PROVEN
performance

All rights reserved. This document contains
proprietary and confidential material, and is
only for use by licensees of the SyncSort for
z/OS proprietary software system.

SyncSort for z/0OS

Programmer's Guide
Release 1.1

S1-4301-4
1.1c

SyncSort is a registered trademark of Syncsort Incorporated

© Syncsort Incorporated, 2003

All rights reserved. This document contains proprietary and confidential material,
and is only for use by the licensees of the SyncSort proprietary software system.
This publication may not be reproduced in whole or in part, in any form, except
with written permission from Syncsort Incorporated.

SyncSort and Visual SyncSort are trademarks of Syncsort Incorporated. No claim
is made to the exclusive right to use Visual apart from the mark as shown. All
other company and product names used herein may be the trademarks of their
respective companies.

Chapter 1.

Chapter 2.

Chapter 3.

Table of Contents

Introductionciiiititiiiiiiiniiieneeesssessennsseans 1.1
An Introduction to SyncSort for zOS 1.1
SyncSort’s Basic Functions 1.1
SyncSort’s Data Utility and SortWriter Features 1.3
Sample SortWriter Report 14
Cultural Environment Support 1.5
DB2 Query Support e 15
SyncSort’s Operational Features. 1.6
SyncSort’s Value-Added Products 1.6
Structure of the Programmer’s Guide. 1.7
Related Reading i 1.8
Online Message Help. 1.9
SyncSort Control Statementscciiiiiiiiiinnnnnenss 2.1
Control Statement Summary Chart 2.2
Disk Sort, MAXSORT, PARASORT, and Tape Sort Control Statement
Requirements 2.5
Data Utility Processing Sequence iinino... 2.6
Control Statement Examples 2.8
Rules for Control Statements 2.8
ALTSEQ Control Statement 0.o... 2.13
END Control Statement 2.15
INCLUDE/OMIT Control Statement 2.16
INREC Control Statement 2.35
MERGE Control Statement 2.37
MODS Control Statement 2.54
OMIT Control Statement i, 2.58
OUTFIL Control Statementt .. 2.59
OUTREC Control Statementt .. 2.88
RECORD Control Statement 2.125
SORT Control Statement 2.129
SUM Control Statement 2.149
How to Use SyncSort’s Data Utility Features.................. 3.1
Introduction e 3.1
Sample Data Utility Applications. 3.2

Table of Contents i

ii

Chapter 4.

Chapter 5.

Chapter 6.

Chapter 7.

Selecting Input Records 3.2

Selecting Relevant Fields from the Input Records 3.6
Combining Records withina File 3.11
Making Output Records Printable and EasytoRead 3.14
Dividing a Report into Sections 3.30
Writing Headers and Trailers fora Report 3.32
Totaling and SubtotalingData 3.41
Obtaining Maximum, Minimum and Average Data 3.47
Counting DataRecords i, 3.49
Creating Multiple Output Files 3.53
JCL and Sample JCL/Control Statement Streams. 4.1
EXEC Statement i e 4.2
For MAXSORT, PARASORT, DB2 Query Support, and Tape Sort 4.3
Coding Conventions for DD Statements 4.3
STEPLIB/JOBLIB DD Statement 4.4
SYSOUT DD Statement 44
SORTIN DD Statement i, 4.5
SORTINnn or SORTINn DD Statement 4.7
SORTOUT, SORTOFxx, SORTOFx and SORTXSUM DD Statements . 4.8
SORTWKxx or SORTWKx DD Statement 4.9
SYSIN DD Statement, 4.11
$ORTPARM DD Statemento v et e e 4.11
SORTCKPT DD Statementt .. 4.14
For Exit Routines that Require Link-editing at Execution Time 4.15
DDSStatements for MAXSORT, PARASORT, DB2 Query Support, and Tape

0 4.16
Sample JCL/Control Statement Streams 4.17
PARM OPtionS ... iivviteeteessrssssecsssssssasssnssssassnnns 5.1
Additional MAXSORT PARMS ...ttt 5.1
PARASORT PARMo e et e 5.2
DB2 Query Support PARM 5.2
Additional Tape Sort PARMs0 i, 5.2
Precedence Rules i 5.2
PARM Option Summary Chart 5.2
SyncSort PARM Options it 5.7
PARMSs Accepted But Not Processed by Disk Sorts 5.34
Invoking SyncSort fromaProgramccoviveivenrnns 6.1
Programming Flexibility vs. Performance. 6.1
DD Statements 6.1
Invoking the Sort/Merge from an Assembler Program 6.2
The 24-Bit Parameter List 6.4
Sample Assembler Invocation Using 24-Bit Parameter List 6.11
The 31-Bit Extended Parameter List 6.12
Sample Assembler Invocation Using 31-Bit Parameter List 6.17
The Coding and Use of Exit Programs.........ccciiivvenennnns 7.1
What Isan Exit?. e 7.1
Loading the Exit Routines into Main Storage 7.3
Exit Conventions i 7.3
Register Conventions i 7.4
The Exit Communication Areacoiiiiiieennneann. 7.4
Exits E11, E21, and E31 - Preparing for Other Exit Routines 7.5
Exit E32 - Invoked Merge Only: Creating Input Records 7.5
Exits E14, E15, E25, and E35 - Deleting, Creating, Changing Records . .7.7
Exit E14 - Deleting, Summarizing, Changing Records 7.7

SyncSort for z/OS 1.1 Programmer’s Guide

Chapter 8.
Chapter 9.

Chapter 10.

Chapter 11.

Exit E15 - Creating, Revising or Analyzing the Input File 7.8

Coding a COBOL E15 ExitRoutine 7.10
Example 1: Fixed-Length Records 7.11
Example 2: Variable-Length Records 7.12
Codinga CE15 Exit Routine., 7.19
Fixed-Length Records - Function Definition 7.20
Variable-Length Records - Function Definition 7.21
Exit E25 - Deleting, Changing, Summarizing Records 7.27
Exit E35 - Adding, Deleting and Changing Records 7.28
Coding a COBOL E35 Exit Routine 7.30
Codinga CE35 Exit Routine 7.43
Fixed-Length Records - Function Definition 7.43
Variable-Length Records - Function Definition 7.45
Exit E16-Taking Action on Insufficient Intermediate Storage 7.51
Exits E17, E27, and E37 - Closing Data Sets 7.52
Exits E18, E38, and E39 - Checking Labels, Processing Read or Write
Errors, End-of-File Routines, Special VSAM Processing 7.52
Exit E61 - Modifying the Collating Process 7.56
Coding REXX Exitso i e 7.58
The Flowofthe Sortottt iinnrennnes 8.1
MAXSORT . .. itttttrtenrsesosscssssssssassssssssssssssnnssns 9.1
MAXSORT: A Maximum Capacity Sort 9.1
MAXSORT’s Advantagesovini it e e 94
dJob Control Language 94
DD Statements 94
SORTBKPT DD Statement, 9.6
SORTOUQ0 DD Statement 9.7
SORTOUnn DD Statements, 9.8
Using Disk for Intermediate Output. 9.9
SORTCKPT DD Statementco.iiiiiiiinnennon. 9.9
Control Statements 9.10
PARM Optionsttt e e e e e 9.10
Exit Programs e 9.13
Invoking MAXSORT from a Program 9.13
Restarting MAXSORT i e e e 9.14
MAXSORT’s Operator Interface 9.14
Sample MAXSORT JCL/Control Streams 9.17
PARASORT.o iiiiiiiitineetneeronnsosnsssosssoasonans 10.1
PARASORT: Parallel Input Processing for Elapsed Time Improvement 10.1
PARASORT Applicability 10.1
Job Control Language 10.2
DD Statements e 10.2
SORTIN DD Statement with PARASORT 10.3
SORTPARn DD Statements, 10.5
Special Channel Separated Esoteric Names 10.7
Sortwork Considerations i, 10.8
Operations Notes e 10.9
SyncSort DB2 Query Supportccceviieetecnscssssccnas 11.1
Restrictions. 11.1
Job Control Language i, 11.2
DD Statements. 11.2
SORTDBIN DD Statemento, 11.3
Operation i e 114
Record Description. 114

Table of Contents 1ii

iv

Chapter 12.

Chapter 13.

Chapter 14.

Chapter 15.

Chapter 16.

Record Description: Trial Mode Execution 11.5

Sample SyncSort DB2 Query Application........................ 11.7
Tape Sort.vveetiiiiieeetiiseeesssesssessssssssssssssons 12.1
WhentoUseTape Sort 12.1
EXEC Statement. 12.2
DD Statements e 12.3
SORTLIB DD Statementccoiiiiiiiiinnnn... 12.3
SORTWKxx DD Statement 124
SORTPARM DD Statemento v vt e e 12.5
Optimizing Tape Sort i e iian 12.5
Control Statements. i e 12.6
Exit Programs e 12.6
Initiating Tape Sort Through JCL/Control Streams 12.7
Invoking Tape Sort from a Program 12.9
Performance Considerationsccvviiievienreeennns 13.1
Disk Sort? MAXSORT? PARASORT? Tape Sort? 13.1
JCL Sorts vs. Program-Invoked Sorts 13.2
Control Statement Issues i, 13.2
The Efficient Use of PARMsS 13.3
Optimizing System Resources, 134
Setting CORE e e 134
The Incore Sort e 13.6
Disk Space Considerations.coitiiiieiieennn... 13.7
The Coding and Use of Checkpoint-Restart 13.10
Automatic Checkpoint-Restart. 13.12
Deferred Checkpoint-Restart................................. 13.13
Optimizing Data Set Placement 13.14
The HISTOGRM Utility Programcciiiveveerccnonns 14.1
What Is HISTOGRM? e 14.1
Using HISTOGRM to Determine L6 and L7 Values for SyncSort. 14.2
Control Parameters for HISTOGRM 14.2
dJob Control Language i, 14.4
Executing HISTOGRM through an E15 Exit 14.4
HISTOGRM MeSSages ovvviii et 14.9
Value-Added Productscciiiieiiinrennrcnnncnnses 15.1
Visual SyncSort. e 15.1
SyncSort/COBOL Advantage, 15.2
PROC SYNCSORT - An Accelerator for SAS™ Sorting 15.3
PipeSort 15.3
MeSSACES ..o eeeeeneoeneseososssssssssosssssssnsss 16.1
SyncSort Statistical Record Facility Messages 16.65
PROC SYNCSORT MeSSagesvvvt vt iiinieaianeennnn. 16.65
License Key Messages ovviiiii it i eee e 16.66
Troubleshooting Abends. i, 16.70
Indexciiiiiiiiiiieeeeeeoaonosososssossssnsssnsnnnnnons L1

SyncSort for z/OS 1.1 Programmer’s Guide

SyncSort for z/OS Release 1.1 - Summary of Changes

SyncSort for z/OS is a new product for the IBM z/OS operating system and its underlying
64-bit z/Architecture. SyncSort for z/OS is the successor to SyncSort MVS in the same way
that z/OS extends the capabilities of MVS.

Release 1.1 of SyncSort for z/0OS was preceded by release 1.0. This Summary of Changes
identifies changes for both releases as follows:

e Text without a change bar in the left margin applies to SyncSort for z/OS release 1.0
and identifies differences from SyncSort MVS 3.7.

e Text with a solid bar (|) in the left margin applies to SyncSort for z/OS 1.1 only and
identifies differences from release 1.0.

e Text with a dashed bar (|) in the left margin applies to changes introduced in the
1.1C/TPF2 level of release 1.1.

Thus, if you are moving from SyncSort MVS 3.7 to SyncSort for z/OS 1.1, you should read
the entire Summary of Changes. If you are moving from SyncSort for z/OS 1.0 to release
1.1, you need only read the text indicated by change bars. If you are moving from the TPFO0
or TPF1 level to the TPF2 level of release 1.1, you need only read the text indicated by the
dashed change bars.

Note that change bars are used in the Summary of Changes only.

Performance Improvements

SyncSort for z/OS exploits the advanced facilities of the zSeries architecture to achieve sig-
nificant performance improvements:

¢ Algorithmic improvements have been made to exploit the z/Architecture enhancements
of 64-bit central storage support and the elimination of expanded storage. These
improvements apply to applications that would have formerly used hiperspace to
exploit available expanded storage in a 31-bit OS/390 architecture. A new SyncSort
technique, called ZSPACE, allows the native use of the central storage resources
without incurring the CPU overhead associated with hiperspace simulation in a 64-bit
z/Architecture environment. The technique reduces CPU time and elapsed time. The
informational message WER418I indicates if ZSPACE is being used.

e Parallel access volume (PAV) technology, such as on IBM 2105 ESS (SHARK) devices
and EMC Symmetrix devices, is exploited to reduce elapsed time.

Summary of Changes v

¢ Dynamic Storage Management enhancements have been made to exploit the
availability of expanded central storage resources found on zSeries servers.
Optimization algorithms have been modified to employ additional storage resources
when available. This change reduces sorting CPU time, EXCPs, and elapsed time for
files that are larger than 600 megabytes.

DB2 Query Support

SyncSort can now directly retrieve data from a DB2 database based on a user-provided
query. An SQL SELECT statement is used to specify the criteria of the request. The query
of the DB2 database replaces SyncSort's SORTIN or E15 processing. The SORT or COPY
functions, but not MERGE, can be used with DB2 queries. All SyncSort features performed
after E15 processing are available for use with the DB2 query facility.

This feature improves performance over DB2’s DSNTIAUL program by allowing DB2 data
to be passed directly into a SORT or COPY operation, without the use of setup steps or the
need for user-written E15 exits.

SORTWORK

The maximum number of SORTWK data sets, as specified on the DYNALLOC parameter of
the SORT control statement or the DYNALLOC PARM option, has been increased from 100
to 255.

Data Utility Features

vi

The SyncSort for z/OS data utility features have been enhanced with the following:
e INCLUDE/OMIT and OUTFIL INCLUDE/OMIT Statements

¢ TFields can now be compared to the date of a SyncSort run or the date of the run
with an offset. A variety of forms is available to represent the current date used in
the comparison. This allows records to be included or omitted based on whether
their dates are equal to, less than, or greater than the run date or the run date with
an offset. The forms of the current date constants available for standard
comparisons are &DATEx, &DATEx(c), &DATExP, and Y'DATEXx'.

e Data fields of the formats Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z can now be compared
to a year constant.

e Data fields that represent the full-date formats Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y
are now supported. Previously these data formats were available for use only with

the SORT or MERGE control statement.

¢ BI (binary) fields can now be compared to positive decimal numbers.

SyncSort for z/OS 1.1 Programmer’s Guide

SORT/MERGE Control Statements

The maximum length of an AC or AQ control field has been increased to 4091 bytes
(2043 for variable-length records). This is raised from the prior limit of 256 bytes.

INREC, OUTREC, and OUTFIL OUTREC Statements

The date and time of the SyncSort run can now be inserted in different forms in
records by the parameters &DATE, &DATEx, &DATEx(c), &DATExP,
&DATE=(m;mymsm,), & DATENS=(xyz), &TIME, &TIMEx, &TIMEx(c), & TIMEXP,
&TIME=(hp), and & TIMENS=(tt).

SMEF date and time formats can now be converted to standard date and time
formats. The SMF formats are DT1, DT2, DT3, TM1, TM2, TM3, and TM4.

The case of EBCDIC letters within a field can now be translated from uppercase to
lowercase, from lowercase to uppercase, or the characters in a field can be
translated according to an alternate collating sequence (ALTSEQ) table in effect.
This is accomplished by using the subparameters TRAN=UTOL, TRAN=LTOU, and
TRAN=ALTSEQ), respectively.

The conversion of the 2-digit year portion of full-date fields (Y2T, Y2U, Y2V, Y2W,
Y2X, and Y2Y) to a 4-digit year in printable format is now supported.

A new format parameter, fy(c), is now supported. Used with p (position) and 1
(Iength) in a p,l,f specification, the new format parameter allows conversion of a
full-date field to a printable date with or without separator characters.

The new edit pattern M26 has been added.

OUTFIL Control Statement

The VLFILL parameter has been added to the OUTFIL control statement. It is
used in conjunction with OUTFIL OUTREC or OUTFIL OUTREC CONVERT to
specify a fill byte to be used for any missing p,l field bytes. The VLFILL parameter
has two functions:

e It enables a variable-length OUTFIL OUTREC non-CONVERT application to
continue processing when there is an input record with missing field bytes in a
p,l field specification. If VLFILL has not been specified, the application will
terminate with the critical error WER244A.

e It provides a means to override the default fill byte used in an OUTFIL
OUTREC CONVERT application when there are missing bytes in a p,l field
specification. By default, spaces will be used for missing field bytes.

Summary of Changes vii

e The NULLOFL option has been added to the OUTFIL control statement. The
NULLOFL option specifies the action to be taken when any non-SORTOUT
OUTFIL data set contains no data records.

¢ The FTOV parameter has been added to the OUTFIL control statement. The FTOV
parameter converts fixed-length input records to variable-length output records.

e The VLTRIM parameter has been added to the OUTFIL control statement. The
VLTRIM parameter defines a byte to be deleted from the end of a variable-length
record. All prior occurrences of this byte are deleted until a byte that is not equal to
the trim byte is found.

¢ The REMOVECC parameter has been added to the OUTFIL control statement. The
REMOVECC parameter generates reports that do not include ANSI carriage
control characters that specify printer actions (for example, skipping a line, ejecting
a page). REMOVECC omits the carriage control character from all of the report
records.

e The &DATENS=(xyz) and &TIMENS=(tt) parameters, which provide additional
formats for inserting the date and time of the SyncSort run in headers and trailers,
have been added.

PARM Processing

The following are run-time options for sort, merge, or copy applications. The options do not
apply to BetterGener.

Null SORTOUT

e The NULLOUT option has been added. The NULLOUT option specifies the action to be
taken when SORTOUT contains no data records.

Record Padding and Truncation Control

viii

¢ The PAD option has been added. The PAD option specifies the action to be taken if the
LRECL defined in the JCL for a non-OUTFIL SORTOUT is larger than the
SORTIN/SORTINnn LRECL or the internally processed record length when the
SORTIN/SORTINnn LRECL is modified by features.

¢ The TRUNC option has been added. The TRUNC option specifies the action to be taken
if the LRECL defined in the JCL for a non-OUTFIL SORTOUT is smaller than the

SyncSort for z/OS 1.1 Programmer’s Guide

SORTIN/SORTINnn LRECL or the internally processed record length when the
| SORTIN/SORTINnn LRECL is modified by features.

| Sum Processing

e The OVFLO option has been added. The OVFLO option specifies the action to be taken
if a summary field overflows or underflows during SUM processing.

| Record Validity Checking

¢ The OFF4 subparameter has been added to the VLTEST option. OFF4 specifies the
action to be taken if an illogical variable-length record segment is found.

Visual SyncSort for z/OS

SyncSort for z/OS incorporates functionality to integrate Visual SyncSort with SyncSort for
z/OS mainframe processing. Visual SyncSort is a separately available PC product that is
designed to allow programmers and non-programmers alike to easily create and manage
SyncSort applications for the mainframe environment. With Visual SyncSort, you can cre-
ate new sort, merge, and copy applications, or you can import and modify existing ones.
Visual SyncSort saves programmer time while taking full advantage of the processing
power of SyncSort for z/OS.

Messages

e Message WER2191I has been modified to include an SMS return code provided by SMS
in the event of DYNALLOC failure.

e Message WER418I has been modified to indicate whether SyncSort has dynamically
chosen to use DataSpace, ZSPACE, or hiperspace during the execution of a sort. See the
"Performance Improvements" section above for a description of ZSPACE.

e Message WER4561 indicates that a file describing your application has been created
and written to the VISUALEX DD statement for export to the PC component of Visual
SyncSort.

e Message WER457A indicates that the VISUALEX DD statement for export to the PC
component of Visual SyncSort is either missing or its data set has been incorrectly
defined.

e Message WER458A indicates that the SYSIN data set created by the PC component of
Visual SyncSort cannot be processed by SyncSort due to an insufficient level of
maintenance on the SyncSort library.

e Message WER459A indicates that only qualified SyncSort applications may be
exported to Visual SyncSort for reasons supplied in the message text.

Summary of Changes ix

e DMessages WER4611, WER462I, and WER462A support the run-time options PAD,
TRUNC, and OVFLO.

e Message WER463A indicates that a linear VSAM data set has been specified on input
or output. This type of data set is not supported.

e Message WER464I indicates that an invalid spanned record segment has been found
and the new OFF4 subparameter of VLTEST is in effect.

e Message WER467I indicates that a report of the record layout produced by the DB2
query contained in the SORTDBIN data set has been successfully produced.

e Message WER468A indicates that the DB2 query operation failed and the sort or copy
application will not execute. The message text indicates the condition that caused the
failure or the DB2 query requirement that was violated.

SyncSort for z/OS 1.1 Programmer’s Guide

Chapter 1. Introduction

An Introduction to SyncSort for z/OS

SyncSort for z/OS is a high performance sort/merge/copy utility. It is designed for the
advanced facilities of the zSeries architecture, but also supports the system architectures of
IBM System/390 and compatible computers. It exploits the features of the z/OS operating
system but will also execute under 0S/390.

SyncSort is designed to conserve system resources, provide significant performance bene-
fits, and operate efficiently in 31-bit or 64-bit environments.

SyncSort can be initiated through job control language or invoked from a program written
in COBOL, PL/1, or Assembler language. A JCL-initiated sort is more efficient because
SyncSort totally controls the sort execution, including I/O management and main storage
management. Exit routines may be written in COBOL, C, FORTRAN, REXX, or Assembler
language to give a JCL sort additional programming flexibility. Exits may also be in PL/1
when SyncSort is invoked by a PL/1 program.

SyncSort’s Basic Functions

SyncSort has three basic functions:
e Sorting - rearranging data set records to produce a specific sequence.

e Merging - combining up to 100 pre-sequenced data sets into one data set which has the
same sequence.

Chapter 1. Introduction 1.1

¢ Copying - reproducing a data set without going through the sorting process.

Sorting

A sort rearranges the records in a data set to produce a specific sequence, e.g., chronological

or alphabetic order. SyncSort provides four sorting techniques:

e Disk Sort, the standard sorting technique. Information in the Programmer’s Guide
refers to the Disk Sort unless otherwise indicated.

e MAXSORT, a maximum capacity sorting technique with an enhanced breakpoint/
restart capability. MAXSORT can sort any collection of data - regardless of size - using
a limited amount of disk space. MAXSORT is described in the MAXSORT chapter of
this guide.

e PARASORT, a sorting technique that significantly reduces elapsed time for sorts whose
input is a multi-volume tape data set and/or concatenated tape data sets. PARASORT
improves performance by using multiple tape drives in parallel. PARASORT is
described in the PARASORT chapter of this guide.

e Tape Sort, an alternative sorting technique used when intermediate storage must be
assigned to tape. The Tape Sort is described in the Tape Sort chapter of this guide.

A sort logically consists of four phases that perform the following functions:

e The control statements and JCL information are read and analyzed and the
operational parameters for the sort are established.

¢ The input data is read into main storage and sorted.

e Ifnecessary, intermediate results are written to temporary storage devices.

¢ The sorting process completes and the sorted data is written to the specified output
device(s).

Merging

A merge combines up to 100 pre-sequenced data sets into one data set which has the same
sequence. A merge has two phases that perform these functions:

¢ The control statements and JCL information are read and analyzed and the
operational parameters for the merge are established.

e The files are merged and the merged data is written to the specified output device(s).

1.2 SyncSort for z/OS 1.1 Programmer’s Guide

Copying

A copy reproduces a file, completely bypassing the sorting process. A copy has two phases
that perform these functions:

e The control statements and JCL information are read and analyzed and the
operational parameters for the copy are established.

¢ The copied file is written to the specified output device(s).

SyncSort’s Data Utility and SortWriter Features

SyncSort is designed to improve programmer productivity by reducing the time the pro-
grammer/analyst must spend designing, testing, and debugging applications. With Sync-
Sort’s extensive Data Utility and SortWriter features, data processing applications
previously requiring several steps can be accomplished in a single execution.

SyncSort’s Data Utility features include a multiple output facility, a full range of report
writing capabilities, and record selection and record reformatting facilities. These options
allow the user to design sort/merge/copy applications that can accomplish a host of related
tasks.

Generating Multiple Output

The multiple output facility (OUTFIL) allows multiple output files to be generated with
just one pass of the sort. Each of these files can have unique specifications that determine
which records are to be included, how the records are to be formatted, and which report
capabilities are to be used. Moreover, all these files can be written to the same output
device, or each can be written to a different device.

Creating Reports

SyncSort’s SortWriter feature (OUTFIL) allows the user to design comprehensive reports
easily and efficiently. SortWriter options allow output data to be flexibly formatted with
headers and trailers, which can include data fields. Various kinds of numeric results can be
produced at report, page, and section levels. These include totals, subtotals, minimums,
subminimums, maximums, submaximums, averages, subaverages, record counts, and sub-
counts. Output record fields can be realigned; the records can be padded with blanks, char-
acters, and binary zeros; and numeric data can be converted and edited. Automatic
pagination, page numbering, and dating are also provided.

Selecting Records, Reformatting Records, and Summarizing Fields

Record selection, record reformatting, and summing are other important SyncSort Data
Utility features. Record selection via the INCLUDE/OMIT feature permits certain records
to be included or omitted from an input data set based on comparisons between two data

Chapter 1. Introduction 1.3

fields or between a data field and a constant. Date data formats work with the CENTWIN
option to ensure that century evaluation is applied to INCLUDE/OMIT comparisons involv-
ing 2-digit year data.

Record reformatting after input and/or before output, provided by the INREC/OUTREC
capability, allows the user to delete or repeat portions of records; insert spaces, characters,
binary zeros, date constants and sequence numbers; realign fields; convert numeric data to
its printable format; and convert data to its printable hexadecimal format. The CENTWIN
option and date data formats enable conversion of 2-digit year fields to printable or packed
decimal 4-digit years of the appropriate century. The ability to delete irrelevant fields
before sorting via INREC can provide important performance benefits. Additionally, the
OUTREC facility can be used to convert a variable-length record format input file into a
fixed-length format output file or to convert a fixed-length record format input file into a
variable-length format output file.

The SUM feature allows records with equal sort control fields to be deleted and optionally
summarizes numeric fields on those records. The deleted records can optionally be written
to a separate data set.

Sample SortWriter Report

14

The report below illustrates the versatility of SyncSort’s Data Utility and SortWriter fea-
tures. First, irrelevant records are omitted from the input file and the input record is refor-
matted to eliminate unnecessary data fields. Then the file is sorted by invoice status and
invoice date. The output record is reformatted for readability and the numeric fields are
converted and edited. The report itself is divided into sections and subsections based on
control field breaks. Headers and trailers identify the data fields, provide record counts and
section and cumulative totals, and include the date and page number.

SyncSort for z/OS 1.1 Programmer’s Guide

PAGE: 3
ACCOUNTS RECEIVABLE AGING REPORT FOR 01/30/92 DATE:04/22/92
.

INVOICE STATUS:O
ok ko kR kR R K
INVOICE BALANCE

COMPANY NAME ADDRESS CO # INV # INV DATE PRODUCT TAX PRODUCT TAX

REPUBLIC DATA NYC NY 2681 86013306 1/17/91 1,100.00 90.75 1,100.00 90.75

RICE FEATURES CHI IL 2244 86013298 1/17/91 1,500.00 75.00 1,500.00 75.00

SIDNEY COLLEGE HOU TX 4762 86013297 1/17/91 2,500.00 150.00 2,500.00 150.00

WINIFRED INDUST WAS DC 1177 86013299 1/17/91 650.00 26.00 650.00 26.00

PIZZUTO LOANS STL MO 4633 86022200 2/15/91 550.00 22.00 550.00 22.00

RICE FEATURES CHI IL 2244 86022198 2/15/91 1,500.00 75.00 1,500.00 75.00

SIDNEY COLLEGE HOU TX 4762 86022197 2/15/91 500.00 30.00 500.00 30.00

REGENCY TRUST CO BOS MA 4986 85124011 12/15/91 1,500.00 75.00 1,500.00 75.00

SIDNEY COLLEGE HOU TX 4762 85124016 12/15/91 5,000.00 300.00 5,000.00 300.00

TOTAL NUMBER OF INVOICES: 11 MONTHLY TOTALS: $22,850.00 $1,484.50 $22,850.00 $1,484.50

BALTIC AVENUE CORP CLE OH 0636 86022207 2/15/91 650.00 29.25 650.00 29.25

FASTEROOT EQUIP BAL MD 4980 86022205 2/15/91 1,700.00 76.50 1,700.00 76.50

FEDERAL FABRICS SHV LA 5143 86022204 2/15/91 1,750.00 70.00 1,750.00 70.00

PATIO PRODUCTS MRY CA 3029 86022203 2/15/91 850.00 51.00 850.00 51.00

TURENIUS FOR. EXCH. DTT MI 8325 86022201 2/15/91 1,600.00 64.00 1,600.00 64.00

WINES ASSOCIATES SMF CA 1794 86022209 2/15/91 750.00 45.00 750.00 45.00

DESIGN TECHNOLOGIES LAX CA 2520 85124017 12/15/91 360.00 21.60 360.00 21.60

POLL DATA CORP LAX CA 0846 85124019 12/15/91 600.00 36.00 600.00 36.00

TOTAL NUMBER OF INVOICES: 8 MONTHLY TOTALS: $8,260.00 $393.35 $8,260.00 $393.35

Figure 1. Sample SortWriter Report

Cultural Environment Support

Cultural environment support allows you to choose an alternate set of sort collating rules
based on a specified national language. The alternate collating applies to SORT/MERGE
and INCLUDE/OMIT processing.

SyncSort employs the callable services of IBM’s Language Environment for z/OS to collate
data in a way that conforms to the language and conventions of a selected locale. A locale
defines single and multi-character collating rules for a cultural environment. Numerous
pre-defined locales are available.

For additional information, see “LOCALE” on page 5.20.

DB2 Query Support

SyncSort can directly retrieve data from a DB2 database based upon a user provided query.
An SQL SELECT statement is used to specify the criteria of the request, and the query of
the DB2 database will be in place of SyncSort's SORTIN or E15 processing. SORT or COPY,
but not MERGE, functions can be used with DB2 queries. All SyncSort features that are
performed after E15 processing are available for use with the DB2 query facility.

Chapter 1. Introduction 1.5

This feature improves performance over DB2’s DSNTIAUL program by allowing DB2 data
to be passed directly into a SORT or COPY operation, without the use of setup steps or the
need for user-written E15 exits. Refer to “Chapter 11. SyncSort DB2 Query Support” for
more information.

SyncSort’s Operational Features

SyncSort will take advantage of data space and hiperspace to further improve performance.
A portion of the address space may be allocated for SyncSort's ZSPACE technique. This
technique was created as a replacement for hiperspace. It allows native use of the available
central storage resources. This technique eliminates the additional overhead produced
when hiperspace is simulated by the z/OS operating system in a z/Architecture environ-
ment. It provides superior CPU performance and reduced system overhead compared to a
conventional hiperspace application.

SyncSort can also interact with exits and invoking programs such as VS COBOL II,
COBOL/370, C370 V2R1 with V2R2 C370 library, SAA AD/Cycle C370 Release 2, and IBM
C/C++ V3R2 programs.

SyncSort’s PARMEXIT feature permits the dynamic modification of PARM values based on
the conditions at execution time. This feature facilitates the passing of additional parame-
ters to specific jobs.

Other operational features include resident, reentrant code, interactive and streamlined
installation and maintenance procedures; automatic release or secondary allocation of
direct access intermediate storage (SORTWK) and output (SORTOUT) space without JCL
specification; dynamic allocation of SORTWK space under z/OS (DYNALLOC); and auto-
matic incore sorting.

SyncSort’s Value-Added Products

1.6

Value-added products available from Syncsort can significantly improve sorting efficiency:

Visual SyncSort for z/OS is a PC-based product designed to allow programmers and non-
programmers alike to easily create and manage SyncSort for z/OS applications in the main-
frame environment. With Visual SyncSort, you can create new sort, merge, and copy appli-
cations, or you can import and modify existing ones. Visual SyncSort saves programmer
time while taking full advantage of the mainframe processing power of SyncSort for z/OS.

SyncSort/COBOL Advantage is a fully automatic product which improves the perfor-
mance of COBOL programs that invoke SyncSort. The COBOL Advantage improves
elapsed time by 25 to 40% by enhancing processing of sequential files, including INPUT
and OUTPUT procedure files.

PROC SYNCSORT - An Accelerator for SAS® Sorting is a high performance, transpar-
ent replacement for the SAS procedure PROC SORT. Compared to PROC SORT, PROC

SyncSort for z/OS 1.1 Programmer’s Guide

SYNCSORT reduces the resources required for sorting within SAS applications and cuts
sort elapsed time.

PipeSort enables SyncSort to run multiple sorts simultaneously of the same input data.
For large input files, PipeSort significantly reduces total elapsed time compared to running
separate sort jobs.

For more detailed information regarding each of these products, see “Chapter 15. Value-
Added Products”.

Structure of the Programmer’s Guide

The SyncSort for z/OS Programmer’s Guide is a reference manual designed for applica-
tions programmers who are using SyncSort to sort, merge, or copy sequential data sets.
This manual is self-contained and assumes only a basic working knowledge of the operat-
ing system and its job control language. It should not be necessary to refer to any other
manual to produce an efficient sort.

SyncSort Control Statements describes how to specify and use the SORT/MERGE,
INCLUDE/OMIT, INREC/OUTREC, OUTFIL, RECORD, MODS, SUM, ALTSEQ, and END
statements. The discussion of a particular control statement includes these topics: the
statement’s syntax format, the versatility provided by the various parameters (many of
which are unique to SyncSort), and the interaction between the control statement and
other statements.

How to Use SyncSort’s Data Utility Features explains and illustrates the Data Utility
and SortWriter features through a series of sample applications. Each application is self-
contained and provides instructions for specifying both the required JCL and the appropri-
ate control statements.

JCL and Sample JCL/Control Statement Streams analyzes SyncSort’s job control
requirements and describes the SyncSort DD statements, each of which is illustrated with
an example. JCL and control statement streams for MAXSORT and PARASORT are also
described. Numerous examples are provided.

PARM Options describes the operational parameters of SyncSort and identifies the deliv-
ered defaults. This chapter explains how to specify such features as dynamic allocation of
SORTWK space under z/OS, automatic secondary allocation and release of SORTWK space,
the ability to skip a certain number of records or stop after sorting a certain number of
records, and message routing.

Invoking SyncSort from a Program describes SyncSort invocation through assembler
programs using 24-bit and 31-bit parameter lists. Numerous examples are provided.

The Coding and Use of Exit Programs indicates at which points during sort processing
user-written exit routines can be executed. Each exit point is fully documented together

Chapter 1. Introduction 1.7

with the appropriate tasks. Examples of COBOL E15 and E35 exit routines for fixed and
variable-length records are included.

The Flow of the Sort provides a skeletal view of the flow of control in the standard Disk
Sort (including the incore sort), merge and copy. This chapter indicates the order in which
the control statements and exit routines are processed, information which is particularly
useful at the design stage of an application.

MAXSORT explains when MAXSORT should be used, describes its JCL requirements,
control statements and PARM options, and provide examples. The chapter also examines
MAXSORT’s restart capability and its operator interface.

PARASORT explains the elapsed time advantages of the technique, the type of applica-
tions where it can be applied, and the JCL requirements.

SyncSort DB2 Query Support explains how SyncSort can improve performance by allow-
ing DB2 data to be passed directly into a SORT or COPY operation without the use of setup
steps or user-written E15 exits.

Tape Sort describes the SyncSort DD statements needed for a tape sort and how to initiate
a tape sort from JCL or a program.

Performance Considerations describes how to design the most efficient application. It
contrasts the merits of Disk Sort, PARASORT, MAXSORT and Tape Sort, JCL and invoked
sorts, the incore sort, and standard SORTWK techniques. Formulas for calculating main
storage and SORTWK requirements are provided. Other topics include the efficient use of
control statements and PARMs, tuning main storage and SORTWK allocations and the use
of the Checkpoint-Restart feature.

The HISTOGRM Utility Program describes how to use the HISTOGRM program to
report on the composition of variable-length files. This program indicates the average
record length, byte total, record total, block count and record count. Job control require-
ments, control statements and messages are outlined. Sample job streams illustrate how to
run HISTOGRM as a separate job and as an E15 exit during a variable-length sort.

Value-Added Products describes Visual SyncSort for z/0S, SyncSort/COBOL Advantage,
PROC SYNCSORT-An Accelerator for SAS® Sorting, and PipeSort. This chapter also pro-
vides detailed information regarding their functions and special features.

Messages documents all of the WERnnnx messages generated by the SyncSort program.
This chapter includes sections describing "Troubleshooting with WER999A UNSUCCESS-
FUL SORT" and "What to Do before Calling SyncSort for z/OS Product Services."

Related Reading

1.8

The following guides supplement the information provided in the Programmer’s Guide.

SyncSort for z/OS 1.1 Programmer’s Guide

Installation Guide

This manual explains how to install and maintain SyncSort and defines the default
options.

Reference Guide.

This handbook, intended for quick reference, provides the syntax for SyncSort control
statements and briefly describes each parameter.

Exploiting SyncSort: SortWriter Data Utilities Guide.

This two-part user’s guide demonstrates how SyncSort’s versatile Data Utility features pro-
vide an efficient, one-step alternative to writing, testing and debugging programs. Five
comprehensive sample applications illustrate how the control statements work together to
produce formatted reports.

Exploiting SyncSort: MAXSORT.

This user’s guide explains how to use the special MAXSORT feature of SyncSort to sort
very large amounts of data with only a limited amount of disk space. MAXSORT’s unique
restart capability is described and sample job control streams and tuning information are
included.

Online Message Help

All SyncSort messages and their explanations can be accessed online through an ISPF/PDF
dialog. Contact your system administrator for information about the operation of the mes-
sage help facility.

Chapter 1. Introduction 1.9

1.10 SyncSort for z/OS 1.1 Programmer’s Guide

Chapter 2. SyncSort Control Statements

The control statements tell SyncSort for z/OS how to process files. There are 12 control

statements:

Control Statement

ALTSEQ

END

INCLUDE

INREC

MERGE

MODS

OMIT

OUTFIL

OUTREC

Function

Specifies an alternate collating sequence for control fields with an
AQ format.

Signals the end of control statements.

Specifies the criteria which determine whether or not records are
included in an application.

Reformats the input record before sort/merge processing.

Defines a merge or copy application and specifies merge control
fields.

Specifies user exit(s).

Specifies the criteria which determine whether or not records are
omitted from an application.

Describes the output file(s) and specifies SortWriter and processing
options.

Reformats the output record after sort/merge processing.

Chapter 2. SyncSort Control Statements 2.1

RECORD Provides record information at various processing stages.
SORT Defines a sort or copy application and specifies sort control fields.

SUM Deletes records with equal control fields and summarizes numeric
fields on those records.

Control Statement Summary Chart

The following table summarizes the parameters of each control statement and indicates
default values.

Control
Statement Parameters Delivered Default
Name
ALTSEQ CODE=(ccpp; [,ccppal...) Standard EBCDIC series
END
INCLUDE ALL Sort/Merge all records
COND-=| | (comparisons) ¢ | [, FORMAT=A]
NONE
INREC FIELDS=(field, [,field,]...) Input records unchanged
MERGE FIELDS=(p, 1;,£;,01 [,p2,la,f5,0,]...)
FIELDS=(p,,1,,f;,0,[,p,,l,,f5,0,]...),FORMAT=f
FIELDS=COPY
CENTWIN= S antury window starts
f with current year
[,CKPT .
, CHKPT} No checkpoint
LEQUALS
,NOEQUALS} NOEQUALS
[,FILES=n]
[,SKIPREC=n] Copy all records
[,STOPAFT=n] Copy all records
Table 1. (Page 1 of 4) Control Statement Summary Chart
2.2 SyncSort for z/OS 1.1 Programmer’s Guide

Control

Statement Parameters Delivered Default
Name
MODS ,N No exits
S
exit-name,=(r,,b; [,d,] g),....exit-name 5=...
X
,T
OMIT ALL Sort/Merge all records
COND-=| | (comparisons) ;| ,FORMAT={]
NONE
OUTFIL [FILES=(fileid, [,fileid,]...)] One output file
Output defined by FILES
ddname p y
’FNAMESz{(ddnamel [ddname,]... H
[LHEADER1=(field, [field,]...)] No report heading
[LHEADER2=(field, [field,]...)] No page headings
_ {,INCLUDE}) { é{:;parisons)} Output all records
LOMIT NONE
_’LINES= { ZN . } 60 (if refort)-writing
(ANSLn) parameters
[NODETAIL] Detailed report
[REMOVECC] Produce a report with

ANSI control characters

Return code of zero

RCO
,NULLOFL=9RC4
RC16

[STARTREC=n] Start processing with
first record

Table 1. (Page 2 of 4) Control Statement Summary Chart

Chapter 2. SyncSort Control Statements 2.3

Control

Statement Parameters Delivered Default
Name
OUTFIL ENDREC=n] End processing with last
record
[SAVE] Omitted records not

saved for output

[OUTREC=(field, [field,]...)]

Record unchanged

Record format

LCONVERT] unchanged
Missing fields will be
_ filled with blanks (x'40")
LVLFILL=f] when CONVERT option
in use
LETOV] Output record format the
’ same as input
[VLTRIM=b] Retain all trailing bytes
[,SPLIT] No split output

[,SECTIONS=(field, [field,]...)]

No sections

[,TRAILER1=(field, [,field,]...)]

No report trailer

[,TRAILER2=(field, [,field,]...)]

No page trailers

OUTREC Record format
[,FIELDS=(field, [,field,]...)] unchanged
LCONVERT] Output rgcord format the
same as input
Table 1. (Page 3 of 4) Control Statement Summary Chart
2.4 SyncSort for z/OS 1.1 Programmer’s Guide

Control

FIELDS=(p,,l, [,p,.1,]...,FORMAT=f
FIELDS=NONE

Statement Parameters Delivered Default
Name
RECORD [TYPE=F | V]
[LLENGTH=(,,...,1,)]
SORT FIELDS=(p,,l,,0, [,p,,l,,0,]...)
FIELDS=(p1 ,11 ,01 [,pz,lz ,02] .),FORMAT=f
FIELDS=COPY
SORT _’ CENTWIN:{S} Century window starts
f at current year
[,CKPT .
, CHKPT} No checkpoint
[DYNALLOC=d/(d,n)/OFF] No dynamic allocation
,EQUALS
{,NOEQUALS} NOEQUALS
[,FILSZ=n]
[,SIZE=n]
[,SKIPREC=n] Sort or copy all records
[,STOPAFT=n] Sort or copy all records
SUM FIELDS=(p, 1, f; [,p,,1,,f>]...) No summary of fields; no

reduction of equal-keyed
records

[,LXSUM]

Table 1. (Page 4 of 4) Control Statement Summary Chart

Disk Sort, MAXSORT, PARASORT, and Tape Sort Control Statement
Requirements

The following table summarizes control statement usage for Disk Sort, MAXSORT,

PARASORT, and Tape Sort.

Chapter 2. SyncSort Control Statements 2.5

MAXSORT

to copy

Control Statement Disk Sort and PARASORT Tape Sort
ALTSEQ Optional Optional Not supported
END Required if exits Required for MAXSORT | Required if exits included
included in input stream | if exits included in input | in input stream
stream; optional for
PARASORT
INCLUDE/ Optional Optional Not supported
OMIT
INREC Optional Optional Not supported
MERGE Required for merge or Not applicable Required for merge; copy
copy not supported
MODS Required for exits Required for exits Required for exits; not
supported if program-
invoked
OUTFIL Required for multiple Not supported for Not supported
output or reports MAXSORT;
optional for PARASORT
OUTREC Optional Optional Not supported
RECORD Conditionally required Conditionally required Conditionally required
SORT Required for sort or copy | Required for sort; copy Required for sort; copy
not supported not supported
SUM Optional; not applicable | Optional Not supported

Table 2. Control Statement Usage for Disk Sort, MAXSORT, PARASORT, and Tape Sort

Data Utility Processing Sequence

The following figure illustrates the sequence in which SyncSort control statements and
parameters are processed. It includes those control statements and parameters that modify
the input file (e.g., INCLUDE/OMIT), reposition record fields (e.g., INREC, OUTREC), and
create reports (e.g., OUTFIL).

When specifying record fields on any of these SyncSort control statements or parameters,
refer to the record as it appears at that stage of SyncSort processing. For example, when
specifying SORT fields be sure to take into account any repositioning of fields that may be
due to INREC processing.

2.6 SyncSort for z/OS 1.1 Programmer’s Guide

Record Selection
INCLUDE/OMIT
Control Statement

v

Field Selection
INREC
Control Statement

v

Record Arrangement
RT
Control Statement

v

Combining/Eliminating
Duplicate Records
SUM

Control Statement

v

Printable and Easy to Read
Output and Variable to Fixed
Length Format Conversion
OUTREC
Control Statement

Record Selection for Record Selection for
Output File 1 Output File n
STARTREC, ENDREC, -------- STARTREC, ENDREC,
INCLUDE/OMIT, SAVE INCLUDE/OMIT, SAVE
Parameters Parameters
v v
Report Formatting Report Formatting
for pee----- for
Output File 1 Output File n
Printable & Easy to Read Printable & Easy to Read
Output for File 1 & Variable to Output for File n & Variable to
Fixed Length Format Conversion Fixed Length Format Conversion
OUTREC, CONVERT OUTREC, CONVERT
Parameters = t-------- Parameters
or Fixed to Variable Format or Fixed to Variable Format
Conversion Conversion
FTOV FTOV
Parameter Parameter

Multiple Output and
: Report Formatting
Outplit File OUTFIL
Control Statement(s)

Figure 2. Data Utility Processing Sequence

Chapter 2. SyncSort Control Statements 2.7

Control Statement Examples

Simple examples illustrating the syntax of each of the SyncSort for z/OS control state-
ments are included in this chapter. More complex applications are presented in “Chapter
3. How to Use SyncSort’s Data Utility Features”. These applications demonstrate how the
INCLUDE/OMIT, INREC, OUTREC, SUM, and OUTFIL control statements can be used
to accomplish a variety of tasks, such as selecting input records, selecting input fields,
combining records, reformatting output records, writing reports, and creating multiple
output.

Rules for Control Statements

The following rules apply to SyncSort for z/OS control statements.

Specifying Control Statements

Control statements can be in any order, except for the END control statement which, if
specified, must be last.

Each control statement, except for OUTFIL, can be specified only once for a particular
application.

The control statement can begin in column 2 through column 69. If labels are used,
the control statement must be separated from the label by at least one blank.

The control statement name must be the first field (or the first field after a label) of
the first card image of the control statement. It cannot be continued on a continuation
card image.

The last operand of each control statement must be followed by at least one blank.

Specifying Parameters

2.8

Parameters can take three forms:
e Parameter

e Parameter=value
Parameter=(value)
Parameter(value)

¢ Parameter=(value,,value,,...,value,)
Parameter(value,,value,,...,value,)

Note that multiple values must be enclosed in parentheses.

SyncSort for z/OS 1.1 Programmer’s Guide

Parameters can be in any order, but if parameters are present, the first parameter must
begin on the first card image of a control statement.

Parameters must be separated from each other by commas.

The parameter(s) must be preceded and followed by at least one blank. A blank
separates the parameter(s) from the control statement name and also indicates the end
of the control statement.

If the parameter(s) end in column 71, column 72 must contain a blank to signal the end
of the control statement.

With the exception of literal strings and constants, a parameter value cannot exceed 28
alphanumeric characters. Parameter values cannot include commas, equal signs, or
parentheses.

With the exception of literal strings specified as parameter values, blanks are not
permitted within parameters.

Specifying Field Positions, Lengths, and Formats

Control statements reference fields by position p and length /.

The first byte of every fixed-length record is position 1, the second byte position 2, and
SO on.

Bytes 1 through 4 of variable-length records are reserved for the Record Descriptor
Word (RDW). For these records, the first byte of the data portion is position 5.

Some control statements support bit-level processing. This means a binary control field
can begin and end on any bit of any byte. The 8 bits in each byte are numbered 0
through 7. For example, a position value of 7.4 designates a field beginning on the fifth
bit of the seventh byte. A length value of 7.4 designates a field 7 bytes, 4 bits long.

Make sure the position value takes into account any record reformatting and data
conversion that may have resulted from SyncSort data utility processing or exit
programs. Refer to the Data Utility Processing Sequence figure at the beginning of this
chapter and to “Chapter 8. The Flow of the Sort”.

When proper processing depends on data format, the format of the field must be
specified.

The format of the field must be appropriate to the task. For example, only numeric
fields can be SUMmed.

When all the fields have the same format, the format value can be specified just once

through the FORMAT=f subparameter. The FORMAT=f subparameter cannot be used
when the INCLUDE/OMIT parameter is specified on the OUTFIL control statement.

Chapter 2. SyncSort Control Statements 2.9

Specifying Comments

Identify a comment card image by placing an asterisk (*) in column 1. Comments can
extend through column 80.

To add a comment to a control statement card image, leave one or more blanks after the
last parameter or comma on the image and follow with the comment, which can extend
through column 71.

Continue a comment that follows a control statement by coding an asterisk (¥) in
column 1 of the next card image or, if the control statement had ended, by placing a
continuation character in column 72.

Comment lines can be inserted between a control statement and its continuation by
coding an asterisk (*) in column one.

Specifying Continuation Card Images

2.10

Control statements cannot extend beyond column 71, but they can be continued. To con-
tinue a control statement:

Break after a parameter-comma or parameter-colon combination before column 72.
Begin the continuation of the next card image anywhere between columns 2 and 71 if
there is no label on the continuation card. If there is a label, begin the continuation
card in any column from 3-71. No continuation character is required.

--0r--

When the control statement extends through column 71 and cannot be broken at a
parameter-comma or parameter-colon combination:

e If the control statement does not contain a literal string that would extend beyond
column 71, place a continuation character in column 72 and continue the control
statement on the next card image anywhere between columns 2 and 71.

e If the control statement does contain a literal string that would extend beyond
column 71, place a continuation character in column 72 and begin the continuation
of the literal string in column 16 of the next card image.

The following examples illustrate how card images can be continued.

COL. 72
!
SORT FIELDS=(1,10,A,20,5,A,45,7,A),FORMAT=CH, STOPAFT=100,
EQUALS

Figure 3. Continuing a Control Statement Without Specifying a Continuation Character

SyncSort for z/OS 1.1 Programmer’s Guide

In the above example, no continuation character is required. The control statement is inter-
rupted after a parameter-comma combination before column 72.

COL. 16 COL.72
\A \A

OUTFIL OUTREC=(1:10,8,30:40,10) ,HEADER2=(1:'CUSTOMER NUMBX
ER',30:'ITEM NUMBER')

Figure 4. Continuing a Control Statement with a Continuation Character

In this example, a continuation character is necessary because the literal string in the
HEADER2 specification would extend beyond column 71. The 'X' in column 72 is the contin-
uation character. The literal string is continued in column 16 of the next card image.

Specifying Labels
SyncSort for z/OS supports labels. If labels are used, the following rules apply:
e Labels are permitted on all SYSIN control statements, including continuation card
images, but not on the control statements passed by an invoking program or the
$ORTPARM DD statement.

e Labels must begin in column 1 with an alphabetic character.

e Labels can be any length, provided the other rules which apply to control statements
are followed.

e At least one blank must separate the label from the control statement name or
parameter that follows it.

Notational Conventions Used in the SyncSort for z/OS Programmer’s Guide

¢ Braces indicate that a choice must be made from the alternatives listed.

¢ Brackets indicate an optional item. Two or more items in brackets are mutually
exclusive options; only one can be chosen for a particular application.

¢ Defaults are underlined.

e Upper-case letters, numbers, commas, equal signs, and parentheses must be entered
exactly as indicated. Lower-case letters represent variables which must be replaced by
actual values.

e Subscripts show position in a series, and three dots indicate an ellipsis.

For example, a;,a,,...,a5 is equivalent to a,,a4,a5,a4,05 and represents five a items (vari-
ables which will be replaced with actual values).

Chapter 2. SyncSort Control Statements 2.11

e Examples that are to be entered exactly as shown are presented in the Courier
typeface, for instance:

ALTSEQ CODE= (FOB7,F1B8,F2B9,F3BA,F4BB, F5BC,F6BD, F7BE, F8BF, F9C0)

Figure 5. Examples

2.12 SyncSort for z/OS 1.1 Programmer’s Guide

ALTSEQ

ALTSEQ Control Statement

The ALTSEQ control statement constructs an alternate collating sequence for all control
fields for which the format code AQ has been specified on the SORT/MERGE control state-
ment, and/or an INCLUDE/OMIT control statement, and/or an INCLUDE/OMIT parame-
ter of the OUTFIL control statement. If an alternate collating sequence has been provided
by installation default, AQ fields collate against this sequence, modified by the ALTSEQ
control statement. If a default alternate sequence has not been provided, AQ fields collate
against the standard EBCDIC sequence, modified by the ALTSEQ control statement. AQ
can be specified for one or more control fields so that those control fields all use the same
alternate collating sequence.

The ALTSEQ control statement also constructs an alternate collating sequence for all con-
trol fields processed by the TRAN parameter of the INREC and OUTREC control state-
ments, as well as the TRAN subparameter of the OUTREC parameter on the OUTFIL
control statement.

The ALTSEQ control statement cannot be specified for a Tape Sort.

ALTSEQ Control Statement Format

The format of the ALTSEQ control statement is illustrated below:

ALTSEQ CODE=(ccpp; [,ccppyl...)

Figure 6. ALTSEQ Control Statement Format

CODE Parameter (Required)

The CODE parameter specifies how the characters of the current collating sequence are to
be reordered to create the alternate collating sequence.

The CODE parameter can contain from 1 to 256 entries, each consisting of four hexadeci-
mal digits. These entries must be separated by commas and enclosed in parentheses.

Each CODE entry consists of two parts:

cc The cc value represents the character that is to be repositioned in the alternate
sequence.
PP The pp value indicates where the character represented by the cc value is to be

repositioned in the alternate sequence.

The character represented by the cc value does not replace the character represented by the
pp value. If both characters occur as sort control fields, they will be considered equal in the
collating process.

Chapter 2. SyncSort Control Statements 2.13

ALTSEQ

Each character (cc entry) can be moved only one time. However, more than one cc entry can
be mapped to the same pp value.

Sample ALTSEQ Control Statements

ALTSEQ CODE= (FOB7,F1B8,F2B9,F3BA,F4BB, F5BC,F6BD, F7BE, F8BF, F9C0)

Figure 7. Sample ALTSEQ Control Statement

This sample ALTSEQ control statement shows that the numbers 0 through 9 are to collate
before the uppercase alphabet.

ALTSEQ CODE= (F040)

Figure 8. Sample ALTSEQ Control Statement

This sample ALTSEQ control statement specifies that the number 0 is to collate as equal to
a blank (X'40").

2.14 SyncSort for z/OS 1.1 Programmer’s Guide

END

END Control Statement

If present, the END control statement must be the last control statement. The END control
statement is required only when the control statements are not followed by /* or by a job
control statement (i.e., when including exits in the input stream).

The END control statement has no parameters, but can contain comments if the comments
are preceded by at least one blank.

Chapter 2. SyncSort Control Statements 2.15

INCLUDE/OMIT

INCLUDE/OMIT Control Statement

The INCLUDE/OMIT control statement selects records from an input file based on compar-
isons testing the contents of one or more fields within the record. A field can be compared to
a constant or to another field within the record. Furthermore, a binary field may enter into
comparisons that involve testing the individual bits in the field. Only one INCLUDE/OMIT
control statement can be specified for an application, either as an INCLUDE or as an OMIT
control statement.

