly as you want them in your report. You can
import existing mainframe applications into Visual SyncSort to enjoy the benefits of modi-
fying them through the Visual SyncSort interface. Visual SyncSort will automatically gen-
erate field names and lay out the entire application so you can modify and re-use it quickly
and easily. Visual SyncSort automatically analyzes input and output specifications, and
creates an optimized application that runs fast and minimizes SyncSort’s use of system
resources. For every Visual SyncSort application, you get a clearly laid out, consistently for-
matted application description, rather than cryptic control statements.

SyncSort/COBOL Advantage

The SyncSort/COBOL Advantage is a fully automatic facility for improving the perfor-
mance of all COBOL programs that invoke SyncSort for z/OS. By enhancing and replacing
COBOL sort interfaces, it will improve elapsed time by 25 to 40%. It will significantly
reduce CPU time and EXCPs in addition to elapsed time in COBOL sorts with USING and/
or GIVING clauses.

The SyncSort/COBOL Advantage is transparent to the user. It is invoked dynamically
whenever SyncSort is invoked, and it automatically decides how to accelerate COBOL pro-
cessing.

The SyncSort/COBOL Advantage is easy to install and requires no changes to existing pro-
grams or procedures. Programs do not have to be recompiled to benefit from the SyncSort/
COBOL Advantage.

For more information regarding the benefits and installation of this product, refer to the
SyncSort/COBOL Advantage Installation and Use Guide.

Chapter 15. Value-Added Products 15.3

PROC SYNCSORT - An Accelerator for SAS™ Sorting

PROC SYNCSORT - An Accelerator for SAS™ Sorting is a high performance replacement
for the SAS-provided procedure PROC SORT. Compared to PROC SORT, PROC
SYNCSORT reduces the resources required for sorting within SAS applications and
significantly cuts sort elapsed time.

Sort processing within SAS often consumes as much as 30 percent of CPU time and EXCPs.
Because sorting is such a large part of system activity, PROC SYNCSORT’s efficiency
results in noticeable improvements in overall system throughput. This reduced elapsed
time from PROC SYNCSORT makes it possible for SAS applications to complete much
faster.

PROC SYNCSORT improves performance by providing a direct interface between SyncSort
and SAS. This frees SyncSort to use its high performance techniques - sophisticated access
methods, path length minimization algorithms and I/O optimization.

No modifications to SyncSort are required to install and use PROC SYNCSORT.

For more detailed information regarding the use and installation of PROC SYNCSORT,
refer to the booklet titled PROC SYNCSORT - An Accelerator for SAS™ Sorting: Installa-
tion and Use Guide.

PipeSort

PipeSort works with SyncSort to run multiple sorts simultaneously on the same input data.
For large input files, PipeSort significantly reduces total elapsed time compared to running
separate sort jobs.

PipeSort reads SORTIN once and distributes the input records to up to eight simultaneous
SyncSort executions. The complete range of SyncSort control statements and PARMs is
available for the individual sort operations.

The output files are differently sequenced according to user-specified sort keys and are
written to different SRTnOUT DD data sets.

Optionally, you can use an inline E15 exit, with or without one or more E35 exits. An inline
E15 input exit can supply the input data to PipeSort, and E35 output exits can accept the
different output record sets.

For detailed information regarding installation and implementation through z/OS JCL,
refer to the PipeSort User’s Guide.

SyncSort for z/OS 1.1 Programmer’s Guide15.4

Chapter 16. Messages 16.1

Chapter 16. Messages

All messages issued by SyncSort have the form:

WERnnnx Message text

where nnn is the message number and x may be any of the letters A through I. The inter-
pretation of the suffix letter x is given below.

A (action) message indicates a critical error condition: SyncSort terminates in order to
allow the user to correct the error(s) so that a successful sort/merge may be run.

B (tuning) messages provide information that may be useful in adjusting the job/control
stream to the actual demands of the job. These messages only print if a critical error forces
sort termination or if B messages were requested at execution or installation time.

C-I (informational) messages document decisions internal to the sort as well as Sync-
Sort’s response to error conditions which are not severe enough to warrant sort/merge ter-
mination.

Example WER002A EXCESS CARDS

Example WER151B SECONDARY EXTENTS OBTAINED xxx

Example WER177I TURNAROUND SORT PERFORMED

WER185I SORTIN DCBBLK GT ACTUAL, I/O INEFF

SyncSort for z/OS 1.1 Programmer’s Guide16.2

SyncSort for z/OS provides an interactive message explanation facility, SS11MSG, that
gives online access to all SyncSort message texts and their explanations by message num-
ber. If SS11MSG is included as an option in a PDF menu, you may invoke from that menu.
Otherwise, you may invoke SS11MSG from the command line of any ISPF panel by enter-
ing the following command:

The installation of the SS11MSG facility is optional. Therefore, if you are unable to invoke
the facility as described, you should contact your system administrator for more informa-
tion.

Note: All messages that refer to SORTIN, SORTWK, SORTOF and SORTOUT provide the
actual DD name, which reflects any changes made via a prefix override.

WER001A COL 1 OR 1-15 NOT BLANK

EXPLANATION: This message is triggered by a character in column 1
of the END control statement or in columns 1-15 of a continuation
statement following a statement with a character in column 72, or by a
non-blank character in columns 1-15 of a sort control statement in the
$ORTPARM data set. These columns must be left blank.

WER002A EXCESS CARDS

EXPLANATION: The static internal storage area is inadequate for the
quantity and/or complexity of the control statements in this application.
Either the minimum storage value set at installation time is too low, or
insufficient storage is available in your region.

ACTION: Ask the systems programmer in charge of SyncSort installa-
tion to increase the minimum storage (MINCORE) value unless the
storage available in the region is less than the minimum storage value.
In that case, increase the storage available in the region or partition so
that it at least equals the minimum storage value.

WER003A NO CONTIN CARD

EXPLANATION: A continuation statement was indicated by a non-
blank character in column 72 of a control statement or by a control
statement ending in an operand-comma combination; no continuation
statement followed.

TSO %SS11MSG

Chapter 16. Messages 16.3

WER004A INVALID OP DELIMITER

EXPLANATION: A control statement ends with an incorrect delimiter,
such as a comma.

WER005A STMT DEFINER ERR

EXPLANATION: A control statement contains an invalid operation
name. (Tape Sort accepts fewer operation names than Disk Sort, MAX-
SORT and PARASORT.)

WER006A OP DEFINER ERR

EXPLANATION: An operation name must be followed by an operand
on the same control statement.

WER007A SYNTAX ERROR - {S/M,REC,MOD}

EXPLANATION: The control statement shown in the message contains
a syntax error.

WER008A FLD OR VALUE GT 8 CHAR - {S/M,REC,MOD}

EXPLANATION: A parameter exceeds eight characters on the state-
ment shown in the message.

WER009I EXCESS INFO ON CARD - {S/M, REC,MOD}

EXPLANATION: The control statement shown in the message contains
more information than necessary. This excess information will be
treated as a comment.

WER010A NO S/M CARD

EXPLANATION: The SORT/MERGE control statement is required for
all SyncSort applications including a straight copy (coded SORT
FIELDS=COPY or MERGE FIELDS=COPY).

WER011A TOO MANY S/M KEYWORDS

EXPLANATION: The maximum of eight keyword operands for tape
sort was exceeded on a control statement.

WER012A NO FLD DEFINER

EXPLANATION: The FIELDS operand was not specified on the SORT/
MERGE control statement.

SyncSort for z/OS 1.1 Programmer’s Guide16.4

WER013A INVALID S/M KEYWORD

EXPLANATION: An invalid keyword operand was found on the SORT/
MERGE control statement.

WER014A DUPLICATE S/M KEYWORD

EXPLANATION: A keyword operand was defined more than once on
the SORT/MERGE control statement.

WER015A TOO MANY PARAMETERS

EXPLANATION: A keyword operand on the SORT/MERGE control
statement contains too many parameters.

WER016A INVALID VALUES IN FLD

EXPLANATION: An invalid value was specified in the FIELDS oper-
and on the SORT/MERGE control statement.

WER017A ERR IN DISP LENGTH VALUE

EXPLANATION: The length and displacement value of a control field is
greater than 4092 (4084 for variable-length records), or less than one,
or the sum of the lengths of all control fields exceeds 4092 (4084 for
variable-length records).

WER018A CTL FLD ERR

EXPLANATION: An error was detected in the SORT/MERGE control
statement for the data format of a control field. The format was speci-
fied for one field but not for another, or bit comparisons were specified
and FORMAT=BI was not specified.

WER019A SIZE/SKIPREC ERR

EXPLANATION: The SIZE or SKIPREC parameter was incorrectly
specified.

WER020A INVALID REC KEYWORD

EXPLANATION: An invalid keyword was detected in a RECORD con-
trol statement.

Chapter 16. Messages 16.5

WER021A NO TYPE DEFINER

EXPLANATION: The TYPE operand must be specified in the RECORD
control statement.

WER022A RCD FORMAT NOT F/V

EXPLANATION: An invalid RECFM was detected for SORTIN or
SORTOUT.

WER023A NO LENGTH DEFINER

EXPLANATION: The LENGTH operand must be specified on the
RECORD control statement.

WER024A ERR IN LENGTH VALUE

EXPLANATION: An invalid LENGTH subparameter was found in a
RECORD control statement. For example, l5 was greater than l1 or l4
was greater than l2.

WER025A RCD SIZE GT MAX

EXPLANATION: The LENGTH operand in a RECORD control state-
ment specified a value which is greater than the maximum value
allowed (32,767).

WER026A L1 NOT GIVEN

EXPLANATION: The LENGTH operand on a RECORD control state-
ment does not contain an l1 value.

WER027A CONTROL FIELD BEYOND RECORD

EXPLANATION: The last byte of a SORT/MERGE control field is
located beyond the maximum record length specified, or a variable-
length record is shorter than the ending location of a specified control
field in an execution for which this is defined as cause for SyncSort ter-
mination (see VLTEST). Program HISTOGRM may be used to deter-
mine the length of the shortest record in the input file.

WER028A TOO MANY EXITS

EXPLANATION: More than the maximum number of exits allowed (16)
were specified.

SyncSort for z/OS 1.1 Programmer’s Guide16.6

WER029A IMPROPER EXIT

EXPLANATION: The set of legal exits depends on the sorting tech-
nique chosen. Tape Sort does not support E14 or E32; a merge or copy
may not specify any Phase 1 or Phase 2 exits; a copy may not specify
exit E32 or E61; and a sort or merge with data fields of Y2x or PD0 for-
mats may not specify exit E61.

WER030A MULTIPLY DEFINED EXIT

EXPLANATION: The same program exit was specified twice on a
MODS control statement.

WER031A INVALID MODS OP CHAR

EXPLANATION: An invalid character was detected in a parameter on
a MODS control statement.

WER032A EXIT E61 REQUIRED

EXPLANATION: A SORT control statement specified "E" in the
FIELDS parameter but program exit E61 was not specified on a MODS
control statement.

WER033A CONTROL FIELD COLLATING ORDER E REQUIRED

EXPLANATION: Program exit E61 was specified on the MODS control
statement but "E" was not specified in the FIELDS parameter of the
SORT control statement.

WER034A PARAM ERR FOR MODS

EXPLANATION: An incorrect number of parameters was given for an
operand on a MODS control statement, or SYSIN was specified on a
MODS control statement as the source for user exit routines but a //
SORTMODS or //SYSIN statement is missing or dummy.

WER035A DUPLICATE MOD RTN IN PHASE

EXPLANATION: The same exit routine was used for more than one
program exit in the same phase of a tape sort, or two or more exit rou-
tines in a tape sort have the same name.

WER036B G=ggg, B=bbb, SEGLEN=sss, BIAS=zz

EXPLANATION: The tuning information displayed is as follows:

Chapter 16. Messages 16.7

G=ggg ggg is the number of records that can be contained in
SyncSort’s working virtual storage area. For variable-
length records, this number is the number of segments.

B=bbb bbb indicates the physical blocking used for intermedi-
ate storage. For fixed-length records, this number repre-
sents the blocking factor. For variable-length records, it
represents the blocksize. The B value will not appear in
the message for incore or turnaround sorts.

SEGLEN=sss This value appears in the message for variable-length
records, when the execution is not an incore or turn-
around sort. It reflects the segment length used in Sync-
Sort’s working storage during Phase 1.

BIAS=zz zz reflects the degree of prior sequencing in the input
data. The number displayed ranges from 00 to 99 indi-
cating random to highly sequenced input. The BIAS
value is not included in the message for an incore or
turnaround sort, where it is 100 by definition.

WER037A REXX ENVIRONMENT UNAVAILABLE

EXPLANATION: One or more REXX exits were specified in a MODS
control statement, but the required operating system and/or TSO envi-
ronment is not available.

WER039A INSUFFICIENT VIRTUAL STORAGE

EXPLANATION: The amount of virtual storage available to SyncSort is
not large enough to permit execution. Refer to the "Setting CORE" sec-
tion of the Performance Considerations chapter for further information.

ACTION: Verify that virtual storage is specified properly. Check that
the region size is sufficient for execution.

WER040A INSUFFICIENT WORK UNITS

EXPLANATION: Tape Sort requires at least three work devices, num-
bered in order.

WER041A N GT MAX

EXPLANATION: The number of records specified in the SIZE parame-
ter on a SORT control statement is greater than the NMAX value calcu-
lated by SyncSort.

SyncSort for z/OS 1.1 Programmer’s Guide16.8

ACTION: Check SIZE parameter for error. If there is no error, increase
intermediate storage.

WER042A UNITS ASSGN ERROR

EXPLANATION: The device type of a SORTWK data set is not valid.

WER043A DATA SET ATTRIBUTES NOT SPECIFIED

EXPLANATION: The DCB parameter was not specified for a SORTIN
or SORTOUT data set.

ACTION: Specify the DCB parameters. When including an E18 exit
routine, this is necessary even when SORTIN is a standard labeled
tape.

WER044A EXIT Exx INVALID OPTION

EXPLANATION: The exit routine shown in the message specified an
invalid option for the modification of a DCB parameter of a sort/merge
data set.

WER045C END SORT PH

EXPLANATION: SyncSort has completed its sort phase.

WER046A SORT CAPACITY EXCEEDED

EXPLANATION: All available intermediate storage is exhausted,
including any secondary allocation allowed in this job set. Sort process-
ing cannot continue.

ACTION: Supply more intermediate storage (see the SORTWK calcula-
tion formula) or use the MAXSORT technique.

WER047A RCD CNT OFF, IN x, OUT y

EXPLANATION: The actual number of records specified in the SIZE
parameter on the SORT control statement (the IN value) was not equal
to the number of records read from the SORTIN data set (the OUT
value). (This comparison is made only when the SIZE parameter speci-
fies an actual number of records.)

For Disk Sort, MAXSORT and PARASORT: the actual number of
records (the IN value) for FILSZ=n specified either on the SORT control
statement or as a PARM option was not equal to the total number of
records (the OUT value) from the SORTIN data set after any changes

Chapter 16. Messages 16.9

due to the INCLUDE/OMIT control statement, and an E14 or E15 exit
routine, and SKIPREC and/or STOPAFT processing.

For Tape Sort only: there is a discrepancy between the number of
records entering and leaving a phase which is not accounted for by user
exits (this is usually caused by an I/O error - try running the sort
again).

WER048I E16 EXIT CALLED

EXPLANATION: Program exit E16 was entered after all available
SORTWORK space was exhausted.

WER049A SUM FIELD OVERFLOW

EXPLANATION: Summarization of two equally keyed records could
not be done due to a numeric overflow or underflow in a defined SUM
field.

ACTION: Investigate the use of the INREC control statement if possi-
ble to pad the fields with leading zeros of the proper numeric format.
Adjust the SUM field and other control statement fields accordingly.

Visual SyncSort users may create an Advanced Field that could be sub-
stituted for the SUM field by using the Summation Field Expansion
option.

WER049I SUM FIELD OVERFLOW

EXPLANATION: Summarization of two equally keyed records could
not be done due to a numeric overflow or underflow in a defined SUM
field.

ACTION: If complete summarization is desired, use the INREC control
statement if possible to pad the fields with leading zeros of the proper
numeric format. Adjust the SUM field and other control statement
fields accordingly.

Visual SyncSort users may create an Advanced Field that could be sub-
stituted for the SUM field by using the Summation Field Expansion
option.

WER050I SUM CONTROL STATEMENT IGNORED

EXPLANATION: A SUM control statement was specified in a SORT
FIELDS=COPY application. Since a COPY operation does not use

SyncSort for z/OS 1.1 Programmer’s Guide16.10

SORT/MERGE key fields, the specification of SUM, which operates on
equally keyed records, is illogical.

ACTION: The SUM statement will be ignored, but the application
should be checked for correct specification of control statements.

WER051A UNENDING MERGE

EXPLANATION: The intermediate storage provided is insufficient to
complete the intermediate merge phase.

ACTION: Assign more tape work units to the sort.

WER052I END SYNCSORT - jobname, stepname, procstepname,
DIAG=hhhh,hhhh,...

EXPLANATION: SyncSort has successfully completed execution. The
hexadecimal information following the DIAG keyword is likely to
change from execution to execution. It is internal diagnostic informa-
tion intended for use by SyncSort personnel in Product Support.

WER053A OUT OF SEQ

EXPLANATION: The current record leaving the final merge phase is
not in collating sequence with the last record blocked for output.

WER054I RCD IN x, OUT y

EXPLANATION: The x represents the number of records read from the
input data set(s). If OUTFIL statements are not present, the y
represents the number of records in the output file. If OUTFIL
statements are present, the y represents the number of records
available for OUTFIL processing.

WER055I INSERT x, DELETE y

EXPLANATION: The x represents the number of records inserted by
user exit routines. The y represents the number of records deleted by
user exit routines, SUM, and INCLUDE/OMIT control statements.

Note: For MAXSORT, these counts are cumulative for the entire
MAXSORT application.

WER056A SORTIN/SORTOUT NOT DEFINED

EXPLANATION: A required SORTIN or SORTOUT DD statement
could not be found.

Chapter 16. Messages 16.11

WER057A SORTIN NOT SORTWK01

EXPLANATION: A tape work data set other than SORTWK01 is
assigned to the same tape unit assigned to SORTIN.

WER058A SORTOUT A WORK UNIT

EXPLANATION: A tape work data set is assigned to the same tape unit
assigned to SORTOUT.

WER059A RCD LNG INVALID FOR DEVICE

EXPLANATION: The logical record length specified for a fixed-length
input data set plus overhead, if any, is too large to fit on one disk track
of the intermediate storage device, or (Tape Sort only) it is less than 18
bytes long.

WER060A DSCB NOT DEFINED

EXPLANATION: There are no DD names in the TIOT for any of the
sort work data sets.

WER061A I/O ERR jobname, stepname, unit address, device type,
DDname, operation attempted, error description, last seek
address or block count, access method.

EXPLANATION: An I/O error has occurred on the device whose
address is given. I/O errors are often transient - resubmitting the job
may result in a successful run. However, if the I/O error is on SORTIN,
the following should be checked first:

1. When SORTIN consists of concatenated data sets, check that the
largest blocksize is available at sort initialization. See
“ Concatenating Input Data Sets”.

2. If the data set is on disk and has just been created by another
program, check that this program opened the data set even if no
data was written to the file. The data set must be opened in order for
an end-of-file mark to be written. (In the absence of an end-of-file
mark, SyncSort will tend to read whatever was on the disk as part
of SORTIN, causing an I/O error.)

WER062A L E ERR

EXPLANATION: The linkage editor detects an error so serious that
execution cannot continue.

SyncSort for z/OS 1.1 Programmer’s Guide16.12

WER063A xxxxxx OPEN ERR

EXPLANATION: The data set shown cannot be successfully opened.

ACTION: Check for missing DD statements.

WER064A DELETE ERR

EXPLANATION: A SyncSort program module is unable to delete itself
or a user exit routine.

WER065A DECK STRUCTURE ERROR

EXPLANATION: The end of the SYSIN data set was reached before all
user exit routines were read or an object deck was missing its first
statement.

WER066A APPROX RCD CNT x

EXPLANATION: Sort capacity was exceeded, so the sort terminated.
The approximate number of records processed by SyncSort up to this
point is given.

WER067I INVALID EXEC OR ATTACH PARAMETER

EXPLANATION: An invalid parameter was detected in the PARM field
of the EXEC statement or in the parameter list if SyncSort was initi-
ated through ATTACH, LINK, or XCTL. Invalid parameters are
ignored. (If a parameter is entered more than once, the last entry, if
valid, is used.)

WER068A OUT OF SEQ SORTINxx[, BLOCK y]

EXPLANATION: A record in the SORTIN data set indicated by xx is
out of sequence according to the FIELDS specification on the MERGE
statement. The number y of the block containing the out-of-sequence
record is given if an E32 exit was not used.

WER069A E39/OUTFIL INCOMPATIBLE

EXPLANATION: The E39 exit facility may not be utilized in sorts/
merges which also specify OUTFIL control statements.

WER070A ddname {TOTAL,SUBTOTAL,AVG,SUBAVG} FIELD OVERFLOW

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.

Chapter 16. Messages 16.13

An overflow condition was generated during the TOTAL, SUBTOTAL,
AVG, or SUBAVG OUTFIL function for the specified output file. All
fields are totaled internally as 8-byte PD values, allowing for 15 deci-
mal digits.

ACTION: This error is usually due to invalid data in the specified
fields. Check the fields specified in the indicated parameter and check
the actual data in those fields to ensure that no total will exceed 15 dec-
imal digits. In some cases, within TRAILER2 or TRAILER3, you could
change SUBTOTAL to TOTAL or SUBAVG to AVG to reduce the possi-
bility of overflow.

WER071A MAXIMUM NUMBER OF RECORDS EXCEEDED

EXPLANATION: SyncSort’s default internal limit on the maximum
number of records that can be sorted has been exceeded. By default, the
internal limit on the number of records that can be processed for vari-
able-length data or for a sort application that uses the EQUALS option
is 4,294,967,295 records. Specify the EXTCOUNT PARM to increase the
internal limit to 140,737,488,355,327 records. Fixed-length sorts with-
out EQUALS have automatic support for the maximum number of
records allowed by the EXTCOUNT PARM. For additional information,
see the EXTCOUNT option in the "PARM Options" chapter.

WER100A DUPLICATE RECORD KEYWORD

EXPLANATION: A keyword operand was defined twice on a RECORD
control statement.

WER101D INVALID TAPE TYPE IN PARM FIELD

EXPLANATION: An invalid tape type was specified for DEVIN/
DEVOUT in the PARM field of the EXEC statement. SyncSort ignored
the invalid parameter.

WER102A COBEXIT=COB2 AND COBOL E15 AND E35 EXITS FOUND IN
COPY APPLICATION

EXPLANATION: A COBOL E15 and COBOL E35 may not both be
specified in a copy application if COBEXIT=COB2 is in effect. Only one
of the exits is permitted.

WER103D INVALID MESSAGE TYPE IN PARM FIELD

EXPLANATION: An invalid message code was specified in the PARM
field of the EXEC statement or in the invoking program parameter list.
SyncSort ignored the invalid parameter.

SyncSort for z/OS 1.1 Programmer’s Guide16.14

WER104A REXX E15 AND REXX E35 EXITS FOUND IN A COPY APPLICA-
TION

EXPLANATION: A REXX E15 and a REXX E35 may not both be speci-
fied in a copy application. Only one of the exits is permitted.