Locale-Based Comparison Processing

SyncSort supports alternative sets of collating rules based on a specified national language.
The alternative collating applies to INCLUDE/OMIT (and OUTFIL INCLUDE/OMIT) com-
parison processing as well as to SORT/MERGE processing. A locale defines single and
multi-character collating rules for a cultural environment.

Locale-based INCLUDE/OMIT processing applies only to character (CH) fields and charac-
ter or hexadecimal constants compared to character fields. When LOCALE is active, a CH
to BI (or BI to CH) comparison is not allowed. The illegal comparison will cause SyncSort to
terminate with an error message.

For more information on locale-based processing, see “LOCALE” on page 5.20.

INCLUDE/OMIT Control Statement Format

2.16

The format of the INCLUDE/OMIT control statement follows.

SyncSort for z/OS 1.1 Programmer’s Guide

INCLUDE/OMIT

B

P,
,BI

|

[ALL
NONE
INCLUDE _ ,AND,
{ONHT }COND" @ 1% L.
1 ’OR’ 2-.-
’la

c represents a comparison. Each comparison has this format:

7EQ7
,NE,
yGT, p2 712 [’fZ]
,GE, | |constant
,LT,

SOME}

NONE }
bit mask

,BNO,

,BNM,

NOTSOME

,BNZ,
NOTNONE

|
I
(230
|
i

{ EQ, } bit pattern

NE,

EQ,
NE } constant

) LFORMAT=A{]

Figure 9. INCLUDE/OMIT Control Statement Format

COND Parameter (Required)

The COND parameter controls how records are included or omitted from an application.

There are three forms of the COND parameter:

COND=ALL

All of the input records are to be included. This is the default.

Chapter 2. SyncSort Control Statements 2.17

INCLUDE/OMIT

2.18

COND=NONE None of the input records are to be included.

COND=comparison(s) Specifies one or more comparisons that determine which
records are to be included or omitted. Two types of comparisons
are possible:

e A standard comparison, between two record fields or
between a record field and a constant. A binary input field
also allows comparison by bit mask or bit pattern.

e A substring comparison, which allows the search for a
constant within a field or for a field value within a constant.
Use SS as the format to indicate a substring comparison.

The following several pages describe standard comparisons. For information on substring
comparisons, see “Full-Date Comparisons” on page 2.30.

Each field specified in the COND parameter is identified by its position (p), length (1) and
format (f). When processing variable-length records, by default all fields specified must be
contained within the record. If an application is expected to reference fields not completely
contained within the record, refer to “VLTESTI” on page 5.33. VLTESTI provides for pro-
cessing of records that do not contain all fields.

P The position value indicates the first byte of the field relative to the beginning
of the input record after E15 or E32 processing, if specified, has completed. The
field must begin on a byte boundary. (Keep in mind that if a variable-length file
is being referenced, the first 4 bytes must be reserved for the Record Descriptor

Word.)

1 The length value indicates the length of the field. The length must be an inte-
ger number of bytes. Refer to the table below for permissible field lengths by
format.

f The format value indicates the format of the field. The permissible formats for

standard comparisons are indicated in the table below. If all data fields have
the same format, the FORMAT=f subparameter can be specified instead of the
individual f values. If both are specified, the individual f values will be used.
(Note that the f values must be specified for each compare field).

SyncSort for z/OS 1.1 Programmer’s Guide

INCLUDE/OMIT

Data Format Afgzlg):;b(llgyf‘t‘izl)d
AC 1 to 256
AQ 1 to 256
ASL 2 to 256
AST 2 to 256
BI 1to 256
CH 1 to 256

CLO / OL L to 256
CSF/FS Tt 16
CSL/LS 2 to 256
CST/TS 5 to 256
CTO/OT o 256
FI 1 to 256
PD 1 to 256
PDO 8
Y2B .
Y2C / Y27 5
Y2D .
YoP 5
Y2S 5
Y2T, Y2U, Y2V, Y2W, Y2X, Y2Y 2.6
ZD 1 to 256

Table 3. Valid Formats and Lengths of Include/Omit Fields

For definitions of the field format, see “Valid Formats for Merge Control Fields” on page
2.38.

The constant to which a field can be compared may be one of the following types:

Chapter 2. SyncSort Control Statements 2.19

INCLUDE/OMIT

2.20

decimal A decimal constant can be any length. It should not be enclosed in sin-
gle quotes. It may or may not include a leading + or - sign. For example,
100 is a valid decimal constant. The following numeric data compare as
equal: +0, -0, 0. The &DATExP date parameter represents the current
date as a decimal number (+n) to which a field can be compared. See
page 2.27 for more details.

hexadecimal A hexadecimal constant should be preceded by an X and specified in
pairs of valid hexadecimal values which must be enclosed in single
quotes: X'hh...hh'. For example, X'ACBF05' is a valid hexadecimal con-
stant. The sign of the field is implicit in the representation.

character A character constant should be preceded by a C and enclosed in single
quotes: C'literal'. For example, C'SALES' is a valid character constant.

The &DATEx and &DATEx(c) date parameters represent the current
date as a character string (C'string') to which a field can be compared.
See page 2.27 for more details.

You can also include or omit records based on whether their dates fall
within a specified time frame before or after the current date. See page
2.29 for more details.

To include an apostrophe in a character constant, specify it as two apos-
trophes; for example, C'D"AGOSTINO'. If a character constant must be
continued on a second card image, place a continuation character in col-
umn 72 and then begin the continuation of the constant in column 16 of
the next card image.

There are two methods in which the bit level characteristics of a binary input field can be
used to include or omit records. One is to compare the binary field to a bit mask; the other
is to compare the binary field to a bit pattern.

bit mask A bit mask is a string of bits, specified in terms of either hexadecimal or
binary digits. The bit mask indicates which bits in the input field are to
be tested. Each bit in the mask whose value is 1 (ON) is tested against
the corresponding bit in the input field. If the value of a mask bit is 0
(OFF), the corresponding bit in the input field is ignored.

The hexadecimal format of a bit mask is X'hh...hh,' where each 'hh' rep-
resents any pair of hexadecimal digits.

The binary format of a bit mask is B'bbbbbbbb...bbbbbbbb', where each
'bbbbbbbb' represents 8 bits or a byte. Each bit is 1 or 0. The number of
bits in a binary bit mask must be a multiple of 8. The maximum length
of a binary bit mask is 256 bytes (2048 bits).

A bit mask is truncated or padded on the right to the byte length of the
binary field. The pad character is X'00' or B'00000000'.

SyncSort for z/OS 1.1 Programmer’s Guide

INCLUDE/OMIT

bit pattern The binary format of a bit pattern is B'bbbbbbbb...bbbbbbbb', where
each 'bbbbbbbb' represents 8 bits or a byte. Each bit is 1, 0, or period (.).
If the value of a bit in the bit pattern is 1 or 0, the corresponding bit in
the binary input field is compared to 1 or 0. If . (period) occurs in a bit
position in the bit pattern, the corresponding bit in the input field is
ignored.

The number of bit positions in a bit pattern must be a multiple of 8. The
maximum length of a bit pattern is 256 bytes (2048 bits).

A bit pattern is truncated or padded rightward to the byte length of the
binary input field. The pad character is B'00000000'.

The comparison operators represent the following conditions:

EQ Equal to

NE Not equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

BO (or ALL) All mask bits are 1s (ON) in the input field

BM (SOME) Some but not all mask bits are 1s (ON) in the input field
BZ (NONE) None of the mask bits is 1 (ON) in the input field

BNO (NOTALL) Some or no mask bits are 1s (ON) in the input field

BNM (NOTSOME) All or no mask bits are 1s (ON) in the input field

BNZ (NOTNONE) All or some mask bits are 1s (ON) in the input field

Rules for Multiple Comparisons

Multiple comparisons are separated by ANDs or ORs to form a logical expression. (Alterna-
tively, & and | may be used for AND and OR). When evaluating an expression, each compar-

ison c, is evaluated first. Then, AND conditions are evaluated before OR conditions.

Parentheses may be used around groups of comparisons to change the default evaluation
order. Any number of nested parentheses may be used. Conditions within parentheses are
evaluated first, from innermost to outermost parentheses.

Chapter 2. SyncSort Control Statements 2.21

INCLUDE/OMIT

2.22

For example, if you wanted to select all records from your Paris office for 1995 and 1996,
you might incorrectly specify:

INCLUDE COND=(1,4,CH,EQ,C'1995',0R,1,4,CH,EQ,C'1996',
AND,5,5,CH,EQ,C'PARIS")

The AND operator in the above statement would be evaluated first, producing unexpected
output. The correct statement would be:

INCLUDE COND=((1,4,CH,EQ,C'1995',0R,1,4,CH,EQ,C'1996"),
AND,5,5,CH,EQ,C'PARIS")

The added parentheses force the OR operator to be evaluated first, thus producing the
expected output.

Specifying Field-to-Field Standard Comparisons for Non-date Fields

The format of a data field determines whether or not it can be compared to another data
field. The figure below illustrates which field-to-field comparisons are permitted.

SyncSort for z/OS 1.1 Programmer’s Guide

INCLUDE/OMIT

AC

CLO [CSF |CSL | CST | CTO
AQ [ASL | AST| BI | CH oL | Fs | 1.s | Ts | oT FI | PD |PDO| ZD

AC

AQ

ASL

AST

BI

CH

CLO
OL

CSF
FS

CSL
LS

CST
TS

CTO
OoT

FI

PD

PDO

7ZD

X X

Table 4. Permissible Field-to-Field Comparisons for Non-year Data Formats

Padding of Compared Fields

When two fields are compared, the shorter field is padded to the length of the longer field.
Padding takes place as follows:

¢ The padding characters are blanks when the shorter field is in character format;
otherwise, they are zeros of the shorter field’s own format.

e Padding is on the right if the shorter field is in BI, CH or PDO formats. Padding is on
the left for all other formats.

Chapter 2. SyncSort Control Statements 2.23

INCLUDE/OMIT

2.24

Specifying Field-to-Field Standard Comparisons for Year Fields

The year data formats that can be used with INCLUDE/OMIT are Y2B, Y2C, Y2D, Y2P,
Y2S and Y2Z. Year data formats can only be compared to other year formats; they cannot
be compared to formats in the table above.

The full date formats that can be used with INCLUDE/OMIT are Y2T, Y2U, Y2V, Y2W,
Y2X, and Y2Y. The full date formats may only be compared to other 2-digit year full date
formats with the same number of non-year digits.

The year data formats work with the CENTWIN run-time parameter or installation option
to define a 2-digit year value that is to be treated as a 4-digit year. CENTWIN defines a
sliding or fixed 100-year window that determines the century to which 2-digit year data
belong when processed by INCLUDE/OMIT and other control statements.

The year data formats and CENTWIN ensure that century evaluation is applied to
INCLUDE/OMIT comparison conditions involving 2-digit year data. For example, without
CENTWIN processing, an INCLUDE/OMIT comparison would treat the year 01 as "less
than" the year 98. With CENTWIN processing, the 01 field could be recognized as a twenty-
first century date (2001), which would be treated as "greater than" 98 (1998).

For details on the CENTWIN option, see “CENTWIN” on page 5.7. For details on the year
data formats, see “CENTWIN Parameter (Optional)” on page 2.134. For an example of an
INCLUDE control statement with a condition involving a year data field, see Figure 16 on
page 2.33.

SyncSort for z/OS 1.1 Programmer’s Guide

INCLUDE/OMIT

For any of the 2-digit year formats, it is valid to compare them with any of the other for-
mats. Specifically, Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z fields can be compared to each other.

The following table summarizes the valid field to field comparisons for Full-Date formats:

Date Form

Length and Data Format Allowed

yyx and xyy

3,Y2T
3,Y2W
2,Y2U
2,Y2X

yyxx and xxyy

4,Y2T
4,Y2W
3,Y2V
3,Y2Y

yyxxx and Xxxyy

5,Y2T
5,Y2W
3,Y2U
3,Y2X

yyxxxx and XXXxyy

6,Y2T
6,Y2W
4,Y2V
4,Y2Y

Table 5. Permissable Field-to-Field Comparisons for Full-Date Formats

Chapter 2. SyncSort Control Statements

2.25

INCLUDE/OMIT

Specifying Field-to-Constant Standard Comparisons

The format of a data field determines the type of constant to which it can be compared. The
figure below illustrates which field-to-constant comparisons are permitted.

Binary Year

Format Decimal Hexadecimal Character (bit pattern) Constant

AC

AQ
ASL

AST

BI X X X X

CH

CLO/OL

CSF/FS

CSL/LS

CST/TS

R])

CTO /0T

FI Xk

PD

o

PDO X

Y2B

Y2C/Y2Z

Y2D

Y2P

Y2S

YoTs

R R DR [] X ™

SR ISH N B BN Bl Bl e

YoV X

Table 6. (Page 1 of 2) Permissible Field-to-Constant Comparisons

2.26 SyncSort for z/OS 1.1 Programmer’s Guide

INCLUDE/OMIT

. . Binary Year
Format Decimal Hexadecimal | Character (bit pattern) Constant

Y2WHH* X X
Y2X#* X X
Y2Y*** X X
7D X
Notes: * The decimal constant cannot be higher than 4294967295 or lower than 0.

** The decimal constant cannot be higher than 2147483647 or lower than -2147483648.

**% Full-Date formats

Table 6. (Page 2 of 2) Permissible Field-to-Constant Comparisons

A constant will be padded or truncated to the length of the field with which it is compared.
Decimal constants are padded or truncated on the left; hexadecimal, binary, and character
constants are padded on the right. The padding characters are:

Binary string B'00000000"
Character string X'40'
Hexadecimal string X'00'

Decimal fields Zeros of proper format. Decimal constants for 2-digit year for-
mats are padded or truncated to two decimal digits represent-
ing a year. The year constant will then have CENTWIN
processing applied to it for comparison to a Y2 field. These are

only for the two digit year fields, not for full date constants.

The constants for PD0 comparison should not include the first digit and trailing sign of the
PDO data that will be ignored. Thus, a PDO field of n bytes will be compared to a constant of
n-1 bytes.

Current Date Constant Specification

You can compare fields to the date of a SyncSort run or the date of the run with an offset in
addition to decimal fields and binary, character, and hexadecimal strings. Thus, records can
more easily be included or omitted based on whether their dates are equal to, less than, or
greater than the run date or the run date with an offset.

Chapter 2. SyncSort Control Statements 2.27

INCLUDE/OMIT

The format of a current date constant is:

current date constant HT} nnnn]

where:

e ‘current date constant’ is in the form of one of the &DATEx, & DATEx(c), & DATEXP, or
Y'DATEx' parameters where x is 1, 2, or 3 and depends on date comparison
compatibility.

e ‘¢’ indicates a date after the current date, and ‘-’ indicates a date before the current
date.

¢ ‘nnnn’ can have a maximum of 15 digits with the leftmost zeroes truncated. When the x
in &DATEx, &DATEx(c), &DATExP, or Y'DATEX' is 1 or 3, ‘nnnn’ can be from 0-9999
and represents offset days. When the x in &DATEx, &DATEx(c), &DATExP, or
Y'DATEX' is 2, ‘nnnn’ can be from 0-999 and represents offset months.

For an example of an INCLUDE control statement that uses a date range based on a date
constant, see Figure 17 on page 2.34.

The forms of current date constants available for standard comparisons are:

e &DATEx and &DATEx(c) represent the current date as a character string
(C'string') to which a field can be compared.

e &DATEXP represents the current date as a decimal number (+n) to which a field
can be compared.

e Y'DATEXx' represents the current date with a Y constant (Y'string') to which a field
can be compared.

The following table shows the current date constants and the format produced by each. The
¢ character in &DATEx(c) represents a non-blank separator character, except open and
close parentheses.

2.28 SyncSort for z/OS 1.1 Programmer’s Guide

INCLUDE/OMIT

Current Date Constant Generated Constant
&DATE1 C'yyyymmdd'
&DATE1(c) C'yyyyemmedd'
&DATE1P +yyyymmdd
&DATE2 C'yyyymm'
&DATE2(c) C'yyyyemm'
&DATE2P +yyyymm
&DATE3 C'yyyyddd'
&DATE3(c) C'yyyyeddd'
&DATE3P +yyyyddd
Y'DATE1' Y'yymmdd'
Y'DATE2! Y'yymm'
Y'DATES' Y'yyddd'

Table 7. Current Date Constant Formats

Full-Date Format Constant Specifications

Constants used for full-date comparisons should have the same number of digits in the con-
stant as in the full-date field that has been specified. Leading zeros must be specified when
needed. The constant is constructed from two items; the first is a 2-digit year and the sec-
ond is a value representing the months or days that comprise the remainder of the full date
format. For example, if a 5-byte Y2W field were to be compared for a value greater than the
20th day of 1996, 96020 should be the code for the constant.

Constants can be coded to represent special values, such as those found in header or trailer
records. All zeros or nines may be used with Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y. The same
number of digits must be present as in the field that is being compared. The constant string
Y'LOW' (representing binary zeros), YYHIGH' (representing binary ones), or Y'BLANKS'
(representing blanks) may be coded with the fields Y2T, Y2W, and Y2S. Y'DATEX' (repre-
senting the current date) may be coded with certain full-date formats specifically (see Table
8).

Chapter 2. SyncSort Control Statements 2.29

INCLUDE/OMIT

Y Constant Date Form Length and Data Format Allowed

Y'DATET' yyxxxx and xxxxyy | 6,Y2T
6,Y2W
4,Y2V
4,Y2Y

Y'DATEZ2! yyxx and xxyy 4,Y2T
4,Y2W
3,Y2V
3,Y2Y

Y'DATES3' yyxxx and xxxyy |5,Y2T
5Y2W
3,Y2U
3,Y2X

Table 8. Full-Date Comparisons

Substring Comparisons

2.30

Substring comparison (SS format) can be based on either of the following searches:
e Match occurrence of a constant within a record field
e Match occurrence of a record field within a constant.

In the first form, the length of the constant is less than the length of a specified field.
Records will be searched for the occurrence of the constant anywhere within the field. The
condition will be true if an EQ operator is specified and the constant is found or if a NE
operator was specified and the constant is not found. For example, consider the constant
"ANYTOWN" and a 60-byte field that contains an address. Records will be searched for the
occurrence of the literal "ANYTOWN" anywhere within the 60-byte address field. If a
match is found and the logical operator is EQ, then the logical result is "true." The logical
result is also "true" if the literal does not appear within the 60 bytes and the logical opera-
tor is NE.

In the second form, the length of a constant is greater than the length of a specified field.
Records will be searched for an occurrence of the field within the constant. For example, the
constant 'A02,A05,A06,A09', which is composed of substrings separated by commas, can be
compared against the contents of a 3-byte field within the record. If the 3-byte field
matches any 3-byte character string in the constant, the logical result is "true" if the logical
operator is EQ.

The character used to separate elements of the constant should be a character that does not
appear in the field being compared. The comparison is then equivalent to a standard com-
parison with ORed conditions. That is, the condition is true if 'A02' OR 'A05' OR 'A06' OR

SyncSort for z/OS 1.1 Programmer’s Guide

INCLUDE/OMIT

'A09' is found in the field being compared. The substring comparison is a much more com-
pact expression than multiple OR conditions in a standard comparison.

For both forms of substring comparison, constants and fields in the record can be from 1 to
256 bytes in length. Constants can be in either character or hexadecimal format. (Refer to
the description of constants just after Table 6 on page 2.26.)

See Figure 15 on page 2.33 for an example of how to use the substring comparison.

Sample INCLUDE/OMIT Control Statements

Example 1

INCLUDE COND=(24,4,PD,LT,28,4,PD,0R,10,2,CH,EQ,C'NY")

Figure 10. Sample INCLUDE Control Statement

In this example, records will be included in the application if the numeric value in the field
beginning in byte 24 is less than the numeric value in the field beginning in byte 28 or if
the character value in the field beginning in byte 10 is equal to NY.

Example 2

OMIT COND=(1,3,zZD,EQ,100,AND,20,1,CH,NE,X"'40")

Figure 11. Sample OMIT Conirol Statement

In this example, records will be omitted from the application if the numeric value in the
field beginning in byte 1 is equal to 100 and if the character value in byte 20 is not equal to
a blank (X'40").

The next set of control statements exemplifies record selection using bit level logic. The
first two examples involve a comparison between a bit mask (shown coded in binary and
hexadecimal format) and a binary input field. The third example is a comparison between a
bit pattern and a binary field.

Example 3

INCLUDE COND=(10,1,BI,ALL,B'01001000")
or INCLUDE COND=(10,1,BI,ALL,X'48")

Figure 12. Sample INCLUDE Control Statement Using a Bit Mask

The record selection condition has the following elements (from left to right): a binary field
(BI) of length 1 byte that starts at column 10 of the record, a comparison operator (ALL),
and a bit mask (B'01001000' in binary, X'48' in hexadecimal). Counting from the left, the

Chapter 2. SyncSort Control Statements 2.31

INCLUDE/OMIT

2.32

second and fifth bits of the bit mask are ON (1). For the selection condition to be true, the
same bits must be ON in the binary input field. Therefore, if the input field contains, for
example, 01001000, 01111000 or 11111111, the condition for the inclusion of records is sat-
isfied. However, if the input field contains a bit string where both mask bits are not ON
(e.g., 01000000, in which the fifth bit is not ON), the condition fails and the records are
omitted.

Example 4

INCLUDE COND=(10,1,BI,NOTNONE,B'01001000")
or INCLUDE COND=(10,1,BI,NOTNONE,X'48")

Figure 13. Sample INCLUDE Control Statement Using a Bit Mask

The condition for the inclusion of records is met if at least one of the mask bits is ON in the
input field. Therefore, the condition would evaluate as true, if the bit string in the binary
field were 01000000 (the second bit is ON), 000010000 (the fifth bit is ON), 01001000 (both
the second and fifth bit are ON). However, with the string 10000111, for instance, in the
input field, the specified condition would evaluate as false (resulting in the omission of
records), since neither mask bit is ON.

The above method of comparing a binary input field to a bit mask is useful for testing the
contents of a "flag" byte where each bit has a different meaning.

Example 5

INCLUDE COND=(21,4,BI,EQ,B'000000010001........ 100100011111")

Figure 14. Sample INCLUDE Control Statement Using a Bit Pattern

The condition specifies a 4-byte long binary input field (BI) in column 21, a logical relation-
ship (EQ), and a bit pattern. The bit pattern describes the required sequence of 1s and 0s in
the first and last twelve bit positions. The row of periods in the pattern represents the part
of the string that is irrelevant to the definition of the condition. The condition is true, if the
sequence of 1s and Os in the input field is identical to that described in the bit pattern.

The method of comparing a binary input field to a bit pattern is useful when testing for
numeric digits that are one half byte each, as in the packed data format. For example,
assume that the binary input field specified in the condition above is a date field in the PD
format X'OmmddyyF'. Each date element is split across a byte boundary. The second half-
byte of each byte (except the last) represents the first of the two digits that form a date ele-
ment (mm,dd,yy). (In the last byte, the second half-byte--1111 in binary and F in hexadeci-
mal--stands for the fact that the bit pattern encodes a packed decimal.) The first half-byte
of each byte (except the first) represents the second digit of a date element (mm,dd,yy).
(The first half-byte, i.e. 0000, of the bit pattern gives it the length specified for the binary

SyncSort for z/OS 1.1 Programmer’s Guide

INCLUDE/OMIT

field at column 21.) Mapping this scheme onto the bit pattern in the control statement
results in the following.

Bytes 1 2 3 4
| a a a |
0000 0001 0001 1001 0001 1111
HefBytes | 1 || 2 | | 38 || 4 | | 5 || 6 | | 7 || 8|
Field Element 0 m m d d y y F
Decimal Value 0 1 1 - - 9 1 15
of Half Byte

~— o

Date mm=11 dd=ignored yy=91

That is, the above control statement is an instruction to select just those records in whose
date field mm and yy equal 11 and 91, respectively, while dd can have any value. In other
words, the records thus selected are those from November 1991.

Example 6

The following example illustrates substring comparisons.

INCLUDE COND=(11,60,EQ,C'ANYTOWN',
OR,121,3,EQ,C'A01,A05,A06,A09') ,FORMAT=SS

Figure 15. Sample INCLUDE Control Statement Using Substring Compares

In this example, a record will be included in the application if either of the following condi-
tions is true:

e The literal 'ANYTOWN' is found in the 60-byte field starting at position 11 in the
record.

¢ The contents of the 3-byte field starting at position 121 matches one of the four
substrings (‘A01', 'A05', 'A06', or 'A09') in the constant.

Example 7

The following example illustrates an INCLUDE comparison based on CENTWIN process-
ing.

INCLUDE COND=(20,2,Y2C,GT, 96)

Figure 16. Sample INCLUDE Control Statement with CENTWIN Processing

Chapter 2. SyncSort Control Statements 2.33

INCLUDE/OMIT

2.34

In this example only records whose data are from the years greater than 1996 will be
included in the application. If the CENTWIN parameter were set to 1980, representing a
century window of 1980 to 2079, the records would be processed in the following manner:

Contents of Record

Positions 20 and 21 Disposition

84 Omitted - represents 1984

99 Included - represents 1999

37 Included - represents 2037
Example 8

The following INCLUDE control statement illustrates the use of the current date constant
and the current date with an offset to include records with dates starting with the current
date and spanning through the two week period prior to the current date.

INCLUDE COND=(5,8,ZD,LE, &DATE1P,AND, 5, 8,ZD,GT, &DATE1P-14)

Figure 17. Sample INCLUDE Control Statement Using Current Date Constant and Cur-
rent Date Constant With an Offset Comparison

If the application were run on April 25, 2002, the records included would have dates in the
8-bytes field starting at position 5 from April 12, 2002 through and including April 25,
2002.

Applications using the INCLUDE/OMIT control statement are illustrated in “Chapter 3.
How to Use SyncSort’s Data Utility Features”.

SyncSort for z/OS 1.1 Programmer’s Guide

INREC

INREC Control Statement

The INREC control statement reformats the input records. Use the INREC control state-
ment to add, delete, or reformat fields before the records are sorted or merged. Use the
OUTREC control statement or the OUTREC parameter of the OUTFIL control statement
to delete or reformat fields after the records are sorted or merged. Note that INREC is per-
formed after E15 exit processing and INCLUDE/OMIT control statement processing.

Using the INREC control statement to delete data fields improves sort performance by
reducing the number of bytes SyncSort for z/0OS must process. The same result may be
achieved in some cases by changing the data format of certain fields. For example, if you
need to change the format of a ZD field to PD, which reduces the number of bytes for the
field, it is more efficient to use INREC rather than OUTREC for the conversion. Addition-
ally, for SORT/MERGE processing PD fields are processed more efficiently than ZD fields.

Except for CONVERT, all the functions performed by the OUTREC control statement, such
as inserting character strings or changing the data format of a numeric field, can also be
performed by the INREC control statement. (See “OUTREC Control Statement” on page
2.88 for an explanation of these functions.) For example, you can use the INREC control
statement to insert zeros of the proper format to expand a numeric field before SUM pro-
cessing to prevent arithmetic overflow. However, you will usually want to use the OUTREC
control statement rather than the INREC control statement to expand the record because
OUTREC processing takes place after records are sorted or merged.

If you use the INREC control statement to reformat the input record, remember to use the
post-INREC field positions when you specify the SORT, MERGE, SUM, OUTREC, and/or
OUTFIL control statements.

If the SEQNUM function is used in a SORT application to insert a sequence number field
in the record, this field will reflect the order of the records prior to sorting. In a MERGE
application, the field will reflect the order of the records as they were read from each input
in the merge.

INREC Control Statement Format

The format of the INREC control statement is illustrated below:

INREC FIELDS=(...)

Figure 18. INREC Control Statement Format

FIELDS Parameter (Required)

The FIELDS parameter specifies the data fields to be included in the application. See
“OUTREC Control Statement” on page 2.88 for a complete description of the FIELDS
parameter.

Chapter 2. SyncSort Control Statements 2.35

INREC

Sample INREC Control Statement

INREC FIELDS=(1:1,20,21:40,15,ZD,PD,29:60,5)

Figure 19. Sample INREC Control Statement

This INREC control statement specifies three data fields from an 80-byte record:
¢ The first field begins in byte 1 of the input record and is 20 bytes long.

¢ The second field begins in byte 40 of the input record and is a 15-byte ZD field. The data
format is to be converted to PD. Since the input field contains 15 decimal digits, the
converted PD output field created by SyncSort will be 8 bytes long.

¢ The third field begins in byte 60 of the input record and is 5 bytes long.

These three fields have been positioned to begin in bytes 1, 21, and 29, as indicated by their
column prefixes.

The reformatted input record is now just 33 bytes long.

For comprehensive examples that illustrate the INREC control statement see “Chapter 3.
How to Use SyncSort’s Data Utility Features”.

2.36 SyncSort for z/OS 1.1 Programmer’s Guide

MERGE

MERGE Control Statement

The MERGE control statement is required for every merge application. The MERGE con-
trol statement can also define a copy application.

Cultural Environment Support

Cultural environment support allows you to choose an alternative set of collating rules
based on a specified national language. The alternative collating applies to SORT/MERGE
and INCLUDE/OMIT processing.

For additional detail, see “LOCALE” on page 5.20.

MERGE Control Statement Format

The format of the MERGE control statement is illustrated below:

FIELDS=(p,,1;,f;,0,[,p,,15,f5,0,1...)
MERGE FIELDS=(p1 ,11 ,01 [,p2 ,12 ,02] ..),FORMAT=f
FIELDS=COPY

,CKPT
,CHKPT

[[SKIPREC=n| [,STOPAFT=n]

JEQUALS

,CENTWIN=
2NOEQUALS

[,FILES=n

= o

Figure 20. MERGE Control Statement Format

FIELDS Parameter (Required for a Merge)
The FIELDS parameter is required for a merge. It describes the control fields.

List the control fields in order of greatest to least priority, with the primary control field
listed first, followed by progressively less significant fields. You can specify up to 128 con-
trol fields; however, if fields require complex internal processing, the limit for a particular
execution may be less than 128.

Each field specified in the FIELDS parameter is identified by its position p, length /, format
f and order o.

P The position value indicates the first byte of the field relative to the beginning
of the input record after INREC and/or E32 processing, if specified, have com-
pleted.

Chapter 2. SyncSort Control Statements 2.37

MERGE

Binary control fields can begin on any bit of a byte. When a binary field does not
begin on a byte boundary, you must specify the bit number (0-7). For example, a
position value of 21.3 refers to the 4th bit of the 21st byte of the record.

The length value indicates the length of the control field. The length value must
be an integer number of bytes, except for the length of a binary control field
which can be specified in bits. For example, a length value of 0.5 refers to a
binary control field 5 bits long.

For signed fields, the length value must include the area occupied by the sign.

The format value indicates the data format. For a list of valid formats, refer to
the Format Code Chart in the next section, "Valid Formats for Merge Control
Fields." If all the control fields have the same format, you can specify the format
value once by using the FORMAT=f subparameter. If you specify both the indi-
vidual f values and the FORMAT subparameter, the individual f values will be
used. (Note that the f values must be specified for each control field).

The order value indicates how the field is to be collated:

A=Ascending order
D=Descending order
E=As modified by an E61 exit.

Valid Formats for Merge Control Fields

The following table lists the valid formats for merge control fields.

Code Data Format Field Length
(bytes)

AC* EBCDIC characters are translated to their ASCII equivalents before 1 to 40917
sorting.

AQ* Character. Records are sorted according to an alternate sequence speci- | 1 to 40917
fied either in the ALTSEQ control statement or as an installation
default.

ASL* Leading separate sign. An ASCII + or - precedes numeric field. One 2 to 256
digit per byte.

AST* Trailing separate sign. An ASCII + or - trails numeric field. One digit 2 to 256
per byte.

Table 9. (Page 1 of 3) Format Code Chart

2.38 SyncSort for z/OS 1.1 Programmer’s Guide

MERGE

Code Data Format Field Length
(bytes)
BI Binary. Unsigned. 1 bit to 4092**
CH Character. Unsigned. 1 to 4092%*
CLO* Leading overpunch sign. Hexadecimal F,C,E, or A in the first 4 bits of 1 to 256
OL* your field indicates a positive number. Hexadecimal D or B in the first 4
bits indicates a negative number. One digit per byte. CMP=CLC is
forced.
CSF Floating sign format. An optional leading sign may be specified immedi- | 1 to 16
FS ately to the left of the digits. If the sign is a -, the number is treated as
negative. For other characters, the number is treated as positive. Char-
acters to the left of the sign are ignored.
CSL* Leading separate sign. An EBCDIC + or - precedes numeric field. One | 2 to 256
LS* digit per byte. CMP=CLC is forced.
CST* Trailing separate sign. An EBCDIC + or - follows numeric field. One 2 to 256
TS* digit per byte. CMP=CLC is forced.
FI Fixed point. Signed. (Equivalent to Signed Binary.) 1 to 256
FL Floating point. Normalized. Signed. 2to 16
PD Packed decimal. Signed. 1 to 256
PDO* Packed decimal. 2-8-byte packed decimal data with the first digit and 2-8
trailing sign ignored. The remaining bytes are treated as packed deci-
mal digits. Typically PDO is used with century window processing and
Y2P format; Y2P processes the year, while PD0 processes month and
day.
Y2B* Binary. 2-digit, 1-byte binary year data treated as a 4-digit year by 1
CENTWIN (century window) processing.
Y2C* Character. 2-digit character year data treated as a 4-digit year by CEN- | 2

TWIN (century window) processing. Processing is identical to Y2Z
fields.

Table 9. (Page 2 of 3) Format Code Chart

Chapter 2. SyncSort Control Statements 2.39

MERGE

Code Data Format Field Length
(bytes)

Y2D* Packed decimal. 2-digit, 1-byte packed decimal year data treated as a 4- | 1
digit year by CENTWIN (century window) processing.

Y2p* Packed decimal. 2-digit, 2-byte packed decimal year data. Of the four 2
packed digits contained in the 2 bytes, the first digit and trailing sign
are ignored; the two inner digits are treated as a 4-digit year by CEN-

TWIN processing.

Y2S* Character or zoned decimal. 2-digit, 2-byte valid numeric data treated | 2
as a 4-digit year by CENTWIN (century window) processing, as for Y2C
and Y2Z. However, certain data are not treated as year data. Data with
binary zeros (X'00') or a blank (X'40") in the first byte will be collated
before valid numeric year data for ascending order (after year data for
descending order). Data with all binary ones (X'FF') in the first byte will
be collated after valid numeric year data for ascending order (before
year data for descending order). Zones are ignored, as for Y2C and Y2Z,
except for data where the first byte begins with X'00', X'40' or X'FF".

Y2T* Full-date, character, binary, or packed decimal formats. Full-date data | 2-6

. formats can be used to sort or merge a variety of date fields. They can

Y2U process dates ending or starting with year digits (x...xyy or yyx...x).
They can also process non-date data commonly used with dates. For

Y2V* .
details, see page 2.140.

Y2W*

Y2X*

Y2Y*

Y2Z* Zoned decimal. 2-digit, 2-byte zoned decimal year data treated as a 4- 2
digit year by CENTWIN (century window) processing. The zones are
ignored. Processing is identical to Y2C fields.

7D Zoned decimal. Trailing overpunch in the first 4 bits of the rightmost 1 to 256

CTO* byte gives the sign. Hexadecimal F,C,E, or A indicates a positive num-

oT* ber. Hexadecimal D or B indicates a negative number. One digit per
byte. CTO forces CMP=CLC.

Notes: * Cannot be used with Tape Sort.

** 4084 for variable-length records.
7 2043 for variable-length records.

2.40

Table 9. (Page 3 of 3) Format Code Chart

SyncSort for z/OS 1.1 Programmer’s Guide

MERGE

For information on the year data formats (Y2B, Y2C, Y2D, Y2P, Y2S and Y2Z) plus the
related data format PDO, see “CENTWIN Parameter (Optional)” on page 2.41 and “Con-
verting Year Data with Century Window Processing on INREC, OUTREC, or OUTFIL
OUTREC” on page 2.100. Also see "Specifying Field-to-Field Standard Comparisons for
Year Fields" in the INCLUDE/OMIT Control Statement section of this chapter.

Rules for Specifying Merge Control Fields

¢ For fixed-length records, the sum of the lengths of all control fields cannot exceed 32752
bytes. When EQUALS is in effect, the sum of their lengths cannot exceed 4088 bytes.

e For variable-length records, all control fields must be located within the first 4084 bytes
and the sum of their lengths cannot exceed 4084 bytes. When EQUALS is in effect, all
control fields must be located within the first 4080 bytes and the sum of their lengths
cannot exceed 4080 bytes.

¢ Control fields can be in contiguous or non-contiguous locations in the record.

¢ Remember that for variable-length records, the first 4 bytes are reserved for the Record
Descriptor Word, so the first byte of the data portion of the record is byte 5.

e If the output file is a key-sequenced VSAM cluster, the VSAM key must be the first
control field specified.

Comparing PD and ZD Control Fields

The CMP PARM determines how PD and ZD control fields will be compared. When
CMP=CPD is in effect, the Compare Decimal (CP) instruction is used for the compare. ZD
fields are packed and then compared. This method has performance advantages. However,
invalid PD data may cause a system 0C7 abend and program termination. Moreover, the
integrity of ZD fields is only guaranteed when they contain valid ZD data. The CMP=CPD
method cannot be used for control fields that exceed 16 bytes, for variable-length merges
when an even value (0, 2, 4, or 6) is specified for the VLTEST PARM, or for a Tape Sort.

When CMP=CLC is in effect, no data validation is performed and the integrity of the out-
put is maintained, even if the sign for a PD or ZD field is invalid. This method is always
used if any control field exceeds 16 bytes, for variable-length merges when an even value is
specified for the VLTEST PARM, and for a Tape Sort.

CENTWIN Parameter (Optional)

The CENTWIN run-time or installation option acts on 2-digit year data. At run-time,
CENTWIN can be specified as either a PARM option or a SORT/MERGE control statement
parameter. CENTWIN generates a century window (for example, 1950 through 2049) that
determines the century to which a 2-digit year belongs. CENTWIN ensures that year data
spanning centuries will be sequenced correctly. Without CENTWIN processing, an
ascending collation would sequence the year 01 before the year 98. With CENTWIN

Chapter 2. SyncSort Control Statements 2.41

MERGE

2.42

processing, the 01 field could be recognized as a twenty-first century date (2001) and would
thus be sequenced after 98 (1998).

For more information on specifying the CENTWIN option, see “CENTWIN” on page 5.7.

CENTWIN processing only applies to data defined as year data formats (Y2B, Y2C, Y2D,
Y2P, Y2S, and Y2Z7) and the full-date formats (Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y). These
data formats enable SyncSort to process 2-digit year fields as 4-digit years. A related data
format, PDO, can be used to process the month and day portions of packed decimal date
fields. To correctly specify date fields for CENTWIN MERGE processing, you should be
familiar with the CENTWIN-related data formats.

The following describes each of the year data formats and provides MERGE control state-
ment examples:

The Y2B Format

This format is used to sequence 2-digit, 1-byte binary year data with CENTWIN process-
ing. The binary values are converted to decimal, and the two low order digits are used as
year data. Thus, while binary and decimal values range from 00 to 255, year values range
from 00 to 99. The relationship between binary, decimal and year values is shown in the fol-
lowing table:

Binary Value Decimal Value | Year Value

X'00' to X'63' 00 to 99 00-99
X'64' to X'CT' 100 to 199 00-99
X'C8' to X'FF" 200 to 255 00-55

Table 10. Possible Values Representing Year Data with Y2B

The Y2C and Y2Z Formats

These formats represent 2-digit, 2-byte year data in either character (Y2C) or zoned deci-
mal (Y2Z) format. Either Y2C and Y2Z formats can be used with data of the form

X'xyxy'

where y is a hexadecimal year digit 0-9 and x is hexadecimal 0 through F. Y2C and Y2Z
ignore the x digits, leaving yy, the 2-digit unsigned year representation.

Suppose you have a character or zoned decimal date field mmddyy that begins at byte 20.
You can use either Y2C or Y2Z to process the yy field. As the following example indicates,
you could specify three sort keys to correctly sort this date:

SyncSort for z/OS 1.1 Programmer’s Guide

MERGE

MERGE FIELDS=(24,2,Y2C,A, * Collates yy field as 4-digit year
20,2,CH,A, * Collates mm field
22,2,CH,n) * Collates dd field

The yy field (24,2) will be processed according to the century window setting. For example,
if CENTWIN=1945, the field yy=45 will be sequenced as if it were 1945, and yy=44 would
be sequenced as if it were 2044. Thus, for an ascending sort, 44 would follow 45.

The Y2D Format

This format is used to sequence 2-digit, 1-byte packed decimal year data with CENTWIN
processing. Use Y2D to extract the year data yy from packed decimal date fields. For exam-
ple, consider a 3-byte packed decimal data field defined as

X'yyddds'

This field has the year yy in the first byte and the day ddd in bytes 2 and 3. The packed dec-
imal sign s would be in the last digit (half byte) of the third byte. To sort this date field,
which begins at byte 20, with 4-digit year processing, use the following MERGE control
statement:

MERGE FIELDS=(20,1,Y2D,A, * Collates 2-digit year as 4-digit year
21,2,PD,An) * Collates ddds as 3 digits (ddd)

The Y2P Format

This format is used to sequence 2-digit, 2-byte packed decimal year data with CENTWIN
processing. Use Y2P to extract the year data yy from packed decimal date fields spanning 2
bytes. For example, a packed decimal date of the form yymmdd would be stored as 4 bytes:

yymmdd = X'0yymmddC'

where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on the
left to make an even number of digits.

Notice that the components of the date span bytes:
Oy ym md dC

Y2P handles this condition by ignoring the first and last half bytes of the 2-byte field speci-
fication. Thus, Y2P processes Oyym as yy, ignoring the leading digit (0) and the trailing digit
m that is part of the month.

Chapter 2. SyncSort Control Statements 2.43

MERGE

The following example uses Y2P to collate the year portion of the date field, which begins at
byte 20:

MERGE FIELDS=(20,2,Y2P,A) * Collates yy field as 4-digit year

The field specification 20,2,Y2P treats X'Oyym' as X'yy', and CENTWIN processing sorts yy
as a 4-digit year yyyy.

The PDO format, described below, can assist Y2P by processing month and day data that
overlap year data in the original field.

The Y2S Format

This format is used to sequence 2-digit, 2-byte character or zoned decimal data. The Y2S
format is identical to Y2C and Y2Z for valid numeric data, but Y2S treats data that begin
with X'00', X'40' or X'FF' as non-year data. Thus, the Y2S format can distinguish records
that have non-year data in the first byte of the year field, allowing such records to be col-
lated differently from other records.

Y2S treats non-year data as follows:

e Data with binary zeros (X'00') or a blank (X'40") in the first byte will not have century
window processing applied to it. Instead, such data will be collated in sequence, before
valid numeric year data for ascending order or after the year data for descending order.

e Data with all binary ones (X'FF') in the first byte will also not have century window
processing applied to it. Instead, such data will be collated after valid year numeric
data for ascending order or before the year data for descending order.

Zones are ignored, as for Y2C and Y2Z, except for data where the first byte begins with
X'00', X'40' or X'FF".

As an example, suppose you want to preserve the input order of header and trailer records
at the start or end of the file, and your header/trailer records are identified by binary zeros
(X'00"), a blank (X'40") or binary ones (X'FF') in the first byte of the date field. The Y2S for-
mat allows CENTWIN to identify the header/trailer records and treat them differently
from other records.

The PDO0 Format

This format is used to sequence 2-8 byte packed decimal data. PDO ignores the first digit
and trailing sign during processing. PDO is normally used in conjunction with the Y2P data
format. The Y2P format is used to process the 2-digit year portion of a packed decimal date
field, while the PDO format is used to process the month and day portion of the field.

Although PDO is typically used with Y2P, CENTWIN processing is not applied to PDO.

2.44 SyncSort for z/OS 1.1 Programmer’s Guide

MERGE

Consider the packed decimal date field used in the Y2P example above:
yymmdd = X'0yymmddC'

where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on the
left to make an even number of digits.

Notice that the components of the date span bytes:
Oy ym md dC
The date can be processed as follows:
e Y2P processes the year component X'Oyym' as X'yy'.
¢ PDO processes the month and day components X'ymmddC' as X'mmdd'.

The following MERGE control statement can be used to collate the entire date with
CENTWIN processing:

MERGE FIELDS=(20,2,Y2P,A, * Treats X'Oyym' as X'yy'; collates yy as yyyy
21,3,PD0,A) * Treats X'ymmddC' as X'mmdd'

Full-Date Formats

Full-date formats can be used to sort or merge various date fields, processing dates ending
or starting with year digits. They also process non-date data that are used with dates. For a
full description of full-date formats, see the following section.

Using Full-Date Formats with CENTWIN

SyncSort’s full-date data formats enable you to sort or merge a variety of date fields. The
full-date formats are Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y. These date formats can process
dates ending or starting with year digits:

¢ x..xyy (for example: qyy, mmyy, dddyy, or mmddyy)
e yyx..x (for example: yyq, yymm, yyddd, or yymmdd)

The full-date formats also process non-date data commonly used with the dates. SyncSort
interprets two-digit years (yy) according to the century window specified by the CENTWIN
option. CENTWIN processing does not apply to non-date data.

In most cases, for CH, ZD, and PD date fields the full-date data formats are easier to use
than the 2-digit date formats. The 2-digit formats can be more difficult because you must
divide the date into its components. This requires care, particularly for PD dates, where

Chapter 2. SyncSort Control Statements 2.45

MERGE

date components (q, dd, mm, or yy) may span bytes or occupy only part of a byte. The full-
date formats, on the other hand, process such dates automatically.

The table below describes the full-date formats. For date forms not in the table, use the 2-
digit year formats or the non-year formats.

Note the following symbols used in the table:

year digit (0-9)
non-year digit (0-9)
sign (hexadecimal A-F)
unused digit

S KU <

2.46 SyncSort for z/OS 1.1 Programmer’s Guide

MERGE

Full-Date Data Example Date
Format Format Date Form Form Length (bytes)

Y2T CH, BI yyx yyq 3
YyXX yymm 4
YYXXX yyddd 5
VYXXXX yymmdd 6

Y2U PD yyx yyq 2
X'yyxs')
YYXXX yyddd 3
X'yyxxxs')

Y2V PD YYXX yymm 3
(X'0Oyyxxs')
YYXXXX yymmdd 4
(X'Oyyxxxxs')

Y2W CH, BI Xyy qQyy 3
XXyy mmyy 4
XXXYY dddyy 5
XXXXYY mmddyy 6

Y2X PD Xyy qQyy 2
X'xyys")
XXXYY dddyy 3
(X'xxxyys')

Y2Y PD XXYY mmyy 3
(X'0xxyys")
XXXXYY mmddyy 4
(X'0xxxxyys')

Table 11. Full-Date Formats

Chapter 2. SyncSort Control Statements 2.47

MERGE

2.48

The table indicates the full-date formats that can be used with character (CH), binary (BI),
or packed decimal (PD) data. Note the recognized non-date values:

Character or binary (Y2T and Y2W full-date formats)

C'0...0' (CH zeros)

C'9...9' (CH nines)

7'0...0' (ZD zeros)

7'9...9' (ZD nines)

X'00...00' (BI zeros)

X'40...40' (blanks)

X'FF...FF' (BI ones)

Packed (Y20, Y2V, Y2X, and Y2Y full-date formats)
P'0...0' (PD zeros)
P'9...9' (PD nines)

The following two examples illustrate how you might use the Full-Date Formats table:

e Suppose you have a packed decimal (PD) date field of the form mmyy. To sort this field
correctly, you would use the Y2Y 3-byte format from the table. Thus, if the field starts
in position 30, you would specify the following SORT control statement to sort in
descending order:

SORT FIELDS=(30,3,Y2Y,D)

Any PD fields of all PD zeros or all PD nines will be processed automatically as non-
date data.

e Suppose you have a character (CH) date field of the form yymmdd. To sort this field
correctly, you would use the Y2T 6-byte format from the table. Thus, if the field starts in
byte 40, you would specify the following SORT control statement to sort in ascending
order:

SORT FIELDS=(40,6,Y2T,A)

Any CH zeros, CH nines, BI zeros, blanks, and BI ones will be processed automatically
as non-date data.

Collating Sequence with Full-Date Formats

For full-date formats, the yy component is always sorted first (treated as primary key). This
is so even when the yy is physically at the rightmost end of the field, as for Y2W, Y2X, and
YZ2Y. For example, a 6-byte Y2W field has the form xxxxyy. This is collated with the yy as
the primary key and xxxx as the secondary key. Because SyncSort automatically collates
the year character first, you don’t have to deal with yy manually, for example by using PDO0
and Y2D.

SyncSort for z/OS 1.1 Programmer’s Guide

MERGE

It is important to understand that the xxxx component of a full-date format must be
designed to collate as a unit. Suppose you have the 6-byte Y2T field yyxxxx. If you collate
this field in ascending order, then yy collates first (the primary key) with xxxx collating sec-
ond (secondary key). Consider two possibilities:

e Ifyyxxxx is actually yymmdd, you will be sorting first by year, then month, then day.

e If yyxxxx is actually yyddmm, you will sorting by year, then day, then month. In most
cases, sorting in this way would not be what you intended.

To correctly collate a date, the date components must be in an order suitable for collating.
For example, mmddyy and yymmdd will collate correctly, but ddmmyy or yyddmm will not.
For date forms that will not collate correctly, you must use one of the 2-digit year formats
(Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z).

The following table shows the order for ascending collation when using full-date formats
with the CENTWIN option:

Full-Date Format Date Format Ascending Sort Sequence
Y2T CH, BI BI zeros
Y2W Blanks

CH/ZD zeros

Lower century dates (e.g. 1980)
Higher century dates (e.g. 2010)

CH/ZD nines

BI ones
Y2U PD PD zeros
Y2V Lower century dates (e.g. 1980)
Y2X Higher century dates (e.g. 2010)
Y2Y PD nines

Table 12. Ascending Sort Sequences

For a descending sort, the collation order is reversed.

Other date formats (non-full-date), with the exception of Y2S, do not process non-date
data; their sort sequence for ascending sorts is simply lower century dates than higher
century dates.

Chapter 2. SyncSort Control Statements 2.49

MERGE

Examples Using Full-Date Formats

Example 1 (Y2W)

The following SORT control statement sorts a C'mmddyy' date field in ascending order,
with the previously set fixed century window 1984-2083:

SORT FIELDS=(10,6,Y2W,A) * Sort C'mmddyy' in ascending order
* with Y2W
* and previously set century window 1984-2083

The Full-Date Formats table above indicates that the 6-byte Y2W form is appropriate for a
CH input field of the form xxxxyy. As shown in the following table, the output will be col-
lated as C'yyyymmdd', with the non-date data (zeros) appearing correctly at the beginning
of the sorted output.

SORTIN Record Order Actual Date
Input after Sorting after Sorting
mmddyy mmddyy yyyy/mm/dd
021783 000000 non-date data
092206 070484 1984/07/04
081395 081395 1995/08/13
110210 092206 2006/09/22
000000 110210 2010/11/02
070484 043060 2060/04/30
043060 021783 2083/02/17

Example 2 (Y2T)

The following SORT control statement sorts a Z'yyddd' date field in descending order, with
the previously set fixed century window 1921-2020:

SORT FIELDS=(20,5,Y2T,D) * Sort Z'yyddd' in descending order
* with Y2T
* and previously set century window 1921-2020

The Full-Date Formats table above indicates that the 5-byte Y2T form is appropriate for a
ZD input field of the form yyddd. As shown in the following table, the output will be col-
lated as Z'yyyyddd', with the non-date data (nines and zeros) appearing correctly at the
beginning and end of the sorted output.

2.50 SyncSort for z/OS 1.1 Programmer’s Guide

MERGE

SORTIN Record Order Actual Date
Input after Sorting after Sorting
yyddd yyddd yyyy/ddd
00000 99999 non-date data
50237 20153 2020/153
99999 20047 2020/047
20047 01223 2001/223
94001 94001 1994/001
01223 50237 1950/237
20153 21148 1921/148
21148 00000 non-date data

Example 3 (Y2Y)

The following SORT control statement sorts a P'mmddyy' (X'Ommddyys') date field in
ascending order, with the previously set fixed century window 1921-2020:

SORT FIELDS=(26,4,Y2Y,A) * Sort P'mmddyy' in ascending order
* with Y2Y
* and previously set century window 1921-2020

The Full-Date Formats table above indicates that the 4-byte Y2Y form is appropriate for a
PD input field of the form xxxxyy. As shown in the following table, the output will be col-
lated as P'yyyymmdd', with the non-date data (zeros and nines) appearing correctly at the
beginning of the sorted output. Note that the first two columns are in hexadecimal.

SORTIN Record Order Actual Date
Input after Sorting after Sorting
mmddyy mmddyy yyyy/mm/dd
0999999cC 0000000C non-date data
0102250C 0080321C 1921/08/03
0032120C 0102250C 1950/10/22
0010194cC 0010194cC 1994/01/01
0000000C 0111501C 2001/11/15
0111501C 0032120C 2020/03/21
0080321C 0999999C non-date data

FIELDS=COPY (Required for a Copy)

Use FIELDS=COPY to copy one or more input files. (Multiple files can be copied if they are
concatenated on the SORTIN DD specification.) Other control statements such as
INCLUDE/OMIT, INREC, OUTREC and OUTFIL may be specified in conjunction with a
copy application, allowing you to edit and reformat the file(s) without any collation process-
ing

The SUM control statement and an E32 exit cannot be specified with FIELDS=COPY. All
Phase 3 exits can be used.

Chapter 2. SyncSort Control Statements 2.51

MERGE

The SORTIN DD statement defines the input to be copied. (SORTINnn DD statements are
not processed when FIELDS=COPY is specified.)

CKPT/CHKPT Parameter (Optional)

The CKPT/CHKPT parameter instructs SyncSort to take a checkpoint at every end-of-vol-
ume of a SORTOUT data set when OUTFIL is not used. Either spelling is accepted.

This parameter requires a SORTCKPT DD statement. It cannot be specified in conjunction
with a user-issued STIMER macro or an incore sort. Checkpoints cannot be taken within a
user exit routine.

Refer to “Chapter 13. Performance Considerations” for an explanation of the Checkpoint/
Restart feature.

EQUALS/NOEQUALS Parameter (Optional)

The EQUALS parameter insures that equal-keyed records are merged in the order of their
respective files. Equal-keyed records from the lowest numbered SORTINnn file are written
before those from the second input file, etc. NOEQUALS, the default, specifies that equal-
keyed records from different files be written in random order.

The order of equal-keyed records within each input file is always preserved during a merge,
whether or not the EQUALS parameter is specified.

When the EQUALS parameter is used with the SUM control statement, the first of the
equal-keyed records is retained with the sum; all other records are deleted after the speci-
fied field(s) have been summed.

EQUALS/NOEQUALS can also be specified as a PARM option on the EXEC statement. If
this option is specified both on the MERGE control statement and as a PARM option, the
MERGE specification takes precedence.

FILES Parameter (Optional)

The FILES=n parameter specifies the number of input files that an E32 exit will supply to
the merge. The n value can be any number up to 100.

Specifying the FILES parameter both on the MERGE control statement and in the 24-bit
parameter list will cause SyncSort to terminate with a critical error.

The FILES parameter cannot be specified as a PARM on the EXEC statement or in a
$ORTPARM data set.

2.52 SyncSort for z/OS 1.1 Programmer’s Guide

MERGE

SKIPREC Parameter (Optional)
The SKIPREC=n parameter instructs SyncSort to skip a decimal number of records before
the input file is copied. The n records skipped are deleted from the input file before
INCLUDE/OMIT processing, if specified, takes place.