WER105A INCOMPATIBLE LEVELS BETWEEN THE STATIC AND
DYNAMIC LIBRARIES OF A COBOL OR C EXIT

EXPLANATION: When using either a C or COBOL exit, insure that the
run-time dynamic Language Environment libraries are at the same or
higher level than the libraries used for the compile or link-edit of the
exit.

WER106A ddname INVALID DEVICE TYPE

EXPLANATION: The ddname is either SORTIN, SORTINnn,
SORTOUT, SORTOFxx, SORTOFx or the ddname provided by an OUT-
FIL FNAMES parameter. This file resides on an invalid device type.
Valid device types include the IBM 2305, 2314, 3330, 3330-11, 3340,
3344, 3350, 3375, 3380, 3390, and 9345 direct access devices and 3850
mass storage systems, and their equivalent as well as the IBM 2400,
3400, 3480, 3490 and 3590 series tape devices and their equivalents.

WER107A ddname RECFM INCOMPATIBLE WITH REPORT WRITING

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The RECFM specified for the file did not include the 'A' (ASA control
character) specification that is required when report writing is
requested.

WER108I SORTIN: RECFM= ;LRECL= {;BLKSIZE=,CISIZE=} [;CINV
ACCESS]

EXPLANATION: This informational message lists the DCB character-
istics used by SyncSort to process the SORTIN file. For a non-VSAM
data set that is concatenated, the DCB characteristics are for the first
of the concatenated data sets, except for BLKSIZE, which is the largest
of all data sets in the concatenation examined at sort initialization
time. For a VSAM data set, the CISIZE is provided; if control interval
access was used, the CINV ACCESS portion of the message will be dis-
played.

Chapter 16. Messages 16.15

WER109I MERGE INPUT: TYPE={F,V};LRECL=

EXPLANATION: This informational message lists the DCB character-
istics used by SyncSort to process the input files for a merge.

WER110I ddname RECFM= ;LRECL= {;BLKSIZE=,CISIZE=} [;CINV
ACCESS]

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
This informational message lists the DCB characteristics used by Sync-
Sort to process the indicated output file. This message will be provided
for each output file specified. For a VSAM data set, the CISIZE is pro-
vided; if control interval access was used, the CINV ACCESS portion of
the message will be displayed.

WER111A [ddname] {INREC,OUTREC,TOTAL/SUBTOTAL,MIN/SUBMIN,
MAX/SUBMAX,AVG/SUBAVG} INVALID DATA CONVERSION
REQUESTED

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
Data conversion has been requested for INREC, OUTREC, OUTFIL
OUTREC, TOTAL/SUBTOTAL, etc., as indicated, and one of the follow-
ing error conditions has occurred:

1. The length of the field to be converted is too large.

2. Data conversion has been requested for a field that is not specified
as BI, CSF/FS, FI, PD, Y2ID, Y2IP or ZD.

3. Illegal or conflicting EDIT/SIGNS parameters were specified.

WER112A INVALID VALUES IN FIELD PARAMETER

EXPLANATION: An invalid value was specified in the FIELDS oper-
and of the SORT/MERGE control statement.

WER113A TOO MANY SORT FIELDS

EXPLANATION: The number of sort control fields specified exceeds the
internal limits of the product. The absolute upper limit on the number
of sort control fields is 128; however, depending on the complexity of an
application, the limit may be reduced. When locale processing is used,
the number of allowable CH control fields is also limited by the length
of those fields.

SyncSort for z/OS 1.1 Programmer’s Guide16.16

WER115A ILLEGAL MOD NAME

EXPLANATION: An invalid name for a program exit was entered on a
MODS control statement.

WER116A THE FOLLOWING H/T IS GT LRECL:

EXPLANATION: This message flags any HEADERs or TRAILERs that
exceed the LRECL specification. The HEADER or TRAILER in error
will be printed on the next line.

WER117A INVALID ANSI CONTROL CHARACTER FOUND

EXPLANATION: An invalid ANSI control character appears in a
HEADER or TRAILER. The ANSI Control Character Table lists the
valid characters accepted by SyncSort.

WER117I INVALID ANSI CONTROL CHARACTER FOUND

EXPLANATION: An invalid ANSI control character appears in an out-
put data record. The sort will process the record as if a blank control
character had been found. This message will be issued only once
regardless of how many data records have invalid ANSI characters. The
ANSI Control Character Table lists the valid characters accepted by
SyncSort.

WER118A ddname ILLEGAL OVERLAPPING FIELDS

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
An OUTFIL control statement contains a HEADER or TRAILER
parameter which contains overlapping fields. This may be caused, for
example, by a positional sub-parameter specification which overlaps a
previously defined field.

WER119A NO DD NAME IN MODS FIELD

EXPLANATION: A DD name is missing on the MODS control state-
ment.

WER120A SEP. LKED NOT ALLOWED

EXPLANATION: A module for which separate link-editing was speci-
fied on a MODS control statement is not allowed to be link-edited sepa-
rately.

Chapter 16. Messages 16.17

WER121A TASK CALL PARAM ERROR

EXPLANATION: If a 24-bit list is being used, either a control state-
ment address is zero, or the length of a control statement is not positive,
or the parameter list ends with the first word of a two-word parameter.
If a 31-bit list is being used, the last parameter word in the list is not
followed by the four byte field X'FFFFFFFF'.

WER122A INVALID INTERMEDIATE STORAGE DEVICE

EXPLANATION: An invalid device was assigned as intermediate stor-
age. Valid devices include IBM’s 2305, 2314, 3330, 3330-11, 3340, 3344,
3350, 3375, 3380, 3390, and 9345 mass storage system, and equivalent
units. A tape device may not be used unless Tape Sort is installed.

WER123A IMPROPER RETURN CODE FROM Exx

EXPLANATION: An invalid return code was passed by the exit that
appears in the message. Valid return codes are 0, 4, 8, 12, 16 (and 20, if
the exit is a COBOL or C E15 or E35).

WER124I [ESTIMATED] PREALLOCATED/USED SORTWORK SPACE
USAGE FACTOR {=,<,>}nn.nn

EXPLANATION: nn.nn represents the quotient obtained by dividing
the number of tracks assigned within preallocated sortworks (sortworks
allocated in the JCL or dynamically allocated by an invoking program)
by the number of tracks actually used by SyncSort. The word ESTI-
MATED is included in when SyncSort’s derivation of this factor is inex-
act, for example, when all sortwork data sets are not opened, or when
data space or hiperspace are used to contain part or all of the sortwork
data.

Note that for MAXSORTs, the factor displayed is at or near "1.00" for
all but the last sort. For the last sort, the factor may be anywhere
between "0.01" and "1.00" depending on the amount of data sorted.

WER125A NO DATA ON MODS CARD

EXPLANATION: The MODS control statement contains no parame-
ters.

WER128A INVALID CARD BEFORE END CARD

EXPLANATION: A control statement containing an error was found.

SyncSort for z/OS 1.1 Programmer’s Guide16.18

WER130A I/O ERROR ON SYSIN

EXPLANATION: An I/O error occurred on SYSIN.

WER131I PARM FIELD ERROR - xxxxxxxx

EXPLANATION: An invalid character was found in the PARM shown
in the message. SyncSort ignored the remainder of the PARM and con-
tinued processing.

WER133A Exx USER EXIT RETURNED CODE TERMINATE

EXPLANATION: Return code 16 was passed by the exit routine shown
in the message. SyncSort terminated.

WER135A TASK CALL/E35 TERMINATED PREMATURELY

EXPLANATION: An E35 exit routine (COBOL Output Procedure)
passed a return code of 8, terminating the sort before the sort was able
to pass all of the records. A SORTOUT data set was not present.

WER135I TASK CALL/E35 TERMINATED PREMATURELY

EXPLANATION: An E35 exit routine (COBOL Output Procedure)
passed a return code of 8, terminating the sort before the sort was able
to pass all of the records. A SORTOUT data set was not present.

This message may not indicate an error condition - it depends on what
the programmer intended. For example, this message will be generated
if a COBOL program using the SORT verb RELEASEs 100 records in
the Input Procedure without RETURNing all 100 records in the Output
Procedure because the logic dropped to the bottom of the Output Proce-
dure "prematurely". If this is what the programmer intended, then no
data has been lost. If, however, the programmer intended the Output
Procedure to write all the records read in the Input Procedure, then this
message indicates a logic bug in the COBOL program.

WER136A {INREC,OUTREC,ddname OUTREC} HAS OVERLAPPING
FIELDS SPECIFIED

EXPLANATION: The column specification of a c: sub-parameter in the
indicated control statement overlaps a field previously defined in the
same control statement. Note that the sub-parameters used to define
each field must be coded in the order in which the fields will appear in
the reformatted record. The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.

Chapter 16. Messages 16.19

WER138A ddname BLKSIZE NOT EVENLY DIVISIBLE BY LRECL

EXPLANATION: The ddname is either SORTIN, SORTINnn,
SORTOUT, SORTOFxx, SORTOFx or the ddname provided by an OUT-
FIL FNAMES parameter. A block was read from the indicated file
whose length was not a multiple of the LRECL value, or the JCL or
data set attributes are incorrect.

WER141A ddname RECFM IS U

EXPLANATION: The ddname is either SORTIN, SORTINnn,
SORTOUT, SORTOFxx, SORTOFx or the ddname provided by an OUT-
FIL FNAMES parameter. SyncSort does not support undefined record
format for any of these files.

WER142A MIXED SORTIN TYPES F/V NOT SUPPORTED

EXPLANATION: SyncSort permits only one record format type (fixed
or variable) for input files per sort/merge.

WER143A SORTIN LRECLS ARE MIXED

EXPLANATION: The LRECL must be the same for all fixed-length files
supplied to a merge.

WER144B UNEXPECTED VIRTUAL STORAGE FRAGMENTATION

EXPLANATION: The amount of virtual storage calculated by SyncSort
for Phases 2 or 3 was not available in a contiguous block. Additional vir-
tual storage was obtained to satisfy the sort requirement. This condi-
tion was probably caused by virtual storage not released by the user
program in the job step (for example, user exit buffer space was not
released).

WER146B nnn BYTES OF EMERGENCY SPACE

EXPLANATION: The indicated amount of virtual storage has been set
aside by SyncSort for use by other programs (e.g., program invoking the
sort, system SVCs, tape management system).

WER147I CONTROL FIELD GT REC LEN, POSSIBLE OUT OF SEQ REC

EXPLANATION: The sort encountered a variable-length record that
was too short to contain all of the control field(s) specified in the SORT
statement. VLTEST instructed SyncSort to pad the record with binary
zeros to the length of the sort key and continue processing. The added
binary zeros account for the position of this record in the sorted file,

SyncSort for z/OS 1.1 Programmer’s Guide16.20

which may appear to be out of sequence for this reason. The binary
zeros are removed when the record is processed for output. Program
HISTOGRM may be used to determine the length of the shortest record
in the input file.

WER148A OPEN ERR SYSIN

EXPLANATION: SYSIN is either not present or cannot be opened.

WER149B FRAGMENTED VIRTUAL STORAGE IN SORT PHASE

EXPLANATION: The virtual storage specified for SyncSort’s use was
not available in a contiguous block for Phase 1. This condition was prob-
ably caused by a calling program or user exit routine. SyncSort
obtained its virtual storage in fragments and continued execution. Note
that the calling program or user exit routine used virtual storage in
such a way as to cause fragmentation, which might another time result
in ABEND 80A or S804.

WER151B SECONDARY EXTENTS OBTAINED xxx

EXPLANATION: This gives the number of secondary extents obtained
for SORTWKxx data sets.

WER152B REQUESTED VIRTUAL STORAGE NOT AVAILABLE, nnn
BYTES USED

EXPLANATION: The CORE parameter specified a value which was not
available when SyncSort received control. The number of available
bytes used by SyncSort is given.

WER153A INSUFFICIENT VIRTUAL STORAGE IN {INT.,FINAL} MERGE
PHASE

EXPLANATION: The amount of virtual storage available for the indi-
cated merge phase (the intermediate or final merge phase) was not suf-
ficient to allow execution. Refer to the "Setting CORE" section of the
Performance Considerations chapter for further information.

WER154A NO MODS DD CARD

EXPLANATION: The DD statement whose name was specified on the
MODS control statement was not provided, so the user exit routine can-
not be found.

Chapter 16. Messages 16.21

WER157A SPANNED REC. LEN LARGER THAN LRECL/L2

EXPLANATION: A record from a VBS SORTIN data set contains a
record longer than the maximum record length specified by LRECL in
the DCB.

ACTION: Execute program HISTOGRM to get the length of the longest
record in the data set. Use this length for the LRECL value in the DCB
parameter of the SORTIN data set.

WER158I REC. LEN GT L2, CUT TO L2

EXPLANATION: A variable-length record read from the SORTIN data
set is longer than the maximum record length specified by either
LRECL in the DCB or the l2 value in the RECORD control statement.
(If l2 was not specified, the variable-length record is longer than the l1
value.) SyncSort has truncated the record.

ACTION: If truncation is not desired, execute program HISTOGRM to
get the length of the longest record in the data set. Use this length for
the LRECL value in the DCB parameter of the SORTIN data set.

WER159A REC LEN 0, {SORTIN REC x, INSERTED REC x}

EXPLANATION: A bad variable-length record (length code <4 in its
Record Descriptor Word) has been found. If the record was found in the
SORTIN file, the number of the bad record is given. If the record was
inserted from a user input exit routine, the number of the inserted
record is given. (E.g., 45 indicates the forty-fifth record read from or
inserted into the SORTIN file.)

WER160A REC. LEN GT LRECL/L2, USER REQ ABORT

EXPLANATION: VLTEST has requested the sort to abort because of
the following condition. A variable-length record read from the SORTIN
file is longer than the maximum record length specified by LRECL in
the DCB or (after E15 processing) is longer than the l2 value in the
RECORD control statement. (If l2 was not specified, the l1 value was
used as its default.)

ACTION: Change the LRECL or l2 value to reflect the record length, or
specify another value for VLTEST. Program HISTOGRM may be used
to determine the length of the longest record in the input file.

SyncSort for z/OS 1.1 Programmer’s Guide16.22

WER161B ALTERNATE PARM USED

EXPLANATION: The alternate PARM option ($ORTPARM DD,
PARMEXIT or PARMTABLE) was used and SyncSort received the
parameters specified.

WER162B ppp PREALLOCATED SORTWORK TRACKS, ddd DYNAMI-
CALLY ALLOCATED sss ACQUIRED IN xxx SECONDARY
EXTENTS, rrr RELEASED, TOTAL OF uuu TRACKS USED

EXPLANATION: ppp is the number of tracks found available in sort-
work data sets which were allocated prior to SyncSort’s gaining control.
(These may have been allocated in the JCL or dynamically allocated by
an invoking program.) ddd is the number of tracks dynamically allo-
cated as primary space by SyncSort. sss is the number of tracks
acquired as secondary space, on both preallocated data sets and data
sets dynamically allocated by SyncSort. xxx is the total number of sec-
ondary extents acquired. rrr is the total number of unneeded tracks
released from both preallocated data sets and data sets dynamically
allocated by SyncSort. uuu is the total number of tracks actually used
in sorting.

The following notes apply to the information in this message:

• ppp may not represent all of the preallocated tracks available, since
not all preallocated sortwork data sets may be opened by SyncSort.

• uuu may be less than the sum of ppp, ddd and sss since it
represents the space actually used and not the space available.

• For MAXSORTs, all dynamic allocation and secondary space
acquisition is done during the first sort. For this reason, the
WER162B message for the first sort will indicate the number of
tracks dynamically allocated, the number acquired via secondary
extents, etc. However, the WER162B message in all subsequent
MAXSORT sorts will report these tracks as "preallocated."

WER164B www BYTES OF VIRTUAL STORAGE AVAILABLE, xxx BYTES
REQUESTED, yyy BYTES RESERVE REQUESTED, zzz BYTES
USED

EXPLANATION: The amount of virtual storage available (free) when
SyncSort received control is represented by w’s. The amount of virtual
storage requested for SyncSort’s use is represented by x’s. The amount
of virtual storage that the user requested SyncSort to reserve below the
16-megabyte line is represented by y’s. The amount of virtual storage
used by SyncSort is represented by z’s. This message reflects the total

Chapter 16. Messages 16.23

amount of virtual storage below and above the 16-megabyte line that
was available to SyncSort and used by SyncSort.

WER165I STAT DATA REC NOT WRITTEN

EXPLANATION: The installation default for the SyncSort SMF record
feature is applied, but the sort did not invoke the module that creates
the sort statistical record. A possible reason for the sort’s not invoking
the module may be that FREE=CLOSE was coded on the SORTOUT
(SYSUT2) or SORTWKxx DD statement.

ACTION: Remove the FREE=CLOSE parameter if full SMF statistics
are desired.

WER166I REC LEN GT L3, CUT TO L3

EXPLANATION: SyncSort has truncated a variable-length record prior
to output processing. If an E35 exit was in use, the truncated record
was longer than the LRECL of the output file’s DCB or greater than the
l3 value on the RECORD control statement. If an E35 exit was not in
use, the truncated record was longer than the LRECL in the output
file’s DCB. If OUTFIL processing is requested additional truncation
may occur as a result of the OUTFIL processing regardless of the action
requested by the VLTEST PARM.

WER167A REC LEN GT L3, USER REQ ABORT

EXPLANATION: Prior to output processing SyncSort has encountered
a variable-length record longer than the l3 value on the RECORD con-
trol statement (if an E35 exit was in use) or longer than the LRECL in
the output file’s DCB. The VLTEST PARM requested SyncSort to termi-
nate when this condition occurs.

ACTION: Change the LRECL in the output file’s DCB or the l3 value on
the RECORD control statement (if an E35 exit is used) to reflect the
correct record length, or specify another value for the VLTEST PARM.

WER168A CONTROL FIELD WITHIN RDW

EXPLANATION: A SORT/MERGE control field for a variable-length
file fell within the Record Descriptor Word of each record. This is a crit-
ical error whenever the control field is specified with a ZD or PD format
code.

SyncSort for z/OS 1.1 Programmer’s Guide16.24

WER168I CONTROL FIELD WITHIN RDW

EXPLANATION: A SORT/MERGE control field for a variable-length
file falls within the Record Descriptor Word of each record. (The first
byte of the data portion of a variable-length record is at byte position 5.)

WER169I RELEASE r.ll BATCH nnnn TPF LEVEL tt

EXPLANATION: Details on the release level, the batch number and the
last TPF applied to SyncSort are given.

WER170A CONCAT DS, BLKSIZE NOT DIVIS BY LRECL

EXPLANATION: One of the files concatenated to a fixed-length SOR-
TIN data set has a BLKSIZE that is not evenly divisible by the original
LRECL.

ACTION: Check the BLKSIZE specified on each of the DD statements
concatenated to SORTIN.

WER171A CONCAT DS, LRECLS NE OR RECFMS DIFF

EXPLANATION: One of the files concatenated to a fixed-length SOR-
TIN data set has an LRECL not equal to the original LRECL; or one of
the files concatenated to a variable-length SORTIN data set has an
LRECL greater than the original LRECL; or one of the files concate-
nated to a fixed or variable-length SORTIN data set has a RECFM not
equal to the original RECFM.

WER172A CONCAT DS, BLKSIZE GT ORIG BLKSIZE

EXPLANATION: One of the files concatenated to a SORTIN data set
has a BLKSIZE greater than the original BLKSIZE.

WER173A BDW INVALID

EXPLANATION: The Block Descriptor Word of a block in the SORTIN
data set contains a value less than 8; or the Block Descriptor Word con-
tains a value greater than the number of bytes actually read.

ACTION: Check the data set for the invalid block.

WER174A RDW INVALID, OVERFLOWS BUFFER

EXPLANATION: The Record Descriptor Word of a record in the SOR-
TIN data set is too large. (According to the RDW, the record extends
beyond the buffer.)

Chapter 16. Messages 16.25

ACTION: Execute HISTOGRM to check the data set for an invalid
record.

WER175A INCORE SORT CAPACITY EXCEEDED

EXPLANATION: There are too many input records to fit in virtual stor-
age.

ACTION: Either increase the amount of virtual storage the sort is able
to use or supply SORTWKxx DD statements. (The DYNALLOC option
may be used instead of SORTWKxx DD statements.)

WER176A USER EXIT LKED FAILED

EXPLANATION: Exit routine(s) needing to be link-edited were present,
but the linkage editor passed a return code greater than 0.

ACTION: Check that the DD statement specified on the MODS control
statement is present in the JCL and contains the modules specified on
the MODS statement. Check that all exits (except E11, E21, and E31)
to be link-edited together have an external name identical to the exit
name. Examine the linkage editor output for other errors.

WER177I TURNAROUND SORT PERFORMED

EXPLANATION: SyncSort was able to sort the input file without using
intermediate storage (SORTWKxx’s). All input data was contained in
virtual storage.

WER178A SORTIN [nnnnn] MEMBER NOT FOUND

EXPLANATION: A SORTIN DD statement specified a member of a
partitioned data set that could not be found. If a value nnnnn is pro-
vided, it represents the concatenation number of the SORTIN data set
that has the member-not-found condition.

ACTION: Check the SORTIN DD statement for an error or list the
members of the partitioned data set.

WER179A ddname INVALID DCB PARAMETERS

EXPLANATION: The ddname is either SORTIN, SORTINnn,
SORTOUT, SORTOFxx, SORTOFx or the ddname provided by an OUT-
FIL FNAMES parameter. SyncSort is unable to derive RECFM,
LRECL, and BLKSIZE parameters from the JCL, the DSCB on the disk
or the tape label.

SyncSort for z/OS 1.1 Programmer’s Guide16.26

ACTION: Check the JCL and the disk or tape labels for the error.

WER180A ddname MEMBER NOT SPECIFIED

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The indicated DD statement defines a partitioned data set, but a mem-
ber name has not been specified.

ACTION: Specify a member name on the indicated DD statement or
change the partitioned data set to a sequential data set.

WER182A INVALID RDW {SORTIN,SORTINXX} BLOCK x

EXPLANATION: An invalid spanned record indicator was detected in a
SORTIN file whose RECFM=VBS, or an invalid record length was
detected in a copy operation. The block number of the file is given and
SORTINXX indicates a merge.

ACTION: Execute HISTOGRM to check the data set for a record con-
taining invalid span bits.

WER183A SORTWORK DATASET REQUIRED

EXPLANATION: SORTWKxx data set(s) are required for one of the fol-
lowing conditions in this execution of SyncSort: (1) INCORE=OFF is
specified as a PARM, (2) exit E14 or E16 is activated, (3) the SUM con-
trol statement is used, (4) the OUTREC control statement is used, (5)
the checkpoint-restart facility is used, (6) SORTOUT is a VSAM data
set, (7) the OUTFIL control statement is used. (All conditions only
apply to sort applications.)

WER184A INVALID RETURN CODE FROM E32

EXPLANATION: The return code from merge exit E32 must be 8, 12, or
16.

WER185I SORTIN DCBBLK GT ACTUAL, I/O INEFF

EXPLANATION: The I/O rate is reduced to an inefficient level because
the blocksize specified for the SORTIN data set is larger than the actual
blocksize, causing excessive error correction.

ACTION: Correct the blocksize specification for future jobs.

Chapter 16. Messages 16.27

WER186I SVC nnn IS INCORRECT VERSION OR NON-SYNCSORT - SVC
NOT USED - INEFFICIENT SORT

EXPLANATION: The SVC did not return a code indicating it was at the
correct version level, therefore it was not used. The SVC is either at the
wrong SyncSort release/maintenance level or is not a SyncSort SVC.
The problem could cause less efficient I/O and/or loss of SMF records.