The SKIPREC parameter can only be specified for a MERGE FIELDS=COPY operation.
SKIPREC cannot be specified for a merge of multiple SORTINnn data sets.

If SKIPREC is specified as a PARM option as well as on the MERGE control statement, the
PARM specification takes precedence.

STOPAFT Parameter (Optional)
The STOPAFT=n parameter specifies the number of records to be copied. These will be the
first n records after INCLUDE/OMIT and SKIPREC processing, if specified, have com-
pleted.

The STOPAFT parameter can only be specified for a MERGE FIELDS=COPY operation.
STOPAFT cannot be specified for a merge of multiple SORTINnn data sets.

If STOPAFT is specified as a PARM option as well as on the MERGE control statement, the
PARM specification takes precedence.

Sample MERGE Control Statements

MERGE FIELDS=(1,5,CH,A,10,2,PD,D,30,4,BI,A)

Figure 21. Sample MERGE Control Statement

This sample MERGE control statement specifies three merge control fields:

¢ The first, or primary, control field begins in byte 1, is 5 bytes long, is in character
format and is to be merged in ascending order.

e The second control field begins in byte 10, is 2 bytes long, is in packed decimal format
and is to be merged in descending order.

¢ The third control field begins in the third bit of byte 30, is 4 bytes long, is in binary
format and is to be merged in ascending order.

MERGE FIELDS=COPY, STOPAFT=200

Figure 22. Sample MERGE Control Statement

This MERGE statement specifies a copy operation. Only the first 200 records will be copied.

Chapter 2. SyncSort Control Statements 2.53

MODS

MODS Control Statement

The MODS control statement specifies a user exit routine and is required with an exit.
Refer to “Chapter 7. The Coding and Use of Exit Programs” for a detailed explanation of
how to specify exit programs.

MODS Control Statement Format

The format of the MODS control statement is illustrated below.

MODS exit-name;=(parameters;),...,exit-name;s=(parameters;¢)

where parameters =

-

\.'1

[on

B
RAxXEo®nZ

-

-

Insert a positional comma if the d value is omitted but the link-editing code is supplied.

Figure 23. MODS Control Statement Format
If an application has more than one exit, specify the exit-name parameter for each exit. Up
to 16 exits can be specified. Use commas to separate multiple exit-name parameters.
Exit-Name Parameter (Required)

The exit-name parameter identifies the exit and provides additional information. Replace
'exit-name' with an E followed by the appropriate exit number. The 16 valid exit-names are

listed below.

2.54 SyncSort for z/OS 1.1 Programmer’s Guide

MODS

Sort Sort Sort or Merge C
Phase 1 Phase 2 Phase 3 Py
E11
E14
E15 E15
El6
E17
E18
Exit E21
E25
E27
Name E31 E31
E32 (merge only)
E35 E35
E37 E37
E38 E38
E39 E39
E61 E61

Table 13. Phases and Permissible Exits

The exit-name parameter also provides the following information about the exit.

r

The r value specifies the name of the user exit routine. Any valid name is
acceptable. If the exit routine resides in a library, specify the member name or
alias name for the r value. For an exit coded in REXX, r represents the REXX
exec name.

The b value specifies the exact or estimated decimal number of bytes the exit
routine requires in main storage. This number should include any additional
main storage required by the exit (e.g., buffers, GETMAINSs, etc.). Specify an
estimate (without an E before the value) if the exact number is not known. This
number should only include storage requirements below the 16-megabyte line.

REXX exits have some additional storage requirements. REXX system modules
and control blocks need 26K, and each EXEC that is called will require 12K of
storage. In addition to any variables that the EXEC uses, all special SyncSort
variables will require storage (including space for a record).

The d value identifies the DD statement name that specifies the library in
which the exit routine resides. The JCL must include a DD statement specify-
ing each library in which an exit routine resides. If the exit routine is to be
placed in the input job stream, specify SYSIN for the d value. (If more than one

Chapter 2. SyncSort Control Statements 2.55

MODS

2.56

exit routine is included in SYSIN, the exit routines must be specified in ascend-
ing numerical order by exit name.)

For a Disk Sort, MAXSORT or PARASORT, an exit routine that is a load
module residing in a library identified in a LINKLIB, STEPLIB or JOBLIB DD
statement does not require a d value specification or a DD statement defining a
module library in the JCL. If the d value is omitted, insert a positional comma
to indicate the missing value. For a Tape Sort, it is necessary to specify the
LINKLIB, STEPLIB or JOBLIB DD statement and to include a DD statement
defining the library.

The exit-name parameter also specifies link-editing codes: N, S, C, E, X, or T. If the link-
editing code is omitted, the installation setting determines whether or not the exit will be
link-edited. The delivered default is T; however, it may have been reset to N at installation.

Ideally, exit routines should be designed so that they do not require link-editing each time
they are used. Link-editing consumes system resources and increases sort/merge execution
time.

When a link-editing code is specified, the name E10 is reserved and no Phase 1 exit or E61
exit can use this name as a CSECT or ENTRY name. Similarly, the names E20 and E30 are
reserved and cannot be used by Phase 2 or Phase 3 exits.

N The N value specifies that link-editing is not required. Link-editing has already
taken place and SyncSort can directly invoke the routine.

S The S value specifies that link-editing is required. This value can only be used
for E11, E21 and E31 exits. The S value also indicates that the exit routine can
be link-edited separately from other exit routines specified for the same phase.

C The C value identifies a COBOL exit routine. COBOL exits must be link-edited
before execution time. Only COBOL E15 and E35 exits can be specified, and
COBOL exits cannot be specified for a Tape Sort.

E The E value identifies a C exit routine. C exits must be link-edited before execu-
tion time. Only C E15 and/or E35 exits can be specified, and C exits cannot be
specified for a tape sort.

X The X value identifies a REXX exit routine. Only REXX E15 and E35 exits can
be specified, and REXX exits cannot be specified for a Tape Sort.

T The T value specifies that SyncSort will dynamically link-edit the exit routine
along with other routines specified for the same sort/merge phase.

SyncSort for z/OS 1.1 Programmer’s Guide

MODS

Sample MODS Control Statement

MODS E15= (ADDREC1,600,MODLIB,N) ,hE25=(ALTREC,500,SYSIN),
E35= (ADDREC2, 600,MODLIB, C)

Figure 24. Sample MODS Control Statement

This sample MODS control statement specifies the following information:

e An E15 exit is the first exit routine. ADDREC1 is the member name of the routine,
which requires 600 bytes in main storage and resides in a library referenced by the DD
statement named MODLIB. The routine does not require link-editing.

e An E25 exit is the second exit routine. ALTREC is the member name of the routine
which requires 500 bytes in main storage. The exit is included in the SYSIN input
stream. Because N is not specified, this routine will be link-edited.

e An E35 exit is the third exit routine. ADDREC2 is the member name of the routine,
which requires 600 bytes in main storage and resides in a library referenced by the DD
statement named MODLIB. This routine is a COBOL exit which has been link-edited
before execution time.

Examples of JCL-initiated applications with exit routines are illustrated in “Chapter 4.
JCL and Sample JCL/Control Statement Streams”.

Chapter 2. SyncSort Control Statements 2.57

OMIT

OMIT Control Statement

Refer to “INCLUDE/OMIT Control Statement” on page 2.16 for an explanation of the OMIT
control statement.

2.58 SyncSort for z/OS 1.1 Programmer’s Guide

OUTFIL

OUTFIL Control Statement

The OUTFIL control statement describes the output file(s). It is required to accomplish
these three tasks:

¢ (Create multiple output files. The OUTFIL parameters associated with this task are
FILES, FNAMES, INCLUDE/OMIT, STARTREC, ENDREC, SAVE, OUTREC,
CONVERT, VLFILL, FTOV, VLTRIM, NULLOFL, and SPLIT.

e Use the SortWriter facility. The OUTFIL parameters associated with this task are
HEADER1, HEADER2, LINES, NODETAIL, REMOVECC, SECTIONS, TRAILER],
and TRAILER2.

e Reformat records after E35 processing. The OUTFIL parameter associated with this
task is OUTREC.

The OUTFIL control statement cannot be used with MAXSORT.

OUTFIL Control Statement Format

The format for the OUTFIL control statement is illustrated below.

Chapter 2. SyncSort Control Statements 2.59

OUTFIL

OUTFIL

I _ [fileid
FILES = {(ﬁleidl [fileid,]...) H

i _ | ddname
FNAMES = {(ddnamel[,ddnamez]...)H

[ALL

NONE

LAND,

’&a)
’OR’ Cz...

7|7

{,INCLUDE }

,OMIT
(C1

[,STARTREC=n] ENDREC=n]

[,SAVE]

[,SPLIT]

[LOUTREC=(field, [field,]...)]

[,CONVERT]

[VLFILL=f]

[,FTOV]

[,VLTRIM=b]

[HEADER1=(field, [field,]...)] [HEADER2=(field, [field,]...)]
[,TRAILER1=(field, [,field,]...)] [TRAILER2=(field, [,fieldy]...)]
[SECTIONS=(field, [field,]...)]

n
LINES = {ANSI
(ANSI,n)
[[NODETAIL)]
[REMOVECC]

RCO
,JNULLOFL = {RC4
RC16

Figure 25. OUTFIL Control Statement Format

2.60 SyncSort for z/OS 1.1 Programmer’s Guide

OUTFIL

The Multiple Output Capability

Use the OUTFIL control statement to create multiple files without making multiple passes
through the input data. The output files can be treated the same or differently:

¢ The output files can contain the same or different records.
¢ The records in the output files can be identically or differently formatted.

e If the input file(s) are variable-length, the output files may be either variable-length or
fixed-length.

Note that all the output files will be sequenced in the same way, as specified on the SORT
or MERGE control statement. If you need to sort the output files differently, you should use
PipeSort, a Syncsort product that works with SyncSort for z/OS to reduce total elapsed
time by generating multiple, differently sequenced output files from a single read of the
input data.

The SortWriter Capability
The SortWriter capability of OUTFIL can produce completely formatted reports. The report
writing features, which can be specified differently for each output file, can accomplish
these tasks:
e Arrange the report into pages.
¢ Divide the report into sections.
e Format headers and trailers for sections, pages, and the complete report.
e Create multiple lines of output from each input record.

e (Convert and edit numeric data.

e Provide TOTAL and SUBTOTAL capabilities for data fields in a specific part of a
report.

e Provide MIN, MAX, AVERAGE, SUBMIN, SUBMAX, and SUBAVG capabilities for
data fields in a specific part of a report.

¢ Provide COUNT and SUBCOUNT capabilities for records in a specific part of a report.

Once formatted, output files can be assigned to any tape, disk, or unit record device for sub-
sequent printing.

Chapter 2. SyncSort Control Statements 2.61

OUTFIL

FILES Parameter (Optional)

The FILES parameter connects the OUTFIL control statement with one or more output
files. The files specified on this parameter, along with any specified on the FNAMES
parameter, will constitute the ddnames to receive output for this OUTFIL specification.

The format of the FILES parameter is illustrated in the following figure.

fileid
FILES = {(fileid1 [,fileid,])}
where:
ouT
fileid = \x
XX

Figure 26. FILES Parameter Format

The fileid identifies the output file and connects the OUTFIL control statement with the
corresponding SORTOUT, SORTOFx, or SORTOFxx DD statement. For example,
FILES=0OUT connects the OUTFIL control statement with the SORTOUT DD statement.
Similarly, FILES=1 connects the OUTFIL control statement with the SORTOF1 DD state-
ment, and FILES=01 connects the OUTFIL control statement with the SORTOF01 DD
statement. The x can be any alphanumeric character or special character allowed by JCL
DD statements.

If multiple output files have identical specifications (that is, identical record selection,
record reformatting, and report writing specifications), the FILES and/or FNAMES param-
eter can connect the OUTFIL control statement with more than one DD statement. For
example, FILES=(0OUT,02,03) connects the OUTFIL control statement with the SORTOUT,
SORTOF02, and SORTOFO03 DD statements. Such a set of output files is termed an OUT-
FIL group.

If multiple output files have different specifications, then each file is specified on a separate
OUTFIL control statement with one FILES and/or FNAMES parameter on each control
statement.

If a SORTOUT ddname is defined in the JCL and does not appear in any FILES or
FNAMES specification, it will be written to without any OUTFIL processing. If an inline
E35 exit has been specified, OUTFIL is ignored.

If neither a FILES nor FNAMES parameter is specified on an OUTFIL control statement,
the default ddname of SORTOUT will be used. If a 4-byte ddname prefix is in effect, the
default SORTOUT ddname will be ppppOUT, where pppp is the prefix; adding FILES=xx
would connect to the ppppOFxx DD statement.

2.62 SyncSort for z/OS 1.1 Programmer’s Guide

OUTFIL

FNAMES Parameter (Optional)

The FNAMES parameter connects the OUTFIL control statement with one or more output
files. The files specified on this parameter, along with any specified on the FILES parame-
ter, will constitute the ddnames to receive output for this OUTFIL specification.

The format of the FNAMES parameter is illustrated in the following figure.

FNAMES:{ ddname }

(ddname, [,ddname,]...)

Figure 27. FNAMES Parameter Format

ddname is a 1 to 8-character ddname that corresponds to a DD statement provided in the

JCL.

If multiple output files have identical specifications (that is, identical record selection,
record reformatting, and report writing specifications), the FNAMES and/or FILES param-
eter can connect the OUTFIL control statement with more than one DD statement. For
example, FNAMES=(FILE1OUT,FILE20UT,FILE3OUT) connects the OUTFIL control
statement with the three listed DD statements. Such a set of output files is termed an
OUTFIL group.

If multiple output files have different specifications, then each file is specified on a separate
OUTFIL control statement with one FNAMES and/or FILES parameter on each control
statement.

If a SORTOUT ddname is defined in the JCL and does not appear in any FILES or
FNAMES specification, it will be written to without any OUTFIL processing. If an inline
E35 exit has been specified, OUTFIL is ignored.

If neither a FILES nor FNAMES parameter is specified on an OUTFIL control statement,
the default ddname of SORTOUT will be used. If a 4-byte ddname prefix is in effect, the
default SORTOUT ddname will be ppppOUT, where pppp is the prefix.

INCLUDE/OMIT Parameter (Optional)

Specify the INCLUDE or OMIT parameter to indicate which records are to be included in
or omitted from each output file. These parameters let you create multiple output files
which contain different records. The default is to include all sorted or merged records in the
output file.

The format for the INCLUDE/OMIT parameter is illustrated below:

Chapter 2. SyncSort Control Statements 2.63

OUTFIL

[ALL
NONE
INCLUDE | _ AND,
OMIT e | & L |
1 ’OR, 2.-.
al,

Figure 28. INCLUDE/OMIT Parameter Format

See “INCLUDE/OMIT Control Statement” on page 2.16 for the detailed format of a compar-
ison. The FORMAT=f parameter, which is permitted for the INCLUDE/OMIT control state-
ment, is not permitted for the INCLUDE/OMIT parameter. Field formats must be specified
on a field-by-field basis.

The comparison determines which records are included or omitted. When no data records
are to be included in the output file(s) (when running a test, for example), specify either
INCLUDE=NONE or OMIT=ALL.

Note: The location within the data records of the fields specified in the INCLUDE/OMIT
parameter will be based on the formatting of the record after processing by an E15/E32
exit, the INREC control statement, the OUTREC control statement, and an E35 exit, but
before processing due to the OUTREC and/or report writing parameters of the OUTFIL
control statement.

The following four parameters (STARTREC, ENDREC, SAVE, and SPLIT) are related to
the previous parameter (INCLUDE/OMIT) in that they specify records to be included for
OUTFIL processing. However, these four options specify records in bulk rather than
through a comparison condition.

STARTREC Parameter (Optional)

Use the STARTREC=n parameter to specify the record number rn of the first record to be
processed by the OUTFIL specification in effect. All records prior to the specified record
will be ignored for the OUTFIL group. The record number is determined by the sequence of
records presented for OUTFIL processing.

ENDREC Parameter (Optional)

Use the ENDREC=n parameter to specify the record number n of the last record to be pro-
cessed by the OUTFIL specification in effect. All records after the specified record will be
ignored for the OUTFIL group. The record number is determined by the sequence of
records presented for OUTFIL processing.

2.64 SyncSort for z/OS 1.1 Programmer’s Guide

OUTFIL

SAVE Parameter (Optional)

Use SAVE to include records for OUTFIL processing that have not been included in any
other OUTFIL group.

If SAVE is specified on more than one OUTFIL group, then each of these OUTFIL groups
get the records that were discarded from all other OUTFIL groups that do not have SAVE.

The OUTFIL INCLUDE/OMIT parameter is mutually exclusive with the SAVE parameter.
Only one of these parameters can be specified for an OUTFIL group.

Note that if the SORTOUT data set has not been associated with any OUTFIL control
statement but is present in the JCL, the SORTOUT data set will receive a copy of all
records prior to OUTFIL processing. This does not affect the SAVE operation, since SAVE is
only pertinent to other OUTFIL group specifications.

OUTREC Parameter (Optional)

The OUTREC parameter indicates how the records are to be formatted in each output file.
This parameter lets you create multiple output files which contain differently formatted
records.

When the records in all multiple output files are formatted and edited identically, it is more
efficient to specify a single OUTREC control statement rather than several OUTREC
parameters.

The OUTREC parameter reformats the records that are to be included in the output file(s)
after E35 processing, if specified. If no additional reformatting is required, omit this
parameter.

All references to field positions specified in the OUTREC parameter refer to the record
after processing by an E15 exit, the INREC control statement, the OUTREC control state-
ment, and an E35 exit but before insertion of ANSI control characters.

The format of the OUTREC parameter is illustrated below.

OUTREC= (field, [, field,]...)

Figure 29. OUTREC Parameter Format

The format of the OUTFIL OUTREC parameter is generally identical to the format of the
FIELDS parameter of the OUTREC control statement. (See the subsections dealing with
the FIELDS parameter in “OUTREC Control Statement” on page 2.88.) Note, however, that
FIELDS= is not used with OUTFIL OUTREC. In addition, OUTFIL OUTREC accepts two
subparameters that cannot be specified on the OUTREC control statement:

Chapter 2. SyncSort Control Statements 2.65

OUTFIL

[nl/

VLFILL=f

The / subparameter indicates the end of a line and can be used to create
multiple output lines from a single input record. Multiple slashes (coded //
.../ or n/) can be used to specify leading, trailing, or embedded blank lines.
At the beginning or end of the OUTREC parameter, n/ produces n blank
lines. Embedded within the OUTREC parameter, n/ produces n-1 blank
lines.

The / subparameter is most useful for its ability to accommodate records
whose lengths exceed the width of the physical page. For an example of the
/ subparameter, see “Printing Input Records on Multiple Output Lines” on
page 3.28.

The / subparameter may not be used when LINES=ANSI or
LINES=(ANSI,n) has also been specified on the OUTFIL control statement.

The VLFILL parameter is used in conjunction with OUTREC or OUTREC
CONVERT to specify a fill byte to be used for any missing p,l field bytes.

The VLFILL parameter has two functions:

e It enables a variable-length OUTFIL OUTREC non-CONVERT
application to continue processing when there is an input record with
missing field bytes in a p,] field specification.

e It provides a means to override the default fill byte used in an OUTFIL
OUTREC CONVERT application when there are missing bytes in a p,l
field specification.

In the first instance, if VLFILL has not been specified the application will
terminate with the critical error WER244A. In the second case, by default,
spaces will be used for missing field bytes.

f specifies a byte to be used for missing field bytes. f can be specified as
either a character or hexadecimal value. Specify either C'x' where x is a sin-
gle EBCDIC character or X'hh' where hh represents a hexadecimal digit
pair (00-FF).

Note: If VLFILL is specified, the OUTREC parameter must also be
specified. VLFILL is ignored when the FTOV parameter is used.

FTOV Parameter (Optional)

The FTOV parameter converts fixed-length input records to variable-length output records.

FTOV can be used both with and without the OUTREC parameter. When FTOV is used
with the OUTREC parameter, the variable-length record is created from the specified fields

2.66 SyncSort for z/OS 1.1 Programmer’s Guide

OUTFIL

of the fixed-length record. When FTOV is not used with the OUTREC parameter, the vari-
able-length record is created from the whole fixed-length record.

Notes: FTOV cannot be used with CONVERT. If the input record is variable-length, FTOV,
if specified, will be ignored. FTOV can be used with the VLTRIM parameter to delete pad
bytes at the end of a record.

For an example of an OUTFIL control statement that uses the FTOV parameter, see Figure
41 on page 2.87.

VLTRIM Parameter (Optional)

The VLTRIM parameter defines a byte to be deleted from the end of a variable-length
record. All prior occurrences of this byte will also be deleted until a byte that is not equal to
the trim byte is found. The resulting records are decreased in record length. However,
VLTRIM will not delete the first data byte, the ANSI carriage control character, or the
Record Descriptor Word (RDW).

The format of the VLTRIM parameter is illustrated below.

VLTRIM=b

b specifies the byte to be deleted from the end of the record. b can be specified as either a
character or hexadecimal value. Specify either C'x' where x is a single EBCDIC character or
X'hh' where hh represents a hexadecimal digit pair (00-FF).

Note: VLTRIM is ignored if used with fixed-length output records.

For an example of an OUTFIL control statement that uses the VLTRIM parameter, see Fig-
ure 41 on page 2.87.

CONVERT Parameter (Optional)

The CONVERT parameter is used in conjunction with the OUTREC parameter to convert
variable-length records to fixed-length records.

The records do not require an RDW and will be written to the output file(s) with a RECFM
of F or FB. When using CONVERT, you no longer need to apply the rules for “Specifying the
FIELDS parameter for Variable-Length Records” found in the description of the OUTREC
control statement.

You cannot specify the variable portion of the input records (position without length) when
using CONVERT. All other p,l data fields that are not present will be filled with blanks by
default. The OUTFIL VLFILL parameter can be used to specify a different fill byte for any
missing fields (see above description).

Chapter 2. SyncSort Control Statements 2.67

OUTFIL

Notes: If CONVERT is specified, the OUTREC parameter must also be specified.
CONVERT cannot be used with the FTOV parameter.

SPLIT Parameter (Optional)

The SPLIT parameter of the OUTFIL control statement causes output records to be distrib-
uted in rotation among files in an OUTFIL group.

In the normal case, when the SPLIT parameter is not used, the output files in the group
will contain the same records. SPLIT distributes the output records. The following OUTFIL
control statement will distribute records among three output files:

OUTFIL FILES=(01,02,03),SPLIT

Figure 30. Sample OUTFIL Control Statement with SPLIT

For the above example, the first record will be written to the SORTOFO01 data set; the sec-
ond, to SORTOF02; the third, to SORTOF03. The fourth record will be written to
SORTOFO01 again, and so on in round-robin fashion.

The OUTFIL control statement can contain an INCLUDE/OMIT and an OUTREC parame-
ter, in which case the selected and reformatted subset of records will be distributed among
the output files.

Note that the SPLIT parameter cannot be used with any report writing (SortWriter) func-
tions. Specifically, report writing parameters (HEADERn, TRAILERn, SECTIONS, LINES,
NODETALIL) cannot be specified on the OUTFIL control statement that defines the output

group.

SPLIT can be used with BatchPipes/MVS; that is, the output records can be distributed
among BatchPipes/MVS data sets.

HEADERI1/HEADER?2 Parameters (Optional)

The SortWriter facility provides three types of headers:
e HEADER], the report header

e HEADER2, the page header

e HEADERS, the section header.

HEADER1 and HEADER2 are parameters of the OUTFIL control statement. HEADERS is
a subparameter of OUTFILs SECTIONS parameter. Refer to “SECTIONS Parameter
(Optional)” on page 2.80 for an explanation of how to specify HEADERS.

2.68 SyncSort for z/OS 1.1 Programmer’s Guide

OUTFIL

The three types of headers function independently of each other. Each serves a different
purpose.

e HEADERI1 provides a header or a possible title page for the entire report. It appears
only once at the beginning of the report on its own page.

¢ HEADER2 provides a page header or a running head for each page defined by the
LINES parameter. It appears at the beginning or top of each page.

e HEADERS provides a section header that appears at the beginning of each specified
section and, optionally, at the top of each page (or directly below any HEADER2).

The chart below illustrates the format for HEADERs. The field entries represent the sub-
parameters that can be specified for each HEADER entry.

HEADERI1=(field, [,field,]...)
HEADER2=(field, [,field,]...)
HEADER3=(field, [,field,]...)

Figure 31. HEADER Parameter Format

The following HEADER Subparameters Format chart illustrates and defines the available
subparameters. Each subparameter constitutes a separate field of the HEADER.

[[n] X

[n] Niteral string'

[n] /

p,l

&DATE

[c:] {&DATE=(m;m,m;m,)
&DATENS=(abc)

&TIME
&TIME=(hp)
&TIMENS=(tt)
| &PAGE
Figure 32. HEADER Subparameter Format

c: Use the c: subparameter to define the column in which the spec-
ified field should begin.

n Used in conjunction with the X, 'literal string', and / subparam-
eters, the n value defines the number (1-4095) of repetitions for
each entry.

X Use the X subparameter to define the number of spaces. It must

be coded to the immediate right of the n value, if specified. For

Chapter 2. SyncSort Control Statements 2.69

OUTFIL

'literal string'

&DATE

more than 4095 spaces, two or more nX values should be speci-
fied.

Use the 'literal string' subparameter to define a literal string.
Specify the number of repetitions by coding n immediately
before it. An apostrophe within a literal string must be specified
as a double apostrophe; for example, C 'O"Leary'.

Use the / subparameter to indicate the end of a line, force a car-
riage return, and separate text lines of a header. Multiple
slashes (//.../ or n/) can be used to specify leading, trailing, or
embedded blank lines. At the beginning or end of a header, n/
produces n blank lines. Within a header, n/ produces n-1 blank
lines.

Use the p and [/ subparameters to include a field (or fields)
within a record in the header. For a HEADERI, the field(s) will
be extracted from the first record in a file; for a HEADER2, the
field(s) will be extracted from the first record on a page; for a
HEADERS3, the field(s) will be extracted from the first record in
a section. p is the starting position of the field in the record; [is
the length in bytes (1-255) of the field. Any number of fields can
be specified. (Contiguous fields within a record can be specified
with a single p,l entry, but their combined length cannot exceed
255 bytes.) The specified field(s) should be a character or alpha-
numeric string or a number in printable format, and the field(s)
cannot be converted or edited.

The &DATE subparameter specifies the current system date
and requires 8 bytes to display mm/dd/yy.

This form of the &DATE subparameter generates the current
system date and controls the formatting of the date. You can
specify the position of the year, month, and date, specify a sepa-
rator character, and choose between 2-digit and 4-digit year rep-
resentation.

The positions m; through m, represent masks used to format
the date. To specify the position of the month, day, and year,
replace the m;, my, and m4 positions, in any order, with M for
the month (01-12), D for the day (01-31), and either Y or 4 for
the year (where Y is a 2-digit year and 4 is a 4-digit year).
Replace the m, position with a separator character.

For example, to print the date with the form yy-mm-dd, specify
&DATE=(YMD-). For December 31, 1999, the date would
appear as “99-12-31".

A blank used as the separator character must be enclosed in
apostrophes. An apostrophe used as the separator character
must be specified as two apostrophes enclosed within apostro-
pheS (IIII)‘

2.70 SyncSort for z/OS 1.1 Programmer’s Guide

&DATENS=(xyz)

&TIME

&TIME=(hp)

OUTFIL

The field for this form of &DATE requires 8 bytes for a 2-digit
year representation and 10 bytes for a 4-digit year. The M, D,
and Y or 4 may only appear once in the mask. All four positions
must be specified.

specifies that the current date is to appear in the report record
in the form 'xyz', where x, y, and z indicate the order in which
the month, day, and year are to appear and whether the year is
to appear as two or four digits. For x, y, and z, use M to repre-
sent the month (01-12), D to represent the day (01-31), Y to rep-
resent the last two digits of the year (for example, 02), or 4 to
represent the four digits of the year (for example, 2002). M, D,
and Y or 4 can each be specified only once.

For example, &DATENS=(DMY) would produce a date of the
form 'ddmmyy' which on March 29, 2002, would appear as
'290302'. &DATENS=(4MD) would produce a date of the form
'vyyyymmdd' which on March 29, 2002, would appear as
'20020329'. x, y, and z must be specified.

The &TIME subparameter specifies the current time of day and
requires 8 bytes to display hh:mm:ss, where hh is in 24-hour
format.

This form of the &TIME subparameter generates the current
system time of day and controls the formatting of the time. You
can print the time in 24-hour or 12-hour formats and specify the
separator character between the hours, minutes, and seconds.

The format for 24-hour time is hhpmmpss, where hh represents
the hour (00-23), mm represents minutes (00-59), ss represents
seconds (00-59), and p represents the separator character as
specified by p in the &TIME=hp subparameter.

The format for 12-hour time is hhpmmpss nn, where hh repre-
sents the hour (01-12), mm represents minutes (00-59), ss rep-
resents seconds (00-59), and p represents the separator
character as specified by p in the &TIME=hp subparameter.
The nn is “am” or “pm” as appropriate.

To select 12-hour mode specify i as 12; to select 24-hour mode
specify h as 24. The p specification represents the character to
use as a separator.

For example, to display the time in a 12-hour format with a
period as a separator, specify &TIME=(12.). At 22:43:23 hours,
the time would appear as “10.43.23 pm”.

A blank used as the separator character must be enclosed in
apostrophes. An apostrophe used as the separator character

Chapter 2. SyncSort Control Statements 2.71

OUTFIL

&TIMENS=(tt)

&PAGE

must be specified as two apostrophes enclosed within apostro-
pheS (IIII)‘

The field for this form of the &TIME subparameter requires 8
bytes for the 24-hour format and 11 bytes for the 12-hour for-
mat.

specifies that the current time is to appear in the report record
in the form 'hhmmss' (24-hour time) or 'hhmmss xx' (12-hour
time). If tt is 24, the time is to appear in the form 'hhmmss' (24-
hour time) where hh represents the hour (00-23), mm repre-
sents the minutes (00-59), and ss represents the seconds (00-
59).

For example, &TIMENS=(24) would produce a time of the form
'hhmmss' which at 08:25:13 pm would appear as '202513'". If tt
is 12, the time is to appear in the form 'hhmmss xx' (12-hour
time) where hh represents the hour (01-12), mm represents the
minutes (00-59), ss represents the seconds (00-59), and xx is
either 'am' or 'pm'.

For a second example, &TIMENS=(12) would produce a time of
the form 'hhmmss xx' which at 08:25:13 pm would appear as
'082513 pm'.

The &PAGE subparameter sequentially numbers logical pages
of the output report and requires 6 bytes. It produces a 6-digit
sequential page number, right justified with leading zeros sup-
pressed. &PAGE is ignored for HEADERI.

Rules for Specifying HEADER Subparameters

2.72

Observe the following guidelines when you specify HEADER subparameters:

e Separate subparameters with commas, except between ¢: and another subparameter.
Commas are optional for the / subparameter.

e Enclose literals in single quotes.

e Specify blank fields of n bytes as nX.

¢ Headings specified with fewer blanks than the logical record length (LRECL) of the
output record are automatically padded on the right with blanks.

e If a heading exceeds the logical record length (LRECL) of the output record, use the
OUTREC control statement or the OUTREC parameter to expand the output record
length so that it is at least as long as the longest header. For example, if the longest
header is 115 characters and the output record length is 80 bytes, use the OUTREC

SyncSort for z/OS 1.1 Programmer’s Guide

OUTFIL

control statement or the OUTREC parameter to insert a blank in position 115 of the
output record. This will cause bytes 81 through 115 to be padded with blanks.

TRAILER Parameters (Optional)
The SortWriter facility provides three types of trailers:
e TRAILERI, the report trailer
e TRAILER2, the page trailer
e TRAILERS, the section trailer.

TRAILER1 and TRAILER2 are parameters of the OUTFIL control statement; TRAILER3
is a subparameter of OUTFIL's SECTIONS parameter. Refer to “SECTIONS Parameter
(Optional)” on page 2.80 for an explanation of how to specify TRAILERS.

The three types of trailers function independently of each other. Each serves a different
purpose:

e TRAILERI1 provides a trailer or a possible summary for the entire report. It appears
only once at the end of the report on its own page.

e TRAILER2 provides a page trailer for each page defined by the LINES parameter. It
appears at the end of each page.

e TRAILERS3 provides a section trailer that appears at the end of each specified section
and serves as a conclusion or summary for that section.

TRAILER1, TRAILER2, and TRAILERS3 also provide TOTAL, SUBTOTAL, MIN, SUB-
MIN, MAX, SUBMAX, AVG, SUBAVG, COUNT, SUBCOUNT, COUNT15, and
SUBCOUNT15 capabilities at report, page, and section levels.

The chart below illustrates the format for TRAILERSs. Its field entries represent the subpa-
rameters that can be specified for each TRAILER entry.

TRAILER1=(field,[,field,]...)
TRAILER2=(field,[,field)...)
TRAILER3=(field, [,field,]...)

Figure 33. TRAILER Parameter Format

The following TRAILER Subparameters Format chart illustrates and defines the available
subparameters. Each subparameter constitutes a separate field of the TRAILER.

Chapter 2. SyncSort Control Statements 2.73

OUTFIL

2.74

[n] X

[n] 'literal string'
[n]/
p,l

&DATE
&DATE=(m;m,m;m,)
&DATENS(abc)
&TIME
&TIME=(hp)
&TIMENS(tt)
&PAGE

[c] 1| TOTAL/TOT
SUBTOTAL/SUB

MIN
SUBMIN
MAX
SUBMAX
AVG
SUBAVG

COUNT

COUNT15

SUBCOUNT

| SUBCOUNT15

,Mm
LJEDIT=(...)

= (p,Lf
P2 o

[SIGNS=(...)] ,LENGTH=(n)])

Figure 34. TRAILER Subparameters Format

Use the c: subparameter to define the column in which the spec-
ified field should begin.

n Used in conjunction with the X, 'literal string', and / subparam-
eters, the n value defines the number (1-4095) of repetitions for
each entry.

X Use the X subparameter to define the number of spaces. It must

'literal string'

be coded to the immediate right of the n value, if specified. For
more than 4095 spaces, two or more nX values should be speci-
fied.

Use the 'literal string' subparameter to define a literal string.
Specify the number of repetitions by specifying n immediately
before it. An apostrophe within a literal string must be specified
as a double apostrophe; for example, C 'O"Leary'.

Use the / subparameter to indicate the end of a line, force a car-
riage return, and separate text lines of a trailer. Multiple
slashes (coded //.../ or n/) can be used to specify leading, trailing,
or embedded blank lines. At the beginning or ending of a trailer,

SyncSort for z/OS 1.1 Programmer’s Guide

p,l

&DATE

&DATE = (m1m2m3m4)

&DATENS=(xyz)

OUTFIL

n/ produces n blank lines. Within a trailer, n/ produces n-1
blank lines.

Use the p and [subparameters to include a field (or fields)
within a record in the trailer. For a TRAILERI1, the field(s) will
be extracted from the last record in a file; for a TRAILERZ2, the
field(s) will be extracted from the last record on a page; for a
TRAILER3, the field(s) will be extracted from the last record in
a section. p is the starting position of the field in the record; [is
the length in bytes (1-255) of the field. Any number of fields can
be specified. (Contiguous fields within a record may be specified
with a single p,[entry, but their combined length may not
exceed 255 bytes.) The specified field(s) should be a character or
alphanumeric string, or a number in printable format, and the
field cannot be converted or edited.

If any variable-length record contains only a portion of the
bytes in a specified field, those bytes will be included in the
trailer and blanks will be substituted for the missing bytes.

The &DATE subparameter specifies the current system date
and requires 8 bytes to display mm/dd/yy.

This form of the &DATE subparameter generates the current
system date and controls the formatting of the date. You can
specify the position of the year, month, and date, specify a sepa-
rator character, and choose between 2-digit and 4-digit year rep-
resentation.

The positions m; through m, represent masks used to format
the date. To specify the position of the month, day, and year,
replace the m,, my, and m4 positions, in any order, with M for
the month (01-12), D for the day (01-31), and either Y or 4 for
the year (where Y is a 2-digit year and 4 is a 4-digit year).
Replace the m, position with a separator character.

For example, to print the date with the form yy-mm-dd, specify
&DATE=(YMD-). For December 31, 1999, the date would
appear as “99-12-31".

The field for this form of &DATE requires 8 bytes for a 2-digit
year representation and 10 bytes for a 4-digit year. The M, D,
and Y or 4 may only appear once in the mask. All four positions
must be specified.

specifies that the current date is to appear in the report record
in the form 'xyz', where x, y, and z indicate the order in which

Chapter 2. SyncSort Control Statements 2.75

OUTFIL

&TIME

&TIME-=(hp)

&TIMENS=(tt)

the month, day, and year are to appear and whether the year is
to appear as two or four digits. For x, y, and z, use M to repre-
sent the month (01-12), D to represent the day (01-31), Y to rep-
resent the last two digits of the year (for example, 02), or 4 to
represent the four digits of the year (for example, 2002). M, D,
and Y or 4 can each be specified only once.

For example, &DATENS=(DMY) would produce a date of the
form 'ddmmyy' which on March 29, 2002, would appear as
'290302'. &DATENS=(4MD) would produce a date of the form
'yyyymmdd' which on March 29, 2002, would appear as
'20020329'. %, y, and z must be specified.

The &TIME subparameter specifies the current time of day and
requires 8 bytes to display hh:mm:ss, where hh is in 24-hour
format.

This form of the &TIME subparameter generates the current
time of day and controls the formatting of the time. You can
print the time in 24-hour or 12-hour formats and specify the
separator character between the hours, minutes, and seconds.

The format for 24-hour time is hhpmmpss, where hh represents
the hour (00-23), mm represents minutes (00-59), ss represents
seconds (00-59), and p represents the separator character as
specified by p in the &TIME=hp subparameter.

The format for 12-hour time is hhpmmpss nn, where hh repre-
sents the hour (01-12), mm represents minutes (00-59), ss rep-
resents seconds (00-59), and p represents the separator
character as specified by p in the &TIME=hp subparameter.
The nn is “am” or “pm” as appropriate.

To select 12-hour mode specify i as 12; to select 24-hour mode
specify h as 24. The p specification represents the character to
use as a separator.

For example, to display the time in a 12-hour format with a
period as a separator, specify &TIME=(12.). At 22:43:23 hours,
the time would appear as “10.43.23 pm”.

The field for this form of the &TIME subparameter requires 8
bytes for the 24-hour format and 11 bytes for the 12-hour for-
mat.

specifies that the current time is to appear in the report record
in the form 'hhmmss' (24-hour time) or 'hhmmss xx' (12-hour

2.76 SyncSort for z/OS 1.1 Programmer’s Guide

&PAGE

TOTAL/TOT

SUBTOTAL/SUB

OUTFIL

time). If tt is 24, the time is to appear in the form 'hhmmss' (24-
hour time) where hh represents the hour (00-23), mm repre-
sents the minutes (00-59), and ss represents the seconds (00-
59).

For example, & TIMENS=(24) would produce a time of the form
'"hhmmss' which at 08:25:13 pm would appear as '202513'. If tt
is 12, the time is to appear in the form 'hhmmss xx' (12-hour
time) where hh represents the hour (01-12), mm represents the
minutes (00-59), ss represents the seconds (00-59), and xx is
either ‘am’ or ‘pm’.

For a second example, &TIMENS=(12) would produce a time of
the form 'hhmmss xx' which at 08:25:13 pm would appear as
'082513 pm'.

The &PAGE subparameter sequentially numbers logical pages
of the output report and requires 6 bytes. It produces a 6-digit
sequential page number, right justified with leading zeros sup-
pressed.

Use the TOTAL subparameter to specify that numeric data are
to be accumulated and totaled at the end of a report, logical
page, or section.

After including the results in the appropriate trailer, the accu-
mulator resets to zero. TOTALs appear in printable format. If a
SyncSort editing mask is used for totaled data, the length of the
output field is determined by the maximum permissible length
of the data format, not by the specified length of the input field.
This means that the default is to display 10 digits for BI and FI
fields and 15 digits for PD, ZD, and CSF or FS fields. Internally,
SyncSort maintains up to 15 digits for all data formats. Thus, if
a BI or FI field total could exceed 10 digits, you should specify
the LENGTH and/or EDIT subparameters to override the
length of the output field.

Use the SUBTOTAL subparameter to generate a running total
of a field at the end of a report, logical page, or section. This
subparameter functions like the TOTAL subparameter except
the accumulator does not reset to zero. SUBTOTALSs appear in
printable format. If a SyncSort editing mask is used for subto-
taled data, the length of the output field is determined by the
maximum permissible length of the data format, not by the
specified length of the input field. This means that the default
is to display 10 digits for BI and F1I fields and 15 digits for PD,
ZD, and CSF or FS fields. Internally, SyncSort maintains up to

Chapter 2. SyncSort Control Statements 2.77

OUTFIL

2.78

MIN

SUBMIN

SUBMAX

AVG

SUBAVG

15 digits for all data formats. Thus, if a BI or FI field total could
exceed 10 digits, you should specify the LENGTH and/or EDIT
subparameters to override the length of the output field.

Use the MIN subparameter to obtain the minimum numeric
value of an input field for all records within the report, logical
page, or section. This value will be displayed in printable for-
mat.

Use the SUBMIN subparameter to obtain the running mini-
mum numeric value of an input field for all records within the
report up to the point of the TRAILER. This value will be dis-
played in printable format.

Use the MAX subparameter to obtain the maximum numeric
value of an input field for all records within the report, logical
page, or section. This value will be displayed in printable for-
mat.

Use the SUBMAX subparameter to obtain the running maxi-
mum numeric value of an input field for all records within the
report up to the point of the TRAILER. This value will be dis-
played in printable format.

Use the AVG subparameter to obtain the average numeric value
of an input field for all records within the report, logical page, or
section. This value will be displayed in printable format.

Use the SUBAVG subparameter to obtain the running average
numeric value of an input field for all records within the report
up to the point of the TRAILER. This value will be displayed in
printable format.

Use the p subparameter to indicate the position of the first byte
of the numeric field.

Use the [subparameter to indicate the length of the numeric
field. Permissible lengths are 1-4 bytes for BI or FI, 1-8 bytes for
PD, 1-15 bytes for ZD, and 1-16 for CSF or FS with a 15-digit
limit. To determine the length of the output field, refer to “How
to Convert Numeric Data” on page 2.97.

For the (SUB)TOTAL and (SUB)AVG functions, fields are
totaled internally as 8-byte PD fields. An overflow condition will
occur if the positive or negative value of a totaled or subtotaled
field exceeds the value that can be represented by such fields,
and the execution will terminate with an error message.

SyncSort for z/OS 1.1 Programmer’s Guide

EDIT=(pattern)

SIGNS=(...)

LENGTH=(n)

COUNT

COUNT15

SUBCOUNT

OUTFIL

Use the f subparameter to indicate the format of the numeric
field. Replace f with BI, FI, PD, ZD, CSF, or FS.

Use the Mm subparameter to indicate that one of the 27 Sync-
Sort-supplied masks (M0-M26) should be used to format a field.
Replace m with the mask number. The default is MO. For
details, refer to “The Mm Subparameter (Editing Masks)” on
page 2.109.

Use the EDIT=(pattern) subparameter to indicate that a user-
provided editing mask should be used to format a field. For
details, refer to “Converting SMF Date and Time Formats” on
page 2.102.

Use the SIGNS subparameter to specify leading and/or trailing
signs that will appear before or after the edited number. For
details, refer to “The SIGNS Subparameter” on page 2.112.

Use the LENGTH subparameter to alter the length of a field
determined by the edit pattern and the internal field format.
For details, refer to “The LENGTH=n Subparameter” on page
2.108.

Use the COUNT subparameter to obtain a count of the number
of records in either the entire report or a specific part of the
report. In a TRAILERI, this field will contain a count of the
total number of data records in the report. In a TRAILERZ2, it
will contain a count of the number of data records on each page.
In a TRAILERS, it will contain a count of the number of data
records in each section. The count will be the number of data
records before any multi-line OUTREC processing has been
done. This number will be a right-justified 8-digit field with
leading zeros suppressed. The maximum value is 99999999.

This subparameter is identical to the COUNT subparameter
except for the allowable size of the count number. For
COUNT15 the number will be a right-justified 15-digit field
with leading zeros suppressed. The maximum value is
999999999999999.

Use the SUBCOUNT subparameter to obtain a running, or
cumulative, count of the number of records throughout a report.
In a TRAILERI, this field will contain a count of the total num-
ber of data records in the report. In a TRAILERZ2, it will contain
a cumulative count of the number of data records on a page-by-
page basis. In a TRAILERS, it will contain a cumulative count
of the number of data records on a section-by-section basis. The

Chapter 2. SyncSort Control Statements 2.79

OUTFIL

count will be the number of data records before any multi-line
OUTREC processing has been done. This number will be a
right-justified, 8-digit field with leading zeros suppressed. The
maximum value is 99999999.

SUBCOUNT15 This subparameter is identical to the SUBCOUNT subparame-

ter except for the allowable size of the count number. For
SUBCOUNT15 the number will be a right-justified 15-digit
field with leading zeros suppressed. The maximum value is
999999999999999.

Rules for Specifying TRAILER Subparameters

Observe the following guidelines when you specify TRAILER subparameters:

Separate fields with commas, except for /, where commas are optional.
Enclose literals in single quotes.
Specify blank fields of n bytes as nX.

If a SyncSort editing mask is used for totaled or subtotaled data (either by specification
or by default), the length of the generated pattern will be determined by the maximum
permissible length supported for that data format, regardless of the actual length of the
field being totaled or subtotaled. Use the LENGTH subparameter to override the
length of the pattern.

Trailers specified with fewer blanks than the logical record length (LRECL) of the
output record are automatically padded on the right with blanks.

If a trailer exceeds the logical record length (LRECL) of the output record, use the
OUTREC control statement or the OUTREC parameter to expand the output record
length so that it is at least as long as the longest header. For example, if the longest
trailer is 115 characters and the output record length is 80 bytes, use the OUTREC
control statement or the OUTREC parameter to insert a blank in position 115 of the
output record. This will cause bytes 81 through 115 to be padded with blanks.

SECTIONS Parameter (Optional)

2.80

The SECTIONS parameter allows the output report to be divided into sections.

The format of the SECTIONS parameter is illustrated below.

SyncSort for z/OS 1.1 Programmer’s Guide

OUTFIL

SECTIONS=(field, [,field,]...)
Each field is specified as follows:

p,l [,subparameterl] [,subparameter2] ...

Figure 35. SECTIONS Parameter Format

The SECTIONS parameter identifies the control field(s) that determine or control section
breaks. More than one control field can be specified to subdivide a report within sections.
However, if more than one control field is specified, the specifications must be made in
major to minor order. A major control field break causes all minor control fields to break at
the same time.

Each control field is identified by its position p and length /.

P The position value indicates the first byte of the field relative to the beginning
of the record after processing by an E15/E32 exit, the INREC control statement,
the OUTREC control statement, and an E35 exit, if specified, but before pro-
cessing by the OUTREC parameter and other report writing parameters of the
OUTFIL control statement, if specified.

1 The length value indicates the length of the field. The length must be an inte-
ger number of bytes and cannot exceed 256 bytes.

For each control field, one or more of the following subparameters may be specified: SKIP,
HEADERS, or TRAILER3. The SECTIONS subparameters are described below.

[,SKIP = {ELH [,TRAILER3=(...)] [HEADER3=(...)] [PAGEHEAD]

Figure 36. Sections Subparameter

SKIP The SKIP subparameter specifies the amount of spacing that
should occur after a section is completed. This spacing will follow
immediately after the last TRAILERS3 for that section, if specified.
SKIP=nL specifies that the next line of the report will appear after
n number of blank lines, with n being between 0 and 255. SKIP=P
specifies a page break following the completion of a section.

HEADER3 The HEADERS3 subparameter specifies a section header or title
that will appear at the start of each new section. The HEADER3
format is identical to the format of the HEADER1/HEADER2
parameters. (See HEADER1/ HEADERZ2 Parameters for details.)

Chapter 2. SyncSort Control Statements 2.81

OUTFIL

TRAILER3 The TRAILERS3 subparameter specifies a section trailer that will
appear at the end of each section. The TRAILERS3 format is identi-
cal to the format of the TRAILER1/TRAILER2 parameters. (See
TRAILER1/ TRAILER?2 Parameters for details.)

PAGEHEAD The PAGEHEAD subparameter may be specified in conjunction
with the HEADERS3 subparameter. The PAGEHEAD subparameter
specifies that the HEADER3 appear at the top of each page follow-
ing any HEADER2, as well as at the start of each new section.
PAGEHEAD is ignored if no HEADERS is specified.

A control field may be specified without any subparameters. This allows multiple non-
contiguous control fields to be specified for each SECTIONS break field.

LINES Parameter (Optional)

Use the LINES parameter to define the logical pages constituting a report. The pages can
be defined in three ways:

e Using the carriage control characters automatically supplied by SyncSort for z/OS
e Using ANSI control characters supplied by the user
¢ Using a combination of the above two methods.

Regardless of which method is selected, the number of lines defining a logical page must be
equal to or greater than the total number of lines, including blank lines, required for all
HEADER2, HEADER3, TRAILER2, and TRAILERS3 entries plus at least one record. If
multi-line OUTREC is used, all lines produced from each input record will be written to the
same logical page.

The format of the LINES parameter is illustrated below:

n
LINES = { ANSI
(ANSL,n)

Figure 37. LINES Parameter Format

LINES=n

If LINES=n is specified, paging is automatic and carriage control characters are added to
the beginning of each record by SyncSort. Because SyncSort requires one byte for a control
character, the LRECL specified in the SORTOUT, SORTOF%, or SORTOFxx DD statement
must be one byte longer than the number of bytes specified for the output record length.

2.82 SyncSort for z/OS 1.1 Programmer’s Guide

OUTFIL

Specify n as a value from 1 to 255. If report writing parameters are specified for the file(s)
(e.g., HEADERs, TRAILERs, SECTIONS), the default is LINES=60.

The LINES=n specification works in conjunction with any HEADERs and TRAILERs you
have specified as follows:

e HEADER], if specified, prints as a preface to the report. Its page is not numbered.

¢ An automatic page break occurs after HEADER1. Every nth line after the completion of
HEADER] will signal the start of a new page.

e A HEADER2 entry, if present, is the first line(s) on each page, followed by any
HEADERS entries that might be triggered either by control breaks or by PAGEHEAD
specifications in the SECTIONS parameter. HEADER2 is part of the logical page.

e A HEADERS entry, if present, is part of a section of the report. It prints as a header for
the separate report sections. HEADER3s appear in major to minor order according to
the order of their associated sections.

e If PAGEHEAD is specified, HEADER3 prints immediately below HEADER2, if
specified, or at the top of the page if a HEADER?2 is not specified. A HEADER3 will not
print near the end of a page if there is not sufficient room on that page for at least one
data record and a TRAILER2, if specified.

e A TRAILERS3 entry, if present, is part of a section of the report. It prints as a conclusion
or summary for the separate report sections. TRAILER3s will appear in major to minor
order according to the order of their associated sections.

e A TRAILERZ2 entry, if present, will be the last line(s) on the logical page, preceded by
any TRAILERS3s triggered by coincidentally occurring control breaks. TRAILER2 is
part of the logical page.

e TRAILERI1 will be the last page of the entire report. Its page is not numbered.

Therefore, when LINES=n is specified, all HEADER2, HEADER3, TRAILER2, and
TRAILERS3 entries will be included as part of n (the total number of lines in a logical page)
and will print as described above.

LINES=ANSI

If LINES=ANSI is specified, user-provided ANSI control characters define the logical
pages. The first byte of each output record must contain an ANSI control character
(inserted, for example, by an E35 program) which is valid for the specified output device
type. For example, inserting a ‘0’ in byte 1 of the output records produces double-spaced
records.

The ANSI control characters which can be used with the LINES=ANSI specification are
summarized in the ANSI Control Character Chart below.

Chapter 2. SyncSort Control Statements 2.83

OUTFIL

If printed output is requested, the ANSI control characters do not print as part of the out-
put record. If, however, the report is routed to a disk or tape device, the control characters
are included in the output data.

The LINES=ANSI specification works in conjunction with any HEADERs or TRAILERs
you have specified. If you specify HEADERZ2, the ANSI specification affects this header as
follows:

e After HEADERI1 is output, the first logical page begins with the first line of HEADER2.

¢ A logical page ends when data with a ‘1’ in the first byte are encountered. The printing
of a data record beginning with a ‘1’ is delayed until after TRAILER2 and HEADERZ2, if
specified, are output. When record printing resumes, this delayed record will be
modified to have a control character ‘+’, which causes it to print over the last line of
HEADER2 (or HEADERS3, if HEADERS3 appears at the top of the page). To prevent the
data record from printing over a text line of a header, the header should end with at
least one blank line, specified by a slash (/).

¢ To print HEADER2 at the top of a new physical page, the HEADERZ2's first line should
begin with a ‘1’.

¢ Because you are in complete control of the paging with LINES=ANSI, you can permit
HEADER2 to appear between variable numbers of printed records.

LINES=(ANSI,n)

If LINES=(ANSI,n) is specified, ANSI control characters govern vertical control, and the ‘n’
specification provides additional automatic paging. Added flexibility is provided because
the user can elect to double or triple space the output and still use automatic paging.

When SyncSort encounters a data record with a ‘1’ in the first byte, SyncSort begins a new
logical page. If no data record begins with a ‘1’ but the next data record would cause the
number of lines on the page to exceed n, SyncSort treats the record as if it began with a ‘1’
and begins a new page.

Refer to the LINES=ANSI discussion for information on using a HEADER2 with ANSI con-
trol characters.

Multiline OUTREC may not be used with LINES=ANSI or LINES=(ANSI,n).

Valid ANSI Control Characters

The following chart lists the ANSI control characters accepted by SyncSort.

2.84 SyncSort for z/OS 1.1 Programmer’s Guide

OUTFIL

Code Interpretation Code Interpretation

blank | Space one line before printing 6 Skip to channel 6 before printing
0 Space two lines before printing 7 Skip to channel 7 before printing
- Space three lines before printing 8 Skip to channel 8 before printing
+ Suppress space before printing 9 Skip to channel 9 before printing
1 Skip to channel 1 before printing A Skip to channel 10 before printing
2 Skip to channel 2 before printing B Skip to channel 11 before printing
3 Skip to channel 3 before printing C Skip to channel 12 before printing
4 Skip to channel 4 before printing \" Select stacker 1
5 Skip to channel 5 before printing W Select stacker 2

Table 14. ANSI Control Character Chart

NODETAIL Parameter (Optional)

The NODETAIL parameter instructs the SortWriter facility to generate an output report
consisting only of header and trailer entries. Data records are not included in the output
report when this parameter is specified.

Thus, for example, it is possible to generate a report with section trailers containing totals
and record counts without printing any data records.

REMOVECC Parameter (Optional)

The REMOVECC parameter generates reports that do not include ANSI carriage control
characters that specify printer actions (for example, skipping a line or ejecting a page). The
REMOVECC parameter omits the carriage control character from all of the report records.
REMOVECC simplifies the removal of printer controls when output is to be displayed
online or written to a list data set rather than a printout. When REMOVECC is used, the
LRECL does not require an extra byte for the carriage control character, and the RECFM
does not require the ‘A’ (for ANSI); thus you would specify FB, not FBA.

Chapter 2. SyncSort Control Statements 2.85

OUTFIL

NULLOFL Parameter (Optional)

RCO
NULLOFL=YRC4
RC16

Figure 38. NULLOFL Parameter Format

The NULLOFL parameter specifies the action to be taken when any non-SORTOUT
OUTFIL data set contains no data records.

RCO The delivered default instructs SyncSort to issue a return code of 0 if not overrid-
den by a higher return code set for another reason.

RC4 Instructs SyncSort to issue a WER4611 warning message and continue processing.
A return code of 4 will be issued if not overridden by a higher return code set for
another reason.

RC16 Instructs SyncSort to issue a WER461A message and to terminate processing with
a return code of 16.

Sample OUTFIL Control Statements

2.86

Example 1

The following example illustrates how to use the OUTFIL control statement to define mul-
tiple output files.

OUTFIL FILES=1,0UTREC=(10:1,20,40:45,5,50:60,8),
INCLUDE=(21,2,CH,EQ,C'NY")

OUTFIL FILES=2,0UTREC=(20:1,20,50:60,8),
INCLUDE=(21,2,CH,EQ,C'MA")

Figure 39. Sample OUTFIL Control Statement

The two OUTFIL control statements illustrated above are required to create two different
output files.

¢ The output records in the first file (SORTOF1) contain three fields from the input
record. The first input record field begins in byte 1 and is 20 bytes long, the second
input record field begins in byte 45 and is 5 bytes long, and the third input record field
begins in byte 60 and is 8 bytes long. This file will include only those records with ‘NY’
in bytes 21 and 22 of the input record. These three fields will begin in bytes 10, 40, and
50 of the output record.

SyncSort for z/OS 1.1 Programmer’s Guide

OUTFIL

¢ The output records in the second file (SORTOF2) contain two fields from the input
record. The first input record field begins in byte 1 and is 20 bytes long, and the second
input field begins in byte 60 and is 8 bytes long. This file will include only those records
with ‘MA’ in bytes 21 and 22 of the input record. These two fields will begin in bytes 20
and 50 of the output record.

Example 2

OUTFIL FILES=(01,02,03),0UTREC=(1:1,40,50:41,40)

Figure 40. Sample OUTFIL Control Statement

This OUTFIL control statement creates three identically formatted output files:
SORTOF01, SORTOF02, and SORTOFO03. These files may be written to the same output
device or to three different output devices.

e The output records contain two input record fields. The first input record field begins in
column 1. This field began in position 1 before OUTREC processing and is 40 bytes
long. The second input record field begins in column 50. This field began in position 41
before OUTREC processing and is 40 bytes long. The two fields will begin in positions 1
and 50 after OUTREC has been processed.

Example 3

OUTFIL FTOV,VLTRIM=C'*', K OUTREC=(1,7,9:8,38)

Figure 41. Sample OUTFIL Control Statement with FTOV and VLTRIM

This OUTFIL control statement uses FTOV to convert fixed-length records to variable-
length records and VLTRIM to remove the specified type of trailing bytes (in this case,
asterisks).

The control statement would produce the following output:

Input Output Record Length

Records Records (with 4-byte RDW)
RECORDI1ABC* * % * % RECORD1 ABC 15
RECORD2ABCDEF * * RECORD2 ABCDEF 18
RECORD3ABC****Z7 RECORD3 ABC****Z 20

Comprehensive examples illustrating the SortWriter facility and the multiple output capa-
bility of the OUTFIL control statement are provided in “Chapter 3. How to Use SyncSort’s
Data Utility Features”.

Chapter 2. SyncSort Control Statements 2.87

OUTREC

OUTREC Control Statement

2.88

The OUTREC control statement reformats the output records. Use the OUTREC control
statement to accomplish the following tasks:

¢ Delete or repeat segments of the input records.

Insert character strings between data fields.

¢ Insert binary zeros.

e Create a sequence number field.

¢ Convert numeric data to printable format or to another numeric data format.

¢ Perform arithmetic operations (multiply, divide, add, subtract) and minimum and
maximum functions with numeric fields and constants. This “horizontal arithmetic”
ability complements the “vertical arithmetic” already available with SUM and OUTFIL
TOTAL, MIN, MAX, and AVG.

¢ Convert data to printable hexadecimal format.

e Translate the case of EBCDIC letters from uppercase to lowercase or lowercase to
uppercase, or translate a field based on an ALTSEQ table in effect.

e Select, realign, and reorder data fields.
¢ Convert a variable-length record input file to a fixed-length record output file.

The OUTREC parameter of the OUTFIL control statement can also be used to accomplish
any of the above tasks. The INREC control statement can also be used to accomplish any of

the above tasks except for converting a variable-length record file to a fixed-length record
file.

Consider these guidelines when deciding whether to use the INREC control statement, the
OUTREC control statement, or the OUTREC parameter of the OUTFIL control statement:

e Use the INREC control statement to delete irrelevant data fields, reformat numeric
fields to a shorter length, or combine numeric fields with arithmetic operations and
functions. Reducing the size of the input records before they are sorted or merged
usually improves performance.

¢ Use either the OUTREC control statement or the OUTREC parameter of the OUTFIL
control statement to expand the data record, create new numeric fields, realign data
fields, convert and edit numeric data, and change from variable-length format to fixed-
length format when you are creating one output file.

SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

e Use the OUTREC control statement when you are creating multiple output files with
the same output record formatting.

e Use the OUTREC parameter of the OUTFIL control statement when you are creating
maultiple output files with different output record formatting.

¢ Use the OUTREC control statement if you need to convert a numeric field to printable
format so it can be displayed in an OUTFIL header.

e Use the OUTREC parameter of the OUTFIL control statement when an E35 exit must
process the records first.

¢ Use the OUTREC parameter of the OUTFIL control statement when you specify the
TOTAL and/or SUBTOTAL subparameters of the TRAILER parameter so that the
accumulator(s) can sum numeric fields before they have been converted to readable
format and edited.

OUTREC Control Statement Format

The format for the OUTREC control statement is illustrated below.

OUTREC FIELDS = (field, [fieldy(] ...) [,CONVERT])
Fields can be specified as follows:

[p,] [,subparameters]
[n] X
[n] X'hhhh...hh'
[n] C'literal string'
e {01 Z
* |'date field'
'time field'

1=

SEQNUM,Lf

-

START = {1}
n

-]

Figure 42. OUTREC Control Statement Format

Note: The n/ entry and the VLFILL parameter cannot be used with the INREC or
OUTREC control statement. They can only be used with the OUTREC parameter of the
OUTFIL control statement. For a description of the n/ entry and the VLFILL parameter,
see page 2.65.

Chapter 2. SyncSort Control Statements 2.89

OUTREC

FIELDS Parameter (Required)

The FIELDS parameter specifies fields to be included in the output record. Fields can be
data fields, spaces, hexadecimal digits, literal strings, binary zeros, current date and time
literals, or sequence numbers.

Each data field specified in the FIELDS parameter is identified by its position p and
length [.

c: The column value (optional) specifies the output column in which a
field should begin.
P For INREC, the position value indicates the first byte of the field

relative to the beginning of the input record after E15 processing, if
specified, has completed. For OUTREC, the position value indicates
the first byte of the field after both E15 and INREC processing, if
specified, have completed. If the OUTREC parameter of the
OUTFIL control statement is used, the position value refers to the
record after E35 processing as well. The field must begin on a byte
boundary.

1 The length value indicates the length of the field. The length must
be an integer number of bytes.

Specifying the FIELDS Parameter for Variable-Length Records

If you are not using the CONVERT option to convert variable-length records to fixed-length
records, you must observe these rules when you specify the FIELDS parameter for vari-
able-length records:

e Remember to specify 4 bytes for the Record Descriptor Word in the first output field.
You can include the 4 bytes in the length value of the first field if the first field in the
original data record is also the first field specified in the FIELDS parameter.

¢ To include any portion of the variable part of the input records, specify a position value
without a length value as the last entry. The only subparameters you can specify after
the position value are the HEX and TRAN conversion subparameters. (Refer to the
FIELDS subparameters for an explanation of HEX and TRAN conversion.)

e IfINREC or OUTREC processing changes the output record length, the contents of the
Record Descriptor Word will be automatically revised by the sort.

Field (p,l) Subparameters

2.90

Use the FIELDS subparameters to accomplish these tasks:

e Specify the column in which a field should begin.

SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

e Specify halfword, fullword, or doubleword alignment.
e Convert a numeric field to a printable format with editing capabilities.
e Convert numeric data to another numeric data format.

¢ Perform minimum and maximum functions and arithmetic operations (multiply, divide,
add, subtract) with numeric fields and constants.

¢ Convert a field to its printable hexadecimal representation.

e Translate the case of EBCDIC letters from uppercase to lowercase or lowercase to
uppercase, or translate a field based on an ALTSEQ table in effect.

The figure below illustrates how the FIELDS subparameters should be specified and
describes their functions. For information on the EDIT, LENGTH, Mm, and SIGNS subpa-
rameters, see “How to Convert Numeric Data” on page 2.97.

fo
. MO
expression |, M ([SIGNS=(s,, 5, 3, 5] [L,LENGTH=n]
EDIT=(pattern)
e ypl|, {2
CHANGE=(........) LNOMATCH=(....)]
,JHEX
L1] LTOU
P LY TRAN={ UTOL
ALTSEQ
p715fy2f’(c)
Figure 43. Fields Subparameters Format
The following describes the c: subparameter:
c: Use the c: subparameter to define the column in which the field should begin. Sync-

Sort will add the appropriate number of blanks to achieve the proper alignment.
This subparameter can be specified for all types of fields.

The term expression represents the following syntax:

Chapter 2. SyncSort Control Statements 291

OUTREC

p71’fi
+n
-n

[("expression," [,"operator","expression,"] [)]

Figure 44. Syntax for expression

The following describes the elements of expression:

p91’fi

+n

expression

This specifies the position, length, and format of an input field. (See
the description of f; below for details.)

This represents a positive numerical constant of up to 15 decimal
digits. The + sign must be specified.

This represents a negative numerical constant of up to 15 decimal
digits. The - sign must be specified.

An expression defines a numeric value. The simplest forms of an
expression consist of a numeric data input field defined either by
Dp,Lf; or a constant defined by +n or -n. Expressions can also be cre-
ated by connecting these simple expressions with operators, as
shown in the last line of the above syntax illustration. Parentheses
may be used to change the default precedence order of the opera-
tors. Algebraic equations can thus be represented with an expres-
sion.

A maximum value of 15 digits is permitted at all times in evaluat-
ing an expression. If this is exceeded, a critical error will be issued.
Similarly, an attempted division by zero will also result in a critical
error. The results of division will be rounded down to an integer.

Once an expression has been defined, its value can either be con-
verted to a numeric output data format or to a printable numeric
format using editing masks. See “How to Convert Numeric Data” on
page 2.97. The default is to use the MO editing mask to create print-
able output. The number of digits in an expression is defined to be
15 (unless the expression is a simple p,l.f; field), so using the MO
default mask will create a 16-byte output field.

The following are expressions:

+10
10,2,Y27

2.92 SyncSort for z/OS 1.1 Programmer’s Guide

operator

OUTREC

+10,ADD,10,2,Y2Z

1,4,2zD
10,2, PD
+30

1,4,2D,ADD,10,2,PD

+30,MUL, (1,4,2D,ADD, 10,2, PD)

+30,MUL, (1,4,2D,ADD, 10,2,PD),MIN, (5,5,2ZD,DIV,+100)
(+30,MUL, (1,4,2D,ADD,10,2,PD)) ,MIN, (5,5, 2D,DIV,+100)

Operations between two numeric fields or constants are performed
with operators. There are two types of operators: function operators
and arithmetic operators. The following are the function operators:

MIN Generates the minimum arithmetic value of two speci-
fied fields.

MAX Generates the maximum arithmetic value of two speci-
fied fields.

The following are the arithmetic operators:

MUL multiplication
DIV division

ADD addition

SUB subtraction

The following rules of arithmetic precedence apply in computing an
“expression”:

e Conditions within parentheses are evaluated first, from
innermost to outermost parentheses.

¢ The arithmetic functions of minimum and maximum (MIN and
MAX) are performed before the arithmetic operators (MUL,
DIV, ADD, SUB). Within the arithmetic operators,
multiplication (MUL) and division (DIV) are performed before
addition (ADD) and subtraction (SUB). Operations within the
same precedence level are performed from left to right.

Use this parameter together with p,/ to define the input format of a
numeric field that is part or all of an expression. The expression
will then be converted to either another numeric data format or to a
printable format. In such cases, indicate the format of the data field
that is to be converted by replacing f; with BI, FI, PD, ZD, CSF/FS,

Chapter 2. SyncSort Control Statements 2.93

OUTREC

PDO, or one of the year data formats (Y2B, Y2C, Y2D, Y2P, Y2S,
Y27, Y2T, Y2U, Y2V, Y2W, Y2X, Y2Y).

Also use this parameter when a 2-digit packed decimal year value is
to be expanded to a 4-digit packed decimal value. In such cases
replace f; with Y2ID or Y2IP. The Y2ID and Y2IP formats cannot be
used to form complex arithmetic expressions and do not allow the
specification of mask (Mm), EDIT, SIGNS, or LENGTH.

An 1 value indicating the length of the field must be specified in
accordance with the following allowable values:

for BI ... 1-4 inclusive

for CSF or FS ... 1-16 inclusive (15 digit limit)
for FI ... 1-4 inclusive

for PD ... 1-8 inclusive

for PDO ... 2-8 inclusive

for Y2B ... 1
for Y2C ... 2
for Y2D ... 1
for Y2ID ... 1
for Y2IP ... 2
for Y2P ... 2
for Y2S ... 2
for Y27 ... 2

for ZD ... 1-15 inclusive
for Y2T ... 3-6 inclusive
for Y2U ... 2-3 inclusive
for Y2V ... 3-4 inclusive
for Y2W ... 3-6 inclusive
for Y2X ... 2-3 inclusive
for Y2Y ... 3-4 inclusive

Field conversion of a single p,l.f; expression with a format of Y2B,
Y2C, Y2D, Y2P, Y2S, Y2Z, Y2ID, or Y2IP does not default to the use
of the MO default output mask. The default will convert to a 4-digit
4-byte printable year. However, except for Y2S, Y2ID, and YZ2IP,
these formats can be used to form expressions with operators. In
this case, the default will use the MO output mask with 15 decimal
digits. The specification of an output numeric data format f, or
mask Mm, EDIT, SIGNS, or LENGTH is permitted except when
using Y2S, Y2ID, and Y2IP.

Field conversion of a single p,l.f; expression with a format of Y2T,
Y2U, Y2V, Y2W, Y2X, or Y2Y does not default to the MO mask.
These fields are converted to a printable year with the 2-digit year
portion converted to a 4-digit value. The year portion of the date is

2.94 SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

converted to a 4-digit year using the century window defined by the
CENTWIN parameter. The century window is not used for the spe-
cial values, which are only expanded with characters of the proper
format. The specification of an output numeric data format f, or
mask Mm, EDIT, SIGNS, or LENGTH is not permitted.

The following describes the other FIELDS subparameters:

EDIT=(pattern)

LENGTH=n

change-parm

Use this subparameter to define the output numeric data format of
an expression. When f, is specified, mask Mm, EDIT, and SIGNS
cannot be specified. Indicate the desired format of the output field
by replacing f, with BI, CSF/FS, FI, PD, or ZD. See “How to Convert
Numeric Data” on page 2.97 for the default lengths of these fields.
See “The LENGTH=n Subparameter” on page 2.108 for how this
default may be changed.

Use the Mm subparameter to indicate that one of the 27 SyncSort-
provided editing masks, M0-M26, is to be used. Replace 'm' with the
mask number. For details, see “The Mm Subparameter (Editing
Masks)” on page 2.109.

Use the EDIT subparameter to specify that a user-provided editing
mask should be used to format the output fields. For details, see
“The EDIT Subparameter” on page 2.107.

Use the SIGNS subparameter to specify the signs that will appear
before or after the edited number. For details, see “The SIGNS Sub-
parameter” on page 2.112.

Use the LENGTH subparameter to alter the length of the output
field. This is normally determined by the number of numeric digits
d and either the data format or the edit pattern and format of the
edited field. For details, see “The LENGTH=n Subparameter” on
page 2.108.

Use this subparameter to tell SyncSort how the field should be
aligned with respect to the start of the output record. Replace a
with H, F, or D to specify halfword (H), fullword (F), or doubleword
(D) alignment. The alignment itself actually takes place after the
column designation. It will automatically pad any provided field
with the number of bytes of binary zeros required to achieve the
specified alignment. This subparameter cannot be used in conjunc-
tion with data conversion.

This variable represents the CHANGE subparameter. The
CHANGE subparameter changes an input field to a replacement
constant in the reformatted output record if the input field equals a

Chapter 2. SyncSort Control Statements 2.95

OUTREC

HEX

TRAN

)

search constant. For a complete description, see “The CHANGE
Subparameter” on page 2.113.

Use the HEX subparameter to convert a record field to its hexadeci-
mal representation. Specify this subparameter immediately after
the position p and the length [of the field to be converted. Specify
p,l, HEX for both fixed-length records and the fixed-length portion of
variable-length records. Specify p,HEX for the variable-length por-
tion of variable-length records. Starting in position p of the input
record, for a length of /, each byte will be converted to its hexadeci-
mal representation. Note that in the reformatted record, the con-
verted field will be twice the length of the original field.

Use this subparameter to change the case of EBCDIC letters from
lowercase to uppercase, uppercase to lowercase, or based on an
alternate collating sequence (ALTSEQ) table in effect. Specify this
subparameter immediately after the position p and the length [of
the field to be converted. Specify p,/,TRAN for both fixed-length
records and the fixed-length portion of variable-length records.
Specify p,TRAN for the variable-length portion of variable-length
records. Starting in position p of the input record, for a length of [,
each byte will be converted as per specification.

LTOU
TRAN={ UTOL
ALTSEQ

LTOU Instructs SyncSort to translate EBCDIC letters in a
specified field from lowercase to uppercase.

UTOL Instructs SyncSort to translate EBCDIC letters in a
specified field from uppercase to lowercase.

ALTSEQ Instructs SyncSort to translate characters based on the
ALTSEQ table in effect.

For examples of OUTREC control statements that use the TRAN
subparameter, see Figure 55 on page 2.120 and Figure 56 on page
2.121.

Use this subparameter together with the p,l elements to indicate
the conversion of a full-date field to a printable date with separator
character(s). The “¢” represents the separator and can be any char-
acter except a blank. The year portion of the date is converted to a
4-digit year using the century window defined by the CENTWIN
parameter. The century window is not used for the special values,
which are expanded with characters of the proper format.

2.96 SyncSort for z/OS 1.1 Programmer’s Guide

The following table shows what is produced if (c) is set to a “/:

OUTREC

Full-Date
Format Date Form Length (bytes) Output Format
Y2T yyx 3 —
Yyxx 4 yyyy/xx
yyxXxx 5 YYYY/XXX
VYXXXX 6 yYYy/xx/XX
Y2U yyx 2 yy/x
X'yyxs')
YyXxX 3 NALD:0.9:
X'yyxxxs')
X'0Oyyxxs')
YyXXxX 4 yy/xxX/XX
(X'Oyyxxxxs')
Y2Ww Xyy 3 x/yy
XXyy 4 xx/yy
XXXYY 5 XXX/yY
XXXXYY 6 XX/XX/yy
X'xyys")
XXXYY 3 Xxx/yy
(X'xxxyys')
(X'0xxyys")
XXXXYY 4 XX/XX/yy
(X'0xxxxyys')

Table 15. Full-Date Field Conversions

How to Convert Numeric Data

One of the most important functions of OUTREC processing is to convert a numeric data
field or an expression to either an output numeric data format or a printable format with

editing capabilities.

Chapter 2. SyncSort Control Statements 2.97

OUTREC

OUTREC processing can also expand a packed decimal 2-digit year to a packed decimal 4-
digit year. In such cases, Y2ID or Y2IP formats are used to convert from a 2-digit to a 4-
digit year while maintaining a packed format. For details on converting year data, see
“Converting Year Data with Century Window Processing on INREC, OUTREC, or OUTFIL
OUTREC” on page 2.100.

When a single numeric field defined by p,l.f; is to be converted to a printable format without
editing, the format and length of the field determine the length of the output field, as illus-
trated in the following two tables.

Data Conversion
Input Format N}lmber of 1.3ytes Numbet.' qf Resulting

in Input Field Digits (d)
7D n n
PD n 2n-1
BI, FI 1 3
BI, FI 2 5
BI, FI 3 8
BI, FI 4 10
CSF or FS n

n (to maximum of 15,
then truncated)

PDO n 2n-2 digits
Y2C, Y2P, Y2S, Y2Z 2 4 digits
Y2B, Y2D 1 4 digits
Y2ID 1 2 bytes
Y2IP 2 3 bytes

2.98 SyncSort for z/OS 1.1 Programmer’s Guide

Table 16. Data Conversion Table

OUTREC

For full-date formats, the number of bytes in the input field can vary. The following table
shows input lengths for full-date formats and the resulting output length:

Input Format Number of I.Bytes in Numbel.' qf Resulting
Input Field Digits (d)
Y2T 3 5
4 6
5 7
6 8
Y2U 9 5
3 7
Y2V 3 6
4 8
Y2W 3 .
4 6
5 7
6 8
Y2X 2 5
3 7
Y2Y 3 5
4 8

Table 17. Data Conversion Table — Full-Date Formats

For any other type of expression (those that are not a simple p,/.f;), SyncSort internally
treats the input field length as 15. Thus, in Table 15 and Table 17, d would be equal to 15.
(For more details on expressions, see the description of expression on pages 2.87-2.89.)

If you specify no other FIELDS subparameters, the result will be converted to printable
output according to the default editing mask, M0O. See “The Mm Subparameter (Editing
Masks)” on page 2.109. Other forms of printable output can be created by using the EDIT,
LENGTH, Mm, and SIGNS subparameters, which allow you to create your own edit pat-
terns, or by using one of the 27 SyncSort-supplied editing masks, which are appropriate for
many editing operations.

To convert to a numeric data field, simply specify an output format of BI, CSF/FS, FI, PD,
or ZD. The default output field length is determined by the following table, where d in the

Chapter 2. SyncSort Control Statements 2.99

OUTREC

second column is obtained from column 3 of Table 16 on page 2.98 for p,lf; fields. For any
other type of expression (not p,l.f;), d is equal to 15.

Output Format Output lﬁiff;tl}: (bytes)
BI 4
CSF d+1
FI 4
FS d+1
PD d2+1
ZD d

Table 18. Output Length of Output Formats

These lengths can be overridden by specifying the LENGTH parameter.
The following five sections describe the data conversion capabilities:

e Converting Year Data with century window processing on INREC, OUTREC, or
OUTFIL OUTREC

¢ The EDIT Subparameter
¢ The LENGTH=n Subparameter

¢ The Mm Subparameter (Editing Masks)

The SIGNS Subparameter

Converting Year Data with Century Window Processing on INREC, OUTREC, or
OUTFIL OUTREC

A 2-digit year field, as specified by the Y2B, Y2C, Y2D, Y2P, Y2S, Y2Z, Y2ID, and Y2IP for-
mats, can be converted on output to a 4-digit year. For full-date fields, as specified by the
Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y formats, the 2-digit year portion can be expanded on
output to a 4-digit year.

The following describes output data conversion for date fields:

2.100 SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

¢ The Y2B format specifies 2-digit, 1-byte binary year data that will be converted to a 4-
digit, displayable character format with the appropriate century value. For information
on the range of binary values representing year data with Y2B, see Table 24 on page
2.135.

e The Y2C and Y2Z formats specify 2-digit year data that are in displayable (zoned
decimal) format. The 2-digit year data will be expanded to a 4-digit field containing the
appropriate century value.

e The Y2S format is equivalent to Y2C and Y2Z for valid numeric year data. All three
formats will convert such data to a displayable 4-digit year with the appropriate
century value. Y2S, however, provides additional functionality. For data with binary
zeros (X'00'), a blank (X'40") or binary ones (X'FF') in the first byte, typically to identify
header/trailer records, Y2S will expand the data to 4 bytes, padded in the first 2 bytes
with the same character as found in the first byte of the input field. The fourth byte of
the output field is copied unchanged from the second byte of the input field.

The following symbolic representation shows the treatment in hexadecimal of the three
types of data:

SORTIN Input OUTREC Output
00ab 000000ab
40ab 404040ab
FFab FFFFFFab

e The Y2D and Y2P formats specify 2-digit year values in packed decimal format. The
processing applied to these fields will create a 4-digit year value converted to a
displayable character format.

e The Y2ID and Y2IP formats take as input the same 2-digit packed decimal year data as
the Y2D and Y2P formats but produce a 4-digit year output that remains in packed
decimal format. Y2ID will convert data from X'yy' to X'ccyy', and Y2IP will convert data
from X'ayys' to X'accyys', where cc is the correct century. (For a description of Y2D and
Y2P formats for SORT or MERGE processing, see Table 24 on page 2.135 or Table 10 on
page 2.42, respectively.)

e For full-date fields (Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y), the 2-digit portion will expand
to the appropriate 4-digit year based on the CENTWIN setting. The output field length
can be determined from Table 17 on page 2.99.

Note that an additional data format, PDO, which is typically used to process the month and
day portion of packed decimal data, is not affected by CENTWIN processing and will not
convert 2-digit year data to 4-digit years. PDO can be used with the SyncSort-supplied edit
mask M11. The year data formats Y2B, Y2C, Y2D, Y2P and Y2Z can also be used when
forming expressions. The 4-digit year will be converted to an integer for arithmetic calcula-
tions. Any expression with these formats can also be converted to an output numerical data
format f,, or to printable output by specifying one or more of the OUTREC FIELDS subpa-
rameters (Mm, EDIT, SIGNS or LENGTH). For information on using the year data formats

Chapter 2. SyncSort Control Statements 2.101

OUTREC

for SORT or MERGE field specifications, see “CENTWIN Parameter (Optional)” on page
2.134 or “CENTWIN Parameter (Optional)” on page 2.41, respectively. For more informa-
tion on using the year data formats for INREC or OUTREC processing, see “Example 5” on
page 2.120.

For more information on converting full-date formats, see the descriptions of the f; and
fyo1,(c) parameters on pages 2.93-2.96, Table 15 on page 2.97, and Table 17 on page 2.99.

Converting SMF Date and Time Formats

You can convert SMF date and time formats to standard date and time formats. The follow-
ing table shows the SMF formats and the converted output:

SMF Format Converted Output
DT1 Z'yyyymmdd'
DT2 Z'yyyymm'
DT3 Z'yyyyddd'
TM1 Z'hhmmss'
TM2 Z'hhmm'
TM3 Z'hh'
TM4 Z'hhmmssxx'

Table 19. SMF Formats and Converted Output

For DTn, the source is the 4-byte packed SMF date value (P'cyyddd'). For TMn, the source
is a 4-byte binary SMF time value.

The ¢ in the date source P'cyyddd' represents the century. It is converted as follows: O is
converted to 19, 1 is converted to 20, and 2 or greater is converted to 21.

The converted output is a zoned decimal field, where each character in the table represents
a single byte. For TM4, xx represents hundredths of a second.

The SyncSort pre-defined edit masks (M0-M26) or specified edit patterns can be used to
edit the converted date and time. The default mask is M11.

Notes: A data exception (0C7 ABEND) or an inaccurate ZD date can occur if an SMF date
is not valid. An inaccurate ZD time can occur if an SMF time is not valid. SMF dates and
times are processed as positive values.

For an example of an OUTFIL control statement that converts SMF formats, see Figure 53
on page 2.120.

2.102 SyncSort for z/OS 1.1 Programmer’s Guide

Specifying Literal Fields

OUTREC

Spaces (X), hexadecimal digits (X'hhhh...hh'), literal strings (C'literal string'), and binary
zeros (Z) can also be specified in the FIELDS parameter. Each of these entries can be pre-
ceded by an 'n' value which indicates that a specified number of spaces, hex digits, literal
strings, or binary zeros should be inserted in the output record. Additionally, SEQNUM can
be specified to place a sequence number field in the output record.

nX

nX'hhhh...hh'

nC'literal string'

nZ

SEQNUM

Use the nX entry to specify a number n of spaces. The n value may
be any number from 1 to 4095 inclusive. The X entry represents a
space and must be coded to the immediate right of the number spec-
ified for n. If more than 4095 spaces are desired, two or more nX
values should be specified.

Use the nX'hhhh...hh' entry to specify that n copies of hex digits or
hex digit strings should be inserted in the output record. (Each hh
pair is 1 byte of output.) The repetition factor » may be any number
from 1 to 4095 inclusive.

Use the nCl'literal string' entry to specify that n copies of literal
strings should be inserted in the output record. The repetition fac-
tor n may be any number between 1 and 4095 inclusive. An apostro-
phe within a literal string must be specified with a double
apostrophe (e.g., C'O"LEARY").

Use the nZ entry to define a specified number n of binary zeros that
will be inserted in the output record. The repetition factor n may be
any number between 1 and 4095 inclusive. The Z entry must be
coded to the immediate right of n.

Use SEQNUM to create a sequence number field within the output
record. The length of the field can be from 1 to 16 bytes and can be
represented in either BI, PD, or ZD formats. In addition, a starting
value and an increment can be specified for the field.

The following describes the SEQNUM variables and parameters:

1 Represents the length in bytes of the field to be created.
A value from 1 to 16 can be specified.

f Indicates the format of the field to be created. BI, PD, or
ZD can be specified to create an unsigned binary field, a
packed decimal field, or zoned decimal field, respec-
tively.

START Optionally specifies a starting number n for the field.
The n value can be 0 through 2,147,483,647. The default
is 1.

Chapter 2. SyncSort Control Statements 2.103

OUTREC

INCR Optionally specifies a value i that indicates how
sequence numbers should be incremented. The i value
can be 1 through 65,535. The default is 1.

The maximum sequence number generated is limited to 15 decimal
digits or the length of the output field. If a number is reached that
would exceed the limit, SyncSort will truncate the high-order digit
and continue processing. Thus, sequence numbers will cycle within
the limit. For example, if the output field is 2 bytes, then 99 will be
the highest sequence number. The next number, 100, will have its
high-order digit truncated. The resulting number, 00, starts a new
sequence number cycle from 00 to 99, regardless of the START
value.

Generating Run-Time Date and Time Constants

You can insert the date and time of your SyncSort run into your records. The following table
shows the constants generated by the run-time date and time parameters.

A 'C' in the output format denotes a character constant, while a 'P' denotes a packed deci-
mal constant. Packed decimal constants contain a positive sign and a leading zero when
padding is necessary.

A '(¢)' in the parameter represents a separator character. A blank used as the separator
character must be enclosed in apostrophes. An apostrophe used as the separator character
must be specified as two apostrophes enclosed within apostrophes ("").

2.104 SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

Parameter Output Length (Bytes)

&DATE C'mm/dd/yy' 8
&DATE1 C'yyyymmdd' 8
&DATE1(c) C'yyyyemmedd' 10
&DATE1P P'yyyymmdd' 5
&DATE2 C'yyyymm' 6
&DATE2(c) C'yyyyemm' 7
&DATEZ2P P'yyyymm' 4
&DATE3 C'yyyyddd' 7
&DATE3(c) C'yyyyeddd' 8
&DATE3P P'yyyyddd' 4
&DATE=(m;mymsm,) (see description below table)
&DATENS=(xyz) (see description below table)

&TIME C'hh:mm:ss' 8
&TIME1 C'hhmmss' 6
&TIME1(c) C'hhemmess' 8
&TIME1P P'hhmmss' 4
&TIME2 C'hhmm' 4
&TIME2(c) C'hhemm! 5
&TIME2P Phhmm' 3
&TIME3 C'hh' 2
&TIME3P P'hh' 2
&TIME=(hp) (see description below table)
&TIMENS=(tt) (see description below table)

Table 20. Run Time Constants

Chapter 2. SyncSort Control Statements 2.105

OUTREC

&DATE=(m;m,mgsm,) This form of the &DATE subparameter generates the current sys-
tem date and controls the formatting of the date. You can specify the position of the year,
month, and date; specify a separator character; and choose between 2-digit and 4-digit year
representation.

The positions m; through m, represent masks used to format the date. To specify the posi-
tions of the month, day, and year, replace the m;, m, and m4 positions, in any order, with M
for the month (01-12), D for the day (01-31), and either Y or 4 for the year (where Y is a 2-
digit year and 4 is a 4-digit year). Replace the m, position with a separator character.

For example, to print the date with the form yy-mm-dd, specify &DATE=(YMD-). For
December 31, 1997, the date would appear as "97-12-31".

A blank used as the separator character must be enclosed in apostrophes. An apostrophe
used as the separator character must be specified as two apostrophes enclosed within apos-
trophes ("").

The field for this form of &DATE requires 8 bytes for a 2-digit year representation and 10
bytes for a 4-digit year. The M, D, and Y or 4 may only appear once in the mask. All four
positions must be specified.

&DATENS=(xyz) specifies that the current date is to appear in the output record in the
form 'xyz', where x, y, and z indicate the order in which the month, day, and year are to
appear and whether the year is to appear as two or four digits. For x, y, and z, use M to rep-
resent the month (01-12), D to represent the day (01-31), Y to represent the last two digits
of the year (for example, 02), or 4 to represent the four digits of the year (for example,
2002). M, D, and Y or 4 can each be specified only once.

For example, &DATENS=(DMY) would produce a date of the form 'ddmmyy' which on
March 29, 2002, would appear as '290302'. &DATENS=(4MD) would produce a date of the
form 'yyyymmdd' which on March 29, 2002, would appear as '20020329'. x, y, and z must be
specified.

&TIME=(hp) This form of the &TIME subparameter generates the current system time of
day and controls the formatting of the time. You can print the time in 24-hour or 12-hour
formats and specify the separator character between the hours, minutes and seconds.

The format for 24-hour time is hhpmmpss, where hh represents the hour (00-23), mm rep-
resents minutes (00-59), ss represents seconds (00-59), and p represents the separator char-
acter as specified by p in the &TIME=(hp) subparameter.

The format for 12-hour time is hhpmmpss nn, where hh represents the hour (01-12), mm
represents minutes (00-59), ss represents seconds (00-59), and p represents the separator
character as specified by p in the &TIME=(hp) subparameter. The nn is "am" or "pm" as
appropriate.

To select 12-hour mode specify i as 12; to select 24-hour mode specify & as 24. The p speci-
fication represents the character to use as a separator.

2.106 SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

For example, to display the time in a 12-hour format with a period as a separator, specify
&TIME=(12.). At 22:43:23 hours, the time would appear as "10.43.23 pm".

A blank used as the separator character must be enclosed in apostrophes. An apostrophe
used as the separator character must be specified as two apostrophes enclosed within apos-
trophes ("").

The field for this form of the &TIME subparameter requires 8 bytes for the 24-hour format
and 11 bytes for the 12-hour format.

&TIMENS=(tt) specifies that the current time is to appear in the output record in the form
'hhmmss' (24-hour time) or 'hhmmss xx' (12-hour time). If tt is 24, the time is to appear in
the form '"hhmmss' (24-hour time) where hh represents the hour (00-23), mm represents the
minutes (00-59), and ss represents the seconds (00-59).

For example, & TIMENS=(24) would produce a time of the form '"hhmmss' which at 08:25:13
pm would appear as '202513'. If tt is 12, the time is to appear in the form 'hhmmss xx' (12-
hour time) where hh represents the hour (01-12), mm represents the minutes (00-59), ss
represents the seconds (00-59), and xx is either 'am' or 'pm'.

For a second example, &TIMENS=(12) would produce a time of the form "hhmmss xx' which
at 08:25:13 pm would appear as '082513 pm'.

For an example of an OUTREC control statement that generates run-time constants, see
Figure 54 on page 2.120.

The EDIT Subparameter

The EDIT subparameter lets you create your own edit patterns for converted numeric data.
An edit pattern can consist of:

e Significant digit selectors.

¢ Leading insignificant digit selectors.

e Sign replacement characters.

¢ Any other characters to be printed in the actual output.

The edit pattern can be up to 22 characters in length, with a maximum of 15 leading insig-
nificant and/or significant digits.

The characters used to represent significant or insignificant digit selectors are determined
by the keyword EDIT. If EDIT is specified, the letter I represents leading insignificant dig-
its which will print as blanks if the digits are zeros, and the letter T represents significant
digits (digits that will print in their true form, even as leading zeros).

Chapter 2. SyncSort Control Statements 2.107

OUTREC

The keyword EDIT can be specified with replacements for the letters I and/or T. Any print-
able character can be used as a replacement character. This replacement makes available
to the user a pattern which encompasses all printable characters.

The figure below illustrates the concept of replacing the insignificant and significant digit
selectors I and T with other characters.

EDxy=
where:
x = insignificant digit selector

y = insignificant digit selector

Figure 45. Replacing Digit Selector Characters

When a blank, quotation mark or unbalanced parenthesis appears within an EDIT pattern,
the entire pattern must be enclosed within single quotation marks. Balanced parentheses
need not be enclosed within quotation marks. A single quotation mark within the pattern
(i.e., an apostrophe) must be specified as two apostrophes.

All other characters are printed as specified in the edit pattern, with the following excep-
tions:

Any character specified after the first leading insignificant digit selector and before the
first significant digit selector will print as a blank, unless a previously selected digit
was non-zero.

Any character specified after the last significant digit selector will print as a blank if
the edited number is positive.

Any character or character string specified before the first leading insignificant digit
selector, including a leading sign character, will print to the immediate left of the first
significant digit. The appropriate number of leading blanks will be supplied, assuring
that the total number of characters in the printed field corresponds to the total number
of characters in the edit pattern.

Any leading insignificant digit selector specified after the first significant digit selector
will be treated as a significant digit selector.

The sign replacement character appearing as the first and/or last character of the
pattern is replaced as per the SIGNS subparameter.

The LENGTH=n Subparameter

Use the LENGTH=n subparameter to alter the default length of the output field data:

2.108 SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

¢ When an editing mask is used, the default length is determined by the edit pattern and
the format of the field. If LENGTH=n is not specified, the length is equal to the number
of characters specified in the edit pattern. If LENGTH=n is specified, the edit pattern
will either be truncated on the left or padded with blanks on the left so that the length
of the pattern equals the n value.

The maximum value which can be specified for n when editing masks are used is 22.

e When an output data format f, is used, the default length is 4 for BI and FI formats,
and is determined by the number of digits in the input expression for CFS/FS, PD and
ZD formats. (The number of digits is 15 for any input expression other than a single
p,Lf; field.) If LENGTH=n is specified, the output data will either be truncated on the
left or padded on the left with zeros (or blanks for CSF/FS) of the appropriate format to
a length of n.

The following are the maximum values that can be specified for n when an output data
format f, is used:

Output Format |y
BI 4
FI 4
CSF 16
FS 16
PD 3
ZD 15

Table 21. Maximum Values of LENGTH=n for Output Data

The Mm Subparameter (Editing Masks)

SyncSort for z/OS provides editing masks to simplify the more common editing operations.
If neither Mm nor EDIT is specified in the OUTREC control statement, MO is used to edit
BI, FI, PD, PDO, ZD, and CSF/FS fields and M11 is used to edit DT1, DT2, DT3, TM1, TM2,
TM3, and TM4 fields.

Chapter 2. SyncSort Control Statements 2.109

OUTREC

2.110

Mask Pattern Signs Length

MO ITIIITIIIIIIIIITS G, =) d+1

M1 TTTTTTTTTTTTTTTS (,," ', =) d+1

M2 I,III,III,III,IIT.TTS Gont =) d+1 [d/3]

M3 I,III,III,III,IIT.TTCR d+2 [d/3]

M4 8I,III,III,III,IIT.TT (+,-) d+1 [d/3]

M5 SI,III,III,III,IIT.TTS ("G o)) d+2 [d/3]

M6 III-TTT-TTTT 12

M7 TTT-TT-TTTT 11

M8 IT:TT:TT 8

M9 IT/TT/TT 8

M10 ITIIIIIIIIIIIIT d

M11 TTTTTTTTTTTTTTT d

M12 SITII,III,III,III,IIT (rr,-) d+1 [(d-1) /3]
M13 SIII.III.III.III.IIT (=) d+1 [(d-1) /3]
M14 SIII III III III IITS (G) d+2 [(d-1)/3]
M15 III III III III IITS Gort =) d+1 [(d-1) /3]
M16 SIII III III III IIT (=) d+1 [(d-1) /3]
M17 SIII'III'III'III'IIT (=) d+1 [(d-1) /3]
M18 SI,III,III,III,IIT.TT (v, =) d+1 [d/3]

Table 22. (Page 1 of 2) Editing Masks

SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

Mask Pattern Signs Length
M19 SI.III.III.III.IIT,TT (S d+1 [d/3]
M20 SI III III III IIT,TTS (oG d+2 [d/3]
M21 I III III III IIT,TTS (PP d+1 [d/3]
M22 SI III III III IIT,TT (=) d+1 [d/3]
M23 SI'III'III'III'IIT.TT (=) d+1 [d/3]
M24 SI'III'III'III'IIT,TT (=) d+1 [d/3]
M25 SIIIIIIIIIIIIIIT (v, d+1
M26 STTTTTTTTTTTTTTT (+,-) d+1

Table 22. (Page 2 of 2) Editing Masks
Notes:

e MO is the default mask

e The letter d represents the number of resulting digits after data conversion. The mask
patterns in the Pattern column show the maximum number of resulting digits, which is
15. (Refer to Table 16 on page 2.98.)

e The bracket symbols indicate that only the integer part of this division should be
retained.

The Editing Masks table illustrates the following for each of the available masks.

e Edit pattern.

¢ Leading or trailing signs, where appropriate.

¢ Length. If a SyncSort editing mask is used for totaled or subtotaled data, the length of
the output field is determined by the maximum permissible length of the data format,
not by the specified length of the input field. The subparameter LENGTH can be used
to override the length of the output field.

The edit patterns use the same symbolic letters used in the EDIT subparameter. Leading
insignificant digits are represented by the letter I; significant digits are represented by the

Chapter 2. SyncSort Control Statements

2.111

OUTREC

letter T. Leading or trailing sign replacement characters are represented by the letter S. All
other characters print as they appear in the pattern.

The SIGNS illustrated for each mask follow the format requirements of the SIGNS subpa-
rameter. You can specify the SIGNS subparameter to selectively override the signs for a
particular mask. For example, if you specify mask M4 and also specify SIGNS=('"), a lead-
ing blank will print instead of a plus sign if the number is positive. However, a leading
minus sign will print if the number is negative because the leading negative sign specified
in the editing mask has not been overridden.

The lengths in the table represent the length, in bytes, of the mask. The lengths of masks
MO0-M5 and M10-M26 are determined, in part, by the number of digits d. Refer to Table 16
on page 2.98 to determine the number of digits for each type of numeric field.

The SIGNS Subparameter

The SIGNS subparameter specifies the sign(s) that will appear before or after the edited
number.

The sign replacement character, normally 'S', has special meaning if it appears as the first
or last character in an edit pattern. In these positions, the sign replacement character will
be replaced, as appropriate, by the characters specified by the SIGNS subparameter.

The format of the SIGNS subparameter is illustrated below.

SIGNS=(SI,52,53,S4)

where:
s;= leading positive sign indicator
so= leading negative sign indicator
ss= trailing positive sign indicator
s,= trailing negative sign indicator

Because the SIGNS subparameter contains four positional values, commas must be used to
indicate embedded, unspecified values. Each of the four values can contain one, and only
one, character; specified characters must be separated by commas.

A blank, comma, quotation mark and unbalanced parenthesis used as a SIGNS character
must be enclosed within apostrophes. An apostrophe used as a SIGNS character must be
specified as two apostrophes enclosed within apostrophes ("").

2.112 SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

When the SIGNS subparameter is specified, the letter 'S' is normally used as the sign
replacement character in the user-supplied edit pattern. The user can change the last letter
of the keyword SIGNS in order to specify another character as the sign replacement charac-
ter. For example, if the user specifies SIGNX instead of SIGNS, the letter X' becomes the
sign replacement character in the user-provided edit pattern.

If the user specifies a sign replacement character in the edit pattern but does not specify a
value in the corresponding position in the SIGNS parameter, a blank will be assumed. For
example, if the user specifies the following:

EDIT=(IITT.TTS),SIGNS=(,,,-)

then a trailing minus sign will print if the number is negative and a trailing blank will
print if the number is positive.

The SIGNS subparameter can also be used to override the sign values in SyncSort-provided
editing masks.

The CHANGE Subparameter

The CHANGE subparameter changes an input field to a replacement constant in the refor-
matted output record if the input field equals a search constant. The input field remains
unchanged on the input side.

The format of the CHANGE subparameter is shown below:

[c:] p,], CHANGE=(o,srch,,repl, [,srch,,repl,,...srch,, repl,])

r,n

NOMATCH=({nmrel’l})

Figure 46. Change Subparameter

Multiple search-replacement paired constants, with different data formats, can be specified
on a CHANGE subparameter. Note the following rules for mixing data formats:

e Search constants are character, hexadecimal, or binary strings. Multiple search
constants on a CHANGE subparameter can be a mixture of character and hexadecimal
formats. Binary search constants cannot be mixed with search constants of other
formats; thus, if one search constant on a CHANGE subparameter is binary, all other
search constants on that subparameter must also be binary.

Chapter 2. SyncSort Control Statements 2.113

OUTREC

¢ Replacement constants are character or hexadecimal strings. Multiple replacement
constants on a CHANGE subparameter can be a mixture of character and hexadecimal
data formats.

¢ The constants of a search-replacement pair can be of different data format. For
example, a hexadecimal or binary search constant could be paired with a character
replacement constant, or a character search constant could be paired with a
hexadecimal replacement constant. Thus, you could change a hexadecimal or binary
input field to a character output field, or you could change a character input field to a
hexadecimal output field.

The following describes the elements of the CHANGE subparameter:

psl

srch

repl

The normal SyncSort position-length designation that specifies the input
field. When this field matches a search constant, the field will be changed in
the output to a replacement constant.

For character or hexadecimal search constants, the input field can be 1 to
64 bytes long. For binary search constants, the input field must be one byte.

The length of the output replacement field. Permissible length is 1 to 64
bytes.

The search constant to which the input field is compared. Permissible for-
mats are character string (C'x...x"), hexadecimal string (X'x...x'), or a binary
byte (B'bbbbbbbb'). When the search constant matches the input field, the
input field will be changed to an output replacement constant.

If one of the search constants is binary in a set of search-replacement pairs
on a CHANGE subparameter, then all the search constants on that
CHANGE subparameter must be binary. (For additional information on
using binary fields in INCLUDE/OMIT processing, see “INCLUDE/OMIT
Control Statement” on page 2.16.)

If the search constant is longer than the length [of the input field, the con-
stant will be truncated to length /. If the search constant is shorter than I/,
the constant will be padded on the right to length /. Character strings are
padded with blanks (X'40'). Hexadecimal strings are padded with zeros
(X'00". Binary strings are neither truncated nor padded since only one-byte
strings are permissible.

The replacement constant to which the input field is changed in the refor-
matted output record when the input field matches a search constant. Per-
missible formats are character string (C'x...x') and hexadecimal string
X'x...x").

If the replacement constant is longer than the length o of the output field,
the constant will be truncated to length o. If the replacement constant is

2.114 SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

shorter than o, the constant will be padded on the right to length o. Charac-
ter strings are padded with blanks (X'40'). Hexadecimal strings are padded
with zeros (X'00").

NOMATCH Indicates how SyncSort should respond if the input field does not match a
search constant. If NOMATCH is not specified and no search constant
matches the input field, sort processing will terminate with an error mes-
sage.

nmrepl A replacement constant to which the input field is changed in the reformat-
ted output record when the input field p,/ fails to match a search constant.
For details, see the description of the repl variable above.

r,n The position r and length n of an input field that will be inserted in the out-
put record when the CHANGE input field p,l fails to match a search con-
stant.

n must be at least 1. If n is greater than the length o specified for the output
replacement field, the output field r,n will be truncated on the right to
length o. If n is less than o, the field r,n will be padded on the right with
blanks (X'40") to the length o.

The following example illustrates the use of the CHANGE subparameter:

OUTREC FIELDS= (16,2,
CHANGE= (13,C'NJ"',C'NEW JERSEY',
C'NY',C'NEW YORK',
C'PA',C'PENNSYLVANIA'),
NOMATCH= (C'NOT SUPPORTED'),
8X,
24,1,
CHANGE=(10,B'1....... ', C'EAST COAST',
B'O....... ' ,C'WEST COAST'))

Figure 47. Sample OUTREC Parameter with CHANGE Subparameter

In the above example, the FIELDS parameter contains two CHANGE subparameters. The
first CHANGE subparameter changes the input field 16,2 to a state name in the reformat-
ted output record when the input field matches a state code. If no matches are found, the
output field will be ' NOT SUPPORTED.' The second change subparameter changes the one-
byte input field 24,1 to '/EAST COAST"' or ' WEST COAST" in the reformatted output record,
depending on the binary contents of the input field.

The following example illustrates a situation that can arise when using binary search con-
stants. In such cases, more than one search constant may match an input field:

Chapter 2. SyncSort Control Statements 2.115

OUTREC

OUTREC FIELDS=(24,1,
CHANGE=(6,B"'..... 11.',C'SHARE",
B'...... 1.',C'UNIQUE'))

Figure 48. CHANGE Subparameter with Binary Search Constants

Note that in the above example, the input field X'06' would match both binary search con-
stants. In such cases, the first search constant is used, thus the output would be the charac-
ter string 'SHARE'. If the input field were X'02', the output would be the character string
'UNIQUE'".

CONVERT Parameter (Optional)

The CONVERT parameter enables you to convert variable-length records into fixed-length
records.

These records do not require an RDW and will be written to the output file(s) with a
RECFM of F or FB. When using CONVERT, you no longer need to apply the rules for "Spec-
ifying the FIELDS parameter for Variable-Length Records."

You may create multiple output files with different record formats when specifying
CONVERT in conjunction with the OUTREC parameter on the OUTFIL control statement.
Refer to the explanation of CONVERT in the OUTFIL control statement description for
facilities available when using CONVERT with OUTFIL.

You cannot specify the variable portion of the input records (position without length) when
using CONVERT. However, all data fields need not be present in each record being
CONVERTed, unless a numeric or year data field is specified. That is, blanks will be used
as a default for any missing p,! field bytes, while all p,/,f fields must be present. See
VLFILL for how to change the default character if you use the OUTREC parameter of the
OUTFIL control statement.

Sample OUTREC Control Statements

Example 1

The following example illustrates how the OUTREC control statement can be used to insert
binary zeros and blanks into the record.

OUTREC FIELDS=(1:4Z,5:20,10,23:44,28,10X)

Figure 49. Example 1, Sample OUTREC Control Statement

2.116 SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

This OUTREC control statement defines a 60-byte record as follows:

Four binary zeros are inserted in the first 4 bytes of the record (47).

The next field begins in position 5. This field began in position 20 before OUTREC
processing and is 10 bytes long (5:20,10).

Eight blanks are inserted before the next field, which is positioned at byte 23. SyncSort
for z/OS automatically inserts blanks in the unused positions between fields.

The next field begins in position 23. This field began in position 44 before OUTREC
processing and is 28 bytes long (23:44,28).

Ten blanks are inserted in the last 10 bytes of the record (10X).

Example 2

The following example illustrates how the OUTREC control statement can be used to con-
vert and edit numeric fields.

OUTREC FIELDS=(1,50,64,4,PD,M2,68,6,2ZD,

EDIT=(SI,IIT.TTS),SIGNS=(,,+,-))

Figure 50. Example 2, Sample OUTREC Control Statement

This OUTREC control statement defines a 70-byte output record as follows:

The first field (1,50) begins in position 1. This field began in position 1 before OUTREC
processing and is 50 bytes long.

The next field (64,4) begins in position 51. This packed decimal field began in position
64 before OUTREC processing and is 4 bytes long. After being converted and edited by
editing mask M2 (64,4,PD,M2) the resulting field will be 10 bytes long. However, the
number of digits that will actually print will depend on the number of leading zeros, if
any, because this mask specifies that only three digits must print whether or not they
are leading zeros. Moreover, this mask specifies that a minus sign print after the
number if it is negative and a blank print after the number if it is positive.

The last field (68,6) begins in position 61. This zoned decimal field began in position 68
before OUTREC processing and is 6 bytes long. The EDIT and SIGNS subparameters
(EDIT=($I,IIT.TTS),SIGNS=(,,+,-)) specify a 10-byte field because 4 additional bytes are
needed for the dollar sign, the comma, the decimal point and the trailing plus or minus
sign. Note that if the first three digits are leading zeros, they will be suppressed.

Chapter 2. SyncSort Control Statements 2.117

OUTREC

Example 3

This example uses the OUTREC control statement to convert numeric data from one for-
mat to another.

OUTREC FIELDS=(1,10,2D,PD,

11,4,FI,ZD,LENGTH=8)

Figure 51. Example 3, Sample OUTREC Control Statement

This OUTREC control statement defines a 14-byte output record as follows:

The first field (1,10,ZD,PD) begins in position 1. This field was a 10-byte ZD field that
began in position 1 before OUTREC processing. It will be converted to a 6-byte PD field
in the output record, because 6 bytes are required to contain 10 decimal digits as a PD
field.

The next field (11,4,F1,ZD) begins in position 7. This field was a 4-byte FI field that
began in position 11 before OUTREC processing. It will be converted to an 8-byte ZD
field in the output record. Normally 10 ZD bytes would be required to contain the 10
decimal digits that may be represented by a 4-byte FI field, but the LENGTH=8
parameter overrode the output length. If there are more than 8 decimal digits in any of
the 11,4,FT fields, those digits will be truncated on the left in the output record.

Note that ZD output is not the same as printable output using editing masks. High
order zeros will appear as zeros in a ZD field, while they appear as blanks when using
the default MO mask, as well as most other masks. The sign indicator in a ZD field is
placed in the first 4 bits of the rightmost byte, and not as a separate printable sign.

Example 4

This OUTREC example uses arithmetic and function operators to do algebraic calculations.

New 8-byte PD fields are required in each record containing the maximum and average of
fields A, B and C. Another new 5-byte printable field is required containing field D as a per-
centage of field E. The field definitions are:

Field A: 1,4,PD
Field B: 5,8,ZD
Field C: 13,4,F1
Field D: 25,4,PD
Field E: 29,4,PD

The OUTREC control statement to accomplish this would be:

2.118 SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

OUTREC FIELDS=(1, 36,
40:(01,4,PD,ADD,
05,8,7D,ADD,

13,4,FI),
DIV, +3,
PD,

50:01,4,PD,MAX,
05,8, 7D, MAX,
13,4,FI,
PD,

60:+100,MUL,
25,4,PD,DIV,
29,4,PD,
LENGTH=5)

Retain existing fields
Field A plus

Field B plus

Field C

divide by 3 to get average
output as 8-byte PD field

Determine maximum of Field A and
Field B and

Field C

output as 8-byte PD field

100 times

Field D divided by

Field E

output as printable 5-byte field
using default MO mask

Figure 52. Example 4, Sample OUTREC Control Statement

This OUTREC control statement defines a 64-byte output record as follows:

e The first field (1,36) retains the complete contents of the input record.

¢ The second output field begins in position 40. An arithmetic calculation is done using
three different numeric input fields and the constant +3 to compute the arithmetic
average. This is an expression that is considered to contain 15 decimal digits. The
output is requested as a PD field. The length of this field will be 8 bytes, since that is
the length required to contain 15 decimal digits.

¢ The third output field begins in position 50. Multiplying numeric Field D by 100 before
dividing by numeric Field E gives the desired percentage number, which is considered
to contain 15 decimal digits. No output format or editing mask is specified, so the
default mask MO is used to create printable output. LENGTH=5 is specified to reduce
the default length of the output field from 16 to 5, since it is known that the percentage

number will not be large.

Chapter 2. SyncSort Control Statements

2.119

OUTREC

Example 5

This OUTREC control statement uses DT1, TM1, and edit masks to convert SMF date and
time values to appropriate formats.