ACTION: Notify your system programmer, who should check that the
SVC has been installed in the system libraries, has been IPLed into the
system, was specified via SYNCMAC, and was not incorrectly overrid-
den via $ORTPARM or the PARM field.

WER187A ddname CINV SIZE LT RECORD LENGTH BUT SPANNING
NOT SPECIFIED

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The record length is greater than the control interval size specified in
the definition of the indicated VSAM data set, but the data set defini-
tion did not also include a specification for spanned records.

WER188A ddname IS D.A./DSCB NOT FOUND/OBTAIN FAILED

EXPLANATION: The ddname is either SORTIN or SORTINnn. Sync-
Sort was unable to successfully issue an OBTAIN for the specified
direct access data set and was therefore unable to determine the DCB
characteristics for the file. The OBTAIN failed either because the vol-
ume parameter was incorrectly specified for the output file indicated or
because the data set was deleted from the volume. (NOTE: the data set
may still be in the master catalog even though the data set is no longer
on the volume.)

WER189A ddname DCB RECFM REQUIRED

EXPLANATION: The ddname is either SORTIN or SORTINnn. The
RECFM was not specified on the indicated DD statement, nor was it
available in the DSCB on disk nor the tape label, and the TYPE oper-
and was not specified on the RECORD control statement.

WER190A ddname DUPLICATE OUTFIL SPECIFICATION

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The indicated output file is referred to more than once in FILES param-
eters on the OUTFIL control statement.

SyncSort for z/OS 1.1 Programmer’s Guide16.28

WER191A ddname BLKSIZE/LRECL INVALID

EXPLANATION: The ddname is either SORTIN or SORTINnn. This
message is displayed in conjunction with either WER108I or WER109I
which will indicate the invalid DCB characteristic specification. BLK-
SIZE and LRECL must be equal if RECFM=F. BLKSIZE must be
evenly divisible by LRECL if RECFM=FB. BLKSIZE must be greater
than or equal to LRECL + 4 if RECFM=V.

WER192A ddname DCB LRECL MISSING

EXPLANATION: The ddname is either SORTIN or SORTINnn. The
LRECL was not specified on the indicated DD statement, in the DSCB
on the disk, in the tape label, or on the RECORD control statement.

WER193A ddname DCB LRECL AND BLKSIZE MISSING

EXPLANATION: The ddname is either SORTIN or SORTINnn. The
BLKSIZE or LRECL must be specified either on the indicated DD state-
ment, in the DSCB on the disk, or in the tape label. Alternatively, an l1
specification may be included on the RECORD control statement. None
of these specifications were made.

WER194A SORTOUT DCB REQRD/TAPE NOT SL

EXPLANATION: DISP=OLD was specified on the SORTOUT DD state-
ment, the tape label was not specified as SL in the LABEL parameter,
and required DCB information (LRECL, RECFM, BLKSIZE) was not
specified.

WER195A ddname DCB REQUIRED/VSAM SORTIN

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The indicated output file requires additional DCB information
(RECFM, LRECL or BLKSIZE) on its DD statement.

WER196A ddname RECFM=VB, LRECL GT BLKSIZE

EXPLANATION: The ddname is either SORTIN or SORTINnn.
RECFM=VB requires the BLKSIZE to be greater than or equal to
LRECL + 4.

WER197A ddname RECFM=F/FB, LRECL/BLKSIZE INVALID

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.

Chapter 16. Messages 16.29

BLKSIZE and LRECL were not equal on the indicated DD statement
for RECFM=F, or BLKSIZE was not a multiple of LRECL for
RECFM=FB.

WER198A ddname VARIABLE LRECL LE 4

EXPLANATION: The ddname is either SORTIN, SORTINnn,
SORTOUT, SORTOFxx, SORTOFx or the ddname provided by an OUT-
FIL FNAMES parameter. The LRECL specification on the indicated DD
statement did not allow 4 bytes for the RDW plus 1 byte for data.

WER199A ddname RECORD TYPE=V, BLKSIZE LE 8

EXPLANATION: The ddname is either SORTIN, SORTINnn,
SORTOUT, SORTOFxx, SORTOFx or the ddname provided by an OUT-
FIL FNAMES parameter. The BLKSIZE specified for the indicated DD
statement did not allow 4 bytes for the BDW, 4 bytes for the RDW plus
1 byte of data.

WER200A ddname RECFM=V/VB LRECL/BLKSIZE INVALID

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
RECFM=V or VB requires the BLKSIZE to be greater than or equal to
LRECL + 4.

WER201A ddname is D.A./DSCB NOT FOUND/OBTAIN FAILED

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
SyncSort was unable to successfully issue an OBTAIN for the specified
direct access data set, and was therefore unable to determine the DCB
characteristics of the indicated file. The OBTAIN failed either because
the volume parameter was incorrectly specified for the indicated output
file, or because the data set was deleted from the volume. (NOTE: the
data set name may still be in the master catalog even though the data
set is no longer on the volume.)

WER202A ddname RECFM INCOMPATIBLE WITH SORTIN

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The record formats for the input and output files are not the same.
(Both formats must be either fixed-length or variable-length.) If you
want to convert a variable-length input file into a fixed-length output
file, use the CONVERT parameter of the OUTFIL or OUTREC control
statements.

SyncSort for z/OS 1.1 Programmer’s Guide16.30

WER206A INVALID PAGEFIX SVC NUMBER

EXPLANATION: SyncSort’s EXCPVR facility is in use but no page-fix
SVC number was specified at installation time.

ACTION: Inform your systems programmer of this error condition.

WER207I SORTCKPT DD STATEMENT MISSING OR INVALID

EXPLANATION: SyncSort could not take checkpoints because a
SORTCKPT DD statement was not supplied or the statement specified
an invalid device for a checkpoint data set. Invalid devices include
DUMMY data sets or devices other than disk or tape. Processing con-
tinued but checkpoints were not taken.

WER208I MIXTURE OF SORTWK DEVICES

EXPLANATION: SORTWKxx data sets were assigned to different
device types.

WER209B xxx PRIMARY AND yyy SECONDARY SORTOUT TRACKS
ALLOCATED, zzz USED

EXPLANATION: It was necessary for SyncSort to request one or more
secondary allocations for SORTOUT. xxx is the number of tracks that
were initially allocated, yyy is the total number of tracks acquired via
secondary allocation, and zzz is the total number of tracks actually
required to contain the SORTOUT data set.

WER210I E15 RC INVALID, IGNORED

EXPLANATION: A return code of 0 or 4 was passed by an E15 exit rou-
tine at a time when these return codes are invalid because SyncSort
has not passed the E15 a record address. The invalid return code was
ignored by SyncSort, and a return code of 8 was presumed.

WER211B/I [] CALLED BY SYNCSORT; RC=xxxx

EXPLANATION: The sort statistics routine (the name inserted in the
message) is called by SyncSort. RC gives the code returned to SyncSort
by the statistics routine. If RC does not equal zero, see "What to Do
Before Calling z/OS Product Services" in this chapter.

WER213A ILLEGAL SUM DATA FIELD

EXPLANATION: A field with an illegal data length was specified on the
SUM statement.

Chapter 16. Messages 16.31

ACTION: Correct the field length.

WER215A [SORTOFnn] {INREC,OUTREC} ARITHMETIC OVERFLOW

EXPLANATION: When using either INREC, OUTREC or OUTFIL
OUTREC, an arithmetic calculation or a data format conversion had an
overflow. An arithmetic calculation overflow will occur if any intermedi-
ate result exceeds 15 decimal digits or if division by zero is attempted.
Overflow may also occur when converting a number with a value of 4G
or more to BI format or a number with an absolute value of 2G or more
to FI format.

ACTION: Review the arithmetic calculations specified in the indicated
statement for errors. If they appear to be correct, consider whether the
data could possibly cause an overflow or division by zero. If possible,
eliminate any data with questionable values via INCLUDE/OMIT. Con-
sider changing the order of the calculations to prevent intermediate cal-
culation overflow.

WER216A SUM FIELD OUTSIDE RANGE

EXPLANATION: A sum field on the SUM control statement is located
beyond the record length.

WER217A DYNALLOC {UNIT,STORCLASS} ASSIGNMENT ERROR

EXPLANATION: Either the unit name or storage class name (DFSMS
STORCLAS) is missing or specified incorrectly.

WER218A DYNALLOC WORKFILE ASSIGNMENT ERROR

EXPLANATION: More than 32 work files were requested for dynamic
allocation.

WER219A DYNALLOC FAILED RC=(nnnn) - uuuuuuuu [-SMS RC=ssss]

EXPLANATION: The execution of the DYNALLOC macro instruction
failed. nnnn represents the error reason code, uuuuuuuu represents
either the unit name or storage class name, and ssss represents the
SMS return code (only present for certain failures detected by SMS).
Two possible reason codes are:

021C - Undefined unit name.

0214 - Unit not available. If all specified units are unavailable when
DYNALLOC is issued, the DYNALLOC request fails.

SyncSort for z/OS 1.1 Programmer’s Guide16.32

For other reason codes, see either IBM publication z/OS MVS Program-
ming: Authorized Assembler Services Guide SA22-7608 or OS/390
V2R10.0 MVS Authorized Assembler Service Guide GC28-1763.

WER219I DYNALLOC FAILED RC=(nnnn) - uuuuuuuu [-SMS RC=ssss]
SORT PROCESSING CONTINUES

EXPLANATION: Dynamic allocation was unsuccessful. nnnn repre-
sents the error reason code, uuuuuuuu represents either the unit name
or storage class name, and ssss represents the SMS return code (only
present for certain failures detected by SMS). Sort processing continues
with previously allocated SORTWKs and JCL-allocated SORTWKs. For
an explanation of the error reason code, see either IBM publication
z/OS MVS Programming: Authorized Assembler Services Guide SA22-
7608 or OS/390 V2R10.0 MVS Authorized Assembler Service Guide
GC28-1763.

WER220A ILLEGAL OVERLAPPING OF SUM FIELDS

EXPLANATION: A SUM field overlaps another SUM field, a SORT/
MERGE control field or the Record Descriptor Word of a variable-length
record. All of these are illegal.

WER223A ddname ASCII XLATION, BUT VOLUME IS NOT ASCII TAPE
OR RECFM IS V

EXPLANATION: The ddname is either SORTIN, SORTINnn,
SORTOUT, SORTOFxx, SORTOFx or the ddname provided by an OUT-
FIL FNAMES parameter. RECFM=D was specified for the indicated file
which is not a tape data set. (RECFM=D is valid for tape data sets only.)
Or, RECFM=D was specified for the input data set and no DCB was
specified for the output data set.

ACTION: In the first case, code correct RECFM for the data set speci-
fied; in the latter case, code DCB characteristics for the output data set,
and rerun the job.

WER224A ddname NOT DEFINED

EXPLANATION: The ddname is either SORTIN, SORTINnn,
SORTOUT, SORTOFxx, SORTOFx or the ddname provided by an OUT-
FIL FNAMES parameter. A required input or output DD statement
could not be found.

Chapter 16. Messages 16.33

WER225I E35 RC INVALID, IGNORED

EXPLANATION: An invalid return code was received from an E35 exit
routine. If an output data set was not present, the invalid code was
other than 4 or 8, and SyncSort assumed return code 4. If end of file
was reached, the invalid code was other than 8 or 12, and SyncSort
assumed return code 8.

WER227A ddname BLKSIZE GT ASCII LIMIT

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The DD statement for an output data set targeted to an ASCII-labeled
tape requested a blocksize greater than 2048 bytes; that violates the
standard and cannot be done.

WER228A ddname DCB BLKSIZE GT TRACK CAPACITY

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The BLKSIZE for the indicated output file was greater than the track
capacity of the output device.

ACTION: Specifying the track-overflow RECFM in the DCB may possi-
bly correct the error condition, or the BLKSIZE should be reduced.

WER229A ddname DSORG NOT PS/PO

EXPLANATION: The ddname is either SORTIN, SORTINnn,
SORTOUT, SORTOFxx, SORTOFx or the ddname provided by an OUT-
FIL FNAMES parameter. This ddname must be a sequential data set
(PS) or a partitioned data set (PO) member.

WER230A [ddname] xxxxxxxx FIELD OUTSIDE RANGE

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
A field specified in the SORT/MERGE statement is not located within
the first 4088 bytes of the variable-length record. (This limit is lower if
AC, AQ, E, PD0, Y2x or LOCALE CH fields are used.) Alternatively, a
field specified for INREC, OUTREC, OUTFIL OUTREC, SECTION con-
trol, (SUB)TOTAL, (SUB)MIN, (SUB)MAX, (SUB)AVG or HEADER/
TRAILER data field is located beyond the maximum record length. Or
INREC, OUTREC, OUTFIL OUTREC or HEADER/TRAILER n/col/
date/page attempted to build a record larger than the allowable maxi-
mum.

SyncSort for z/OS 1.1 Programmer’s Guide16.34

WER231A [ddname] {INREC,OUTREC} - ILLEGAL DATA FIELD

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
An error was found in the INREC, OUTREC or OUTFIL OUTREC spec-
ification.

ACTION: Check the statement for alphabetic data in a numeric field,
for a parameter value of 0, for an omitted value, for a space value
greater than 256X, for incorrect boundary alignment, and for inclusion
of the "variable portion" of fixed-length input records in the output
records. Also, LINES=ANSI or LINES=(ANSI,n) may not be used on the
OUTFIL statement when using multi-line OUTREC.

WER232A ddname RECFM=VBS, LRECL MISSING

EXPLANATION: The ddname is either SORTIN or SORTINnn. A
RECFM of VBS was specified without an accompanying LRECL specifi-
cation.

WER233A VIO INVALID FOR DYNALLOC

EXPLANATION: VIO is not permitted as a unit device for dynamic
allocation. This is due to a possible performance degradation if VIO
data sets are used as SORTWK.

WER234I DYNALLOC REQUEST FOR GT 32 SORTWKS

EXPLANATION: A total of more than 32 work files were specified in
both the JCL and the DYNALLOC parameter combined. The number
was reduced to 32.

WER235A [ddname] {INREC,OUTREC} RDW NOT INCLUDED

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
Four bytes must be provided for the RDW of the variable-length output
record in the FIELDS parameter of the INREC, OUTREC or OUTFIL
OUTREC specification. These bytes must appear at the beginning of
the record and must not be edited.

WER236A [ddname] {INREC,OUTREC} NULL RECORD

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
A variable-length INREC, OUTREC or OUTFIL OUTREC output
record must contain at least one other date field in addition to the RDW.

Chapter 16. Messages 16.35

Or if multi-line OUTFIL OUTREC is being used, at least one non-blank
line must be defined.

WER237I OUTREC RECORD LENGTH=xxxx

EXPLANATION: The xxxx represents the length of the record after
OUTREC processing. OUTREC occurs prior to E35 and/or SORTOUT/
OUTFIL processing. If the data consists of variable-length records, xxxx
represents the maximum record length.

WER238I POTENTIALLY INEFFICIENT USE OF INREC

EXPLANATION: The INREC control statement has been used to
increase the input record length. This can reduce SyncSort’s perfor-
mance because a larger volume of data is being processed than if the
OUTREC control statement were used to perform the same function.
Typically, increasing the record length with INREC is only useful when
expanding SUM fields with leading zeros to prevent an overflow condi-
tion during SUM.

ACTION: Revise the application so that addition of data is performed in
an OUTREC statement. Be sure to adjust the FIELDS of the SORT,
MERGE or SUM control statements if necessary.

WER239A TYPE PARAMETER REQUIRED

EXPLANATION: There was a VSAM input or output file but the TYPE
parameter was not specified. Or, an E15 or E32 exit routine is passing
all of the records to the sort/merge (no SORTIN/SORTINnn), but the
TYPE parameter was not specified on the RECORD control statement.

WER240A ddname UNSUPPORTED DCB FUNCTION

EXPLANATION: The DD statement specified or implied an attribute
which is not supported, e.g., hardware keys for a disk output data set or
a block prefix length other than 0, 4 or L for an ASCII tape output data
set.

WER243I SHORT RECORD FOR SUM

EXPLANATION: One or more variable-length records were too short to
contain all the sum fields specified on the SUM control statement.
These records were therefore not summarized. Program HISTOGRM
may be used to determine the length of the shortest record in the input
file.

SyncSort for z/OS 1.1 Programmer’s Guide16.36

WER244A [ddname] {INREC,OUTREC} SHORT RECORD

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
A variable-length record was too short to contain all the fields specified
on the control statement. Program HISTOGRM may be used to deter-
mine the length of the shortest record in the input file.

WER246I FILESIZE x

EXPLANATION: The number of bytes of input data sorted or copied by
SyncSort is given for FILESIZE. This number reflects SORTIN, E15,
INCLUDE/OMIT and INREC processing. Note the following:

1. For MAXSORT, the FILESIZE is given in kilobytes for each
individual sort in a WER351I message; the FILESIZE in the
WER246I for the final merge is the sum of the individual sorts’
sizes and, because of truncation in each intermediate sort, may not
be exact.

2. When WER246I is issued instead of WER054I in a variable-length
record copy operation, the number of bytes processed (copied)
includes multiple segment descriptor words for a single record if the
record is comprised of multiple segments on SORTIN, since all
segments were copied; for a variable-length record sort or merge
operation, the number of bytes processed (sorted or merged)
includes a single record descriptor word for each record even if the
record is comprised of multiple segments on SORTIN, since it is
records, not record segments, that are being operated on.

WER247A ddname HAS INCOMPATIBLE LRECL

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
There is a conflict between the LRECL specification for the indicated
output file and either the post-OUTFIL or post-OUTREC record length.
Padding of records is not permitted after OUTFIL processing, so the
LRECL may not be greater than the post-OUTFIL record length. Alter-
nately, truncation of records is not permitted after the OUTREC state-
ment or the OUTFIL OUTREC processing, so the LRECL may not be
less than the post-OUTREC record length.

WER250A [ddname] INCLUDE/OMIT FIELD BEYOND RECORD

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.

Chapter 16. Messages 16.37

A compare field specified for INCLUDE, OMIT or OUTFIL INCLUDE/
OMIT extended beyond the end of the record.

WER251A xxxx INVALID yyyyyyyyyy

EXPLANATION: The xxxx represents either INCL (INCLUDE) or
OMIT. The invalid relational condition represented by yyyyyyyyyy was
found in the INCLUDE or OMIT specification.

WER253A INCLUDE/OMIT FORMATS INCOMPATIBLE

EXPLANATION: A relational condition specified on an INCLUDE or
OMIT control statement or OUTFIL parameter contains an invalid
field-to-field, field-to-constant or field-to-mask comparison. Note that if
LOCALE processing has been specified, a CH to BI comparison is not
supported.

WER254A ddname VSAM {OPEN,CLOSE} ERROR - xx

EXPLANATION: The ddname is either SORTIN, SORTOUT,
SORTOFnn, SORTOFn, or the ddname specified on an OUTFIL
FNAMES parameter. An error occurred during an attempt to OPEN or
CLOSE the indicated VSAM file. For the definition of the error number,
xx, consult the following IBM publication:

• DFSMS Macro Instructions for Data Sets

WER255A VSAM LOGICAL ERROR xx ON {INPUT,OUTPUT}

EXPLANATION: An error occurred while processing a VSAM data set.
For the definition of the hexadecimal error number represented by xx,
see one of the following IBM publications:

• DFSMS Macro Instructions for Data Sets

WER256I ddname VSAM file, RECORDS PADDED ON OUTPUT

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The fixed-length VSAM LRECL for the indicated output file is greater
than the length of the records at the end of SyncSort processing. Sync-
Sort padded the output records with filler characters on the right.

SyncSort for z/OS 1.1 Programmer’s Guide16.38

WER257I INREC RECORD LENGTH=xxxxx

EXPLANATION: xxxxx represents the length of the record immediately
after INREC processing. If you have variable-length records, xxxxx rep-
resents the maximum record length.

WER258A DUPLICATE DDNAME: SORTINxx

EXPLANATION: Two input files for a merge have the same number.
The file number is given.

WER259A DUPLICATE ALTSEQ STATEMENT

EXPLANATION: Two ALTSEQ control statements were found.

WER260I RECOVERY FROM B37 SUCCESSFUL. SORT PROCESSING
CONTINUES

EXPLANATION: SyncSort recovered from a B37 abend and continued
processing.

WER262I REENTRANT SORT NOT RESIDENT - INEFFICIENT SORT

EXPLANATION: The resident SyncSort load module(s) were loaded
into the private area instead of being executed from the Link Pack
Area/Extended Link Pack Area. This situation may have occurred
because the module(s) were found in a STEPLIB/JOBLIB DD data set.
Loading the resident modules into the private area limits the amount of
virtual storage available to the sort and may reduce the efficiency of the
sort.

ACTION: Contact the systems programmer in charge of SyncSort
installation.

WER263A ILLEGAL USE OF MULTI-VOLUME SORTWK

EXPLANATION: SyncSort does not support the use of multi-volume
disk SORTWK data sets. (However, if SyncSort only requires the use of
the space on the first volume of a multi-volume SORTWK file, this error
message will not be issued.)

ACTION: Remove the volume count subparameters of the UNIT
parameter on all SORTWK DD statements that specify more than one
volume.

Chapter 16. Messages 16.39

WER264A UNEQUAL REC LENS - VSAM SORTIN - TYPE=F

EXPLANATION: A record in a fixed-length VSAM input data set was
encountered whose length was not equal to the length specified in the
RECORD statement or VSAM cluster definition.

ACTION: Use the IDCAMS utility to identify and correct the records in
error.

WER265A ddname VSAM CONCATENATED SORTIN NOT ALLOWED

EXPLANATION: The ddname indicated represents either a SORTIN or
SORTINnn input file which consists of concatenated VSAM data sets.
SyncSort does not support concatenated VSAM input files.

WER266A ALTPARM - PARM LENGTH GT MAX SUPPORTED

EXPLANATION: The length of the parameter list passed through the
alternate parameter data set exceeded the 256 byte limitation.

WER267A statement STATEMENT: STATEMENT NOT FOUND

EXPLANATION: A required SORT/MERGE or RECORD statement (as
indicated in the message text) is missing.

WER268A statement STATEMENT: SYNTAX ERROR

EXPLANATION: A SyncSort control statement, as indicated in the
message text, contains a syntax error. The next line will contain an '*'
indicating the approximate location of the syntax error.

WER269A statement STATEMENT: DUPLICATE STATEMENT FOUND

EXPLANATION: More than one SORT/MERGE, INCLUDE/OMIT,
INREC, OUTREC, RECORD, MODS, SUM, ALTSEQ or END state-
ment was found, as indicated.

WER270A statement STATEMENT: DUPLICATE PARM FOUND

EXPLANATION: A single parameter was multiply specified on the indi-
cated SyncSort control statement; or a single parameter was specified
both in the invoking parameter list and in the control statements.

WER271A statement STATEMENT: NUMERIC FIELD ERROR

EXPLANATION: A numeric field has been improperly specified on the
indicated SyncSort control statement.

SyncSort for z/OS 1.1 Programmer’s Guide16.40

WER272A statement STATEMENT: PARMS NOT FOUND

EXPLANATION: Required parameters have not been included on the
indicated SyncSort control statement.

WER273A BLANK STATEMENT FOUND

EXPLANATION: A blank statement has been encountered.

WER274A CONTINUATION STATEMENT ERROR FOUND

EXPLANATION: SyncSort has encountered a statement containing a
continuation indicator, but cannot locate a continuation statement
which should follow.

WER275A NO KEYWORDS FOUND ON CONTROL STATEMENT

EXPLANATION: A required keyword has not been specified on a Sync-
Sort control statement.