OUTREC FIELDS=(1,4,DT1,EDIT=(TTTT/TT/TT),
3X,5,4,TM1,EDIT=(TT:TT:TT))

Figure 53. Sample OUTREC Control Statement

The following shows how the output would be formatted:

2002/07/04 07:22:12
2002/07/04 05:15:25
2002/07/05 11:37:39
2002/07/05 16:42:28

Example 6

This OUTREC control statement illustrates the use of the &DATE1(c) and &TIME1(c)
parameters in a SyncSort run on June 9, 2002 at 04:16:29 p.m.

OUTREC FIELDS=(8,20,24:&DATE1(' '),X,&TIMEL1(:))

Figure 54. Sample OUTREC Control Statement

The output would include data from the input record in the first twenty columns followed
by the run-time date and time starting in column 24. The date and time would appear as
'2002 06 09 16:16:29'.

Example 7

The following control statements illustrate two of the options of the TRAN subparameter.

This OUTREC control statement uses TRAN=LTOU to translate the letters in positions 1-5

of each output record from lowercase to uppercase.

OUTREC FIELDS= (1,5, TRAN=LTOU)

Figure 55. Sample OUTREC Control Statement

For example, 'Ab,Cd' would translate to 'AB,CD".

2.120 SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

This OUTREC control statement uses TRAN=ALTSEQ to translate each binary zero (X'00")
in columns 1-5 to an asterisk (X'5C') in positions 1-5.

ALTSEQ CODE=(005C)
OUTREC FIELDS= (1,5, TRAN=ALTSEQ)

Figure 56. Sample OUTREC Control Statement

Comprehensive examples illustrating the OUTREC control statement and the OUTREC
parameter of the OUTFIL control statement are provided in “Chapter 3. How to Use Sync-
Sort’s Data Utility Features”.

Sample OUTREC Control Statements with CENTWIN Processing

For century window processing, data conversion is determined by the century window
defined by the CENTWIN parameter.

The following provides examples of data conversion with CENTWIN:
Example 1

A 2-digit year field in character format at position 20 in the input record could be expanded
with the following specification:

OUTREC FIELDS=(1,19, * Copies first 19 bytes of record
20,2,Y2C, * Converts 2-digit year data to 4-digit year
22,59) * Copies remaining 59 bytes

Figure 57. Example 1, OUTREC Control Statement with Year Data

Note that the expansion of the year data from 2 to 4 digits increases the output record
length by 2 bytes compared to the input record length.

The CENTWIN setting determines the century of the 2-digit year field. If CENTWIN=1980,
then a year field in the input record would be converted as follows:

SORTIN Input OUTREC Output
13 2013
79 2079
80 1980
92 1992
Example 2

Consider the following packed decimal date field at position 20 in the input record:

yymmdd = X'0yymmddC'

Chapter 2. SyncSort Control Statements 2.121

OUTREC

Suppose you want to output a displayable 4-digit year in character format in the form

mm/dd/yyyy

To accomplish this, specify the following OUTREC control statement:

OUTREC FIELDS=(1,19, * Copies first portion of record
21,2,pPDO0O,M11, * Converts X'ymmd' to X'mm' then C'mm'
cr/, * Inserts slash
22,2,pPD0O,M11, * Converts X'mddC' to X'dd'then C'dd!
cr/, * Inserts slash
20,2,Y2P, * Converts X'Oyym' to X'yy' then C'yyyy'
24,76) * Copies rest of record

Figure 58. Example 2, OUTREC Control Statement with Year Data

The 4-digit year output from the input year field (20,2,Y2P) depends on the CENTWIN set-
ting. The following sample of input and output data shows the case for CENTWIN=1980:

SORTIN Input Date Field OUTREC Output Date Field

X'0800329C! 03/29/1980
X'0790603C' 06/03/2079
Example 3

To expand a 3-byte packed decimal date field of the form X'yyddds', at position 20 in the
input record, to a 4-byte packed field of the form X'yyyyddds' that contains a prefixed cen-
tury value, specify an OUTREC control statement such as the following:

OUTREC FIELDS=(1,19, * Copies first portion of record
20,1,Y2ID, * Converts X'yy' to X'yyyy'
21,60) * Copies rest of record starting with
* the X'ddds' of the date field

Figure 59. Example 3, OUTREC Control Statement with Year Data

Note that in the above example the output record length will be 1 byte larger than the
input record length. The following sample of input and output data shows the effect for
CENTWIN=1980:

SORTIN Input Date Field OUTREC Output Date Field

X'79! X'2079'"
X's8o0! X'1980"

2.122 SyncSort for z/OS 1.1 Programmer’s Guide

OUTREC

Example 4

To expand a 4-byte packed decimal date field of the form X'0yymmdds', at position 20 in the
input record, to a 5-byte field of the form X'Oyyyymmdds' that contains a prefixed century
value, specify an OUTREC control statement such as the following:

OUTREC FIELDS=(1,19, * Copies first portion of record
20,2,Y2TP, * Converts X'Oyym' to X'Oyyyym'
22,59) * Copies rest of record starting with
*

the X'mdds' of the date field

Figure 60. Example 4, OUTREC Control Statement with Year Data
As with Y2ID conversion, the output record length will be 1 byte larger than the input
length. The following sample of input and output data shows the effect for
CENTWIN=1980:

SORTIN Input Date Field OUTREC Output Date Field

X'0790! X'020790"
X'o801' X'019801"
Example 5

Consider a 2-byte character or zoned decimal field that may contain either valid numeric
year data or characters that identify the record as a header or trailer. Header records in the
example are identified by zeros (X'00') or a blank (X'40") in the first byte of the year field,
while trailer records are identified by binary ones (X'FF') in the first byte of the field. The
Y2S format will treat the valid year data normally, in the same way as the Y2C or Y2Z for-
mats would treat the data, but the year fields of header and trailer records will be con-
verted to a 4-digit form padded on the left with data identical to the data in the first byte of
the input field.

Typically this type of conversion is needed when a Y2S SORT or MERGE field is used to
collate the records so that header/trailer records in the output remain at the start or end of
the file. An OUTREC control statement such as the following could be used.

OUTREC FIELDS=(1,19, * Copies first portion of record
20,2,Y2S, * Converts C'yy' to C'yyyy' and pads
fields that identify header/trailer records
22,59) * Copies the remaining fields

Figure 61. Example 5, OUTREC Control Statement with Year Data

As with Y2C or Y2Z, the output record length will be 2 bytes larger than the input record
length.

For CENTWIN=1990, the sorted Y2S field would be converted as follows:

Chapter 2. SyncSort Control Statements 2.123

OUTREC

2.124

SORTIN Input Date Field OUTREC Output Date Field

X'4001" X'00000000"
X'FOF8!' X'40404001"
X'FOF3' X'F1F9FOF8'
X'0000' X'F2FOFOF3'
X'FFFF' X'FFFFFFFF'

SyncSort for z/OS 1.1 Programmer’s Guide

(from
from
from
from
from

(
(
(
(

4th
1st
2nd
3rd
5th

input
input
input
input
input

record)
record)
record)
record)
record)

RECORD

RECORD Control Statement

The RECORD control statement provides record length and format information. It is
required in the following situations:

e SyncSort is invoked by a program passing either a 24-bit or 31-bit extended parameter
list and using an in-memory E15 or E32 exit routine.

e An E15 or E35 exit routine changes the record length.

RECORD Control Statement Format

The format of the RECORD control statement is illustrated below:

[LENGTH=(,,1,,1,,1,,15,1,,1,)]

RECORD [TYPE:{S}

Figure 62. RECORD Control Statement Format

TYPE Parameter (Optional)

The TYPE parameter can be used to indicate the record format. TYPE=F indicates fixed-
length records; TYPE=V indicates variable-length records. TYPE=FB or TYPE=VB can be
specified but the 'B' is ignored.

TYPE should be specified if SORTIN is VSAM. If TYPE is not provided, the SORTOUT
RECFM will be examined to determine the SORTIN TYPE. If no SORTOUT RECFM is
found, TYPE=V will be assumed if the SORTOUT is VSAM and TYPE=F if the SORTOUT
is non-VSAM.

Note: If the TYPE specification differs from the RECFM DCB parameter for the SORTIN/
SORTINnn DD statement, the latter takes precedence.

LENGTH Parameter (Conditionally Required)

The LENGTH parameter, usually optional, is required whenever the RECORD control
statement is required.

The LENGTH parameter specifies the length of the record at various points during the pro-
cessing of the application.

The number of length values can vary from 1 to 7. Only the 11, 12 and 13 values should be

specified for fixed-length records and for merge or copy applications. All seven length val-
ues can be specified for variable-length sorts. If 11 is the only value specified, parentheses

Chapter 2. SyncSort Control Statements 2.125

RECORD

are optional. If 11 and additional length values are specified, they all must be enclosed in

parentheses.

The length values are positionally dependent. An extra comma must indicate a missing
length value between any two that are specified. Commas need not follow the final length
value specified. For example, if LENGTH=(1,,,14) is specified, the omitted values are
understood to be 12 and 13.

The 11,...,17 variables specify the following:

11

12

13

14

The maximum record input length of the logical records. For variable-
length records, this is the length of the longest logical record plus the 4-byte
Record Descriptor Word. The 4-byte RDW must be included, even if the
input is a VSAM file. The maximum record length cannot exceed 32,760 for
fixed-length records and 32,767 for variable-length records. An LRECL
value specified on the SORTIN/SORTINnn DD statement or the data set
label will override the 11 value for fixed-length records. For variable-length
records, the higher value (LRECL or 11) is used.

The maximum length of the logical records after E15 processing. An omit-
ted 12 value defaults to the 11 value and indicates that the maximum record
length has not been changed by an E15 exit. If there is no E15 exit, an 12
value which is smaller than the 11 value or the LRECL specified on the
SORTIN/SORTINnn DD statement or data set label will truncate the
records. This truncation will occur after the record is read from SORTIN.

The maximum length of the logical records after E35 processing. If the 13
value is omitted, the default is either the 12 value, or, if an INREC and/or
OUTREC control statement is specified, the record length after INREC/
OUTREC processing. Note that it is not necessary to specify an 13 value to
reflect a length change due to INREC or OUTREC processing; the revised
record length is calculated automatically. However, it is necessary to specify
an 13 value if exit E35 has altered the record length.

The LRECL value specified in the SORTOUT DD statement should either
correspond to the 13 value or the LRECL specification should be omitted. In
the latter case, SyncSort will automatically calculate the correct LRECL
value.

The 13 value is ignored if there is no E35 exit, so it is not possible to use the
13 value to truncate or pad the records.

The minimum length of the variable-length logical records plus the 4-byte
Record Descriptor Word. An omitted 14 value defaults to the length from the
beginning of the record to the end of the last field referenced by any control
statement.

2.126 SyncSort for z/OS 1.1 Programmer’s Guide

15

16

17

RECORD

The most frequent record length of the variable-length records. Specify this
length value to optimize the size of the segment, i.e., the fixed-length block
of main storage, used to contain variable-length records.

The average work space required by each record, as reported by the
HISTOGRM utility program. The 16 value will be ignored for a Tape Sort.

The segment length recommended by the HISTOGRM utility program. If 17
is omitted, the SIZE parameter on the SORT control statement may be used
to determine the impact of segment size on sort performance. Assuming the
SIZE parameter reports a SORTIN data set of at least 10,000 records, Sync-
Sort may sample the first 100-200 records to calculate an approximate seg-
ment size. An installation may decide to allow record sampling for smaller
files. The 17 value will be ignored for a Tape Sort.

Rules for Specifying the Length Parameter

Observe the following rules when specifying length values:

All length values for variable-length records must include 4 bytes for the Record
Descriptor Word.

The 11, 12, and 13 values must represent the maximum record lengths and the 14 value
must represent the minimum record length. If SyncSort encounters a record which
exceeds the maximum length or is shorter than the minimum length, the application
will either terminate abnormally or produce unpredictable results.

Sample RECORD Control Statement

RECORD TYPE=F,LENGTH= (80, ,60)

Figure 63. Sample RECORD Control Statement

This sample RECORD control statement defines the record as follows:

The file contains fixed-length records.
The input record length (11) is 80 bytes.

A comma represents the omitted 12 value because an E15 exit does not change the
record length.

The record length after INREC/OUTREC and/or E35 processing is 60 bytes. The

SORTOUT LRECL should either be specified as 60 or omitted. If it is omitted, SyncSort
will automatically supply the correct value.

Chapter 2. SyncSort Control Statements 2.127

RECORD

2.128

RECORD TYPE=V,LENGTH=(400,300,250,120,200,280,230)

Figure 64. Sample RECORD Control Statement

This sample RECORD control statement defines the record as follows:

The file contains variable-length records. All length values include 4 bytes for the
Record Descriptor Word.

The maximum input record length is 400 bytes.

The maximum record length after E15 processing is 300 bytes.

The maximum record length after INREC/OUTREC and/or E35 processing is 250 bytes.
The minimum record length is 120 bytes.

The most frequent record length is 200 bytes.

The average work space required for each record is 280 bytes, as reported by the
HISTOGRM utility program.

The segment length recommended by HISTOGRM is 230 bytes.

In the above example, the 14, 15, 16 and 17 values will be ignored if the application is a
merge or copy.

SyncSort for z/OS 1.1 Programmer’s Guide

SORT
SORT Control Statement
The SORT control statement defines the application as a sort or copy application.

Either a SORT control statement or a MERGE control statement is required for every
application.

Cultural Environment Support

Cultural environment support allows you to choose an alternative set of collating rules
based on a specified national language. The alternative collating applies to SORT/MERGE
and INCLUDE/OMIT processing.

For additional detail, see “LOCALE” on page 5.20.

SORT Control Statement Format

The format of the SORT control statement is illustrated below.

FIELDS=(p,,1,,1},0,[,p,l5,f5,0,]...)
SORT |FIELDS=(p,,l,,0,[,p,,,,0,]...),FORMAT=f
FIELDS=COPY

)
_J° L [,CKPT
,CENTWIN = lsc [CHKP’J
d
,DYNALLOC | = { ¢ d,n [(RETRY = {g;‘lf‘mm)}] SC=s)
OFF
[[EQUALS _Jn _Jn
_,NOEQUALS} FILSIZ = {En}] [’SIZE = {En}]

[,SKIPREC =n | [STOPAFT = n]

Figure 65. SORT Control Statement Format
FIELDS Parameter (Required)

The FIELDS parameter is required. It describes the control fields.

Chapter 2. SyncSort Control Statements 2.129

SORT

List the control fields in order of greatest to least priority, with the primary control field
listed first, followed by progressively less significant fields. You can specify up to 128 con-
trol fields; however, if fields are complex, the limit for a particular execution may be less
than 128.

Each field specified in the FIELDS parameter is identified by its position (p), length (1), for-
mat (f) and order (o).

P The position value indicates the first byte of the field relative to the beginning of
the input record after INREC and/or E15 processing, if specified, have completed.

Binary control fields can begin on any bit of a byte. When a binary field does not
begin on a byte boundary, you must specify the bit number (0-7). For example, a
position value of 21.3 refers to the 4th bit of the 21st byte of the record.

1 The length value indicates the length of the control field. The length value must be
an integer number of bytes except for the length of a binary control field which can
be specified in bits. For example, a length value of 0.5 refers to a binary control field
5 bits long.

For signed fields, the length value must include the area occupied by the sign.

f The format value indicates the data format. For a list of valid formats, refer to the
table in the next section, "Valid Formats for Sort Control Fields." If all the control
fields have the same format, you can specify the format value once by using the
FORMAT=f subparameter. If you specify both the individual f values and the
FORMAT subparameter, the individual f values will be used. (Note that the f values
must be specified for each control field).

o The order value indicates how the field is to be collated:
e A=Ascending order
¢ D=Descending order

e E=As modified by an E61 exit. Ascending order

Valid Formats for Sort Control Fields

The following chart lists the valid formats for sort control fields.

2.130 SyncSort for z/OS 1.1 Programmer’s Guide

SORT

Code Data Format Field Length
(bytes)
AC* EBCDIC characters are translated to their ASCII equivalents 1 to 40917
before sorting.
AQ* Character. Records are sorted according to an alternate sequence 1 to 40917
specified either in the ALTSEQ control statement or as an installa-
tion default.
ASL* Leading separate sign. An ASCII + or - precedes numeric field. One | 2 to 256
digit per byte.
AST* Trailing separate sign. An ASCII + or - trails numeric field. One 2 to 256
digit per byte.
BI Binary. Unsigned. 1 bit to 4092**
CH Character. Unsigned. 1 to 4092+

CLO* Leading overpunch sign. Hexadecimal F,C,E, or A in the first 4 bits | 1 to 256
OL* of your field indicates a positive number. Hexadecimal D or B in the
first 4 bits indicates a negative number. One digit per byte.
CMP=CLC is forced.

CSF Floating sign format. An optional leading sign may be specified 1to 16
FS immediately to the left of the digits. If the sign is a -, the number is
treated as negative. For other characters, the number is treated as
positive. Characters to the left of the sign are ignored.

CSL* Leading separate sign. An EBCDIC + or - precedes numeric field. | 2 to 256
LS* One digit per byte. CMP=CLC is forced.

CST* Trailing separate sign. An EBCDIC + or - follows numeric field. 2 to 256
TS* One digit per byte. CMP=CLC is forced.

FI Fixed point. Signed. (Equivalent to Signed Binary.) 1 to 256
FL Floating point. Normalized. Signed. 2to 16
PD Packed decimal. Signed. 1 to 256

Table 23. (Page 1 of 3) Format Code Chart

Chapter 2. SyncSort Control Statements 2.131

SORT

Code

Data Format

Field Length
(bytes)

PDO*

Packed decimal. 2-8-byte packed decimal data with the first digit
and trailing sign ignored. The remaining bytes are treated as
packed decimal digits. Typically PDO is used with century window
processing and Y2P format; Y2P processes the year, while PDO pro-
cesses month and day.

2-8

Y2B*

Binary. 2-digit, 1-byte binary year data treated as a 4-digit year by
CENTWIN (century window) processing.

Y2C*

Character. 2-digit character year data treated as a 4-digit year by
CENTWIN (century window) processing. Processing is identical to
Y2Z fields.

Y2D*

Packed decimal. 2-digit, 1-byte packed decimal year data treated as
a 4-digit year by CENTWIN (century window) processing.

Y2P*

Packed decimal. 2-digit, 2-byte packed decimal year data. Of the
four packed digits contained in the 2 bytes, the first digit and trail-

ing sign are ignored; the two inner digits are treated as a 4-digit
year by CENTWIN processing.

Y2S*

Character or zoned decimal. 2-digit, 2-byte valid numeric data
treated as a 4-digit year by CENTWIN (century window) process-
ing, as for Y2C and Y2Z. However, certain data are not treated as
year data. Data with binary zeros (X'00') or a blank (X'40') in the
first byte will be collated before valid numeric year data for ascend-
ing order (after year data for descending order). Data with all
binary ones (X'FF') in the first byte will be collated after valid
numeric year data for ascending order (before year data for
descending order). Zones are ignored, as for Y2C and Y2Z, except
for data where the first byte begins with X'00', X'40' or X'FF".

Y2T*
Y2U*
Y2V*
Y2W*
Y2X*
Y2Y*

Full-date, character, binary, or packed decimal formats. Full-date
data formats can be used to sort or merge a variety of date fields.
They can process dates ending or starting with year digits (x...xyy
or yyx...x). They can also process non-date data commonly used
with dates. For details, see page 2.140.

2-6

2.132

Table 23. (Page 2 of 3) Format Code Chart

SyncSort for z/OS 1.1 Programmer’s Guide

SORT

Code Data Format Field Length
(bytes)
Y27Z* Zoned decimal. 2-digit, 2-byte zoned decimal year data treated asa | 2
4-digit year by CENTWIN (century window) processing. The zones
are ignored. Processing is identical to Y2C fields.
ZD Zoned decimal. Trailing overpunch in the first 4 bits of the right- 1 to 256
CTO* most byte gives the sign. Hexadecimal F,C,E, or A indicates a posi-
oT* tive number. Hexadecimal D or B indicates a negative number. One
digit per byte. CTO forces CMP=CLC.
Notes: * Cannot be used with Tape Sort.
** 4084 for variable-length records.
72043 for variable-length records.

Table 23. (Page 3 of 3) Format Code Chart

For information on the year data formats (Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z) plus the
related data format PDO and the full-date formats, see “CENTWIN Parameter (Optional)”
on page 2.134, “Converting Year Data with Century Window Processing on INREC, OUT-
REC, or OUTFIL OUTREC” on page 2.100, and “Specifying Field-to-Field Standard Com-
parisons for Year Fields” in the INCLUDE/OMIT Control Statement section of this chapter.

Rules for Specifying Sort Control Fields

For fixed-length records, all control fields and the sum of their lengths cannot exceed
4092 bytes. When EQUALS is in effect, the number is reduced 4 bytes to 4088 bytes.
EXTCOUNT also reduces the number by 4 bytes. Thus, if both EQUALS and
EXTCOUNT are in effect, the number is reduced to 4084 bytes.

For variable-length records, all control fields must be located within the first 4084
bytes, and the sum of their lengths cannot exceed 4084 bytes. When EQUALS is in
effect, the number is reduced 4 bytes to 4080 bytes. EXTCOUNT also reduces the
number by 4 bytes. Thus, if both EQUALS and EXTCOUNT are in effect, the number is
reduced to 4076 bytes.

Control fields can be in contiguous or non-contiguous locations in the record.

Remember that for variable-length records, the first 4 bytes are reserved for the Record
Descriptor Word, so the first byte of the data portion of the record is byte 5.

If the output file is a key-sequenced VSAM cluster, the VSAM key must be the first
control field specified.

Chapter 2. SyncSort Control Statements 2.133

SORT

Comparing PD and ZD Control Fields

The CMP PARM determines how PD and ZD control fields will be compared. When
CMP=CPD is in effect, the Compare Decimal (CP) instruction is used for the compare. ZD
fields are packed and then compared. This method has performance advantages. However,
invalid PD data may cause a system 0C7 abend and program termination. Moreover, the
integrity of ZD fields is only guaranteed when they contain valid ZD data. The CMP=CPD
method cannot be used if any control field exceeds 16 bytes, for variable-length sorts when
an even value (0, 2, 4, or 6) is specified for the VLTEST PARM, or for a Tape Sort.

When CMP=CLC is in effect, no data validation is performed and the integrity of the out-
put is maintained, even if the sign for a PD or ZD field is invalid. This method is always
used for control fields that exceed 16 bytes, for variable-length sorts when an even value is
specified for the VLTEST PARM, and for a Tape Sort.

CENTWIN Parameter (Optional)

2.134

The CENTWIN run-time or installation option acts on 2-digit year data. CENTWIN gener-
ates a century window (for example, 1950 through 2049) that determines the century to
which a 2-digit year belongs. At run-time, CENTWIN can be specified as either a PARM
option or a SORT/MERGE control statement parameter. CENTWIN ensures that year data
spanning centuries will be sequenced correctly. Without CENTWIN processing, an ascend-
ing sort would sequence the year 01 before the year 98. With CENTWIN processing, the 01
field could be recognized as a twenty-first century date (2001) and would thus be sequenced
after 98 (1998).

For more information on specifying the CENTWIN option, see “CENTWIN” on page 5.7.

CENTWIN SORT/MERGE processing only applies to data defined as year data formats:
Y2B, Y2C, Y2D, Y2P, Y2S, Y2Z, and the full-date formats (Y2T, Y2U, Y2V, Y2W, Y2X, and
Y2Y). These data formats enable SyncSort to process 2-digit year fields as 4-digit years. A
related data format, PDO, can be used to process the month and day portions of packed
decimal date fields. To correctly specify date fields for CENTWIN SORT processing, you
should be familiar with the CENTWIN-related data formats.

The following describes each of the year data formats and provides SORT control statement
examples:

The Y2B Format

This format is used to sequence 2-digit, 1-byte binary year data with CENTWIN process-
ing. The binary values are converted to decimal, and the two low order digits are used as
year data. Thus, while binary and decimal values range from 00 to 255, year values range
from 00 to 99. The relationship between binary, decimal and year values is shown in the fol-
lowing table:

SyncSort for z/OS 1.1 Programmer’s Guide

Binary Value

Decimal Value

Year Value

X'00' to X'63' 00 to 99 00-99
X'64' to X'CT' 100 to 199 00-99
X'C8' to X'FF' 200 to 255 00-55

SORT

Table 24. Possible Values Representing Year Data with Y2B

The Y2C and Y2Z Formats

These formats represent 2-digit, 2-byte year data in either character (Y2C) or zoned deci-
mal (Y2Z) format. Either Y2C and Y2Z formats can be used with data of the form

X'xyxy'

where y is a hexadecimal year digit 0-9 and x is hexadecimal 0 through F. Y2C and Y2Z
ignore the x digits, leaving yy, the 2-digit unsigned year representation.

Suppose you have a character or zoned decimal date field mmddyy that begins at byte 20.
You can use either Y2C or Y2Z to process the yy field. As the following example indicates,
you could specify three sort keys to correctly sort this date:

SORT FIELDS=(24,2,Y2C,A, * Sorts yy field as 4-digit year
20,2,CH,A,
22,2,CH,A)

* Sorts mm field
* Sorts dd field

The yy field (24,2) will be processed according to the century window setting. For example,
if CENTWIN=1945, the field yy=45 will be sequenced as if it were 1945, and yy=44 would
be sequenced as if it were 2044. Thus, for an ascending sort, 44 would follow 45.

The Y2D Format

This format is used to sequence 2-digit, 1-byte packed decimal year data with CENTWIN
processing. Use Y2D to extract the year data yy from packed decimal date fields. For exam-
ple, consider a 3-byte packed decimal data field defined as

X'yyddds'

This field has the year yy in the first byte and the day ddd in bytes 2 and 3. The packed dec-
imal sign s would be in the last digit (half byte) of the third byte. To sort this date field,
which begins at byte 20, with 4-digit year processing, use the following SORT control state-
ment:

Chapter 2. SyncSort Control Statements 2.135

SORT

2.136

SORT FIELDS=(20,1,Y2D,A, * Sorts 2-digit year (yy) as 4-digit year
21,2,PD,Rn) * Sorts ddds as 3 digits (ddd)

The Y2P Format

This format is used to sequence 2-digit, 2-byte packed decimal year data with CENTWIN
processing. Use Y2P to extract the year data yy from packed decimal date fields spanning 2
bytes. For example, a packed decimal date of the form yymmdd would be stored as 4 bytes:

yymmdd = X'0yymmddC'

where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on the
left to make an even number of digits.

Notice that the components of the date span bytes:
Oy ym md dC

Y2P handles this condition by ignoring the first and last half bytes of the 2-byte field speci-
fication. Thus, Y2P processes Oyym as yy, ignoring the leading digit (0) and the trailing digit
m that is part of the month.

The following example uses Y2P to sort the year portion of the date field, which begins at
byte 20:

SORT FIELDS=(20,2,Y2P,A) * Sorts yy field as 4-digit year

The field specification 20,2,Y2P treats X'Oyym' as X'yy', and CENTWIN processing sorts yy
as a 4-digit year yyyy.

The PDO format, described below, can assist Y2P by processing month and day data that
overlap year data in the original field.

The Y2S Format

This format is used to sequence 2-digit, 2-byte character or zoned decimal data. The Y2S
format is identical to Y2C and Y2Z for valid numeric data, but Y2S treats data that begin
with X'00', X'40', or X'FF' as non-year data. Thus, the Y2S format can distinguish records
that have non-year data in the first byte of the year field, allowing such records to be sorted
differently from other records.

Y2S treats non-year data as follows:

SyncSort for z/OS 1.1 Programmer’s Guide

SORT

e Data with binary zeros (X'00') or a blank (X'40') in the first byte will not have century
window processing applied to it. Instead, such data will be collated in sequence, before
valid numeric year data for ascending order or after the year data for descending order.

e Data with all binary ones (X'FF') in the first byte will also not have century window
processing applied to it. Instead, such data will be collated after valid year numeric
data for ascending order or before the year data for descending order.

e Zones are ignored, as for Y2C and Y2Z, except for data where the first byte begins with
X'00', X'40', or X'FF".

As an example, suppose you want to preserve the input order of header and trailer records
at the start or end of the file, and your header/trailer records are identified by binary zeros
(X'00", a blank (X'40"), or binary ones (X'FF') in the first byte of the date field.

The Y2S format allows CENTWIN to identify the header/trailer records and treat them dif-
ferently from other records. Presuming the year data begin in column 20, you would use the
following sort key specification:

SORT FIELDS=(20,2,Y2S,A) * Sorts yy field as 4-digit year

The yy field (20,2) will be processed according to the century window setting. For
CENTWIN=1945, data with header and trailer records would be sorted as follows:

SORTIN Record Order
Input after Sorting
X'FOFe6!' X'0000'
X'4001"' X'4000'
X'F4F4'! Xr4001"
X'4000' X'F5F1!
X'0000' X'FOF6'
X'F5F1! X'F4F4'!
X'FF03'! X'FF03'

Note that if the above data were sorted as Y2C or Y2Z format, the output order would be
different because the records starting with X'00', X'40', and X'FF' would be interpreted as
numeric years. For example, suppose the fields in the above list were defined as Y2Z and
sorted with EQUALS:

SORT FIELDS=(20,2,Y2Z,A),EQUALS

Chapter 2. SyncSort Control Statements 2.137

SORT

2.138

The data would be processed as follows:

SORTIN Record Order

Input after Sorting

X'FOFe6' X'F5F1'

X'4001" X'FOF6'

X'FAF4" X'FF03' (invalid numeric data)
X'4000" X'4000' (invalid numeric data)
X'0000" X'0000' (invalid numeric data)
X'F5F1" X'4001' (invalid numeric data)
X'FF03' X'F4F4'

The header and trailer records are sequenced as year data according to the CENTWIN set-
ting (CENTWIN=1945), and they lose their position at the start and end of the file.

The PDO Format

This format is used to sequence 2-8 byte packed decimal data. PDO ignores the first digit
and trailing sign during processing. PDO is normally used in conjunction with the Y2P data
format. The Y2P format is used to process the 2-digit year portion of a packed decimal date
field, while the PDO format is used to process the month and day portion of the field.

Although PDO is typically used with Y2P, the PDO format itself is not affected by
CENTWIN processing.

Consider the packed decimal date field used in the example above:
yymmdd = X'0yymmddC'

where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on the
left to make an even number of digits.

Notice that the components of the date span bytes:
Oy ym md dC
The date can be processed as follows:
¢ Y2P processes the year component X'0Oyym' as X'yy'.
e PDO processes the month and day components X'ymmddC' as X'mmdd'.

The following SORT control statement can be used to sort the entire date with CENTWIN
processing:

SORT FIELDS=(20,2,Y2P,A, * Treats X'Oyym' as X'yy'; sorts yy as yyyy
21,3,PD0,A) * Treats X'ymmddC' as X'mmdd'

SyncSort for z/OS 1.1 Programmer’s Guide

SORT

Full-Date Formats

Full-date formats can be used to sort or merge various date fields, processing dates ending
or starting with year digits. They also process non-date data that are used with dates. For a
full description of full-date formats, see the following section.

Using Full-Date Formats with CENTWIN

SyncSort’s full-date data formats enable you to sort or merge a variety of date fields. The
full-date formats are Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y. These date formats can process
dates ending or starting with year digits:

e x..xyy (for example: qyy, mmyy, dddyy, or mmddyy)
¢ yyx..x (for example: yyq, yymm, yyddd, or yymmdd)

The full-date formats also process non-date data commonly used with the dates. SyncSort
interprets two-digit years (yy) according to the century window specified by the CENTWIN
option. CENTWIN processing does not apply to non-date data.

In most cases, for CH, ZD, and PD date fields the full-date data formats are easier to use
than the 2-digit date formats. The 2-digit formats can be more difficult because you must
divide the date into its components. This requires care, particularly for PD dates, where
date components (q, dd, mm, or yy) may span bytes or occupy only part of a byte. The full-
date formats, on the other hand, process such dates automatically.

The table below describes the full-date formats. For date forms not in the table, use the 2-
digit year formats or the non-year formats.

Note the following symbols used in the table:

year digit (0-9)
non-year digit (0-9)
sign (hexadecimal A-F)
unused digit

S K<

Chapter 2. SyncSort Control Statements 2.139

SORT

2.140

Full-Date Data Example Date
Format Format Date Form Form Length (bytes)

YyxXx yymm 4
YyXXX yyddd 5
YYXXXX yymmdd 6

Y2U PD — ¥ 5
X'yyxs')
YyxXK yyddd 3
X'yyxxxs')

Y2V PD — Jymm .
(X'0yyxxs')
YYXXXX yymmdd 4
(X'0yyxxxxs')
XXyy mmyy 4
XXXYY dddyy 5
XXXXYY mmddyy 6

Y2X PD Xyy ayy 2
X'xyys")
XXXyy dddyy 3
X'xxxyys')

Y2Y PD XXyy mmyy 3
(X'0xxyys')
XXXXYY mmddyy 4
(X'0xxxxyys")

Table 25. Full-Date Formats

SyncSort for z/OS 1.1 Programmer’s Guide

SORT

The table indicates the full-date formats that can be used with character (CH), binary (BI),
or packed decimal (PD) data. Note the recognized non-date values:

Character or binary (Y2T and Y2W full-date formats)

C'0...0' (CH zeros)

C'9...9' (CH nines)

7'0...0' (ZD zeros)

7'9...9' (ZD nines)

X'00...00' (BI zeros)

X'40...40' (blanks)

X'FF...FF' (BI ones)

Packed (Y20, Y2V, Y2X, and Y2Y full-date formats)
P'0...0' (PD zeros)
P'9...9' (PD nines)

The following two examples illustrate how you might use the Full-Date Formats table:

Suppose you have a packed decimal (PD) date field of the form mmyy. To sort this field
correctly, you would use the Y2Y 3-byte format from the table. Thus, if the field starts
in position 30, you would specify the following SORT control statement to sort in
descending order:

SORT FIELDS=(30,3,Y2Y,D)

Any PD fields of all PD zeros or all PD nines will be processed automatically as non-
date data.

Suppose you have a character (CH) date field of the form yymmdd. To sort this field
correctly, you would use the Y2T 6-byte format from the table. Thus, if the field starts in
byte 40, you would specify the following SORT control statement to sort in ascending
order:

SORT FIELDS=(40,6,Y2T,A)

Any CH zeros, CH nines, BI zeros, blanks, and BI ones will be processed automatically
as non-date data.

Collating Sequence with Full-Date Formats

For full-date formats, the yy component is always sorted first (treated as primary key). This
is so even when the yy is physically at the rightmost end of the field, as for Y2W, Y2X, and
Y2Y. For example, a 6-byte Y2W field has the form xxxxyy. This is collated with the yy as
the primary key and xxxx as the secondary key. Because SyncSort automatically collates
the year character first, you don’t have to deal with yy manually, for example by using PD0O
and Y2D.

Chapter 2. SyncSort Control Statements 2.141

SORT

2.142

It is important to understand that the xxxx component of a full-date format must be
designed to collate as a unit. Suppose you have the 6-byte Y2T field yyxxxx. If you collate
this field in ascending order, then yy collates first (the primary key) with xxxx collating sec-
ond (secondary key). Consider two possibilities:

e Ifyyxxxx is actually yymmdd, you will be sorting first by year, then month, then day.

e If yyxxxx is actually yyddmm, you will sorting by year, then day, then month. In most
cases, sorting in this way would not be what you intended.

To correctly collate a date, the date components must be in an order suitable for collating.
For example, mmddyy and yymmdd will collate correctly, but ddmmyy or yyddmm will not.
For date forms that will not collate correctly, you must use one of the 2-digit year formats
(Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z).

The following table shows the order for ascending collation when using full-date formats
with the CENTWIN option:

Full-Date Format Date Format Ascending Sort Sequence
Y2T CH, BI BI zeros
Y2W Blanks

CH/ZD zeros

Lower century dates (e.g. 1980)
Higher century dates (e.g. 2010)

CH/ZD nines

BI ones
Y2U PD PD zeros
Y2V Lower century dates (e.g. 1980)
Y2X Higher century dates (e.g. 2010)
Y2Y PD nines

For a descending sort, the collation order is reversed.

Other date formats (non-full-date), with the exception of Y2S, do not process non-date
data; their sort sequence for ascending sorts is simply lower century dates than higher
century dates.

SyncSort for z/OS 1.1 Programmer’s Guide

SORT

Examples Using Full-Date Formats

Example 1 (Y2W)

The following SORT control statement sorts a C'mmddyy' date field in ascending order,
with the previously set fixed century window 1984-2083:

SORT FIELDS=(10,6,Y2W,A) * Sort C'mmddyy' in ascending order
* with Y2W
* and previously set century window 1984-2083

The Full-Date Formats table above indicates that the 6-byte Y2W form is appropriate for a
CH input field of the form xxxxyy. As shown in the following table, the output will be col-
lated as C'yyyymmdd', with the non-date data (zeros) appearing correctly at the beginning
of the sorted output.

SORTIN Record Order Actual Date
Input after Sorting after Sorting
mmddyy mmddyy yyyy/mm/dd
021783 000000 non-date data
092206 070484 1984/07/04
081395 081395 1995/08/13
110210 092206 2006/09/22
000000 110210 2010/11/02
070484 043060 2060/04/30
043060 021783 2083/02/17

Example 2 (Y2T)

The following SORT control statement sorts a Z'yyddd' date field in descending order, with
the previously set fixed century window 1921-2020:

SORT FIELDS=(20,5,Y2T,D) * Sort Z'yyddd' in descending order
* with Y2T
* and previously set century window 1921-2020

The Full-Date Formats table above indicates that the 5-byte Y2T form is appropriate for a
ZD input field of the form yyddd. As shown in the following table, the output will be col-
lated as Z'yyyyddd', with the non-date data (nines and zeros) appearing correctly at the
beginning and end of the sorted output.

Chapter 2. SyncSort Control Statements 2.143

SORT

SORTIN Record Order Actual Date
Input after Sorting after Sorting
yyddd yyddd yyyy/ddd
00000 99999 non-date data
50237 20153 2020/153
99999 20047 2020/047
20047 01223 2001/223
94001 94001 1994/001
01223 50237 1950/237
20153 21148 1921/148
21148 00000 non-date data

Example 3 (Y2Y)

The following SORT control statement sorts a P'mmddyy' (X'Ommddyys') date field in
ascending order, with the previously set fixed century window 1921-2020:

SORT FIELDS=(26,4,Y2Y,A) * Sort P'mmddyy' in ascending order
* with Y2Y
* and previously set century window 1921-2020

The Full-Date Formats table above indicates that the 4-byte Y2Y form is appropriate for a
PD input field of the form xxxxyy. As shown in the following table, the output will be col-
lated as P'yyyymmdd', with the non-date data (zeros and nines) appearing correctly at the
beginning of the sorted output. Note that the first two columns are in hexadecimal.

SORTIN Record Order Actual Date
Input after Sorting after Sorting
mmddyy mmddyy yyyy/mm/dd
0999999cC 0000000C non-date data
0102250C 0080321C 1921/08/03
0032120C 0102250C 1950/10/22
0010194cC 0010194cC 1994/01/01
0000000C 0111501C 2001/11/15
0111501C 0032120C 2020/03/21
0080321C 0999999C non-date data

FIELDS=COPY (Required for a Copy)

2.144

Use FIELDS=COPY to copy one or more input files. Multiple files can be copied if they are
concatenated to the SORTIN DD statement. Other control statements such as INREC,
INCLUDE/OMIT, OUTREC, and OUTFIL may be specified in conjunction with a copy
application, allowing you to edit and reformat the file(s) without sorting them.

The SUM control statement and an E32 exit cannot be specified with FIELDS=COPY. All
Phase 3 exits can be used.

SyncSort for z/OS 1.1 Programmer’s Guide

SORT

CKPT/CHKPT Parameter (Optional)

The CKPT/CHKPT parameter instructs SyncSort to take a checkpoint at every end-of-vol-
ume of a SORTOUT data set when OUTFIL is not used and also at the beginning of Phase
3 before the SORTOUT data set is opened. Either spelling of this parameter is accepted.

This parameter requires a SORTCKPT DD statement. It cannot be specified in conjunction
with a user-issued STIMER macro or an incore sort. Checkpoints cannot be taken within a
user exit routine.

Refer to “Chapter 13. Performance Considerations” for an explanation of the Checkpoint/
Restart feature.

DYNALLOC Parameter (Optional)

The format of the DYNALLOC parameter is illustrated below.

d
,DYNALLOC | = { (d.n | RETRY = {(®n,mm)l | 190 _yg)
’ OFF ’
OFF

Figure 66. DYNALLOC Parameter Format

DYNALLOC requests the dynamic allocation of SORTWK data sets on device type d.
Specify the device type either as a decimal number (e.g., 3390) or by the system generic
name (e.g., SYSDA). Any disk device accepted for a SORTWK DD statement can be
specified. Note that if VIO is specified it will be ignored, and the installation default for the
DYNALLOC device type will be used in its place.

Note that the DYNALLOC parameter may be used alone, without any subparameters. In
this case, the DYNALLOC installation default settings are used.

For MAXSORT applications, n is the number of SORTWK data sets that will be allocated.
As many as 32 SORTWK data sets can be specified. The default for n is 3.

For non-MAXSORT applications, n can be 1 through 255. This value specifies the number
of SORTWK data sets that can potentially be allocated. For values of n that are 31 or less,
SyncSort can automatically raise the number to 32 if the application requires it. When n is
33 through 255, this value specifies the maximum number of SORTWK data sets that can
be allocated.

DYNALLOC=OFTF can be specified to override a DYNALLOC=ON installation default.

Chapter 2. SyncSort Control Statements 2.145

SORT

Normally for both MAXSORT and non-MAXSORT applications, any SORTWK data sets
provided in the JCL will contribute towards the value of n. For instance, if n was set to 40
in a non-MAXSORT application and 30 SORTWKSs were provided in the JCL, DYNALLOC
could obtain 10 additional SORTWKSs if needed. Note that there is an installation option to
disable DYNALLOC if SORTWKxx DD statements are present.

SyncSort uses the value specified in the RETRY parameter to request automatic
DYNALLOC retry. This facility attempts to avoid a sortwork capacity exceeded condition
when disk space is not immediately available to satisfy a DYNALLOC request. SyncSort
will automatically retry a specified number of times and wait a prescribed interval between
DYNALLOC requests.

The nn in the first position designates the number of times SyncSort will retry a failed
DYNALLOC request. The minimum allowed is 0 and the maximum is 16. The mm in the
second position designates the number of minutes SyncSort waits between each
DYNALLOC request. The minimum allowed is 0 and the maximum is 15. A value of 0 can
be used to request an immediate retry. RETRY=OFF or an nn of 0 can be specified to
override a RETRY=ON installation default.

In an environment where DFSMS manages temporary work data sets, the SC subparame-
ter specifies a storage class s for SyncSort to use when dynamically allocating SORTWORK
data sets. The storage administrator at your installation defines the names of the storage
classes you can specify. Note that an installation written automatic class selection (ACS)
routine can override the storage class you specify. If SMS is not installed or active to man-
age temporary work data sets, the d device specification will be used in the SORTWORK
dynalloc request.

EQUALS/NOEQUALS Parameter (Optional)

2.146

The EQUALS parameter insures that the original order of equal-keyed records is pre-
served. These records will be in the same order in the output file as they were in the input
file. NOEQUALS, the default, specifies that equal-keyed records may not be written in
their original input order.

When the EQUALS parameter is used with the SUM control statement, the first of the
equal-keyed records is retained with the sum; all other records are deleted after the speci-
fied field(s) have been summed.

EQUALS/NOEQUALS can also be specified as a PARM option on the EXEC statement. If
this option is specified both on the SORT control statement and as a PARM option, the
SORT specification takes precedence.

Performance is usually improved when NOEQUALS is in effect.

SyncSort for z/OS 1.1 Programmer’s Guide

SORT

FILSZ Parameter (Optional)

The FILSZ parameter specifies the actual (FILSZ=n) or estimated (FILSZ=En) decimal
number of records to be sorted. This number should reflect any changes produced by
INCLUDE/OMIT, E14 and/or E15, SKIPREC and STOPAFT processing.

If FILSZ=n is specified, SyncSort will terminate unless exactly n records are processed.

If FILSZ is specified for a Tape Sort, use only the En specification. This value should indi-
cate the number of records in the input file without taking into account records added or
deleted by an E14 or E15 exit.

FILSZ can also be specified as a PARM option on the EXEC statement. If this option is
specified both on the SORT control statement and as a PARM option, the PARM specifica-
tion takes precedence.

SIZE Parameter (Optional)

The SIZE parameter specifies the actual (SIZE=n) or estimated (SIZE=En) decimal number
of records read from the input file. Unlike the FILSZ parameter, this number should not
reflect any changes produced by INCLUDE/OMIT or exit processing, but should reflect
SKIPREC and STOPAF'T processing.

If the FILSZ parameter is not specified and SIZE=n is specified, SyncSort will terminate
unless exactly n records are processed. If the FILSZ parameter is specified, the SIZE value
is considered an estimate whether or not it is preceded by an E.

SKIPREC Parameter (Optional)

The SKIPREC=n parameter instructs SyncSort to skip a decimal number of records before
the input file is sorted or copied. The n records skipped are deleted from the input file
before E15 and INCLUDE/OMIT processing, if specified, take place.

If SKIPREC is specified as a PARM option as well as on the SORT control statement, the
PARM specification takes precedence.

STOPAFT Parameter (Optional)

The STOPAFT=n parameter specifies the number of records to be sorted or copied. These
will be the first n records after E15, INCLUDE/OMIT and SKIPREC processing, if speci-
fied, have completed.

If STOPAFT is specified as a PARM option as well as on the SORT control statement, the
PARM specification takes precedence.

STOPAFT cannot be specified for a Tape Sort.

Chapter 2. SyncSort Control Statements 2.147

SORT

Sample SORT Control Statements

2.148

SORT FIELDS=(2.3,2,BI,D,8,2.4,BI,A,25,10,CH,A,15,10,LS,D)

Figure 67. Sample SORT Control Statement

This sample SORT control statement indicates four control fields:

e The first, or primary, field begins in bit 4 of byte 2, is 2 bytes long, is in binary format
and is to be sorted in descending order.

¢ The second control field begins in byte 8, is 2 bytes 4 bits long, is a binary format and is
to be sorted in ascending order.

¢ The third control field begins on byte 25, is 10 bytes long, is in character format and is
to be sorted in ascending order.

¢ The fourth control field begins on byte 15, is 10 bytes long, is an EBCDIC numeric field
with a leading separate sign and is to be sorted in descending order.

SORT FIELDS=(20,5,A,5,10,D,30,5,A),FORMAT=CH, CKPT

Figure 68. Sample SORT Control Statement

This sample SORT control statement specifies the following:

¢ There are three control fields. Because all three fields have the same data format (in
this case, character), the FORMAT=CH subparameter is specified so that the CH value
does not have to be specified for each of the fields.

¢ The first control field begins on byte 20, is 5 bytes long and is to be sorted in ascending
order.

e The second control field begins on byte 5, is 10 bytes long and is to be sorted in
descending order.

¢ The third control field begins on byte 30, is 5 bytes long and is to be sorted in ascending
order.

e SyncSort will take a checkpoint.

SyncSort for z/OS 1.1 Programmer’s Guide

SUM

SUM Control Statement

The SUM control statement deletes records with equal control fields and optionally sum-
marizes specified numeric fields on those records. Equal keyed records are processed pair
by pair. If numeric fields are to be summarized, the data in the summary fields are added,
the sum is placed in one of the records, and the other record is deleted. Provided arithmetic
overflow does not occur, the SUM control statement produces only one record per sort key in
the output data set. The records deleted by sum can optionally be written to a separate
data set.

The SUM control statement cannot be used when FIELDS=COPY is specified on the SORT
or MERGE control statement or for a Tape Sort.

SUM Control Statement Format

The format of the SUM control statement is illustrated below.

FIELDS:(plallafl [,p2$12$f2])
SUM FIELDS=(p1,11 [,p2,12] ..),FORMAT=f [’XSUM]
FIELDS=NONE

Figure 69. SUM Control Statement Format

FIELDS Parameter (Required)

The FIELDS parameter defines the numeric fields to be summed when the control fields of
two or more records are equal. Specify FIELDS=NONE to reduce the sorted data to one
record per sort key without summarizing any numeric fields.

Each field specified in the FIELDS parameter is identified by its position p, length [and

format f.

P The position value indicates the first byte of the field relative to the begin-
ning of the input record after INREC and/or E15 processing, if specified,
have completed. The field must begin on a byte boundary.

1 The length value indicates the length of the field. The length must be an
integer number of bytes. Refer to the chart below for the permissible
lengths.

f The format value indicates the data format. Fields with BI, FI, FL, PD and

ZD formats can be summarized. If all the summary fields have the same
format, you can specify the format value once by using the FORMAT=f sub-
parameter. If both the individual f values and the FORMAT subparameter

Chapter 2. SyncSort Control Statements 2.149

SUM

are specified, the individual f values will be used. (Note that f values must
be specified for each compare field.)

Fggll\){éT PERMISSIBLE LENGTH
BI 2,4, or 8 bytes
FI 2,4, or 8 bytes
FL 4, 8, or 16 bytes
PD 1 to 16 bytes
7D 1 to 18 bytes

Table 26. Permissible Lengths for SUM Fields

XSUM Parameter (Optional)

2.150

Specify the XSUM parameter if you want records deleted by SUM processing to be written
to a data set defined by the SORTXSUM DD statement. These records will be written to
SORTXSUM at the time of SUM processing. The records will not undergo OUTREC, E35,
and OUTFIL processing because such processing occurs after SUM processing.

The DCB BLKSIZE of the SORTIN data set will not be used to determine the BLKSIZE of
the SORTXSUM data set. System determined blocksize will be used when enabled and
appropriate. Unblocked output will be generated if system determined blocksize has been
disabled and an explicitly specified blocksize has not been provided in the JCL.

The XSUM file will be sequenced in the same order as the SORTOUT file.

Note that XSUM may increase system requirements:

e Adding XSUM to an existing sort application may result in an increase in the amount
of SORTWORK space required. This occurs because XSUM delays all summing until
Phase 3.

e Adding XSUM to an existing MAXSORT application could cause the generation of
additional intermediate output files (SORTOUO00 or SORTOUnn). This occurs because
XSUM delays SUM processing until the final MAXSORT merge pass.

e XSUM may require additional main memory. Specify a region size of 512K or more.

SyncSort for z/OS 1.1 Programmer’s Guide

SUM

General Considerations for SUM

If NOEQUALS is in effect, the record which is retained is determined arbitrarily. If
EQUALS is in effect, the record which is retained is the first record read. In a SORT
application, in a MERGE, the retained record will be from the lowest-numbered input
file. The EQUALS parameter can be specified on the SORT or MERGE control
statement or as a PARM option.

A sort or merge control field cannot be summarized. A portion of a control field cannot
be included in a sum field.

Sum fields may not overlap each other.

Non-sum fields remain unchanged and are retained from the record which contains the
sum.

If arithmetic overflow or underflow occurs during the summing of two records, those
records are not summarized and neither record is deleted. Further processing is
determined by the option selected at installation through the SUMOVFL parameter or
the run time parameter OVFLO. If the RC16 option of this parameter has been
selected, processing will terminate with a WERO049A critical error. For the RCO (the
delivered default) or the RC4 option, sum processing will continue and a WER0491
message will be issued (only for the first occurrence). If a subsequent pair of records
with equal control fields can be summarized without causing overflow or underflow,
they will be summarized. To avoid arithmetic overflow, use the INREC control
statement to insert zeros of the proper format immediately before the sum field. For
example, for a PD field, use nZ to insert binary zeros.

Remember that the first 4 bytes of variable-length records are reserved for the Record
Descriptor Word, so the first byte of the data portion of the record is byte 5.

SUM is incompatible with an incore sort. If you specify the SUM control statement,
allocate SORTWKxx data sets in the JCL or use the DYNALLOC feature for dynamic
SORTWXK allocation. If no JCL. SORTWKS are provided and DYNALLOC is disabled by
default, SUM will cause DYNALLOC to be enabled.

When FL fields are summarized, user-issued SPIE macros are not permitted and exit
routines must not produce exponent overflow or underflow. Because of the numeric
rounding performed by the hardware, the exact sum depends on the order in which
fields are summed. Thus, the sum may vary slightly for different executions.

By default, the sign byte of a positive summarized ZD field will be converted to
printable format. If you want to disable this action, use the NZDPRINT PARM option.
Refer to “ZDPRINT” on page 5.34.

Chapter 2. SyncSort Control Statements 2.151

SUM

Sample SUM Control Statements

2.152

The following SUM control statement eliminates equal-keyed records without summarizing
numeric fields. The XSUM option causes the eliminated records to be written to a data set
defined on the SORTXSUM DD statement.

SUM FIELDS=NONE, XSUM

Figure 70. Sample SUM Control Statement

Records with equal control fields will be eliminated from SORTOUT or SORTOFnn data
sets so that only one record is retained.

The following SUM control statement summarizes two numeric fields on records with equal
control fields.

SUM FIELDS=(20,4,32,4),FORMAT=PD

Figure 71. Sample SUM Control Statement

When the control fields are equal, this SUM control statement summarizes the numeric
data in the fields beginning in bytes 20 and 32. Because both fields are in packed decimal
format, the FORMAT=PD subparameter is used so that the PD value does not have to be
specified for each field.

Comprehensive examples illustrating the SUM control statement are provided in “Chapter
3. How to Use SyncSort’s Data Utility Features”.

SyncSort for z/OS 1.1 Programmer’s Guide

Chapter 3. How to Use SyncSort’s Data Utility
Features

Introduction

This chapter assumes that you already know how to sort records and are ready to use Sync-
Sort’s Data Utility features for any or all of the following:

e Selecting only those input records and data fields that are needed for an application.
¢ Eliminating duplicate records.

¢ Consolidating records into a single record that contains the sum of any numeric data
fields.

e Making output data printable and easy to read.
e Writing a multi-sectioned report complete with headers and trailers.
¢ Generating several output files and reports with a single pass of the sort.

The following examples show how you can accomplish these tasks with SyncSort. Each
example is self-contained and provides coding instructions for both the required JCL and
the necessary control statements. Use them as starting points for your own applications.
For details of control statement syntax see "Chapter 2. SyncSort Control Statements."

Chapter 3. How to Use SyncSort’s Data Utility Features 3.1

Sample Data Utility Applications

The following chart lists applications that demonstrate SyncSort’s features.

Feature Application Page
Selecting Input Records Including Relevant Records 3.3
Omitting Irrelevant Records 3.5
Selecting Relevant Fields from the | Selecting a Number of Fields from Longer Records 3.7
Input Records Eliminating Irrelevant Data Field(s) 3.8
Selecting Fields from Variable-Length Records 3.9
Combining Records within a File Combining Records and Summing Numeric Data Fields 3.11
Eliminating Duplicate Records 3.12
Making Output Records Printable Reordering the Positions of Record Fields 3.14
and Easy to Read Inserting Blanks and Repositioning Record Fields 3.16
Inserting Binary Zeros 3.18
Converting Unprintable Data to Readable Form 3.20
Converting Unprintable Data to Hexadecimal Format 3.22
Converting and Editing Unprintable Data 3.23
Putting a Data Field in Standard Format 3.25
Converting from Variable to Fixed-Length Format 3.27
Printing Input Records on Multiple Output Lines 3.28
Dividing a Report into Sections Dividing Output into Sections 3.30
Writing Headers and Trailers for a | Writing a Title Page for a Report 3.32
Report Writing a Page Header 3.34
Writing a Section Header 3.35
Using a Header to Eliminate Duplication Information 3.37
within a Section
Writing a Report Trailer or Summary 3.39
Writing a Page Trailer 3.40
Totaling and Subtotaling Data Totaling Data at the End of a Report 3.41
Subtotaling Data at the End of a Page 3.43
Totaling Data at the End of a Section 3.44
Obtaining Maximum, Minimum and | Printing Maximum, Minimum and Average Data in Sec- 3.47
Average Data tion Trailers
Counting Data Records Obtaining a Count of Data Records 3.49
Obtaining a Cumulative (Running) Count of Data 3.50
Records
Creating Multiple Output Files Generating Several Output Files with Different Informa-| 3.53
tion
Writing Identical Output Files to Different Devices 3.55

Selecting Input Records

When only certain records from an input file are needed for an application, SyncSort allows
you to set up one or more logical conditions for including only those records. Alternatively,
you may specify conditions for omitting records from an application. Each condition is

3.2 SyncSort for z/OS 1.1 Programmer’s Guide

based on a comparison between two record fields or between a record field and a constant.
You may specify the constant as a positive or negative decimal, a hexadecimal or binary
constant, or a character literal. Multiple conditions may be specified, provided you connect
them with ANDs and ORs.