WER300A SORTBKPT DD STATEMENT REQUIRED

EXPLANATION: The SORTBKPT DD statement was not included in
the job stream. This is a required data set for all MAXSORTs.

WER301A SORTBKPT DATA MUST RESIDE ON DISK

EXPLANATION: The SORTBKPT data set must be allocated to a disk
device.

WER302A SORTBKPT TRACK CAPACITY TOO SMALL

EXPLANATION: Direct access devices with a track capacity smaller
than 3600 bytes cannot be used for the SORTBKPT data set.

WER303A SORTBKPT SYSTEM OPEN FAILURE

EXPLANATION: The operating system could not open the SORTBKPT
data set.

ACTION: Check to see that the DD statement is correct. Determine if
operating system is at proper maintenance level.

WER304A SORTBKPT RECORD FORMAT ERROR

EXPLANATION: There is a record format error in the SORTBKPT data
set.

Chapter 16. Messages 16.41

ACTION: Check that the SORTBKPT DD statement points to the cor-
rect DSNAME. Check that the data set has not been inadvertently writ-
ten into and modified. Use the HEX function on the OUTREC
statement or OUTREC parameter on the OUTFIL statement to get a
hex format listing of the data.

WER305A SORTBKPT RECORD EXCEEDS BLKSIZE

EXPLANATION: The use of an excessive number of parameters in a
control statement has caused the SORTBKPT data set to overflow the
maximum blocksize limit of 32760.

ACTION: Reduce the size of the control statement specification if possi-
ble, or convert the application from a MAXSORT to a conventional sort.

WER306A RESTART FROM BREAKPOINT PROHIBITED

EXPLANATION: The SORTBKPT data set indicates that a program-
initiated sort or a sort with exit programs tried to restart from a break-
point.

ACTION: Use z/OS checkpoint facilities since only these will save your
work areas and the program memory for restart.

WER307A SORTBKPT RECORD SEQUENCE ERROR

EXPLANATION: An out-of-sequence record was read from the SORT-
BKPT data set.

ACTION: Use the HEX function on the OUTREC statement or OUT-
REC parameter on the OUTFIL statement to get a hexadecimal listing
of the data set for analysis. See if the data set was damaged by another
program. Check system for hardware error.

WER308A BREAKPOINT ID NOT FOUND ON SORTBKPT

EXPLANATION: The parameter RESTART=id was specified but id
could not be found.

ACTION: Check spelling, correct, and return.

WER309A SORTOUXX DATA MUST BE ON DISK OR TAPE

EXPLANATION: Intermediate sort output data was allocated to an
unsupported device. Only disk or tape is allowed.

ACTION: Allocate SORTOUxx data to either disk or tape.

SyncSort for z/OS 1.1 Programmer’s Guide16.42

WER310A SORTOUXX DEVICE MIXING PROHIBITED

EXPLANATION: Intermediate sort output was allocated to both tape
and disk in the same job or to a mixture of disk device types.

ACTION: Allocate all intermediate sort data to the same device type.

WER311A DISK SORTOUXX REQUIRES SORTOUXX DD

EXPLANATION: No SORTOUxx DD statements were found so there
was no place to store intermediate sort output.

ACTION: Supply one or more SORTOUxx DD statements with xx rep-
resented by 01 to 99.

WER312A TAPE SORTOUXX REQUIRES SORTOU00 DD

EXPLANATION: One or more SORTOUxx DD statements were allo-
cated to tape but the SORTOU00 statement was not present.

ACTION: Allocate a tape unit using the SORTOU00 DD statement.

WER313A SORTOUXX DEVICE NOT SUPPORTED

EXPLANATION: The SORTOUxx DD statements specify an unsup-
ported device type.

ACTION: Change the device allocation of the SORTOUxx data set.

WER314A INSUFFICIENT VIRTUAL STORAGE FOR MAXSORT

EXPLANATION: MAXSORT cannot run efficiently in the amount of
virtual storage provided.

ACTION: Increase virtual storage or decrease the number of tape units
requested by MINMERGE.

WER315A SORTOUXX BLKSIZE GT TRACK CAPACITY

EXPLANATION: Intermediate sort output is on disk, but the SORTIN
data set requires too large a blocksize for a disk device.

ACTION: Allocate intermediate sort output to tape and rerun.

Chapter 16. Messages 16.43

WER316A INSUFFICIENT SORTOUXX DD STATEMENTS

EXPLANATION: The data to be sorted requires one or more additional
data sets.

ACTION: Recalculate and restart the job including additional SOR-
TOUxx DD statements. (Make sure each statement’s number is greater
than the last one you put in.)

WER317I MAXSORT OPTION SELECTED

EXPLANATION: A MAXSORT was requested.

WER318I INPUT CARDS IGNORED - SORTBKPT USED

EXPLANATION: The control statement just listed on SYSOUT for a
breakpoint restart were not used to control sorting. Whatever control
statements were specified when the job was started were used. (They
may be the same as the statements just listed, however.)

WER319I SORT RESTARTED AT BKPT xxxxxxxxxxxx

EXPLANATION: This message identifies the breakpoint id from which
MAXSORT resumes execution on a breakpoint restart.

WER320I INEFFICIENT SORTOUXX BLKSIZE FORCED

EXPLANATION: Due to the constraints between the amount of mem-
ory and the value specified for MAXMERGE, MAXSORT was forced to
compromise and choose a smaller blocksize than would permit efficient
buffering in sorts and merges.

ACTION: If you wish a more efficient MAXSORT, either increase the
amount of memory or reduce the number specified for MAXMERGE.
This will permit a larger blocksize to be chosen which will allow multi-
ple buffering of all the intermediate sort output data.

WER321B SORTOUXX BLKSIZE=xxxxx

EXPLANATION: This gives the blocksize that MAXSORT has chosen
for intermediate sort output.

WER322A TAPE DYNALLOC FAILURE - CODE=xxxx

EXPLANATION: Attempts to dynamically allocate tape units for a
merge phase met with unexpected failure. Code xxxx gives the hexadec-
imal return code from the dynamic allocation request. For an explana-

SyncSort for z/OS 1.1 Programmer’s Guide16.44

tion of this code, see either IBM publication z/OS MVS Programming:
Authorized Assembler Services Guide SA22-7608 or OS/390 V2R10.0
MVS Authorized Assembler Service Guide GC28-1763.

WER323A BKPT DATA AT DIFFERENT RELEASE LEVEL

EXPLANATION: The SORTBKPT data was created by a different
SyncSort release than the SyncSort program reading it. Because of this,
the breakpoint data cannot be processed.

ACTION: Restart this job and run under the same SyncSort release
that you started with.

WER324A TAPENAME CLASS NOT FOUND ON SYSTEM

EXPLANATION: The tapes could not be dynamically allocated because
a TAPENAME was specified that was not generated into the operating
system.

ACTION: Check with the systems programmer for acceptable unit
names.

WER325A MAXSORT STOPPED BY OPERATOR

EXPLANATION: The operator responded to a message by stopping the
sort. The sort may be restarted from the last breakpoint or checkpoint.

WER326A DYNALLOC UNALLOC FAILURE - CODE=xxxx

EXPLANATION: Attempts to dynamically deallocate tape units met
with unexpected failure. Code xxxx gives the hexadecimal return code
from the dynamic deallocation request. For an explanation of this code,
see either IBM publication z/OS MVS Programming: Authorized
Assembler Services Guide SA22-7608 or OS/390 V2R10.0 MVS Autho-
rized Assembler Service Guide GC28-1763.

WER327A INSUFFICIENT UNITS FOR MINIMAL MERGE

EXPLANATION: Too few tape units were allocated to meet the number
specified in MINMERGE. Either too few SORTOUxx DD were supplied
or the z/OS system was unable to dynamically allocate enough units.

ACTION: Restart the job with additional SORTOUxx DD statements.

Chapter 16. Messages 16.45

WER328A SORTOUXX SYSTEM OPEN FAILURE

EXPLANATION: The operating system could not open the SORTOUxx
data sets.

ACTION: Check to see that SORTOUxx DD statements are correct.
Determine if operating system is at a proper maintenance level.

WER329A SORTOU00 SYSTEM RDJFCB FAILURE

EXPLANATION: The operating system could not read the Job File Con-
trol Block for SyncSort analysis.

ACTION: Determine if operating system is at a proper maintenance
level.

WER330A SPECIFIED SORTING TIME HAS EXPIRED

EXPLANATION: The time limit specified in the SORTTIME parameter
has expired. The job may be restarted from the last breakpoint or
checkpoint.

WER331A SYSTEM CHECKPOINT FAILURE

EXPLANATION: Request for z/OS checkpoint facilities failed.

ACTION: Ascertain that the SORTCKPT DD statement was correctly
specified. Check that rules for the use of checkpoint were not violated.

WER350I {SORT/MERGE} # XX COMPLETE {AT BREAKPOINT/AT
CHECKPOINT} bbbbbbbbbbbb, DIAG=hhhh,hhhh...

EXPLANATION: This message tells which individual sort or merge has
completed. Restart can be performed from the breakpoint or checkpoint
id given in bbbbbbbbbbbb. If restart is not possible the above message
will read:
SORT/MERGE # XX COMPLETE.
The hexadecimal information following the DIAG keyword is likely to
change from execution to execution. It is internal diagnostic informa-
tion intended for use by SyncSort personnel in Product Support.

WER351I DATA SIZE xxxx KB [FROM yy WAY MERGE]

EXPLANATION: The amount of data that was processed for the cur-
rent SyncSort individual sort/merge is given in kilobytes. When a
merge is processed yy gives the number of tape units used.

SyncSort for z/OS 1.1 Programmer’s Guide16.46

WER352I DYNAMICALLY ALLOCATED TAPE UNITS - XX

EXPLANATION: The number of tapes drives that were dynamically
allocated for the current merge pass is given.

WER353I STARTING TIME hh.mm.ss - ENDING TIME hh.mm.ss

EXPLANATION: The starting and ending times in hours, minutes, and
seconds of the individual sort or merge just completed are given.

WER354I ----------------------DATA SET STATUS----------------------

EXPLANATION: This is a header. Messages relating to data sets will
follow.

WER355I {DSN=dsname/VOL SERS = vvvvvv...}

EXPLANATION: The data set names of the tapes for intermediate sort
output are given. The tape volumes are listed for tape intermediate sort
output. Retain these reels for input to a later merge.

WER356I SORTOUXX DD STATEMENT IS ACTIVE

EXPLANATION: The disk data set allocated to the SORTOUxx DD
statement is needed as input to a subsequent merge. Be sure to keep it
in case restart is necessary.

WER375D jobname.stepname - MAXSORT BKPT id
TIME ESTIMATE: XXX MINUTES UNTIL NEXT
NOTIFICATION.
REPLY 'GO' TO CONTINUE, 'STOP' TO TERMINATE

EXPLANATION: A long-running MAXSORT has exhausted its
assigned block of computer time.

ACTION: The operator’s decision should be based on scheduling priori-
ties and the estimated time of the sort. A 'GO' reply will permit sort
execution to proceed in stages. This message is generated at discrete
intervals so that the operator can again opt to continue or terminate its
execution.

WER376D jobname.stepname - MAXSORT BKPT id
aaa TAPE UNITS ALLOCATED TO jobname
bbb TAPE UNITS NEEDED FOR BEST PERFORMANCE
TIME ESTIMATE USING aaa TAPE UNITS -
xxxx MINUTES TO {NEXT BREAKPOINT | END OF JOB}

Chapter 16. Messages 16.47

REPLY 'GO' TO CONTINUE, 'STOP' TO TERMINATE, 'NN' #
UNITS

EXPLANATION: The first time this message is generated, it indicates
that MAXSORT has dynamically allocated the optimum number aaa of
tape drives up to MAXMERGE. Reissued, this message documents
MAXSORT’s response to the operator’s previous reply of 'NN' tape
units. 'NN' represents the total number of tapes that will be allocated.

ACTION: Given a reply of 'NN' tape drives, MAXSORT will attempt to
satisfy the operator’s request. For 'NN' larger than aaa, MAXSORT will
try to raise its allocation to 'NN'. (The operator can delay the request for
more tape units in order to give other jobs time to free any tape drives
they are using.) The above message is reissued and the operator can see
how the decision will affect sort execution.

As soon as allocations and time estimates are satisfactory, the reply
'GO' will cause continued execution using the allocated tape units. If
allocation or time estimates are not satisfactory, the job may be termi-
nated (reply 'STOP') or a new number 'NN' of units may be requested.

WER377D jobname.stepname - MAXSORT BKPT id
INSUFFICIENT TAPE UNITS AVAILABLE
aaa TAPE UNITS ALLOCATED TO jobname
bbb TAPE UNITS NEEDED TO CONTINUE EXECUTION
REPLY 'RETRY' TO GET UNITS, 'STOP' TO TERMINATE

EXPLANATION: MAXSORT cannot immediately acquire enough tape
drives to make continued processing worthwhile.

ACTION: The operator can wait until other tape drives have been
released, then reply 'RETRY'. If enough drives are now available, exe-
cution continues. Otherwise the above message is repeated. Eventually
enough tape drives become available or the operator terminates the job
with a 'STOP' response.

WER378I NO ADDITIONAL TAPE UNITS EXIST FOR GENERIC CLASS
tapename

EXPLANATION: All tape units on the system within the TAPENAME
class have been allocated. Further DYNALLOC attempts will fail to
acquire more tape units. Message WER376D or WER377D will follow.

WER390A MINIMUM SORTWK SPACE NOT AVAILABLE

EXPLANATION: MAXSORT could not obtain enough SORTWK disk
space to run. When MAXSORT is executing with larger storage values,

SyncSort for z/OS 1.1 Programmer’s Guide16.48

SyncSort may need to automatically raise MINWKSP, overriding the
specified MINWKSP value. Therefore, it may erroneously appear that
JCL SORTWKs provided enough space to satisfy MINWKSP when this
message was posted.

ACTION: Correct SORTWK volume, primary, and secondary alloca-
tions. Restart the job.

WER391A INSUFFICIENT VIRTUAL STORAGE FOR SORTBKPT
BUFFER

EXPLANATION: MAXSORT was unable to obtain the necessary 3600-
byte buffer space from the operating system.

ACTION: Check to see that sufficient virtual storage was allocated to
the sort.

WER392A SORTBKPT FORMAT ERR - VBS PROCESSING

EXPLANATION: MAXSORT attempted to read back control informa-
tion associated with VBS SORTIN data and found a format error in the
SORTBKPT data set.

ACTION: In the U.S. and Canada, call SyncSort for z/OS Product Ser-
vices directly at (201) 930-8260. Elsewhere, call your SyncSort support
representative.

WER393I TURNAROUND MAXSORT SORT PERFORMED

EXPLANATION: The amount of SORTIN data was small enough to fit
entirely on SORTWK disk space, so sorted data was produced in one
SyncSort pass.

WER394A SORTOUXX DD STMT REQUIRED FOR MERGE

EXPLANATION: The above DD statement was required for disk inter-
mediate sort output as input to a merge but could not be found.

ACTION: Supply the missing DD statement.

WER395A INVALID SORTOU00 OR SORTOUxx DSN PREFIX

EXPLANATION: The BKPTDSN parameter was used, but the required
trailing period was not specified as part of the DSN prefix.

ACTION: Add a trailing period to the parameter specification.

Chapter 16. Messages 16.49

WER396A LKED DD STATEMENT MISSING OR INVALID

EXPLANATION: A MODS statement specified at least one exit to be
link-edited by SyncSort, but a SYSPRINT and/or SYSLIN and/or SYS-
LMOD DD statement is missing. All of these statements are required
for link-editing. Or, the SYSLMOD DD statement does not refer to a
data set on a direct access device.

ACTION: Supply the missing DD statement(s) or adjust the SYSLMOD
DD statement as appropriate.

WER400A SORTIN(nn) IS AN UNINITIALIZED SEQUENTIAL DISK DATA
SET

EXPLANATION: The data set was allocated but never opened for out-
put. Therefore, there is no valid data or end-of-file mark in the data set.
This condition usually occurs when a program abends and the steps to
create the data are bypassed.

ACTION: Write the appropriate data or end-of-file mark in the data set.

WER401A CSECT NAME DIFFERENT THAN MEMBER NAME

EXPLANATION: The MODS statement specified an exit routine mod-
ule in SYSIN that was not found.

ACTION: Either change the member name in the MODS statement to
match the module name or reassemble the exit module with a name to
match the member name on the MODS statement.

WER402A SORTMODS STOW FAILURE

EXPLANATION: While copying an exit routine from SYSIN to SORT-
MODS, SyncSort attempted unsuccessfully to store (STOW) the exit
routine in the SORTMODS directory. This condition is caused either by
specifying insufficient directory blocks when creating the SORTMODS
data set or by the presence of a member or alias with the same name as
the exit routine in the SORTMODS data set, or by a hardware failure.

ACTION: Check the SORTMODS directory names for a member-name
conflict and rerun the job step.

WER403A OUTFIL NOT VALID FOR MAXSORT

EXPLANATION: Using an OUTFIL control statement in a MAXSORT
application is not supported at this time.

SyncSort for z/OS 1.1 Programmer’s Guide16.50

ACTION: Either remove the OUTFIL statement(s) or convert the appli-
cation not to invoke MAXSORT.

WER404I SORTXSUM: RECFM= ;LRECL= ;{BLKSIZE=,CISIZE=} [;CINV
ACCESS]; RCD OUT n

EXPLANATION: This informational message lists the DCB character-
istics used by SyncSort to process the SORTXSUM file, as well as the
number of records (n) that were written to the data set. For a VSAM
data set, the CISIZE is provided; if control interval access was used, the
CINV ACCESS portion of the message will be displayed.

WER405I ddname DATA RECORDS OUT n, TOTAL RECORDS OUT y

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The n represents the number of data records (exclusive of HEADERS/
TRAILERS and multi-record OUTREC) in each output data set. The y
represents the total number of records in each output data set (data
records, HEADERS/TRAILERS and multi-record OUTREC records).
Note that the total number of lines written to the line printer may be
greater than the actual record count since multiple lines can be gener-
ated from one data record using ANSI control characters.

WER406A ddname HEADER/TRAILER/DATA LINES EXCEED PAGE SIZE

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The number of lines generated by some HEADER and/or TRAILER
and/or multi-line OUTREC parameters is greater than or equal to the
number of lines to be written per logical page as specified by the LINES
parameter. If LINES has not been coded, this number defaults to 60.

ACTION: Reduce the number of HEADER/TRAILER lines generated or
increase the number of lines in the LINES parameter so that a mini-
mum of all output lines from 1 data record can be written per logical
page.

WER407I UNUSABLE SORTWK DEVICE ALLOCATED {,NON
RPS,UNIT=VIO}

EXPLANATION: An unusable device was allocated during dynamic
allocation. The device was held for the duration of the sort; however, the
device was not used for SORTWK storage.

ACTION: For future executions, ensure that the DYNALLOC runtime
parameter specifies a correct disk device. If the message cites "NON

Chapter 16. Messages 16.51

RPS," specify RPS disk devices; if the message cites "UNIT=VIO," spec-
ify a true disk device.

WER409A MOD ON SYSIN NOT FLAGGED AS SYSIN MODULE

EXPLANATION: An object deck was found in the SYSIN data set that,
according to the MODS statement, was not specified as belonging in
SYSIN.

WER410B xxx BYTES OF VIRTUAL STORAGE AVAILABLE ABOVE THE
16MEG LINE, yyy BYTES RESERVE REQUESTED, zzz BYTES
USED

EXPLANATION: The amount of virtual storage above the 16-megabyte
line available (free) when SyncSort received control is represented by
x’s. The amount of virtual storage that the user requested SyncSort to
reserve above the 16-megabyte line is represented by y’s. The amount of
virtual storage used by SyncSort above the 16-megabyte line is repre-
sented by z’s.

WER411B nnn BYTES OF EMERGENCY SPACE ALLOCATED ABOVE THE
16MEG LINE

EXPLANATION: The indicated amount of virtual storage above the 16-
megabyte line has been set aside by SyncSort for use by other programs
(e.g., program invoking the sort, system SVCs, tape management sys-
tem.)

WER412I ERROR TAKING SYSTEM CHECKPOINT. PROCESSING CON-
TINUES

EXPLANATION: An error occurred when SyncSort attempted to take a
user-requested checkpoint. Sort/merge processing continued; however, a
usable checkpoint may not exist. Refer to the IHJxxxx message in the
job log to determine the cause of the error.

WER414A SORTIN(nn) OPEN ERROR ON AN UNINITIALIZED SEQUEN-
TIAL DISK DATA SET

EXPLANATION: An error occurred during an OPEN of a multi-volume
uninitialized sequential disk data set being used for SORTIN(nn).
When the UNINTDS=YES option has been selected, either by default or
parameter override, SyncSort will need to open for output a multi-vol-
ume uninitialized disk data set in order to set the DS1IND80 flag in the
format-1 DSCB of the first volume. Typically this error will occur if the
SyncSort step does not have the authority to open the SORTIN(nn) for
output processing.

SyncSort for z/OS 1.1 Programmer’s Guide16.52

ACTION: In a separate step prior to the SyncSort invocation, write the
appropriate end-of-file mark in the first volume of the multi-volume
data set.

WER415B DSM FACILITY DISABLED

EXPLANATION: SyncSort’s dynamic storage management feature was
not active for this sort execution.

WER416B

EXPLANATION: This message provides summary I/O tuning informa-
tion for files processed by SyncSort. The first form is used when an
access method other than EXCP is used for a file. It uses a generic term
for the access method (BSAM, HIPERBATCH, etc.) and the file for
which it was used. When EXCP is used, the message takes on the sec-
ond form which has the component parts listed below. Some of these
components may or may not be included in the message depending on
the level of the operating system and the availability of the information
within SyncSort.

EXCP'S=eee "eee" identifies the number of EXCPs issued for
the file. For input files such as SORTIN, this is
the total EXCPs issued for all concatenated
input sets.

UNIT=vuuuu "uuuu" is the unit type on which the data set
resides. For files that can consist of concatena-
tions or multi-volume data sets, the unit type
displayed is for the first volume of the first data
set.

DEV=dddd "dddd" is the device name for the first or only
device for the file.

CHP=cccccccc,n This field identifies the channel paths available
to the first or only device. ''n'' is the number of
PAV aliases available.

VOL=vvvvvv This field is displayed for only DASD devices
and identifies the volume serial number of the
first or only volume for the file.

access-method WAS USED FOR ddname 
 
ddname: EXCP'S=eee [,UNIT=uuuu] [,DEV=dddd] [,CHP=cccccccc,n][,VOL=vvvvvv] 
 
TOTAL OF xxx EXCP'S ISSUED FOR totalid 

Chapter 16. Messages 16.53

For certain types of sorts, SyncSort may dynamically allocate data sets
other than SORTWKxx data sets for use in the sorting process, and this
can occur whether or not normal dynamic allocation of sortwork data
sets is enabled. When used, such data sets are collectively represented
in a single WER416B message using a ddname of "SORTWK&&" for
the purpose of reporting EXCPs issued against them.

In the third form of the message, xxx provides a total of the EXCPs
issued for SORTWORKS, SORTING, COPYING, or MERGING, as iden-
tified by "totalid."

WER417A UNEQUAL MAINTENANCE LEVELS: xxxxxxxx,yy,zz

EXPLANATION: The load module xxxxxxxx and SyncSort root module
maintenance levels do not correspond. yy represents the maintenance
level of the xxxxxxxx module; zz represents the maintenance level of the
root module.

ACTION: Contact the systems programmer in charge of SyncSort main-
tenance.

WER418I DATASPACE(S) AND/OR xxxxxxxx USED

EXPLANATION: xxxxxxxx can be either ZSPACE or HIPERSPACE(S).
SyncSort has dynamically chosen to use data space, ZSPACE, or hiper-
space during the execution of the sort. ZSPACE is a technique within
SyncSort created as a replacement for hiperspace. It allows native use
of the central storage resources which are available. This technique
eliminates the additional overhead produced when hiperspace is simu-
lated by the operating system in a z/Architecture environment. It pro-
vides superior CPU performance and reduced system overhead
compared to a conventional hiperspace application.

WER420I COBOL ACCELERATOR ACTIVE

EXPLANATION: SyncSort’s high performance access method was used
for accessing a COBOL file.

WER422A SORTOUT STOW FAILURE

EXPLANATION: When writing to SORTOUT, SyncSort attempted
unsuccessfully to store (STOW) the SORTOUT PDS member in the
SORTOUT directory. This condition is caused by specifying insufficient
directory blocks when creating the SORTOUT data set.

ACTION: Recreate the SORTOUT data set with more directory blocks
and rerun the job step.

SyncSort for z/OS 1.1 Programmer’s Guide16.54

WER423I DYNAMIC ALLOCATION RETRY - WAITING FOR SPACE

EXPLANATION: The DYNALLOC facility is being used to acquire sort-
work space, but there is currently insufficient disk space on the system
to satisfy the request. SyncSort will wait the prescribed number of min-
utes as specified by the DYNALLOC option and then retry the request.

WER424I DYNAMIC ALLOCATION RETRY SUCCESSFUL

EXPLANATION: The dynamic allocation of sortwork space after a
DYNALLOC RETRY attempt was successful. Sort processing continues.

WER425A CONVERT FEATURE CANNOT BE USED FOR FIXED-LENGTH
RECORDS

EXPLANATION: The CONVERT parameter of the OUTREC or OUT-
FIL statements has been used incorrectly. CONVERT can be used to
convert variable-length input to fixed-length output records only. Also,
the record format of an output data set must be fixed-length after CON-
VERT processing.

WER426I SORT INTERNAL ERROR - RECOVERY ATTEMPT IN
PROGRESS

EXPLANATION: The presence of this message indicates that an auto-
matic retry of the SyncSort execution has been initiated. If the error
recovery is successful, the SyncSort SYSOUT listing will contain a sub-
sequent set of messages representing the complete information about
the execution. The subsequent set of messages may be separated from
the initial set of listings by a diagnostic output of significant size. The
new listing will contain the message WER427I.

WER427I RECOVERY ATTEMPT IN PROGRESS

EXPLANATION: The set of SYSOUT messages containing the
WER427I will be from the automatic retry execution. Examine these
messages to insure that it also contains a WER052I message indicating
a successful completion of the SyncSort execution. In addition, a suc-
cessful SyncSort recovery will complete with a return code of zero. Even
if the WER426I and WER427I messages are present, this in itself does
not constitute a successful recovery unless zero is returned for the step
completion code.

If an execution of SyncSort does utilize the recovery facility, whether
successfully or not, the SyncSort for z/OS Product Services Group
should be contacted so that the underlying error can be investigated
and resolved.

Chapter 16. Messages 16.55

WER428I CALLER-PROVIDED IDENTIFIER IS "xxxx"

EXPLANATION: SyncSort was invoked by another program, and that
program used a 31-bit parameter list where the "call identifier" param-
eter was specified. xxxx is the identifier specified by the calling pro-
gram.

WER429I SORT INTERNAL ERROR ON SORTWKxx - RECOVERY
ATTEMPT IN PROGRESS

EXPLANATION: An internal error occurred while processing the
SORTWK data set indicated by nn. The presence of this message indi-
cates that SyncSort has initiated automatic error retry logic to correct
this error. If the recovery is successful, processing will resume and mes-
sage WER052I will be issued when the sort has completed successfully.
Absence of the WER052I message indicates that SyncSort was unable
to recover.

ACTION: If an execution of SyncSort does use this recovery facility,
whether successfully or not, SyncSort for z/OS Product Services should
be contacted so that the underlying condition can be investigated and
resolved.

WER430I SORT INTERNAL ERROR ON SORTOUT - RECOVERY
ATTEMPT IN PROGRESS

EXPLANATION: An internal error occurred while creating the
SORTOUT data set. The presence of this message indicates that Sync-
Sort has initiated automatic error retry logic to correct this error. If the
recovery is successful, processing will resume and message WER052I
will be issued when the sort has completed successfully. Absence of the
WER052I message indicates that SyncSort was unable to recover.

ACTION: If an execution of SyncSort does use this recovery facility,
whether successfully or not, SyncSort for z/OS Product Services should
be contacted so that the underlying condition can be investigated and
resolved.

WER431I COPY SUBSTITUTED FOR MULTIPLE OUTFILS

EXPLANATION: The SORT or COPY multiple output application (mul-
tiple OUTFILs) has been automatically converted by SyncSort to a sin-
gle SORT or COPY operation followed by one or more COPY operations.

If system resources are available and the output files of a multiple out-
put application have identical specifications, SyncSort will make this

SyncSort for z/OS 1.1 Programmer’s Guide16.56

type of change to take advantage of system resources to improve the
application’s performance.

WER432I {SORT,MERGE} FORMAT OPERAND IGNORED

EXPLANATION: On either a SORT or MERGE control statement, the
format of the keys was specified in both the FIELDS and FORMAT
parameters. SyncSort ignores the FORMAT parameter and uses the
individual format specifications within the FIELD parameter.

WER433I SUM FORMAT OPERAND IGNORED

EXPLANATION: On a SUM control statement, the sum field format
was specified in both the FIELDS and FORMAT parameters. SyncSort
ignores the FORMAT parameter and uses the individual format specifi-
cations within the FIELD parameter.

WER434I INCLUDE/OMIT FORMAT OPERAND IGNORED

EXPLANATION: On an INCLUDE or OMIT control statement, the
field format was specified in both the COND and FORMAT parameters.
SyncSort ignores the FORMAT parameter and uses the individual for-
mat specifications within the FIELD parameter.

WER435A SORTIN(nn) ALLOCATION ERROR ON AN UNINITIALIZED
SEQUENTIAL DISK DATA SET

EXPLANATION: An error occurred during the dynamic allocation of a
multi-volume uninitialized sequential disk data set being used for SOR-
TIN(nn). When the UNINTDS=YES option has been selected, either by
default or parameter override, SyncSort will need to dynamically allo-
cate and open for output a multi-volume uninitialized disk data set in
order to set the DS1IND80 flag in the format-1 DSCB of the first vol-
ume.

ACTION: In a separate step prior to the SyncSort invocation, write the
appropriate end-of-file mark in the first volume of the multi-volume
data set.

WER436I UNEQUAL MAINTENANCE APPLIED TO GLOBAL DSM AND
SYNCSORT LIBRARIES

EXPLANATION: The maintenance level of the SyncSort for z/OS prod-
uct is in conflict with the maintenance level of the global DSM (GDSM)
subcomponent due to the incomplete application of one or more mainte-
nance levels.

Chapter 16. Messages 16.57

WER437A [ddname] SPLIT INCOMPATIBLE WITH REPORT WRITING

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
The SPLIT parameter and one or more report writing parameters have
been specified for an OUTFIL group. The specified ddname is the first
ddname of the OUTFIL group. SPLIT and report writing parameters
are incompatible on the same OUTFIL control statement. Specifically,
SPLIT cannot be specified on the same OUTFIL statement with HEAD-
ERn, TRAILERn, LINES, NODETAIL, and SECTIONS.

WER438A [ddname] {INREC,OUTREC} - NONE OF THE FIND-
CONSTANTS WAS MATCHED WITH THE CHANGE FIELD (p,l),
CONTENTS OF INPUT FIELD IN HEX: xxxxxxxx

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
A CHANGE subparameter on an INREC, OUTREC or OUTFIL OUT-
REC control statement was specified without a NOMATCH option and
the input field did not match any of the specified find-constants. p,l rep-
resents the position and length of the input field. xxxxxxxx is the hexa-
decimal representation of the input field.

WER440A UNSUPPORTED OPERATING SYSTEM

EXPLANATION: Only OS/390 and later operating environments are
supported by SyncSort for z/OS.

WER441A ERROR IN CALLING LANGUAGE ENVIRONMENT SERVICE,
RC = nnnn

EXPLANATION: A Language Environment service used to support
LOCALE processing indicated a critical error in its feedback code. nnnn
is the error message number representing the feedback code. For an
explanation of this code, see the IBM publication Debugging Guide and
Run-Time Messages, SC26-4829.

WER442A INVALID CHARACTER IN COMPARE FIELD FOR ACTIVE
LOCALE

EXPLANATION: INCLUDE/OMIT processing with the LOCALE func-
tion active detected a character that is not defined in the current locale.
The invalid character could be in a CH field or in a character or hexa-
decimal constant compared to a CH field.

SyncSort for z/OS 1.1 Programmer’s Guide16.58

WER443A INVALID CHARACTER IN CONTROL FIELD FOR ACTIVE
LOCALE

EXPLANATION: Sort or merge processing with the LOCALE function
active detected a character that is not defined in the current locale. The
invalid character is in a CH sort or merge field.

WER444I LOCALE PROCESSING USED FOR LOCALE nnnnnn

EXPLANATION: Indicates that LOCALE processing was in effect.
nnnnnn (up to 32 characters) represents the name of the locale used.

WER445A LOCALE PROCESSING CONFLICT

EXPLANATION: LOCALE processing has been used illegally. LOCALE
processing cannot be used with an E61 exit. The LOCALE specification
cannot be changed on a MAXSORT breakpoint restart.

WER446A [ddname] INCLUDE/OMIT FORMATS INCOMPATIBLE FOR
LOCALE PROCESSING

EXPLANATION: The ddname will be SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
LOCALE processing has been requested and a character (CH) to binary
(BI) comparison was specified on an INCLUDE/OMIT statement or
OUTFIL INCLUDE/OMIT parameter. CH to BI comparisons are not
supported when using LOCALE processing.

WER447B PHASE 3 VIRTUAL STORAGE REDUCED TO nnn BYTES FOR
OPTIMAL PERFORMANCE

EXPLANATION: Phase 3 optimization has determined that a reduction
in virtual storage is appropriate for an efficient execution. nnn is the
amount of virtual storage used during phase 3. The total bytes used
value in message WER164B indicates the virtual storage used during
earlier phases of the sort execution.

WER448I Y2 FORMAT CENTURY WINDOW IS FROM xxxx TO yyyy

EXPLANATION: One of the Y2x data formats has been used for a
SORT/MERGE field, an INCLUDE/OMIT field or an INREC/OUTREC
edit field. The starting year is xxxx and the ending year is yyyy for the
century window used to process the fields.

Chapter 16. Messages 16.59

WER449I SYNCSORT GLOBAL DSM SUBSYSTEM ACTIVE

EXPLANATION: The SyncSort Global DSM (GDSM) subsystem was
active during the execution of this SyncSort application.

WER450I PARASORT USED

EXPLANATION: The PARASORT technique has been used for this exe-
cution.

WER451A PARASORT TAPE LABEL ERROR VOL(vvvvvv) [CONCATENA-
TION+0nnn]

EXPLANATION: The tape label on volume vvvvvv does not match the
DCB characteristics of the SORTIN data set. This could happen
because of changed record length, BLKSIZE or recording format. This
situation is normally caused by overwriting some of the data in a multi-
volume data set. The concatenation number indicates where in the
SORTIN concatenation the volume in error may be found.

WER452I PARASORT NOT USED: reason

EXPLANATION: The PARASORT feature has been disabled and the
sort was performed using conventional SORTIN processing. The mes-
sage indicates the reason for this action, which may be any of the fol-
lowing:

• AUTOMATIC RETRY DISABLED Automatic sort retry must be
enabled for PARASORT to be used. It is required in the event that
the condition identified in WER454A is encountered.

• CONCATENATED SORTIN DEVICES DIFFER Concatenated
SORTIN devices must be the same device; that is, unit affinity must
be specified.

• INCOMPATIBLE CONDITIONS The application may specify
elements that cannot be used together. This problem can be caused
by unusual sort key types, some feature combinations, or very long
sort keys.

• INPUT IS NOT TAPE PARASORT requires input from tape
devices. Input from any other source is not permitted.

• INSUFFICIENT TAPE CHANNELS At least two channel paths
must be available to the tape drives being used to read the
SORTPARn DDs. For a description of a technique to help insure
that this requirement is satisfied, see the description of esoteric
unit names in the PARASORT chapters of this manual and the
SyncSort for z/OS Installation Guide.

SyncSort for z/OS 1.1 Programmer’s Guide16.60

• NO SORTWORKS AVAILABLE PARASORT requires sortwork
space, which must be specified in the JCL or provided dynamically
by DYNALLOC.

• RETRY IN PROGRESS PARASORT failed, but a retry is being
attempted.

• SORTIN IS A NULLFILE
• SORTIN IS ONLY A SINGLE VOLUME DATA SET The

SORTIN DD statement for PARASORT must define either a single
multi-volume SORTIN data set or several concatenated tape data
sets, which can be single or multi-volume. One single-volume data
set is not permitted.

• V(B)S DATA SETS NOT ALLOWED VS and VBS data sets are
not compatible with PARASORT.

WER453A FOR PARASORT text

EXPLANATION: PARASORT failed and the sort application will not
execute. The message text indicates the condition that caused the fail-
ure or the PARASORT requirement that was violated:
• A SORTPAR2 DD STATEMENT IS REQUIRED
• DUPLICATE VOLUMES ON SORTIN DD NOT ALLOWED
• EQUALS MAY NOT BE SPECIFIED If EQUALS is not specified

on the SORT control statement or as a PARM, ensure it is not
enabled by default. Pass NOEQUALS to disable EQUALS.

• E15 EXITS MAY NOT BE SPECIFIED
• MAXSORT MAY NOT BE SPECIFIED
• PASSED SORTIN IS INVALID
• SEQNUM MAY NOT BE SPECIFIED ON INREC
• SKIPREC MAY NOT BE SPECIFIED
• SORTIN AND SORTOUT MUST BE DIFFERENT DATA SETS
• SORTIN GDG NOT ALLOWED
• SORTIN VOLUME SEQUENCE MAY NOT BE SPECIFIED

The volume sequence number must be 1, the first volume. The
number cannot be greater than 1.

• SORTPAR DD STATEMENTS ARE REQUIRED
• SORTPAR(N)S MUST BE SEQUENTIALLY NUMBERED
• SORTPAR1 AND SORTIN DATA SET NAMES MUST BE THE

SAME
• SORTPAR1 DISPOSITION MUST BE OLD
• SORTPAR1 UNIT MUST BE THE SAME AS THE SORTIN

UNIT
• SORTPAR1-4 DEVICE TYPES MUST BE THE SAME AS THE

SORTIN DEVICE TYPE
• SORTPAR2-4 CANNOT BE THE SAME AS THE SORTIN

UNIT
• SORTPAR2-4 and SORTIN DATA SET NAMES MUST BE

THE SAME

Chapter 16. Messages 16.61

• SORTPAR2-4 DISPOSITION MUST BE (NEW,KEEP,KEEP)
• SORTPAR2-4 MUST SPECIFY DEFER ON THE UNIT

PARAMETER
• SORTPAR2-4 MUST SPECIFY VOL=PRIVATE
• STOPAFT MAY NOT BE SPECIFIED
• THE DISPOSITION OF SORTIN IS INVALID SORTIN data

sets may not be temporary data sets. They also may not be NEW,
passed or have PASS on their JCL definition.

• DB2 MAY NOT BE SPECIFIED The DB2 query function is not
supported with a PARASORT.

WER454A PARASORT SORTIN END OF FILE ENCOUNTERED BEFORE
THE VOLUME LIST EXHAUSTED

EXPLANATION: The SORTIN volume list is supplied from either the
catalog or specific list of volume serial numbers. The volume serial list
must accurately reflect the volumes in the data set. If extra volumes are
specified (as may happen if an old data set is rewritten with less data)
this error message will be generated. A volume sequence number may
not be specified.

WER455I PARASORT CHANNEL CONTENTION - SORTPARn NOT USED

EXPLANATION: SORTPAR2-4 has no available channel path to send
data other than a path that would conflict with a previously defined
SORTPARn definition. This SORTPARn will not be used during the
PARASORT execution. This message may occur more than once if there
are multiple conflicting SORTPARn DD’s.

WER456I VISUAL SYNCSORT APPLICATION SUCCESSFULLY
EXPORTED

EXPLANATION: A file that describes your application has been cre-
ated and written to the VISUALEX DD statement for export to the PC
component of Visual SyncSort. The operations defined by the control
statements have not been performed.

WER457A VISUALEX NOT SPECIFIED OR INVALID

EXPLANATION: The VISUALEX DD statement for export to the PC
component of Visual SyncSort is either missing or its data set has been
incorrectly defined. The file must have physical sequential or extended
sequential organization or be a member of a partitioned data set or
PDSE. The record format must be undefined (RECFM=U) or unspeci-
fied.

SyncSort for z/OS 1.1 Programmer’s Guide16.62

WER458A MAINTENANCE LEVEL INSUFFICIENT TO PROCESS VISUAL
SYNCSORT SYSIN DATA SET

EXPLANATION: The SYSIN data set created by the PC component of
Visual SyncSort cannot be processed by SyncSort. This is due to an
insufficient level of maintenance on the SyncSort library. A newer level
of SyncSort may be required to process the SYSIN data set.

WER459A A VISUAL SYNCSORT APPLICATION MAY NOT text

EXPLANATION: Only qualified SyncSort applications may be exported
to Visual SyncSort. The reason this application is ineligible is supplied
in the message text.

WER460I SORTIN DATA TRUNCATED DUE TO DCB BLKSIZE OVER-
RIDE

EXPLANATION: An extended sequential data set used as input to a
sort, merge or copy has had its DCB BLKSIZE overridden to a smaller
value via a JCL specification. A physical block exceeding this overrid-
den BLKSIZE specification was truncated to the smaller size during
input processing.

ACTION: Confirm that this truncation is desired. If not, remove the
BLKSIZE specification from the JCL.

WER461A SORTOUT/OUTFIL DATA SET CONTAINS NO DATA RECORDS

EXPLANATION: If the NULLOUT=RC16 parameter is in effect and
the SORTOUT data set had no records written to it during processing,
WER461A will be posted. If one or more non-SORTOUT OUTFIL speci-
fications had the NULLOFL=RC16 parameter in effect and they had no
records written to them, the WER461A will be posted. The WER405I
message, which details the records written to each OUTFIL, will pro-
vide information on the OUTFIL(s) that caused the message to be gen-
erated. Note that an OUTFIL, FILES=OUT, or FNAME SORTOUT is
controlled by NULLOUT only, and not by NULLOFL.

WER461I SORTOUT/OUTFIL DATA SET CONTAINS NO DATA RECORDS

EXPLANATION: If the NULLOUT=RC4 parameter is in effect and the
SORTOUT data set had no records written to it during processing,
WER461I will be posted. If one or more non-SORTOUT OUTFIL speci-
fications had the NULLOFL=RC4 parameter in effect and they had no
records written to them, WER461I will be posted. The WER405I mes-
sage, which details the records written to each OUTFIL, will provide

Chapter 16. Messages 16.63

information on the OUTFIL(s) that caused the message to be gener-
ated.

WER462A OUTPUT LRECL DIFFERS FROM SORTOUT LRECL

EXPLANATION: The LRECL defined in the JCL for a non-OUTFIL
SORTOUT differs from the SORTIN/SORTINnn LRECL or the inter-
nally processed record length when the SORTIN/SORTINnn LRECL is
modified by features and the PAD and/or TRUNC parameters have
been set to RC16 to disallow this.

ACTION: Remove the SORTOUT LRECL specification, allowing Sync-
Sort to calculate the appropriate SORTOUT LRECL or modify the
SyncSort control statements to build a record of the desired length as
specified by the SORTOUT LRECL.

WER462I OUTPUT LRECL DIFFERS FROM SORTOUT LRECL

EXPLANATION: If the application is a sort, merge, or copy, the LRECL
defined in the JCL for a non-OUTFIL SORTOUT differs from the SOR-
TIN/SORTINnn LRECL or the internally processed record length when
the SORTIN/SORTINnn LRECL is modified by features and the
SOPADGN and/or SOTRNGN installation options have been set to RC0
or RC4. In a BetterGener application, the LRECL defined in the JCL
for SYSUT2 differs from the SYSUT1 LRECL or the internally modified
record length when the SYSUT1 LRECL is modified by features and
the SOPADGN and/or SOTRNGN installation options have been set to
RC=0 or RC=4.

Fixed-length records will be padded to the SORTOUT LRECL (SYSUT2
LRECL in a SYNCGENR application) when the SORTOUT LRECL is
greater than the SORTIN or internally processed record length.

Records will be truncated to the SORTOUT LRECL (SYSUT2 LRECL
in a SYNCGENR application) when the SORTOUT LRECL is less than
the SORTIN or internally processed record length.

ACTION: Verify that the padding or truncation that will be performed
is desired for this application. Refer to the provided WER108I and
WER110I messages that detail the input and output record lengths.

WER463A ddname IS A LINEAR VSAM DATA SET

EXPLANATION: The ddname will be SORTIN, SORTOUT, SORTOFxx,
SORTOFx or the ddname provided by an OUTFIL FNAMES parameter.
SyncSort does not support an input or output file that is a linear VSAM
data set.

SyncSort for z/OS 1.1 Programmer’s Guide16.64

WER464I INCOMPLETE SPANNED RECORD FOUND

EXPLANATION: An invalid spanned record segment has been found
while processing the input records in a sort or merge application, and
VLTEST=(,OFF4) has been specified to produce a warning. A return
code of 4 will be issued if not overridden by a higher return code issued
for another reason.

WER467I DB2 QUERY TRIAL MODE SUCCESSFULLY EXECUTED

EXPLANATION: A report of the record layout produced by the DB2
query contained in the SORTDBIN data set has been successfully pro-
duced. No other processing has occurred.

WER468A DB2 QUERY SUPPORT ERROR: text

EXPLANATION: The DB2 query operation failed and the sort or copy
application will not execute. The message text indicates the condition
that caused the failure or the DB2 query requirement that was violated.
• MAXSORT MAY NOT BE SPECIFIED
• AN E15 EXIT MAY NOT BE SPECIFIED
• MERGE OPERATION MAY NOT BE SPECIFIED
• SKIPREC MAY NOT BE SPECIFIED
• SORTDBIN OPEN ERROR
• SORTDBIN CANNOT BE FOUND The DB2 parameter has been

specified, but the required SORTDBIN DD has not been provided.
• NO SQL SELECT STATEMENT FOUND IN SORTDBIN
• INVALID COMMAND, ONLY SQL SELECT STATEMENT

SUPPORTED Only a SELECT or $ELECT statement is valid in
SORTDBIN. No other SQL operations are supported.

• QUERY STATEMENT TOO LONG (MAX 32765 BYTES)
• CANNOT CONNECT TO DB2 DB2 is not started or the

subsystem name specified on the DB2 EXEC parameter is
incorrect.

• CANNOT BIND PLAN The user ID from which the job was
submitted has insufficient authority to bind the plan with the
SyncSort module. Submit the application from an ID that is allowed
the BIND privilege.

• CANNOT OPEN PLAN Insufficient resources were available for
DB2 to process the open request.