To specify the conditions for selecting records, use the INCLUDE/OMIT control statement.
For complete syntax, and examples of bit level criteria in record selection, see “INCLUDE/
OMIT Control Statement” on page 2.16

When processing variable-length records, by default all fields specified must be contained
within the record. If an application is expected to reference fields not completely contained
within the record, refer to “VLTESTI” on page 5.33. VLTESTI provides for processing of
records that do not contain all fields.

Including Relevant Records

Example: A school board requires a list of all students performing below their grade level
on standardized exams. (The record layout is given in Figure 72 and a sample record is
given in Figure 73.)

&

$ $
& & PR

N & &, IR
1 15 PA125 |27 29
CH CH CHPD |PD [PD
1 30

Figure 72. Input Record Layout

Chapter 3. How to Use SyncSort’s Data Utility Features 3.3

. W‘Q
& &
& & $ <8
S < K/ db
1 15 24125 (27 |9
CH CH CHPD |PD |PD
1 30
Figure 73. Sample Student Record
To generate the list, the following is coded:
//SUBLEV JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSoUuT DD SYSOUT=* Assigns SyncSort
//* Messages to I/O Device
//SORTIN DD DSN=WWBRSM.STUDENTS, DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD UNIT=SYSDA, Defines Intermediate
// SPACE=(CYL,15) Storage
//SYSIN DD *
INCLUDE COND=(29,2,LT,25,2,0R,27,2,LT,25,2),
FORMAT=PD Selects Records
SORT FIELDS=(1,14,CH,A) Sorts Records

Figure 74. JCL and Required Control Statements

Explanation: In this application, two comparisons are necessary to identify the records
needed for the list: the Grade field (25,2) has to be compared to the student’s Reading Score
field (27,2) and to the Mathematics Score field (29,2). All numeric fields on the student
records are in packed-decimal (PD) format.

The two-clause INCLUDE statement (see Figure 74) guarantees the selection of the needed
records from the file. The first clause (29,2,LT,25,2) guarantees that records with Math
Scores less than the Grade field are INCLUDED. The second clause (27,2,LT,25,2) guaran-
tees that records with Reading Scores less than the Grade field are also INCLUDED. The
OR connecting the two clauses guarantees that if either or both of the scores are less than
the Grade field, the record is selected. Finally, since all the fields are in packed-decimal for-
mat (PD), FORMAT=PD is specified.

3.4 SyncSort for z/OS 1.1 Programmer’s Guide

The sample record shown above will be INCLUDED because the student’s Math Score
(047F) is lower than the Grade level (050F).

Omitting Irrelevant Records

Example: Records that have an Invoice Status Code of F (fully paid) are to be omitted in
preparing a list of only those customers with outstanding payments. (The input record lay-
out is given in Figure 75 and a sample input record is given in Figure 76.)

S S
< < <
@ N O
N 9 &
& © O
R & (& T &Yﬁl@ S
S . O ¢ N V§ Y§ Y(&
eo éo S @@ é@ A &9 &Q@%&
XY 9‘*’ &) &/ ‘9§ F &
& o4 LA SYE &
1 30 44 52 |5 |60 (64 |68 (72 |76 [RO
CH CH CH CH |pD |PD |PD |PD |PD |PD |[CH
1 80
Figure 75. Input Record Layout
& e
& e LS @““C @@@ %
£ &8 8T8
1 30 44 52 |5 (60 |64 |68 (72 |76 RO
CH CH CH CH |[pD |PD |PD |PD |PD |PD [CH
1 80

Figure 76. Sample Input Record

To produce this list of customers selected from the masterfile, the following is coded.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.5

//OUTPAY JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages to
//* I/0 Device
//SORTIN DD DSN=NEWINV,DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD UNIT=SYSDA, SPACE= (CYL, 20) Defines Intermediate Storage
//SYSIN DD *

OMIT COND=(80,1,CH,EQ,C'F') Omits Records

SORT FIELDS=(1,29,CH,A) Sorts Records

Figure 77. JCL and Required Control Statements

Explanation: In this application, a simple comparison is necessary to identify those master-
file records that are not needed: the Invoice Status Code field (80,1,CH) has to be compared
to the constant 'F".

The OMIT statement’s condition, 80,1,CH,EQ,C'F', (see Figure 77) guarantees that invoice
records, like the sample record shown above, with the Invoice Status Code 'F' are omitted
from the sort.

Selecting Relevant Fields from the Input Records

3.6

Input records often contain some information that is not relevant to a specific application.
For example, records in a personnel masterfile might, in addition to addresses, include sal-
aries and other confidential information that is not required for preparing a mailing list.

SyncSort’s Data Utility features allow you to select only those record fields that contain
necessary data and to eliminate those that do not. More important, SyncSort enables you to
do this editing before the records are sorted. As a result, the sort has fewer bytes to handle
and processing is more efficient.

For complete syntax of the INREC control statement, see “INREC Control Statement” on
page 2.35.

INREC FIELDS=(py,1;[,pg,ly,.,pl,])

Figure 78. Basic INREC Statement Format

p,l Specify the beginning position and length in bytes of the input record’s rele-
vant fields. When specifying contiguous fields, or fields that directly follow
one another, you can simply indicate the starting position of the first field
together with the combined length of the fields that are contiguous.

SyncSort for z/OS 1.1 Programmer’s Guide

Selecting a Number of Fields from Longer Records

Example: A school wants to rank the entire student body by grade point index. This appli-
cation simply requires selecting the two relevant fields out of all the fields in the student
records and, then, sorting on the Grade Point Index field. (The Input Record layout is given
in Figure 79.)

$
s O
s y vﬁéﬁ L&
VS
& > o S8
S S
§ S
g > & s & ‘0@@@0 SN
&/ S & $ KS S GRS
& S S & 8 AV WAL AL
1 10 27 43 60 |62 |67 |68 |71 [14 716 |78
CH CH CH CH CH|CH |[CHICH |CH [PD|PD PD
1 82

Figure 79. Input Record Layout

To include only the relevant fields and generate the ranked list of students, the following is

coded:

/ /RANK JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages
//* to I/O Device
//SORTIN DD DSN=TOT .STUDENTS, DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE=(CYL,10) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

INREC FIELDS=(1,9, Selects Record Fields

74,2)
SORT FIELDS=(10,2,PD,D) Sorts Records

Figure 80. JCL and Required Control Statements

Figure 81 shows the input record after INREC processing.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.7

éo“&'
S
7

1
CH PD

1 1

Figure 81. Form of Post-INREC Record

Explanation: Specifying the two relevant data fields--the Social Security Number (1,9) and
the Grade Point Index (74,2)--on the INREC statement provides the sort with necessary
data for the application and eliminates the fields that are not relevant to the application.
INREC processing thus shortens each record to just a little under 14% of its original size.

Eliminating Irrelevant Data Field(s)

Example: For an inventory list, the price code on the masterfile records is not necessary.
(The masterfile record layout is given in Figure 82.)

Q)
4 & <¢»°°Q
& &
& eé@& «x‘?%g& &§
1 6 17 18 |19
CH yA)) CH|CH|PD
1 21

Figure 82. INPUT Record Layout

To eliminate the Price Code field and generate the inventory list, the following is coded.

3.8 SyncSort for z/OS 1.1 Programmer’s Guide

//INVENTR JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSOUT DD SYSOUT=* Assigns SyncSort Messages
//* to I/O Device
//SORTIN DD DSN=INV.WARHOUS,DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE=(CYL,15) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

INREC FIELDS=(1,17, Selects Record Fields

19,3)
SORT FIELDS=(1,5,CH,A) Sorts Records

Figure 83. JCL and Required Control Statements

Figure 84 shows the input record after INREC processing.

17
CH|/PD

&
o & 0‘§)&
S
@“&& & & Q@é‘é
6 18
ZD

5=

I 20

Figure 84. Post-INREC Record Layout

Explanation: Specifying only those fields that are necessary eliminates those that are not
necessary for the application. The Price Code field (18,1) has not been specified on the
INREC statement,; it will be deleted from the input records before the records are sorted by
item number for the list.

Selecting Fields from Variable-Length Records

Example: For each volume in its collection, a library requires the catalog number and any
information concerning translations, other volumes in a series, additional copies on file,
and so on. The catalog file consists of variable-length records, and except for the catalog

Chapter 3. How to Use SyncSort’s Data Utility Features 3.9

number, the required information is contained in the variable-length portion of each record.
(The record layout is given in Figure 85.)

A/ Vg > &
¥ ¥ & & LT
1[5 |15 40 75 05 98
BI|ZD |CH CH CH ZD|CH

3.10

Figure 85. Sample Record Layout

To include only the relevant fields on the input records and to generate this list, the follow-
ing is coded.

//LISTCAT JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages
//* to I/O Device
//SORTIN DD DSN=LIB.CATALOG, DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE=(CYL,10) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

INREC FIELDS=(1,14, Selects Record Fields

98)
SORT FIELDS=(5,10,2D,A) Sorts Records

Figure 86. JCL and Required Control Statements

Figure 87 shows the input record after INREC processing.

SyncSort for z/OS 1.1 Programmer’s Guide

A
O/ ¥¥
515
BI ZD |CH
1 <

Figure 87. Form of Post-INREC Record

Explanation: When selecting fields on variable-length records, you must observe these two
restrictions: (1) The position of the RDW cannot be affected; and (2) at least one byte from
the fixed-length portion of the record, in addition to the RDW, must be specified. On the
above INREC statement, the first 14 bytes of each record-the 4-byte RDW and the fixed-
length Catalog Number field-are retained unchanged. The next field-which contains more
information, as required-is indicated only by position (98) since it is of variable-length. This
causes the entire variable-length portion of the record (beginning with byte 98) to be
included after the initial 14 bytes of the post INREC record. SyncSort automatically
adjusts the RDW to reflect the new record length.

Combining Records within a File

Sometimes you may want to shorten a file by consolidating records that have some informa-
tion in common. For example, a company’s invoice file may contain more than one record for
any customer to whom multiple invoices have been issued. In some applications it might
then be feasible to consolidate such records--that is, to combine records with identical Cus-
tomer Name and Address fields into a single record containing the sum of that customer’s
charges and payments.

The SUM control statement allows you to combine records in this way. For SUM control
statement syntax, see “SUM Control Statement” on page 2.149.

Combining Records and Summing Numeric Data Fields

Example: For an inventory list, a company requires a single record for each product, indi-
cating its item number, warehouse code, and the total quantity in stock. (Figure 88 gives
the sample record layout.)

Chapter 3. How to Use SyncSort’s Data Utility Features 3.11

g.—
%a\
o

1 18

Figure 88. Input Record Layout

To combine those inventory records with identical item numbers and warehouse codes and
to produce the required list, the following is coded.

//INVENT JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSoUuT DD SYSOUT=* Assigns SyncSort Messages
J/* to I/O Device
//SORTIN DD DSN=WRHSE.INVENT,DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL, 6) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

SORT FIELDS=(6,1,CH,A,1,5,ZD,A) Sorts Records

SUM FIELDS=(7,12,PD) Combines Records and

Sums Numeric Data

Figure 89. JCL and Required Control Statements

Explanation: The list is generated by sorting on the Warehouse Code field (6,1,CH) and the
Item Number field (1,5,ZD). Records that have identical information in both these fields are
combined into a single record that contains the sum or total of those records’ Quantity
fields (7,12,PD). That is, the single record will show how many items with the same number
are in each warehouse.

Eliminating Duplicate Records

Example: A mailing list is being prepared from an invoice file. To eliminate duplicate
entries, any multiple invoice records for the same customer are combined into a single
record. (Figure 90 gives the sample record layout.)

3.12 SyncSort for z/OS 1.1 Programmer’s Guide

Q
& WSS A ¥
1 o |n W0 45 B2 |% [0 [64 |8 |™
cH |zp |cH CH |zD [CHPD [PD [PD [P [PD [PD
1 7

Figure 90. Input Record Layout

To combine multiple invoice records and generate the mailing list, the following is coded.

INREC FIELDS=(17,28)

//MAILLIST JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program
//SYSOUT DD SYSOUT=* Assigns SyncSort Messages
J/* to I/0 Device

//SORTIN DD DSN=INV.MAST, DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=%* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL,5) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

Selects Relevant Fields

Sorts Records. Reference 1is to
Post INREC Record
Eliminates Duplicate Records

SORT FIELDS=(1,23,CH,A)

SUM FIELDS=NONE

Figure 91. JCL and Required Control Statements

Explanation: To prepare the customer mailing list, the only information required from the
invoice records is located in the Company Name field (17,23) and the Address field (40,5),
which are selected by the INREC statement. Sorting these records in ascending order by
company name generates an alphabetical list. Then, because the file contains a record for
every transaction, the SUM statement is used to avoid duplicate listings of customers who
have had more than one transaction. Note that because none of the fields contains numeric
data to be summed, the FIELDS=NONE parameter is used.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.13

Making Output Records Printable and Easy to Read

Because data is usually stored in a compact format, it can be difficult, if not impossible, to
read when printed. For example, on a typical input record, there will be no blank space
between fields, numeric data will sometimes be lost in leading and trailing zeros, and some
data will be in unprintable format.

After processing, you will probably want to edit this data so that it is easy to read. This is
bound to entail one or more of the following tasks:

¢ reordering the position of record fields

¢ inserting blanks between fields

® inserting binary zeros

e converting numeric data from unprintable to printable format

e converting data to printable hexadecimal format

¢ using masks or edit patterns to insert dollar signs, decimal points, slashes, and the like.
e formatting the data in a record field on multiple output lines

SyncSort’s OUTREC processing, specified either as a control statement or as a parameter
on the OUTFIL statement, can perform these and other editing functions. The OUTREC
control statement is described below. Any number of the OUTREC statement’s subparame-
ters may be specified and must be coded in the order in which the fields will appear in the
reformatted record. (Note that when specified as a parameter of OUTFIL,OUTREC is
coded identically as for a control statement except that the keyword FIELDS is not used.)
See “OUTREC Control Statement Format” on page 2.89 for the complete format of the
OUTREC statement.

Reordering the Positions of Record Fields

3.14

Example: A data center has decided to reorder the positions of the data fields in masterfile
records after sorting them. (Figure 92 gives the layout for the masterfile record.)

SyncSort for z/OS 1.1 Programmer’s Guide

¥
O & &
$ >

&

Q
C c}ly

9=

é;

O

&S & &E
o

7 25
CH CH PD

Figure 92. Input Record Lay

To sort the records alphabetically by product name
lowing is coded:

out

and reposition the data fields, the fol-

//SORTPROD JOB

// EXEC PGM=SYNCSORT

//SYSouT DD SYSOUT=*

/1%

//SORTIN DD DSN=PROD.SALES, DISP=SHR
//SORTOUT DD SYSOUT=*

//SORTWKO01 DD SPACE= (CYL, 10) ,UNIT=SYSDA
//SYSIN DD *

SORT FIELDS=(7,15,CH,A)
OUTREC FIELDS=(22, 3,
7,15,
1,2,
25,4,
3,4)

Gives the Jobname

Identifies the Program
Assigns SyncSort Messages

to I/O Device

Defines Input Data Set
Defines Output Data Set
Defines Intermediate Storage

Sorts Records
Repositions Fields on
Output Records

Figure 93. JCL and Required Control Statements

Figure 94 shows the output record after OUTREC processing.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.15

Nod
5 & g & &
i i &
1 4 9 (21 25
CH CH CH (PD PD
1 28

Figure 94. Post-OUTREC Record Layout

Explanation: After the records are sorted alphabetically by company name (7,15,CH),
OUTREC processing moves the Product Code field (22,3) to the first byte of the record, the
Product Name field (7,15) to the fourth byte, the Region field (1,2) to the nineteenth byte,
the Month’s Sales field (25,4) to the twenty-first byte, and the Sales to Data field (3,4) to
the twenty-fifth byte.

Inserting Blanks and Repositioning Record Fields

Example: The central office of a commercial bank requires that each branch present its
masterfile at the end of every month in the format outlined in Figure 95, Branch A, how-
ever, has formatted its masterfile records as outlined in Figure 96.

S
R

Figure 95. Required Format

3.16 SyncSort for z/OS 1.1 Programmer’s Guide

8 18
D PD

S
g8

34

Figure 96. Input Record Layout

To reformat its masterfile records to conform to central-office specifications, the following is
coded. Since the records do not require sorting, the SyncSort copy feature is used.

//FORMAT JOB
// EXEC PGM=SYNCSORT
//SYSOUT DD SYSOUT=*
//*
//SORTIN DD DSN=ACCT.MAST, DISP=SHR
//SORTOUT DD SYSOUT=*
//SYSIN DD *
SORT FIELDS=COPY
OUTREC FIELDS=(1,4,
8,10,
6X,
5,3,
1X,
18,17)

Gives the Jobname
Identifies the Program
Assigns SyncSort Messages
to I/0 Device

Defines Input Data Set
Defines Output Data Set

Copies Records
Repositions Fields on
Output Records

Figure 97. JCL and Required Control Statements

Figure 98 shows the effect of OUTREC processing on the output record.

Chapter 3. How to Use SyncSort’s Data Utility Features

3.17

o

& $
& & &
Z vo@éé Ky ‘s»°°§ &‘Sﬁ f?

Q

5=

Q
S 15 21 |42 35
ZD

CH | |[PD PD

4

Figure 98. Post-OUTREC Record Layout

Explanation: After the records are copied, OUTREC specifies two types of reformatting: (1)
repositioning data fields and (2) inserting blanks between fields. As shown in Figure 98,
two fields have been repositioned: the Account Type field now begins on the twenty-first
byte as opposed to the fifth byte, and the Account Number field begins on the fifth byte
rather than on the eighth. Also, blanks have been inserted using the nX entry to specify the
number (n) of blanks. Six blanks have been inserted after the Account Number field and a
single blank after the Account Type field. Since the Balance field and Interest field are con-
tiguous, they are treated as a single field in this application.

Inserting Binary Zeros

3.18

Example: A manufacturing firm has decided to expand its product line. However, because
the Item Number field on its inventory records is too small, the records must be reformat-
ted to allow for more columns for the new products. The Item Number is kept in packed-
decimal, PD, format, and the firm wants to add 4 bytes to the current 2 byte field. The new
bytes are to precede the current two bytes. Figure 99 gives the input record layout.

SyncSort for z/OS 1.1 Programmer’s Guide

21123 (27 37

76

Figure 99. Input Record Layout

To copy the records and insert the 4 bytes of binary zeros, the following is coded.

//SORTCP JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSOUT DD SYSOUT=* Assigns SyncSort
//* Messages to I/O Device
//SORTIN DD DSN=INV.REC,DISP=SHR Defines Input Data Set
//SORTOUT DD DSN=INV.REC.OUT,DISP= (NEW, KEEP) , Defines Output Data Set
// UNIT=SYSDA, SPACE= (TRK, 5),
// VOL=SER=000111
//SYSIN DD *
SORT FIELDS=COPY Copies Records
OUTREC FIELDS= (1,20, Inserts Binary Zeros &
47, Reformats Records
25:21,56)

Figure 100. JCL and Required Control Statements

The effect of OUTREC processing is shown in Figure 101 below.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.19

21 27 31 4

80

Figure 101. Post-OUTREC Record Layout

Explanation: The records are copied, and OUTREC processing adds 4 bytes of binary zeros
(47) to the beginning of the Item Number field (21,2). To allow for the 4 additional bytes,
the original Item Number field and the fields following it are all copied after the 4 inserted
bytes of zeros.

Converting Unprintable Data to Readable Form

Example: For a file of invoice records sorted by company name, the Invoice Amount,
Amount Paid, and Balance Due fields are to be converted from packed-decimal to printable
format. In addition, any leading zeros will be suppressed and both commas and decimal
points will be inserted. (Figure 102 gives the input record layout.)

3.20

Figure 102. Input Record Layout

SyncSort for z/OS 1.1 Programmer’s Guide

To sort the records, convert the three fields of packed-decimal data, and insert the commas
and decimal points, the following is coded.

//INVOICE JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSoUuT DD SYSOUT=* Assigns SyncSort
//* Messages to I/O Device
//SORTIN DD DSN=NEWINV,DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL,5) ,UNIT=SYSDA Defines Intermediate
Storage
//SYSIN DD *
SORT FIELDS=(1,23,CH,A) Sorts Records
OUTREC FIELDS=(17:1,23, Repositions Record Fields
52:24,4,PD,M2, and Converts Data
74:28,4,PD,M2,
96:32,4,PD,M2)

Figure 103. JCL and Required Control Statements

The effect of OUTREC processing on the input record is shown in Figure 104 below.

f& § & &
&
F S EEEESS
17 40 52 62 4 84 96
CH CH CH CH

105

Figure 104. Post-OUTREC Record Layout

Explanation: First the records are sorted alphabetically by company name (1,23,CH). Then,
three fields--the Invoice Amount (24,4,PD), the Amount Paid (28,4,PD), and the Balance
Due (32,4,PD)--are converted from packed-decimal (PD) into readable format and editing
by a SyncSort editing mask (M2) that suppresses the printing of leading zeros and inserts
the appropriate commas and decimal points. The number-colon entries (c:) that precede
each of the four fields assign a new starting position or, when printing, column for each of
the four fields. For example, the Company Name field, which originally began in byte 1 for
a length of 23 bytes, now begins in byte 17; the Invoice Amount field, which began in byte

Chapter 3. How to Use SyncSort’s Data Utility Features 3.21

24, begins in byte 52, and so on. Note that after the data is converted and edited, the
lengths of the packed-decimal fields increase from four bytes each to ten bytes and that the
fields are each separated by twelve blanks.

Converting Unprintable Data to Hexadecimal Format

Example: A bank has discovered that some errors were made in recording the Account
Numbers of some of its customers. Specifically, on the transaction records, some Account
Number fields, which should contain only packed-decimal, PD, data, appear to contain data
that is not valid packed-decimal. Figure 105 shows the input record layout.

3.22

Nal O
& EIPGRIINIIN
R\ & & &
S8 < <
& S8 S S
S S & KT &
& v A S S
1 31 43 147 55|59 67|71
CH PD PD|PD [PD/PD PD PD
1 9
Figure 105. Sample Input Record Layout
In order to find the invalid data, the following is coded.

//SORTHEX JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program

//SYSOUT DD SYSOUT=* Assigns SyncSort

//* Messages to I/O Device

//SORTIN DD DSN=TRANS .RECS, DISP=SHR Defines Input Data Set

//SORTOUT DD SYSOUT=* Defines Output Data Set

//SYSIN DD *

SORT FIELDS=COPY Copies Records
OUTREC FIELDS=(1,30, Reformats Output Records
36:31,12,HEX) and Converts Data

Figure 106. JCL and Required Control Statements

The effect of OUTREC processing on the input record is shown in Figure 107.

SyncSort for z/OS 1.1 Programmer’s Guide

ey &
& 4 & ¢

1 31 |36
CH CH | HEX
1 60

Figure 107. Sample Post-OUTREC Record Layout

Explanation: The records are copied, and OUTREC processing reformats the output record
to contain the Customer Name field (1,30) followed in column 36 by the Account Number
field converted to hexadecimal format (31,12,HEX). Blanks are automatically inserted in
the unspecified columns (31,5). Note that converting the Account Number data to printable
hexadecimal expands the original 12-byte field to 24 bytes. The bank can now read the
Account Number field in hexadecimal format to determine which records contain invalid
data.

Converting and Editing Unprintable Data

Example: For an Outstanding Payments report, the packed-decimal Amount Due field on a
company’s invoice records is converted to printable format and edited with a floating dollar
sign, commas, and a decimal point. In addition, to make the output easy to read, ten blanks
are inserted between the Company Name field and the Amount Due field. (Figure 108 gives
the input record layout.)

Chapter 3. How to Use SyncSort’s Data Utility Features 3.23

9=
R

1 27

Figure 108. Input Record Layout

To sort the records and accomplish the conversion and editing, the following is coded.

/ /PAYMNT JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSOUT DD SYSOUT=* Assigns SyncSort Messages
//* to I/0O Device
//SORTIN DD DSN=INVOICE, DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=%* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL,5) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *
SORT FIELDS=(1,23,CH,A) Sorts Records
OUTREC FIELDS=(1,23, Converts and Edits Data
10X, and Inserts Blanks
24,4,PD,EDIT=(SII,IIT.TT))

Figure 109. JCL and Required Control Statements

Figure 110 shows the effect of OUTREC processing on the input record.

3.24 SyncSort for z/OS 1.1 Programmer’s Guide

EH
2

Figure 110. Post-OUTREC Record Layout

Explanation: First the records are sorted alphabetically by Company Name (1,23,CH).
Next, OUTREC processing inserts 10 blanks (10X) between the Company Name field (1,23)
and the Balance Due field (24,4,PD). OUTREC processing also converts this packed-deci-
mal field to printable format and edits it with the user-provided pattern specified on the
EDIT subparameter, EDIT=($IL,IIT.TT). This pattern provides for a floating dollar sign as
well as the appropriate comma and decimal point. The Is indicate that leading zeros should
not be printed and the Ts indicate that zeros in those positions should be printed. Note that
this conversion and editing of the data cause the length of the Balance Due field to increase
from its original length of four bytes to ten bytes.

Putting a Data Field in Standard Format

Example: The date field on insurance-policy records is stored in zoned-decimal format but
without slashes separating the month, day, and year. After the records are sorted, these
slashes will be inserted and the date will appear in the standard mm/dd/yy format. (Figure
111 gives the input record layout.)

Chapter 3. How to Use SyncSort’s Data Utility Features 3.25

& &
&y Q G@?@
s &

30
yA))

q-
SRS

1 37

Figure 111. Input Record Layout

To sort the records and format the date field with the required slashes, the following is

coded.
//SORTDT JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSoUuT DD SYSOUT=* Assigns SyncSort Messages
J/* to I/O Device
//SORTIN DD DSN=NEW.POLCY, DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL,5) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *
SORT FIELDS=(1,23,CH,A) Sorts Records
OUTREC FIELDS=(1:1,23, Edits Data and Repositions
30:24,6,2D,M9, Record Fields
45:30,8)

Figure 112. JCL and Required Control Statements

The effect of OUTREC processing is shown in Figure 113.

3.26 SyncSort for z/OS 1.1 Programmer’s Guide

& &
§ Qg@ f f§0§ @°é§

2% 38 45
CH 7D

5=

1 52

Figure 113. Post-OUTREC Record Layout

Explanation: The records are sorted alphabetically by Member Name (1,23,CH). The
OUTREC statement repositions the Effective Date field (24,6,ZD) and the Policy Number
field (30,8,ZD) in columns 30 and 45 respectively, leaving blanks between each of the three
fields. In addition, the OUTREC statement edits the Effective Date field with an M9
editing mask that places slashes between the month, date, and year. Note that editing the
Date field increases its size from six to eight bytes.

Converting from Variable to Fixed-Length Format

Example: In this example, there are three output files. The first is variable and the remain-
ing two are fixed-length format. The variable output file is the standard output file from
the sort. In order to convert the output from variable to fixed-length format, you should
specify CONVERT on the OUTREC parameters of each of your OUTFIL control state-
ments. The following are the JCL and control statements to effect this result.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.27

// JOB

// EXEC PGM=SYNCSORT

//SYSOUT DD SYSOUT=*

//SORTWKO1l DD SPACE= (CYL,5) , UNIT=SYSDA
//SORTIN DD DSN=VARIN, DISP=SHR

//SORTOUT DD UNIT=SYSDA, SPACE= (CYL, (1,1)),
// DISP=(, PASS),DSN=&&VAROUT
//SORTOF1 DD UNIT=SYSDA, SPACE= (CYL, (1,1)),
// DISP=(,PASS),DSN=&&FIX10UT
//SORTOF2 DD UNIT=SYSDA, SPACE= (CYL, (1,1)),
// DISP=(,PASS),DSN=&&FIX20UT
//SYSIN DD *

SORT FIELDS=(1,23,CH,A,28,2,CH,A)

OUTFIL FILES=1,
INCLUDE=(28,2,CH,EQ,C'92"),
OUTREC= (1, 23) , CONVERT

OUTFIL FILES=2,
INCLUDE=(28,2,CH,EQ,C'93"),
OUTREC= (1, 23) , CONVERT

Figure 114. Using the CONVERT Parameter

Printing Input Records on Multiple Output Lines

Example: In this example, five input record fields, shown in Figure 115, are copied to an
output file with each field printed as a separate output line.

Q ' %5 3
vﬁ& ¥ &"&V QQS) v
< Q y Q N
& Q Q had Nt
> > > S S
o &P & &
””” 101 141 166 191 21

3.28

Figure 115. Input Record Layout
Multiple output lines are created by specifying a newline character, i.e. / (slash), in the

OUTREC parameter of an OUTFIL control statement. As shown in Figure 116, the newline
character follows the specification of each input field’s starting position and length.

SyncSort for z/OS 1.1 Programmer’s Guide

//MULTILIN JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages
//* to I/0 Device
//SORTIN DD DSN=&&DATA,DISP=SHR Defines Input Data
//* Set
//SORTWKO1 DD UNIT=SYSDA,SPACE=(CYL, (3,3)) Defines Intermediate
//* Storage
//SORTWKO02 DD UNIT=SYSDA,SPACE=(CYL, (3,3)) Defines Intermediate
//* Storage
//SORTOUT DD SYSOUT=+* Defines Output Data
//* Set
//SYSIN DD *
SORT FIELDS=(101,40,CH,A) Sorts Records
OUTFIL CONVERT, Converts Data
HEADER2= ('CUSTOMER ADDRESS LIST',3/), Prints a Page
* Header
OUTREC= (101,40, /, Prints the Data in the

* Field and Starts a
* New Output Line

141,25,/, As Above

166,25, /, As Above

191,30,/, As Above

266,35,2/) As Above but Starts
* 2 New Output Lines

Figure 116. JCL and Control Statements for Multiline Output

Once SyncSort has printed the data in the COMPANY NAME field, it starts a new output
line, prints on it the data in the next field, CUSTOMER NAME, starts a new line, and so
forth. After printing the contents of the last field (CITY, STATE AND ZIP), SyncSort cre-
ates two new lines (2/).

Figure 117 provides an excerpt from the output file where the input record is formatted on
multiple lines. A blank line appears in the second and third set of multi-line output because
the corresponding input record fields (i.e. CUSTOMER TITLE and CUSTOMER NAME)

were blank.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.29

CUSTOMER ADDRESS LIST

AARON'S ROD INC.

DAVID LAURENCE

SYS PROG

6936 YOUNGMAN BLVD.
GREAT NECK CT.

BLAKE'S VISION TECHNOLOGY

MR. N. FRYE

261 ALBION PLACE

SEA BRIGHT NJ.

COLTRANE & COMPANY

DATA CENTER MANAGER

300 DORIAN AVENUE
NEW YORK NY.

First Set of Multiline Output

06854

Second Set of Multiline Output
08572

Third Set of Multiline Output
11220

Figure 117. Sample Multiline Output

Dividing a Report into Sections

When printing sorted output, you may want to divide it into sections. For example, after
sorting a personnel file alphabetically by company name and department, you might want
to print each department’s records as a separate section and leave some blank lines
between each section. You might even want to print each section as a separate page of the
report. SyncSort allows you to print groups of records that have identical information in
one or more sort fields as sections and to separate each section by a specified number of

lines or a page break.

To divide output into sections, use the SECTIONS parameter on the OUTFIL control state-
ment. For complete syntax of the SECTIONS parameter, see “SECTIONS Parameter

(Optional)” on page 2.80.

Dividing Output into Sections

3.30

Example: A personnel roster is to be divided into sections by Department. (Figure 118 pre-

sents the layout for the input record.)

SyncSort for z/OS 1.1 Programmer’s Guide

& S S
S & 9
¥ S & &
& > & &

& S QC} S

9 9 &
1 15 A
CH CH CH CH|ZD
1 25

Figure 118. Input Record Layout

To sort the records and generate a list that is divided by Department, the following is
coded.

//ROSTER JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages
//* to I/0 Device
//SORTIN DD DSN=PRSNL, DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE=(CYL,2) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *
SORT FIELDS=(15,5,A,1,14,A), FORMAT=CH Sorts Records
OUTFIL OUTREC=(6:15,5, Repositions Record Fields
14:1,14,
33:20,3,
44:23,1,
54:24,2),
SECTIONS= (15,5, SKIP=5L) Sections Records

Figure 119. JCL and Required Control Statements

A sample of the listing generated is shown in Figure 120.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.31

ACCTG BELL PAT SUP F 03
ACCTG EMERY PAUL CLK M 04
ACCTG JONES MARK CLK M 01
ACCTG NORTH NANCY MGR F 02
ACCTG OWEN JERRY CLK M 03
ACCTG TWAIN JOAN SEC F 05
ACCTG WEST DONNA CLK F 03
PRSNL SMITHE JON CLK M 00
PRSNL TOWERS LINDA CLK F 02
PRSNL VREES GEORGE CLK M 02
PRSNL WU JANE SUP F 05
PRSNL YOUNG RUSS MGR M 03

Figure 120. Sample Output

Explanation: After the records are sorted alphabetically by Department (15,5) and
Employee Name (1,14), they are divided into sections by department. That is, every time
there is a change in the Department field (15,5 in the input record) the printer skips 5 lines
(5L) before printing the next record. (Note, in the Sample Output above, the five-line break
that occurs between ACCTG and PRSNL.) The OUTREC parameter is used to reposition
the record fields and to leave blanks between them.

Writing Headers and Trailers for a Report

Headers are used to provide report, page, and section headings such as titles, page num-
bers, the current date, labels for each column of data, and the like. Similarly, trailers are
used for report, page, and section summaries. You can use them, for example, to provide
totals for columns of numeric data (see "Totaling and Subtotaling Data") or to indicate the
end of a section with, say, a string of asterisks or to provide a list of abbreviations used in
the report.

To generate Headers and/or Trailers, use the HEADER and TRAILER parameters of the
OUTFIL control statement. For complete syntax, see “HEADER1I/HEADER2 Parameters
(Optional)” on page 2.68 and “TRAILER Parameters (Optional)” on page 2.73

Writing a Title Page for a Report

3.32

Example: Marketing wants a title page for its monthly departmental sales report. The
three-line title will begin on line 16 and three blank lines will separate each line of the title.
The three lines will start printing in columns 49, 59, and 63, respectively.

To print this title page, the following is coded:

SyncSort for z/OS 1.1 Programmer’s Guide

//DSRPT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program
//SYSOoUT DD SYSOUT=* Assigns SyncSort Messages
//* to I/0 Device
//SORTIN DD DSN=MRKTNG.SALES,DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL,5) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

OUTFIL HEADER1=(15/,49:'DEPARTMENTAL S ALES',
4/,59:'F EBRUARY',
4/,63:'1 9 9 2'), Generates Title Page

Figure 121. JCL and Required Control Statements

Figure 122 shows the header that is generated by the above HEADER1 parameter:

DEPARTMENTA AL SALES

FEBRUARY

1992

Figure 122. Sample HEADER1

Explanation: The HEADER1 parameter produces a header that will print on a separate
page, with no page number, at the beginning of the report. The first number-slash (n/)
entry, 15/, causes the printer to skip 15 lines before printing. The following number-colon
entry (c:), 49:, specifies the column in which the literal string' D EPARTMENTALSA
L E S' begins to print. Note that the literal string prints exactly as it is entered between the
single quotes, with a space between each letter and a double space between the words.

The next entry, 4/, causes the printer to skip 3 more blank lines before starting to print the
literal string'F EBR U AR Y'in column 59.

Finally, three more lines are left blank (4/) and the literal string '1 9 9 2' begins printing in
column 63.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.33

Writing a Page Header

Example: Marketing wants the first line of every page of its departmental sales report to
contain the program number, report title, page number, and date. They want the third line
of every page to contain an identifying label for each column of data. Each of these lines will
begin printing in column one.

To print the page header, the following is coded.

//DSRPT JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSoUuT DD SYSOUT=* Assigns SyncSort Messages
//* to I/O Device
//SORTIN DD DSN=MRKTNG.SALES,DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL,5) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

OUTFIL

HEADER2=(1:'PGM NUMBER 5',
46:'DEPARTMENT SALES REPORT FOR FEBRUARY 1992'",

101:'DATE: "',
107 :&DATE, Generates Page Heading
121:'PAGE: "',

127:&PAGE, //,

1:'DEPARTMENT',
40:'SALES MANAGER',
61:'SALES REP',
78:'SALES THIS PERIOD',
103:'SALES YEAR TO DATE',//),

Figure 123. JCL and Required Control Statements

Figure 124 shows a representation of the header that is generated by the above HEADER2
parameter.

3.34 SyncSort for z/OS 1.1 Programmer’s Guide

PGM NUMBER 5 DEPARTMENT SALES REPORT FOR FEBRUARY 1992 DATE: 02/01/
92 PAGE: 1

DEPARTMENT SALES MANAGER SALES REP SALES THIS PERIOD SALES YEAR TO DA
TE

Figure 124. Sample HEADER?2

Explanation: The HEADER2 parameter produces the page header shown above. Because
no forward spacing is specified, the page header begins on the first line of every page. Each
of the HEADERZ2’s number-colon entries (c:), for example, 1:, indicates the column in which
the entry following the colon begins to print. Thus, the literal ' PGM NUMBER 5' is printed
beginning in column 1, and so on. The &DATE and the &PAGE entries generate a current
date and a consecutive page number, respectively. The date and the page number appear
after the labels DATE: and PAGE:, which are specified like the other literals.

The double slashes (/) following the & PAGE entry direct the printer to forward space two

lines, that is, to leave one blank line, before printing the next group of literals that consti-
tute the labels for the columns of data.

Writing a Section Header
Example: Marketing wants each section of its departmental sales report to have its own
heading. The heading will consist of one line containing an identifying label for each col-

umn of data. The heading will begin printing in column one.

To print the section header, the following is coded.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.35

3.36

//DSRPT JOB
// EXEC PGM=SYNCSORT
//SYSOUT DD SYSOUT=*
//*
//SORTIN DD DSN=MRKTNG . SALES, DISP=SHR
//SORTOUT DD SYSOUT=*
//SORTWKO1 DD SPACE= (CYL,5) ,UNIT=SYSDA
//SYSIN DD *
SORT FIELDS=(1,15,CH,A)
OUTFIL OUTREC=(1:1,15,
23:23,7,
51:48,3,
72:60,4,PD,EDIT=(S$II,IIT.
101:64,4,PD,EDIT=($II,IIT.
114:C' '),
SECTIONS= (1,15, SKIP=5L,
HEADER3= (1: 'DEPARTMENT',
23:'SALES MGR',
48:'SALES REP',
68:'SALES THIS PERIOD',

Gives the Jobname

Identifies the Program
Assigns SyncSort Messages

to I/O Device

Defines Input Data Set
Defines Output Data Set
Defines Intermediate Storage

Sorts Records
Repositions Fields on Output
Records and Edits Data

TT) ,
TT) ,

Generates Section Breaks
Generates Section Headings

97:'SALES YEAR TO DATE',//))

Figure 125. JCL and Required Control Statements

Figure 126 shows the header that is generated by the above HEADER3 subparameter.

SyncSort for z/OS 1.1 Programmer’s Guide

DEPARTMENT SALES MGR SALES REP SALES THIS PERIOD SALES YEAR TO DATE

OVER COUNTER CASEY 075 $14,000.00 $27,000.00
OVER COUNTER CASEY 093 13,550.00 32,000.00
OVER COUNTER CASEY 084 11,755.00 24,850.00
OVER COUNTER CASEY 090 12,250.00 25,000.00
OVER COUNTER CASEY 095 13,075.00 26,180.00

DEPARTMENT SALES MGR. SALES REP SALES THIS PERIOD SALES YEAR TO DATE

SURGICAL KILDARE 003 $11,750.00 $25,320.00
SURGICAL KILDARE 007 $14,300.00 24,900.00
SURGICAL KILDARE 009 11,110.00 30,850.00
SURGICAL KILDARE 004 13,375.00 27,505.00

Figure 126. Sample Sections with HEADER3

Explanation: The HEADER3 subparameter on the SECTIONS parameter generates a
header that prints at the beginning of each section. Its primary purpose here is to provide
labels for the columns of data that appear in each section. Each of the number-colon entries
(c:) specifies the column in which the entry following it should begin to print. Thus, the lit-
eral string ' DEPARTMENT"' begins to print in column 1, the literal string 'SALES MGR'
begins to print in column 23, and so on. Blanks are automatically inserted in the space
between the columns that are specified. On the OUTREC parameter a blank has been
inserted in column 114 (114:C' ') so that the output record length will equal that of the
header. Note that if the HEADERS3 in this example were used in conjunction with the pre-
ceding HEADERZ2 example, there would be no need to specify the labels for the columns of
data in the HEADER2.

Using a Header to Eliminate Duplicate Information within a Section

Example: Rather than repeat the department name and sales manager, which are identical
for every record included in a section of the departmental sales report, marketing wants
this information to appear only once-within the section headers of the report. Therefore,
the section headers’ first two entries (Department and Sales Manager) will be drawn
directly from the first data record in each section.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.37

To print the section header with the input data fields, the following is coded.

//DSRPT JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages
//* to I/O Device
//SORTIN DD DSN=MRKTNG.SALES,DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE=(CYL,5) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

OUTFIL.. ., Repositions Fields on Output

OUTREC= (25:48, 3, Records and Edits Data

37:60,4,PD,EDIT=($II,IIT.TT),
56:64,4,PD,EDIT=($II,IIT.TT),

71:C' '),
SECTIONS=(1,15,SKIP=2L, Generates Section Breaks
HEADER3=(1:1,15, Generates Section Headings
16:23,7,

23:'SALES REP',
34:'SALES THIS PERIOD',
54:'SALES YEAR TO DATE'))

Figure 127. JCL and Required Control Statements

Figure 128 shows the header that is generated by the above HEADERS3 subparameter.

OVER COUNTER CASEY SALES REP SALES THIS PERIOD SALES YEAR TO DATE
075 $14,000.00 $27,000.00
093 $13,550.00 $32,000.00
084 $11,755.00 $24,850.00
090 $12,250.00 $25,000.00
095 $13,075.00 $26,180.00
SURGICAL KILDARE SALES REP SALES THIS PERIOD SALES YEAR TO DATE
003 $11,750.00 $25,320.00
007 $14,300.00 $24,900.00
009 $11,110.00 $30,850.00
004 $13,375.00 $27,505.00

Figure 128. Sample Sections with HEADERS3 Including Data from Input Record

Explanation: The HEADER3 subparameter on the SECTIONS parameter generates a
header that prints at the beginning of each section. Its primary purpose here is to provide

3.38 SyncSort for z/OS 1.1 Programmer’s Guide

individualized section headings that contain the Department Name and the Sales Manager
from the records in that section as well as labels for the columns of data. The first two
entries in this header, 1:1.15 and 16:23,7 (the Department Name and Sales Manager,
respectively), are drawn directly from the input record to eliminate the repetition of these
fields in the detail lines of each section. Note that specifying these fields in the HEADER3
eliminates the need to include them in OUTREC processing as was necessary in the preced-
ing example. Each of the number-colon entries (c:) specifies the column in which the entry
following it should begin to print. Thus, the Department field, (1,15) begins to print in col-
umn 1; the Sales Manager field, in column 16; the literal string "SALES REP", in column
48, and so on. Blanks are automatically inserted in the space between the columns that are
specified. It should be pointed out that on the OUTREC parameter a blank has been
inserted in column 71 (71:C'') so that the output record length will equal that of the header.

Writing a Report Trailer or Summary

Example: The final page of marketing’s departmental sales report will contain a note say-
ing that February sales figures include residual 1992 sales not previously recorded. This
note will begin on the 21st line of the page and start printing in the 33rd column of the

page.

To print the report trailer, the following is coded.

//DSRPT JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages
//* to I/0 Device
//SORTIN DD DSN=MRKTNG.SALES,DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL,5) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

OUTFIL .

TRAILER1=(20/, Generates Report Trailer
33:'FEBRUARY SALES FIGURES INCLUDE RESIDUAL 1992'",
'SALES NOT PREVIOUSLY RECORDED')

Figure 129. JCL and Required Control Statements

Figure 123 shows the trailer that is generated by the above TRAILER1 parameter.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.39

FEBRUARY SALES FIGURES INCLUDE RESIDUAL 1992 SALES NOT PREVIOUSLY RECORDED

Figure 130. Sample TRAILER1

Explanation: The TRAILER1 parameter produces a report trailer or summary that consti-
tutes the final page of a report. Unless otherwise specified, it begins on the first line of the
page. The TRAILER1’s initial number-slash (n/) entry, 20/, directs the printer to forward
space 20 blank lines before printing on the 21st line. The next entry, a number-colon (c:)
entry, is used to center the literal string that follows it by having the string of characters
begin printing in the appropriate column. It specifies column 33 as the beginning position
for printing the literal string, FEBRUARY SALES FIGURES INCLUDE RESIDUAL 1992
SALES NOT PREVIOUSLY RECORDED'.

Writing a Page Trailer

3.40

Example: Marketing wants the last line on every page of its departmental-sales report to
contain a note identifying the information as confidential. This line will begin printing in
column one.

To print the page trailer, the following is coded.

//DSRPT JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages
//* to I/0 Device
//SORTIN DD DSN=MRKTNG.SALES,DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL,5) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

SORT FIELDS=(1,15,CH,A) Sorts Records

OUTFIL .

TRAILER2=(5'*' ,'CONFIDENTIAL INFORMATTION',
5'*x' '"CONFIDENTIAL INFORMATTION!',5"'*x")

Generates Page Trailer

Figure 131. JCL and Required Control Statements

Figure 132 shows the trailer that is generated by the above TRAILERZ2 parameter.

SyncSort for z/OS 1.1 Programmer’s Guide

*%*** CONFIDENTIAL INFORMATION*****CONFIDENTIAL INFORMATION®* ****

Figure 132. Sample TRAILER3

Explanation: The TRAILERZ2 coded above provides a trailer that appears at the bottom of
every logical page. The first entry, 5'*', a literal enclosed in single quotes (in this case an
asterisk) and a repetition factor (5), specifies that 5 asterisks should be printed. Because no
column was specified, the trailer begins in column one. The next entry, CONFIDENTI
ALINFORMATION/ specifies that the literal string enclosed in the single quotes
should directly follow the asterisks. Note that the literal string is printed exactly as it is
coded within the quotation marks. That is, there is a blank between every letter and two
blanks between each word. The trailer’s other entries specify the printing of another five
asterisks followed by the literal string' CONFIDENTIALINFORMATION 'and
finally another five asterisks.

Totaling and Subtotaling Data

Writing a summary or trailer for a report will sometimes involve providing totals for col-
umns of figures. For example, you would probably want a trailer for an inventory report to
contain the total number of items on hand. The OUTFIL statement allows you to write
trailers that contain both totals and subtotals. Moreover, you can total data at the end of a
report, at the end of a page, and also at the end of a section.

To generated total and subtotals, use the TOTAL and SUBTOTAL entries of OUTFIL's
TRAILER parameters and subparameter. For details of syntax, see “TRAILER Parameters
(Optional)” on page 2.73

Totaling Data at the End of a Report
Example: The departmental sales report’s final page will be a summary containing both the
total for the sales this period and the total for the sales to date. The trailer will begin on the
21st line of the page and each total will have an identifying label.

To print the report trailer, the following is coded.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.41

3.42

//DSRPT JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages
//* to I/0 Device
//SORTIN DD DSN=MRKTNG.SALES, Defines Input Data Set
DISP=SHR
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL, 5), Defines Intermediate Storage
UNIT=SYSDA
//SYSIN DD *
SORT FIELDS=(1,15,CH,A) Sorts Records
OUTFIL.
TRAILER1=(20/, Generates Report Trailer with Totals

40:'SALES THIS PERIOD:',
59:TOT=(24,4,PD,EDIT=($II,IIT.TT)),
73:'SALES TO DATE:',
88:TOT=(28,4,PD,EDIT=($II,IIT.TT)))

Figure 133. JCL and Required Control Statements

Figure 134 shows the trailer that is generated by the above TRAILER1 parameter.

SALES THIS PERIOD: $35,807.85 SALES TO DATE: $62,305.25

Figure 134. Sample TRAILER1

Explanation: The TRAILER1 parameter produces a report trailer or summary that consti-
tutes the final page of a report. Unless otherwise specified, it begins on the first line of the
page. This TRAILERT1’s initial number-slash(n/) entry, 20/, directs the printer to forward
space 20 blank lines before printing. The next entry, a number-colon (c:) entry, is used to
center the literal string that follows it by having the string of characters begin printing in
the appropriate column. It specifies column 40 as the beginning position for the literal
string 'SALES THIS PERIOD:' that labels the numeric data following it. This TRAILER’s
other number-colon plus literal-string entry functions the same way.

The two TOT entries, TOT=(....), generate the trailer’s totals. These entries specify the
numeric data used and its format. Thus the four bytes of packed-decimal data that begin in
byte 24 (24,4,PD) and the four bytes that begin in byte 28 (28,4,PD) of the input record are
converted to printable format. This data is then edited by the EDIT pattern ($II,IIT.TT),
which suppresses the printing of leading zeros and inserts a floating dollar sign as well as a
necessary comma and decimal point. The pattern uses an I to indicate those zeros in the
total that should not be printed and a T to indicate those that should.

SyncSort for z/OS 1.1 Programmer’s Guide

Note: Be sure to code all the necessary parentheses when using the TOTAL and EDIT
entries.

Subtotaling Data at the End of a Page

Example: The page trailer for a report listing invoices is to contain the totals for the
Amount Paid and the Balance Due fields of the invoice records printed up to and including
that page. These totals will appear directly below the columns of figures and be separated
from them by strings of hyphens. An identifying label, TOTALS:, will appear on the same
line as the totals and will begin in column 40.

To generate the trailer, the following is coded.

//INVLST JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages
//* to I/O Device
//SORTIN DD DSN=INVOICE,DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL,5) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

SORT FIELDS=(9,23,A,36,2,A,32,4,A), Sorts Records

FORMAT=CH

OUTFIL.

TRAILER2=(65:10'-', 86:10'-',/, Generates Page Trailer
40:'TOTALS: ', with Running Totals
65:8UB=(46,4,PD,EDIT=(SII,IIT.TT)),
86:SUB=(54,4,PD,EDIT=(SII,IIT.TT)))

Figure 135. JCL and Required Control Statements

Figure 136 shows the trailer that is produced.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.43

MERLINS TRUST CO 82124054 12/15/92 0.00 1,500.00
MEWER COLLEGE 83013324 1/17/92 0.00 1,500.00
NORTHEAST INDUST 83013303 1/17/92 200.00 200.00
PARK PLACE CORP 83022211 2/15/92 0.00 650.00
PATIO PRODUCTS 83022203 2/15/92 0.00 850.00
PINES ASSOCIATES 83022587 2/15/92 0.00 750.00
POLL DATA CORP 82124019 12/15/92 0.00 600.00
PRIESTLEY METALS 83022201 2/15/92 0.00 1,600.00
REGENCY TRUST CO 82124011 12/15/92 0.00 1,500.00
REPUBLIC DATA 83013306 1/17/92 0.00 1,100.00
RIBBIT TECHNOLOGIES 82124020 12/15/92 0.00 360.00
RICE FEATURES 82124015 12/15/92 750.00 750.00
RICE FEATURES 83013298 1/17/92 0.00 1,500.00
RICE FEATURES 83022198 2/15/92 0.00 1,500.00
ROBINS NEST CORP 83013353 1/17/92 0.00 900.00
SIDNEY COLLEGE 82124016 12/15/92 0.00 5,000.00
SIDNEY COLLEGE 83013297 1/17/92 0.00 2,500.00

TOTALS: $6,150.00 $66,475.00

Figure 136. TRAILER2 with SUBTOTAL

Explanation: The above TRAILERZ2 provides for totaling the figures in the Amount Paid
field (46,4,PD) and the Amount Due field (54,4,PD) on the invoice records. Because the SUB
(SUBTOTAL) entry is specified, the totals that appear at the bottom of each page represent
running totals, that is, the totals for all the records that have been printed up to and includ-
ing that page. The TRAILERZ also generates the identifying label TOTALS: (40:'TOTALS:")
and strings of hyphens at the bottoms of the columns to be totaled (65:10'-', 86:10'-").

The totaled data for each field is converted to printable format and, after being edited,
begins printing in the columns specified with the two number colon entries (c:), 65: and 86..
The data is edited by the EDIT pattern, ($ILIIT.TT), which suppresses the printing of lead-
ing zeros and inserts a floating dollar sign as well as the necessary comma and decimal
point. The pattern uses an I to indicate the zeros in the total that should not be printed and
a T to indicate those that should.

Totaling Data at the End of a Section

3.44

Example: The section trailer for an accounts receivable report sectioned by month is to con-
tain the totals for the Amount Paid and the Balance Due columns of each section. These
totals will appear directly below the columns of figures and be separated from them by
strings of hyphens. An identifying label, TOTALS:, will appear on the same line as the
totals and will begin in column 40.

To generate the trailer, the following is coded.

SyncSort for z/OS 1.1 Programmer’s Guide

//ACTREC JOB Gives the Jobname

// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages
//* to I/0O Device
//SORTIN DD DSN=NEW. INV, DISP=SHR Defines Input Data Set
//SORTOUT DD SYSOUT=* Defines Output Data Set
//SORTWKO1 DD SPACE= (CYL,5) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *
SORT FIELDS=(9,23,A,36,2,A,32,4,34), Sorts Records
FORMAT=CH
OUTFIL.
SECTIONS=(32,4,SKIP=3L, Generates Section Breaks
TRAILER3=(65:10'-"',86:10'-"',/, Generates Section Trailer
40:'TOTALS: ', with Totals

65:TOT=(46,4,PD,EDIT=(SII,IIT.TT)),
86:TOT=(54,4,PD,EDIT=(SII,IIT.TT))))

Figure 137. JCL and Required Control Statements

Figure 138 shows the section trailer, with totals, that is produced.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.45

3.46

WINIFRED INDUST 82124013 12/15/91 300.00 350.00

TOTALS: $2,600.00 $19,770.00

ARLINE FRAGRANCES 83013304 1/17/92 0.00 7,500.00
CHARACTER DATA 83013343 1/17/92 0.00 1,100.00
COUNTRY INDUSTRIAL 83013557 1/17/92 0.00 950.00
DUNHAM INDUST INC 83013302 1/17/92 0.00 850.00
ECHO LABS INC 83013300 1/17/92 0.00 550.00
ESS SECURITIES 83013311 1/17/92 0.00 550.00
EVERMORE INDUST 83013556 1/17/92 2,000.00 3,000.00
GOODEY FOODS 83013356 1/17/92 0.00 600.00
GROSS BOOKS CO 83013264 1/17/92 0.00 2,500.00
HARVEY MOTORS CO 83013301 1/17/92 2,000.00 3,000.00
KALABRA CORPORATION 83013555 1/17/92 0.00 1,500.00
MEWER COLLEGE 83013324 1/17/92 0.00 1,500.00
NORTHEAST INDUST 83013303 1/17/92 200.00 200.00
REPUBLIC DATA 83013306 1/17/92 0.00 1,100.00
RICE FEATURES 83013298 1/17/92 0.00 1,500.00
ROBINS NEST CORP 83013353 1/17/92 0.00 900.00
SIDNEY COLLEGE 83013297 1/17/92 0.00 2,500.00
SOUTHWEST INDUST 83013503 1/17/92 200.00 200.00
SPENSERS INDUST 83013989 1/17/92 0.00 650.00
UNITED INTERESTS INC 83013309 1/17/92 0.00 1,500.00
WINIFRED INDUST 83013299 1/17/92 0.00 650.00
TOTALS: $4,400.00 $32,800.00

Figure 138. TRAILERS3 with TOTAL

Explanation: In addition to generating strings of hyphens at the bottom of the columns to
be totaled (65:10'-',86:10'-") and the identifying label TOTALS: on the line below
(40:'TOTALS:'"), the TRAILERS provides for totaling the figures in the Amount Paid field
(46,4,PD) and the Amount Due field (54,4,PD) on the invoice records. Note that because the
TOT (TOTAL) entry is specified, the totals that appear at the end of each section represent
that totals only for the records that are included in that section.