• UNSUPPORTED DATA TYPE FOUND Long fields (LONG
VARCHAR and LONG VARGRAPHIC) and large object fields
(BLOB, CLOB, and DBCLOB) are not supported.

• UNKNOWN DATA TYPE FOUND
• SQL ERROR: SQLCODE=xxxx,SQLSTATE=yyyy Where xxxx

is the SQLCODE and yyyy is the SQLSTATE returned. Refer to

Chapter 16. Messages 16.65

IBM publication DB2 Universal Database for OS/390 Messages and
Codes (GC26-9011) for details on these return codes.

• DB2 MODULES ARE NOT LINKED The DB2 query facility of
SyncSort for z/OS has not been installed during SyncSort
installation. Contact your systems programmer for assistance.

SyncSort Statistical Record Facility Messages

The following messages are not controlled by the MSG or FLAG PARM and will appear
only on the console.

WER500I SYNCSORT STATISTICS DATA SET NOW OVER xx PERCENT
FULL

EXPLANATION: xx percent of space currently allocated on the Sync-
Sort Statistics data set has been used.

WER501A SYNCSORT STATISTICS DATA SET NOW FULL - NO RECORD
WRITTEN

EXPLANATION: The SyncSort Statistics data set did not have enough
space for the SYNCSMF record.

PROC SYNCSORT Messages

WER700A PROC SYNCSORT UNSUPPORTED FUNCTION.
{RETRY,NORETRY} IN EFFECT

EXPLANATION: SyncSort’s high performance technique could not be
used during this invocation by PROC SYNCSORT - An Accelerator for
SAS Sorting. This may be due to a small region size or the generation of
an unsupported SyncSort statement syntax. If the RETRY option of
PROC SYNCSORT is in effect, SyncSort for z/OS will be reinvoked
using a less efficient E15-E35 interface. If the RETRY option is not in
effect, the PROC SYNCSORT execution will be terminated.

WER744A CONFLICT BETWEEN SYNCSORT AND PROC SYNCSORT
MAINTENANCE LEVELS, VERIFY LIBRARIES

EXPLANATION: Maintenance has been applied to either PROC SYNC-
SORT or SyncSort for z/OS, but not to both when maintenance to both
is required.

ACTION: Check the libraries containing PROC SYNCSORT and Sync-
Sort for z/OS and apply the required level of maintenance to each.

SyncSort for z/OS 1.1 Programmer’s Guide16.66

WER775A SAS I/O ERROR OCCURRED. CHECK SAS MESSAGE LOG
DATASET

EXPLANATION: An I/O error occurred when a SAS routine attempted
to access or update a SAS data set. A message indicating the actual
nature of the problem should appear on the SAS message LOG data set.

WER776A BLDL FAILURE FOR DDNAME SASLIB. RAISE REGION OR
CHECK SASLIB ACCESS

EXPLANATION: When attempting to perform a BLDL for the library
identified by the SASLIB DD statement, an error occurred. The error is
due either to insufficient virtual storage or a permanent I/O error on
the library.

WER777A ERROR LOADING PROC SYNCSORT MODULE. CHECK PROC
SYNCSORT INSTALL

EXPLANATION: The PROC SYNCSORT module could not be found in
any of the libraries on the normal z/OS search chain or an error
occurred while loading the module.

WER778A UNEQUAL MAINTENANCE APPLIED TO PROC SYNCSORT
AND SYNCSORT LIBRARIES. DATA=hexdata

EXPLANATION: The maintenance level of the PROC SYNCSORT
product is in conflict with that of the SyncSort for z/OS product due to
the incomplete application of one or more maintenance levels. The
hexadecimal data, if printed, indicates which maintenance fixes were
incompletely applied.

WER779I THE PERFORMANCE OF THIS SORT COULD BE SIGNIFI-
CANTLY IMPROVED THROUGH THE USE OF THE PROC
SYNCSORT PRODUCT

EXPLANATION: PROC SYNCSORT - An Accelerator for SAS Sorting
is a high performance replacement for the SAS-provided procedure
PROC SORT. When SyncSort is invoked with the PROC SYNCSORT
product instead of through the interface supplied by SAS, significant
performance improvements result. For more information, call SyncSort
for z/OS Product Services.

License Key Messages

The following are the messages directly related to the use of a SyncSort for z/OS license
key.

Chapter 16. Messages 16.67

WER900A SYNCSORT 1.1 TPFxx IS NOT LICENSED FOR SERIAL sssss,
TYPE mmmm mmm, MSU CAPACITY ccccc.
or
SYNCSORT 1.1 TPFxx IS NOT LICENSED FOR SERIAL sssss,
TYPE mmmm, VERSION CODE vv.

EXPLANATION: No valid license key for use on the specified machine
was found, and the grace period for this error, noted by the WER903I
warning message, has expired. A key must contain the correct informa-
tion for both the serial number and the full model number. License keys
are specified either in the KEY parameter of the SYNCMAC installa-
tion options macro, or included in a data set whose name is specified in
the KEYDSN parameter of SYNCMAC.

ACTION: Execute the SYNCLIST program on the system where this
message is occurring. Ensure that either the SYNCMAC KEY parame-
ter or the data set named in the KEYDSN parameter has provided a
valid key for this machine. If you require further assistance, contact
SyncSort for z/OS Product Services with the SYNCLIST output avail-
able for reference.

WER901I **WARNING** SYNCSORT 1.1 TPFxx WILL EXPIRE IN nnn
DAYS

EXPLANATION: The provided license key for this machine is only
valid for the next nnn days. After that time, WER902A will be issued,
and SyncSort will not execute.

ACTION: Contact the systems programmer in charge of SyncSort main-
tenance, or execute the SYNCLIST program on the system where this
message is occurring and contact SyncSort for z/OS Product Services.

WER902A SYNCSORT 1.1 TPFxx HAS EXPIRED

EXPLANATION: The provided license key for this machine is no longer
valid because the expiration date has passed. SyncSort will no longer
execute.

ACTION: Contact the systems programmer in charge of SyncSort main-
tenance, or execute the SYNCLIST program on the system where this
message is occurring and contact SyncSort for z/OS Product Services.

SyncSort for z/OS 1.1 Programmer’s Guide16.68

WER903I SYNCSORT 1.1 TPFxx IS NOT LICENSED FOR SERIAL sssss,
TYPE mmmm mmm, MSU CAPACITY ccccc.
or
SYNCSORT 1.1 TPFxx IS NOT LICENSED FOR SERIAL sssss,
TYPE mmmm, VERSION CODE vv.

SYNCSORT WILL STOP WORKING IN nnn DAYS UNLESS A
VALID KEY IS INSTALLED.

EXPLANATION: No valid license key for use on the specified machine
was found. License keys are specified in the KEY parameter of the
SYNCMAC installation options macro, or included in a data set whose
name is specified in the KEYDSN parameter of SYNCMAC.

SyncSort will allow sort processing to continue by issuing WER903I
during a grace period after this error is first encountered. This will pro-
vide sufficient time to correct the problem by installing a valid key for
this machine. If the grace period ends before a valid key is made avail-
able, WER900A will be issued and sort processing will terminate.

ACTION: Execute the SYNCLIST program on the system where this
message is occurring. Ensure that either the SYNCMAC KEY parame-
ter or the data set named in the KEYDSN parameter has provided a
valid key for this machine. If you require further assistance, contact
SyncSort for z/OS Product Services with the SYNCLIST output avail-
able for reference.

WER904I SYNCSORT 1.1 TPFxx KEYUPDATE SUCCESSFUL;
xxxxxxxxxxxxxxxx SELECTED

EXPLANATION: The KEYUPDATE parameter was specified, and
SyncSort has successfully obtained a valid license key denoted by
xxxxxxxxxxxxxxxx from SyncSort's key data set. The name of the data
set was specified in the KEYDSN parameter of the SYNCMAC installa-
tion options macro.

WER905A SYNCSORT 1.1 TPFxx KEYUPDATE FAILURE: reason

EXPLANATION: The KEYUPDATE parameter was specified, but
SyncSort was unable to obtain a valid license key from SyncSort's key
data set due to the specified reason. Possible reasons for this failure
are:

1. The KEYDSN parameter of SYNCMAC was not specified when
SyncSort was installed. KEYDSN, and not the KEY parameter,
must be specified with the name of SyncSort's key data set when
using the KEYUPDATE facility.

Chapter 16. Messages 16.69

2. SyncSort was unable to dynamically allocate and/or read SyncSort's
key data set. This can happen if you were editing the data set at the
time of the KEYUPDATE run, or if the data set was not allocated as
a fixed length 80-byte file.

3. No valid license key was found in SyncSort's key data set.

4. The SyncSort SVC was not available. SyncSort requires use of its
SVC to perform the update.

ACTION: Ensure that the KEYDSN parameter has been correctly spec-
ified and that the data set is accessible and contains a valid license key.
Also verify that the SyncSort SVC has been properly installed. If you
require further assistance, execute the SYNCLIST program on the sys-
tem where this message is occurring and contact SyncSort for z/OS
Product Services with the SYNCLIST output available for reference.

WER906I INVALID KEY DATA SET RECORD:
invalid record text

EXPLANATION: One or more invalid records were found in the license
key data set when performing KEYUPDATE. The first invalid record is
displayed in the message text. Only comment statements, key state-
ments and valid PARMS statements are permitted. All invalid state-
ments are ignored.

ACTION: Correct any errors in the key data set record that was dis-
played in the message text and rerun the KEYUPDATE application.

WER907I SYNCSORT EXPIRING LICENSE KEY WARNING MESSAGE
{ENABLED,DISABLED}
or
SYNCSORT INVALID LICENSE KEY WARNING MESSAGE
{ENABLED,DISABLED}

EXPLANATION: These KEYUPDATE messages document whether
SyncSort may issue certain license key warning messages. The default
is for SyncSort to issue either the WER901I expiring license key warn-
ing message or the WER903I invalid license key warning message
when applicable. During KEYUPDATE, a PARMS statement read from
the key data set can disable the issuance of either of these messages.
The WER907I message is intended to alert you that these warning mes-
sages may no longer be posted, though the warning period countdowns
will continue. During the last seven days before the warning period
ends, SyncSort will issue the warning messages regardless of whether
they have been disabled. This is done to try to prevent termination of
all SyncSort applications with either WER902A or WER900A.

SyncSort for z/OS 1.1 Programmer’s Guide16.70

ACTION: No action is required if both of these warning messages are
enabled and you have a valid license key that is not expiring. If you do
not have a valid key or if your key is expiring, call SyncSort for z/OS
Product Services as soon as possible to obtain a new license key and
rerun the KEYUPDATE procedure using the new key. If any of the mes-
sages had been disabled, either remove the PARMS statement or set
the warning message parameters to ON to re-enable the issuance of
license key warning messages.

Troubleshooting Abends

Troubleshooting with WER999A UNSUCCESSFUL SORT

WER999A indicates that an error condition occurred, preventing the successful completion
of the sort. This message does not necessarily mean that SyncSort was responsible for the
error. If, for example, the error is in the COBOL Input or Output Procedure of an invoked
sort, WER999A will appear. WER999A indicates that SyncSort got control after the error,
printing this SyncSort message.

The documentation accompanying WER999A varies with the error involved. It may consist
of a standard system dump (SYSUDUMP or SYSABEND) and/or a SyncSort-generated
SNAP dump. The SyncSort SNAP is formatted very much like a SYSUDUMP. In debugging
the SNAP, care must be taken to avoid reliance on the PSW AT ENTRY TO SNAP and the
general registers. (A SNAP dump produced through the SyncSort DEBUG PARM or with a
W-abend (i.e., WER999A UNSUCCESSFUL SORT xxxW) is only useful to a sort analyst at
SyncSort for z/OS Product Services. See "What to Do Before Calling SyncSort for z/OS
Product Services".)

SyncSort Internal Abend

A W-type abend code indicates that program termination was forced by an error condition
internally detected by SyncSort; the problem cannot be resolved by the user. See "What to
Do Before Calling SyncSort for z/OS Product Services", below.

User-Issued Abend

If any of the following abend codes appear in WER999A, it may indicate a SyncSort error
(in which case, see "What to Do Before Calling z/OS Product Services"). These are the only
U-type abend codes that SyncSort issues; any U-type abend code which is not on this list
indicates an error in a user-written exit routine or invoking program. Note that WER999A
gives the abend code in hexadecimal.

Chapter 16. Messages 16.71

User Abend 4093

User abend 4093 (RC=1C) is related to LOCALE processing. This abend is issued from the
LE/370 environment when the REGION is not large enough. Increase the REGION by 1
megabyte and resubmit the application.

SyncSort for z/OS 1.1 Programmer’s Guide16.72

What to Do Before Calling SyncSort for z/OS Product Services

All pertinent information (listings, dumps, etc.) should be available for easy reference when
calling SyncSort for z/OS Product Services. For error conditions producing the WER999A
message, the system dump and/or SyncSort SNAP dump will prove helpful to a SyncSort
analyst. For other conditions cited with an "A" class message (e.g., WER039A

User-Type Abend Codes Issued by SyncSort

 Decimal Hexadecimal Decimal Hexadecimal

10
16 *
69

936
999 **

1024 ***
1025
1026
1027
1028
1030
1031
1032
1050
1051
1052
1053
1054
1060
1061
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1086
1087
1088
1102

A
10 *
45

3A8
3E7 **
400 ***
401
402
403
404
406
407
408
41A
41B
41C
41D
41E
424
425
42E
42F
430
431
432
433
434
435
436
437
43E
43F
440
44E

1103
1104
1107
1108
1110
1111
1112
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1131
1188
1189
1190
1191
1192
1193
1194
1197
1198
2048
2049
2081

44F
450
453
454
456
457
458
45B
45C
45D
45E
45F
460
461
462
463
464
465
466
467
468
469
46B
4A4
4A5
4A6
4A7
4A8
4A9
4AA
4AD
4AE
800
801
821

* The RC16=ABE option is specified and there has been a critical error.
** The IOERR=ABE option is specified and there has been an I/O error.
*** This is most commonly caused by the release of SyncSort’s SVC not matching the

release of the SyncSort module.

Chapter 16. Messages 16.73

INSUFFICIENT VIRTUAL STORAGE), additional diagnostic information may be required
- a diagnostic SNAP dump can be produced by passing the DEBUG PARM in the
$ORTPARM DD statement or (for a JCL sort) in the // EXEC statement. When using
DEBUG, supply a SPYSET or SYSUDUMP DD statement to define an appropriate
SYSOUT data set for the dump.

In the United States and Canada, please call SyncSort for z/OS Product Services directly at
(201) 930-8260. The address is:

Syncsort Incorporated
SyncSort for z/OS Product Services

50 Tice Boulevard
Woodcliff Lake, New Jersey 07677

FAX: (201) 930-8284
E-mail: zos_tech@syncsort.com

SyncSort for z/OS 1.1 Programmer’s Guide16.74

Index I.1

Index

Symbols

$ORTPARM Statement 4.1, 4.11–4.14, 5.1, 6.2,
7.10, 7.30, 12.5

$ORTPARM, for Century Window 4.13
$ORTPARM, with CENTWIN 4.13
&DATE 2.106
&DATENS=(xyz) 2.71, 2.75, 2.106
&DATEx 2.20, 2.28–2.29
&DATEx(c) 2.20, 2.28–2.29
&DATExP 2.20, 2.28–2.29
&TIME=(hp) 2.106
&TIMENS=(tt) 2.72, 2.76

A

AC Format 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
ACS 2.146, 5.14
ALTSEQ Control Statement 2.13–2.14, 6.9, 7.57
AMODE 6.12
AND Operator 2.21, 3.3
ANSI Control Characters 2.83–2.85
AQ Format 2.13, 2.19, 2.29, 2.38, 2.102, 2.105,

2.131
ASL Format 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
Assembler Programs 1.1

Invoking SyncSort from 6.1, 6.18
AST Format 2.19, 2.29, 2.38, 2.102, 2.105, 2.131

ATTACH Macro 6.2, 7.9, 7.29
Authorization Messages 16.66
Averages, Example 3.47
AVG 2.78

B

B Messages
See BMSG Option

BALANCE Option 5.3, 13.4
BALN Option 5.2, 5.34, 6.7, 6.10, 12.3–12.5, 13.8
BatchPipes/MVS 2.68, 4.5, 4.7–4.8
BI Format 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
Binary Zeros, Insertion of 2.90–2.104, 3.18–3.20
Bit Level Comparison 2.20
Bit Level Logic 2.20–2.21, 2.31–2.33
BKPTDSN Option (MAXSORT) 5.1, 9.10
BLKSIZE Parameter 4.4, 5.5, 5.25, 5.28–5.29
Block Size 5.28–5.29
BMSG Option 5.3, 5.7
BSAM 4.5, 4.8
BUFOFF Parameter 4.4

C

C E15 7.19–7.27
C E35 7.43–7.51

SyncSort for z/OS 1.1 Programmer’s GuideI.2

C Exits 7.19–7.27, 7.43–7.51
C Programs 1.1
Century Window Processing 2.41–2.51,

2.100–2.102, 2.121, 2.124, 2.134–2.144
Century Window, with $ORTPARM 4.13
CENTWIN Option 2.41–2.51, 2.134–2.144, 5.3,

5.7–5.9
CENTWIN Processing, with OUTREC 2.121,

2.124
CENTWIN, with $ORTPARM 4.13
CH Format 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
CHANGE 2.113
Channel Separation 13.14
Checkpoint-Restart 4.14, 13.10–13.14

Automatic 13.12–13.13
Deferred 13.13–13.14

CKPT/CHKPT Parameter (MERGE) 2.52
CKPT/CHKPT Parameter (SORT) 2.145
CLO Format 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
CMP Option 5.3, 13.3
CMP=CLC 2.41, 5.3, 13.3
CMP=CPD 2.41, 5.3, 13.3
COBEXIT Option 5.3, 5.10, 7.10, 7.31
COBEXIT=COB1 5.3
COBEXIT=COB2 5.3
COBOL 35

Writing Exit in OS/VS COBOL 7.31
Writing Exit in VS COBOL II or COBOL/370

7.31
COBOL E15 5.14, 7.10–7.19

DATA DIVISION 7.13
ENVIRONMENT DIVISION 7.13
EXIT-STATUS Codes 7.14
Fixed-Length Records 7.11, 7.15–7.16
IDENTIFICATION DIVISION 7.13
LINKAGE SECTION 7.10–7.13
PROCEDURE DIVISION 7.13
RETURN-CODE Codes 7.14
Variable-Length Records 7.12–7.13, 7.17–7.19
WORKING-STORAGE SECTION 7.13
Writing Exit in OS/VS COBOL 7.10
Writing Exit in VS COBOL II or COBOL/370

7.10
COBOL E35 5.15, 7.30–7.42

DATA DIVISION 7.34
ENVIRONMENT DIVISION 7.34
EXIT-STATUS Codes 7.35
Fixed-Length Records 7.32–7.33, 7.37–7.39

IDENTIFICATION DIVISION 7.34
LINKAGE SECTION 7.31–7.34
PROCEDURE DIVISION 7.35
RETURN CODE Codes 7.35–7.36
Variable-Length Records 7.33–7.34,

7.40–7.42
WORKING STORAGE SECTION 7.34

COBOL Exits 7.5, 7.10–7.19, 7.30–7.42
COBOL/370 7.10, 7.31
OS/VS COBOL 7.10, 7.31
See COBEXIT Option
VS COBOL II 7.10, 7.31

COBOL Programs 1.1, 6.1, 13.2
COBOL, and Century Window 4.13
COBOL/370

See COBOL E35
See COBOL Exits

CODE Parameter (ALTSEQ) 2.13
Coding Conventions 4.3–4.4
Collating Sequence 2.13–2.14, 2.38, 7.57
Combining Records in a File 3.11
COMMAREA Option 5.3, 5.11, 7.4
Communication Area 5.11
Communication Area for Exits 7.4
Comparing Fields 2.17–2.34, 2.134, 3.2–3.11

Bit Level Criteria 2.20–2.21
Constants 2.19
Field to Constant Comparison 2.26
PD and ZD Field Comparison 2.41, 2.134
Rules for Specifying Fields 2.41

Concatenating Input Data Sets 4.5
COND Parameter (INCLUDE/OMIT) 2.17–2.34
Control Statement Syntax 2.8–2.11
Control Statements 2.1–2.152

ALTSEQ 2.13–2.14, 6.9, 7.57
Coding in Invoked Programs 6.2
Comments in 2.10
Continuation of 2.10–2.11
DEBUG 6.9
Defaults 2.2
END 2.15, 6.3, 12.6
for MAXSORT 9.10
for Tape Sort 12.6
INCLUDE/OMIT 2.16–2.34, 3.2–3.6, 5.16,

5.30, 6.9, 13.2
INREC 2.35–2.36, 3.6–3.11, 6.9, 13.2–13.3
Labels in 2.11
MERGE 2.35, 2.37–2.53, 5.14, 5.17, 5.30, 6.2,

Index I.3

6.8, 7.56–7.57
MODS 2.54–2.57, 5.14, 6.3, 6.5, 6.9, 12.6
Notational Conventions 2.11
OMIT 2.58
OUTFIL 2.35, 2.59–2.87, 3.27–3.55, 6.2, 6.9,

13.2
OUTREC 2.35, 2.88–2.124, 3.14, 6.9,

13.2–13.3
Performance Considerations 13.2–13.3
Processing Sequence 2.6–2.8
RECORD 2.125–2.128, 6.3, 12.6
Requirements for Disk Sort 2.5
Requirements for MAXSORT 2.5
Requirements for Tape Sort 2.5
Rules for Specifying 2.8–2.11
See $ORTPARM Statement
See Job Control Language
See SYSIN Statement
SORT 2.35, 2.129, 5.14, 5.17, 5.30, 6.2, 7.52,

7.56–7.57, 12.6
Specifying Field Formats in 2.9
Specifying Field Lengths in 2.9
Specifying Field Positions in 2.9
Specifying Parameters in 2.8–2.9
SUM 2.35, 2.149–2.152, 3.11, 5.15–5.16, 6.9,

7.27, 13.2
Summary of Functions 2.1
Summary of Parameters and Defaults 2.2
Summary of the Chapter 1.7
Use in Invoked Applications 6.3–6.4

CONVERT Parameter (OUTFIL) 2.67
CONVERT Parameter (OUTREC) 2.116
Converting Data 2.93, 2.95–2.96, 2.102–2.107,

3.20–3.27, 5.8
Format 2.93–2.95

Converting Fixed-Length Records to Variable-
Length Records 2.66

Converting SMF Formats 2.102
Converting Variable-Length Records 2.67, 2.90,

2.116–3.27
Converting Year Data 2.100–2.102
Copy

Creating Input Data Sets for 4.5
Flow of 8.1–8.6

Copying 1.3
Phases of 1.3

CORE Option 5.3, 5.12, 13.4–13.6
COUNT 2.79

COUNT15 2.79
CPU Option 5.3, 5.7, 13.4
CRCX Option 5.34, 6.7, 6.10
CSF Format 2.19, 2.29, 2.102, 2.105
CSL Format 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
CST Format 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
CTO Format 2.19, 2.29, 2.38, 2.40, 2.102, 2.105,

2.131, 2.133
Cultural Environment 1.5, 2.37, 2.129

D

DASD Data Set 4.4
Data Set Placement 13.14
Data Utility 3.1–3.55

Duplicate Records 3.11–3.13
Examples, Index to 3.2
Features of 1.3, 3.1
Input Record Selection 3.2–3.11
Input Records, Selection of Relevant Fields

3.6–3.11
Output Files, Multiple 3.53–3.55
Output Records

Converting Data 3.23–3.25
Converting Data to Hexadecimal Format

3.22–3.23
Converting Data to Readable Form

3.20–3.22
Editing Data 3.23–3.25
Editing of 3.14–3.27
Formatting Data Fields 3.25–3.27
Inserting Binary Zeros 2.90–2.104,

3.18–3.20
Inserting Blanks 3.16–3.18
Reordering Field Positions 3.14–3.18

Output Reports
Counting Data Records 3.49–3.53
Headers and Trailers for 3.32–3.41
Sectioning of 3.30–3.32
Totaling and Subtotaling Data 3.41–3.46

Sample Applications, Summarized 3.2
Summary of the Chapter 1.7

DATE (&DATE) 2.70, 2.75, 2.105
DB2 Query Support 11.1
DCB Information 2.125
DCB Parameter 4.4, 5.5, 5.25, 5.28
DD Statements 4.4–4.16, 9.4–9.10, 10.2–10.3,

12.3–12.5
$ORTPARM Statement 4.11–4.14, 6.2, 12.5
Coding Conventions 4.3–4.4
JOBLIB Statement 4.4

SyncSort for z/OS 1.1 Programmer’s GuideI.4

Parameters
AMP 4.4
BLKSIZE 4.4
BUFND 4.4
BUFNI 4.4
BUFOFF 4.4
BUFSP 4.4
DCB 4.4
DISP 4.4
DSNAME/DSN 4.4
LABEL 4.4
LRECL 4.4
OPTCD 4.4
RECFM 4.4
SPACE 4.4
UNIT 4.4
VOLUME/VOL 4.4

See Exit Programs, Link-editing
SORTBKPT Statement 9.6–9.7
SORTCKPT Statement 4.14, 13.2
SORTIN Statement 4.5–4.7, 6.2
SORTINn Statement 4.7
SORTINnn Statement 6.2
SORTLIB Statement 6.2, 12.3
SORTMODS Statement 4.15
SORTOFx Statement 4.8, 6.2
SORTOFxx Statement 4.8, 6.2
SORTOU00 Statement 9.7–9.9
SORTOUT Statement 4.8, 6.2
SORTPARn Statement 10.5–10.7
SORTWKnn Statement 4.9–4.11, 6.2,

12.4–12.5
SORTXSUM 4.8
STEPLIB Statement 4.4
Summarized for Invoked Sort/Merge 6.1–6.2
SYSIN Statement 4.11
SYSLIN Statement 4.15
SYSLMOD Statement 4.15
SYSOUT Statement 4.4, 6.2
SYSPRINT Statement 4.15
SYSUT1 Statement 4.16

ddname 4.1, 9.5, 10.3, 11.3, 12.3
DEBUG Control Statement 6.9
DEBUG Option 5.3, 5.13
Defining Output Data Sets

See SORTOUT Files
See SORTOUT Statement

Defining Work Areas
See SORTWKnn Statement

Deleting Trailing Bytes From Fixed-Length
Records 2.67

Device Separation 13.14
DIAG Option 5.3, 5.13, 6.7, 6.10
Disk Sort 4.1, 13.8

Control Statements 2.1–2.152
DD Statements for 4.1–4.16
Device Types 4.9
EXEC Statement for 4.2
PARM Options 12.1
PARMS Options 5.1–5.34
Performance Considerations 13.1

DISP Parameter 4.4, 5.28
DSN Parameter

See DSNAME Parameter
DSNAME Parameter 4.4
DT1 2.102
DT2 2.102
DT3 2.102
Duplicate Records 3.11–3.13
DYNALLOC Option 4.1, 5.3, 5.13–5.14
DYNALLOC Parameter (SORT) 2.145–2.146
DYNATAPE Option (MAXSORT) 4.1, 5.1, 9.10,

9.14–9.16

E

E10 2.56
E11 2.56, 7.5
E14 4.10, 5.16, 7.7–7.8, 9.13
E15 2.56, 5.16, 7.7–7.10, 7.58, 9.13, 12.6, 12.9,

14.4
See COBOL E15

E15 Option 5.3, 5.14, 7.10
E15=COB 5.4
E16 4.10, 7.51, 9.13
E17 7.52
E18 7.52–7.55
E20 2.56
E21 2.56, 7.5
E25 7.7, 7.27–7.28, 9.13
E27 7.52
E30 2.56
E31 2.56, 7.5
E32 2.52, 6.2, 7.5, 12.6
E35 4.2, 7.7, 7.28–7.30, 7.58, 9.13, 12.6, 12.9

See COBOL E35
E35 Option 5.3, 5.15
E35=COB 5.4
E37 7.52

Index I.5

E38 7.52–7.55
E39 7.52, 7.55–7.56
E61 2.56, 7.56–7.58, 9.13
EDIT 2.79
Edit Patterns 2.107–2.113, 3.25
EDIT Subparameter 2.107
Editing Data 2.97–2.116, 3.14–3.27
Editing Masks 2.79, 2.109–2.113
ELAP Option 5.3–5.4, 5.7, 5.15, 13.4
END Control Statement 2.15, 12.6
ENDREC Parameter (OUTFIL) 2.64
Equal-keyed Records 2.52, 2.146, 2.149, 5.15
EQUALS Option 5.4, 5.15, 13.3
EQUALS/NOEQUALS Parameter (MERGE) 2.52
EQUALS/NOEQUALS Parameter (SORT) 2.146
Esoteric Names 10.7
EXEC Statement 4.2, 9.4, 10.2, 11.2, 12.2

for Disk Sort 4.2
for MAXSORT 4.3, 9.4
for PARASORT 10.2, 11.2
for Tape Sort 4.3, 12.2–12.3

Exit Conventions 7.3
Exit Programs 2.54–2.57, 7.1–7.60

Acting on Insufficient Storage 7.51
Adding Records 7.28–7.30
Analyzing Sort Input File 7.8–7.10
Changing Records 7.7–7.8, 7.27–7.30
Checking Labels 7.52–7.55
Closing Exit Data Sets 7.52
Communication Area 7.4
Creating Input Records 7.5–7.10
Creating Sort Input File 7.8–7.10
Definition of 7.1
Deleting Records 7.7–7.8, 7.27–7.30
End-of-File Routines 7.52–7.55
for Invoked Merge 7.5
Identified in MODS Control Statement 7.3
Link-editing 7.3
Link-editing at Execution Time

DD Statements Required for 4.15–4.16
Loading into Main Storage 7.3
MAXSORT 9.13
Modifying Collating Sequence 7.56–7.58
Phases 7.1–7.2
Preparing for Other Exit Programs 7.5
Processing Read Errors 7.52–7.55
Processing Write Errors 7.52–7.55
Program Labels 7.1
Register Conventions 7.4

Revising Sort Input File 7.8–7.10
Summarizing Records 7.7–7.8, 7.27–7.28
Summary of Tasks Performed 7.2
Summary of the Chapter 1.7
VSAM Processing 7.52, 7.55
with Disk Sort 2.56
with MAXSORT 2.56, 9.13
with PARASORT 2.56
with Tape Sort 2.56, 12.6, 12.9

Exit Programs, Link-editing 4.16
Exit-Name Parameter (MODS) 2.54–2.56
EXTCOUNT 5.4, 5.16
EXTCOUNT Option 5.3

F

FI Format 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
Field Format Codes 2.38–2.41, 2.130–2.133

AC 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
AQ 2.13, 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
ASL 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
AST 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
BI 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
CH 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
CLO 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
CSF 2.19, 2.29, 2.102, 2.105
CSL 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
CST 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
CTO 2.19, 2.29, 2.38, 2.40, 2.102, 2.105,

2.131, 2.133
FI 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
FL 2.38, 2.131
FS 2.19, 2.29, 2.102, 2.105
List of Valid Formats 2.38–2.41, 2.131–2.133
LS 2.19, 2.29, 2.102, 2.105
OL 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
OT 2.19, 2.29, 2.40, 2.102, 2.105, 2.131, 2.133
P2ID 2.101
P2IP 2.101
PD 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
PD0 2.19, 2.29, 2.39, 2.44, 2.102, 2.105, 2.132,

2.138
TS 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
Y2B 2.19, 2.29, 2.39, 2.42, 2.101–2.102,

2.105, 2.132, 2.134
Y2C 2.19, 2.29, 2.39, 2.42, 2.101–2.102,

2.105, 2.132, 2.135
Y2D 2.19, 2.29, 2.40, 2.43, 2.101–2.102,

SyncSort for z/OS 1.1 Programmer’s GuideI.6

2.105, 2.132, 2.135
Y2P 2.19, 2.29, 2.40, 2.43, 2.101–2.102, 2.105,

2.132, 2.136
Y2S 2.19, 2.29, 2.40, 2.44, 2.101–2.102, 2.105,

2.132, 2.136
Y2Z 2.19, 2.29, 2.40, 2.42, 2.101–2.102, 2.105,

2.133, 2.135
ZD 2.19, 2.29, 2.40, 2.102, 2.105, 2.131, 2.133

Fields 2.88–2.124
Binary 2.16, 2.20–2.21, 2.130
Bit Level Comparison 2.20
Comparison of 2.17–2.34, 2.134, 3.2–3.11
Constants 2.19
Format 2.38–2.41, 2.64–2.98, 2.130–2.133
Insertion of Binary Zeros 3.18–3.20
Insertion of Blanks 3.16–3.18
Length 2.130
Position 2.95–2.96, 2.102, 2.130, 5.8
Reordering 3.14–3.18
Rules for Specifying 2.41, 2.133
Selection of 3.6–3.11
Specifying Format 2.9
Specifying Length 2.9, 3.6
Specifying Position 2.9, 3.6
Substring Comparison 2.30

FIELDS Parameter (INREC) 2.35
FIELDS Parameter (MERGE) 2.37–2.52
FIELDS Parameter (OUTREC) 2.90–2.116
FIELDS Parameter (SORT) 2.129–2.144
FIELDS Parameter (SUM) 2.149–2.150
FIELDS Subparameters 2.90

Operator 2.93
FIELDS=COPY 2.51, 2.53, 2.144
FIELDS=NONE 2.149
File Size

See FILSZ Option
FILES Parameter (MERGE) 2.52
FILES Parameter (OUTFIL) 2.62, 3.53–3.55
FILSZ Option 5.4, 5.16–5.17
FILSZ Parameter (SORT) 2.147
Fixed-Length Records 2.9, 2.41, 2.90, 2.116, 2.125,

7.11, 7.15–7.16
Maximum Length 4.5

FL Format 2.38, 2.131
FLAG Option 5.4, 5.17, 6.10
Flow of the Sort 8.1–8.6
FNAMES Parameter (OUTFIL) 2.63
FORMAT 2.37–2.38, 2.64, 2.129–2.130,

2.148–2.149, 2.152
SORT 2.148

FORTRAN Programs 1.1, 6.1
FS Format 2.19, 2.29, 2.102, 2.105
FTOV Parameter (OUTFIL) 2.66
Full-date formats 2.45, 2.139

G

Generating Run-Time Constants 2.104
GETMAIN 2.55, 6.3
Group, OUTFIL 2.62–2.63

H

HBSI Option 4.5, 5.4, 5.17
HBSO Option 4.9, 5.4, 5.18
HEADER1 / HEADER2 Parameter (OUTFIL)

2.68–2.73, 3.32
HFS 4.5, 4.7–4.8
Hiperbatch 5.18
Hiperbatch Processing 5.17–5.18
HISTOGRM 2.127–2.128, 5.19, 7.8, 14.1–14.13

Control Parameters 14.2–14.4
Executing through E15 14.4–14.6
Job Control Language 14.4
Messages 14.9–14.13
Output Samples 14.7–14.8
Summary of the Chapter 1.8

I

INCLUDE/OMIT Control Statement 2.16–2.34,
3.2–3.6, 5.16, 5.30, 6.9, 13.2

INCLUDE/OMIT Parameter (OUTFIL)
2.63–2.64

INCORE Option 5.4, 5.18, 13.6
Incore Sort 2.52, 2.145, 2.151, 5.18, 8.1, 13.6
INCORE=OFF 5.4
INCORE=ON 5.4
Input Data Sets

Concatenation of 4.5
Input Records

Selection of 3.2–3.11
INREC Control Statement 2.35–2.36, 3.6–3.11,

6.9, 13.2–13.3
Installation Guide 1.9
Installation Options

Index I.7

Precedence Rules 5.2
Intermediate Storage 4.9–4.10, 12.4
Invoking SyncSort from a Program 6.1–6.18

Assembler Programs 6.2
DD Statements 6.1
Macro Instructions for Invoking SyncSort from

an Assembler Program
ATTACH 6.2
LINK 6.2
LOAD 6.2
XCTL 6.2

MAXSORT 9.13
Performance Considerations 6.1
Restrictions on Control Statements 6.3–6.4
Tape Sort 12.9–12.11

IO Option 5.3–5.4, 5.7, 5.18, 13.4
IOERR Option 5.4, 5.18, 6.10
IOERR=ABE 5.4

J

JCL
for PARASORT 10.2
See Job Control Language

Job Control Language 4.1, 4.17
Control Statement Examples

Copy without Exit Routines 4.25–4.26
Merge without Exit Routines 4.23–4.24
Multiple Output Files 4.32–4.33
Sort with Exit Routine to be Link-edited

4.29–4.31
Sort with Link-edited Exit Routine

4.27–4.28
Sorts without Exit Routines 4.22

DD Statement 4.1
Elements of 4.1
EXEC Statement 4.1, 5.1, 6.1
for HISTOGRM 14.4
for MAXSORT 9.4, 9.13
for Tape Sort 12.7–12.8
Initiating SyncSort 4.11, 6.1
JOB Statement 4.1
Sorts without Exit Routines 4.17
Summary of the Chapter 1.7

JOBLIB Statement 4.4

K

KEY Messages 16.66

L

L6 Option 5.4, 5.19, 14.1
L7 Option 5.4, 14.1
LABEL Parameter 4.4, 5.28
Language Environment for MVS 1.5, 5.20
LENGTH 2.79
LENGTH Parameter (RECORD) 2.125–2.127
LENGTH Subparameter 2.108
LINES Parameter (OUTFIL) 2.82–2.85
LINK Macro 6.2, 7.9, 7.29
LIST Option 5.4, 5.19, 6.7, 6.10
LOAD Macro 6.2
LOCALE

Processing with INCLUDE/OMIT 2.16
LOCALE Option 5.5, 7.57
LRECL 2.72, 2.80, 2.82, 2.126–2.127
LRECL Parameter 4.4, 5.5, 5.25, 5.28–5.29, 5.33
LS Format 2.19, 2.29, 2.102, 2.105

M

Macro Instructions (Assembler) 6.2–6.3
ATTACH Macro 6.2
LINK Macro 6.2
LOAD Macro 6.2
XCTL Macro 6.2

Masks 2.79
MAX 2.78
Maximums, Example 3.47
MAXSORT 2.59, 4.1, 4.7, 4.11, 9.1–9.21, 12.1

DD Statements for 4.16, 9.4–9.10
EXEC Statement for 4.3, 9.4
Exit Programs 9.13
File Size 4.7
Invoking from a Program 9.13
JCL/Control Stream Examples 9.17–9.21
Operator Interface 9.14–9.16
PARM Options 4.3, 5.1, 9.10–9.13

BKPTDSN 5.1, 9.10
DYNATAPE 5.1, 9.10, 9.14–9.16
MAXSORT 9.10
MAXWKSP 5.1, 9.11
MINWKSP 5.1, 9.11
NODYNATAPE 5.1, 9.10
RESTART 5.1, 9.12
SORTSIZE 5.1, 9.12
SORTTIME 5.1, 9.12
TAPENAME 5.1, 9.13

Performance Considerations 9.21, 13.1
PGM Names 4.3

SyncSort for z/OS 1.1 Programmer’s GuideI.8

Starting 9.13–9.14
Starting through JCL 9.4, 9.13
Summary of Control Statements for 2.5
Summary of the Chapter 1.8
Tuning 9.21

MAXSORT Option (MAXSORT) 9.10
MAXWKSP Option (MAXSORT) 5.1, 9.11
Merge

Creating Input Data Sets 4.7
Creating Input Records for Invoked Merge 7.5
Flow of 8.1–8.6

MERGE Control Statement 2.35, 2.37–2.53, 5.14,
5.17, 5.30, 6.2, 6.8, 7.5, 7.56–7.57

Merging 1.2
Phases of 1.2

Message Data Set 5.23–5.25
Messages 4.4, 5.7, 5.17, 5.22–5.23, 16.1

Authorization Messages 16.66
KEY Messages 16.66
PROC SYNCSORT Messages 16.65–16.66
See FLAG Option
Statistical Record Facility Messages 16.65
Summary of the Chapter 1.8

MIN 2.78
Minimums, Example 3.47
MINWKSP Option (MAXSORT) 5.1, 9.11
Missing Field Bytes, Record 2.66
Mm Subparameter 2.109
MODS Control Statement 2.54–2.57, 5.14, 6.3, 6.5,

6.9, 7.3, 7.5, 7.9–7.10, 7.29–7.31, 12.6
MSG Option 5.4, 5.22–5.23, 6.10
MSGDD Option 5.4, 5.23, 7.10, 7.31
Multiple Lines, Record 2.66
Multiple Output 2.62–2.63, 3.53–3.55
Multiple Output Files 2.61

N

National Language 1.5, 2.16, 2.37, 2.129, 5.20
with INCLUDE/OMIT 2.16

NOCOMMAREA Option 5.3, 5.11
NODETAIL Parameter (OUTFIL) 2.85
NODYNATAPE Option (MAXSORT) 5.1, 9.10
NOEQUALS Option 5.4, 5.15
NOIOERR Option 5.4, 5.18
NOLIST Option 5.4, 5.19
NORC16 Option 5.5
NORESET Option 5.5, 5.27

NORLSOUT Option 5.5, 5.27
Notational Conventions 2.11
NULLOFL Parameter (OUTFIL) 2.86, 2.96
NULLOUT Option 5.23
NZDPRINT 5.6
NZDPRINT Option 5.34

O

OL Format 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
OMIT Control Statement 2.58, 3.6
Operator 2.93
Operator Interface 9.14–9.16
OPTCD Parameter 4.4
OR Operator 2.21, 3.3
OS/VS COBOL

See COBOL E15
See COBOL E35
See COBOL Exits

OSCL Option 5.2, 5.34, 6.7, 6.10, 12.3–12.5, 13.8
OT 2.133
OT Format 2.19, 2.29, 2.40, 2.102, 2.105, 2.131
OUTFIL Control Statement 2.35, 2.59–2.87,

3.27–3.55, 6.2, 6.9, 13.2
OUTFIL Group 2.62–2.63
Output Data Sets 4.8–4.9

See SORTOUT Files
See SORTOUT Statement

Output Files, Multiple 2.61, 3.53–3.55, 4.32–4.33
Output Lines, Multiple 2.66, 2.70, 3.28
Output Records

Converting Data 3.20–3.27
Editing Data 3.23–3.27
Formatting 2.65–2.66, 2.88–2.124, 3.14–3.27

Output Records, Distributing 2.68
Output Reports 2.59–2.87, 3.30–3.55

Averaging Data 3.47
Ending Record Number 2.64
Headers 2.69, 2.73, 2.82–2.85, 3.32–3.41
Obtaining maximums 3.47
Obtaining minimums 3.47
Pages, Logical 2.82–2.85
Records Included 2.64
Saving Records 2.65
Sections 2.80–2.82, 3.30–3.32
Starting Record Number 2.64
Subtotaling Data 3.41–3.46
Totaling Data 3.41–3.46

Index I.9

Trailers 2.73–2.80, 2.82–2.85, 3.32–3.53
Output Space

See Secondary Allocation
OUTREC Control Statement 2.35, 2.88–2.124,

3.14, 6.9, 13.2–13.3
OUTREC Parameter (OUTFIL) 2.65–2.66
OVFLO option 5.24

P

PAD Option 5.24
PAGE (&PAGE) 2.72, 2.77
Pages, Defining Logical 2.82–2.85
Parameter List

24-bit 6.4–6.12, 7.3
Optional Parameters 6.8

31-bit 6.12–6.18, 7.3
Parameters

Summary of the Chapter 1.7
Parameters (Control Statements)

CKPT/CHKPT 2.52, 2.145
CODE 2.13
COND 2.17–2.34
CONVERT 2.67, 2.116–3.27
DYNALLOC 2.145–2.146
ENDREC 2.64
EQUALS/NOEQUALS 2.52, 2.146
Exit-Name 2.54–2.56
FIELDS 2.35, 2.37–2.52, 2.90–2.116,

2.129–2.144, 2.149–2.150
FILES 2.52, 2.62, 3.53–3.55
FILSZ 2.147
FNAMES 2.63
FTOV 2.66
HEADER 13.3
HEADER1/HEADER2 2.68–2.73, 3.32
INCLUDE/OMIT 2.63–2.64
LENGTH 2.125–2.127
LINES 2.82–2.85
NODETAIL 2.85
NULLOFL 2.86, 2.96
OUTREC 2.65–2.66, 13.3
REMOVECC 2.85
SAVE 2.65
SECTIONS 2.80–2.82, 3.30, 13.3
SIZE 2.127, 2.147
SKIPREC 2.53, 2.147, 13.3
SPLIT 2.68
STARTREC 2.64

STOPAFT 2.53, 2.147, 13.3
TRAILER 13.3
TRAILER1/TRAILER2 2.73–2.80, 3.32, 3.49
TYPE 2.125
VLFILL 2.66
VLTRIM 2.67
XSUM 2.150

Parameters (DD Statements)
AMP 4.4
BLKSIZE 4.4, 5.5, 5.25, 5.28–5.29
BUFND 4.4
BUFNI 4.4
BUFOFF 4.4
BUFSP 4.4
DCB 4.4, 5.5, 5.25, 5.28
DISP 4.4, 5.28
DSNAME/DSN 4.4
LABEL 4.4, 5.28
LRECL 4.4, 5.5, 5.25, 5.28–5.29, 5.33
OPTCD 4.4
RECFM 4.4, 5.5, 5.25, 5.28–5.29
SPACE 4.4, 5.5, 5.26
UNIT 4.4
VOLUME/VOL 4.4

PARASORT 4.1, 4.7, 10.1–10.9
DD Statements for 4.16, 10.2–10.3
EXEC Statement for 10.2, 11.2
JCL for 10.2
JCL/Control Stream Examples 10.9
PARM Options 4.3
PARMS Options 5.2
PGM Names 4.3
SORTIN Statement for 10.3
Summary of the Chapter 1.8

PARASORT Sort
DD Statements for 4.16

PARM Options 5.1–5.34
BALANCE 5.3, 5.7, 13.4
BALN 5.2, 5.34, 6.7, 6.10, 12.3–12.5, 13.8
BKPTDSN 5.1
BMSG 5.3, 5.7
CENTWIN 2.41–2.51, 2.134–2.144, 5.3,