The totaled data for each field is converted to printable format and, after being edited,
begins printing in the columns specified with the two number colon entries (c:), 65: and 86.:.
The data is edited by the EDIT pattern, ($IIIIT.TT), which suppresses the printing of lead-
ing zeros and inserts a floating dollar sign as well as the necessary comma and decimal
point. The pattern uses an I to indicate the zeros in the total that should not be printed and
a T to indicate those that should.

SyncSort for z/OS 1.1 Programmer’s Guide

Obtaining Maximum, Minimum and Average Data

A report may need to include maximum, minimum, and average data. The parameters pro-
vided for this type of reporting are MIN, SUBMIN, MAX, SUBMAX, AVG and SUBAVG.
The syntax is the same as for TOTAL and SUBTOTAL. See “Totaling and Subtotaling
Data” on page 3.41 and “TRAILER Parameters (Optional)” on page 2.73.

Printing Maximum, Minimum and Average Data in Section Trailers

Example: The section trailers for an accounts receivable report sectioned by data group
(AAA, BBB, etc.) are to contain six edited numeric values for a 6-byte field that begins at
byte 8 (8,6). The values to be printed are the following:

¢ The minimum data value up to that point in the report (SUBMIN)
¢ The minimum data value in the section (MIN)

e The maximum data value up to that point in the report (SUBMAX)
¢ The maximum data value in the section (MAX)

¢ The average data value up to that point in the report (SUBAVG)

¢ The average data value in the section (AVG)

Each value will be preceded, on the same line, by appropriate identifying text. Two columns
of data will be printed.

To print the report, the following is coded:

SORT FIELDS=(1,3,CH,A,5,2,CH,A) SORT DATA BY GROUP AND SECTION
OUTFIL FILES=(OUT),
SECTIONS=(1,3,SKIP=3L,
HEADER3=(3:'GROUP',2X,1,3,/,16:'SECTION',6X, 'VALUE', /),
TRAILER3=(//,4:'MINIMUM VALUE TO THIS POINT= ',
35:SUBMIN=(8,6,%D,M2),/,
4:'MINIMUM VALUE FOR THIS GROUP= ',
35:MIN=(8,6,ZD,M2),//,
4:'MAXIMUM VALUE TO THIS POINT= ',
35:SUBMAX=(8,6,2ZD,M2),/,
4:'MAXIMUM VALUE FOR THIS GROUP= ',
35:MAX=(8,6,2ZD,M2),//,
4:'AVERAGE VALUE TO THIS POINT= ',
35:SUBAVG=(8,6,ZD,M2) /,
4:'AVERAGE VALUE FOR THIS GROUP= ',
35:AVG=(8,6,2D,M2))),
OUTREC=(18:5,2,26:8,6,2D,M2,80:1X)

The following shows two sections from the report, with the resulting values for submini-
mums, minimums, submaximums, maximums, subaverages and averages:

Chapter 3. How to Use SyncSort’s Data Utility Features 3.47

3.48

GROUP AAA

SECTION VALUE

01 38.42

01 923.12

01 8,756.33

02 9,723.63

02 67.43

02 175.66

03 645.83

03 673.41

03 23.71
MINIMUM VALUE TO THIS POINT= 23.71
MINIMUM VALUE FOR THIS GROUP= 23.71
MAXIMUM VALUE TO THIS POINT= 9,723.63

MAXIMUM VALUE FOR THIS GROUP= 9,723.63

AVERAGE VALUE TO THIS POINT= 2,336.39
AVERAGE VALUE FOR THIS GROUP= 2,336.39

GROUP BBB

SECTION VALUE

01 0.01

01 456 .11

01 874.01

02 4,354.00

02 2,583.54

02 3.57

03 809.01

03 934 .53

03 853.21
MINIMUM VALUE TO THIS POINT= 0.01
MINIMUM VALUE FOR THIS GROUP= 0.01
MAXIMUM VALUE TO THIS POINT= 9,723.63

MAXIMUM VALUE FOR THIS GROUP= 4,354.00

AVERAGE VALUE TO THIS POINT= 1,771.97
AVERAGE VALUE FOR THIS GROUP= 1,207.55

Explanation: The SECTION parameter generates a section break on field 1,3, which identi-
fies data groups (AAA, BBB, etc.). The HEADERS3 parameter defines section headers that
print the label "GROUP" followed by the data group identifier. HEADERS3 also defines two
column headings: "SECTION," which identifies the column containing section numbers,
and "VALUE," which identifies the columns containing the numeric data.

SyncSort for z/OS 1.1 Programmer’s Guide

The TRAILER3 subparameters are SUBMIN, MIN, SUBMAX, MAX, SUBAVG and AVG.
They specify the six values to appear in the section trailer. The values are all derived from
the same field (8,6) and are suitably edited with mask M2 (8,6,Z2D,M2).

The OUTREC parameter places the two data fields (5,2 and 8,6) in the report and edits the
8,6 field in the same way as for the six values in the section trailer (8,6,ZD,M2). The blank
space placed at position 80 (80:1X) ensures that the output record is long enough to contain
the header records.

Counting Data Records

Trailers in a report will sometimes require you to obtain a record count or a count for a par-
ticular type of item in a specific part of a report. The OUTFIL statement allows you to write
trailers that contain such a count as well as cumulative, or running, counts of records.
Moreover, you can obtain these counts at the end of a report, at the end of a page, and at the
end of a section.

To generate these counts, use the COUNT and SUBCOUNT subparameters (or COUNT15
and SUBCOUNT15). These subparameters can be used in conjunction with all other
TRAILER entries. For syntax of COUNT and SUBCOUNT (as well as COUNT15 and
SUBCOUNT15), see “TRAILER Parameters (Optional)” on page 2.73.

Obtaining a Count of Data Records

Example: Marketing wants a count of the total number of customers with outstanding pay-
ments included in the summary of its outstanding invoices report.

To get this record count and print it as part of the report summary, the following is coded.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.49

//INVLST JOB

// EXEC PGM=SYNCSORT

//SYSOUT DD SYSOUT=*

//*

//SORTIN DD DSN=INVOICE, DISP=SHR
//SORTOUT DD SYSOUT=*

//SORTWKO1 DD SPACE= (CYL, 5) ,UNIT=SYSDA
//SYSIN DD *

SORT FIELDS=(1,23,CH,A)

OUTFIL.

TRAILER1=(20/,

COUNT)

Gives the Jobname

Identifies the Program
Assigns SyncSort Messages

to I/O Device

Defines Input Data Set
Defines Output Data Set
Defines Intermediate Storage

Sorts Records

Generates Report Summary

40:'NUMBER OF CUSTOMERS WITH OUTSTANDING PAYMENTS:',

Figure 139. JCL and Required Control Statements

Figure 140 shows the trailer containing the record count.

NUMBER OF CUSTOMERS WITH OUTSTANDING PAYMENTS: 52

Figure 140. Report Trailer Containing Record Count

Explanation: Since each record in the report represents an individual customer, coding the
COUNT entry in the TRAILER1 will provide the total number of customers with outstand-
ing payments. This TRAILER1 produces a report trailer, or summary, that constitutes the
final page of a report. It will print on the 21st line of the page (20/) and begin printing the
literal string 'NUMBER OF CUSTOMERS WITH OUTSTANDING PAYMENTS: ' in col-

umn 40.

Obtaining a Cumulative (Running) Count of Data Records

3.50

Example: For an outstanding invoices report sectioned by month, marketing wants a cumu-
lative, or running, count of invoices to date at the end of each section as well as a total

count of each month’s invoices included as section trailers.

To generate these record counts, the following is coded.

SyncSort for z/OS 1.1 Programmer’s Guide

//INVLST JOB

// EXEC
//SYSOUT DD
//*

//SORTIN DD
//SORTOUT DD
//SORTWKO1 DD
//SYSIN *

OUTFIL.

PGM=SYNCSORT
SYSOUT=*

DSN=INVOICE, DISP=SHR
SYSOUT=*
SPACE= (CYL,5) ,UNIT=SYSDA

SORT FIELDS=(28,2,ZD,A,
24,2,7ZD,A,
1,23,2ZD,A)

SECTIONS=(24,6,SKIP=1L,

TRAILER3=(/

Count & Cumulative Record Subcount
95:'MONTH''S NUMBER OF INVOICES: ', COUNT,/,
95: 'NUMBER OF INVOICES TO DATE: ', SUBCOUNT))

Gives the Jobname

Identifies the Program
Assigns SyncSort Messages

to I/O Device

Defines Input Data Set
Defines Output Data Set
Defines Intermediate Storage

Sorts Records

Generates Sections with Record

Figure 141. JCL and Required Control Statements

Figure 142 shows the trailers containing the counts of records.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.51

RIBBIT TECHNOLOGIES
RICE FEATURES
SIDNEY COLLEGE

SNAP FEATURES

WEBB BROS CORP
WELLINGTON IMPORTS
WINIFRED INDUST

ARLINE FRAGRANCES
CHARACTER DATA
COUNTRY INDUSTRIAL
DUNHAM INDUST CO
ECHO LABS INC
ESS SECURITIES
EVERMORE INDUST
GOODEY FOODS
GROSS BOOKS CO
HARVEY MOTORS CO
KALABRA CORP
MEWER COLLEGE
NORTHEAST INDUST
REPUBLIC DATA
RICE FEATURES
ROBINS NEST CORP
SIDNEY COLLEGE
SOUTHWEST INDUST
SPENSERS INDUST
UNITED INTERESTS
WINIFRED INDUST

BALTIC AVENUE CORP
BATHO PRODUCTS
CARRINGTON OIL

CDR TRUST INC

ECHO LABS INC

ESS SECURITIES
FASTEROOT EQUIP
FEDERAL FABRICS

2/15/91

12/15/91
12/15/91
12/15/91
12/15/91
12/15/91
12/15/91

1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92
1/17/92

2/15/92
2/15/92
2/15/92
2/15/92
2/15/92
2/15/92
2/15/92
2/15/92

360.
750.
5,000.
750.
600.
750.
350.

7,500.
1,100.
850.
850.
550.
550.
3,000.
600.
2,500.
3,000.
1,500.
1,500.
200.
1,100.
1,500.
900.
2,500.
200.
650.
1,500.
650.

650.
850.
1,600.
1,500.
550.
550.
1,700.
1,750.

00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

21.
75.
300.
75.
36.
45.
26.

618.
50.
.00
.00
22.
22.
225.
30.
150.
225.
90.
75.
20.
90.
75.
54.
150.
20.
26.
90.
26.

29.
51.
64 .
75.
22.
22.
76.
70.

60
00
00
00
00
00
00

75
75

00
00
00
00
00
00
00
00
00
75
00
00
00
00
00
00
00

25
00
00
00
00
00
50
00

MONTH'S NUMBER OF INVOICES:
NUMBER OF INVOICES TO DATE:

MONTH'S NUMBER OF INVOICES:
NUMBER OF INVOICES TO DATE:

17
17

21
38

Figure 142. TRAILERS3 Containing Record Counts and Cumulative Record Counts

3.52 SyncSort for z/OS 1.1 Programmer’s Guide

Explanation: The trailer’s first / entry causes the printer to leave one blank line after the
data records and before printing the trailer. The second / entry indicates the end of the
trailer’s first line. The identical number-colon entries (95:) set the starting positions of the
literal strings that follow them: 'MONTH''S NUMBER OF INVOICES: ' and 'NUMBER OF
INVOICES TO DATE: '.(Note that the apostrophe in MONTH'S is doubled because a single
apostrophe would signal the end of a literal string.) Finally, because each data record in
this report represents an invoice, the TRAILER3’s COUNT entry generates a count of each
month’s invoices and the SUBCOUNT entry generates a cumulative, or running, count of
the invoices. The leading zeros in these 8-byte fields are suppressed.

Creating Multiple Output Files

Data centers often use the same masterfile for different purposes. Assume, for example,
that you wanted to produce two reports using a masterfile of cash-receipt records. One
report was to present the total cash receipts for the current month; the second, for the year
to date. This would typically entail running a separate sort for each report. SortWriter’s
multiple-output feature, however, enables you to produce both reports with a single pass of
the sort. In addition, you can specify the same or different devices to receive the separate
output files.

Note: All the output files will be sequenced in the same way, as specified on the SORT or
MERGE statement. If you need to sort the output files differently, you should use PipeSort,
a Syncsort product that works with SyncSort for z/OS to reduce total elapsed time by gener-
ating multiple, differently sequenced output files from a single read of the input data.

To generate multiple output files, code the OUTFIL statement. For syntax of the OUTFIL
control statement, see “OUTFIL Control Statement” on page 2.59.

Generating Several Output Files with Different Information

Example: Marketing wants three output files of customer records. The first will contain a
list of U.S. and European customers. The second will contain a list of U.S. customers only,
and the third will contain a list of European customers only.

To generate the three separate files, the following is coded.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.53

3.54

//CUSTRCD
//
//SYSOUT
//*
//SORTIN
//

//
//SORTOF1
//

//*

//
//SORTOF2

//

//
//SORTOF3
//*

//

//
//SORTWKO1
//SORTWKO?2
//SORTWKO3
//SYSIN

OUTFIL

OUTFIL

OUTFIL

JOB
EXEC
DD

DD

DD

DD

DD

PGM=SYNCSORT
SYSOUT=A

DSN=SALES .RECORDS,
VOL=SER=DISK1,

DISP=SHR
DSN=SORTED.CUSTM.RECORDS,
UNIT=TAPE, VOL=SER=112231,

DISP= (NEW, KEEP)
DSN=SORTED.DCUSTM.RECORDS,

UNIT=TAPE, VOL=SER=112232,
DISP=(NEW, KEEP)
DSN=SORTED.ECUSTM.RECORDS,

UNIT=TAPE, VOL=SER=112233,
DISP= (NEW, KEEP)

SPACE= (CYL,20) ,UNIT=SYSDA
SPACE= (CYL,20) ,UNIT=SYSDA
SPACE= (CYL,20) ,UNIT=SYSDA

*

SORT FIELDS=(10,15,CH,A)

FILES=1,

INCLUDE=ALL

FILES=2,
INCLUDE=(67,3,CH,EQ,C'USA")
FILES=3,

INCLUDE=(67,3,CH,EQ,C'EUR")

Gives the Jobname
Identifies the Program
Assigns SyncSort Messages
to I/O Device

Defines Input Data Set

Defines First Output Data
Set Containing All
Customer Records

Defines Second Output Data
Set Containing Domestic
Customer Records Only

Defines Third Output Data
Set Containing European
Customers Only

Defines Intermediate Storage
Defines Intermediate Storage
Defines Intermediate Storage

Sorts Records

OUTFIL Statement for SORTOF1
Including All Records

OUTFIL Statement for SORTOF2
Including USA Records

OUTFIL Statement for SORTOF3
Including Eur. Records

Explanation: Creating the three requested output files requires coding three SORTOFxDD
statements in the JCL: SORTOF1, SORTOF2, and SORTOF3 as well as three OUTFIL
statements. Each of the OUTFIL statements is connected by a FILES parameter to one of
the output files defined in the JCL. Specifying 1 on the FILES parameter connects its
OUTFIL statement with the output file defined by the SORTOF1 DD statement in the JCL.
Likewise, specifying 2 connects its OUTFIL statement with the output file defined by
SORTOF2, and so on. The first output file will contain all the records from the input file
(INCLUDE=ALL). The second output file will include only those records that contain the
character string 'USA' beginning in byte 67, (INCLUDE=(67,3,CH,EQ,C'USA')), which
indicates that these records are for USA customers. And similarly, the third output file will
include only those records that contain the character string 'EUR' beginning in byte 67,

Figure 143. JCL and Required Control Statements

which indicates that these records are for European customers.

SyncSort for z/OS 1.1 Programmer’s Guide

Writing Identical Output Files to Different Devices

Example: Personnel wants a printed copy of its updated masterfile as well as copies on disk
and on tape.

To generate these three copies of the same file on different devices, the following is coded.

//MULTOUT JOB Gives the Jobname
// EXEC PGM=SYNCSORT Identifies the Program
//SYSouT DD SYSOUT=* Assigns SyncSort Messages
//* to I/O Device
//SORTIN DD DSN=PERSNL.RECORDS, Defines Input Data Set
// VOL=SER=DISK1,
// DISP=SHR
//SORTOFPR DD SYSOUT=* Defines Printed Output
//* Data Set
//SORTOFTP DD DSN=PERSNL.RECORDS.TAPE, Defines Tape Output Data Set
// UNIT=TAPE, VOL=SER=112233,
// DISP= (NEW, KEEP)
//SORTOFDS DD DSN=PERSNL.RECORDS.DISK, Defines Disk Output Data Set
// UNIT=DISK1l,DISP=(NEW, KEEP),
// SPACE= (CYL, 60)
//SORTWKO01 DD SPACE=(CYL,20) ,UNIT=SYSDA Defines Intermediate Storage
//SORTWK02 DD SPACE=(CYL,20) ,UNIT=SYSDA Defines Intermediate Storage
//SORTWKO03 DD SPACE=(CYL,20) ,UNIT=SYSDA Defines Intermediate Storage
//SYSIN DD *

SORT FIELDS=(1,40,CH,A) Sorts Records

OUTFIL FILES=(PR,TP,DS) Creates Multiple Output

Figure 144. JCL and Required Control Statements

Explanation: Creating the three copies of the updated masterfile requires coding only one
OUTFIL statement with a FILES parameter. The FILES parameter instructs SyncSort to
look for multiple output files defined in the JCL and to send its output to the devices speci-
fied in the SORTOFxx statements. Thus, the output that has been sorted as specified on
the SORT statement (1,40,CH,A) will be sent to the printer specified in the SORTOFPR
statement, to the tape volume specified in the SORTOFTP statement, and to the disk data
set specified in the SORTOFDS statement.

Chapter 3. How to Use SyncSort’s Data Utility Features 3.55

3.56 SyncSort for z/OS 1.1 Programmer’s Guide

Chapter 4. JCL and Sample JCL/Control Statement
Streams

SyncSort’s job control statements follow the standard operating system conventions
described in the z/OS job control language manuals. Each program application therefore
requires a JOB statement, an EXEC statement, and a DD (data definition) statement for
every data set used. (The single exception to this is the dynamic allocation of work files via
DYNALLOC or DYNATAPE.) The inclusion and coding requirements of particular job con-
trol statements depend on such factors as whether SyncSort is program-invoked or initi-
ated directly, whether any exits are coded, and, of course, whether the sorting technique
requested is Disk Sort, MAXSORT, PARASORT or Tape Sort.

All aspects of program initiation which are specific to the sort/merge (such as the dedicated
DD names SORTIN and SORTOUT) are documented in this chapter. For complete coding
instructions, refer to a z/0OS MVS JCL reference manual.

The following table summarizes Disk Sort’s DD statement requirements.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.1

Disk Sort DD Statements

//STEPLIB DD Instructs operating system to look for the sort program in a

//JOLIB DD specified data set.

//[SYSOUT DD Message data set. Required unless all messages are routed to
console.

//[SORTIN DD SORT input data set. Required unless there is an E15.
Ignored if the invoking program supplies an inline E15 exit
routine; optional if the MODS statement activates an E15
exit routine.

//SORTINnn DD . . .

/SORTINn DD MERGE input data set. Required unless there is an E32.

//[SORTOUT DD Output data set. Required unless there is an E35. Ignored if
the invoking program supplies an inline E35 exit routine;
optional if the MODS statement activates an E35 exit rou-
tine.

//SORTOFxx DD OUTFILE output data sets. One required for each FILES or

//[SORTOFx DD . .

FNAMES specification.

/[fname

//[SORTXSUM DD Output data set of records eliminated by the SUM control
statement. Required when the XSUM parameter is specified.

//SORTWKxx DD Disk work area definition. Required unless incore sort,

//[SORTWKn DD DYNALLOC, MERGE, COPY or restarting at a MAXSORT
merge breakpoint.

//[SYSIN DD Control statement data set. Required unless the invoking
program supplies the address of a 24-bit or a 31-bit extended
parameter list.

//$ORTPARM DD Used to override PARM or control statement information.

//[SORTCKPT DD Checkpoint data set. Required for Checkpoint-Restart.

//[SORTMODS DD Required if user exits are in SYSIN.

//[SYSLIN DD Required if user exits are to be linkage-edited at execution

//SYSLMOD DD time.

//[SYSPRINT DD

//[SYSUT1 DD

//[ddname DD Required for exits unless the exit is inline in LINKLIB/

JOBLIB/STEPLIB or in SYSIN.

EXEC Statement

4.2

The EXEC statement is required in order to indicate to the operating system that the job is
a sort/merge application. For a Disk Sort, the format of the EXEC statement is as follows.

SyncSort for z/OS 1.1 Programmer’s Guide

To use a sort cataloged procedure, omit PGM= and specify the appropriate procedure name.

PGM=SYNCSORT
PGM=SORT

//stepname EXEC { PGM=IERRCO00 ; [, PARM="..."]
PGM=IGHRCOO00
PGM=ICEMAN

Figure 145. Disk Sort EXEC Statement Format

The PARM parameter may be used to pass the sort/merge program a variety of keyword
parameters, modifying it to meet the needs of the individual application.

For MAXSORT, PARASORT, DB2 Query Support, and Tape Sort

The format of the EXEC statement varies with the sorting technique chosen. The
MAXSORT and PARASORT PARM options are used to request the MAXSORT or
PARASORT sorting technique. The DB2 PARM option is used to request the DB2 Query
function. These PARMs are compatible with any of the PGM names for Disk Sort. A Tape
Sort application, on the other hand, requires a PGM name of SORT, IERRCOO00,
IGHRCOO00, or ICEMAN. When PGM=SYNCSORT is used, SORTWK must be assigned to
disk. The set of available PARM options is also dependent on sorting technique. Refer to
“Chapter 5. PARM Options” for a description of the available options.

Coding Conventions for DD Statements

The following table summarizes the standard coding conventions for DD statements as
they relate to the sort/merge program. For more detailed information, refer to an z/OS job
control language manual.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.3

Parameter Subparameter Required?

DSNAME/DSN To access a labeled data set (e.g., SORTIN,
STEPLIB) or to keep or catalog the data set
being created (e.g., SORTOUT, SORTOUO00).

DCB DCB not required for disk or standard labeled
tape input.
RECFM, LRECL,
and BLKSIZE To override the values in the data set label of
an old data set; to override the values in the
OPTCD and first SORTIN or SORTINnn file for a new data
BUFOFF set.

To indicate ASCII input and output.

UNIT For an input file that is not cataloged or
passed; for a new data set

SPACE For a new DASD data set.

VOLUME/VOL For an input file that is not cataloged or
passed; for a DASD output data set to be cata-
loged or passed.

LABEL To override (1,SL).

DISP To override (NEW,DELETE).

STEPLIB/JOBLIB DD Statement

If SyncSort has been installed in a private user library or in a test library, a STEPLIB or
JOBLIB DD statement is required. The sample DD statement below instructs the operat-
ing system to look for the sort in a partitioned data set named SYNCTEST.

//STEPLIB DD DSN=SYNCTEST,DISP=SHR

Figure 146. Sample STEPLIB DD Statement

SYSOUT DD Statement

This defines the data set for SyncSort messages.

//SYSOUT DD SYSOUT=A

Figure 147. Sample SYSOUT DD Statement

44 SyncSort for z/OS 1.1 Programmer’s Guide

If the SYSOUT DD statement is omitted, any message routed to it will be diverted to the
console. Omitting the SYSOUT DD statement and setting the MSG=SC PARM (critical
messages to the console, all messages to the printer), for example, will result in all mes-
sages being sent to the console.

SORTIN DD Statement

The SORTIN DD statement defines the data set to be sorted or copied. (The input file for a
merge application is defined by the SORTINnn DD statement.) It is required for all sorts
except those where an E15 exit (COBOL Input Procedure) provides all the input records.

The SORTIN file must have physical sequential or extended sequential organization or be a
member of a partitioned data set or PDSE. It may reside on any device supported by BSAM
or VSAM and if it is a VSAM data set, may be key-sequenced, entry-sequenced or relative
record. SORTIN data sets may also be BatchPipes/z/OS pipes or HF'S data sets. DCB infor-
mation need not be supplied for a disk or standard labeled tape file. Any of the information
accessed from a standard label can be overridden by coding the appropriate DCB parame-
ter in the JCL.

The maximum record lengths supported are 32,760 bytes for fixed-length records and
32,767 bytes for variable-length records.

By default SyncSort does not accept an uninitialized SORTIN data set and will terminate
processing with a WER400A message. An uninitialized data set is one that has been newly
created but never successfully closed. The UNINTDS PARM or installation option can be
used to change SyncSort’s default mode of processing to accept an uninitialized input data
set and process it as an empty file. See “UNINTDS” on page 5.31.

In this example, the data set to be sorted/copied is named SALESIN. It resides on one reel

//SORTIN DD DSN=SALESIN,DISP=(OLD,KEEP),
// UNIT=TAPE, VOL=SER=123456

Figure 148. Sample SORTIN DD Statement

of tape whose volume serial number is 123456. SALESIN is the first data set on that tape
and has a standard label.

To access a SORTIN data set that resides in hiperbatch use the HBSI PARM. For more
information about HBSI see “Chapter 5. PARM Options”.

Concatenating Input Data Sets

The SORTIN file may consist of concatenated data sets, up to the limit supported by the
operating system.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.5

SyncSort must determine one set of DCB characteristics to use for reading all data sets in
the concatenation. The following rules apply to the DCB characteristics:

e When the first data set is fixed-length (RECFM=F, FB, FBS), all subsequent data sets
must be fixed-length and have the same LRECL.

e When the first data set is variable-length (RECFM=V, VB, VS, VBS), all subsequent
data sets must be variable-length.

e For variable-length data sets, the LRECL of the first data set is used except for the
following situations:

e The LRECL of a subsequent data set is used if that LRECL is the largest found and
is available at sort initialization. An LRECL is available at initialization if it is
specified on a SORTIN DD statement or exists in the label of a SORTIN disk data
set.

¢ A record length specified via the L1 value on the RECORD control statement is
used if it is the largest record length found.

¢ For both fixed and variable-length data sets, the BLKSIZE of the first data set is used
unless the BLKSIZE of a subsequent data set is the largest found and is available at

sort initialization. A BLKSIZE is available at initialization if it is specified on a
SORTIN DD statement or exists in the label of a SORTIN disk data set.

The following shows sample JCL for concatenating input data sets:

//SORTIN DD DSN=AUGUST.SALES, DISP= (OLD, KEEP) ,

// UNIT=3390,VOL=SER=DISK1,

// DCB= (LRECL=200, RECFM=VB, BLKSIZE=7404)
// DD DSN=JUNE . SALES, DISP= (OLD, KEEP) ,

// UNIT=TAPE, VOL=SER=123456, LABEL= (2, SL) ,
// DCB= (LRECL=200, RECFM=V, BLKSIZE=8004)
// DD DSN=JULY . SALES, DISP= (OLD, KEEP) ,

// UNIT=TAPE, VOL=SER=654321, LABEL= (1, SL),
// DCB= (LRECL=100, RECFM=VB, BLKSIZE=8004)

Figure 149. Sample Disk and Tape Data Set Concatenation to SORTIN

In the preceding example, one disk and two tape data sets have been concatenated. Any one
of these data sets could be presented first. Position is not dependent upon BLKSIZE or
LRECL. If the LRECL or BLKSIZE cannot be determined at SORT initialization, the first
data set must carry the largest LRECL or BLKSIZE of the concatenation. Typically the
LRECL or BLKSIZE cannot be determined when the input consists of concatenated tape
data sets and the JCL lacks a DCB specification.

4.6 SyncSort for z/OS 1.1 Programmer’s Guide

Sorting Large Input Data Sets

The MAXSORT technique is recommended for sorting very large amounts of data when
disk work space is limited. With this technique, SORTWK requirements are independent of
SORTIN size; thus, regardless of the size of the file, it can be sorted by one sort program
using disk work files. MAXSORT’s breakpoint/restart capability breaks the overlarge sort-
ing application into smaller individual sorts; high priority jobs can execute between these
smaller sorts without forcing any data to be resorted. See “Chapter 9. MAXSORT”.

Reducing Elapsed Time for SORTS with Multi-volume or Concatenated Tape
SORTIN

The PARASORT technique can be used to improve elapsed time performance of sorts that
use multi-volume or concatenated tape SORTIN data sets. See “Chapter 10. PARASORT”
on page 10.1.

SORTINNn or SORTINNn DD Statement

SORTINnn and SORTINn DD statements are used to define the input to a merge
application. (Use the SORTIN DD statement to define the data set to be sorted or copied.)
SORTINnn or SORTINn DD statements are required for all merge applications unless an
E32 exit supplies the input data. SORTINnn and SORTINn data sets may be BatchPipes/z/
OS pipes or HFS data sets.

It is possible to merge up to 100 data sets. Each input data set is specified on a SORTINnn
or SORTINn DD statement. The valid range for n is 0 through 9; for nn, 00 through 99. If
both SORTINx and a SORTINOx are specified, they are treated as duplicates and only the
first definition is processed. Each file must receive a different number. Numbers may be
skipped or used out of order. There are no restrictions as to which input files are to receive
which numbers.

Each input data set must have the same RECFM, and the records in each file must be
ready to be sorted in the desired sequence.

By default, SyncSort does not accept an uninitialized SORTINnn or SORTINn data set and
will terminate processing with a WER400A message. An uninitialized data set is one that
has been newly created, but never successfully closed. The UNINTDS PARM or installation
option can be used to change SyncSort’s default mode of processing to accept an uninitial-
ized input data set and process it as an empty file. See “UNINTDS” on page 5.31.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.7

//SORTIN17 DD DSNAME=BRANCHA.FICA,VOL=SER=131313,
// DISP=0OLD,UNIT=3480

//SORTINO1 DD DSNAME=BRANCHC.FICA,VOL=SER=242424,
// DISP=0LD,UNIT=3390

//SORTIN24 DD DSNAME=BRANCHB.FICA,VOL=SER=121212,
// DISP=OLD,UNIT=3400-3,LABEL=(,NL),
// DCB= (RECFM=FB, LRECL=80, BLKSIZE=400)

Figure 150. Sample SORTINnn DD Statements (Merge)

In this example, the DCB information for the first two of the three files to be merged is sup-
plied by the file labels. In order for the merge to execute, these files must have a RECFM of
F or FB, as indicated by the third file’s RECFM value.

SORTOUT, SORTOFxx, SORTOFx and SORTXSUM DD Statements

4.8

The SORTOUT, SORTOFxx, SORTOFx and SORTXSUM DD statements are used to define
one or more output files. The FNAMES parameter of the OUTFIL control statement may
also specify DD names of output files. All output is directed to SORTOUT unless an inline
E35 exit (COBOL output procedure) assumes the full responsibility for output processing.
Records eliminated by SUM processing will be written to the SORTXSUM DD statement if
the XSUM option was selected on the SUM control statement. These output data sets may
be directed to a BSAM or VSAM supported device, to BatchPipes/z/OS pipes or to HFS data
sets.

//SORTOUT DD DSN=MASTER.OUT, UNIT=SYSDA,

// DISP= (NEW, KEEP) , SPACE= (TRK, 10) ,
// VOL=SER=DSK002

//SORTOF01 DD DSN=REPORT .OUT, UNIT=SYSDA,

// DISP= (NEW, KEEP) , SPACE= (TRK, 10) ,
// VOL=SER=DSK002

Figure 151. Sample SORTOUT/SORTOFxx DD Statements

In the preceding example, the missing DCB parameters except BLKSIZE will default to
those assigned to SORTIN or (for a merge application) to those assigned to the last
SORTINnn in the JCL stream. The DCB BLKSIZE, if missing, will be determined via
system-determined blocksize when it is active or from SORTIN if SORTOUT and SORTIN
LRECLs are the same, otherwise SyncSort will select an appropriate BLKSIZE.

If a sort or a merge has an LRECL specified in the output DD JCL that is found to be
smaller than the internally processed record length (determined from SORTIN, the
LENGTH values of a RECORD statement, or an INREC statement), SyncSort processing

SyncSort for z/OS 1.1 Programmer’s Guide

will be controlled by the SOTRN installation option or its run time override parameter
TRUNC. (SYNCGENR applications are controlled by the SOTRNGN installation option.) If
the parameter setting allows truncation, SyncSort will write the records to the output data
set by truncating the records to the LRECL of that data set. The delivered default allows
truncation. SyncSort will not truncate records after OUTREC processing. If the option dis-
allows truncation, a WER462A error message will be issued.

If an application that is processing fixed-length data has an LRECL specified in the
SORTOUT or SORTXSUM JCL that is found to be longer than the internally processed
record length, SyncSort will normally pad the output records with binary zeros. See the dis-
cussion of the PAD parameter in chapter 5 for additional controls that can be applied to
applications with both a SORTIN and a SORTOUT where the SORTOUT LRECL is longer
than the SORTIN LRECL. This padding will be done for SORTXSUM and for SORTOUT
when OUTFIL is not in use. It will not be done for any OUTFIL files. If the option disallows
padding, a WER462A error message will be issued. The delivered default allows padding.

If RECFM is specified and the report writing features of the OUTFIL control statement are
being used, the RECFM of the output file must include the 'A' subparameter, except when
the REMOVECC parameter is in use.

For a COPY or MERGE, the output file must not be the same as any of the input files.

Secondary Allocation

If the automatic secondary allocation option was enabled at installation time, requesting
secondary allocation on the output DD statements is not required. This feature automati-
cally provides output space for each of the output files.

To place a SORTOUT data set into hiperbatch so that subsequent job steps can access it,
use HBSO. For more information about HBSO see the PARM Option chapter in this man-
ual.

SORTWKxx or SORTWKx DD Statement

For non-MAXSORT applications, up to 255 data sets may be specified for intermediate stor-
age when sorting. (MAXSORT, which is recommended for large sorting applications, is lim-
ited to 32 SORTWK data sets.) Each work file carries a SORTWKxx or SORTWKx name.

x can be any alphanumeric or national ($, #, @) character. Each SORTWKxx or SORTWKx
maust be allocated on a single unit and a single volume.

Disk Sorts may feature any of the following devices: 3350, 3375, 3380, 3390, and 9345.
When device types are mixed, each device is used to full capacity. Note that although
SORTWXK space can be allocated in blocks, tracks, or cylinders, allocating in cylinders will
yield optimal performance. The CONTIG option of the SPACE parameter should be avoided
since it may delay allocation and offers no performance advantage.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.9

The SORTWKxx DD statement in the following example establishes a primary allocation of
20 cylinders of work space.

//SORTWKO02 DD UNIT=3390, SPACE= (CYL, 20)

Figure 152. Sample SORTWKxx DD Statement for Disk Sorts

Secondary Allocation

There is no need to specify RLSE and a secondary allocation value on the SORTWKxx DD
statement at installations that have set these defaults at SyncSort installation time.

Are SORTWKxx DD Statements Necessary?

SORTWKxx DD statements are not used for merge or copy applications. They are not
required for sorts executed using the DYNALLOC option. Provided neither DYNALLOC
nor FIELDS=COPY is in effect, it will be necessary to include SORTWK data sets when-
ever any of these conditions holds:

e INCORE is set to OFF.
e An E14 or E16 is included.
¢ Checkpoint-Restart is specified.

e The criteria for an incore sort are not met. (See the discussion of incore sorts in
“Chapter 13. Performance Considerations”.)

e SUM, OUTREC or OUTFIL is used.

SORTOUT is a VSAM data set.

Note: Sort applications that use SUM, OUTREC, OUTFIL or VSAM SORTOUT and do not
provide JCL SORTWORKSs may have DYNALLOC automatically enabled. This will allow
the completion of a sort that would have terminated for lack of required SORTWORK
space.

Initiating Tape Sort

4.10

Tape Sorts use the following devices for intermediate storage: 2400 and 3400 series tape
units with densities of 800, 1600 and 6250 BPI. Each reel of tape must be full-size (2400
feet long). Tape cartridges devices (3480, 3490, 3490E and 3590) may also be used.

When intermediate storage is on tape, from 3 to 32 data sets may be specified. Tape
SORTWKxx files must begin with SORTWKO01 and be numbered consecutively. When dif-
ferent device types and tape densities are mixed, the lowest density is used to calculate the

SyncSort for z/OS 1.1 Programmer’s Guide

capacity of each SORTWK volume. The MAXSORT technique (supporting only disk
SORTWHXK files) is strongly recommended for large sorts.

The xxxx in the UNIT parameter of the following example represents the installation-spe-
cific name used to define a tape device.

2400
//[SORTWKO01 DD UNIT=+ 3400

XXXX

Figure 153. SORTWKxx DD Statement Format for Tape Sorts

For more information, see “Chapter 12. Tape Sort”.

SYSIN DD Statement

The data set defined by the SYSIN DD statement contains SyncSort control statements.
The SYSIN DD statement is required in order to initiate the sort/merge through job control
language.

//SYSIN DD *

SORT FIELDS=(5,3,CH,A)
OMIT COND=(12,6,PD,EQ,0)
END

/*

Figure 154. Sample SYSIN DD Statement

SORTPARM DD Statement

The data set defined by the §ORTPARM DD statement may contain PARM parameters and
any of the sort control statements.

Parameters and control statements passed via the $ORTPARM DD statement generally
override all others passed, whether the sort/merge is called from a program or initiated
through job control language.

The $ORTPARM DD record format must be F or FB, and the record length must be 80
bytes. Labels are not allowed on $§ORTPARM card images. Leading blanks are not required
on a PARM card image, but at least one leading blank must precede a sort control state-
ment keyword.

The $ORTPARM data sets must be formatted in accordance with the following rules:

Chapter 4. JCL and Sample JCL/Control Statement Streams 411

4.12

e PARM specifications included in the $§ORTPARM data sets must be specified before any
sort control statement specifications.

e PARMS must be specified without the keyword PARM= and without quotation marks.

¢ A comma in columns 2-70 of a PARM card image followed by a blank, or a comma alone
in column 71, may be used to indicate that the next record is part of the current
statement. However, if the PARM specification is present through column 71, a
continuation character must be specified in column 72 to indicate continuation.

e Comments may be included on $ORTPARM card images provided there is a blank
between the last PARM specification and the comment. You may continue a comment
by placing a continuation character in column 72 if there are no additional PARMs. In
this case, the entire next card image will be considered a comment. If additional
PARMs will follow the comment, you may continue that comment by coding an asterisk
(*) in column 1 of the next card image.

Note: Refer to “Chapter 2. SyncSort Control Statements” for additional formatting require-
ments.

The following example of a $§ORTPARM data set illustrates the conventions for defining the
$ORTPARM data set.

//SORTPARM DD *
BMSG, STOPAFT=500,
EQUALS
SORT FIELDS=(1,8,PD,A)

Figure 155. Sample SORTPARM DD Statement

The $ORTPARM data set in the previous example overrides the options set in the associ-
ated invoking program (or job control stream) to sort 500 records from the input file. These
will be the first 500 records that meet whatever criteria have been set by the original appli-
cation (which might include, for example, the INCLUDE/OMIT control statement). BMSG
turns on the WERnnnB message set, so that the processing accorded these 500 records is
fully documented. EQUALS preserves the order of equal-keyed records from input to out-
put.

SyncSort for z/OS 1.1 Programmer’s Guide

//SORTPARM DD *
BMSG, STOPAFT=500,

EQUALS
SUM FIELDS=(12,4,30,8,38,8),
FORMAT=PD

SORT FIELDS=(1,8,PD,A)

Figure 156. Sample SORTPARM DD Statement

The preceding example illustrates how to include control statements more than 80 bytes
long; continuation card images are indicated by a blank field following an operand-comma
combination.

//SYSIN DD *
OUTFIL FILES=(1,2,3),

//SORTPARM DD *
OUTFIL FILES=(3,4,5),

Figure 157. Sample SORTPARM DD Statement

In this example, the OUTFIL control statement in $ORTPARM overrides the OUTFIL con-
trol statement in SYSIN for file 3, and adds OUTFIL specifications for files 4 and 5.

$ORTPARM Processing for Century Window COBOL Applications

The $ORTPARM DD facility is particularly useful for COBOL sorts requiring century win-
dow processing of year data with SyncSort’s year data formats. The year data formats are
not supported by COBOL. Therefore, when a data format specification needs to be changed
for century window processing, it is necessary to override SORT control statements gener-
ated by COBOL. The override can be accomplished with a $§ORTPARM DD statement. The
following example shows a $ORTPARM DD used for this purpose.

//SORTPARM DD *
SORT FIELDS=(10,2,Y2Z,A),CENTWIN=1980

Figure 158. Sample SORTPARM DD Statement for Century Window Processing

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.13

In this example, the 2-digit year field (10,2) will have century window processing applied to
it via the Y2Z year data format and the CENTWIN option.

As described in the previous section, multiple sort invocations by the same COBOL pro-
gram would require multiple $ORTPARM DD statements, each with the FREE=CLOSE
parameter.

S$ORTPARM DD Processing for Multiple Sort Invocations

When SyncSort is to be invoked more than once in the same job step, you may need differ-
ent $ORTPARM DD control data sets for each invocation. For multiple control data sets,
define each one in the JCL stream, in the desired order, as a disk data set (or partitioned
data set member) with the FREE=CLOSE parameter added. FREE=CLOSE will cause the
first sort §ORTPARM data set to be dynamically deallocated by the first sort execution, and
so forth for each sort execution. The following example shows sample JCL with two $ORT-
PARM DD statements:

//SORTPARM DD DSN=SORT.OPTIONS (SORT1) ,DISP=SHR,FREE=CLOSE WILL

// BE USED BY FIRST SORT EXECUTION
//SORTPARM DD DSN=SORT.OPTIONS (SORT2) ,DISP=SHR,FREE=CLOSE WILL
// BE USED BY SECOND SORT EXECUTION

//SORTPARM DD DSN=SORT.OPTIONS (SORTn),DISP=SHR,FREE=CLOSE WILL
// BE USED BY THE nTH SORT EXECUTION

Figure 159. Sample Multiple §ORTPARM DD Statements

Processing will proceed from top to bottom of this SORTPARM data set list. This sequence
must be maintained in the JCL so that the multiple sorts can read the $ORTPARM data
sets in the correct order.

Multiple $ORTPARM datasets are available only in a JES2 environment. JES3 does not
support the specification of multiple DD statements for the same DDNAME.

The $ORTPARM DD statement for Tape Sort may include only one 80-byte record, which in
turn may only feature PARMs. $ORTPARM cannot be used to override Tape Sort control
statements.

SORTCKPT DD Statement

4.14

This DD statement is only used when the CKPT/CHKPT option is set on the SORT/
MERGE control statement, requesting the Checkpoint-Restart feature. Refer to “Chapter
13. Performance Considerations” for an explanation of this feature.

SyncSort for z/OS 1.1 Programmer’s Guide

For Exit Routines that Require Link-editing at Execution Time

The following DD statements are required whenever an exit routine is to be link-edited at
execution time.

SORTMODS DD Statement

The partitioned data set defined must be large enough to contain all the exit routines
entered in SYSIN. For exits not entered in SYSIN, it is necessary to supply DD statements
defining the libraries in which the routines reside.

//SORTMODS DD SPACE= (CYL, (2, ,4)) ,UNIT=SYSDA

Figure 160. Sample SORTMODS DD Statement

SYSLIN DD Statement

The SYSLIN DD statement defines the temporary data set that will contain the linkage
editor control statements created by SyncSort for the exit routine(s).

//SYSLIN DD DSN=&&TEMP, UNIT=SYSSQ, SPACE= (TRK, 1)

Figure 161. Sample SYSLIN DD Statement

SYSLMOD DD Statement

The SYSLMOD DD statement defines the temporary data set that will contain the link-
edited exit module(s).

//SYSLMOD DD DSN=&&TEMP2, UNIT=SYSDA,
// SPACE=(TRK, (10,5,2))

Figure 162. Sample SYSLMOD DD Statement

SYSPRINT DD Statement

The SYSPRINT DD statement defines the message data set for the link-editing of sort
exits.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.15

//SYSPRINT DD SYSOUT=A

Figure 163. Sample SYSPRINT DD Statement

SYSUT1 DD Statement

The SYSUT1 DD statement is used to define the temporary data set used as a work area
when SyncSort link-edits an exit routine.

//SYSUT1 DD DSN=&&TEMP3,UNIT=SYSDA,
// SPACE= (CYL, (5,5))

Figure 164. Sample SYSUT1 DD Statement

DD Statements for MAXSORT, PARASORT, DB2 Query Support, and

Tape Sort

The MAXSORT technique is initiated by means of the MAXSORT PARM, and utilizes addi-
tional MAXSORT DD statements (SORTBKPT, SORTOU00, SORTOUnn) and PARMs.
With MAXSORT, SORTWK files must be allocated to disk devices. This technique is
strongly recommended for very large sorting applications in a limited disk work space envi-
ronment.

The PARASORT technique is initiated by means of the PARASORT PARM and utilizes
additional PARASORT DD statements (SORTPAR1, SORTPAR2, SORTPARS3,
SORTPAR4). PARASORT requires disk SORTWK devices. This technique can improve the
elapsed time of sorting applications that have multi-volume tape SORTIN data sets.

The DB2 Query Support technique is initiated by means of the DB2 Query Support PARM
and utilizes the DB2 Query Support DD statement SORTDBIN. This technique allows DB2
data to be passed directly into a SORT or COPY operation, without the use of setup steps or
the need for user-written E15 exits.

Tape Sort is initiated by assigning tape work devices. The use of Tape Sort constrains the
set of PARMs available to the sort, requires a SORTLIB DD statement, and restricts the
coding of the $ORTPARM and SORTWKxx statements.

For detailed descriptions of these techniques refer to “Chapter 9. MAXSORT”, “Chapter 10.
PARASORT”, and “Chapter 12. Tape Sort”.

4.16 SyncSort for z/OS 1.1 Programmer’s Guide

Sample JCL/Control Statement Streams

The sample JCL/control statement streams in this section illustrate how to specify sort,
merge and copy applications with and without exit routines. An example illustrating multi-
ple output is also included. Refer to “Chapter 3. How to Use SyncSort’s Data Utility Fea-
tures” for comprehensive examples illustrating the data utility and report writing features.
Examples of how to invoke SyncSort from a program, COBOL exit routines, MAXSORTS,
PARASORTS and Tape Sorts are provided in the appropriate chapters.

Sorts without Exit Routines

Example 1

//SORTOMIT JOB 1
//SORT1 EXEC PGM=SYNCSORT, PARM='STOPAFT=1000" 2
//STEPLIB DD DSN=SORT.RESI . DENCE, DISP=SHR 3
//SYSOUT DD SYSOUT=A 4
//SORTIN DD DSN=INPUT, UNIT=3490, 5
// VOL=SER=012345,DISP= (OLD, KEEP) ,
// DCB= (LRECL=100, RECFM=FB,
// BLKSIZE=32700) ,LABEL=(1,SL)
//SORTOUT DD DSN=OUTPUT, VOL=SER=543210, 6
// UNIT=3490,DISP= (NEW, KEEP) ,
// DCB= (LRECL=100, RECFM=FB,
// BLKSIZE=0) ,LABEL= (1, SL)
//SORTWKO1 DD SPACE= (CYL, (20)) ,UNIT=SYSDA 7
//SORTWKO2 DD SPACE= (CYL, (20)) , UNIT=SYSDA
//SORTWKO3 DD SPACE= (CYL, (20)) , UNIT=SYSDA
//SORTWK04 DD SPACE= (CYL, (20)), UNIT=SYSDA
//SORTWKO5 DD SPACE= (CYL, (20)) , UNIT=SYSDA
//SYSIN DD * 8

SORT FIELDS=(1,8,CH,A)

OMIT COND= (1,8, CH,EQ,C'JOHN DOE') 10

END 11

/* 12

Figure 165. Sample JCL/Control Stream (1)

1. The JOB statement gives SORTOMIT as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed. The
STOPAFT PARM instructs SyncSort to terminate after sorting 1,000 records.

3. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP indicates that this library may be shared.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.17

4.18

10.

11.

12.

The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

The SORTIN DD statement gives INPUT as the input data set name, specifies a 3490
tape unit with the volume serial number 012345. The data set is already in existence.

The DCB parameter shows an LRECL of 100 bytes, a fixed blocked RECFM, and a
32700-byte BLKSIZE. The LABEL parameter shows that INPUT is the first data set on
the tape, and that it has a standard label.

The SORTOUT DD statement gives OUTPUT as the output data set name, and
specifies a 3490 tape unit with the volume serial number 543210. The data set is not in
existence yet.

The DCB parameter for SORTOUT specifies the same LRECL and RECFM as
SORTIN. The BLKSIZE will be selected by System Determined BLKSIZE (SDB) if
active or by SyncSort if SDB is not active.

The five SORTWKxx DD statements reserve space on direct access devices for
intermediate storage. Twenty cylinders are allocated for each of the five SORTWKxx
data sets.

The SYSIN DD * statement marks the beginning of the system input stream that
includes the sort control statements.

The SORT control statement specifies that one control field will be sorted on. It begins
on byte 1 of the record, is 8 bytes long, contains character data, and is to be sorted in
ascending order.

The OMIT control statement eliminates any record with JOHN DOE in its first eight
bytes (i.e., in the sort control key). JOHN DOE records are not sorted and are not
included in the STOPAFT figure. The EXEC statement’s STOPAFT PARM terminates
the sort after 1,000 (non-JOHN DOE) records have been put into the proper sequence.

The END control statement marks the end of the control statements.

The delimiter statement marks the end of the SYSIN input stream.

SyncSort for z/OS 1.1 Programmer’s Guide

Example 2

//SUMSORT JOB 1
// EXEC PGM=SYNCSORT, PARM="'EQUALS' 2
//STEPLIB DD DSN=SORT.REST.DENCE, DISP=SHR 3
//SYSOUT DD SYSOUT=A 4
//SORTIN DD DSN=FEB92, EMPLOYEE .MASTER, 5
// UNIT=3490,VOL=SER=135790,
// DISP= (OLD, KEEP)
// DD DSN=FEB92 .EMPLOYEE . UPDATE,
// UNIT=3490,VOL=SER=999999,
// DISP= (OLD, KEEP)
//SORTOUT DD DSN=MARS2 .EMPLOYEE .MASTER, 6
// UNIT=3490,VOL=SER=246809,
// DISP= (NEW, KEEP)
//SORTWKO1 DD UNIT=SYSDA, SPACE= (CYL,20)
//SYSIN DD * 8
SORT FIELDS=(1,9,2zD,A,10,2,BI,Rn)
SUM FIELDS=(12,4,PD) 10
/% 11
Figure 166. Sample JCL/Control Stream (2)

1. The JOB statement gives SUMSORT as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed. The
EQUALS PARM interacts with the SUM control statement to preserve the first of a
series of equal-keyed records.

3. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP shows the library may be shared.

4. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with class A.

5. The SORTIN DD statements define two concatenated data sets:
FEB92. EMPLOYEE.MASTER and FEB92. EMPLOYEE.UPDATE. They are found on
standard labeled 3490 tape units (volume serial numbers 135790 and 999999,
respectively). These data sets are already in existence.

6. The SORTOUT DD statement gives MAR92.EMPLOYEE.MASTER as the output data

set name and specifies a 3490 tape unit with the volume serial number 246809. The
data set is not in existence yet.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.19

4.20

10.

11.

The DCB RECFM and LRECL parameters for SORTOUT default to that of the first
SORTIN file. The BLKSIZE will be selected by System Determined BLKSIZE (SDB) if
active or by SyncSort if SDB is not active.

The SORTWKO01 DD statement reserves space on a direct access device for
intermediate storage. Twenty cylinders are allocated. Intermediate storage must be
provided whenever the SUM control statement is used with a sort.

The SYSIN DD statement marks the beginning of the system input stream that
includes the sort control statements.

The SORT control statement specifies that two control fields will be sorted on. The
major control field begins on byte 1 of the record, is 9 bytes long, contains zoned decimal
data, and is to be sorted in ascending numerical order. The second, less significant,
control field is found in the next two bytes of the record (bytes 10 and 11), is in
(unsigned) binary format, and is to be sorted in ascending order.

Whenever two records have equal control fields, the sort will attempt to summarize
them. If the result of summing the packed decimal data found in the 4-byte field
beginning at byte 12 can be contained in four bytes, one of the two records will be
retained, the sum stored in bytes 12-15, and the other record will be deleted. The
EQUALS PARM guarantees that the first of the two records will be preserved; thus, if a
record from the FEB92. EMPLOYEE.MASTER file has the same key as one from the
FEB92 EMPLOYEE.UPDATE file, it is the master record which is retained in the
output file, containing their sum.

The delimiter statement marks the end of the SYSIN input stream.

SyncSort for z/OS 1.1 Programmer’s Guide

Example 3

//SORTSKIP JOB 1
// EXEC PGM=SYNCSORT
//SORTPARM DD * 3
STOPAFT=100
//STEPLIB DD DSN=SORT.RESI.DENCE, DISP=SHR 4
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=EXPORT.SHIPPING.VOL6, 6
// UNIT=TAPE,VOL=SER=112233,
// DISP= (OLD, KEEP)
//SORTOUT DD DSN=RECENT .MAJOR . EXPORTS, 7
// UNIT=TAPE, VOL=SER=332211,
// DISP= (NEW, KEEP)
//SORTWKO1l DD SPACE= (CYL,20) ,UNIT=SYSDA 8
//SORTWKO2 DD SPACE= (CYL, 20) ,UNIT=SYSDA
//SORTWKO3 DD SPACE= (CYL, 20) ,UNIT=SYSDA
//SYSIN DD * 9
SORT FIELDS=(19,5,CH,A), 10
EQUALS, SKIPREC=1000
INCLUDE COND=(37,4,BI,GE,X'50") 11
/* 12

Figure 167. Sample JCL/Control Stream (3)

1. The JOB statement gives SORTSKIP as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed.

w

The $ORTPARM DD statement is used here to initiate a test run of the SORTSKIP job
by supplying the STOPAFT PARM to SyncSort. It instructs SyncSort to terminate after
sorting the first 100 of the records INCLUDE selects from the SKIPREC-edited input
file.

4. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP indicates that this library may be shared.

5. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

6. The SORTIN DD statement gives EXPORT.SHIPPING.VOL6 as the input data set
name. It is found on a standard labeled tape having the volume serial number 112233.
This data set is already in existence.