5.7–5.9
CMP 13.3
CMP=CLC 2.41
CMP=CPD 2.41
COBEXIT 7.10, 7.31
COMMAREA 5.11, 7.4

SyncSort for z/OS 1.1 Programmer’s GuideI.10

CORE 5.12, 13.4–13.6
CPU 5.3, 5.7, 13.4
CRCX 5.34, 6.7, 6.10
DEBUG 5.13
DIAG 5.13, 6.7, 6.10
DYNALLOC 4.1, 5.13–5.14
DYNATAPE 4.1, 5.1
E15 5.14, 7.10
E35 5.15
ELAP 5.3–5.4, 5.7, 5.15, 13.4
EQUALS 5.4, 5.15, 13.3
EXTCOUNT 5.4, 5.16
FILSZ 5.4, 5.16–5.17
FLAG 5.4, 5.17, 6.10
for Disk Sort 5.1–5.34
for MAXSORT 5.1, 9.10–9.13
for PARASORT 5.2
for Tape Sort 5.2
Format of 5.1
HBSI 4.5, 5.4, 5.17
HBSO 4.9, 5.4, 5.18
INCOR 5.4
INCORE 5.4, 5.18, 13.6
IO 5.3–5.4, 5.7, 5.18, 13.4
IOERR 5.4, 5.18, 6.10
L6 5.4, 5.19, 14.1
L7 5.4, 14.1
LIST 5.4, 5.19, 6.7, 6.10
LOCALE 5.5, 7.57
MAXWKSP 5.1
MINWKSP 5.1
MSG 5.4, 5.22–5.23, 6.10
MSGDD 5.4, 5.23, 7.10, 7.31
NOCOMMAREA 5.11
NODYNATAPE 5.1
NOEQUALS 5.4, 5.15
NOIOERR 5.4, 5.18
NOLIST 5.4, 5.19
NORC16 5.5
NORESET 5.5, 5.27
NORLSOUT 5.5, 5.27
NULLOUT 5.23
NZDPRINT 5.6, 5.34
OSCL 5.2, 5.34, 6.7, 6.10, 12.3–12.5, 13.8
OVFLO 5.24
PAD 5.24
PEER 5.34, 6.7, 6.10
POLY 5.2, 5.34, 6.7, 6.10, 12.3–12.5, 13.8

Precedence Rules 5.2
PRINT121 5.5
RC16 6.10
RELEASE 5.5, 13.6
RESERVE 5.5, 5.26
RESERVEX 5.5, 5.27
RESET 5.5, 5.27
RESTART 5.1
RLSOUT 5.5, 5.27
SDB 5.5, 5.28–5.29
SECOND 5.5, 13.6
See $ORTPARM Statement
SIZE 5.12
SKIPREC 5.5, 5.30, 7.52, 13.3
SORTSIZE 5.1
SORTTIME 5.1
Specification in JCL-initiated Applications

5.1
Specification in Program-initiated

Applications 5.1
STOPAFT 5.5, 5.30, 13.3
Summarized 5.2–5.3
TAPENAME 5.1
TRUNC 5.31
UNINTDS 5.6, 5.31
VLTEST 5.5, 5.32, 13.3
VLTESTI 5.6, 5.33
VSAMEMT 5.6, 5.34
ZDPRINT 5.6, 5.34

PD Format 2.19, 2.29, 2.38, 2.41, 2.102, 2.105,
2.131, 2.134

PD0 Format 2.19, 2.29, 2.39, 2.44, 2.102, 2.105,
2.132, 2.138

PDID Format 2.101
PDIP Format 2.101
PEER Option 5.34, 6.7, 6.10
Performance Considerations 13.1–13.15

Control of System Resource Usage 13.3
Control Statements 13.2–13.3
JCL- vs. Program-Invoked Sort 13.2
Memory Management 13.3–13.6
PARMS Options 13.3
Summary of the Chapter 1.8

Phases of Copying, Merging, Sorting 8.1–8.6
PipeSort 1.7, 2.61, 3.53, 15.3
PL/1 Programs 1.1, 6.1
POLY Option 5.2, 5.34, 6.7, 6.10, 12.3–12.5, 13.8
Precedence Rules 5.2

Index I.11

PRINT121 Option 5.5
PROC SYNCSORT - An Accelerator for SAS™

Sorting 1.6, 15.3
PROC SYNCSORT Messages 16.65–16.66
Program Exits

See Exit Programs

R

RC16 Option 6.10
RDW 2.9, 2.116, 2.126
RECFM Parameter 4.4, 5.5, 5.25, 5.28–5.29
RECORD Control Statement 2.125–2.128, 6.3,

12.6
Record Counts 3.49–3.53
Record Format 2.125–2.128
Record Length 2.125–2.128

Maximum for Fixed-Length Records 4.5
Maximum for Variable-Length Records 4.5

Record Selection 2.16–2.34, 2.53, 2.63–2.64, 2.147,
3.2–3.11, 5.30

Using Bit Level Logic 2.31–2.33
Records, Distributing Output 2.68
Reference Guide 1.9
Reformatting Records 2.35–2.36, 2.65–2.66,

2.88–2.124, 3.14–3.18
CHANGE Subparameter 2.113
Column Alignment 2.69
Data Conversion and Editing 2.97–2.121,

3.20–3.27
Inserting Binary Zeros 2.103, 3.18
Inserting Blanks or Spaces 2.103
Inserting Hexadecimal Characters 2.103
Inserting Literal Characters 2.103
Missing Field Bytes 2.66
OUTREC Parameter 2.65–2.66
Record on Multiple Lines 2.66
Replace 2.113
Search and Replace 2.113
Variable-Length Records 2.90

Register Conventions 7.4
Registers

See Register Conventions
RELEASE Option 5.5, 13.6
REMOVECC Parameter (OUTFIL) 2.85
Replace 2.113
Report Writing 2.61, 2.68–2.87, 3.30–3.55
Repositioning Record Fields 3.14–3.18

RESERVE Option 5.5, 5.26
RESERVEX Option 5.5, 5.27
RESET Option 5.5, 5.27
RESTART Option (MAXSORT) 5.1, 9.12
RETRY 2.146, 5.14
Return Codes 6.10, 6.15
REXX Exits 2.55, 7.58–7.60
REXX Programs 1.1
RLSOUT Option 5.5, 5.27
Run-Time Constants, Generating 2.104

S

SAVE Parameter (OUTFIL) 2.65
SC 2.146, 5.14
SDB 4.18, 4.20, 4.22, 4.25, 4.30, 5.28
SDB Option 5.5, 5.28–5.29
Search and Replace 2.113
SECOND Option 5.5, 13.6
Secondary Allocation 4.9–4.10
SECTIONS Parameter (OUTFIL) 2.80–2.82, 3.30
SEQNUM 2.35, 2.103
SIGNS 2.79
SIZE Option 5.3, 5.12
SIZE Parameter (SORT) 2.127, 2.147
SKIPREC Option 5.5, 5.30, 7.52, 13.3
SKIPREC Parameter (MERGE) 2.53
SKIPREC Parameter (SORT) 2.147
SMF Formats 2.102
SMF Formats, Converting 2.102
SNAP Dump 5.13
Sort

Creating Input Data Sets for 4.5
Flow of 8.1–8.6

Sort Control
Summary of the Chapter 1.8

SORT Control Statement 2.35, 2.129–2.148, 5.14,
5.17, 5.30, 6.2, 7.52, 7.56–7.57, 12.6

SORT/MERGE 6.2–6.4
SORT/MERGE Options

Precedence Rules 5.2
SORTBKPT Statement 9.6–9.7
SORTCKPT Statement 4.1, 4.14
SORTIN End-of-File 7.9, 7.14
SORTIN File 4.1, 4.5, 5.4, 5.17, 6.8, 6.12, 6.17,

7.8–7.9, 7.11–7.14, 7.51
SORTIN Processing 7.52–7.53
SORTIN Statement 4.1, 4.5–4.7, 5.28, 6.2, 7.9,

SyncSort for z/OS 1.1 Programmer’s GuideI.12

10.3
for PARASORT 10.3

Sorting
Phases of 1.2
Types of 1.2

Sorting Technique
Disk Sort 4.1, 12.1, 13.1
MAXSORT 4.1, 4.7, 4.11, 4.16, 9.1–9.21, 12.1,

13.1
PARASORT 4.1, 4.16, 10.1–10.9
Performance Considerations 13.1, 13.15
Tape Sort 4.1, 4.10, 4.16, 12.1, 12.11, 13.1

Balanced (BALN) 12.4–12.5
Oscillating (OSCL) 12.4–12.5
Polyphase (POLY) 12.4–12.5

SORTINn Statement 4.1, 4.7
SORTINnn Statement 4.7

SORTINnn File 5.15, 7.6
SORTINnn Statement 4.1, 4.7, 6.2, 7.5
SORTLIB Statement 6.2, 12.3
SORTMODS Library 7.3
SORTMODS Statement 4.1, 4.15
SORTOFx File 5.27–5.29
SORTOFx Statement 4.1, 4.8, 6.2
SORTOFxx File 5.6, 5.27–5.28, 7.30, 7.36
SORTOFxx Statement 4.1, 4.8, 6.2
SORTOU00 Statement 9.7–9.9
SORTOUT File 4.1, 4.8, 5.4–5.6, 5.18, 5.27–5.29,

7.30, 7.36, 7.52
SORTOUT Files 6.2
SORTOUT Space 5.5, 5.27
SORTOUT Statement 4.1, 4.8, 6.2, 7.29
SORTOUT VSAM File 5.27
SORTOUT Write Errors 7.55
SORTPARn Statement 10.5–10.7
SORTSIZE Option (MAXSORT) 5.1, 9.12
SORTTIME Option (MAXSORT) 5.1, 9.12
SORTWK

Dynamic Allocation of 5.13
SORTWK Requirements 12.4
SORTWKnn File 7.7
SORTWKnn Statement 4.1, 4.9–4.11, 6.2,

12.4–12.5
Conditions of Use 4.10
See DYNALLOC Option

SortWriter 2.59, 2.61, 2.68
Sample Report 1.4

SORTXSUM 4.8, 5.27
SORTXSUM Statement 6.2

SPACE Parameter 4.4, 5.5, 5.26
Special Esoteric Names 10.7
SPLIT Parameter (OUTFIL) 2.68
Starting SyncSort 1.1

Summary of the Chapter 1.7
STARTREC Parameter (OUTFIL) 2.64
Statistical Record Facility Messages 16.65
STEPBLIB Statement 4.1
STEPLIB Statement 4.4
STOPAFT Option 5.5, 5.30, 13.3
STOPAFT Parameter (MERGE) 2.53
STOPAFT Parameter (SORT) 2.147
Storage

Disk 4.9
Intermediate 4.9–4.10, 12.4

SUBAVG 2.78
SUBCOUNT 2.79
SUBCOUNT15 2.80
SUBMAX 2.78
SUBMIN 2.78
Substring Comparison 2.30
SUBTOTAL 2.77
SUM Control Statement 2.35, 2.149–2.152, 3.11,

5.15–5.16, 6.9, 7.27, 13.2
SyncSort

Data Utility 1.3, 3.1–3.55
Description of 1.1
Features of 1.1–1.6
Initiation of 1.1
SortWriter 1.4

SyncSort Messages 4.4
SyncSort/COBOL Advantage 1.6, 15.2
SYSIN Statement 4.1, 4.11
SYSLIN Statement 4.1, 4.15
SYSLMOD Statement 4.1, 4.15
SYSOUT

See Message Data Set
SYSOUT Statement 4.1, 4.4, 6.2
SYSPRINT Statement 4.1, 4.15
System Abend (0C7) 5.9, 5.32
SYSUT1 Statement 4.1, 4.16

T

Tape Sort 4.1, 4.14, 12.1–12.11, 13.8–13.9
Control Statements for 12.6
Converting to MAXSORT 13.2
DD Statements for 4.16, 12.3–12.5

Index I.13

Device Types 4.10
Devices 12.4
EXEC Statement 12.2–12.3
EXEC Statement for 4.3
Invoking from a Program 12.9–12.11
JCL/Control Stream Examples 12.7–12.8
PARM Options 4.3, 12.2

BALN 5.2, 12.3–12.5, 13.8
OSCL 5.2, 12.3–12.5, 13.8
POLY 5.2, 12.3–12.5, 13.8

PARMS Options 5.2
Performance Considerations 13.1
PGM Names 4.3
Starting 4.10, 12.7–12.11
Starting through JCL 12.7–12.8
Summary of Control Statements for 2.5
Summary of Restrictions 12.1–12.2

TAPENAME Option (MAXSORT) 5.1, 9.13
The INCORE PARM is set to OFF. 4.10
TIME (&TIME) 2.71, 2.76, 2.105
TM1 2.102
TM2 2.102
TM3 2.102
TM4 2.102
TOTAL 2.77
TRAILER1/TRAILER2 Parameter (OUTFIL)

2.73–2.80, 3.32, 3.49
TRAN subparameter 2.96
TRUNC Option 5.31
TS Format 2.19, 2.29, 2.38, 2.102, 2.105, 2.131
Turnaround Sort

See Incore Sort
TYPE Parameter (RECORD) 2.125

U

UNINTDS Option 4.7, 5.3, 5.6, 5.31
UNIT Parameter 4.4

V

Value-Added Products 1.6–1.7, 15.1–15.3
PipeSort 1.7, 15.3
PROC SYNCSORT - An Accelerator for SAS™

Sorting 1.6, 15.3
Summary of the Chapter 1.8
SyncSort/COBOL Advantage 1.6, 15.2

Variable-Length Records 2.9, 2.41, 2.90, 2.116,
2.125, 3.9–3.11, 7.12–7.13, 7.17–7.19,

7.33–7.34, 7.40–7.42
Maximum Length 4.5
See VLTEST Option
Validity Testing 5.32

Visual SyncSort 1.6, 15.1
VLFILL Parameter (OUTFIL) 2.66
VLTEST Option 5.3, 5.5, 5.32, 13.3
VLTESTI Option 5.3, 5.6, 5.33
VLTRIM Parameter (OUTFIL) 2.67
VOL Parameter

See VOLUME Parameter
VOLUME Parameter 4.4
VS COBOL II

See COBOL E15
See COBOL E35
See COBOL Exits

VSAM 4.5, 4.8, 5.27, 7.54–7.55
VSAM SORTOUT 5.5
VSAMEMT Option 5.6, 5.34

W

Work Areas
See SORTWKnn Statement

Work Space 5.6, 5.19, 5.26–5.28

X

XCTL Macro 6.2, 7.9, 7.29
XSUM Parameter (SUM) 2.150

Y

Y’DATEx’ 2.28–2.30
Y2B Format 2.19, 2.29, 2.39, 2.42, 2.101–2.102,

2.105, 2.132, 2.134
Y2C Format 2.19, 2.29, 2.39, 2.42, 2.101–2.102,

2.105, 2.132, 2.135
Y2D Format 2.19, 2.29, 2.40, 2.43, 2.101–2.102,

2.105, 2.132, 2.135
Y2P Format 2.19, 2.29, 2.40, 2.43, 2.101–2.102,

2.105, 2.132, 2.136
Y2S Format 2.19, 2.29, 2.40, 2.44, 2.101–2.102,

2.105, 2.132, 2.136
Y2T Format 2.19, 2.29, 2.40, 2.45, 2.101–2.102,

2.105, 2.132, 2.134, 2.139
Y2U Format 2.19, 2.29, 2.40, 2.45, 2.101–2.102,

2.105, 2.132, 2.134, 2.139

SyncSort for z/OS 1.1 Programmer’s GuideI.14

Y2V Format 2.19, 2.29, 2.40, 2.45, 2.101–2.102,
2.105, 2.132, 2.134, 2.139

Y2W Format 2.19, 2.29, 2.40, 2.45, 2.101–2.102,
2.105, 2.132, 2.134, 2.139

Y2X Format 2.19, 2.29, 2.40, 2.45, 2.101–2.102,
2.105, 2.132, 2.134, 2.139

Y2Y Format 2.19, 2.29, 2.40, 2.45, 2.101–2.102,
2.105, 2.132, 2.134, 2.139

Y2Z Format 2.19, 2.29, 2.40, 2.42, 2.101–2.102,
2.105, 2.133, 2.135

Year Data, Converting 2.100–2.102

Z

ZD Format 2.19, 2.29, 2.40–2.41, 2.102, 2.105,
2.131, 2.133–2.134

ZDPRINT 5.6
ZDPRINT Option 5.34
ZSPACE 1.6, 16.53

We welcome comments on the usefulness
and readability of this Manual. Your comments,
along with suggested additions or deletions, will
help us to improve future editions of the publica-
tions.

If you would like a reply, please indicate your
name, business title, and business address. All
comments and suggestions become the property
of Syncsort Incorporated.

READERS'
COMMENTS

Fold the form on the two lines, staple, and mail.
No postage stamp is necessary if form is mailed in the United States.

SyncSort for z/OS
Programmer's Guide

SI-4301-4

Fold Fold

Fold

No postage
necessary
if mailed

in the
United States

BUSINESS REPLY MAIL

POSTAGE WILL BE PAID BY ADDRESSEE

FIRST CLASS PERMIT NO. 80 WOODCLIFF LAKE, NJ

Syncsort Incorporated
SyncSort for z/OS Product Services
50 Tice Boulevard
Woodcliff Lake, NJ 07677

Fold

	Table of Contents
	Summary of Changes
	Chapter 1. Introduction
	An Introduction to SyncSort for z/OS
	SyncSort’s Basic Functions
	SyncSort’s Data Utility and SortWriter Features
	Sample SortWriter Report
	Cultural Environment Support
	DB2 Query Support
	SyncSort’s Operational Features
	SyncSort’s Value-Added Products
	Structure of the Programmer’s Guide
	Related Reading
	Online Message Help

	Chapter 2. SyncSort Control Statements
	Control Statement Summary Chart
	Disk Sort, MAXSORT, PARASORT, and Tape Sort Control Statement Requirements
	Data Utility Processing Sequence
	Control Statement Examples
	Rules for Control Statements
	ALTSEQ Control Statement
	END Control Statement
	INCLUDE/OMIT Control Statement
	INREC Control Statement
	MERGE Control Statement
	MODS Control Statement
	OMIT Control Statement
	OUTFIL Control Statement
	OUTREC Control Statement
	RECORD Control Statement
	SORT Control Statement
	SUM Control Statement

	Chapter 3. How to Use SyncSort’s Data Utility Features
	Introduction
	Sample Data Utility Applications
	Selecting Input Records
	Selecting Relevant Fields from the Input Records
	Combining Records within a File
	Making Output Records Printable and Easy to Read
	Dividing a Report into Sections
	Writing Headers and Trailers for a Report
	Totaling and Subtotaling Data
	Obtaining Maximum, Minimum and Average Data
	Counting Data Records
	Creating Multiple Output Files

	Chapter 4. JCL and Sample JCL/Control Statement Streams
	EXEC Statement
	For MAXSORT, PARASORT, DB2 Query Support, and Tape Sort
	Coding Conventions for DD Statements
	STEPLIB/JOBLIB DD Statement
	SYSOUT DD Statement
	SORTIN DD Statement
	SORTINnn or SORTINn DD Statement
	SORTOUT, SORTOFxx, SORTOFx and SORTXSUM DD Statements
	SORTWKxx or SORTWKx DD Statement
	SYSIN DD Statement
	$ORTPARM DD Statement
	SORTCKPT DD Statement
	For Exit Routines that Require Link-editing at Execution Time
	DD Statements for MAXSORT, PARASORT, DB2 Query Support, and Tape Sort
	Sample JCL/Control Statement Streams

	Chapter 5. PARM Options
	Additional MAXSORT PARMs
	PARASORT PARM
	DB2 Query Support PARM
	Additional Tape Sort PARMs
	Precedence Rules
	PARM Option Summary Chart
	SyncSort PARM Options
	PARMs Accepted But Not Processed by Disk Sorts

	Chapter 6. Invoking SyncSort from a Program
	Programming Flexibility vs. Performance
	DD Statements
	Invoking the Sort/Merge from an Assembler Program
	The 24-Bit Parameter List
	Sample Assembler Invocation Using 24-Bit Parameter List
	The 31-Bit Extended Parameter List
	Sample Assembler Invocation Using 31-Bit Parameter List

	Chapter 7. The Coding and Use of Exit Programs
	What Is an Exit?
	Loading the Exit Routines into Main Storage
	Exit Conventions
	Register Conventions
	The Exit Communication Area
	Exits E11, E21, and E31 - Preparing for Other Exit Routines
	Exit E32 - Invoked Merge Only: Creating Input Records
	Exits E14, E15, E25, and E35 - Deleting, Creating, Changing Records

	Exit E14 - Deleting, Summarizing, Changing Records
	Exit E15 - Creating, Revising or Analyzing the Input File
	Coding a COBOL E15 Exit Routine
	Example 1: Fixed-Length Records
	Example 2: Variable-Length Records
	Coding a C E15 Exit Routine
	Fixed-Length Records - Function Definition
	Variable-Length Records - Function Definition
	Exit E25 - Deleting, Changing, Summarizing Records
	Exit E35 - Adding, Deleting and Changing Records
	Coding a COBOL E35 Exit Routine
	Coding a C E35 Exit Routine

	Fixed-Length Records - Function Definition
	Variable-Length Records - Function Definition
	Exit E16-Taking Action on Insufficient Intermediate Storage
	Exits E17, E27, and E37 - Closing Data Sets
	Exits E18, E38, and E39 - Checking Labels, Processing Read or Write Errors, End-of-File Routines,...
	Exit E61 - Modifying the Collating Process
	Coding REXX Exits

	Chapter 8. The Flow of the Sort
	Chapter 9. MAXSORT
	MAXSORT: A Maximum Capacity Sort
	MAXSORT’s Advantages
	Job Control Language
	DD Statements
	SORTBKPT DD Statement
	SORTOU00 DD Statement
	SORTOUnn DD Statements
	Using Disk for Intermediate Output
	SORTCKPT DD Statement
	Control Statements
	PARM Options
	Exit Programs
	Invoking MAXSORT from a Program
	Restarting MAXSORT
	MAXSORT’s Operator Interface
	Sample MAXSORT JCL/Control Streams

	Chapter 10. PARASORT
	PARASORT: Parallel Input Processing for Elapsed Time Improve�ment
	PARASORT Applicability
	Job Control Language
	DD Statements
	SORTIN DD Statement with PARASORT
	SORTPARn DD Statements
	Special Channel Separated Esoteric Names
	Sortwork Considerations
	Operations Notes

	Chapter 11. SyncSort DB2 Query Support
	Restrictions
	Job Control Language
	DD Statements
	SORTDBIN DD Statement
	Operation
	Record Description
	Record Description: Trial Mode Execution
	Sample SyncSort DB2 Query Application

	Chapter 12. Tape Sort
	When to Use Tape Sort
	EXEC Statement
	DD Statements
	SORTLIB DD Statement
	SORTWKxx DD Statement
	$ORTPARM DD Statement
	Optimizing Tape Sort
	Control Statements

	Exit Programs
	Initiating Tape Sort Through JCL/Control Streams
	Invoking Tape Sort from a Program

	Chapter 13. Performance Considerations
	Disk Sort? MAXSORT? PARASORT? Tape Sort?
	JCL Sorts vs. Program-Invoked Sorts
	Control Statement Issues
	The Efficient Use of PARMs
	Optimizing System Resources
	Setting CORE
	The Incore Sort
	Disk Space Considerations
	The Coding and Use of Checkpoint-Restart
	Automatic Checkpoint-Restart
	Deferred Checkpoint-Restart
	Optimizing Data Set Placement

	Chapter 14. The HISTOGRM Utility Program
	What Is HISTOGRM?
	Using HISTOGRM to Determine L6 and L7 Values for SyncSort
	Control Parameters for HISTOGRM
	Job Control Language
	Executing HISTOGRM through an E15 Exit
	HISTOGRM Messages

	Chapter 15. Value-Added Products
	Visual SyncSort
	SyncSort/COBOL Advantage
	PROC SYNCSORT - An Accelerator for SAS™ Sorting
	PipeSort

	Chapter 16. Messages
	SyncSort Statistical Record Facility Messages
	PROC SYNCSORT Messages
	License Key Messages
	Troubleshooting Abends

	Index