7. The SORTOUT DD statement assigns the RECENT.MAJOR.EXPORTS data set name
to the output file, and specifies a tape unit with the volume serial number 332211. This

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.21

4.22

10.

11.

12.

data set is not yet in existence. The DCB RECFM and LRECL parameters for
SORTOUT default to those of the first SORTIN file. The BLKSIZE will be selected by
System Determined BLKSIZE (SDB) if active or by SyncSort if SDB is not active.

The three SORTWKxx DD statements reserve space on direct access devices for
intermediate storage. Twenty cylinders are allocated for each SORTWK data set.

The SYSIN DD statement marks the beginning of the system input stream that
includes the sort control statements.

The SORT control statement specifies that one control field will be sorted on. It begins
on byte 19 of the record, is 5 bytes long, contains character data, and is to be sorted
according to ascending order. The EQUALS parameter preserves the SORTIN order of
records with identical data in these five bytes. The SKIPREC parameter eliminates the
first 1,000 records of the SORTIN file from consideration; these records are eliminated
before the INCLUDE statement takes effect.

The INCLUDE statement compares the 4 bytes beginning with byte 37 of the record to
the hexadecimal literal, which will be padded on the right with binary zeros to the
indicated (4 byte) length. The record is eliminated from the sort unless the binary data
in that field is at least as great as the padded constant. The INCLUDE/OMIT
statement takes effect after SKIPREC but before STOPAF'T.

The delimiter statement marks the end of the SYSIN input stream.

SyncSort for z/OS 1.1 Programmer’s Guide

A Merge without Exit Routines

Example 4

//EDITMERG JOB

//MERGE1 EXEC PGM=SYNCSORT

//STEPLIB DD DSN=SORT.RESTI.DENCE, DISP=SHR
//SYSOUT DD SYSOUT=A

//SORTINOS8 DD DSN=SALES91,UNIT=TAPE,

//

//SORTIN12 DD DSN=SALES92,UNIT=TAPE,

//

//SORTINO3 DD DSN=SALES93,UNIT=3390,

//

//SORTOUT DD DSN=SALES.PATTERN,UNIT=3390, 6

//
//
//
//

//SYSIN DD *

/*

(S20 VI O

VOL=SER=123456,DISP=(OLD, KEEP)

VOL=SER=654321,DISP=(OLD, KEEP)

VOL=SER=DISK11l,DISP=SHR

VOL=SER=DISK08,DISP=(NEW, KEEP) ,
SPACE=(CYL, 5),

DCB= (LRECL=20, RECFM=VB,
BLKSIZE=27980)

MERGE FIELDS=(5,4,ZD,A)

RECORD TYPE=V,LENGTH=(100,,20)

INREC FIELDS=(1,8,29,6,12,6) 10
11

Figure 168. Sample JCL/Control Stream (4)

The JOB statement gives EDITMERG as the jobname.
The EXEC statement identifies SYNCSORT as the program to be executed.

The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP shows the library may be shared.

The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

Three data sets are to be merged: SALES91, SALES92 and SALES93. SALES91 and
SALES92 are found on standard labeled tapes with the volume serial numbers 123456
and 654321, respectively. The DD statement for SALES93 specifies a 3390 disk device
with the volume serial number DISK11. These three data sets are already in existence,
and the disk data set SALES93 may be shared. They are assigned distinct SORTINnn
numbers, as required.

The SORTOUT DD statement assigns the name SALES.PATTERN to the output data
set and specifies a 3390 disk device with the volume serial number DISKO08. Five

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.23

4.24

10.

11.

cylinders of primary space have been allocated on this volume. The data set does not
yet exist. DCB parameters are provided, preventing them from defaulting to those of
the SORTINOS file.

The SYSIN DD statement marks the beginning of the system input stream that
includes the sort control statements.

The MERGE control statement specifies one control field. It begins on byte 5 (the first
data byte of the record since TYPE=V is specified on the RECORD statement) and is 4
bytes long. This field contains zoned decimal data and is to be merged in ascending
order.

The RECORD statement indicates that variable-length records are being merged and
indicates the record length at various processing stages. The maximum input record
length is specified as 100 bytes. Since there is no E15, the post-E15 length value is not
coded and so defaults to this figure. The INREC statement reduces this maximum
record length to just 20 bytes.

According to the RECORD control statement, the input record may be 100 bytes long.
The INREC statement reduces each record to the 20 bytes crucial to this application:
the 4-byte RDW and 4-byte merge control field (i.e., the first 8 bytes of the record), the
6-byte field beginning at byte 29 (the 25th data byte) and the 6-byte field beginning at
byte 12 (the 8th data byte). As required, the RDW remains in the first four bytes. The
records to be merged are no more than 20 bytes long and contain three fields following
the RDW.

The delimiter statement marks the end of the SYSIN input stream.

SyncSort for z/OS 1.1 Programmer’s Guide

A Copy without Exit Routines

Example 5

//COPYNYC JOB 1
//COPY1 EXEC PGM=SYNCSORT 2
//STEPLIB DD DSN=SORT.REST.DENCE,DISP=SHR 3
//SYSOUT DD SYSOUT=A 4
//SORTIN DD DSN=USA.OUTLETS, UNIT=TAPE, 5
// VOL=SER=149200,DISP= (OLD, KEEP)
//SORTOUT DD DSN=NYC.OUTLETS,UNIT=3390, 6
// VOL=SER=DISK08, SPACE=(CYL,5),
// DISP= (NEW, KEEP)
//SYSIN DD *
SORT FIELDS=COPY 8
INCLUDE COND=(56,3,CH,EQ,C'NYC'")
/* 10
Figure 169. Sample JCL/Control Stream (5)

1. The JOB statement gives COPYNYC as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed.

3. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP shows the library may be shared.

4. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

5. The SORTIN DD statement indicates the file to be copied. The data set name is
USA.OUTLETS, and it is found on the standard labeled tape with the volume serial
number 149200. The data set is already in existence.

6. The SORTOUT DD statement names the copied file NYC.OUTLETS, and specifies a
3390 disk device with the volume serial number of DISKO08. Five cylinders of primary
space have been allocated on this volume. The data set does not yet exist, but is to be
kept whether or not the job terminates normally. The DCB RECFM and LRECL
parameters for SORTOUT default to that of the first SORTIN file. The BLKSIZE will
be selected by System Determined BLKSIZE (SDB) if active or by SyncSort if SDB is
not active.

7. The SYSIN DD statement marks the beginning of the system input stream that

includes the sort control statements.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.25

8. The FIELDS parameter specifies a copy application. This could have been coded as
MERGE FIELDS=COPY without affecting program execution.

9. The INCLUDE control statement edits the USA.OUTLETS input file, eliminating all
records which do not have the character string NYC in bytes 56-58. Only 'NYC' records
will be copied.

10. The delimiter statement marks the end of the SYSIN input stream.

4.26 SyncSort for z/OS 1.1 Programmer’s Guide

A Sort with an Exit Routine Already Link-edited

Example 6

//ONE#EXIT
//STEP1
//STEPLIB
//SYSOUT
//MODLIB
//SORTIN
//
//SORTOUT
//

//
//SORTWKO1
//SORTWKO2
//SORTWKO3
//SORTWKO04
//SYSIN
SORT

RECORD
MODS
END

/*

JOB

EXEC PGM=SYNCSORT, PARM='MSG=SC'

DD DSN=SORT.RESTI.DENCE, DISP=SHR

DD SYSOUT=A

DD DSN=EXIT.E1l5,DISP=SHR

DD DSN=INPUT, UNIT=3390,
VOL=SER=ABCDEF,DISP=(SHR)

DD DSN=OUTPUT, UNIT=3390,
VOL=SER=GHIJKL, SPACE= (CYL, 10)
DISP= (NEW, KEEP, DELETE)

DD UNIT=SYSDA, SPACE= (CYL,20)

DD UNIT=SYSDA, SPACE= (CYL, 20)

DD UNIT=SYSDA, SPACE= (CYL, 15)

DD UNIT=SYSDA, SPACE= (CYL, 15)

DD *

FIELDS=(10,25,CH,A,40,10,Z2D,D),

FILSZ=9000
TYPE=V, LENGTH= (1024, ,,44,192)
E15=(E15,600,MODLIB, N)

o Ul o W N

11
12
13
14

Figure 170. Sample JCL/Control Stream (6)

1. The JOB statement gives ONE#EXIT as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed. The MSG
PARM option requests that all messages be routed to the SYSOUT DD statement but

only critical messages be routed to the console.

3. The STEPLIB DD statement instructs the system to look for SyncSort in the library

named SORT.RESI.DENCE. The DISP shows the library may be shared.

4. The SYSOUT DD statement assigns the SyncSort messages to the output device

associated with SYSOUT class A.

5. The MODLIB DD statement defines the library in which the exit routine resides;
MODLIB is referenced in the MODS control statement. The data set name of the

library is EXIT.E15, and the DISP shows that the library may be shared.

Chapter 4. JCL and Sample JCL/Control Statement Streams

4.28

10.

11.

12.

13.

14.

The SORTIN DD statement gives INPUT as the input data set name and specifies a
3390 disk with the volume serial number ABCDEF. The DISP parameter indicates that
the data set is already in existence and may be shared.

The SORTOUT DD statement gives OUTPUT as the output data set name and
specifies a 3390 disk with the volume serial number GHIJKL. Ten cylinders of primary
space have been allocated on this volume. The DISP parameter shows that this data set
is not yet in existence.

The four SORTWK statements reserve space on four temporary data sets for
intermediate storage. Twenty cylinders are to be reserved on the first two data sets,
fifteen on the second two data sets.

The SYSIN DD statement marks the beginning of the input stream that includes the
sort control statements.

The SORT control statement specifies two sort control fields. The first begins on byte 10
(data byte 6) of the record, is 25 bytes long, contains character data, and is to be sorted
in ascending order. The second control field begins on byte 40 (data byte 36) of the
record, is 10 bytes long, has zoned decimal data, and is to be sorted in descending order.
FILSZ instructs SyncSort to terminate abnormally unless the post-E15 file contains
exactly 9,000 records.

The RECORD control statement shows that variable-length records are being sorted.
The first LENGTH value reports that the maximum length of records in the SORTIN
data set is 1024 bytes. The comma coded for the second LENGTH value shows that this
maximum length is not altered by the exit routine. The comma coded for the third
LENGTH value shows that this maximum length is not affected by an E35 or the
INREC/OUTREC statements. The fourth LENGTH value shows that the smallest
record in the input data set is 44 bytes long. The fifth LENGTH value shows that the
record length that occurs most frequently in SORTIN is 192 bytes. (This value will be
used to determine segment size.)

The MODS control statement states that the exit-type is E15. The name of the actual
exit routine included at this exit is also E15. The routine requires 600 bytes of memory
and resides in a library defined on the MODLIB DD statement. Finally, the N indicates
that link-editing of the routine has already been performed.

The END control statement marks the end of the control statements.

The delimiter statement marks the end of the SYSIN input stream.

SyncSort for z/OS 1.1 Programmer’s Guide

A Sort with an Exit Routine to be Link-edited

Example 7

//LINKEXIT
//STEP
//SYSOUT
//SORTIN
//
//
//
//
//SORTOUT
//
//
// SORTMODS
//MODLIB
//SYSLMOD
//
//SYSLIN
//
//SYSPRINT
//SYSUT1
//SYSIN
SORT

RECORD
MODS

SUM
END

JOB

EXEC PGM=SYNCSORT

DD SYSOUT=A

DD DSN=IN.FILE.JANUARY,

UNIT=TAPE, VOL=SER=135790,

DISP=OLD,DELETE) ,

DCB= (LRECL=200, RECFM=FB,

BLKSIZE=4000) ,LABEL= (2, SL)
DD DSN=OUT.FILE.FEBRUARY,

UNIT=TAPE, VOL=SER=097863,

DISP= (NEW, KEEP) ,LABEL= (1, SL)

DD DSN=A.PART.DATA.SET, DISP=0LD

DD DSN=EXIT.NO.ONE, DISP=SHR

DD DSN=&&LINK, UNIT=SYSDA,
SPACE= (CYL, (1,1,1))

DD DSN=&&TEMP, UNIT=SYSSQ,
SPACE= (TRK, 1)

DD SYSOUT=A

DD UNIT=SYSDA, SPACE= (CYL, (1,1))

DD *

FIELDS=(20,30,CH,A),

DYNALLOC= (SYSDA, 6)
TYPE=F, LENGTH=200
E15=(EXIT1,600,MODLIB,N),
E35=(EXIT2,500,SYSIN)
FIELDS=(1,10,ZD) TOTAL BALANCE
ACCOUNTS FOR JANUARY BEGIN FEBRUARY

Object deck EXIT2 for E35 exit routine

B W N R

10
11
12
13

14
15

16
17

18

19

Figure 171. Sample JCL/Control Stream (7)

1. The JOB statement gives LINKEXIT as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed.

Chapter 4. JCL and Sample JCL/Control Statement Streams

4.29

4.30

10.

11.

The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

The SORTIN DD statement gives IN.FILE.JANUARY as the input data set name, and
specifies a tape unit with the volume serial number 135790. The DISP parameter
shows that the data set is already in existence.

The DCB parameter shows an LRECL of 200 bytes, a fixed blocked RECFM, and a
4000-byte BLKSIZE. The LABEL parameter shows that IN.FILE.JANUARY is the sec-
ond data set on the tape, and that it has a standard label.

The SORTOUT DD statement gives OUT.FILE.FEBRUARY as the output data set
name, and specifies a tape unit with the volume serial number 097863. The DISP
parameter shows that the data set is not in existence yet.

The DCB RECFM and LRECL parameters for SORTOUT default to that of the first
SORTIN file. The BLKSIZE will be selected by System Determined BLKSIZE (SDB) if
active or by SyncSort if SDB is not active. The LABEL parameter shows that
OUT.FILE.FEBRUARY is to be the first data set on the tape, and will have a standard
label.

The SORTMODS DD statement defines the partitioned data set that will contain the
exit routine object module that has not been link-edited and is being included in the
SYSIN data stream. The DISP shows the data set may not be shared.

The MODLIB DD statement defines the partitioned data set in which the already link-
edited exit routine resides. (Note MODLIB is referenced on the MODS control
statement.) The data set name of the exit library is EXITNO.ONE. The DISP shows
the data set may be shared.

The SYSLMOD DD statement defines a temporary data set called &&LINK that will
contain the exit routine after it has been link-edited. A direct access device will be used
with 1 cylinder reserved for primary space allocation, 1 cylinder for secondary space
allocation, and 1 directory block.

The SYSLIN DD statement defines the temporary data set that will contain the linkage
editor control statements that SyncSort will use when link-editing the exit. The name
of this data set is &&TEMP. It is to be on any sequential-access device with 1 track
reserved if the data set is allocated to disk.

The SYSPRINT DD statement defines the data set on which the linkage editor will
write its messages. Whatever device is assigned to SYSOUT=A will be used.

The SYSUT1 DD statement defines the temporary data set that will be used as a work
area by the linkage editor. It is to be on a direct access device with 1 cylinder of primary
space allocated, and 1 cylinder of secondary space allocated.

SyncSort for z/OS 1.1 Programmer’s Guide

12.

13.

14.

15.

16.

17.

18.

19.

The SYSIN DD statement marks the beginning of the input stream that includes the
sort control statements and also the object deck of the exit routine to be link-edited.

The SORT control statement shows that one control field will be sorted on. It begins on
byte 20 of the record, is 30 bytes long, contains character data, and is to be sorted
according to ascending order.

The DYNALLOC parameter specifies that 6 direct access areas are to be reserved for
sortwork data sets.

The RECORD control statement shows that fixed-length records are being sorted. The
LENGTH parameter gives 200 bytes as the length of the records at input time, and, by
not specifying values for 1, and 15, implicitly states that the length of these records will
not be changed during the sort.

The MODS control statement shows that the first exit-type is E15. The name of the
routine for this exit is EXIT1. It will take 600 bytes in main storage, resides in a library
defined on the MODLIB DD statement, and has already been link-edited.

The second exit-type is E35. The name of the routine for the exit is EXIT2, and it will
take 500 bytes in main storage. The object deck for the routine is to be included in the
SYSIN portion of the job stream, and, because of the absence of a letter in the last sub-
parameter position for this group, the sort assumes that the routine requires link-edit-
ing and will be link-edited together with any other routines for this phase.

The SUM control statement’s FIELDS parameter identifies one summary field. It
begins on byte 1 of the record, is 10 bytes long, and has zoned decimal data. The rest of
the statement is a comment.

The END control statement marks the end of the control statements and also contains
a comment.

The EXIT2 object deck to be link-edited is included after the END statement in the
SYSIN stream.

The delimiter statement marks the end of the SYSIN input stream for the sort.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.31

Multiple Output Files

Example 8

/ /MULTOUT JOB 1

// EXEC PGM=SYNCSORT 2

//STEPLIB DD DSN=SORT.REST.DENCE,DISP=SHR 3

//SYSOUT DD SYSOUT=A 4

//SORTIN DD DSN=SALES.RECORDS, 5

// VOL=SER=DISK1,DISP=SHR

//SORTOUT DD DSN=SORTED.SALES.RECORDS, 6

// UNIT=TAPE, VOL=SER=112233,

// DISP= (NEW, KEEP)

//SORTOFDS DD DSN=DOMESTIC.SALES.RECORDS, 7

// VOL=SER=DISKS,DISP= (NEW, KEEP) ,

// SPACE= (CYL,40) ,UNIT=SYSDA

//SORTWKO1 DD SPACE= (CYL,20) ,UNIT=SYSDA 8

//SORTWKO2 DD SPACE= (CYL,20) ,UNIT=SYSDA

//SORTWKO03 DD SPACE= (CYL,20) ,UNIT=SYSDA

//SYSIN DD * 9
SORT FIELDS=(10,12,BI,A) 10
OUTFIL FILES=0UT, INCLUDE=ALL 11
OUTFIL FILES=DS,OMIT=(62,3,CH,NE,C'USA") 12

/* 13

Figure 172. Sample JCL/Control Stream (8)

1. The JOB statement gives MULTOUT as the jobname.

2. The EXEC statement identifies SYNCSORT as the program to be executed.

3. The STEPLIB DD statement instructs the system to look for SyncSort in the library
named SORT.RESI.DENCE. The DISP parameter shows that the library may be
shared.

4. The SYSOUT DD statement assigns the SyncSort messages to the output device
associated with SYSOUT class A.

5. The SORTIN DD statement gives SALES.RECORDS as the input data set name, and
specifies a disk with the volume serial DISK1. The DISP parameter indicates that the
data set is already in existence and may be shared.

6. The SORTOUT DD statement names one of the output sorted files
SORTED.SALES.RECORDS, and specifies a tape device with volume serial number
112233 for storage. The DISP parameter indicates that the data set does not yet exist,
but it is to be kept whether or not the job terminates normally.

4.32 SyncSort for z/OS 1.1 Programmer’s Guide

10.

11.

12.

13.

The SORTOFDS DD statement names a second sorted output file
DOMESTIC.SALES.RECORDS, and specifies a disk device with volume serial number
DISKS for storage. Forty cylinders of space have been allocated on this volume. The
DISP parameter indicates that the data set does not yet exist, but is to be kept whether
or not the job terminates normally.

The three SORTWK DD statements reserve space on direct access devices for
intermediate storage. Twenty cylinders are allocated for each of the three SORTWK
data sets.

The SYSIN DD statement marks the beginning of the input stream that includes the
sort control statements.

The SORT control statement specifies that one control field will be sorted on. It begins
on byte 10 of the record, is 12 bytes long, contains unsigned binary (BI) data and is to
be sorted according to ascending order.

The first OUTFIL control statement is associated with the SORTOUT DD statement.
The INCLUDE parameter specifies that all input records are to be included in this
output file.

The second OUTFIL control statement is associated with the SORTOFDS DD
statement. The OMIT parameter specifies that records which do not contain "USA" in
bytes 62, 63 and 64 are not to be included in this file.

The delimiter statement marks the end of the SYSIN input stream.

Chapter 4. JCL and Sample JCL/Control Statement Streams 4.33

4.34 SyncSort for z/OS 1.1 Programmer’s Guide

Chapter 5. PARM Options

PARM options can be specified to provide processing information and to override installa-
tion defaults for JCL-initiated and program-invoked applications.

For a JCL-initiated application, specify the PARM option(s) on the EXEC statement as fol-
lows:

PARM='option,..."

Figure 173. PARM Parameter Format

For a program-invoked application, specify the PARM option(s) in a $ORTPARM DD data
set. Omit the keyword PARM= and the single quotes. PARM options for a JCL-initiated
application can also be specified in a $ORTPARM data set.

Additional MAXSORT PARMs

The MAXSORT feature, designed for large sorting applications, is initiated by the
MAXSORT PARM. The following additional PARMs can be specified for a MAXSORT
application: BKPTDSN, DYNATAPE, MAXWKSP, MINWKSP, NODYNATAPE, RESTART,
SORTSIZE, SORTTIME and TAPENAME. These PARMs are described in “Chapter 9.
MAXSORT”.

Chapter 5. PARM Options 5.1

PARASORT PARM

The PARASORT feature, designed to reduce elapsed time for multi-volume and/or concate-
nated tape SORTIN sort applications, is initiated by the PARASORT PARM. For additional
information on PARASORT, see “Chapter 10. PARASORT”.

DB2 Query Support PARM

DB2 Query Support, which allows DB2 data to be passed directly into a SORT or COPY
operation without the use of setup steps or the need for user-written E15 exits, is initiated
by the DB2 Query Support PARM. For additional information, see “Chapter 11. SyncSort
DB2 Query Support” .

Additional Tape Sort PARMs

The following additional PARMSs can be specified for a Tape Sort: OSCL, BALN and POLY.
The CRCX and PEER PARMs are accepted but ignored. These PARMs are described in
“Chapter 12. Tape Sort”.

Precedence Rules

There are three ways in which options can be specified, though not all options can be speci-
fied in all three ways:

¢ As an installation specification

¢ As a PARM specification

e As a SORT/MERGE control statement specification.

Note that there are six options that can be specified as a PARM option or a SORT/MERGE
option. They are: CENTWIN, DYNALLOC, EQUALS/NOEQUALS, FILSZ, SKIPREC and
STOPAFT.

When an option is specified in more than one way, the following precedence rules apply:

e A SORT/MERGE or PARM specification overrides an installation specification.

e A PARM specification overrides a SORT/MERGE specification except for EQUALS/
NOEQUALS.

PARM Option Summary Chart

The chart on the following pages lists the PARM options. Underscored PARM options are
delivered defaults which may have been altered at installation time.

5.2 SyncSort for z/OS 1.1 Programmer’s Guide

PARM Option Name

Disk Sort, MAXSORT,
and PARASORT

Available with Tape Sort?

BALANCE

Balances importance of CPU
time, elapsed time, and I/O
activity for best overall sort
performance. See CPU, ELAP,
and IO. Note that these options
and BALANCE are all
mutually exclusive.

BMSG

Produces WERnnB messages.

CENTWIN=0/s /f

Generates a sliding (s) or fixed
() 100-year window that
determines the century to
which 2-digit year data
belongs. Ensures that such
data is processed correctly as a
4-digit year by SORT/MERGE
and INCLUDE OMIT. Also
enables OUTREC processing to
output a 4-digit year (yyyy)
from 2-digit year input (yy).

CMP= CPD/CLC

CMP=CPD improves
performance.

No. CMP=CLC (no data validation) is
the standard.

COBEXIT= COB1 /COB2

Specifies whether COBOL
exits use OS/VS COBOL
libraries or VS COBOL II or
COBOL/370 libraries.

No.

COMMAREA/
NOCOMMAREA

Provides a communication area
between exit programs.

No

CORE/SIZE=n

Changes the amount of
memory in which sort/merge
can run.

Yes.

CPU

Minimizes CPU time at
expense of other performance
measures. See BALANCE,
ELAP, and IO. Note that these
options and CPU are all
mutually exclusive.

DEBUG

Provides a SyncSort SNAP
dump in the event of a critical
error.

DIAG

Provides diagnostic informa-
tion for certain error
conditions.

Plus additional diagnostic trace.

Chapter 5. PARM Options

PARM Option Name

Disk Sort, MAXSORT,
and PARASORT

Available with Tape Sort?

DYNALLOC

Requests the dynamic
allocation of work data sets.

E15/E35=COB

Indicates a COBOL exit.

ELAP

Minimizes elapsed time at
expense of other performance
measures. See BALANCE,
CPU, and IO. Note that these
options and ELAP are all
mutually exclusive.

EQUALS/ NOEQUALS

EQUALS acts to preserve the
order of equal-keyed records. It
is not available with
PARASORT.

Yes.

EXTCOUNT

Enables special processing for

applications with record counts
that exceed SyncSort’s default

internal limit.

FILSZ=n/En

Indicates the (actual or
estimated) number of records
after input processing (E14,
E15, INCLUDE/OMIT,
SKIPREC, STOPAFT, and
Phase 1 SUM). FILSZ=n
causes sort termination if n is
incorrect.

FILSZ=En only. Does not take input
processing (E14, E15) into account.

FLAG

FLAG and MSG control the
routing of output messages.

HBSI

Enables hiperbatch processing
for SORTIN data set.

HBSO

Places SORTOUT data set into
hiperbatch.

INCOR/INCORE= ON /OFF

ON permits incore and
turnaround sorts.

No. INCORE=OFTF is the standard.

I0

Minimizes 10 activity at
expense of other performance
measures. See BALANCE,
CPU, and ELAP. Note that
these options and IO are all
mutually exclusive.

No.

IOERR=ABE/ NOIOERR

Indicates how to handle I/O
errors: user abend 999 plus
dump or SyncSort error
message only.

No. I/O errors generate user abend 999
plus dump.

5.4 SyncSort for z/OS 1.1 Programmer’s Guide

Disk Sort, MAXSORT,

PARM Option Name Available with Tape Sort?

and PARASORT

L6=n,L7=n Passes HISTOGRM data to No.
optimize variable-length record
sorts.

LIST /NOLIST LIST causes header line and Accepted but not processed. NOLIST is
control statements to be the standard for invoked sorts, LIST for
printed. JCL sorts.

LOCALE=NONE /CURRENT [Controls collating based on No.

/name cultural environment.

MSG MSG and FLAG control the Yes.
routing of messages.

MSGDD Changes the DD name of the Yes.

message data set.

NULLOUT= RC0 /RC4 /RC16 | Specifies the action to be taken | No.
when SORTOUT contains no
records.

OVFLO= RC0 /RC4 /RC16 Specifies the action to be taken | No.
if a summary field overflows or
underflows during SUM

processing.
PAD= RC0 /RC4 /RC16 Specifies the action to be taken | No.
if the non-OUTFIL SORTOUT
LRECL is larger than the
SORTIN/SORTINnn LRECL.
PRINT121 Changes the DCB of the No. The standard is: DCB=
message data set. (LRECL=120,BLKSIZE=120,
RECFM=U).
RC16=ABE/NORC16 RC16=ABE changes return No. User abend 16 is the standard.
code 16 to user abend 16.
RELEASE= ON /OFF Overrides the RLSE operand | No.
in the SPACE parameter of the
SORTWK DD statement(s).
RESERVE=n/nK Specifies the amount of No.

memory reserved for the user
below the 16-megabyte line.

RESERVEX=n/nK Specifies the amount of No.
memory reserved for the user
above the 16-megabyte line.

RESET/ NORESET Affects VSAM SORTOUT only. | No. (Tape Sort does not accept VSAM
output.)
RLSOUT/ NORLSOUT Determines whether excess No. Excess SORTOUT space is not
space is released. released.

Chapter 5. PARM Options 5.5

PARM Option Name

Disk Sort, MAXSORT,
and PARASORT

Available with Tape Sort?

SDB= ON/ OFF/ YES/ NO/
DISKONLY/ TAPEONLY/
LARGE/ SMALL/ INPUT/
LARGEONLY/ INPUTONLY

Specifies whether
system-determined blocksize
should be used to select an
optimum blocksize for data
sets when none is provided.

SECOND= ON /OFF

Determines whether secondary
sort work space is
automatically provided.

No. Secondary sort work space is not
automatically provided.

SKIPREC=n

Indicates that n records should
be skipped before the input file
is sorted or copied. SKIPREC is
not available for PARASORT.

No.

STOPAFT=n

Sorts or copies at most n
records that survive input file
editing (E15, INCLUDE/OMIT,
SKIPREC etc.) STOPAFT is
not available for PARASORT.

TRUNC= RCO0 /RC4 /RC16

Specifies the action to be taken
if the non-OUTFIL SORTOUT
LRECL is smaller than the
SORTIN/SORTINnn LRECL.

UNINTDS=YES/ NO

Indicates if an uninitialized
SORTIN or SORTINnn input
file should be processed.

VLTEST=(n/ 1, ON /OFF /
OFF4)

Indicates the type of validity
testing to be done when
processing variable-length
records.

VLTESTI=n/ 0

Indicates action to be taken
when a variable-length record
does not contain all fields
referenced by INCLUDE or
OMIT processing.

VSAMEMT= NO /YES

Specifies the processing of
empty VSAM data sets
provided as input to a sort,
merge, Or copy.

ZDPRINT/ NZDPRINT

Specifies whether positive
summarized ZD fields will be
converted to a printable
format.

5.6

SyncSort for z/OS 1.1 Programmer’s Guide

SyncSort PARM Options

BALANCE

BMSG

CENTWIN

BALANCE

BALANCE optimizes overall performance by balancing among CPU time, sort elapsed
time, and I/O activity to SORTIN, SORTOUT and SORTWK. If you wish to emphasize one
performance measure at the possible expense of others, use CPU, ELAP, or 10. See CPU,
ELAP, and 10, below. Note that these options and BALANCE are all mutually exclusive.

Cannot be used with Tape Sort.

BMSG

BMSG enables class B messages. They will appear wherever the MSG PARM option indi-
cates informational messages are to be routed.

Cannot be used with Tape Sort.

1o

CENTWIN =

L r B

CENTWIN defines a sliding or fixed 100-year window that determines the century to which
2-digit year data belongs when processed by SORT, MERGE, INREC, OUTREC or OUTFIL
OUTREC control statements.

The 2-digit year data formats (Y2B, Y2C, Y2D, Y2P, Y2S and Y2Z) plus the full-date for-
mats (Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y) work with CENTWIN to treat a 2-digit year
value as a 4-digit year. The 2-digit and full-date year data formats can be specified on con-
trol statements as follows:

e Use SORT/MERGE control statements to correctly collate 2-digit years that span
century boundaries. For information on using the 2-digit and full-date data formats for
SORT/MERGE field specifications, see “CENTWIN Parameter (Optional)” on page 2.41
or on page 2.134.

Chapter 5. PARM Options 5.7

5.8

e Use INCLUDE/OMIT or OUTFIL INCLUDE/OMIT control statements for correct
comparisons involving 2-digit year and full-date data formats. For information on using
the 2-digit year data formats for INCLUDE/OMIT processing, see "Specifying Field-to-
Field Standard Comparisons for Date Fields" under the heading “INCLUDE/OMIT
Control Statement” on page 2.16. For more information on specifying full-date formats,
see pages 2.24-2.29.

e Use INREC/OUTREC or OUTFIL OUTREC control statements to convert 2-digit year
and full-date data to 4-digit printable output. For information on using the 2-digit year
data formats for OUTREC processing, see “Converting Year Data with Century
Window Processing on INREC, OUTREC, or OUTFIL OUTREC” on page 2.100 and
“Example 5” on page 2.120. For more information on converting full-date formats, see
the descriptions of the f; and fj4s,(c) parameters on pages 2.93-2.96, Table 11 on page
2.47, and Table 15 on page 2.97.

In addition, two date formats, Y2ID and YZ2IP, are provided for year conversion with
INREC/OUTREC and OUTFIL OUTREC. These formats work with CENTWIN to expand a
2-digit year in packed decimal format to a 4-digit year while maintaining the packed deci-
mal format in the output field.

CENTWIN ensures that year data spanning centuries will be sequenced correctly. For
example, without CENTWIN processing, an ascending sort/merge would sequence the year
01 before the year 98. With CENTWIN processing, the 01 field could be recognized as a
twenty-first century date (2001) and would thus be sequenced after 98 (1998) for an ascend-
ing sort.

The CENTWIN option generates either a sliding or fixed century window, depending on
which form of CENTWIN is used: CENTWIN=s or CENTWIN={.

e CENTWIN=s specifies a sliding century window, which automatically advances as the
current year changes.

The variable s is a number 0 through 100. This value is subtracted from the current
year to set a century-window starting point. For example, in 1996 CENTWIN=20 would
create the century window 1976 through 2075. Ten years later in 2006, the century
starting year would slide to 1986 (2006 minus 20 = 1986) and the century window
would be 1986 through 2085.

The CENTWIN delivered default is s=0, which means the current year is the starting
year of a century window.

¢ CENTWIN=f specifies a fixed century window.

The variable f is a 4-digit year (yyyy) between 1000 and 3000. For example,
CENTWIN=1976 establishes a fixed starting year 1976 for the century window 1976
through 2075. This window will not change as the current year changes.

SyncSort for z/OS 1.1 Programmer’s Guide

CMP

The century window defined by CENTWIN controls processing of year-data. If a 2-digit
year field (indicated by Y2B, Y2C, Y2D, Y2P, Y2S, Y2Z, Y2ID, Y2IP, Y2T, Y2U, Y2V, Y2W,
Y2X, or Y2Y) has a value less than the last two digits of the century window start year, the
year field will be treated as a year in the century following the year of the century window,
except for 00, which is considered to be in the same century as the century window start
year. All other 2-digit years will be treated as in the same century as the century window
start year.

For example, consider the century window 1950 through 2049. The 2-digit year fields would
be processed as follows:

Two-digit Field Processed as Year

00 2000
01 2001
49 2049
50 1950
99 1999

An ascending sort of the above sample data would produce output data in the following
sequence:

Two-digit Field Processed as Year

50 1950
99 1999
00 2000
01 2001
49 2049

If CENTWIN has been specified on the SORT or MERGE control statement as well as in
the PARM field, the PARM specification has precedence.

Cannot be used with Tape Sort.

CPD
CMP = {—}
CLC

CMP specifies the kind of compare operation to be used for sort/merge control fields up to
16 bytes long, bearing the format code PD or ZD.

When CMP=CPD is used, ZD fields are PACKed and then compared. Invalid PD data may
cause a system 0C7 abend and program termination. The integrity of fields labelled "ZD" is

Chapter 5. PARM Options 59

COBEXIT

only guaranteed when they contain valid ZD data. Since the zone bits (the leftmost four
bits of each byte) are lost during packing, UNPKing the field later restores only valid ZD
data to its original state. Leading blanks are transformed to leading zeros and alphabetic
character data that packs to a valid PD field is converted to valid ZD data.

CMP=CLC uses the compare logical instruction for all PD and ZD control fields. No data
validation is done and the integrity of the output is maintained.

CMP=CPD is the delivered default for the PARM. The delivered default for VLTEST is 1,
and is consistent with this default. Changing the VLTEST default from 1 to any even num-
ber forces the use of CMP=CLC when sorting variable-length records.

For more detailed information and sample comparisons, see the section “Comparing PD
and ZD Control Fields” on page 2.41.

Cannot be used with Tape Sort.

COB1
COBEXIT = COB2

COBEXIT indicates which libraries COBOL E15 and E35 exit routines should use when
they are executed.

COBEXIT=COB1 specifies that COBOL exits should use either OS/VS COBOL libraries or
no libraries at all.

COBEXIT=COB2, the delivered default, specifies that COBOL exits should use VS COBOL
IT or COBOL/370 libraries. VS COBOL II or COBOL/370 run-time library modules typically
require more main storage than OS/VS COBOL library modules. The amount of additional
storage depends on VS COBOL II or COBOL/370 installation options. When VS COBOL II
or COBOL/370 run-time library modules are used, it may be necessary to account for this
additional storage by adjusting the b value of the Exit-Name parameter on the MODS
statement.

Cannot be used with Tape Sort.

5.10 SyncSort for z/OS 1.1 Programmer’s Guide

COMMAREA

[COMMAREA(n,x) |
COMMAREA(n)
COMMAREA(,x)
COMMAREA
NOCOMMAREA

COMMAREA instructs SyncSort to provide an area for communication between exit pro-
grams. The size of this area is given as a decimal number n of bytes; x, a character string at
most n bytes long, designates the initial value to be stored in this area. Regardless of the
value of n, which may be between 1 and 256, x may not exceed 89 bytes in length. (When-
ever x has fewer than n characters, it will be right-padded with blanks to a length of n.) If
COMMAREA is specified via the EXEC statement, blanks may be included within the
string x. However, if COMMAREA is specified via the $ORTPARM DD statement, interven-
ing blanks are not allowed. In neither case is a right parenthesis permitted since it delimits
the COMMAREA parameter.

Both n and x are optional. If either subparameter is specified, it will determine the other: n
defaults to the length of x, x defaults to n blanks. If neither x nor n is specified, n defaults to
80 bytes, x to 80 blanks.

NOCOMMAREA is the program default: no area for communication between exit programs
is provided, although exit routines may still use the 19th word of the save area.

Exit program access to this communication area is described in the discussion of exit pro-
grams, see “The Exit Communication Area” on page 7.4.

Cannot be used with Tape Sort.

PARM Code Communication Area

COMMAREA (10, DEBRUG) DEBUG. (5 blanks)
COMMAREA (10) ..., (10 blanks)
COMMAREA .. (80 blanks)
COMMAREA (, DEBUG) DEBUG

COMMAREA (80, DERUG) DEBUG. ... (75 BLANKS)

Figure 174. Examples: Coding the COMMAREA PARM

Chapter 5. PARM Options 5.11

CORE

core] |™M
{SIZE }: MAX
MAX-n
MAX-nK
MAX-nM]

CORE is used to override the installation default for the amount of memory the sort/merge
is allowed to use. To specify an amount of memory, choose one entry from each pair of
braces.

Note that CORE and SIZE are synonymous. Note also that memory specification may be a
decimal number of bytes (CORE=n), a decimal multiple of K, where K=1024 bytes
(CORE=nK), or a decimal multiple of M, where M=1048576 bytes (CORE=nM).

For simplicity, the following describes only CORE, specified in units of nK.

CORE=nK Defines a maximum memory limit of nK below the 16-megabyte
line.
CORE=MAX Assigns to the sort/merge all the available memory above and

below the 16-megabyte line.

CORE=MAX-nK Assigns to the sort/merge all the available memory above and
below the 16-megabyte line less nK bytes, which is reserved
below the 16-megabtye line.

Consult your systems staff for any installation-specific modifications to the handling of

CORE. For example, "CORE" will be limited if a maximum memory size for SyncSort was
set at installation time.

CPU

CPU

CPU minimizes the CPU time of each sort at the expense of sort elapsed time and I/O activ-
ity. See BALANCE, ELAP and IO. Note that these options and CPU are all mutually exclu-
sive.

Cannot be used with Tape Sort.

5.12 SyncSort for z/OS 1.1 Programmer’s Guide

DEBUG

DEBUG

DEBUG produces a SyncSort SNAP dump in the event that a critical error forces the sort
to terminate. A SNAP dump produced in this way is of use to a SyncSort analyst in debug-
ging complex problems. See “What to Do Before Calling SyncSort for z/OS Product Ser-
vices” on page 16.72. Note that the PSW AT ENTRY TO SNAP and general registers are
useless for debugging.

Cannot be used with Tape Sort.

DIAG
DIAG
DIAG turns on both the IOERR=ABE and the RC16=ABE options (see these options for
explanations). When specified for a Tape Sort, DIAG also turns on a diagnostic trace and
causes system ABEND 0C1 in the event of an I/O error.

DYNALLOC

d
(nn,mm)
DYNALLOC | ={(d, n [,RETRY _ { N H [SC=s])
OFF
OFF

DYNALLOC requests the dynamic allocation of SORTWK data sets on device type d.
Specify the device type either as a decimal number (e.g., 3380) or by the system generic
name (e.g., SYSDA). Any disk device accepted for a SORTWK DD statement can be
specified. Note that if VIO is specified it will be ignored, and the installation default for the
DYNALLOC device type will be used in its place.

Note that the DYNALLOC parameter may be used alone, without any subparameters. In
this case, the DYNALLOC installation default settings are used.

For non-MAXSORT applications, n can be 1 through 255. The value n specifies the number
of SORTWK data sets that can potentially be allocated. For values of n that are 31 or less,
SyncSort can automatically raise the number to 32 if the application requires. When n is 33
through 255, this value specifies the maximum number of SORTWK data sets that can be
allocated.

Chapter 5. PARM Options 5.13

E15

5.14

For MAXSORT applications, n is the number of SORTWK data sets that will be allocated.
As many as 32 SORTWK data sets can be specified for MAXSORT applications.

The delivered default for n is 3.
DYNALLOC=OFTF can be specified to override a DYNALLOC=ON installation default.

SORTWK data sets allocated by the DYNALLOC parameter normally supplement any
SORTWK data sets allocated by SORTWKnn DD statements; however, note that there is
an installation option to disable DYNALLOC if SORTWKnn DD statements are present.

SyncSort uses the value specified in the RETRY parameter to request automatic
DYNALLOC retry. This facility attempts to avoid a sortwork capacity exceeded condition
when disk space is not immediately available to satisfy a DYNALLOC request. When
RETRY is specified, SyncSort will automatically retry a specified number of times and wait
a prescribed interval between DYNALLOC requests.

The nn in the first position designates the number of times SyncSort will retry a failed
DYNALLOC request. The minimum allowed is 1 and the maximum is 16. The mm in the
second position designates the number of minutes SyncSort waits between each
DYNALLOC request. The minimum allowed is 1 and the maximum is 15. RETRY=OFF can
be specified to override a RETRY=ON installation default.

In an environment where DFSMS manages temporary work data sets, the SC subparame-
ter specifies a storage class s for SyncSort to use when dynamically allocating SORTWORK
data sets. The storage administrator at your installation defines the names of the storage
classes you can specify. Note that an installation written automatic class selection (ACS)
routine can override the storage class you specify. If SMS is not installed or active to man-
age temporary work data sets, the d device specification will be used in the SORTWORK
dynalloc request.

If DYNALLOC has been specified on the SORT control statement as well as in the PARM
field, the PARM specification will take precedence.

Cannot be used with Tape Sort.

E15=COB

E15 specifies the E15=COB option in order to include an E15 exit written in COBOL with-
out coding C on the MODS control statement.

Cannot be used with Tape Sort.

SyncSort for z/OS 1.1 Programmer’s Guide

E35

ELAP

EQUALS

E35=COB

E35 specifies the E35=COB option in order to include an E35 exit written in COBOL with-
out coding C on the MODS control statement.

Cannot be used with Tape Sort.

ELAP

ELAP minimizes the elapsed time (wall clock time) of each sort at the expense of CPU time
and I/O activity. See BALANCE, CPU and IO. Note that these options and ELAP are all
mutually exclusive.

Cannot be used with Tape Sort.

EQUALS
NOEQUALS

EQUALS guarantees that the first of a series of equal-keyed records is either first-in
(SORT) or from the lowest numbered SORTINnn data set (MERGE). With NOEQUALS,
there is a random element to the order in which records with identical control fields will
appear in the output. With or without EQUALS, MERGE preserves the order of equal-
keyed records within any one data set.

When used in conjunction with SUM, EQUALS indicates which of the equal-keyed records
will be preserved, containing the sum: the record occurring first in SORTIN (for a sort), or
drawn from the SORTINnn data set with the lowest nn number (for a merge) will contain
the totaled fields.

The EQUALS option can also be specified on the SORT/MERGE control statement. The
specification on the control statement takes precedence over the specification in the PARM
field.

Chapter 5. PARM Options 5.15

EXTCOUNT

FILSZ

5.16

EXTCOUNT

EXTCOUNT enables special processing to accommodate applications that have record
counts that exceed SyncSort’s default internal limit.

By default, the internal limit on the number of records that can be sorted for variable-
length data or for a sort application that uses the EQUALS option is 4,294,967,295 records.
Specifying EXTCOUNT increases the internal limit to 140,737,488,355,327 records. Fixed-
length sorts without EQUALS, and all merges and copies, have automatic support for the
maximum number of records allowed by the EXTCOUNT parameter.

Note that additional SORTWK space may be required when specifying the EXTCOUNT
parameter with a VL sort or a fixed-length sort with EQUALS. The additional SORTWK
space is 2 bytes per record. This amount can add a significant percentage to the SORTWK
space needs if the LRECL of the records is small. (Small LRECLs are typical of files with
an extremely large number of records). Therefore, when using EXTCOUNT with a VL sort
or a fixed-length sort with EQUALS, insure that the extra SORTWK space will be avail-
able.

Performance will usually be improved if the EXTCOUNT option is not in effect. Therefore,
EXTCOUNT should be used only when appropriate to the application.

If the record limit is exceeded, SyncSort will issue a critical error message and terminate
the application.

Cannot be used with Tape Sort.

FILSZ = {n }
En

FILSZ indicates the actual (FILSZ=n) or estimated (FILSZ=En) decimal number of records
to be sorted, taking into account all record additions and deletions due to an E14 or E15
exit routine, the INCLUDE/OMIT control statement, the SUM control statement and the
SKIPREC and STOPAFT parameters.

FILSZ=n instructs SyncSort to terminate with an error message unless exactly n records
are to be sorted. Since the number of records SUMed in Phase 1 is indeterminate and may
not be reproducible, much less predictable, only the estimated En value should be used if a
SUM control statement is present.

SyncSort for z/OS 1.1 Programmer’s Guide

FLAG

HBSI

If FILSZ is specified for a Tape Sort, only the estimated En value may be given. It should
indicate the number of records in the input file - not taking into account any records to be
added or deleted by an E14 or E15 exit program.

The FILSZ option can also be specified on the SORT control statement. The specification in
the PARM field will take precedence over that on the control statement.

FLAG(I)
FLAG(U)
NOFLAG

FLAG controls the routing of output messages. The MSG option, which handles messages
more comprehensively, is explained later in this section. The format of the FLAG option is
given below.

Specify FLAG(I) to route all messages to the data set specified by the SYSOUT DD state-
ment and only critical messages to the console. (This is the same as the MSG=SC PARM.)

Specify FLAG(U) to route critical messages only to both the data set specified by the
SYSOUT DD statement and the console. (This is the same as the MSG=CB PARM.)

Specify NOFLAG to route critical messages only to the console, no messages to the data set
specified by the SYSOUT DD statement. (This is the same as the MSG=CC PARM.)

HBSI

HBSI turns on hiperbatch processing for SORTIN data sets. To benefit from hiperbatch
processing, the SORTIN data set should already reside in hiperbatch. Although hiperbatch
does provide significant improvements in elapsed time, it causes some degree of degrada-
tion in other system resources. If you use HBSI and the SORTIN data set does not reside in
hiperbatch, you may experience some system degradation while not realizing any of the
benefits that accompany hiperbatch processing.

Cannot be used with Tape Sort.

Chapter 5. PARM Options 5.17

HBSO

INCORE

I0

IOERR

HBSO

HBSO turns on hiperbatch processing for SORTOUT data sets. HBSO benefits only subse-
quent job steps that utilize hiperbatch to access this data set.

Cannot be used with Tape Sort.

INCORE| _[ON
INCOR | |OFF

INCORE=0N requests SyncSort to perform an incore or a turnaround sort whenever possi-
ble, even if DYNALLOC is specified or SORTWKnn data sets are present. This is the deliv-
ered default.

With INCORE=0FF, SyncSort will not perform a turnaround sort even if your input data
can be sorted entirely in memory. Specifying INCORE=OFF without supplying
SORTWKnn data sets or requesting the DYNALLOC option results in a critical error when
sorting.

Cannot be used with Tape Sort.

10

IO minimizes the I/O activity of each sort at the expense of sort elapsed time and CPU
time. See BALANCE, CPU and ELAP. Note that these options and IO are all mutually
exclusive.

Cannot be used with Tape Sort.

IOERR=ABE
NOIOERR

IOERR specifies IOERR=ABE to receive user abend 999 if an I/O error should occur. This
abend will cause the job step to terminate, producing a diagnostic dump.

5.18 SyncSort for z/OS 1.1 Programmer’s Guide

L6

L7

LIST

NOIOERR is the program default. If this option is in effect, SyncSort will, in the event of an
I/O error, terminate with either a return code of 16 or a user abend 16, depending on the
RC16 option that is used.

Cannot be used with Tape Sort.

L6=n

L6 indicates the average number of bytes of work space each record will need, overriding (if
present) the 15 parameter of the RECORD control statement. The decimal value n of the
optional L6 parameter is provided by the HISTOGRM utility program. If neither L6 nor 1,
is provided, SyncSort will estimate this value.

L6 is only used for sorting variable-length records. It is ignored by Tape Sort, merge, and
copy applications.

Cannot be used with Tape Sort.

L7=n

L7 indicates the segment length that SyncSort should use for maximum sorting efficiency.
The decimal value n of the optional L7 parameter is provided by the HISTOGRM utility
program. (A segment is a fixed-length area used to contain all or part of a variable-length
record.) The L7 value overrides (if present) the 1; parameter of the RECORD control state-
ment. If neither L7 nor 1; is provided, SyncSort will estimate this value.

L7 is only used for sorting variable-length records. It is ignored by Tape Sort, merge, and
copy applications.

Cannot be used with Tape Sort.

{LIST }
NOLIST

LIST, the default for the sort/merge program, causes header lines and control statements to
be listed with the SYSOUT data set (in all likelihood, at the printer) for both JCL- and pro-

Chapter 5. PARM Options 5.19

LOCALE

gram-initiated executions. If NOLIST is specified, the control statements and header lines
will not appear with this data set.

Tape Sort accepts but does not process this parameter.

NONE
LOCALE = {CURRENT

name

LOCALE controls cultural environment processing, allowing you to choose an alternative
set of collating rules based on a specified national language. For SORT/MERGE processing,
the alternative collating applies to character (CH) fields. For INCLUDE/OMIT comparison
processing, the alternative collating applies to character fields and hexadecimal constants
compared to character fields.

SyncSort employs the callable services of IBM’s Language Environment for z/OS to collate
data in a way that conforms to the language and conventions of a selected locale. A locale
defines single and multi-character collating rules for a cultural environment. Numerous
pre-defined locales are available.

NONE, the default setting for LOCALE, results in normal EBCDIC collating.
CURRENT directs SyncSort to use the locale active when SyncSort begins.

name is the name of a supplied or user-defined locale that is to be active during SyncSort
processing. A locale name may be up to 32 characters and is not case sensitive. The locale
active just before SyncSort processing begins will be restored when SyncSort processing
completes. The following is a list of locales provided with the IBM National Language
Resources Feature of LE/370.

5.20 SyncSort for z/OS 1.1 Programmer’s Guide

;:i:ie Language Country

C

DA DK Danish Denmark
DE_CH German Switzerland
DE_DE German Germany
EL_GR Greek Greece
EN_GB English United Kingdom
EN_JP English Japan

EN _US English United States
ES_ES Spanish Spain

FI FI Finnish Finland
FR_BE French Belgium
FR_CA French Canada
FR_CH French Switzerland
FR_FR French France

IS IS Icelandic Iceland
IT_IT Italian Italy

JA_JP Japanese Japan
NL_BE Dutch Belgium
NL_NL Dutch Netherlands
NO_NO Norwegian Norway
PT_PT Portuguese Portugal
SV_SE Swedish Sweden
TR_TR Turkish Turkey

Table 27. Defined Locales

Notes:

1. Make sure the JCL gives SyncSort access to the library that contains the loadable
locale routines. For the supplied locales, these are the dynamically loadable routines in

Chapter 5. PARM Options 5.21

MSG

5.22

the IBM AD/Cycle LE/370 library. For more information, see the IBM publication
Language Environment for z/OS & VM Installation and Customization Guide, SC26-
4817.

2. Iflocale processing is used for fields specified in a SORT or MERGE control statement,
VLTEST=1 will be forced on in addition to any other VLTEST options in effect.
VLTEST=1 will cause SyncSort to terminate if a variable-length input record does not
contain all SORT/MERGE control fields.

3. Although locale processing can improve performance compared to external collating
routines, it should be used only when necessary. Locale processing can significantly
degrade SORT/MERGE and INCLUDE/OMIT performance compared to normal
collating.

4. An E61 exit cannot be used with locale processing.

5. Locale processing requires additional main storage to support the use of the IBM
Language Environment facilities. For those jobs that use locale, the below-the-line
region size should be increased by 1000K to accommodate the storage needs of the
Language Environment modules.

6. LOCALE cannot be used with Tape Sort.

AB
AC
AP
CB

CC
CP
NO
PC
SC
[SP |

MSG =

MSG indicates where SyncSort messages are to be routed. The MSG codes assume that the
printer is specified for the message data set; if a device other than the printer is specified
for this data set, messages described as routed to the printer will be routed to this other
device instead.

AB causes all messages to be routed both to the printer and to the console.

AC causes all messages to be routed to the console, none to the printer.

SyncSort for z/OS 1.1 Programmer’s Guide

AP causes all messages to be routed to the printer, none to the console. This is the pro-
gram default.
CB causes only critical messages to be routed to the printer and to the console. (This is
the same as the FLAG(U) option.)
CC causes only critical messages to be routed to the console, no messages to the printer.
(This is the same as the NOFLAG option.)
CP causes only critical messages to be routed to the printer, no messages to the console.
NO causes no messages to be routed to either the printer or the console.
PC causes all messages to be routed to the printer and to the console.
SC causes only critical messages to be routed to the console, all messages to the
printer. (This is the same as the FLAG(I) option.)
SP causes only critical messages to be routed to the printer, all messages to the con-
sole.
MSGDD
SYSOUT
MSGDD =y
XXXXXXXX
The program default for the DD name of the message data set is SYSOUT. To assign a dif-
ferent DD name, substitute any valid DD name for xxxxxxxx.
NULLOUT

NULLOUT = {RC4

RCO

RC16

NULLOUT specifies the action to be taken when SORTOUT in a sort, merge, or copy appli-
cation contains no data records.

RCO

RC4

The delivered default instructs SyncSort to issue a return code of 0 if not overrid-
den by a higher return code set for another reason.

Instructs SyncSort to issue a WER4611 warning message and continue processing.
A return code of 4 will be issued if not overridden by a higher return code set for
another reason.

Chapter 5. PARM Options 5.23

OVFLO

PAD

5.24

RC16 Instructs SyncSort to issue a WER461A message and terminate processing with a
return code of 16.

Cannot be used with Tape Sort.

RCO
OVFLO = {RC4
RC16

OVFLO specifies the action to be taken if a summary field overflows or underflows during
SUM processing.

RCO The delivered default instructs SyncSort to issue a WER0491 warning message and
continue processing. A return code of 0 will be returned if not overridden by a
higher return code set for another reason. The WER049I will only be issued on the
first occurrence of the overflow or underflow.

RC4 Instructs SyncSort to issue a WER0491 warning message and continue processing.
A return code of 4 will be issued if not overridden by a higher return code set for
another reason. The WER0491 will only be issued on the first occurrence of the
overflow or underflow.

RC16 Instructs SyncSort to issue a WER049A message and terminate processing with a
return code of 16.

Cannot be used with Tape Sort.

RCO
PAD = {RC4
RC16

PAD specifies the action to be taken if the LRECL defined in the JCL for a non-OUTFIL
SORTOUT is larger than the SORTIN/SORTINnn LRECL or the internally processed
record length when the SORTIN/SORTINnn LRECL is modified by features.

RCO The delivered default instructs SyncSort to issue a WER4621 message, pad fixed-
length output records with binary zeros, and issue a return code of zero.

SyncSort for z/OS 1.1 Programmer’s Guide

PRINTI121

RC16

RC4 Instructs